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Abstract

We demonstrate that in simple 2 × 2 games (cumulative) prospect the-
ory preferences can be evolutionarily stable, i.e. a population of players with
prospect theory preferences can not be invaded by more rational players. This
holds also if probability weighting is applied to the probabilities of mixed
strategies. We also show that in a typical game with infinitely many strate-
gies, the “war of attrition”, probability weighting is evolutionarily stable.
Finally, we generalize to other notions of stability. Our results may help to
explain why probability weighting is generally observed in humans, although
it is not optimal in usual decision problems.

Keywords: prospect theory, existence of Nash equilibria, evolutionary stability.
JEL classification: C70, C73, D81.

1 Introduction

We study the influence of prospect theory preferences on the outcome of two player
games. We focus on the effect of probability weighting on the probabilities for
mixed strategies. A priori one might assume that probability weighting reduces the
(rational) payoffs1 a player receives in a game, since it leads to irrational decisions.
In this article, however, we demonstrate that there are many situations where prob-
ability weighting of the players is evolutionarily stable, in particular in a class of
simple 2×2 games related to matching pennies games which we call social control
games (see Sec. 2.1-2.2) and in the “war of attrition” (Sec. 2.3). We generalize
these results also to continuous stability and evolutionary robustness (Sec. 2.4).
We suggest that our results provide a possible explanation for the “probability
weighting puzzle”, i.e. the question why humans tend to overweight small prob-
abilities, given that this leads to suboptimal decisions (as compared to the expected

∗University of Zürich, ISB, Plattenstrasse 32, 8032 Zürich, Switzerland, rieger@isb.uzh.ch. This
paper was written while the author was working at the Institute of Mathematical Economics of the
University of Bielefeld.

1based on linear probability weighting according to subjective expected utility theory
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2 1 INTRODUCTION

utility benchmark): when considering interactions between individuals, the seem-
ingly irrational probability weighting can become advantageous and evolutionarily
stable. Since humans do not only face simple (single person) decision problems,
but manifold interactions with others, on average a neutral probability weighting is
usually not optimal (Sec. 3).

1.1 Expected utility theory and prospect theory

Since its origin (v. Neumann 1928, von Neumann & Morgenstern 1944) game the-
ory has been closely connected to expected utility theory. The role of this deci-
sion model as a normative theory is uncontroversial. Recent years, however, have
seen substantial progress on the understanding of differences between the actual,
sometimes irrational decisions of individuals, and rational decisions according to
the expected utility theory. There are now several models to describe decisions
under risk, in particular prospect theory, as developed by Kahneman & Tversky
(1979) and Tversky & Kahneman (1992), a model for which Daniel Kahneman
was awarded with the Nobel Prize for economics in 2002. Since prospect theory
and its variants are nowadays the most frequently used behavioral decision models,
we concentrate on them.2

Prospect theory modifies classical expected utility theory in several ways:

1. Unlike expected utility theory, not the final wealth is evaluated, but the pay-
offs are framed as gains and losses with respect to a reference point; they are
called “prospects”.

2. Losses loom larger than gains, hence the marginal utility in losses is larger
than in gains.

3. Small probabilities are overweighted and moderate to large probabilities are
underweighted.

Mathematically, the first two features are reflected in a two-part S-shaped value
function (which replaces the usual utility function) – concave in gains and convex
in losses. The prototypical example has been given in Tversky & Kahneman (1992)
for α, β ∈ (0, 1) and λ > 1:

u(x) :=
{

xα, x ≥ 0
−λ(−x)β, x < 0.

(1)

The third feature is captured by weighting the probability distribution by an S-
shaped function, the so-called weighting function w. The original example of Tver-
sky & Kahneman (1992) is given by

w(F) :=
Fγ

(Fγ + (1 − F)γ)1/γ . (2)

2We mention approaches using the Choquet integral that are rleated to cumulative prospect theory,
see Gilboa & Schmeidler (1992) and Schmeidler (1989), that could be treated in a similar matter.
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In the classical form of prospect theory (PT), the function w is applied directly to
the probabilities of the different outcomes, resulting in an overweighting of small
probabilities, regardless of their associated outcome. The generalization of this
form for outcomes xi with probabilities pi is given by

PT (p) =

n∑
i=1

w(pi)u(xi), (3)

where PT (p) is the subjective utility of a probability distribution p (Kahneman &
Tversky 1979, Schneider & Lopes 1986, Wakker 1989).
The updated version of prospect theory, called cumulative prospect theory (short:
CPT), weights cumulative probabilities Fi :=

∑i
j=1 p j, where outcomes are ordered

by their payoffs, and the weight factor for the i-th outcome is w(Fi)−w(Fi−1).3 The
result is that only low probability events with extreme outcomes are overweighted.
CPT helped in recent years to explain various effects in decision theory, economics
and finance.

1.2 Prospect theory preferences in games

One of the most interesting effects of prospect theory on the analysis of games
is the interplay between probability weighting and mixed strategies. This effect
makes it necessary to extend previous work on non-expected utility preferences in
games.4

Let us consider a finite normal-form game with two players (without chance moves).
In this game, a player i can choose from the strategy set S i, i ∈ {A, B} of (finitely
many) pure strategies. We denote the set of all combinations of pure strategies
S :=

�
i∈{A,B} S i. The set of probability measures on S i is denoted by Mi and de-

scribes the mixed strategies of player i. The combinations of mixed strategies are
denoted by M :=

�
i∈{A,B} Mi. The payoff (in utility units) of the game for the i-th

player is given by ui : S → R. The game can then be written as (S i, ui)i∈{A,B}.
The total utility U that a player, say player A, obtains for some mixed strategy play
m = (m1, . . . ,mn) ∈ M depends on the underlying decision model. In the case of
EUT, this utility becomes

UEUT
A (m) =

∑
s=(sA,sB)∈S

mA(sA)mB(sB)uA(s),

where mi(s) is the probability of player i to play strategy s.
We consider now probability weighting functions wi. If the player weights the
probabilities with which the other player chooses his mixed strategies using this

3For a precise formula see Tversky & Kahneman (1992).
4For general models compare, among others, Chen & Neilson (1999) and Fershtman, Safra &

Vincent (1991); for the effects of framing in certain applications see Butler (2007) and for ambiguity
in games see, e.g., Lo (1999)
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probability weighting function, we obtain for the utility of the first player

UPT
A (m) =

∑
s=(sA,sB)∈S

mA(sA)wA(mB(sB))uA(s). (4)

We assume that the players do not weight the probabilities of their own strategies5

. Here and in the remaining part of this article we assume that the reference point
of the value function u is fixed, see Rieger & Koch (2009) for generalizations.
In the case of cumulative prospect theory (CPT), we need to rank the possible out-
comes, before we can compute the probability weighting. To simplify notation we
denote the potential outcomes for player A by uA(i, k), where i is his own strategy
and k is the strategy played by player B. In order to define cumulative probabilities,
we sort these outcomes first, therefore let us define permutations σA

i on {1, . . . , n}
such that

uA(i, σA
i (k)) ≤ uA(i, σA

i (k + 1)), for all k = 1, . . . , n − 1.

Now we can define the cumulative probabilities6 of player B’s actions as seen from
player A by

FA(i, k) :=
k∑

l=1

mB
σA

i (k),

FA(i, 0) := 0,

and the CPT-utility becomes

UCPT
A =

n∑
i=1

mA
i

n∑
j=1

(wA(FA(i, j)) − wA(FA(i, j − 1))) uA(i, σA
i ( j))

 .
This is essentially the form used by Goeree, Holt & Palfrey (2003) in the special
case of 2 × 2 games. We will later show how to generalize this formulation to a
game with infinitely many pure strategies.
Nash equilibria in this setting can be defined as usual:

Definition 1.1. We call a strategy m̂ ∈ M a mixed PT-Nash equilibrium if for all
i = 1, . . . , n and all m ∈ M with mk = m̂k for k , i we have Ui(m̂) ≥ Ui(m), where
Ui = UPT

i is given by (4).

5There is an older approach by Dekel, Safra & Segal (1991) for non-expected utility theory which
weights also the probabilities of the player’s own strategies. This approach cannot be extended to
cumulative prospect theory, since it is not possible to rank both the player’s and the opponent’s
strategies simultaneously by the payoff. There are also conceptual reasons in favor of the approach
used here, see Rieger & Koch (2009).

6There are slight differences in the precise definition of CPT in the literature. In the original
formation (Tversky & Kahneman 1992), cumulative probabilities have been used in losses, but de-
cumulative probabilities in gains. For our analysis, this difference would only be quantitative, but
does not change the qualitative results: one could in any case always adjust the probability weighting
function accordingly.
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Analogously, we say that m̂ ∈ M is a mixed CPT-Nash equilibrium if for i = 1, 2
and all m ∈ M with mk = m̂k for k , i we have Ui(m̂) ≥ Ui(m), where Ui = UCPT

i
is given by (5).

The existence of Nash equilibria in the finite game case has been proven in Rieger
& Koch (2009) under the assumption of fixed reference points.

2 Evolutionary stability of probability weighting

Given that prospect theory is not a normative theory, but rather describes system-
atic deviations from rational choices, it has to be expected that players who show
such deviations will fare worse in games than players with rational preferences.
We will see, however, that there are simple classes of games where probability
weighting of the players leads in fact to an increase in the players’ payoffs and is
even evolutionarily stable! We motivate this first with a simple example (Sec. 2.1)
before we generalize this result (Sec. 2.2). Finally, we show that such results can
also be obtained for games with infinitely many strategies (Sec. 2.3).

2.1 A simple 2 × 2 game

We consider the following game that has a similar structure as the classical match-
ing pennies game:

Player B
Player A (4, 2) (−2, 3)

(3, 2) (0, 0)
(5)

Here and in the following the payoffs are given in utility units.
We denote a mixed strategy of player A by p ∈ [0, 1], meaning the probability with
which he chooses his first strategy. Accordingly, we denote a mixed strategy of
player B by q ∈ [0, 1]. Without probability weighting this game has the unique
mixed Nash equilibrium (p, q) = (2/3, 2/3), as a short computation shows.
We now use the standard form of probability weighting (2) and denote the proba-
bility weighting parameter of player A and B by α and β, respectively.
The PT-utilities for the players are then

UA(p, q) = 4pwα(q) − 2pwα(1 − q) + 3(1 − p)wα(q),

UB(p, q) = 2wβ(p)q + 2wβ(1 − p)q + 3wβ(p)(1 − q).

To compute the CPT-utilities we first sort the outcomes for each player given that
he plays a certain strategy by their payoffs and obtain

UA(p, q) = 4p(1 − wα(1 − q)) − 2pwα(1 − q) + 3(1 − p)(1 − wα(1 − q)),

UB(p, q) = 2q + 3(1 − wβ(1 − p))(1 − q).
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Probability weighting is a behavioral bias and hence leads usually to suboptimal
decisions. The key observation of this article, however, is that in certain games
this behavioral bias can be evolutionarily stable, and hence it can be optimal to
have prospect theory preferences, rather than expected utility preferences. To make
this question more precise: We follow the ideas of Güth & Yaari (1992) and Ely
& Yilankaya (2001) and consider a “meta-game” where we assume that in the
single game always the Nash equilibrium is played (with changing roles of the
players) and that on the meta-level the probability weighting can change. This
could be interpreted as two time-scales of adaptation: the direct response to a game
is adapting quickly with respect to the opponents’ responses, whereas the overall
behavioral patterns are either inherited or part of a cultural setting and therefore
can change only very slowly.
In this approach we assume, as usual, that the growth of the population with a
certain behavioral pattern (here the degree of probability weighing) depends solely
on the average utility it gains. Since the payoffs are given in utility units, this
means that the population growth depends on the expected payoff, where of course
the real (and not the weighed) probabilities are taken into account.
We also introduce a “one-sided” form of evolutionary stability motivated by the
fact that we are mostly interested to know whether a strong overweighting is stable
against invasion of weaker overweighting or rational behavior (i.e. no overweight-
ing). The reason behind this is that our model ignores the fact that probability
weighting does not only have an impact on the specific game under study, but also
on other situations an individual may face. In particular, there are instances when
an individual has to make a decision without interaction with other players. Here, it
seems clear that a rational decision procedure, i.e. no probability weighting, would
be evolutionarily optimal. Both effects together would then lead to an evolution-
arily stable amount of probability weighting. For simplicity, and since this is the
interesting part of the result, we focus on the question whether a certain degree of
probability weighting can be evolutionarily stable against a lower degree of prob-
ability weighting when considering social control games. We call this variant of
classical evolutionary stability (Maynard-Smith 1974) “semi-stability”.
We give the following definitions:

Definition 2.1. We call an individual with a probability weighting γ ∈ (0, 1] a
γ-weighter.
We denote the rational utility that a γ-weighter obtains when playing the game as
player A against a δ-weighter by UA(γ, δ) and the rational utility that a γ-weighter
obtains when playing the game as player B against a δ-weighter by UB(δ, γ). De-
fine the average utility by U(γ, δ) := (UA(γ, δ) + UB(δ, γ))/2.
A probability weighting γ ∈ (0, 1) is called evolutionarily semi-stable if for all
δ ∈ (0, 1] with δ > γ and for all sufficiently small ε > 0 the rational utility of
γ-weighters is larger than the rational utility of δ-weighters, where the proportions
of γ- and δ-weighters are 1 − ε and ε, respectively, i.e.

εU(γ, δ) + (1 − ε)U(γ, γ) > εU(δ, δ) + (1 − ε)U(δ, γ). (6)
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A probability weighting γ ∈ (0, 1) is called evolutionarily stable if this holds even
for δ < γ.

We can now state the evolutionary (semi-) stability of prospect theory preferences
in the case of game (5):

Proposition 2.2. In the game (5) probability weighting is evolutionarily semi-
stable in both the PT and the CPT setting, i.e. for sufficiently large γ < 1 a popu-
lation of γ-weighers can not be invaded by δ-weighers with δ > γ, i.e. individuals
with a smaller (or none) behavioral bias.
In the CPT setting there even exists a γ̄ ≈ 0.75 that is evolutionarily stable, i.e. a
population of γ-weighers can not be invaded by δ-weighers with δ , γ.

This result implies that the seemingly irrational prospect theory preferences can be
“rational” in games – rational on the meta-level of the evolution of preferences, in
the sense of evolutionary stability.

Proof. The results for PT will be a special case of the general evolutionary semi-
stability result in the next section.
To prove evolutionary stability in the CPT case we first compute the (unique) Nash
equilibrium in this case: The first order condition is

0 =
d

dp
UA(p, q) = 1 − 3wα(1 − q).

Inverting the weighting function we obtain q = 1 − w−1
α (1/3). Similarly, we obtain

p = 1 − w−1
β (1/3).

For the standard form of the weighting function (2) there exists a γ̄ ∈ (0, 1) that
minimizes w−1

γ (1/3), as can be seen from Fig. 1.7 We claim that γ̄ (which is ap-
proximately 0.75) is evolutionarily stable.
Define pγδ as player A’s strategy in the Nash equilibrium when player A has a
probability weighting γ and player B has a probability weighting δ. As computed
above, we have particularly pαβ = qαβ for all α, β ∈ (0, 1]. We compute

UA(γ, δ) := EUA(pγδ, qγδ)

= 3pγδqγδ + 3qγδ − 2pγδ
UB(δ, γ) := EUB(pδγ, qδγ)

= −3pδγqδγ + 3pδγ + 2qδγ

and

U(γ, δ) =
1
2

(UA(γ, δ) + UB(δ, γ)

= 3qγδ.

7The weighting function in (2) can be inverted for all γ > 0.3 which is sufficient in our case.
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CPTPT

Figure 1: The minimal value for w−1
γ (1/3) is approximately γ̄ = 0.75 for CPT and

zero for PT, in both cases different from the rational behavior γ = 1. Hence, in
the CPT model the evolutionarily stable strategy is to weight probabilities with a
probability weighting parameter of γ̄ ≈ 0.75. This value changes slightly when
changing the parameters of the game.

We can now show evolutionary stability using that we had chosen γ̄ such that
w−1
γ̄ (1/3) < w−1

δ (1/3) for all δ , γ̄:

εU(γ̄, δ) + (1 − ε)U(γ̄, γ̄) = 3εqγ̄δ + 3(1 − ε)pγ̄γ̄
= 3ε(1 − w−1

γ̄ (1/3)) + 3(1 − ε)(1 − w−1
γ̄ (1/3))

> 3ε(1 − w−1
δ (1/3)) + 3(1 − ε)(1 − w−1

δ (1/3))

= 3εpδδ + 3(1 − ε)pγ̄δ
= εU(δ, δ) + (1 − ε)U(δ, γ̄).

Thus γ̄ ≈ 0.75 is the only evolutionarily stable amount of probability weighting.
�

2.2 A general class of 2× 2 games where probability weighting is evo-
lutionarily stable

Is the game presented in the precious section a somehow “pathological” case or are
there meaningful classes of games where probability weighting is evolutionarily
stable? In this section we will study a relatively broad class of games which we call
“social control games” that share the same features with the preceding example (5).
We will give a motivation for this class of games below. The class shares certain
features with the matching pennies game, but has less symmetry, in particular it
does not contain zero-sum games.
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Afterwards we will study another (unrelated) class of games, the “war of attri-
tion”, that also show evolutionary stability of probability weighting. Thus the phe-
nomenon seems to be widespread.
In both cases we will present for simplicity only the prospect theory case.
Let us consider general 2× 2 games given by the following payoff matrix, given in
utility values:

q 1 − q
p (A1,B1) (A3,B3)

1 − p (A2,B2) (A4,B4)

To ease computations we normalize the individual utilities such that A4 = B4 = 0
by adding a fixed amount to all payoffs of a player.8

Let us assume, B plays the mixed strategy q, then the subjective utility for player
A, given that he plays his first strategy (in other words p = 1) will be

UA(1, q) = wα(q)A1 + wα(1 − q)A3.

Analogously, the utility when playing his second strategy will be

UA(0, q) = wα(q)A2.

(Remember that A4 = 0.) Overall, his PT utility when he plays a mixed strategy p
is

UA(p, q) = pwα(q)A1 + pwα(1 − q)A3 + (1 − p)wα(q)A2.

The utility for player B is accordingly

UB(p, q) = wβ(p)qB1 + wβ(1 − p)qB2 + wβ(p)(1 − q)B3.

It is now easy to compute the mixed Nash equilibria of such a game (if at least one
non-pure Nash equilibirum exists). The result of this standard computation is as
follows: Assume that A1 , A2 and B1 , B3 and that

A0 :=
A3

A2 − A1
> 0, B0 :=

B2

B3 − B1
> 0.

Then there exists a (unique) mixed Nash equilibirum (p, q) with

p =
B1/β

0

1 + B1/β
0

, q =
A1/α

0

1 + A1/α
0

.

We see that varying the values of α and β will also shift the position of the mixed
Nash equilibrium (p, q). This shift is monotone and its direction depends on the
numbers A0 and B0. More precisely, a short computation gives the following result:

8Since we later discuss the total utility gained from certain iterative plays, we cannot normalize
further by adding a fixed number to all entries, say, of a column for player A.
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Lemma 2.3. The dependence of p and q on α and β is as follows:

1. If A0 ∈ (0, 1), decreasing α decreases q.

2. If A0 > 1, decreasing α increases q.

3. If B0 ∈ (0, 1), decreasing α decreases p.

4. If B0 > 1, decreasing α increases p.

In the limit cases of α → 0 and β → 0, p and q converge to 0 or 1. In the limit of
α → 1 and β → 1, p and q converge to p̄ and q̄, the Nash equation of the game
without probability weighting.

Such a shift of the mixed Nash equilibrium in the case of “matching pennies
games” has been observed already in Goeree et al. (2003, page 15 ff.).
How do these results change if we replace PT by CPT? It is quite obvious from
the analysis above that the changes will be minor: the formulae for the subjective
utilities will slightly differ and therefore it will in general not be possible to find
a nice closed form for the mixed CTP-Nash equilibria. The qualitative behavior,
however, remains similar, and in particular the essential structure of Lemma 2.3
will carry over to this situation as well besides that the convergence for α, β → 0
might differ, as the example of game (5) demonstrates. In the remaining part of
this article, we will not consider this, and instead only focus on PT.
In the following we concentrate on a special case of 2 × 2 games that describe a
certain kind of social interaction. Behavior that is directed towards the common
wealth and not towards selfish goals can either be mutually enforced on the level
of iterated strategies (like in the famous iterated prisoner’s dilemma) or via direct
control by others. Here we focus on the latter case, where we will show that prob-
ability weighting can improve this control mechanism. We will call such games
“social control games”. In these games, one of the players can enforce some social
norm and the other player can either follow the norm or deviate. Deviation from
the social norm would increase the utility for the deviator and decrease the utility
of the enforcer, but the enforcer can check the deviator’s behavior. If he notices a
deviation, he punishes the deviator. On the other hand, the enforcer would not like
to check too much, since controlling is costly for him. We also assume that there
is no positive effect on the controller if he checks and catches a deviator and that a
non-deviating player does not profit when the controller checks on him.
Variants of this game occur naturally in all societies. Examples in our cultural con-
text could include the interaction between employees (who decide between work-
ing and being lazy) and their employer (who can check on them), or the interaction
between students (who can study topics for an exam or skip them) and their pro-
fessor (who can check on some of the topics in the exam).
Formally, we can define this class of games by imposing conditions on the general
game.
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follow deviate
do not check (A1,B1) (A3,B3)

check (A2,B2) (0,0)

The basic condition is that a social norm should correspond to a higher common
wealth (defined as the sum of the players’ utilities), therefore we assume that A1 +

B1 > max{A2 + B2, A3 + B3, 0}. From this condition it is clear that the strategic pair
optimizing the “common wealth” is for A not to check and for B to follow.
Social control and the possibility of deviating from it can be expressed by addi-
tional conditions:

• checking should not be for free, i.e. A1 > A2 (otherwise, checking would be
done routinely);

• deviating when not checked should be desirable to B, e.g. the employee (oth-
erwise no need for control!), i.e. B3 > B1;

• catching a deviator enforces the norm and is therefore better for A, e.g. the
employer, than not catching a deviator, i.e. 0 > A3;

• when checked, it is better not to deviate, i.e. B2 > 0;

• catching a deviator is still worse than if he had followed the norm at the first
place, i.e. A2 > 0;

• there is no “honesty premium”, i.e. B1 ≥ B2.

Under these conditions, the only Nash equilibrium is a mixed strategy where A
checks with a probability p̄ and B follows with probability q̄. In the rational case,
the probabilities of this Nash equilibrium are

p̄ =
B0

1 + B0
, q̄ =

A0

1 + A0
,

where

A0 :=
A3

A2 − A1
, B0 :=

B2

B3 − B1
.

A social norm should be followed at least more than half of the time and should be
accepted enough in order to be checked on in less than half of the time, otherwise
it would more be an exception rather than a norm. Therefore we assume that p̄, q̄ >
0.5, in other words, we assume that

A0 =
A3

A2 − A1
, B0 =

B2

B3 − B1
> 1,

as can be seen by a small computation.
We call a game satisfying all of these properties a social control game as summa-
rized in the following definition:
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Definition 2.4. We call a game with the payoff matrix

(A1,B1) (A3,B3)
(A2,B2) (0,0)

that satisfies

(i) A1 + B1 > max{A2 + B2, A3 + B3, 0},

(ii) A1 > A2, B3 > B1, 0 > A3 and B2 > 0,

(iii) A3
A2−A1

> 1, B2
B3−B1

> 1

(iv) A2 > 0,

(v) B1 ≥ B2

a social control game.

How does the Nash equilibrium of a social control game change if one or both of
the players overweight small probabilities? If we look at the PT model (4), the
optimal strategies p and q are given by

p =
B1/β

0

1 + B1/β
0

, q =
A1/α

0

1 + A1/α
0

.

Let us now have a look on how the mixed strategies are shifted in social control
games. By assumption (iii), A0 > 1 and B0 > 1, therefore by Lemma 2.3 both
p and q increase when α and β decrease, i.e. in the case of stronger overweight-
ing. (Remember that assumption (ii) ensures that the Nash equilibrium is mixed,
otherwise the probability weighting would obviously not change it!) What does
this imply for the objective, i.e. non-weighted, utility that both players obtain? If
we consider the common wealth UC , i.e. the sum of the utilities of player A and
player B,

UC = pq(A1 + B1) + p(1 − q)(A2 + B2) + (1 − p)(1 − q)(A3 + B3),

we see that if p and q are growing, assumption (i) implies that UC is growing as
well. In other words, the common wealth is increasing the more the players over-
weight small probabilities. In a certain sense, overweighting is therefore beneficial
for the “society” of players, even though it might not be good from the selfish point
of view.
We could also try to explain this result by the following intuitive argument: a possi-
ble deviator who overweights the small probability of being “caught in the act” will
deviate less, leading to a better common wealth. This simplistic argument, how-
ever, is not sound: we could also argue that an enforcer who overweights the small
probability of a deviation would check more frequently and hence would cause a
lower common wealth, since checking is costly. We see from these fallacious lines
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of argument that the thorough analysis done up to now was indeed necessary, and
can not be replaced with some simple reasoning.
A society, in which all individuals overweight small probabilities, increases its
common wealth in social control games (as defined above). In fact, we only need
the assumptions (i)-(iii) of definition 2.4 for this result. But what happens if an
individual in such a society behaves differently? Does it have an advantage that
leads to an erosion of the common overweighting in the population or is probability
overweighting evolutionarily stable as in the case of the special game studied in the
last section?
In fact, the latter is the case:

Theorem 2.5. Every social control game has the property that every probability
weighting γ ∈ (0, 1) is evolutionarily semi-stable in the sense of Def. 2.1.

The proof is given in the appendix.
If we consider the dynamics of this meta-game, γ would converge to zero. Again,
in any realistic scenario, the players would face more than one type of games which
would avoid this difficulty.

2.3 Evolutionary stability of probability weighting in games with in-
finite strategy space

To demonstrate how the analysis of the previous sections can be extended to games
with infinitely many pure strategies, we consider the “war of attrition” as first in-
troduced in Bishop & Cannings (1978). Both players decide on a waiting time
ti ∈ [0,∞). If player A’s waiting time tA is longer than his opponent’s then he ob-
tains a utility of 1 − tB, if it is shorter, he obtains −tA. In other words, the players
obtain a prize of utility one if they wait longer than their opponents, but have to
pay for the time they have to wait. More precisely, the utility of player A waiting
tA is given by

uA(tA, tB) =


1 − tB if tA ≥ tB,

−tA if tA < tB,
1
2 − tA if tA = tB.

If both players have rational preferences, i.e. they do not show probability weight-
ing, then the optimal solution is a mixed strategy with probability distribution
φ(t) = e−t where t denotes the waiting time (Bishop & Cannings 1978).
To study the influence of probability weighting we compute the prospect utility of
player A with probability weighting parameter α as

PTA(φA, φB) =
1∫ ∞

0 (φB(s))α ds

∫ ∞

0

∫ ∞

0
uA(tA, tB)(φB(tB))α dtB φA(tA) dtA,

where φA and φB denote the mixed strategies of the players9.
9For a derivation of prospect theory for continuous state spaces see Rieger & Wang (2008).
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To compute the Nash equilibrium we need to solve

d
dtA

UA(tA, φB) = const.,

which leads to

φαB(tA) = −αφB(tA)α−1φ′B(tA)α.

Dividing by φα−1
B and solving the resulting simple differential equation under the

side condition that
∫ ∞

0 φB(s) ds = 1 we obtain

φB(t) =
1
α

e−
1
α t.

Therefore larger degrees of probability weighting lead on average to shorter wait-
ing times. This reduces average waiting costs for both players (compare Fig. 2)
and is therefore beneficial for their common wealth, but from this consideration
it is not yet clear, whether probability weighting is also evolutionarily stable or
whether a small number of players with a lower degree of probability weighting
would outperform a majority of players that have higher probability weighting.

γ

δ

UA(γ, δ)

Figure 2: The utility for player A is higher when he has a low γ.

In fact one can prove that this is not the case and probability weighting is indeed
evolutionarily stable. As in the case of social control games, one can only prove
that probability weighting is semi-evolutionarily stable, i.e. stable against smaller
degrees of probability weighting in the sense of Def. 2.1 which is sufficient to
demonstrate that (irrational) prospect theory preferences can once more survive in
the long run. We formulate this result in the following theorem:

Theorem 2.6. Every probability weighting γ ∈ (0, 1) in the war of attrition is
semi-evolutionarily stable.

The proof is given in the appendix. �
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2.4 Generalizations to continuous stability and evolutionary
robustness

The previous considerations on evolutionary stability have limitations, since we
apply them to (meta-)games with a continuum of strategies, namely all possible
amounts of probability weighting γ ∈ (0, 1]. As has been already found in Es-
hel & Motro (1981), the classical concept of evolutionary stability as introduced
by Maynard-Smith (1974) is not fully satisfactory when discussing such games
with a continuum of strategies. Other concepts of stability have hence been intro-
duced, in particular continuous stability (Eshel & Motro 1981) and evolutionary
robustness (Oechssler & Riedel 2002). These concepts are defined as follows:

Definition 2.7 (Continuous stability). A strategy s is continuously stable if it is
evolutionarily stable and there exists an ε > 0 such that for all t with |s − t| < ε

there exists an η > 0 such that for all x with |t − x| < η

U(t, x) > U(x, x) if and only if |s − t| < |x − s|.

Intuitively, continuous stability implies that the strategy is stable under small dis-
tortions: if the strategy s is changed to t then it is better to move into the direction
of s then to move away further. Evolutionary stability, however, does not make
any statement about what happened if all individuals have a small change in their
strategies, but only what happens when a small fraction of individuals changes their
strategies.
A generalization of both concepts (and other stability notions) is given by evolu-
tionary robustness (Oechssler & Riedel 2002, Def. 5). Here we do not consider
populations that follow one strategy, but instead we also consider heterogeneous
populations with strategies described by a probability measure:

Definition 2.8 (Evolutionary robustness). A population P∗, i.e. a probability mea-
sure on the strategy set, is evolutionarily robust if there exists an ε > 0 such that
for all probability measure on the strategy set Q , P∗ with ρ(Q, P∗) < ε we have
E(P∗,Q) > E(Q,Q). Here ρ denotes a metric that describes the weak topology on
the probability measures.10

In this subsection we will show that probability weighting can also be (semi-) con-
tinuously stable. Instead of trying to transfer all results from evolutionary stability,
we will for technical simplicity only highlight two cases: the 2 × 2-game (5) and
the war of attrition (defined in Sec. sec:war). All proofs are given in the appendix.

Proposition 2.9 (Continuous stability for a 2 × 2-game). Probability weighting is
continuously stable in the 2 × 2-game (5) when using CPT preferences.

In the PT-case we need to define the concept of semi-continuous stability (follow-
ing the same ideas as in the case of semi-evolutionary stability):

10In our case ε can be chosen arbitrarily large. Therefore ρ does not play a role and we do not
need to give a precise definition of ρ. See Oechssler & Riedel (2002) for details.
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Definition 2.10 (Semi-continuous stability). A strategy s is semi-continuously sta-
ble if it is semi-evolutionarily stable and there exists an ε > 0 such that for all t > s
with |s − t| < ε there exists an η > 0 such that for all x with |t − x| < η

U(t, x) > U(x, x) if and only if |s − t| < |x − s|.

Proposition 2.11 (Semi-continuous stability for the war of attrition). Probability
weighting is semi-continuously stable in the war of attrition when using PT prefer-
ences.

Finally, it is even possible to obtain evolutionary robustness (which is the strongest
concept and encompasses various other notions of stability):

Proposition 2.12 (Evolutionary robustness for a 2 × 2-game). Probability weight-
ing is evolutionarily robust in the 2 × 2-game (5) when using CPT preferences.

3 Discussion

Prospect theory describes decisions under risk quite accurately. But how could
this be, given that humans are constantly confronted with uncertain situations and
rational decisions in such situations should have an evolutionary advantage?
Prospect theory consists basically of two deviations from the rational model of ex-
pected utility theory: framing and probability weighting. Framing in gains and
losses, rather than in final wealth, seems to be something quite natural if we con-
sider that throughout most of our evolutionary history the accumulation of “wealth”
(in whatever sense) was impossible, and it was therefore enough for our ancestors
(and it is still enough for animals) to consider only gains and losses. Moreover,
it seems very natural for an individual without wealth to be risk-averse in gains
(i.e. to assume diminishing marginal utility for gains), but risk-seeking in losses:
in most situations, animals cannot afford to “lose”, i.e. to fall behind an average
benchmark regarding food or health, since this poses in a competitive environment
a high risk of dying, so that it makes sense to try to avoid any loss even by tak-
ing high risks. This idea can explain why humans and animals frame in gains and
losses (McDermott, Fowler & Smirnov 2008). The puzzle of probability weighting
in humans, however, remains.
There have been approaches to answer this problem, most notably from the view-
point of psychophysics, compare Tversky & Kahneman (1992). They argue that
decisions on low probability events are more frequent and that therefore differences
between such low probabilities are overweighted. However, his does not explain
the evolutionary advantage such an overweighting should give.
But maybe this “probability puzzle” can be resolved with a very different obser-
vation, namely that probability weighting can have positive effects if individuals
have interactions with each other. We have seen that this is the case when we have
social interaction games or games like the war of attrition: here individuals of a
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society profit from probability weighting of their members. Probability weighting
becomes evolutionarily stable (and continuously stable).
The ideas presented here are of course a somehow speculative suggestion how to
explain the probability puzzle.
One could question this approach for explaining the probability weighting puzzle
by arguing that humans face many different games and different decision situations
in their lives, not only social control games or the war of attrition. In some of
them overweighting of small probabilities might be evolutionarily advantageous,
in others it might be disadvantageous. Of course, we cannot prove which of these
situations is more important. However, noticing that there are many situations in
which probability weighting in some direction is useful, makes it unlikely that “on
average” both situations exactly balance and a neutral weighting should be optimal.
On the contrary, it seems natural that some deviation from a neutral weighting will
be observed. Experiments tell us that this deviation tends to go into the direction
that overweights small probabilities (as it would be optimal, e.g., in the case of
social control games or the war of attrition). The assumption that neutral weighting
is evolutionarily optimal is only natural as long as we neglect interactions between
individuals. As soon as we take problems in game theory into account, probability
weighting becomes in the generic case optimal.

A Proofs

P  T 2.5:
Let δ > γ. We verify the inequality (6) by considering the difference of both sides:

∆ε := εU(γ, δ) + (1 − ε)U(γ, γ) − εU(δ, δ) − (1 − ε)U(δ, γ)

=
1
2

(
ε(UA(γ, δ) + UB(δ, γ)) + (1 − ε)(UA(γ, γ) + UB(γ, γ))

−ε(UA(δ, δ) + UB(δ, δ)) − (1 − ε)(UA(δ, γ) + UB(γ, δ))
)
.

We denote the PT Nash equilibrium strategies of the players by pβ and qα if
player A is an α-weighter and player B is a β-weighter. With this we can write

UA(γ, δ) = pδqγA1 + pδ(1 − qγ)A3 + (1 − pδ)qγA2 etc.

We prove that ∆0 > 0. After a small calculation we arrive at

∆0 =
1
2

(
(A1 − A2 − A3)(qγ − qδ)pγ + (B1 − B2 − B3)(pγ − pδ)qγ

+A2(qγ − qδ) + B3(pγ − pδ)
)
. (7)

We obtain from the definition of a social control game that A1 − A2 − A3 > 0,
B1 − B2 − B3 < 0, moreover we have already seen that pγ − pδ > 0, qγ − qδ > 0
and qγ < 1. Hence we can estimate (7) as

∆0 ≥
1
2

(
A2(qγ − qδ) + (B1 − B2)(pγ − pδ)

)
.
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using the initial assumptions (i) and (ii), we see that ∆0 > 0. Now, since ∆ε is
continuous, we deduce that, for ε > 0 sufficiently small, ∆ε > 0. This proves
inequality (6). �

P  T 2.6:
The expected utility of player A with probability weighting αwhen playing against
a player with probability weighting β is given by

UA(α, β) =

∫ ∞

0

∫ tA

0
(1 − tB)

1
α

e−
1
α tb dtB +

∫ ∞

tA
−tA

1
α

e−
1
α tb dtB

1
β

e−
1
β tA dtA.

A small computation gives

UA(α, β) =

∫ ∞

0

(
1 − e−

1
α tA + αe−

1
α tA − α

) 1
β

e−
1
β tA dtA

= 1 − α +
α − 1(

1
α + 1

β

)
β

=
β − αβ

α + β
.

Now let 0 < γ < δ ≤ 1 and ε > 0, then

(1 − ε)UA(γ, γ) + εUA(γ, δ) = (1 − ε)
1 − γ

2
+ ε

δ − γδ

γ + δ

> (1 − ε)
γ − γδ

γ + δ
+ ε

δ − δ2

2δ
= (1 − ε)UA(δ, γ) + εUA(δ, δ).

Therefore γ is semi-evolutionarily stable. �

P  P 2.9:
We have seen that U(γ, δ) = 3(1 − w−1

γ (1/3)). We also know that probability
weighting with a certain weight γ̄ is evolutionarily stable for this game in the CPT-
setting. As has been shown by (Eshel 1983), an evolutionarily stable strategy s is
continuously stable if Uxx(s, s) + Uxy(s, s) < 0. A short computation confirms that
this inequality holds in our case, since w−1

γ (1/3) has a minimum at γ = γ̄. �

P  P 2.11:
We have seen that in the war of attrition the payoff for a player with probability
weighting γ against a player with probability weighting δ is

U(γ, δ) =
δ − γδ

γ + δ
.

We follow the definition of semi-continuous stability and consider for the strategies
t and x (compare Def. 2.10):

U(t, x) − U(x, x) =
x − tx
t + x

−
x − x2

2x
=

(x + x2)(x − t)
2tx + 2x2 .

Since x+ x2 > 0 and 2tx+2x2 > 0, the last term is positive if and only if x > t. This
is exactly the conditions that needs to be satisfied for semi-continuous stability. �
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P  P 2.12:
Let γ̄ be the evolutionarily stable degree of probability weighting. We check the
following condition for all probability measures Q on (0, 1]:∫ 1

0
U(γ̄, δ)dQ(δ) >

∫ 1

0

∫ 1

0
U(δ, δ′)dQ(δ)dQ(δ′). (8)

Using U(γ, δ) = 3(1 − w−1
γ (1/3)), we obtain for the left hand side:∫ 1

0
U(γ̄, δ)dQ(δ) = 3(1 − w−1

γ̄ (1/3))

and for the right hand side:∫ 1

0

∫ 1

0
U(δ, δ′)dQ(δ)dQ(δ′) =

∫ 1

0
3(1 − w−1

δ (1/3))dQ(δ).

Since w−1
δ (1/3) has its minimum at δ = γ̄ and Q , δγ̄, we can estimate the last term

with a strict inequality:∫ 1

0
3(1 − w−1

δ (1/3))dQ(δ) < 3(1 − w−1
γ̄ (1/3)).

Taking everything together, we have proved (8), and thus γ̄ is indeed evolutionarily
robust. �
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