
Journal of Software Engineering for Robotics 7(1), July 2016, 75-99
ISSN: 2035-3928

A Survey on Domain-Specific Modeling and
Languages in Robotics

Arne NORDMANN1 Nico HOCHGESCHWENDER2 Dennis WIGAND1 Sebastian WREDE1

1 Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Bielefeld, Germany
2 Department of Computer Science, Bonn-Rhein-Sieg University, Sankt Augustin, Germany

Abstract—The development of advanced robotic systems is challenging as expertise from multiple domains needs to be integrated
conceptually and technically. Model-driven engineering promises an efficient and flexible approach for developing robotics applications
that copes with this challenge. Domain-specific modeling allows to describe robotics concerns with concepts and notations closer to
the respective problem domain. This raises the level of abstraction and results in models that are easier to understand and validate.
Furthermore, model-driven engineering allows to increase the level of automation, e.g., through code generation, and to bridge the gap
between modeling and implementation. The anticipated results are improved efficiency and quality of the robotics systems engineering
process. Within this contribution, we survey the available literature on domain-specific modeling and languages that target core robotics
concerns. In total 137 publications were identified that comply with a set of defined criteria, which we consider essential for contributions
in this field. With the presented survey, we provide an overview on the state-of-the-art of domain-specific modeling approaches in
robotics. The surveyed publications are investigated from the perspective of users and developers of model-based approaches in
robotics along a set of quantitative and qualitative research questions. The presented quantitative analysis clearly indicates the rising
popularity of applying domain-specific modeling approaches to robotics in the academic community. Beyond this statistical analysis, we
map the selected publications to a defined set of robotics subdomains and introduce an extended classification scheme to allow a fine-
grained mapping of publications addressing the architecture and programming of robotics systems. We map the surveyed publications
to typical development phases in robotic systems engineering. The resulting classification tree shall serve as overview and reference
for potential users. Furthermore, we analyze the surveyed contributions from a language engineering viewpoint and discuss aspects
such as the methods and tools used for their implementation as well as their documentation status, platform integration, typical use
cases and the evaluation strategies used for validation of the proposed approaches. Finally, we conclude with recommendations for
discussion in the model-driven engineering and robotics community based on the insights gained in this survey.

Index Terms—Model-Driven Engineering, Domain-Specific Modeling Languages, Code Generation, Language Engineering

1 INTRODUCTION

Model-driven engineering (MDE) and domain specific devel-
opment methods are recognized to cope with the challenges
of building complex heterogeneous systems in domains such
as aerospace, telecommunication and automotive [1] which
face similarly complex integration and modeling challenges as

Regular paper – Manuscript received August 15, 2015.

• The research leading to these results received funding from the European
Community’s Horizon 2020 robotics program ICT-23-2014 under grant
agreement 644727 - CogIMon and was supported by a grant of the Cluster
of Excellence Cognitive Interaction Technology (CITEC) at Bielefeld
University. Nico Hochgeschwender received a PhD scholarship from the
Graduate Institute of the Bonn-Rhein-Sieg University which he gratefully
acknowledges.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

advanced robotics. A model can be defined as “an abstraction
of a system often used to replace the system under study” [2]
and often represents a partial and simplified view of a system
or specific aspect. As such, the creation of multiple models is
“usually necessary to better represent and understand the sys-
tem under study” [2], which is particularly valid in the robotics
domain due to its intrinsic interdisciplinary foundation.

Domain-specific modeling allows to describe robotics con-
cerns with concepts and notations closer to the respective prob-
lem domain. This raises the level of abstraction and results in
models that are easier to understand and validate, lowering the
technical skills necessary to handle the complexity of robotics
systems development. Furthermore, it focuses on increasing
the level of automation, e.g., through code generation or direct
model interpretation, to bridge the gap between the modeling
and the implementation levels and to improve the efficiency
and quality of the robotics systems engineering process.

www.joser.org - c© 2016 by A. Nordmann, N. Hochgeschwender, D. Wigand, S. Wrede



76 Journal of Software Engineering for Robotics 7(1), July 2016

In the last years, this approach was actively adapted to the
robotics domain to handle the complexity of robotics systems
development.

The purpose of this survey is to report on the state of
the art in Domain-specific (Modeling) Languages (DS(M)L)
in robotics, and provide an overview of subdomains relevant
for programming and simulation of robotics applications that
are already supported through the MDE approach. Similar
surveys, yet for a wider scope, have been conducted by Biggs
and MacDonald [3] as well as Van Deursen et al. [1]. A
mapping study in the field of robotics has recently been done
in the master thesis of Cattivera and Casalaro [4], yet with a
narrower scope than this survey by focusing on mobile robot
systems. This contribution extends on a previously published
earlier version of this survey [5] with improved coverage of
the available literature as well as a more in-depth discussion
and classification of the surveyed publications, i.e. through
the mapping of the identified publications to the phases of a
typical robotics development process.

The intended addressee of this survey are potential DS(M)L
users as well as system integrators who are interested in
applying a domain-specific modeling approach directly for one
of the anticipated MDE use cases. Furthermore, we address
language developers that are interested in reuse and extension
of existing approaches and who want to learn about best
practices in order to foster scientific exchange and community
building inside the domain. Hence, the central aim of this
survey is to provide an overview on the state-of-the-art in
domain-specific modeling and languages in robotics.

The remainder of this article continues with a brief outline
of the quantitative and qualitative research questions that
we want to investigate in this contribution, followed by an
introduction to core concepts of domain-specific modeling in
Section 3 and a definition of a minimal set of methodological
requirements on DS(M)L approaches to be included in the
survey. Subsequently, Section 4 analyses the target domain
along two dimensions, which are the core robotics domains
and a reference development process. Section 5 explains how
the literature survey was conducted along a defined protocol,
while Section 6 classifies and quantitatively assesses the
covered literature, also providing an overview of several non-
functional aspects along the quantitative research questions.

On that basis, Section 7 discusses the qualitative research
questions along key publications and identifies best practices
that are relevant both for DS(M)L users and developers. We
analyze the surveyed contributions from a language engineer-
ing viewpoint and discuss aspects such as the methods and
tools used for their implementation as well as their docu-
mentation status, platform integration, typical use cases and
the evaluation strategies used for validation of the proposed
approaches. In Section 8 we briefly discuss potential threats
to the validity of the presented study. Section 9 summarizes
the main findings of the survey and discusses requirements
on accessibility and documentation standards for DS(M)L

publications to allow more effective reuse of knowledge
provided with domain-specific models in the area of robotic
systems engineering. Finally, Section 10 groups the surveyed
publications according to subdomain and development phase
as a quick reference to the bibliography entry for the interested
reader. Links at the end of each bibliography entry link back
to the sections where the respective publication is mentioned.

2 OBJECTIVES
The main objective of this survey is to investigate the question:
What is the state-of-the-art of Model-Driven Engineering
and Domain-Specific (Modeling) Languages in Robotics?
This main objective will be investigated along the following
quantitative and qualitative research questions.

2.1 Quantitative Research Questions
The research questions addressed within this survey are an
extension of our earlier analysis [5]. By answering these ques-
tions we aim to provide insights into quantitative relationships
that are relevant for answering the main question introduced
above. The questions can be summarized as follows:
RQ1 Which functional aspects are typically addressed with

DS(M)Ls in robotics?
This question investigates the distribution of MDE and
DS(M)L approaches over the different functional domains
prevalent in robotics systems to find out which of those
are particularly well supported. Our initial hypothesis is
that a larger number of model-based approaches exists for
well understood and mature aspects such as kinematics
modeling or motion control in contrast to comparably
recent research fields such as force control.

RQ2 Which robot application development process phases are
well covered by DS(M)L-based MDE approaches?
This question investigates the distribution of MDE and
DS(M)L approaches over the different phases of a
robotics system engineering process. A preliminary ob-
servation is that MDE and DS(M)L approaches typically
support modeling of certain capabilities and systems, but
ignore runtime aspects.

RQ3 Which tools are used to realize DS(M)Ls and apply
MDE in the context of robotics?
To investigate homogeneity and compatibility inside the
domain, we analyzed which tools are used for the imple-
mentation of MDE and DS(M)L methods. Findings shall
provide insights on the level of fragmentation as well
as identify possible standard environments that may lead
to easier (meta)model interchange and reuse of language
implementations.

RQ4 What are the publication trends?
On a meta level we are also interested in the momentum
of the MDE and DS(M)L topic in the robotics community,
which we investigate along two more fine-grained ques-
tions: i) What is the publication rate by year? Is there



A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 77

a positive trend for MDE approaches and DS(M)Ls in
robotics? ii) What are the main venues MDE and DS(M)L
topics are published to? What are the main conferences,
journals or workshops where work on MDE and DS(M)L
approaches is published? How is the distribution between
domain (robotics) venues and those regarding the method
(software and modeling venues) as well as among the
publication types, i.e., workshop, conference and journal
paper?

We provide answers to these questions by utilizing the
statistical data gathered through the survey and by highlighting
selected examples in Section 6.

2.2 Qualitative Research Questions
To further investigate the current state of the art of MDE and
DS(M)Ls in robotics, we try to answer questions regarding
the typical development, usage as well as the accessibility and
documentation state of these approaches.
RQ5 What is the accessibility and documentation state of

DS(M)Ls and their MDE ecosystem?
An important factor for reuse of models and DS(M)Ls,
scientific exchange and community building around MDE
in robotics is accessibility and documentation. This com-
prises several factors like technical accessibility, e.g.,
download of the language or models, licensing, and
documentation.

RQ6 What typical artifacts are generated by DS(M)L-based
MDE approaches and how are they used?
To assess the intended use of the MDE approaches and
DS(M)Ls, we looked at the artifacts generated with their
help (if any) and the context they are used in and also
how this differs between the subdomains and disciplines
(cf. RQ1).

RQ7 How much platform-dependency is introduced?
An important aspect of the generated artifacts and the
model transformations is how tightly they are coupled to
a certain platform. “Platform” in this context means the
technical execution context, so the software framework
and all additional tools or libraries necessary to use the
DS(M)L or the generated artifacts.

RQ8 How are DS(M)L approaches evaluated?
Evaluation of a DS(M)L-based approach in its intended
use-case is not only interesting from a developer’s per-
spective, but also to validate an approach from a scientific
perspective. Evaluation can also be used to demonstrate
or prove whether the approach is complete, which implies
that typical examples of the domain can be completely
expressed with the modeling approach.

RQ9 What are the development processes that lead to the
surveyed MDE and DS(M)L approaches?
The identification and formalization of domain-specific
concerns in an abstract model or the automation of
manual development tasks are typical motivations for the

development of models and DS(M)Ls [6]. We wanted
to know whether the surveyed publications report on
why a DS(M)L-approach has been applied and what
activities such as domain and problem assessment or
expert consultation are used for domain analysis and
language development.

RQ10 How are models, metamodels and DS(M)Ls (re)used
by third parties?
While many publications introduce new MDE meth-
ods and DS(M)Ls, we are also interested whether such
approaches are actually used by third-parties (not the
developers themselves) and in how far the reported usage
scenarios demonstrate the intended benefits of model-
driven engineering. With this question we try to gain
some insight whether model (re)usage within the domain
is already happening and how the MDE approach is prac-
tically applied in a robotics context. While this question
may deserve a dedicated survey, we wanted to share the
preliminary observations gathered during the analysis of
candidate publications as we consider these an interesting
contribution.

These questions will be discussed along reference publi-
cations in Section 7. The discussion shall provide insights
on best practices that are useful for language developers
when publishing their DS(M)L approaches in the robotics or
software engineering community. It is furthermore intended
to provide hints to potential users and developers on which
criteria are relevant when considering to use or extend a
DS(M)L-based approach.

3 DOMAIN-SPECIFIC MODELING LANGUAGES

In order to perform a systematic review on domain-specific
modeling for robotics system engineering, a necessary prereq-
uisite is to define what we consider a domain-specific (mod-
eling) language and to briefly describe terminology, concepts
as well as use cases that are relevant from the survey’s point
of view. While a full introduction to the topic of MDE with
DS(M)Ls (cf. [2] for a recent conceptual overview) is beyond
the scope of this article, the following paragraphs motivate
our expectations on the surveyed publications from a software
engineering perspective. These expectations partially define
the inclusion and exclusion criteria of our search process (cf.
Section 5) and link the presented DS(M)L concepts to the
previously introduced research questions.

While some aspects such as the the basic properties of
modeling languages and the different mechanisms to utilize
models on a target platform are essential for language users
(cf. Fig. 1), other concepts such as the formalism used at the
metamodel level are mainly relevant for language developers
and researchers in the DS(M)L community. Hence, the fol-
lowing subsections are structured according to these different
perspectives.



78 Journal of Software Engineering for Robotics 7(1), July 2016

conforms to /
instance of

conforms to /
instance of

results in

defines

Metamodel (Modeling Language)Metamodel 
(Modeling Language)

Meta-MetamodelMeta-Metamodel

Domain ModelDomain Model

instance of

defines

System ArtifactsRobot System Artifact

M3

M2

M1

M0
D

e
ve

lo
p

e
r 

P
e
rs

p
e
c
tiv

e

U
se

r 
P

e
rs

p
e
c
tiv

e

Fig. 1. Abstraction levels of model-driven engineering
with DS(M)Ls informed by the standard definition of the
OMG [7]. In robotics, multiple metamodels and modeling
languages, models and artifacts with potentially complex
interactions will be required to fully describe an exe-
cutable system.

3.1 User Perspective

According to van Deursen et al. [1], a DSL is defined as a
“programming language or executable specification language
that offers, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to, a
particular problem domain”. The abstractions and notations
must be “natural/suitable for the stakeholders who specify that
particular concern” [8].

These definitions already highlight two fundamental char-
acteristics of well-designed DSLs: their expressive power
targeted at a specific domain and the definition of formal
notations intuitively understandable for domain experts while
being machine processable, eventually yielding executable
models of robotics applications.

In contrast to General-purpose Programming Languages
(GPL) such as C++, Java, or Python, DSLs usually contain
only a restricted set of notations and abstractions specialized to
one or more particular domain(s). Compared to external DSLs
that define their own syntax and semantics, so-called internal
DSLs are embedded in extensible general purpose languages
such as Lua, Racket or Ruby. They extend the syntax and
potentially the semantics of the host language with domain-
specific notations and abstractions. This adds the expressive
power of the DSL to the GPL.

Similarly, Domain-Specific Modeling Languages (DSMLs)
that rely on graphical notations must be differentiated
from general purpose modeling languages (GPMLs) such as

UML [9] or SysML [10]. GPMLs typically provide a larger
number of generic constructs and notation, which allows
their application in different domains, e.g., the modeling of
object-oriented software systems in UML. In contrast, DSMLs
are typically comprised of a smaller set of concepts and
graphical notations that are close to the respective application
domain [2]. A common practice for the definition of DSMLs
is the use of the UML Profile mechanism that allows to
add domain-specific abstractions to UML, e.g., MARTE [11]
for modeling and analyzing real-time systems. MARTE is an
example of an internal DSML, which is realized as extension
to an existing modeling language (UML). An external DSML
typically provides a custom graphical syntax, which conforms
to a custom meta-model and requires a customized framework
for graphical editing.

This differentiation already allows to define the scope of
the presented survey in terms of modeling languages. We
consider both textual and graphical DS(M)Ls as relevant and
discuss their usage in the context of robotics along RQ3. In
contrast, we do not include publications on general purpose
(modeling) languages or their use in the context of robotics
system development. Hence, this scope is reflected in the
search terms of our overall search process (cf. Section 5).

From a user’s perspective, the execution or interpretation
of robot-specific models is an important use case for domain-
specific modeling, e.g., the embedding of a generated model-
based kinematics and dynamics controller in a larger robotic
system. While internal DS(M)Ls rely on (and are bound to) the
execution semantics of their host language, external DS(M)Ls
can be transformed to a format that directly allows execution
on a target platform or interpretation, e.g., through a virtual
machine. Another use case for domain-specific models in a
robotics context is system analysis. Here, model checking and
validation, the setup and analysis of simulations or model-
based testing are typical tasks that can be addressed. Beyond
execution and analysis, models are often directly suitable
as documentation but can also be used to generate further
visualization or documentation assets such as specific views
on a system. For the survey, we did not focus on a particular
use case for DS(M)Ls. Instead, we highlight in the discussion
of RQ10 representative usage scenarios.

Further concerns that are highly relevant for potential
DS(M)Ls users are the kind of artifacts such as source code,
configuration files, etc. that are provided through a model-
based development approach and how these artifacts are used
within a target platform. Here, target platform refers to the
specific hard- and software required to integrate and run the ar-
tifacts within a robotics system architecture. Nowadays, many
approaches, e.g., Frigerio et al. [12], already demonstrate the
parallel generation of different kinds of artifacts such as C
code for real-time components as well as Matlab/Simulink
code for simulation and analysis through exchangeable code
generators. As part of the discussion on RQ6, the survey
shall provide insights on the M0 artifacts (cf. Fig. 1) that



A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 79

are current targets of model-driven engineering in robotics. In
order to support variability with regard to the target platforms,
flexible model transformation and code generation techniques
allow to interface generated or non-generated artifacts, e.g.,
with different robot devices, software libraries or robotics
middleware such as ROS or YARP. To support this mapping
to different environments, models often need to be augmented
with additional information that needs to be added by develop-
ers. As technical and functional variability is a major challenge
in robotics system engineering, we discuss in the context of
RQ9 in how far these benefits of model-based development
are already demonstrated in the reported approaches.

3.2 Developer Perspective

Language Engineering [8] extracts agreed-upon abstractions,
syntax and semantics from the problem domain, e.g., by re-
viewing existing code examples and APIs, through the analysis
of formal descriptions found in the literature or the application
of further analysis patterns [6]. Based on the results of these
domain analysis steps, the identified abstractions and desired
notations can be realized in a DS(M)L.

In order to efficiently implement and apply a DS(M)L
approach for the development of robotics systems and to
fully exploit its benefits, DS(M)Ls are typically realized in
tools tailored to model-driven development such as the Eclipse
Modeling Project [13] or JetBrains MPS [14]. These so-called
language workbenches offer extensive support for the devel-
opment of DSLs. Domain-specific modeling languages are
themselves often modeled using the elements and following
the rules of metamodel languages [2] such as MOF [7] in
case of UML or Ecore as part of the Eclipse Modeling Project.
The alternative to the use of a potentially complex metamodel
language available in a language workbench is the use of a
grammar specification formalism such as (E)BNF, which can
be used by parser generators. However, language workbenches
provide further benefits beyond the definition of abstract
and concrete syntax such as support for the development of
textual and/or graphical editors with rich code completion and
dynamic constraint checking at design time that improve the
usability for language users. Furthermore, these environments
provide extension points to plug-in required model-to-model
(M2M) and model-to-text (M2T) transformations in order to
generate a different textual representation from system models
that integrates with the overall environment used for the
development of a robotics application. Language engineering
tools and formalism used in current publications on DS(M)Ls
in robotics are discussed in the context of RQ3.

The above mentioned aspects contain fundamental facets
that need to be addressed in scientific contributions presenting
domain-specific modeling approaches from a language devel-
oper perspective. Hence, the DS(M)L approaches considered
in this survey i) should either provide a language definition
or metamodel, based on, e.g., Ecore or (E)BNF, ii) or must

provide an example of their concrete syntax (notation), iii)
must be textual (internal or external) or graphical languages,
iv) and explain how a mapping to a target platform is achieved.
We consider all of these aspects as relevant for DS(M)L
developers and users, since formally described models and
the identification of popular language engineering tools might
lead to easier model interchange for developers, whereas users
may actually want to learn about well supported modeling
languages.

While many of the above mentioned criteria are formulated
from a software engineering perspective, the most important
criterion to judge whether a paper or article is included in
the survey is whether or not it targets a relevant concern in
the robotics domain. These relevant concerns are introduced
in the following section that identifies a set of sub-domains
considered particularly important and mature in the context
of robotics systems as well as development phases that are
prevalent in the engineering process of robotics applications.

4 DOMAIN ANALYSIS

A dedicated goal of this survey on the state of the art of
domain-specific modeling and languages in robotics is to give
potential DS(M)L users and developers orientation guide with
regards to the domain concerns that are addressed by existing
approaches. Naturally, one analysis dimension is defined by
the functional aspects that are covered by a domain-specific
modeling approach, i.e. which kinds of robot system aspect
such as a motion control algorithm can be modeled using a
surveyed approach. Since DS(M)L and MDE approaches are
particularly designed to facilitate and enhance the engineering
process, a second dimension is introduced that addresses
the question to which phases of a typical robotics system
development process the surveyed approaches contribute.

The classification schemes that we utilize within each
dimension are introduced in the following.

4.1 Functional Dimension
The definition of the functional analysis dimension essentially
raises the question about the mature sub-fields of engineering
and research that can be identified in robotics. Finding a clear
answer to this questions proves surprisingly hard. Partially,
because existing publications and standard ontologies are too
specific, existing taxonomies too broad, or just due to the fact
that in many robotics textbooks the partitioning of the robotics
field into sub-areas is still differing. Hence, we decided for
the purpose of an initial classification into subdomains to
utilize Part A of the Springer Handbook of Robotics [15] as
a “normative” and neutral reference.

Here, Part A (Robotics Foundations) covers the fundamental
principles and methods needed to create a robotic system.
While developing such a system, various challenges have to
be tackled in kinematics, dynamics, actuation, sensing, motion
planning, control, programming and task planning. Thus, the



80 Journal of Software Engineering for Robotics 7(1), July 2016

subdomains1 chosen in this survey will correspond to these
categories:
Kinematics refers to the motion of bodies in robotic mech-
anisms without taking the forces/torques causing the motion
into account. Hence, it includes general representations of the
position and orientation of a body, the relation among the
joints as well as conventions for representing the geometry
of rigid bodies connected by joints.
Dynamics covers the relationships between actuation and
contact forces that act on robot mechanisms. Such a mech-
anism in this sense is described by rigid bodies connected by
joints. Furthermore, it pertains to the acceleration and motion
trajectories resulting from these relationships.
Mechanisms and Actuation focuses on the mechani-
cal structure of a robot that creates its movable skeleton. All
elements that cause a robotic mechanism to move – so called
actuators – are addressed along with the mathematical model
that is used to characterize the robot’s performance.
Sensing and Estimation ranges from robot-state esti-
mation for feedback control to task-oriented interpretation of
sensor data of any kind. Apart from estimation techniques, this
category also covers different kinds of information represen-
tations.
Motion Planning covers collision-free trajectory plan-
ning for mobile platforms as well as robot actuators.
Motion Control addresses the dynamical model of
robotic manipulators. This includes different controller ap-
proaches, such as independent-joint, PID as well as torque
control.
Force Control pertains to the achievement of a robust
and dynamic behavior of robotic systems in compliant inter-
action between robot and environment. Similar to the Motion
Control category, it includes different control aspects, e.g.,
stiffness and impedance control.
Architectures and Programming refers to the way
a robotic system is designed on the software-level. It can be
divided into architectural structure and architectural style. The
structure is represented by how the system is split up into
subsystems and how they interact with each other. The style
however addresses the underlying computational concepts.
Reasoning Methods focuses on symbol-based reasoning
and knowledge representation. It covers logic- as well as
probability-based approaches. Furthermore, this category also
addresses learning, such as inductive logic learning, neuronal
networks and reinforcement learning.

Of course, many further ways of decomposition of the
robotics field exist, which may all be valid. For instance,
“grasping and manipulation” could very well be thought of
as a subdomain in its own right. However, we consider
the categories introduced above as principal components for
the core robotics problems. Following this idea, a paper on
grasping and manipulation will (of course this depends on

1Subdomains will be marked in the typewriter-style

the specific contribution) very likely be classified into the
motion control, motion planning and probably force control
subdomains.

4.2 Development Process Dimension

One general goal of DS(M)Ls is to support and structure de-
veloper’s work in development phases. Hence, we labeled the
surveyed DS(M)Ls according to their intended and potential
usage within a development process. To ground this analysis
we utilized the Robot Application Development Process in
BRICS (BRICS RAP or shortly RAP) [16]. The BRICS RAP
has been developed in the EU-funded project BRICS [17] and
is a holistic process model for developing robot applications
both in academia and industrial settings. The process model
combines ideas from traditional software engineering [18],
[19], agile software development [20], model-based engineer-
ing [21], [22], and system engineering [23] and foresees in its
latest revision eight different phases, each of which requires
several steps to complete the task. Note, the BRICS RAP also
foresees feedback and interaction among development phases,
but we present for the sake of simplicity only the core phases.
We decided to use the BRICS RAP in this survey for two
reasons. Firstly, to the best of our knowledge the BRICS
RAP is one of the very few reported process models targeting
robotic applications and is therefore applicable for our survey.
Secondly, the BRICS RAP aims to cover the complete life
cycle of a robotic application which enables to investigate
whether DS(M)Ls are used to a particular extent in certain
process phases. In the following we provide a brief overview
about the process phases proposed by the BRICS RAP.

• In the scenario building phase, environment features,
constraints and characteristics are defined. Furthermore,
the robot’s task is defined. This includes the specification
of customer acceptance tests to be performed in the
specified and potentially generalized environment.

• In the functional design phase, hardware requirements
and top-level functionalities are derived based on the
scenario definition. Furthermore, top-level functionalities
are decomposed and dependencies among them are iden-
tified. Also an initial functional design stating which
functionalities interact with each other is developed.

• In the platform building phase, the robot hardware is
determined. This includes the selection and potential
configuration of robot’s sensors and actuators meeting the
requirements defined in the functional design phase.

• In the capability building phase, basic and composite
components are constructed up to the application-level
and constraints for their deployment are specified. This
also includes the specification and eventually generation
of additional knowledge required for component execu-
tion such as knowledge bases and training data.

• In the system deployment phase, top-level component(s)
are packaged into a complete application system which



A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 81

defines a mapping of components and composites to com-
putational units. Furthermore, features and procedures for
system launch management are developed.

• In the system benchmarking phase, certain test proce-
dures targeting different quality attributes are performed
such as stress testing, safety and security testing, relia-
bility and durability testing, and performance testing.

• In the product deployment phase, an application is
tailored to a specific robot system. This includes also the
installation of maintenance instrumentation and a final
target platform system testing.

• In the product maintenance phase, the robot application
is operated and maintained. This includes eventually the
analysis of log files and the tuning of system parameters.

5 PROCESS

The selection of the publications for this survey focused
on publications that developed DS(M)Ls or metamodels to
conceptualize aspects of the robotics domain or support certain
research or engineering aspects. Compared to our previous
survey [5] we extended the process to find potential candidates
for this survey. A list of potential candidates was automatically
generated by a script2 performing a keywords-based query
on the widely known publication database Google Scholar.
Google Scholar3 indexes the publication databases of all
major scientific publishers and allows keyword-based full-text
searches while restricting certain metadata, e.g., publication
year or conference. All publications resulting from the selec-
tion process (cf. Fig. 2) were then analyzed manually regarding
our research questions detailed in Section 2. Furthermore, the
initial analysis has been reviewed by following a four-eyes
principle where one author assessed the analysis of another
author.

5.1 Selection Process
The script queried the publication database for publications
conforming to one of two inclusion criteria (IC):
IC1 Publication was published in the proceedings of the

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE International Conference on
Robotics and Automation (ICRA), International Confer-
ence on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), Robotics: Science and
Systems Conference (RSS), Journal of Software En-
gineering in Robotics (JOSER), IEEE Transactions on
Robotics (TRO), Springer Autonomous Robots (AURO),
Elsevier Robots and Autonomous Systems (RAS), Wi-
ley Journal of Field Robotics (JFR)4, Workshop on
Software Development and Integration in Robotics

2https://github.com/corlab/dslzoo/tree/query
3http://scholar.google.com/
4From 1984 until 2006 the journal was named Journal of Robotic Systems.

708

+

779

+

760

–

176

–

–

Publications of robotics-
oriented venues

IC2 : 71

EC1 : 19

EC2 : 584

EC3 : 39

Final amount of considered publications

Publications of so�ware-
oriented venues

Publications that are
not accessible online

Publications that do not describe
a metamodel or DSL

Publications that do not support
aspects of a robotics domain

IC1 : 708

137

Fig. 2. Sequence diagram of the selection process.
From top to bottom, an IC and EC is applied in each
step respectively. While the boxes on the right represent
the amount of contributions included or excluded by a
specific criterion, the boxes in the middle show the actual
amount after each step. Ultimately, 137 publications are
considered in this survey.

(SDIR) or the Workshop on Domain-Specific Languages
in Robotics (DSLRob) and full-text search matching
one of the keywords “domain-specific language(s)”,
“domain-specific modeling language(s)”, “generative
programming”, “specification language(s)”, “descrip-
tion language(s)”, “code generation”, “dsl(s)”, “meta-
modeling”, “metamodel(s)”, “metamodeling”, “meta-
model(s)”, “MDE”, “MDSD”.

IC2 Publication was published in the proceedings of the Code
Generation Conference (CG), International Conference
on Generative Programming: Concepts & Experiences
(GPCE), ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MODELS),
Conference on Model-driven Engineering and Software
Development (MODELSWARD) or the IEEE/ACM In-
ternational Conference on Software Engineering (ICSE),
and full-text search matching one of the keywords
“robot(s)” and “robotic(s)”.

Scanning the 12 robotics conferences, workshops and jour-
nals5 for the 20 keywords regarding model-driven or domain-

5The Workshop on Domain-Specific Languages in Robotics (DSLRob)
is not available in official proceedings and can therefore not be queried via
Google Scholar. We nevertheless included all 23 DSLRob publications of the
years 2010 – 2014 manually due to its relevance to the topic.

https://github.com/corlab/dslzoo/tree/query
http://scholar.google.com/


82 Journal of Software Engineering for Robotics 7(1), July 2016

specific methodology6 (IC1) with a total of 220 single queries
resulted in 708 publication candidates.

Scanning the 5 software engineering conferences, work-
shops and journals for the 4 keywords regarding robotics6

(IC2) with a total of 20 single queries resulted in 71 additional
publications, totaling in 779 publication candidates for this
survey.

After this automated process, the 779 publication candidates
were filtered manually by the authors of this survey by three
exclusion criteria (EC):
EC1 Publication is not online accessible in article format.

Presentation slides are not sufficient and books are also
excluded.

EC2 Publication does not describe a metamodel or domain-
specific language, or publication is not complying with
our definition from Section 3, e.g., domain-specific lan-
guage or metamodel not documented via grammar or
example.

EC3 DSL does not model or support aspects of the introduced
domain.

After applying EC1, 760 publication candidates remained.
This step sorted out false positives from the Google Scholar
query and publications that were only available as slides but
not in proceedings.5 176 publication candidates remained after
applying EC2, mainly filtering out publications that used our
keywords somewhere in the publication, e.g., in the related
work part, discussion, or bibliography, but do not introduce
any domain-specific language or metamodel. Also publications
that only vaguely describe a domain-specific language or meta-
model, but do no provide any grammar, formal specification
or even example are excluded with this criterion. Finally, 137
publications remained after applying EC3, mainly filtering out
publications added through IC2 that used the term “robot”,
e.g., somewhere in its outlook without actually supporting a
robotics use-case.

5.2 Analysis Process
The 137 publications that resulted from the selection process
were manually screened by the four authors. In this process,
additional metadata was attached that helps answering the
research questions detailed in Section 2.

Some of the quantitative aspects introduced in Section 2.1,
e.g., year and venue, were already annotated during the
automated selection process. Further aspects like subdomains,
development phases, and the formalization had to be annotated
manually.

While screening the publications, the four authors of this
survey also annotated if the paper was especially relevant
for one of the qualitative research questions discussed in
Section 2.2, e.g., being an especially good or relevant example,

6Due to technical restrictions, singular and plural forms of the keywords
had to be queried separately, e.g., “description language” and “description
languages”, resulting in 20 keywords for IC1 and 4 keywords for IC2.

Per Subdomain

0 40 80 120

Kinematics

Dynamics

Mechanisms and Actuation

Sensing and Estimation

Motion Planning

Motion Control

Force Control

Reasoning Methods

Architectures and Programming

14

5

13

10

15

26

22

18

120

occurrences in total

Fig. 3. Distribution of the surveyed publications over
robotics subdomains as defined in [15].

following best practice or being a special case in this aspect.
To avoid subjective bias during the annotations of the papers,
all papers were evaluated by at least two of the four authors
of this survey.

6 ANALYSIS

In the following, the surveyed publications are analyzed ac-
cording to the research questions introduced in Section 2.1.
The identified quantitative relationships provide a compact
overview on the functional or engineering concerns that are
addressed with DS(M)Ls in robotics and indicate what mod-
eling tools are used to realize these approaches. Furthermore,
we present metadata about the surveyed publications such as
the temporal distribution over the last decades, which clearly
indicates a rising number of DS(M)L publications. While the
focus in this section generally is on quantitative analysis, we
highlight selected papers if we consider these as representative
for a certain kind of category or relationship.

6.1 Subdomains (RQ1)

As introduced in Section 4, the functional subdomains that
serve as a basic classification ontology are motivated by
the core foundations of robotics as outlined in Springer’s
Handbook of Robotics [15]. The classification result, cf. Sec-
tion 10, shall serve as an annotated bibliography and reference
guide for potential DS(M)L users and developers to foster
discussion, reuse and extension of languages or models.

Besides this mapping of the individual publications, our
initial research question is to assess the overall distribution of
DS(M)L approaches with regard to the defined subdomains.
Fig. 3 provides an overview for the observed relationship
between robotics subdomains and DS(M)L publications as
a first result with regard to this question. The underlying
numbers seem to support the initial hypothesis that well



A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 83

understood subdomains are covered by a larger number of
contributions, whereas recent research fields are sparely or
not covered at all. Domains such as Motion Planning and
Motion Control (that we consider well understood), are
addressed by more than 11% of the publications. In contrast to
that, so far only two contributions [24], [25] are dealing with
Force Control. One of them [24] provides an internal
DSL to specify force-velocity controlled motions following
the Task-Frame formalism introduced by Mason [26]. The
article is also a good example how existing robotics knowledge
is reused in the form of a DS(M)L as the article is from
2011 whereas the underlying theory dates back to the 80s
and 90s. We also consider Kinematics a mature subdomain
and observe a higher number of reported DS(M)L-approaches
than in the field of Dynamics. Rather recently, there are
also contributions combining these subdomains. For instance,
both Kinematics and Dynamics are covered by [27], [12],
[28], [29] where for example both aspects are required to
compute algebraic quantities for the sake of various control
applications.

Revisiting Fig. 3, the subdomain Architectures and
Programming attracts attention. It is addressed by over
53% of the publications in this survey. We believe this is
mainly due to the following reasons. First, while the Handbook
chapter implicitly defines this subdomain to consider structural
aspects of robotics architectures such as basic component
models [32] and composition of components [33], [34] which
is reasonable, it also includes rather computational aspects
such as the coordination of architectural elements on different
levels of abstraction, e.g., on a task [35], [36] and behavior-
level [37]. As we need to apply this definition to all of the
surveyed papers, a comparably large fraction of the papers,
i.e. [38], [39], [40], [41], [37], are mapped to this category. A
second reason that we consider relevant here is that researchers
applying DS(M)L methods are likely to work on topics that
are closely related to this subdomain.

The large number of publications within this category called
for a deeper analysis of this subdomain. Following a similar
approach as with the Handbook of Robotics, we consulted the
Software Engineering Body of Knowledge [30] published by
the IEEE Computer Society as a widely accepted reference
to establish a more fine-grained classification taxonomy. In
particular, we associate the Programming aspect with the
key issues addressed the subsections of Section 2.2 within
the SWEBOK on Software Design and the Architecture
aspect with the issues outlined in the subsections of Section
2.3 on Software Structure and Architecture. TABLE 1 briefly
summarizes each of these issues according to their original
definition. We are aware that these terms are defined and
introduced in the SWEBOK without a dedicated focus on
robotics software development. For instance, we propose to
explicitly extend the definition of Security and Safety
to include models that address the physical safety of humans
in the presence of robots. Nevertheless, the re-use of def-

Software Design [30, Sect. 2.2] Sect.

Concurrency: Decomposition of software into processes,
tasks, and threads, dealing with related issues of efficiency,
atomicity, synchronization, and scheduling.

2.2.1

Control and Handling of Events: Organization of
data and control flow as well as handling of reactive and
temporal events.

2.2.2

Data Persistence: Handling of long-lived data. 2.2.3

Distribution of Components: Distribution of the soft-
ware across the hardware, communication of components,
and how can middleware be used to deal with heteroge-
neous software.

2.2.4

Error and Exception Handling and Fault
Tolerance: Prevention, toleration, and processing of
errors as well as dealing with exceptional conditions.

2.2.5

Interaction and Presentation: Structuring and or-
ganization of interactions with users as well as the presen-
tation of information.

2.2.6

Security and Safety: Prevention of unauthorized ac-
cess to and manipulation of information and other re-
sources. Limiting of damage, continuation of service,
speed-up of repair, and how to fail and recover securely.
Ensuring safety of humans in the presence of robots.

2.2.7

Software Structure and Architecture [30, Sect. 2.3] Sect.

Architectural Structures and Viewpoints: De-
scription of architectural structures and software designs in
general by independent and orthogonal views.

2.3.1

Architectural Styles: Descriptions and guidance for
the high-level organization of software providing “a special-
ization of element and relation types, together with a set of
constraints on how they can be used”.

2.3.2

Design Patterns: Provide “a common solution to a com-
mon problem in a given context” [31]. Typically employed at
a lower abstraction level than architectural styles.

2.3.3

Architecture Design Decisions: Impact of quality
attributes and the trade-offs among competing quality at-
tributes that provide the basis for design decisions.

2.3.4

Families of Programs and Frameworks: Software
product lines or Frameworks encapsulating commonalities
among elements and targeting re-use by designing cus-
tomizable components that account for variability.

2.3.5

TABLE 1
Categories for decomposition of the architecture and

programming subdomain. The referenced subsections
point to the respective SWEBOK [30] subsections.

initions from the field of Software Engineering to classify
software development aspects in Robotics seems more natural
and promising to us than to invent new but closely similar
vocabulary.

Hence, we conducted a deeper analysis of this subdomain
by assigning each of the 120 papers to a maximum of three
of the introduced categories. This annotation was done by at
least two of the four authors of this survey for each paper.
The outcome of this analysis is depicted in Fig. 4. First,
the distribution highlights that much of the work belonging
to this category is concerned with coordination aspects such



84 Journal of Software Engineering for Robotics 7(1), July 2016

Per A&P Subdomain

0 15 30 45

Control & Handling of Events

Arch. Structures & Viewpoints

Distribution of Components

Arch. Styles

Concurrency

Interaction & Presentation

Error & Exeption Handling

Fam. of Prog. & Frameworks

Security & Safety

Design Patterns

Arch. Design Decisions

Data Persistence

59

40

21

21

19

17

11

8

8

5

4

4

occurrences in total

Fig. 4. Distribution of the surveyed publications within the
Architectures and Programming subdomain.

as Control and Handling of Events, which is rea-
sonable given that models for event handling are required
in many applications to specify robot behavior and that we
suppose that the required methods within this field are compa-
rably well understood. Second, papers frequently consider Ar-
chitectural Structures and Viewpoints, Distribution of
Components and Architectural Styles as concerns
that are targeted with domain-specific modeling languages.
While principles of component-based software engineering are
considered best practice in robotics software engineering, the
modeling of component-based architecture and systems also
represents a major topic in the general software engineering
domain. Third, only a few papers report on Security
and Safety aspects. Being a relevant concern for many
advanced robotics applications and human-robot interaction,
this observation is surprising. Summarizing, the resulting
distribution shows that the SWEBOK-informed categories
work well as a decomposition for the Architectures
and Programming subdomain. Section 10.9.1 provides an
overview of the respective publications within this subdomain
and their individual mapping to the chosen categories.

While the SWEBOK has many more knowledge areas that
are of course also relevant from the perspective of robotics
systems engineering, we argue that most of these (i.e. require-
ments engineering) are already covered by the more domain-
specific BRICS RAP that we use as orthogonal classification
scheme. Please refer to the next Section 6.2 for this mapping
of the surveyed contributions to development process phases.

However, the correlation among the different subdo-
mains is as well interesting. It can be noticed in Fig. 5
that there are high correlations between Architectures

KinematicsKinematics

DynamicsDynamics

Mechanisms and ActuationMechanisms and Actuation

Sensing and EstimationSensing and Estimation

Motion PlanningMotion Planning

Motion ControlMotion Control

Force ControlForce Control

Architectures and ProgrammingArchitectures and Programming

Reasoning MethodsReasoning Methods

Fig. 5. The correlation between the different subdomains
(colored nodes) is represented by the size of the edges.
For instance, a thick edge means that a lot of publications
are associated with the two subdomains.

and Programming and almost every other considered
functional domain. This means a lot of publications that
present an approach focused on e.g., Motion Control
or Reasoning Methods, also considers architectural as-
pects. An explanation may be that these domain-specific
models can typically only be validated on the real robot
system if they are integrated into an overall architec-
ture, e.g., providing realistic sensor data. The correla-
tion between Motion Control, Motion Planning and
Kinematics seen in Fig. 5, is reasonable due to the
close affiliation of those domains [42], [43], [44], [45],
[46], [47], [48]. Considering Reasoning Methods, it is
mostly related to Architectures and Programming
[49], [50], [51], [52] and Motion Planning [53], [54],
whereas there is apparently no correlation to low-level
Motion Control, Kinematics, Dynamics and Force
Control. The strong correlation between Reasoning
Methods and Architectures and Programming is
meaningful as for instance in order to coordinate tasks one
needs also to reason about robot capabilities and eventually
varying environment and task conditions as addressed in the
work of robot control architectures, e.g., [55], [56].



A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 85

6.2 Development Phases (RQ2)
To answer RQ2 we assessed the contributions from a DS(M)L
user perspective, namely to which extent does a language
support the development of a robotics software system within a
particular development phase. In the following we summarize
observations relevant for DS(M)L users and developers.

The majority of the surveyed publications, namely 128,
address the capability building phase. This is not surprising
as within this development phase not only basic components
following a component model are constructed [57], but also
composite components are developed [58] leading to higher-
level and potentially reusable capabilities [34], [59], which are
orchestrated or coordinated [60], [38], on a behavior-level [61],
[41] as well as on a task-level [46], [62], [35], [63].

Much less contributions are assigned to the platform build-
ing phase, namely 26. However, the diversity of DS(M)Ls
is impressive and ranges from means to model sensor char-
acteristics [64], [65], [58], [52], computational hardware re-
sources [66], kinematic and dynamic properties of manipula-
tors [27], [67] and hands [68] to kinematic abstractions for
arbitrary modular robots [69].

A similar range of publications, 35, addresses the functional
design phase. Exemplary contributions belonging to this cat-
egory present modeling approaches targeted at requirements
represented in the form of crucial mission guarantees [70],
constraints for machine configuration [71] or motion con-
straints [45] that are described in structured English.

Even though, several articles describe how they accomplish
development tasks in the deployment phase, e.g., [72] gen-
erating ROS launch files, they do not necessarily introduce
dedicated abstractions for modeling deployment activities and
artifacts. In summary, 22 publications consider the system de-
ployment phase. Exemplary contributions in this category such
as [49], [66], [59] provide means to model deployment specifi-
cations, e.g., threading and platform properties, to facilitate use
cases such as scheduling analysis. All these approaches (see
also [73], [74]) strictly separate the deployment model from
the architecture specification in order to enable deployment of
the same architecture on different platforms.

Twelve articles consider DS(M)Ls to model run time as-
pects as required in the system benchmarking, product
deployment and product maintenance phase. Most notably,
in [75] and [76] design time models, e.g., software architecture
models, are combined with adaptation models in order to
express how a robot should adapt its system architecture based
on varying environment, platform or task conditions.

Very few publications, namely five, have been assigned to
the scenario building phase. Here, we have to admit that
the differentiation between the scenario building phase and
the functional design phase was challenging as both phases
deal with high-level requirements. Nevertheless, some articles
such as [77] and [78] can be clearly assigned to the scenario
building phase as they deal with modeling of task and/or
environment requirements.

Per Formalism

0 15 30 45

Ecore

(E)BNF

XSD

LTL

UML/MOF

ANTLR grammar

Json

OWL

SDD

Xcore

Other

Unknown

22

17

5

3

4

11

11

11

11

11

12

46

occurrences in total

Fig. 6. Formalisms of the DS(M)Ls included in this survey.

6.3 Meta-Metamodels and Formalisms (RQ3)
This section analyzes the formalisms that were used for the
development of the DS(M)Ls to shed some light on the
homogeneity and compatibility inside the domain (RQ3). As
far as this is assessable in the publications or the referenced
documentation, we annotated the formalisms used for devel-
opment of the metamodels and the external DS(M)Ls, as well
as development of internal DS(M)Ls.

The majority of DS(M)Ls assessed with this survey is
realized as an external DS(M)Ls. While these DS(M)Ls need
to be based on a formalism, internal DS(M)Ls are bound to
the specific syntax of their host language and are therefore not
considered in Fig. 6. There are various kinds of host languages
used by internal DSLs, such as F# [54], Lua [79], Prolog [80],
and C++ [81] – to name a few.

In the following, the observations of this survey are pre-
sented based on Fig. 6. We gather UML Profiles [9] under
the term UML/MOF, since the UML Profile is an extension
mechanism to adapt the UML metamodel, which is based
on MetaObject Facility [82] (MOF), to different domains.
Considering Fig. 6 it can be noticed that Ecore7 is one of the
most used meta-metamodels. It therefore seems to be a good
integration point and opportunity for DS(M)L compatibility
in this domain. Since different approaches within the Eclipse
Modeling Project (EMP) share Ecore as their representation,
the possibility to use the extensive EMP tool-support as well

7The core of the Eclipse Modeling Framework [83] (EMF) includes a
metamodel (Ecore) for describing models and providing runtime support.

http://www.eclipse.org/modeling/emf/


86 Journal of Software Engineering for Robotics 7(1), July 2016

as to reuse the Ecore model itself [84] can be considered as
big advantage.

(E)BNF is also quite widely used, e.g., by [85], [86], [76],
[29]. It is standardized8 by the International Organization for
Standardization9 (ISO). Additionally, it can be converted to an
Ecore model as well as the other way around. Both features
foster reuse and compatibility with the EMP ecosystem.

As it can be seen in Fig. 6 there are almost as much pub-
lications using a custom tool chain, e.g., custom formalisms,
parser and tools, as there are publications using (E)BNF. Those
are collected under the term Other. A considerable amount of
DS(M)Ls cannot be classified, because the used formalism is
not specified in the publications and thus marked as Unknown.
Not mentioning the underlying formalism, however, limits
the possibility of reuse strongly. From the user’s perspective,
knowing the specific formalism is a crucial factor in order to
use existing work published by third-parties.

6.4 Publication Trends (RQ4)

In order to answer RQ4, this section analyzes the publi-
cation trends in two fine-grained parts. The first part (cf.
Section 6.4.1) covers the publication rate by year, to determine
a general trend for DS(M)Ls in robotics. In the subsequent part
(cf. Section 6.4.2) the main venues, DS(M)Ls are published
to, are investigated. This also covers the distribution of venues
regarding their domain (i.e. robotics- and software-oriented
venues as well as hybrid ones).

6.4.1 Temporal distribution
Model-driven and domain-specific approaches are on the rise
in robotics. We plotted the temporal distribution of the publi-
cations in this survey, as shown in Fig. 7. While from 1984 to
2009 only a few contributions (on average ∼2) each year were
published, the amount of MDE and DSL related publications
is highly increasing from 2010 on. This is equivalent to the
start of the DSLRob workshop and the SIMPAR conference.
The numbers, however, clearly exceed the amount of DSLRob
publications per year, proving that this is more due to a
general increase, rather than to the influence of single venues.
Although the distribution clearly supports this overall positive
trend, the anomaly in 2013 attracts attention. A reason for that
might be that there was no SIMPAR in 2013 and SDIR did
not publish any papers but slides only.

6.4.2 Venues
As seen in Fig. 7, the very first publication included in this
survey was successfully submitted to the robotic conference
IJRS (green) by Henderson et al. [58] in 1984. Since then
ICRA (blue) is represented almost every year, although with
great fluctuations regarding the number of publications. The

8EBNF ISO/IEC 14977:1996
9http://www.iso.org/

third conference that appears in this survey is IROS (light-
blue). From 1993 until 2010 it is represented with one to two
publications per year. Starting in 2011 a continuous increase
can be noticed. ICRA and IROS combined create a solid base
of contributions.

Since 2009 an increasing variety of different venues is
appearing. For instance: AURO, TRO and RAS, which were
occasionally represented (especially from 1995-2002), are
recurring again. The fact that new venues are also increasingly
appearing stands out. Since 2010, the DSLRob workshop
(orange) as well as the SIMPAR conference (dark-yellow) is
particularly contributing to the field of DS(M)L-research.

Considering the percentage ratio of sighted (i.e. passed ICs)
and finally accepted contributions (i.e. not excluded by ECs)
of this survey, it can be noted that DS(M)L publications cover
only a very small part of more generic robotic-conferences,
such as ICRA and IROS. In case of ICRA, roughly 13% of
the sighted publications suffice the inclusion criteria of this
survey. This ratio is very low, compared to workshops such as
DSLRob (79%), SDIR (23%) and conferences, e.g., SIMPAR
(35%). Nevertheless, IROS and ICRA combined represent
over 53% of the included publications, closely followed by
the DSLRob (∼17%) workshop.

The color range in Fig. 7 visualizes the difference be-
tween the representation of robotics- and software-oriented
venues in this survey. Over 65% (blue and green) of the
DSL-related contributions were submitted to robotics-oriented
venues, whereas hybrid venues, i.e. related to both robotics and
software, are represented by over 30% (yellow and orange).
Only ∼4% (red and purple) of the publications considered in
this survey were submitted to purely software-related venues,
such as ICSE and MODELS. This particular distribution,
however, is the result of the selection and analysis process
introduced in Section 5.

7 DISCUSSION

This section discusses the qualitative research questions in-
troduced in Section 2.2 that we think are important for i)
language developers to enable language reuse, interoperability
and discussing the core concepts, as well as ii) language
users to allow assessing the availability and usability of the
DS(M)Ls. As mentioned in Section 5.2, publications were
annotated during the analysis process when being of particular
interest or particular positive examples for any of the following
research questions. In the following sections, the qualitative
research questions are discussed along these examples.

We discuss these exemplary approaches and publications to
extract best practices in terms of documentation, accessibility
and evaluation of robotics DS(M)Ls to make suggestions
to the community. The need for this became clear during
analysis of the publications for this survey, as lots of the
aspects discussed here were largely undocumented and/or were
partially unaccessible.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=26153
http://www.iso.org/


A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 87

Year

P
ub
lic
at
io
ns

MODELSWA…

MODELS

ICSE

GPCE

CG

DSLROB

SDIR

SIMPAR

JOSER

IJFR

IJRS

AURO

TRO

RSS

RAS

ICRA

IROS

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

0

6

12

18

24

Fig. 7. Temporal distribution of the publications in this survey ranging from 1980 to 2015. Robotics- and software-
related venues are distinguished by color: A color between blue and green represents robotics venues. The color
space from Yellow to orange characterizes hybrid (i.e. robotics- and software-oriented) venues, while red and purple
stand for pure software venues.

7.1 Accessibility and Documentation (RQ5)
An important factor for reuse of DS(M)Ls, scientific exchange
and community building around DS(M)Ls in robotics is their
accessibility and documentation. This comprises several fac-
tors like technical accessibility, e.g., download of the language
or models, licensing, and documentation of the DS(M)L, its
usage and execution context.

The majority of publications only give hints on the meta-
model or show parts of it [62], [87], while some are also docu-
menting their metamodel through exemplary models. Still that
is not enough to reuse and properly interface between different
approaches. Only a subset of the DS(M)Ls in this survey is
documented in an exemplary manner to promote reuse as well
as to enable actual usage. [88], [89], [12] allow interfacing by
presenting a documentation of their metamodel. [35] generates
HTML documents from Task Description Language (TDL)
files with their Visual Design Tool, to facilitate the search for
existing task definitions. [37], [34] provide a documentation
for their approach, including install instructions. Besides that,
the documentation of [27] also includes a complete description
of all classes and packages of their EjsRL tool. A good way
to push reuse even further is to provide tutorials and examples
as done by [88], [37], [27].

To facilitate reuse, extension and integration of the de-
veloped DS(M)Ls or their metamodels, community-friendly
open-source licensing schemes are required due their impact
on usage, modification and redistribution [90]. Some pub-
lication already express to share this particular mindset by
making their DS(M)Ls available for download as open-source
software [91], [37], [12], [27], [41], [88], [34].

Making the deployment of the available software straight-
forward, is another crucial factor. This includes, apart from

proper install instructions, a simple way to resolve depen-
dencies (if necessary) [91]. [34] handles that matter in an
exemplary manner. They provide three different methods to
deploy their work: It can be installed using a Makefile10

that automatically downloads all requirements, including the
Eclipse IDE11. Furthermore, it can be installed from source
via GitHub12. Finally, an eclipse update site can be used to
integrate the software into an already existing instance of
Eclipse.

7.2 Artifacts and Use-Case (RQ6)

To assess the intended use of the surveyed MDE and DS(M)L
approaches, we looked at the artifacts generated (if any) and
the context they are used in.

While model-based approaches can be used to generate vi-
sualizations of systems, e.g., of the system architecture [93] or
hardware platforms [91], [69], the main use-case for DS(M)Ls
is to generate executable code to perform experiments or
provide supporting routines. The majority of the surveyed
approaches is used for code generation, but roughly a fifth of
the surveyed approaches is implemented as internal DS(M)Ls,
e.g., [94], [95], [36], [79], and some of the languages use
interpretation rather than code generation for their execution,
e.g., [61], [96].

Among the approaches used for code generation, the ones
identified within the same subdomains often cover similar
use-cases and therefore are used for generation of similar

10A Makefile is used to specify how Make derives an, e.g., executable
from source code. [92]

11http://www.eclipse.org/
12https://github.com/

http://www.eclipse.org/
https://github.com/


88 Journal of Software Engineering for Robotics 7(1), July 2016

artifacts. Approaches in the Kinematics subdomain often
target simulation support, e.g., [69], [84], or are used for
generation of controllers that can be embedded into motion
control systems, e.g., [12], [80].

Approaches within the Coordination subdomain target
to a large extent generation of state-chart or state machine
based artifacts [60], [24], [97] since many robotics soft-
ware frameworks and solution are based on them [60]. The
following contributions [87], [89] generate code to realize
motion tasks as state hierarchies, state transitions and import
or extension of existing states.

Artifact generation from DS(M)Ls becomes especially pow-
erful and suited for reuse if the accompanying toolchains sup-
port different parallel M2M and M2T transformations. Either
to generate different artifacts like visualization, computational
routines and glue code [93], or executable code for different
programming languages or software platforms [29], [12], [24],
[74]. [69] for example generates code for different hardware
platforms and three different execution contexts: i) world files
for a simulation engine, ii) C code for a virtual machine, and
iii) XML configuration files for a specific compiler.

While the main target of DSL seems to be the automation
of the software development, several approaches are also used
for analysis and validation, e.g., [98], [49], or debugging,
e.g., [99] who use their language for debugging and verifying
correctness across distributed modular robots.

Robotics DS(M)L approaches, however, still use their mod-
els and languages mainly at design time [36]. Only a few of the
surveyed approaches use the models to exploit the represented
knowledge also at runtime, e.g., to model runtime variation
points in the task at design time and bind and use them at
runtime [100], [36], or to synthesize DSL programs while
learning from demonstration as done by [54].

Another interesting example of using models after design
time is presented by [101], [102], where DSLs are used for
compact representation of programs and performing genetic
programming with evolutionary optimization directly on the
DSL code. Subsequent to the rearrangement of the DSL
models through the genetic algorithms, GPL code is generated
and tested for fitness to perform the next evolution step.

7.3 Platform (RQ7)

An important aspect of the artifacts and the model transforma-
tions discussed in the previous section is how tightly they are
coupled to a certain platform and technical execution context,
as discussed in Section 3.

A first differentiation to make in this case is usage of
internal vs. externals DS(M)Ls.

While external DS(M)Ls are usually depending on a tool
that transforms or executes their model and therefore introduce
a platform-dependency, the target platform or technology can
usually be chosen through their respective M2M and M2T
transformations. Internal DS(M)Ls on the other hand are

bound to the execution context, i.e. compiler or interpreter,
of the host language. [80] discusses the impact of internal or
external DSLs explicitly by implementing their model as an
external DSL in Xtext and as an internal Prolog DSL. They
draw the conclusion that the external DSL provides better tool
support, but the internal DSL is easier from a developer’s
perspective in terms of implementation, and more convenient
from a user’s point of view, since it is executable out of the box
without additional transformation steps. That said, the intended
use cases of the internal and external languages are slightly
different. While the primary focus of the internal DSL is on
constraint checking and validation, the external DSL is also
used to generate and build the corresponding infrastructure
artifacts.

A second essential differentiation to make in terms of
platform is between the DS(M)L being used in a interpretation
or a generation manner. [61] does both and can either run their
language models in an interpreter or generate C++ code from
it for robots with restricted hardware resources.

For DS(M)Ls that are used in a generation manner, we
differentiate between three classes of platform-dependency:

1) Proprietary robot programming languages such as
KRL [103] and RAPID [104] typically target to a set of
compatible platforms by a specific robot manufacturer
and usually don’t consider openness or platform inde-
pendence13.

2) Generation of artifacts that are tied to or dependent on
a library stack, software framework or runtime environ-
ment, e.g., tied to a specific robotics framework [87], [89],
[100], or targeted to be executed by a certain tool [105],
[67]. While this introduces a bigger platform footprint
during execution, custom tools can increase performance
with respect to generic tools, e.g., in terms of parsing
performance as discussed by [44].
Some of the surveyed DS(M)Ls approaches come with
exchangeable generators to explicitly allow use of the
DS(M)Ls and their concepts in different frameworks
or environments [74], [24]. [24] makes the platform
explicit, by distinguishing between platform-independent
and platform-specific models.

3) Transformation of the DS(M)L models directly to a
general purpose language, e.g., Ada [88] or C++ [67],
[29], [61], is the most platform-independent option. This
reduced platform dependencies to a minimum, which is
easier portable, even to embedded systems or system with
restricted hardware capabilities [88], [61], easier to re-
use and thereby eases scientific exchange. It also reduces
assumptions about the platform from within the DS(M)L.

Interpretation of a DS(M)L is always being tied to a
(DS(M)L-specific) interpreter [61], e.g., to directly executing

13Although neither KRL nor RAPID are included in the surveyed list of
publications, we found them worthwhile to mention here as representatives
for manufacturer-specific robot programming languages.



A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 89

API calls during interpretation of the language models[96].
While platform-independence is often a motivation for the

development and use of DS(M)L approaches, it may also be
tied to a platform to provide tool support for this very specific
platform. [106] for example bases the model on ROS nodes
targeting its interactive programming, and thereby introducing
platform dependency already on model level.

7.4 Evaluation (RQ8)
Evaluation of a DS(M)L based approach in its intended use-
case is not only interesting from a developer’s perspective,
but also serves as a foundation for a decision from a user’s
perspective. A number of the surveyed publications evaluated
the semantics or the generated artifacts. A surprising yet
positive outcome of the analysis was that quite a number of the
DS(M)Ls in this domain are evaluated not only in simulation,
but on real hardware [89], [88], [12], [87], [107], and even on
different platforms [62], [24], [107].

We can roughly differentiate two different kinds of evalua-
tion approaches: qualitative and quantitative evaluation. Quali-
tative evaluation is often done by conceptual discussions based
on examples and use-cases, e.g., [34], which is a suitable
research methodology in software engineering research [108].
Several publications use case studies to discuss portability of
their semantics to different platforms, e.g., [88], [62], [24].
[80] for example models some typical use-cases and shows
how common errors can be avoided by using the proposed se-
mantics and language. [109] discusses its approach extensively
from a developer’s perspective, using the language evaluation
criteria from [110] including language design aspects, human
factors, software engineering aspects, and application domain
criteria. [80] discusses the impact of developing internal or
external DS(M)Ls on the workflow and tools by implementing
the model in both of them.

[111] lists four different quantitative benefits and corre-
sponding metrics, that can be used to evaluate a model-based
approach and can serve as a best practice:

1) Efficiency: This can be evaluated in terms of performance
and memory utilization as it is done for example by
[12]. They benchmarked their generated C++ code in its
intended use-case, forward and inverse kinematics as well
as dynamics on different numbers of degrees-of-freedom.
In [112] the authors compare their approach to another
framework and another library in terms of complexity
to solve a targeted problem as well as quality of the
generated code.

2) Scalability in terms of compilation time and system size.
3) Productivity: This can be evaluated in terms of size,

effort or number of change requests, as done by [113].
They evaluate the usage of a DS(M)L from the devel-
oper’s perspective against classical approaches by means
of empirical software engineering. Non-functional aspects
they covered comprise time spent for learning the tech-
nologies, effort for fixing bugs, component reuse and

complexity of understanding reused software artifacts.
[112] introduces its approach into an educational context
and evaluates how much work students take to solve
a problem. In [24] the authors conducted hardware ex-
periments on a PR2 and a KUKA LWR and analyzed
the necessary number of lines of code for platform-
independent and robot/framework specific code.

4) Reliability, e.g., in terms of defects introduced in a period
of time similar to what [80] does qualitatively, e.g., as
done by [113], or in terms of number and duration of
experiments as done by [32] who ran the system for
several hours on 30 simulated robots.

Evaluation can also be used to show, if the DS(M)L is
complete in terms of the evaluated examples. “Completeness”
in this context means being able to express the domain prob-
lem, applications or typical examples of the domain entirely
in the DS(M)L: “Can typical use-cases of the DS(M)L be
completely expressed within the DS(M)L?” DS(M)Ls that
for example specify controllers [12] or transformations [80]
are not complete in this sense, since they need additional
surrounding code or an application context.

In [114], [115] the authors state completeness of URBI for
a set of examples, some of them listed in the paper: “URBI,
which is a command script language, is normally supposed
to be used together with a client program written in C++ or
Java, which will handle all the image processing and cognitive
part of the robot behavior. However, it is possible to write
quite complex and useful programs fully in URBI, without the
use of an external client.” [88] might be complete in terms
of simple applications of subsumption architectures, although
it is vague to which extend the computational code of the
modules can also be expressed within the DS(M)L. At least
in the evaluation in their publication this part was implemented
manually.

KUKA’s KRL [103], [96] and ABB’s RAPID [104] are
complete, as they are typically used as sole language on the
robot’s control systems and can express entire industrial robot
applications.

A slightly different completeness term is explicitly ad-
dressed by [116] who discuss how to prove completeness for
their Motion Grammar in terms of the ability to cover the
entire functional variability of the domain, i.e. the robot is
able to respond to all situations, and how this helps proving
correctness of their modeled systems.

To sum up, both, qualitative as well as quantitative eval-
uation can help language developers and potential users.
While qualitative evaluation provides a first means to assess
the general applicability to a certain problem domain, we
recommend conducting also quantitative evaluation such as
the ones discussed above to get a better grasp on the raised
effectiveness of the development process, which is often the
motivation for developing DS(M)Ls [6].



90 Journal of Software Engineering for Robotics 7(1), July 2016

7.5 DS(M)L Development Process (RQ9)

In our previous survey [5], we already reported that very little
is known about the process how DS(M)L developers identify
and consolidate abstractions which on the one hand suit the
domain best and on the other hand are the building blocks
of DS(M)Ls. Unfortunately, also for the assessed articles we
conclude that very little is reported about the DS(M)L devel-
opment process itself. Even though, some articles report how
they ground their DS(M)Ls, e.g., based on an ontology [74],
[117], a formalism [80], [24], an architectural pattern [118],
or a domain analysis [93], [119], [72] little is known about
the involved stakeholders such as DS(M)L developers and
domain experts, their requirements and interaction among each
other. Ultimately, such a description could be used to define
a robotics-specific DS(M)L development process model. In
[120] such a process model has been identified in a reverse-
engineered manner based on the insights gained during the
development of the GDDL DSL [68]. However, as the model is
reverse-engineered on the basis of one language and particular
language objective (i.e. task automation) it is debatable to
which extent the proposed process model can be generalized to
other use cases and DS(M)L developments. Nevertheless, we
would like to motivate the community to perform such reports
as they provide lessons learned on how one could structure and
perform DS(M)L development in robotics.

7.6 DS(M)L Usage (RQ10)

During the assessment of the publications we noted that several
articles do not introduce a new DS(M)L, but make use of
an existing approach to solve robotic-specific problems. We
discuss some representative examples of usage and draw some
conclusions relevant for both DS(M)L developers and users.

Within the domain of AI-based task planning and reasoning,
declarative languages and formalism such as PDDL [121],
ADL [122] and C+ [123] to name a few have been introduced.
Some of these languages are used in the assessed papers
to represent declarative knowledge in the context of robot
plan optimization [124], to embed geometric reasoning in
action descriptions [125] and to develop an integrated robot
manipulation application where task planning capabilities are
required [126]. We argue that the usage of these languages
is not surprising as on the one hand the languages itself
and underlying principles are well established and on the
other hand planning frameworks usually require to specify the
domain in one standard way. This at least holds true for task
planner relying on the PDDL formalism.

Some articles are solely usage reports about applying
general purpose model-based approaches to solve robotic
problems. Most notably, the work by [127], [128] reports
about the advantages and disadvantages of AADL [129] and
SysML [10] to model, analyze, and validate structural and
behavioral aspects of software for a robotic wheelchair. In

a similar manner [130] adopt the AUTOSAR14 methodology
and conforming model-based tooling to the design of em-
bedded robotic systems. Surprisingly we have not found any
article which performs such a usage study for a core robotics
DS(M)L. This might be an indication that robotic DS(M)Ls are
not yet so widespread as general-purpose modeling approaches
such as SysML and/or the available tooling supporting devel-
opment is not mature enough as this is the case for general-
purpose approaches.

Some articles mention and briefly describe usage of ap-
proaches included in this survey, e.g., [131] uses TDL [35] to
model the executive of an autonomous mobile manipulator in
the context of assembly tasks, [132] employs the XABSL lan-
guage [37] to coordinate heterogeneous mobile robots, and the
practicality of the logical sensor specification language [58] is
reported by [133].

Due to the chosen keywords specification language(s) and
description language(s) we found numerousness publications
dealing with temporal logic languages, e.g., LTL. For instance,
in [134] controllers are synthesized based on LTL formulas
and in [135] LTL is applied among other formal languages
to specify robot motions and actions. We report on these
approaches here as DS(M)Ls and formal methods in general
share several commonalities and goals such as the importance
of models as a key towards systematic design, development
and eventually correct-by-construction of robotics software.
We argue that both communities should foster collaboration in
order to make formal methods more practicable and accepted
in robotics software development and to make DS(M)L ap-
proaches more well-founded in theory to foster work in the
field of model validation and verification.

Quite interestingly, some approaches compose robotic
DS(M)Ls and general-purpose modeling approaches. For in-
stance, in [136] SysML [10] is used in combination with
PDDL [121] for the task of manufacturing planning. Here,
SysML is used to model manufacturing capabilities and
process specifications whereas PDDL is used to determine
acceptable plans. In [137] the BRICS Component Model
(BCM) [138] and corresponding tooling is used in combina-
tion with 20sim15 a modeling and simulation framework and
graphical DSL for mechatronics systems. Here, the BCM is
used to model the structural aspects of a robot motion-control
architecture whereas 20sim is used to model the computational
parts (aka. control algorithm). We argue that both from a
DS(M)L developer and user perspective such reports are very
much appreciated as they provide insights in when and how
robotic DS(M)Ls can be used alone and/or in combination
with general-purpose modeling languages.

14http://www.autosar.org/
15http://www.20sim.com/

http://www.autosar.org/
http://www.20sim.com/


A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 91

8 THREATS TO VALIDITY

We report on threats to internal and external validity of this
survey according to the guidelines proposed by [139]. To avoid
systematic errors within the survey and to enhance internal
validity we formulated a well-defined selection process (see
Section 5) and applied descriptive statistics to investigate the
quantitative research questions (see Section 2.1). We obtained
the list of potential candidates by a script performing keyword-
based full-text searches on the Google Scholar corpus which
we tested extensively and which is released16 as open-source.
We are aware that the selection of keywords impacts the
number of potential candidate publications. For example,
trough the addition of specification language to the set of
keywords some of the earlier papers became part of the result
set. Obviously, the set of keywords is not conclusive and
may be extended by the introduction of further keywords.
However, we argue that the current set of keywords rep-
resents the common vocabulary of the DS(M)L community
established over the years. The temporal distribution reflects
the DS(M)L publications that use the evolved vocabulary.
Therefore, we excluded general terms such as modeling and
models. To largely avoid systematic bias we applied the four-
eyes principle during the paper analysis. To enhance external
validity and generalizability of the insights we ensured to
include high-ranked robotics, software engineering and model-
driven engineering venues in our survey as assured trough the
h5-index17 obtained by Google Scholar. In summary, we are
confident that threats to validity are minimal.

9 SYNOPSIS

This contribution surveyed the available literature on domain-
specific (modeling) languages, which addresses key concerns
in robotics application development along a set of quantitative
and qualitative research questions. The resulting mapping of
publications to functional subdomains and the phases of an
application development process shall serve as a reference to
users and developers of DS(M)L approaches in robotics and
related domains.

Our analysis yields that a major fraction of the surveyed
publications addresses architectural concerns or mature sub-
domains such as robot motion, while only a minor number
of papers target comparably recent subdomains such as force
control. With regard to architectural concerns, the extended
decomposition of the architecture and programming sub-
domain introduced within this contribution, provides further
insight into existing research approaches. From the viewpoint
of the robotics application development process, we showed
that many DS(M)L approaches use models and model-driven
engineering to generate artifacts for the capability building

16https://github.com/corlab/dslzoo/tree/query
17https://scholar.google.de/citations?view op=top venues&hl=en&vq=

eng robotics

phase, while only a few approaches consider the application
of models at runtime in robotics systems.

The presented quantitative analysis also clearly indicates
that DS(M)Ls are currently an active research field given
the rising number of publications at robotics conferences.
That said, the robotics DS(M)L community seems to lack
comparable acknowledgment at the general modeling and
software engineering venues.

From a technical perspective, we also must assess that
compatibility and reuse of different DSLs and approaches
in a modular approach is still an issue for conceptual and
technological reasons, i.e., due to the fragmentation in terms
of modeling tools and formalisms. While the Eclipse Modeling
Project may serve as an integration platform due to its wide
use, further research on language modularization and reuse
seems required.

We further discussed, how different approaches to accessi-
bility and documentation as well as evaluation and platform-
dependency affect the availability and usability of a DS(M)L
approach. Given the current status of many DS(M)L publica-
tions with regard to their technical accessibility and thus repro-
ducibility, we hope that this survey stimulates a discussion on
how meta-models, languages and experience reports may be
shared in a reproducible way within the robotics community.
Along this line, we highlighted best practices that may be
considered to foster improved collaboration and development
within the DS(M)L community.

Future work on the basis of this survey may include a
more detailed analysis of the specific concepts presented in the
surveyed publications within one of the robotics subdomains.
For instance, we consider this relevant for the field of archi-
tectures and programming given the number of publications
addressing its concerns. To facilitate further work on the basis
of this survey, we share the automated query code on GitHub.
Furthermore, following the idea of the EMF Concrete Syntax
Zoo18 we intend to continuously maintain this overview as
an online Robotics DSL Zoo19 and invite the community to
provide feedback and contribute.

10 PUBLICATIONS

To provide some kind of map for DS(M)L developers and
users of the domain, this section provides an overview of all
surveyed publications, sorted by their associated subdomains
and development phases. Note, that publications appear multi-
ple times as they have multiple subdomains and development
phases annotated from the analysis process. When following
the references to the bibliography at the end of this survey,
links at the end of each bibliography entry link back to the
sections where the respective publication is mentioned, e.g.,
the subdomain and development phase it is associated with,
or a section in which it is discussed and used as an example.

18http://www.emftext.org/index.php/EMFText Concrete Syntax Zoo
19https://corlab.github.io/dslzoo/

https://github.com/corlab/dslzoo/tree/query
https://scholar.google.de/citations?view_op=top_venues&hl=en&vq=eng_robotics
https://scholar.google.de/citations?view_op=top_venues&hl=en&vq=eng_robotics
http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
https://corlab.github.io/dslzoo/{}


92 Journal of Software Engineering for Robotics 7(1), July 2016

10.1 Kinematics

Platform Building [69], [27], [140], [67]
Functional Design [12], [141], [27], [42], [140], [142]
Capability Building [80], [28], [69], [143], [12], [27], [42],

[140], [24], [142], [67], [79]

10.2 Mechanisms and Actuation

Platform Building [144], [81], [140], [65], [145], [146],
[147], [68]

Functional Design [141], [140], [147]
Capability Building [148], [144], [149], [150], [140], [65],

[145], [146], [151], [68]

10.3 Dynamics

Platform Building [27]
Functional Design [12], [27]
Capability Building [28], [143], [12], [27]

10.4 Motion Planning

Scenario Building [77]
Product Maintenance [48], [47]
Platform Building [144], [68]
Functional Design [54], [77], [42], [45]
Capability Building [48], [144], [47], [53], [44], [54], [77],

[56], [42], [45], [107], [105], [98], [68], [43]

10.5 Sensing and Estimation

Product Maintenance [152], [52]
Platform Building [81], [52], [65], [146], [119]
Functional Design [63], [58]
Capability Building [152], [150], [63], [58], [52], [65],

[146], [151], [119]

10.6 Force Control

Capability Building [25], [24]

10.7 Motion Control

Scenario Building [77]
Platform Building [46], [145], [66], [153], [67]
Functional Design [154], [77], [141], [42], [45], [142], [89]
System Deployment [96], [93], [66]
Capability Building [48], [96], [93], [25], [149], [154],

[102], [44], [155], [77], [156], [42], [46], [145], [24],
[45], [142], [66], [153], [67], [89], [157], [79], [43]

Product Maintenance [48]

10.8 Reasoning Methods
Scenario Building [117], [78], [51]
Platform Building [71], [49], [52], [78], [147]
Functional Design [76], [71], [54], [63], [158], [147]
System Deployment [76], [49]
Capability Building [76], [53], [99], [54], [49], [63], [52],

[95], [39], [117], [78], [50], [158], [36]
Product Deployment [76]
System Benchmarking [99]
Product Maintenance [76], [99], [52]

10.9 Architectures and Programming
In accordance with the more fine-grained partitioning of
the Architectures and Programming subdomain in-
troduced and motivated in Section 6.1 we provide a more
detailed overview of the respective publications and their sub-
disciplines and addressed development phases.

10.9.1 Concurrency
Platform Building [49], [140], [46], [66], [153]
Functional Design [140], [159]
System Deployment [115], [100], [49], [66], [159]
Capability Building [115], [100], [160], [41], [109], [32],

[161], [49], [140], [46], [162], [107], [163], [66], [153],
[159], [98], [112], [35]

10.9.2 Data Persistence
Scenario Building [117], [51]
Platform Building [84]
Capability Building [84], [117]

10.9.3 Control and Handling of Events
Scenario Building [164]
Platform Building [165], [49], [140], [46], [153], [119]
Functional Design [166], [74], [75], [63], [140], [159], [167],

[89]
System Deployment [115], [168], [169], [170], [171], [165],

[74], [49], [37], [86], [159]
Capability Building [115], [87], [168], [48], [148], [172],

[62], [173], [28], [160], [169], [41], [109], [170], [171],
[166], [174], [47], [53], [165], [61], [74], [155], [75],
[150], [161], [175], [49], [63], [95], [39], [140], [46],
[97], [162], [101], [176], [37], [107], [163], [86], [153],
[50], [159], [94], [119], [167], [98], [112], [35], [36],
[177], [89], [38], [60], [40], [178]

Product Deployment [75]
Product Maintenance [48], [172], [47], [75], [167]

10.9.4 Error and Exception Handling
Scenario Building [164]
Functional Design [154], [167]
System Deployment [168]



A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 93

Capability Building [168], [48], [172], [154], [99], [150],
[39], [50], [167], [36]

System Benchmarking [99]
Product Maintenance [48], [172], [99], [167]

10.9.5 Distribution of Components
Platform Building [179], [69], [49], [66]
Functional Design [74], [73], [159], [59]
System Deployment [113], [100], [169], [170], [74], [49],

[73], [86], [66], [159], [59]
Capability Building [179], [113], [100], [160], [169], [170],

[69], [180], [99], [74], [32], [49], [156], [73], [181], [86],
[57], [66], [159], [59]

System Benchmarking [99]
Product Maintenance [99]

10.9.6 Security and Safety
Scenario Building [77], [51]
Product Maintenance [182], [167]
Functional Design [182], [183], [77], [45], [70], [167]
Capability Building [182], [183], [180], [77], [45], [70],

[167]

10.9.7 Interaction and Presentation
Scenario Building [77]
Platform Building [85], [165], [27]
Functional Design [85], [54], [77], [27], [45], [70]
System Deployment [113], [88], [171], [165]
Capability Building [106], [87], [62], [113], [173], [88],

[171], [85], [53], [165], [54], [77], [156], [27], [45], [70],
[177]

10.9.8 Architectural Styles
Scenario Building [78]
Platform Building [78]
Functional Design [183], [184], [185]
System Deployment [118], [93], [88]
Capability Building [118], [93], [172], [88], [41], [183],

[174], [184], [185], [175], [95], [39], [78], [186], [94],
[98], [38], [60], [157]

Product Maintenance [172]

10.9.9 Architectural Structures and Viewpoints
Scenario Building [117], [78]
Platform Building [179], [84], [144], [64], [69], [85], [52],

[27], [153], [78], [72], [119]
Functional Design [76], [64], [85], [74], [184], [34], [73],

[27], [72], [59]
System Deployment [118], [76], [93], [113], [100], [88],

[169], [170], [171], [74], [73], [86], [59]
Capability Building [179], [84], [118], [152], [76], [80],

[148], [93], [113], [100], [88], [144], [169], [64], [25],
[170], [69], [171], [85], [74], [184], [32], [34], [73], [52],

[181], [27], [117], [86], [57], [153], [78], [186], [72],
[119], [59], [36], [177], [157]

Product Deployment [76]
Product Maintenance [152], [76], [52]

10.9.10 Architecture Design Decisions
Scenario Building [117]
Platform Building [69]
Functional Design [184], [185]
Capability Building [69], [102], [184], [185], [117]

10.9.11 Design Patterns
Functional Design [154], [34]
Capability Building [149], [154], [34], [105]

10.9.12 Families of Programs and Frameworks
Platform Building [119]
Functional Design [187], [76], [75], [34], [73]
System Deployment [76], [96], [73]
Capability Building [187], [76], [96], [25], [75], [34], [73],

[119]
Product Deployment [76], [75]
Product Maintenance [76], [75]

REFERENCES
[1] A. van Deursen, P. Klint, and J. Visser, “Domain-Specific Languages:

An Annotated Bibliography,” ACM Sigplan Notices, 2000. [Online].
Available: http://www.st.ewi.tudelft.nl/∼arie/papers/dslbib.pdf 1, 3.1

[2] A. Rodrigues da Silva, “Model-driven Engineering: A Survey Sup-
ported by the Unified Conceptual Model,” Computer Languages, Sys-
tems and Structures, 2015. 1, 3, 3.1, 3.2

[3] G. Biggs and B. Macdonald, “A Survey of Robot
Programming Systems,” Proceedings of the Australasian conference
on robotics and automation, pp. 1–3, 2003. [Online].
Available: http://pdf.aminer.org/000/355/292/towards programming
tools for robots that integrate probabilistic computation and.pdf 1

[4] G. Cattivera and G. L. Casalaro, “Model-Driven Engineering for
Mobile Robot Systems: A Systematic Mapping Study,” Master’s thesis,
Mälardalen University, 2015. 1

[5] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A Survey on
Domain-Specific Languages in Robotics,” in International Conference
on Simulation, Modeling and Programming for Autonomous Robots,
Bergamo, 2014. 1, 2.1, 5, 7.5

[6] M. Mernik, J. Heering, and A. M. Sloane, “When and How
to Develop Domain-Specific Languages,” ACM Computing Surveys,
vol. 37, no. 4, pp. 316–344, 2005. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1118890.1118892 2.2, 3.2, 7.4

[7] OMG, “Model Driven Architecture Guide Rev. 2.0,” Tech. Rep.
June, 2014. [Online]. Available: http://www.omg.org/cgi-bin/doc?omg/
03-06-01 1, 3.2

[8] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. Kats, E. Visser, and G. Wachsmuth, DSL Engineering – Designing,
Implementing and Using Domain-Specific Languages. CreateSpace
Independent Publishing Platform, 2013. [Online]. Available: http:
//dslbook.org 3.1, 3.2

[9] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, 2005. 3.1, 6.3

[10] L. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling
Language, 1st ed. Addison-Wesley Professional, 2013. 3.1, 7.6

[11] S. Gerard and B. Selic, “The UML - MARTE standardized profile,”
in IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 17, Seoul,
Korea, 2008, pp. 6909–6913. 3.1

http://www.st.ewi.tudelft.nl/~arie/papers/dslbib.pdf
http://pdf.aminer.org/000/355/292/towards_programming_tools_for_robots_that_integrate_probabilistic_computation_and.pdf
http://pdf.aminer.org/000/355/292/towards_programming_tools_for_robots_that_integrate_probabilistic_computation_and.pdf
http://portal.acm.org/citation.cfm?doid=1118890.1118892
http://portal.acm.org/citation.cfm?doid=1118890.1118892
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://dslbook.org
http://dslbook.org


94 Journal of Software Engineering for Robotics 7(1), July 2016

[12] M. Frigerio, J. Buchli, and D. G. Caldwell, “Model based code gener-
ation for kinematics and dynamics computations in robot controllers,”
in Workshop on Software Development and Integration in Robotics, St.
Paul, Minnesota, USA, 2012. 3.1, 6.1, 7.1, 7.2, 7.4, 1, 7.4, 10.1, 10.3

[13] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Addison-Wesley Professional, 2009. 3.2

[14] Jetbrains.com, “Jetbrains Meta Programming System,”
http://www.jetbrains.com/mps/, 2003. [Online]. Available: http:
//www.jetbrains.com/mps 3.2

[15] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Springer-Verlag Berlin Heidelberg, 2008. 4.1, 3, 6.1

[16] G. K. Kraetzschmar, A. Shakhimardanov, J. Paulus, N. Hochgeschwen-
der, and M. Reckhaus, “Best practice in robotics (brics) deliverable
d-2.2: Specifications of architectures, modules, modularity, and inter-
faces for the brocre software platform and robot control architecture
workbench,” 2010, project Deliverable BRICS: D2.2. 4.2

[17] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld,
J. Broenink, D. Brugali, and N. Tomatis, “Brics - best practice in
robotics,” in Robotics (ISR), 2010 41st International Symposium on
and 2010 6th German Conference on Robotics (ROBOTIK), June 2010,
pp. 1–8. 4.2

[18] L. L. Beck and T. E. Perkins, “A survey of software engineering
practice: Tools, methods, and results.” IEEE Trans. Software Eng.,
vol. 9, no. 5, pp. 541–561, 1983. 4.2

[19] I. Sommerville, Software Engineering (7th Edition). Pearson Addison
Wesley, 2004. 4.2

[20] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.
4.2

[21] D. C. Schmidt, “Guest editor’s introduction: Model-driven
engineering,” Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.
[Online]. Available: http://dx.doi.org/10.1109/MC.2006.58 4.2

[22] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons,
2006. 4.2

[23] A. Kossiakoff, W. N. Sweet, S. J. Seymour, and S. M. Biemer, Systems
Engineering Principles and Practice. John Wiley & Sons, Inc., 2011.
4.2

[24] M. Klotzbucher, R. Smits, H. Bruyninckx, and J. De Schutter,
“Reusable hybrid force-velocity controlled motion specifications with
executable domain specific languages,” in Intelligent Robots and Sys-
tems (IROS), 2011 IEEE/RSJ International Conference on. IEEE,
2011, pp. 4684–4689. 6.1, 7.2, 2, 7.4, 3, 7.5, 10.1, 10.6, 10.7

[25] A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and W. Reif,
“Robotics api: object-oriented software development for industrial
robots,” Journal of Software Engineering for Robotics, vol. 4, no. 1,
pp. 1–22, 2013. 6.1, 10.6, 10.7, 10.9.9, 10.9.12

[26] M. T. Mason, “Compliance and force control for computer controlled
manipulators,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. 11, no. 6, pp. 418–432, June 1981. 6.1

[27] C. A. Jara, F. A. Candelas, P. Gil, F. Torres, F. Esquembre, and
S. Dormido, “Ejs+ ejsrl: An interactive tool for industrial robots simula-
tion, computer vision and remote operation,” Robotics and Autonomous
systems, vol. 59, no. 6, pp. 389–401, 2011. 6.1, 6.2, 7.1, 10.1, 10.3,
10.9.7, 10.9.9

[28] E. Aertbeliën and J. De Schutter, “etasl/etc: A constraint-based task
specification language and robot controller using expression graphs,”
in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Inter-
national Conference on. IEEE, 2014, pp. 1540–1546. 6.1, 10.1, 10.3,
10.9.3

[29] M. Frigerio, J. Buchli, and D. Caldwell, “A Domain Specific
Language for Kinematic Models and Fast Implementations of
Robot Dynamics Algorithms,” in Workshop on Domain-Specific
Languages and models for Robotic systems, 2013. [Online]. Available:
http://arxiv.org/abs/1301.7190 6.1, 6.3, 7.2, 3

[30] P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering
Body of Knowledge - SWEBOK v3.0, 3rd ed. IEEE Computer
Society, 2014. [Online]. Available: http://www.swebok.org 6.1, 6.1, 1

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Reading, MA: Addison Wesley, 1995. 6.1

[32] S. Fleury, M. Herrb, and R. Chatila, “G en om: A tool for the speci-
fication and the implementation of operating modules in a distributed
robot architecture,” in Intelligent Robots and Systems, 1997. IROS’97.,
Proceedings of the 1997 IEEE/RSJ International Conference on, vol. 2.
IEEE, 1997, pp. 842–849. 6.1, 4, 10.9.1, 10.9.5, 10.9.9

[33] D. Vanthienen, M. Klotzbücher, and H. Bruyninckx, “The 5c-based
architectural composition pattern: lessons learned from re-developing
the itasc framework for constraint-based robot programming,” JOSER:
Journal of Software Engineering for Robotics, vol. 5, no. 1, pp. 17–35,
2014. 6.1

[34] L. Gherardi and D. Brugali, “Modeling and reusing robotic software
architectures: the hyperflex toolchain,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp.
6414–6420. 6.1, 6.2, 7.1, 7.4, 10.9.9, 10.9.11, 10.9.12

[35] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in Intelligent Robots and Systems, 1998. Proceedings., 1998
IEEE/RSJ International Conference on, vol. 3. IEEE, 1998, pp. 1931–
1937. 6.1, 6.2, 7.1, 7.6, 10.9.1, 10.9.3

[36] A. Steck and C. Schlegel, “Managing execution variants in task coor-
dination by exploiting design-time models at run-time,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on. IEEE, 2011, pp. 2064–2069. 6.1, 7.2, 10.8, 10.9.3, 10.9.4, 10.9.9

[37] M. Loetzsch, M. Risler, and M. Jungel, “Xabsl-a pragmatic approach
to behavior engineering,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on. IEEE, 2006, pp. 5124–5129.
6.1, 7.1, 7.6, 10.9.3

[38] S. Tousignant, E. Van Wyk, and M. Gini, “An overview of xrobots: A
hierarchical state machine based language,” in ICRA-2011 Workshop
on Software Development and Integration in Robotics, Shanghai, China
May, 2011, pp. 9–13. 6.1, 6.2, 10.9.3, 10.9.8

[39] S. Joyeux, F. Kirchner, and S. Lacroix, “Managing plans: Integrat-
ing deliberation and reactive execution schemes,” Robotics and Au-
tonomous Systems, vol. 58, no. 9, pp. 1057–1066, 2010. 6.1, 10.8,
10.9.3, 10.9.4, 10.9.8

[40] S. Wang and K. G. Shin, “Reconfigurable software for open architecture
controllers,” in Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, vol. 4. IEEE, 2001, pp.
4090–4095. 6.1, 10.9.3

[41] V. Berenz and K. Suzuki, “Targets-drives-means: A declarative ap-
proach to dynamic behavior specification with higher usability,”
Robotics and Autonomous Systems, vol. 62, no. 4, pp. 545–555, 2014.
6.1, 6.2, 7.1, 10.9.1, 10.9.3, 10.9.8

[42] Y. J. Kanayama and C. T. Wu, “It’s time to make mobile robots pro-
grammable,” in Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on, vol. 1. IEEE, 2000, pp. 329–334.
6.1, 10.1, 10.4, 10.7

[43] F. Zhang, M. Goldgeier, and P. S. Krishnaprasad, “Control of small
formations using shape coordinates,” in Robotics and Automation,
2003. Proceedings. ICRA’03. IEEE International Conference on, vol. 2.
IEEE, 2003, pp. 2510–2515. 6.1, 10.4, 10.7

[44] N. Dantam, A. Hereid, A. D. Ames, and M. Stilman, “Correct software
synthesis for stable speed-controlled robotic walking.” in Robotics:
Science and Systems, 2013. 6.1, 2, 10.4, 10.7

[45] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “From structured
english to robot motion,” in Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on. IEEE, 2007, pp. 2717–
2722. 6.1, 6.2, 10.4, 10.7, 10.9.6, 10.9.7

[46] T. W. Kim and J. Yuh, “Task description language for underwater
robots,” in Intelligent Robots and Systems, 2003.(IROS 2003). Pro-
ceedings. 2003 IEEE/RSJ International Conference on, vol. 1. IEEE,
2003, pp. 565–570. 6.1, 6.2, 10.7, 10.9.1, 10.9.3

[47] N. Dantam, P. Koine, and M. Stilman, “The motion grammar for
physical human-robot games,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on. IEEE, 2011, pp. 5463–5469.
6.1, 10.4, 10.9.3

[48] J. S. Laursen, J. P. Buch, L. C. Sø rensen, D. Kraft, H. G. P.
L.-P. Ellekilde, and U. P. Schultz, “Towards Error Handling in a
DSL for Robot Assembly Tasks,” in Workshop on Domain-Specific
Languages and models for Robotic systems, 2014. [Online]. Available:
http://arxiv.org/abs/1412.4538 6.1, 10.4, 10.7, 10.9.3, 10.9.4

http://www.jetbrains.com/mps
http://www.jetbrains.com/mps
http://dx.doi.org/10.1109/MC.2006.58
http://arxiv.org/abs/1301.7190
http://www.swebok.org
http://arxiv.org/abs/1412.4538


A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 95

[49] N. Gobillot, C. Lesire, and D. Doose, “A modeling framework for
software architecture specification and validation,” in Simulation, Mod-
eling, and Programming for Autonomous Robots. Springer, 2014, pp.
303–314. 6.1, 6.2, 7.2, 10.8, 10.9.1, 10.9.3, 10.9.5

[50] M. OBrien, R. C. Arkin, D. Harrington, D. Lyons, and S. Jiang,
“Automatic verification of autonomous robot missions,” in Simulation,
Modeling, and Programming for Autonomous Robots. Springer, 2014,
pp. 462–473. 6.1, 10.8, 10.9.3, 10.9.4

[51] V. Raman, B. Xu, and H. Kress-Gazit, “Avoiding forgetfulness: Struc-
tured english specifications for high-level robot control with implicit
memory,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 1233–1238. 6.1, 10.8,
10.9.2, 10.9.6

[52] N. Hochgeschwender, S. Schneider, H. Voos, and G. K. Kraetzschmar,
“Declarative specification of robot perception architectures,” in Simula-
tion, Modeling, and Programming for Autonomous Robots. Springer,
2014, pp. 291–302. 6.1, 6.2, 10.5, 10.8, 10.9.9

[53] N. Dantam, I. Essa, and M. Stilman, “Linguistic transfer of human
assembly tasks to robots,” in Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on. IEEE, 2012, pp. 237–
242. 6.1, 10.4, 10.8, 10.9.3, 10.9.7

[54] A. Feniello, H. Dang, and S. Birchfield, “Program synthesis by exam-
ples for object repositioning tasks,” in Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE,
2014, pp. 4428–4435. 6.1, 6.3, 7.2, 10.4, 10.8, 10.9.7

[55] F. Ingrand and F. Py, “An execution control system for autonomous
robots,” in Robotics and Automation, 2002. Proceedings. ICRA’02.
IEEE International Conference on, vol. 2. IEEE, 2002, pp. 1333–
1338. 6.1

[56] M. A. Hsieh, A. Cowley, J. F. Keller, L. Chaimowicz, B. Grocholsky,
V. Kumar, C. J. Taylor, Y. Endo, R. C. Arkin, B. Jung et al.,
“Adaptive teams of autonomous aerial and ground robots for situational
awareness,” Journal of Field Robotics, vol. 24, no. 11-12, pp. 991–
1014, 2007. 6.1, 10.4

[57] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand,
“Genom3: Building middleware-independent robotic components,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on. IEEE, 2010, pp. 4627–4632. 6.2, 10.9.5, 10.9.9

[58] T. Henderson and E. Shilcrat, “Logical sensor systems,” Journal of
Robotic Systems, vol. 1, no. 2, pp. 169–193, 1984. 6.2, 6.4.2, 7.6, 10.5

[59] C. Schlegel, A. Steck, D. Brugali, and A. Knoll, “Design abstraction
and processes in robotics: From code-driven to model-driven engi-
neering,” in Simulation, Modeling, and Programming for Autonomous
Robots. Springer, 2010, pp. 324–335. 6.2, 10.9.5, 10.9.9

[60] S. Tousignant, E. Van Wyk, and M. Gini, “Xrobots: A flexible language
for programming mobile robots based on hierarchical state machines,”
in Robotics and Automation (ICRA), 2012 IEEE International Confer-
ence on. IEEE, 2012, pp. 1773–1778. 6.2, 7.2, 10.9.3, 10.9.8

[61] T. J. de Haas, T. Laue, and T. Rofer, “A scripting-based approach to
robot behavior engineering using hierarchical generators,” in Robotics
and Automation (ICRA), 2012 IEEE International Conference on.
IEEE, 2012, pp. 4736–4741. 6.2, 7.2, 7.3, 3, 7.3, 10.9.3

[62] M. Reckhaus, N. Hochgeschwender, P. G. Ploeger, and G. K.
Kraetzschmar, “A Platform-Independent Programming Environment
for Robot Control,” in Workshop on Domain-Specific Languages
and models for Robotic systems, 2010. [Online]. Available: http:
//arxiv.org/abs/1010.0886 6.2, 7.1, 7.4, 10.9.3, 10.9.7

[63] J. L. Gordillo, “L e: a high level language for specifying vision
verification tasks,” in Robotics and Automation, 1991. Proceedings.,
1991 IEEE International Conference on. IEEE, 1991, pp. 1433–1439.
6.2, 10.5, 10.8, 10.9.3

[64] M. Anderson, J. Bowman, and P. Kilgo, “Rdis: Generalizing domain
concepts to specify device to framework mappings,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on. IEEE,
2012, pp. 1836–1841. 6.2, 10.9.9

[65] P. Kilgo, E. Syriani, and M. Anderson, “A visual modeling language
for rdis and ros nodes using atom3,” in Simulation, Modeling, and
Programming for Autonomous Robots. Springer, 2012, pp. 125–136.
6.2, 10.2, 10.5

[66] M. Morelli and M. Di Natale, “Control and scheduling co-design for a
simulated quadcopter robot: A model-driven approach,” in Simulation,

Modeling, and Programming for Autonomous Robots. Springer, 2014,
pp. 49–61. 6.2, 10.7, 10.9.1, 10.9.5

[67] A. K. Ramadorai, U. Ganapathy, and F. Guida, “A generic kinematics
software package,” in Robotics and Automation, 1994. Proceedings.,
1994 IEEE International Conference on. IEEE, 1994, pp. 3331–3336.
6.2, 2, 3, 10.1, 10.7

[68] S. Schneider, N. Hochgeschwender, and G. K. Kraetzschmar, “Declar-
ative specification of task-based grasping with constraint validation,”
in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Inter-
national Conference on. IEEE, 2014, pp. 919–926. 6.2, 7.5, 10.2,
10.4

[69] M. Bordignon, K. Stoy, and U. P. Schultz, “Generalized programming
of modular robots through kinematic configurations,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on. IEEE, 2011, pp. 3659–3666. 6.2, 7.2, 10.1, 10.9.5, 10.9.9, 10.9.10

[70] D. M. Lyons, R. C. Arkin, P. Nirmal, T.-M. Liu, J. Deeb et al., “Getting
it right the first time: Robot mission guarantees in the presence of
uncertainty,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013, pp. 5292–5299. 6.2, 10.9.6,
10.9.7

[71] S. Bocionek, P. Buchka, and J. Schweiger, “Generating expert systems
for configuration tasks,” in Robotics and Automation, 1990. Proceed-
ings., 1990 IEEE International Conference on. IEEE, 1990, pp. 896–
901. 6.2, 10.8

[72] A. Ramaswamy, B. Monsuez, and A. Tapus, “Saferobots: A model-
driven framework for developing robotic systems,” in Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on.
IEEE, 2014, pp. 1517–1524. 6.2, 7.5, 10.9.9

[73] N. Hochgeschwender, L. Gherardi, A. Shakhirmardanov, G. K. Kraet-
zschmar, D. Brugali, and H. Bruyninckx, “A model-based approach to
software deployment in robotics,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013,
pp. 3907–3914. 6.2, 10.9.5, 10.9.9, 10.9.12

[74] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml, a
domain-specific language to design, simulate and deploy robotic appli-
cations,” in Simulation, Modeling, and Programming for Autonomous
Robots. Springer, 2012, pp. 149–160. 6.2, 7.2, 2, 7.5, 10.9.3, 10.9.5,
10.9.9

[75] F. Fleurey and A. Solberg, “A domain specific modeling language
supporting specification, simulation and execution of dynamic adap-
tive systems,” in Model Driven Engineering Languages and Systems.
Springer, 2009, pp. 606–621. 6.2, 10.9.3, 10.9.12

[76] J. Ingles-Romero, A. Lotz, C. Vicente-Chicote, and C. Schlegel,
“Dealing with Run-Time Variability in Service Robotics: Towards a
DSL for Non-Functional Properties,” in Workshop on Domain-Specific
Languages and models for Robotic systems, no. iv, 2010. 6.2, 6.3, 10.8,
10.9.9, 10.9.12

[77] C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop: Experimenting with
language, temporal logic and robot control,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,
2010, pp. 1988–1993. 6.2, 10.4, 10.7, 10.9.6, 10.9.7

[78] F. R. Noreils and R. G. Chatila, “Plan execution monitoring and
control architecture for mobile robots,” Robotics and Automation, IEEE
Transactions on, vol. 11, no. 2, pp. 255–266, 1995. 6.2, 10.8, 10.9.8,
10.9.9

[79] D. Vanthienen, M. Klotzbuucher, J. De Schutter, T. De Laet, and
H. Bruyninckx, “Rapid application development of constrained-based
task modelling and execution using domain specific languages,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE, 2013, pp. 1860–1866. 6.3, 7.2, 10.1, 10.7

[80] T. D. Laet, W. Schaekers, J. de Greef, and H. Bruyninckx, “Domain
Specific Language for Geometric Relations between Rigid Bodies
targeted to Robotic Applications,” in Workshop on Domain-Specific
Languages and models for Robotic systems, 2012. [Online]. Available:
http://arxiv.org/abs/1304.1346 6.3, 7.2, 7.3, 7.4, 4, 7.4, 7.5, 10.1, 10.9.9

[81] J. A. Fryer and G. T. McKee, “Resource modelling and combination
in modular robotics systems,” in Robotics and Automation, 1998.
Proceedings. 1998 IEEE International Conference on, vol. 4. IEEE,
1998, pp. 3167–3172. 6.3, 10.2, 10.5

[82] W. Tang, “Meta object facility,” in Encyclopedia of Database Systems.
Springer, 2009, pp. 1722–1723. 6.3

http://arxiv.org/abs/1010.0886
http://arxiv.org/abs/1010.0886
http://arxiv.org/abs/1304.1346


96 Journal of Software Engineering for Robotics 7(1), July 2016

[83] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008. 7

[84] S. Blumenthal and H. Bruyninckx, “Towards a Domain Specific Lan-
guage for a Scene Graph based Robotic World Model,” in Workshop
on Domain-Specific Languages and models for Robotic systems, 2013.
6.3, 7.2, 10.9.2, 10.9.9

[85] O. Causse and J. L. Crowley, “A man machine interface for a mobile
robot,” in Intelligent Robots and Systems’ 93, IROS’93. Proceedings of
the 1993 IEEE/RSJ International Conference on, vol. 1. IEEE, 1993,
pp. 327–335. 6.3, 10.9.7, 10.9.9

[86] A. Mallet, S. Fleury, and H. Bruyninckx, “A specification of generic
robotics software components: future evolutions of g en o m in the
orocos context,” in Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on, vol. 3. IEEE, 2002, pp. 2292–2297.
6.3, 10.9.3, 10.9.5, 10.9.9

[87] A. Angerer, R. Smirra, A. Hoffmann, A. Schierl, M. Vistein, and
W. Reif, “A Graphical Language for Real-Time Critical Robot Com-
mands,” in Workshop on Domain-Specific Languages and models for
Robotic systems, Tsukuba, 2012. 7.1, 7.2, 2, 7.4, 10.9.3, 10.9.7

[88] P. Trojanek, “Model-Driven Engineering Approach to Design and
Implementation of Robot Control System,” in Workshop on Domain-
Specific Languages and models for Robotic systems, 2011. [Online].
Available: http://arxiv.org/abs/1302.5085 7.1, 3, 7.4, 7.4, 10.9.7, 10.9.8,
10.9.9

[89] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann,
“A new skill based robot programming language using uml/p state-
charts,” in Robotics and Automation (ICRA), 2013 IEEE International
Conference on. IEEE, 2013, pp. 461–466. 7.1, 7.2, 2, 7.4, 10.7, 10.9.3

[90] A. Morin, J. Urban, and P. Sliz, “A quick guide to software licensing
for the scientist-programmer,” PLoS Comput Biol, vol. 8, no. 7, p.
e1002598, 2012. 7.1

[91] W. Meeussen, J. Hsu, and R. Diankov, “Unified Robot Description
Format (URDF),” 2009. [Online]. Available: http://www.ros.org/wiki/
urdf 7.1, 7.2

[92] S. I. Feldman, “Make - a program for maintaining computer programs,”
Software: Practice and experience, vol. 9, no. 4, pp. 255–265, 1979.
10

[93] A. Nordmann and S. Wrede, “A Domain-Specific Language for Rich
Motor Skill Architectures,” in Workshop on Domain-Specific Lan-
guages and models for Robotic systems, Tsukuba, 2012. 7.2, 7.5, 10.7,
10.9.8, 10.9.9

[94] J. Peterson, G. D. Hager, and P. Hudak, “A language for declarative
robotic programming,” in Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on, vol. 2. IEEE, 1999, pp.
1144–1151. 7.2, 10.9.3, 10.9.8

[95] I. D. Horswill, “Functional programming of behavior-based systems,”
Autonomous Robots, vol. 9, no. 1, pp. 83–93, 2000. 7.2, 10.8, 10.9.3,
10.9.8

[96] H. Mühe, A. Angerer, A. Hoffmann, and W. Reif, “On Reverse-
Engineering the KUKA Robot Language,” in Workshop on Domain-
Specific Languages and models for Robotic systems, 2010. [Online].
Available: http://arxiv.org/abs/1009.5004 7.2, 7.3, 7.4, 10.7, 10.9.12

[97] M. Klotzbücher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rfsm statecharts,” JOSER: Journal of Software Engineer-
ing for Robotics, vol. 3, no. 1, pp. 28–56, 2012. 7.2, 10.9.3

[98] N. Rugg-Gunn and S. Cameron, “A formal semantics for multiple
vehicle task and motion planning,” in Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference on. IEEE, 1994,
pp. 2464–2469. 7.2, 10.4, 10.9.1, 10.9.3, 10.9.8

[99] M. De Rosa, J. Campbell, P. Pillai, S. Goldstein, P. Lee, and T. Mowry,
“Distributed watchpoints: Debugging large multi-robot systems,” in
Robotics and Automation, 2007 IEEE International Conference on.
IEEE, 2007, pp. 3723–3729. 7.2, 10.8, 10.9.4, 10.9.5

[100] A. Steck and C. Schlegel, “Towards Quality of Service and
Resource Aware Robotic Systems through Model-Driven Software
Development,” in Workshop on Domain-Specific Languages and
models for Robotic systems, 2010, p. 6. [Online]. Available:
http://arxiv.org/abs/1009.4877 7.2, 2, 10.9.1, 10.9.5, 10.9.9

[101] J. Kubica and E. Rieffel, “Creating a smarter membrane: Automatic
code generation for modular self-reconfigurable robots,” in Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, vol. 1. IEEE, 2002, pp. 793–800. 7.2, 10.9.3

[102] R. Burbidge, J. H. Walker, and M. S. Wilson, “Grammatical evolution
of a robot controller,” in Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on. IEEE, 2009, pp. 357–
362. 7.2, 10.7, 10.9.10

[103] KRL, “KUKA System Software 5.5 - Operating and Programming
Instructions for System Integrators,” KUKA Roboter GmbH, Tech.
Rep., 2009. 1, 7.4

[104] RAPID, “RAPID Overview,” ABB Robotics Products, Tech. Rep.,
1998. 1, 7.4

[105] H. Mosemann and F. M. Wahl, “Automatic decomposition of planned
assembly sequences into skill primitives,” Robotics and Automation,
IEEE Transactions on, vol. 17, no. 5, pp. 709–718, 2001. 2, 10.4,
10.9.11

[106] S. Adam and U. P. Schultz, “Towards Interactive, Incremental
Programming of ROS Nodes,” in Workshop on Domain-Specific
Languages and models for Robotic systems, 2014. [Online]. Available:
http://arxiv.org/abs/1412.4714 7.3, 10.9.7

[107] D. C. MacKenzie, J. M. Cameron, and R. C. Arkin, “Specification and
execution of multiagent missions,” in Intelligent Robots and Systems
95.’Human Robot Interaction and Cooperative Robots’, Proceedings.
1995 IEEE/RSJ International Conference on, vol. 3. IEEE, 1995, pp.
51–58. 7.4, 10.4, 10.9.1, 10.9.3

[108] P. Runeson and M. Höst, “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, 2009. 7.4

[109] G. Biggs and B. A. MacDonald, “Evaluating a reactive semantics
for robotics,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on. IEEE, 2008, pp. 1854–1859.
7.4, 10.9.1, 10.9.3

[110] J. Howatt, “A project-based approach to programming language eval-
uation,” ACM SIGPLAn Notices, vol. 30, no. 7, pp. 37–40, 1995. 7.4

[111] T. Özgür, “Comparison of Microsoft DSL Tools and Eclipse Modeling
Frameworks for Domain-Specific Modeling in the Context of the
Model-Driven Development,” Master, Blekinge Institute of Technology,
2007. 7.4

[112] A. Rusakov, J. Shin, and B. Meyer, “Simple concurrency for robotics
with the roboscoop framework,” in Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE,
2014, pp. 1563–1569. 1, 3, 10.9.1, 10.9.3

[113] A. Romero-Garcés, L. Manso, M. Gutierrez, R. Cintas, and
P. Bustos, “Improving the Lifecycle of Robotics Components
using Domain-Specific Languages,” in Workshop on Domain-Specific
Languages and models for Robotic systems, 2013. [Online]. Available:
http://arxiv.org/abs/1301.6022 3, 4, 10.9.5, 10.9.7, 10.9.9

[114] J. C. Baillie, “Urbi: Towards a Universal Robotic Low-level
Programming Language,” International Conference on Intelligent
Robots and Systems, 2005. [Online]. Available: http://ieeexplore.ieee.
org/xpls/abs all.jsp?arnumber=1545467 7.4

[115] J.-C. Baillie, A. Demaille, Q. Hocquet, and M. Nottale, “Events!
(Reactivity in urbiscript),” in Workshop on Domain-Specific Languages
and models for Robotic systems, 2010. [Online]. Available: http:
//arxiv.org/abs/1010.5694 7.4, 10.9.1, 10.9.3

[116] N. Dantam and M. Stilman, “The Motion Grammar: Linguistic Percep-
tion, Planning, and Control,” Robotics: Science and Systems VII, no.
June, 2012. 7.4

[117] L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot de-
scription languages,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 5589–5595. 7.5, 10.8,
10.9.2, 10.9.9, 10.9.10

[118] D. Cassou, S. Stinckwich, and P. Koch, “Using the DiaSpec Design
Language and Compiler to Develop Robotics Systems,” in Workshop
on Domain-Specific Languages and models for Robotic systems, 2011.
[Online]. Available: http://arxiv.org/abs/1109.2806 7.5, 10.9.8, 10.9.9

[119] A. K. Ramaswamy, B. Monsuez, and A. Tapus, “Solution space mod-
eling for robotic systems,” Journal for Software Engineering Robotics
(JOSER), vol. 5, no. 1, pp. 89–96, 2014. 7.5, 10.5, 10.9.3, 10.9.9,
10.9.12

[120] S. Schneider, N. Hochgeschwender, and G. Kraetzschmar, “Structured
design and development of domain-specific languages in robotics,”
in Simulation, Modeling, and Programming for Autonomous Robots,
ser. Lecture Notes in Computer Science, D. Brugali, J. Broenink,

http://arxiv.org/abs/1302.5085
http://www.ros.org/wiki/urdf
http://www.ros.org/wiki/urdf
http://arxiv.org/abs/1009.5004
http://arxiv.org/abs/1009.4877
http://arxiv.org/abs/1412.4714
http://arxiv.org/abs/1301.6022
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1545467
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1545467
http://arxiv.org/abs/1010.5694
http://arxiv.org/abs/1010.5694
http://arxiv.org/abs/1109.2806


A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 97

T. Kroeger, and B. MacDonald, Eds. Springer International
Publishing, 2014, vol. 8810, pp. 231–242. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11900-7 20 7.5

[121] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “Pddl - the planning domain definition
language,” Yale Center for Computational Vision and Control,, Tech.
Rep. TR-98-003, 1998. 7.6

[122] E. P. D. Pednault, “ADL and the State-Transition Model of Action,”
Journal of Logic and Computation, vol. 4, pp. 467–512, 1994. 7.6

[123] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner,
“Nonmonotonic causal theories,” Artif. Intell., vol. 153, no. 1-2, pp.
49–104, Mar. 2004. [Online]. Available: http://dx.doi.org/10.1016/j.
artint.2002.12.001 7.6

[124] F. Stulp and M. Beetz, “Combining declarative, procedural and pre-
dictive knowledge to generate and execute robot plans efficiently and
robustly,” Robotics and Autonomous Systems Journal (Special Issue on
Semantic Knowledge), 2008. 7.6

[125] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on, May
2011, pp. 4575–4581. 7.6

[126] G. Havur, K. Haspalamutgil, C. Palaz, E. Erdem, and V. Patoglu, “A
case study on the tower of hanoi challenge: Representation, reasoning
and execution,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on, May 2013, pp. 4552–4559. 7.6

[127] G. Biggs, K. Fujiwara, and K. Anada, “Modelling and analysis of
a redundant mobile robot architecture using aadl,” in Simulation,
Modeling, and Programming for Autonomous Robots, ser. Lecture
Notes in Computer Science, D. Brugali, J. Broenink, T. Kroeger,
and B. MacDonald, Eds. Springer International Publishing, 2014,
vol. 8810, pp. 146–157. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-11900-7 13 7.6

[128] G. Biggs, T. Sakamoto, K. Fujiwara, and K. Anada, “Experiences with
model-centred design methods and tools in safe robotics,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, Nov 2013, pp. 3915–3922. 7.6

[129] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012. 7.6

[130] S. Wtzoldt, S. Neumann, F. Benke, and H. Giese, “Integrated software
development for embedded robotic systems,” in Simulation, Modeling,
and Programming for Autonomous Robots, ser. Lecture Notes in
Computer Science, I. Noda, N. Ando, D. Brugali, and J. Kuffner, Eds.
Springer Berlin Heidelberg, 2012, vol. 7628, pp. 335–348. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-34327-8 31 7.6

[131] B. Hamner, S. C. Koterba, J. Shi, R. Simmons , and S. Singh,
“An autonomous mobile manipulator for assembly tasks,” Autonomous
Robots, vol. 28, no. 1, pp. 131 – 149, January 2010. 7.6

[132] J. Kiener and O. von Stryk, “Cooperation of heterogeneous, au-
tonomous robots: A case study of humanoid and wheeled robots,” in
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, Oct 2007, pp. 959–964. 7.6

[133] M. Dekhil and T. Henderson, “Instrumented logical sensor systems-
practice,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE
International Conference on, vol. 4, May 1998, pp. 3103–3108 vol.4.
7.6

[134] E. Wolff, U. Topcu, and R. Murray, “Automaton-guided controller
synthesis for nonlinear systems with temporal logic,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, Nov 2013, pp. 4332–4339. 7.6

[135] M. Guo, K. Johansson, and D. Dimarogonas, “Motion and action
planning under ltl specifications using navigation functions and action
description language,” in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, Nov 2013, pp. 240–245. 7.6

[136] J. Huckaby, S. Vassos, and H. Christensen, “Planning with a task
modeling framework in manufacturing robotics,” in Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on, Nov
2013, pp. 5787–5794. 7.6

[137] Y. Brodskiy, R. Wilterdink, S. Stramigioli, and J. Broenink,
“Fault avoidance in development of robot motion-control software

by modeling the computation,” in Simulation, Modeling, and
Programming for Autonomous Robots, ser. Lecture Notes in Computer
Science, D. Brugali, J. Broenink, T. Kroeger, and B. MacDonald,
Eds. Springer International Publishing, 2014, vol. 8810, pp. 158–169.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-11900-7 14
7.6

[138] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraet-
zschmar, L. Gherardi, and D. Brugali, “The brics component
model: A model-based development paradigm for complex robotics
software systems,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, ser. SAC ’13. New York,
NY, USA: ACM, 2013, pp. 1758–1764. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480693 7.6

[139] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000. 8

[140] K. C. Kang, M. Kim, J. Lee, B. Kim, Y. Hong, H. Lee, and S. Bang,
“3d virtual prototyping of home service robots using asadal/obj,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on. IEEE, 2005, pp. 2903–2908. 10.1,
10.2, 10.9.1, 10.9.3

[141] G. S. Hornby, H. Lipson, and J. B. Pollack, “Evolution of generative
design systems for modular physical robots,” in Robotics and Automa-
tion, 2001. Proceedings 2001 ICRA. IEEE International Conference
on, vol. 4. IEEE, 2001, pp. 4146–4151. 10.1, 10.2, 10.7

[142] V. Manikonda, P. S. Krishnaprasad, and J. Hendler, “A motion de-
scription language and a hybrid architecture for motion planning with
nonholonomic robots,” in Robotics and Automation, 1995. Proceed-
ings., 1995 IEEE International Conference on, vol. 2. IEEE, 1995,
pp. 2021–2028. 10.1, 10.7

[143] M. Frigerio, J. Buchli, and D. G. Caldwell, “Code generation of
algebraic quantities for robot controllers,” in Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE,
2012, pp. 2346–2351. 10.1, 10.3

[144] M. Wirkus, “Towards Robot-independent Manipulation Behavior
Description,” in Workshop on Domain-Specific Languages and
models for Robotic systems, 2014. [Online]. Available: http:
//arxiv.org/abs/1412.3247 10.2, 10.4, 10.9.9

[145] I. Kitagishi, T. Machino, A. Nakayama, S. Iwaki, and M. Okudaira,
“Development of motion data description language for robots based
on extensible markup language-realization of better understanding and
communication via networks,” in Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on, vol. 2. IEEE, 2002, pp. 1145–
1151. 10.2, 10.7

[146] O. Ljungkrantz, K. Akesson, J. Richardsson, and K. Andersson,
“Implementing a control system framework for automatic generation
of manufacturing cell controllers,” in Robotics and Automation, 2007
IEEE International Conference on. IEEE, 2007, pp. 674–679. 10.2,
10.5

[147] T. M. Roehr, F. Cordes, and F. Kirchner, “Reconfigurable integrated
multirobot exploration system (rimres): heterogeneous modular recon-
figurable robots for space exploration,” Journal of Field Robotics,
vol. 31, no. 1, pp. 3–34, 2014. 10.2, 10.8

[148] M. Moghadam, D. Christensen, D. Brandt, and U. Schultz,
“Towards Python-based Domain-Specific Languages for Self-
Reconfigurable Modular Robotics Research,” in Workshop on
Domain-Specific Languages and models for Robotic systems, San
Francisco, USA, 2011. [Online]. Available: http://orbit.dtu.dk/services/
downloadRegister/5830529/article.pdf 10.2, 10.9.3, 10.9.9

[149] K. Barth and D. Henrich, “A goto-based concept for intuitive robot pro-
gramming,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 2338–2345. 10.2, 10.7,
10.9.11

[150] S. Fleury, M. Herrb, and R. Chatila, “Design of a modular architecture
for autonomous robot,” in Robotics and Automation, 1994. Proceed-
ings., 1994 IEEE International Conference on. IEEE, 1994, pp. 3508–
3513. 10.2, 10.5, 10.9.3, 10.9.4

[151] P. Nilas, P. Rani, and N. Sarkar, “An innovative high-level human-robot
interaction for disabled persons,” in Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, vol. 3.
IEEE, 2004, pp. 2309–2314. 10.2, 10.5

http://dx.doi.org/10.1007/978-3-319-11900-7_20
http://dx.doi.org/10.1016/j.artint.2002.12.001
http://dx.doi.org/10.1016/j.artint.2002.12.001
http://dx.doi.org/10.1007/978-3-319-11900-7_13
http://dx.doi.org/10.1007/978-3-319-11900-7_13
http://dx.doi.org/10.1007/978-3-642-34327-8_31
http://dx.doi.org/10.1007/978-3-319-11900-7_14
http://doi.acm.org/10.1145/2480362.2480693
http://arxiv.org/abs/1412.3247
http://arxiv.org/abs/1412.3247
http://orbit.dtu.dk/services/downloadRegister/5830529/article.pdf
http://orbit.dtu.dk/services/downloadRegister/5830529/article.pdf


98 Journal of Software Engineering for Robotics 7(1), July 2016

[152] N. Hochgeschwender, S. Schneider, H. Voos, and G. K. Kraetzschmar,
“Towards a Robot Perception Specification Language,” in Workshop on
Domain-Specific Languages and models for Robotic systems, 2013, pp.
3–6. 10.5, 10.9.9

[153] H. Nishiyama, H. Ohwada, and F. Mizoguchi, “Logic specifications
for multiple robots based on a current programming language,” in
Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ
International Conference on, vol. 1. IEEE, 1998, pp. 286–291. 10.7,
10.9.1, 10.9.3, 10.9.9

[154] J. P. Buch, J. S. Laursen, L. C. Sørensen, L.-P. Ellekilde, D. Kraft,
U. P. Schultz, and H. G. Petersen, “Applying simulation and a domain-
specific language for an adaptive action library,” in Simulation, Mod-
eling, and Programming for Autonomous Robots. Springer, 2014, pp.
86–97. 10.7, 10.9.4, 10.9.11

[155] J. A. Fayman, E. Rivlin, and H. I. Christensen, “Av-shell, an en-
vironment for autonomous robotic applications using active vision,”
Autonomous Robots, vol. 6, no. 1, pp. 21–38, 1999. 10.7, 10.9.3

[156] A. R. Graves and C. Czarnecki, “Distributed generic control for multi-
ple types of telerobot,” in Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on, vol. 3. IEEE, 1999, pp.
2209–2214. 10.7, 10.9.5, 10.9.7

[157] H. Utz, G. Kraetzschmar, G. Mayer, and G. Palm, “Hierarchical
behavior organization,” in Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on. IEEE, 2005, pp.
2598–2605. 10.7, 10.9.8, 10.9.9

[158] V. Raman and H. Kress-Gazit, “Explaining impossible high-level robot
behaviors,” Robotics, IEEE Transactions on, vol. 29, no. 1, pp. 94–104,
2013. 10.8

[159] F. J. Ortiz, D. Alonso, F. Rosique, F. Sánchez-Ledesma, and J. A.
Pastor, “A component-based meta-model and framework in the model
driven toolchain c-forge,” in Simulation, Modeling, and Programming
for Autonomous Robots. Springer, 2014, pp. 340–351. 10.9.1, 10.9.3,
10.9.5

[160] S. Aggarwal, S. Mitra, and S. S. Jagdale, “Specification and auto-
mated implementation of coordination protocols in distributed controls
for flexible manufacturing cells,” in Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference on. IEEE, 1994,
pp. 2877–2882. 10.9.1, 10.9.3, 10.9.5

[161] E. Freund, M. Schluse, and J. Rossmann, “State oriented modeling
as enabling technology for projective virtual reality,” in Intelligent
Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on, vol. 4. IEEE, 2001, pp. 1842–1847. 10.9.1, 10.9.3

[162] J. Košecká, H. I. Christensen, and R. Bajcsy, “Experiments in behavior
composition,” Robotics and Autonomous systems, vol. 19, no. 3, pp.
287–298, 1997. 10.9.1, 10.9.3

[163] T. Maenpaa, A. Tikanmaki, J. Riekki, and J. Roning, “A distributed
architecture for executing complex tasks with multiple robots,” in
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, vol. 4. IEEE, 2004, pp. 3449–3455.
10.9.1, 10.9.3

[164] S. Knoop, M. Pardowitz, and R. Dillmann, “Automatic robot program-
ming from learned abstract task knowledge,” in Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on.
IEEE, 2007, pp. 1651–1657. 10.9.3, 10.9.4

[165] C. Datta, C. Jayawardena, I. H. Kuo, and B. A. MacDonald, “Ro-
bostudio: A visual programming environment for rapid authoring and
customization of complex services on a personal service robot,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. IEEE, 2012, pp. 2352–2357. 10.9.3, 10.9.7

[166] E. Coste-Maniere and N. Turro, “The maestro language and its en-
vironment: Specification, validation and control of robotic missions,”
in Intelligent Robots and Systems, 1997. IROS’97., Proceedings of the
1997 IEEE/RSJ International Conference on, vol. 2. IEEE, 1997, pp.
836–841. 10.9.3

[167] A. J. Ramirez and B. H. Cheng, “Automatic derivation of utility
functions for monitoring software requirements,” in Model Driven
Engineering Languages and Systems. Springer, 2011, pp. 501–516.
10.9.3, 10.9.4, 10.9.6

[168] M. Klotzbücher, G. Biggs, and H. Bruyninckx, “Pure Coordination
using the Coordinator-Configurator Pattern,” in Workshop on Domain-
Specific Languages and models for Robotic systems, vol. 231940, 2012.
10.9.3, 10.9.4

[169] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Alvarez,
“V3cmm: A 3-view component meta-model for model-driven robotic
software development,” Journal of Software Engineering for Robotics,
vol. 1, no. 1, pp. 3–17, 2010. 10.9.3, 10.9.5, 10.9.9

[170] M. Bordignon, K. Stoy, and U. P. Schultz, “A virtual machine-based
approach for fast and flexible reprogramming of modular robots,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Confer-
ence on. IEEE, 2009, pp. 4273–4280. 10.9.3, 10.9.5, 10.9.9

[171] B. Bouzouia, F. Guerroumi, and A. Boukhezar, “A three-layer work-
cell control architecture design,” in Robotics and Automation, 1998.
Proceedings. 1998 IEEE International Conference on, vol. 2. IEEE,
1998, pp. 1185–1191. 10.9.3, 10.9.7, 10.9.9

[172] A. Paikan, G. Metta, and L. Natale, “A Representation of Robotic
Behaviors using Component Port Arbitration,” in Workshop on
Domain-Specific Languages and models for Robotic systems, 2014.
[Online]. Available: http://arxiv.org/abs/1412.4847 10.9.3, 10.9.4,
10.9.8

[173] B. Schwartz, L. Nägele, A. Angerer, and B. A. MacDonald, “Towards
a Graphical Language for Quadrotor Missions,” in Workshop on
Domain-Specific Languages and models for Robotic systems, 2014.
[Online]. Available: http://arxiv.org/abs/1412.1961 10.9.3, 10.9.7

[174] X. Dai, G. Hager, and J. Peterson, “Specifying behavior in c++,” in
Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE Inter-
national Conference on, vol. 1. IEEE, 2002, pp. 153–160. 10.9.3,
10.9.8

[175] E. Gat, “Alfa: A language for programming reactive robotic control
systems,” in Robotics and Automation, 1991. Proceedings., 1991 IEEE
International Conference on. IEEE, 1991, pp. 1116–1121. 10.9.3,
10.9.8

[176] K. Kułakowski and T. Szmuc, “Modeling robot behavior with ccl,”
in Simulation, Modeling, and Programming for Autonomous Robots.
Springer, 2012, pp. 40–51. 10.9.3

[177] Y. Sun, J. Gray, K. Bulheller, and N. von Baillou, A model-driven ap-
proach to support engineering changes in industrial robotics software.
Springer, 2012. 10.9.3, 10.9.7, 10.9.9

[178] H. C. Woithe and U. Kremer, “A programming architecture for smart
autonomous underwater vehicles,” in Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009,
pp. 4433–4438. 10.9.3

[179] M. Anderson, C. Crawford, and M. Stanforth, “Enabling Robot De-
vice Discovery Through Robot Device Descriptions,” in Workshop on
Domain-Specific Languages and models for Robotic systems, 2011.
10.9.5, 10.9.9

[180] S. Chaki and J. Edmondson, “Model-driven verifying compilation of
synchronous distributed applications,” in Model-Driven Engineering
Languages and Systems. Springer, 2014, pp. 201–217. 10.9.5, 10.9.6

[181] W. Hongxing, D. Xinming, L. Shiyi, T. Guofeng, and W. Tianmiao,
“A component based design framework for robot software architec-
ture,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on. IEEE, 2009, pp. 3429–3434. 10.9.5,
10.9.9

[182] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, “Towards rule-based
dynamic safety monitoring for mobile robots,” in Simulation, Modeling,
and Programming for Autonomous Robots. Springer, 2014, pp. 207–
218. 10.9.6

[183] V. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchitel,
“Controller synthesis: From modelling to enactment,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 1347–1350. 10.9.6, 10.9.8

[184] B. Dittes and C. Goerick, “Intelligent system architectures-comparison
by translation,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on. IEEE, 2011, pp. 1015–1021.
10.9.8, 10.9.9, 10.9.10

[185] ——, “A language for formal design of embedded intelligence research
systems,” Robotics and Autonomous Systems, vol. 59, no. 3, pp. 181–
193, 2011. 10.9.8, 10.9.10

[186] I. Pembeci and G. Hager, “Functional reactive programming as a hybrid
system framework,” in Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, vol. 1. IEEE, 2003, pp.
727–734. 10.9.8, 10.9.9

http://arxiv.org/abs/1412.4847
http://arxiv.org/abs/1412.1961


A. NORDMANN et al./ A Survey on Domain-Specific Modeling and Languages in Robotics 99

[187] T. Buchmann, J. Baumgartl, D. Henrich, and B. Westfechtel, “Towards
A Domain-Specific Language For Pick-And-Place Applications,” in
Workshop on Domain-Specific Languages and models for Robotic
systems, 2014. [Online]. Available: http://arxiv.org/abs/1401.1376
10.9.12

Arne Nordmann Arne Nordmann received his
diploma in electrical engineering at TU Dort-
mund University, Germany, in 2009. Afterwards
he joined the Cognitive Systems Engineering
group at the Bielefeld Institute for Cognition and
Robotics (CoR-Lab) as Ph.D. student. In 2015
he joined the corporate research department at
Robert Bosch GmbH in Stuttgart as research
engineer. His focus of research resides on
model-driven engineering methods and domain-
specific languages in the context of robotics

systems and advanced driver assistance.

Nico Hochgeschwender received his diploma
in computer science at University of Applied
Sciences Ravensburg-Weingarten, Germany, in
2007. Afterwards he joined ESG GmbH, Mu-
nich, Germany as a system engineer developing
avionics software for Unmanned Aerial Vehicles.
In 2009 he joined Bonn-Rhein-Sieg University,
Sankt Augustin, Germany as a research sci-
entist in the EU-funded project BRICS (Best
Practice in Robotics), researching model-driven
engineering methods for robots. Since 2013 he

has also been affiliated with the University of Luxembourg, Luxembourg
as a Ph.D. student investigating methods, models and tools that enable
the design and development of adaptive robot perception architectures.

Dennis Leroy Wigand received his M. Sc. de-
grees in computer science from Bielefeld Uni-
versity, Germany, in 2015. Afterwards he joined
the Cognitive Systems Engineering group at the
Bielefeld Institute for Cognition and Robotics
(CoR-Lab) as Ph.D. student. Dennis Wigand’s
particular research interest lies in domain-
specific system engineering with respect to code
generation. Due to his participation in the EU
project CogIMon (Horizon 2020), which aims at
a step-change in compliant human-robot interac-

tion, he is particularly focused on the force domain.

Dr. Sebastian Wrede received his PhD (Dr.-
Ing.) in Computer Science from Bielefeld Univer-
sity in 2008. Since 2009 he heads the Cognitive
Systems Engineering group (at CoR-Lab) and is
responsible investigator in the Excellence Clus-
ter on Cognitive Interaction Technology (CITEC)
at Bielefeld University. Furthermore, he is coor-
dinator of the innovation project FlexiMon within
the it’s OWL leading-edge cluster on reconfig-
urable robotics systems in manufacturing and re-
sponsible investigator in the EU project CogIMon

(Horizon 2020). Sebastian Wrede’s focus of research resides on model-
driven engineering methods, domain-specific languages and software
architectures for interactive robotics applications. He is a member of GI
and IEEE RAS TC-SOFT.

http://arxiv.org/abs/1401.1376

	Introduction
	Objectives
	Quantitative Research Questions
	Qualitative Research Questions

	Domain-Specific Modeling Languages
	User Perspective
	Developer Perspective

	Domain Analysis
	Functional Dimension
	Development Process Dimension

	Process
	Selection Process
	Analysis Process

	Analysis
	Subdomains (RQ1)
	Development Phases (RQ2)
	Meta-Metamodels and Formalisms (RQ3)
	Publication Trends (RQ4)
	Temporal distribution
	Venues


	Discussion
	Accessibility and Documentation (RQ5)
	Artifacts and Use-Case (RQ6)
	Platform (RQ7)
	Evaluation (RQ8)
	DS(M)L Development Process (RQ9)
	DS(M)L Usage (RQ10)

	Threats to Validity
	Synopsis
	Publications
	Kinematics
	Mechanisms and Actuation
	Dynamics
	Motion Planning
	Sensing and Estimation
	Force Control
	Motion Control
	Reasoning Methods
	Architectures and Programming
	Concurrency
	Data Persistence
	Control and Handling of Events
	Error and Exception Handling
	Distribution of Components
	Security and Safety
	Interaction and Presentation
	Architectural Styles
	Architectural Structures and Viewpoints
	Architecture Design Decisions
	Design Patterns
	Families of Programs and Frameworks


	References
	Biographies
	Arne Nordmann
	Nico Hochgeschwender
	Dennis Leroy Wigand
	Dr. Sebastian Wrede


