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An algebraic approach to general aggregation theory:
Propositional-attitude aggregators as

MV-homomorphisms∗

Frederik Herzberg†

Abstract
This paper continues Dietrich and List's [2010] work on propositional-

attitude aggregation theory, which is a generalised uni�cation of the
judgment-aggregation and probabilistic opinion-pooling literatures. We
�rst propose an algebraic framework for an analysis of (many-valued)
propositional-attitude aggregation problems. Then we shall show
that systematic propositional-attitude aggregators can be viewed as
homomorphisms in the category of C.C. Chang's [1958] MV-algebras.
Since the 2-element Boolean algebra as well as the real unit interval can be
endowed with an MV-algebra structure, we obtain as natural corollaries
two famous theorems: Arrow's theorem for judgment aggregation as well
as McConway's [1981] characterisation of linear opinion pools.
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1 Introduction
Recently, Dietrich and List [2010] have proposed the fundamentals of a
general theory of aggregation, with the aim of creating a unified theory of
preference aggregation, judgment aggregation (cf. List and Puppe [2009]
for a survey), probabilistic opinion pooling and more general many-valued
aggregation problems. In a very general logical framework, Dietrich and
List [2010] have proved that for su�cently complex aggregation problems,
all independent and Paretian aggregators are already systematic (a stronger
independence condition, known as Strong Setwise Property in the probabilistic
opinion pooling literature following McConway [1981]). In an earlier paper,
Dietrich and List [2008] had already shown that judgment aggregation can be
treated as a special case of generalised probabilistic opinion pooling and that in
this setting, Arrow's dictatorial impossibility theorem for judgment aggregation
is a special case of a generalisation of McConway's [1981] characterisation of
linear opinion pools.

∗I would like to thank Professor Christian List for helpful conversations.
†Institut für Mathematische Wirtschaftsforschung, Universität Bielefeld, Universitätsstraÿe

25, D-33615 Bielefeld, Germany. E-mail address: fherzberg@uni-bielefeld.de
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So far, however, no characterisations of general systematic many-valued
propositional-attitude aggregators are known, nor has the case of in�nite
electorates been treated as yet. The present paper attempts to �ll this gap: We
generalise the main idea in Herzberg [2010] and prove that systematic many-
valued propositional-attitude aggregators are homomorphisms in the category
of MV-algebras (for short: MV-homomorphisms) as de�ned by C.C. Chang
[1958a]. For the special case of a �nite electorate, we obtain as natural corollaries
both Arrow's dictatorial impossibility theorem for judgment aggregation and
McConway's [1981] characterisation of linear opinion pools.

We should note at this point that the use of algebraic � in particular, lattice-
theoretic and Boolean algebraic � methods has a long tradition in preference
aggregation theory, cf. e.g. D.J. Brown [1974] and the monographs by Kim
and Roush [1980] or Aleskerov [1999].1 (A proof of Arrow's [1963] impossibility
theorem using ultra�lters was published by Fishburn even as early as 1970.)
Some authors have also employed �lters and ultra�lters to establish impossibility
theorems in judgment aggregation (e.g. Daniëls [2006], Dietrich and Mongin
[2010] and Klamler and Eckert [2009]). Moreover, the relation between merging
of opinions and certain functional equations � which often can be interpreted
as homomorphy relations! � has long been recognised in the opinion pooling
literature (cf. e.g. Aczél, Kannapan, Ng and Wagner [1983] and Aczél [1989]).
Nevertheless, with the exception of the aforementioned paper (Herzberg [2010]),
the published literature does not contain any systematic approaches to tackle
general aggregation problems from an algebraic, lattice-theoretic perspective.

In this paper, we will �rst outline a formal framework for rather general
many-valued aggregation problems by means of the notion of an MV-algebra
(Section 2). We shall then list a number of assumptions, mainly generalisations
of standard Arrovian responsiveness axioms for the aggregation functions
(Section 3). Thereafter, we shall state a characterisation theorem for aggregators
as MV-algebra homomorphisms and derive two well-known corollaries from
judgment aggregation and probabilistic opinion pooling (Section 4); the proofs
can be found in an appendix. Possible extensions of our methodology are
discussed in the �nal Section 5.

2 Formal framework
In the following, we describe a formal model for the aggregation of many-valued
propositional attitudes. The electorate will be given by some (�nite or in�nite)
set N . In addition, a set of propositions X (agenda) in a su�ciently expressive
language will be �xed, and the electorate as well as each individual will be
supposed to display a certain attitude towards each proposition in the agenda
(thus assigning a truth value). The set of possible attitudes or truth values will
be denoted M (and will be assumed to possess some additional structure, viz.
that of an MV-algebra). Thus, each individual expresses his or her attitudes
towards the elements of the agenda through a function from X to M , called
attitude function. Then the attitudes of all individuals can be captured by an
N -sequence of attitude functions (i.e. by a map from N to MX); such an N -
sequence will be called pro�le. An aggregator is then simply a map from (a
suitable subset of the set of) the set of pro�les to the set of attitude functions.

1I would like to thank Professor Bernard Monjardet at this point.
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2.1 Agenda syntax
Let L be the language of many-valued propositional logic. In other words,
let L be the language whose symbols consist of countably many propositional
variables, a propositional constant 0 (falsehood), a binary operation ⊕ (strong
disjunction) and a unary operator ¬ (negation). The set of well-formed formulae
in this language shall be denoted L.

A number of standard abbreviations will be helpful. First, we de�ne a new
propositional constant 1 (truth) by ¬0. Next, we de�ne additional operations.
The operation of weak disjunction (denoted ∨) will be de�ned via

∀p, q ∈ L p ∨ q = ¬(¬p⊕ q)⊕ q,

and strong conjunction (denoted ⊗) as well as weak conjunction (denoted ∧)
can then be de�ned through De Morgan's laws:

∀p, q ∈ L p⊗ q = ¬(¬p⊕ ¬q),
p ∧ q = ¬(¬p ∨ ¬q).

The implication operation (denoted →) can be de�ned as

p → q = ¬p⊕ q.

(In their original paper, �ukasiewicz and Tarski [1930] took ¬ and → as the
primitive logical symbols of their language.) �ukasiewicz logic is then given by
the provability relation `, given by modus ponens (i.e. for all p, q ∈ L and
S ⊆ L, if S ` p and S ` (p → q), then S ` q) and the following axiom schemes:
For all p, q ∈ L,
A1. For all p, q ∈ L, the proposition p → (q → p) is an axiom.

A2. For all p, q ∈ L, the proposition (p → q) → ((q → r) → (p → r)) is an
axiom.

A3. For all p, q ∈ L, the proposition ((p → q) → q) → ((q → p) → p) is an
axiom.

A4. For all p, q ∈ L, the proposition (¬p → ¬q) → (q → p) is an axiom.
(Cf. Rose and Rosser [1958] and Chang [1958b].)

One can de�ne a relation ≡, called provable equivalence, on L by saying that
p is provably equivalent to q (denoted p ≡ q) if and only if both ` (p → q) as
well as ` (q → p) (wherein ` p is, for all p ∈ L, shorthand for ∅ ` p). It is not
di�cult to verify that ≡ is an equivalence relation on L. The set of equivalence
classes shall be denoted L/ ≡. Representative-wise, one can de�ne the constant
0, the operator ¬ and the operation ⊕ on L/ ≡; again, it is not hard to prove
that these are well-de�ned. Therefore, the operations ⊗,∨,∧,→ can be de�ned
on L as well.

2.2 Agenda semantics
Recall that an MV-algebra M is a structure (M,⊕,¬, 0) such that (M,⊕, 0) is a
commutative monoid (i.e. ⊕ is a commutative and associative binary operation
on M with neutral element 0) and the following identities are satis�ed for all
x, y ∈ M :
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• ¬¬x = x,

• x⊕ 1 = 1,

• x ∨ y = y ∨ x,

wherein 1 is shorthand for ¬0 and ∨ is de�ned via

∀x, y ∈ M x ∨ y = ¬(¬x⊕ y)⊕ y.

It turns out that the structure (L/ ≡,⊕,¬, 0), i.e. the set of equivalence
classes of provably equivalent formulae from many-valued propositional logic
with the canonical operations, is an MV-algebra, the so-called Lindenbaum
algebra for �ukasiewicz's many-valued logic. This observation allows us to
take an algebraic approach to the semantics of many-valued propositional logic,
essentially due to C.C. Chang [1958a, 1959]: Let us henceforth assume that the
truth values form an MV-algebra; we shall hence �x an MV-algebra M for the
rest of this paper and shall refer to it as the set of truth values. Under these
hypotheses, an M -valuation can be de�ned as an MV-algebra homomorphism
from L/ ≡ to M . If I is an M -valuation and p ∈ L, we shall usually simply
write I(p) instead of I([p]≡).

Important examples of MV-algebras are the following (cf. already Chang
[1958a]):

• Any Boolean algebra is an MV-algebra.

• If M = [0, 1], the set of all real numbers between 0 and 1, one obtains
an MV-algebra with zero element 0 by setting ¬x = 1 − x and x ⊕ y =
min{x + y, 1} for all x, y ∈ [0, 1]. This is called the standard MV-algebra.
It is the set of truth values for the in�nite-valued logic Li1 .

• With the same de�nitions for 0, ¬ and ⊕, the set M = [0, 1] ∩Q (the set
of all rational numbers between 0 and 1) is an MV-algebra; it is the set of
truth values for �ukasiewicz's in�nite-valued logic Lℵ0 .

• Again with the same de�nitions for 0, ¬ and ⊕, the set M =
{0, 1/m, . . . , (m− 1)/m, 1} is an MV-algebra for every positive integer m.
It is the set of truth values for �ukasiewicz's (m + 1)-valued logic Lm+1.

Rose and Rosser [1958] and Chang [1959] have shown, each by a di�erent
method, the completeness of Lℵ0 .

2.3 Attitude functions
Consider a set X ⊆ L, henceforth called the agenda. Attitude functions are
functions from X to M . An attitude function A is rational if and only if it can
be extended to an M -valuation, i.e. there exists an M -valuation I such that
A(p) = I([p]≡) for all p ∈ X. Therefore, any rational attitude function A is also
well-de�ned not only on X, but on the closure of X under ¬ and ⊕. A (rational)
pro�le is an N -sequence of (rational) attitude functions. An attitude aggregator
is a map from a subset of the set of pro�les to the set of attitude functions. An
attitude aggregator is a dictatorship if and only if there exists some i ∈ N such
that F (A) = Ai for all i ∈ N .

An important observation is the extendibility of rational attitude functions:
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Remark 1. Denote the closure of the agenda under ¬ and ⊕ by Y . Any rational
attitude function can be uniquely extended to a function from Y to M .

We shall always identify the extension of any rational attitude function A
with its extension to Y . Thus, in the following, all rational attitude functions
are assumed to be de�ned on the whole of Y .

2.4 Examples
Examples for this framework are the �classical� propositional judgment
aggregation, where M is 2 = {0, 1} endowed with the Boolean algebra structure,
or probabilistic opinion pooling, where M is the standard MV-algebra [0, 1] and
the agenda corresponds to the σ-algebra of events. However, this framework also
encompasses aggregation problems with respect to more general many-valued
logics: All that is required is that the set of truth values forms an MV-algebra;
by that means, the framework proposed in this paper covers aggregation of
propositions in a large class of �nite- and in�nite-valued logics as well. For
example, voting with abstentions can easily be modeled as an aggregation
problem in a three-valued logic, e.g. �ukasiewicz's L3.

3 Aggregator responsiveness axioms
In this section, we generalise (mostly standard) terminology from aggregation
theory, in order to be able to formulate our subsequent results on propositional-
attitude aggregators. We shall use the abbrevation

A(p) = (Ai(p))i∈N

for all propositions p ∈ X and all pro�les A ∈ (
MX

)N .

De�nition 2. An attitude aggregator F is rational if and only if for all rational
pro�les A in the domain of F , F (A) is a rational attitude function.

De�nition 3. An attitude aggregator F is universal if and only if its domain
comprises all rational pro�les.

Independent aggregation means that the aggregate attitude towards any
proposition p does not depend on the individuals' attitudes towards propositions
other than p:

De�nition 4. An attitude aggregator F is independent if and only if there
exists a map G : MN ×X → M such that for all pro�les A in the domain of F
and for all p ∈ X, F (A)(p) = G (A(p), p).

Systematic aggregation is a special case of independent aggregation, where
G is constant in the second component, i.e. the aggregate attitude towards any
proposition p only depends on p through the individuals' attitudes towards p:

De�nition 5. An attitude aggregator F is systematic if and only if there exists
a map f : MN → M , called decision criterion of F , such that for all pro�les A
in the domain of F and for all p ∈ X,

F (A)(p) = f (A(p)) . (1)
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Remark 6. If the agenda contains some strictly contingent sentence p0, then
any universal systematic attitude aggregator F has a unique decision criterion.

Though it appears much stronger at �rst sight, systematicity is under mild
conditions actually equivalent to independence (cf. Dietrich and List [2010,
Theorem 2]). At least as strong is the following notion (recall that rational
attitude functions can be uniquely extended to the closure of the agenda under
¬ and ⊕):
De�nition 7. A systematic attitude aggregator F is strongly systematic if and
only if Equation (1) holds even for all p in the closure of X under ¬ and ⊕ and
all pro�les A in the domain of F .

If the agenda is closed under ¬ and ⊕, then systematicity and strong
systematicity trivially coincide.

The Pareto principle asserts that any proposition which is rejected
unanimously by all individuals, must be collectively rejected:

De�nition 8. An attitude aggregator F is Paretian if and only if for all pro�les
A in the domain of F and all p ∈ X, if Ai(p) = 0 for all i ∈ N (i.e. A(p) = 0),
then F (A)(p) = 0.

A formula p ∈ L is called strictly contingent if and only if there exists for all
x ∈ M some M -valuation I with I(p) = x. For most of the paper, we need to
impose additional assumptions on the logical expressivity or complexity of the
agenda.

De�nition 9. The agenda X is called complex if and only if there exists a
strictly contingent propositions p0 in X as well as strictly contingent propositions
p1, p2, p3, q1, q2 in the closure of X under ¬ and ⊕ such that for all M -valuations
I, one has I(p1)⊕I(p2) = I(p3) and ¬I(q1) = I(q2). If p1, p2, p3, q1, q2 are even
in X, then X is said to be rich.

Any conceivable combination of truth values can be obtained through M -
valuations of elements of rich agendas, hence their name. This will be the
key to the proof of our main result, via the notion of strongly systematisable
aggregators:

De�nition 10. In this paper, a systematic attitude aggregator F for a complex
agenda X is called strongly systematisable if and only if F is either strongly
systematic or the agenda X is rich.

4 Results
Note that MN is � as the direct product of card(N) identical copies of M �
again an MV-algebra; the strong disjunction ⊕N and negation ¬N are de�ned
componentwise, the zero element 0N is just the N -sequence 0 of 0's.

Theorem 11. If F is a rational, universal, Paretian and strongly systematisable
attitude aggregator, then the decision criterion of F is an MV-homomorphism.

Conversely, if f is an MV-homomorphism and F is de�ned by Equation (1)
for all rational pro�les A and all p ∈ X, then F is a rational, universal, Paretian
and systematic attitude aggregator.
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(The uniqueness of the decision criterion had already been noted in
Remark 6.)

If M = {0, 1} with the usual Boolean structure, then MN is again a Boolean
algebra and isomorphic to the power-set Boolean algebra of N . This allows us
to deduce, as an easy corollary to Theorem 11, the recent result in Herzberg
[2010]. Ultimately, this leads to Arrow's impossibility theorem for judgment
aggregation (recall the previous remark about the equivalence of systematicity
and independence under mild conditions).
Corollary 12. Suppose F is a rational, universal, Paretian and strongly
systematisable attitude aggregator. If the algebra of truth values is Boolean,
then the decision criterion of F is a Boolean homomorphism.

If the algebra of truth values is just the Boolean algebra {0, 1} and the
electorate N is �nite, then F is a dictatorship.

If M is the standard MV-algebra, then Theorem 11 yields McConway's
[1981] characterisation of linear opinion pools (�weighted averaging�) as a second
corollary:
Corollary 13. Let F be a rational, universal, Paretian and strongly
systematisable aggregator, and let the algebra of truth values be the standard
MV-algebra [0, 1]. If the electorate N is �nite, then the decision criterion of F
is a linear map from [0, 1]N to [0, 1].

5 Discussion
We have seen that one can neatly formulate an aggregation theory for general
many-valued propositional attitudes based on the theory of MV-algebras.
Aggregators satisfying common responsiveness axioms (agenda complexity
resp. richness, collective rationality, universality, systematicity resp. strong
systematicity, Pareto principle) then simply correspond to MV-homomorphisms
from MN to M (M being the MV-algebra of truth values). For special cases
of M , one can use classical classi�cation results for such homomorphisms to
obtain a classi�cation of Paretian systematic aggregators, e.g. if M is the
Boolean algebra 2 = {0, 1} (which leads to the judgment-aggregation analogue of
Arrow's [1963] impossibility theorem, cf. Dietrich and List [2007]) or M = [0, 1]
(which entails McConway's [1981] characterisation of linear opinion pooling).
More general aggregator classi�cations might be derived from MV-algebra
classi�cations (cf. Chang [1959], Mundici [1986], Cignoli and Mundici [1997]).

This algebraic approach to aggregation theory could be taken further by
taking Heyting algebras or BL-algebras as sets of truth values. By that means,
aggregation of intuitionistic resp. fuzzy propositional attitudes could be studied
in full generality.

A powerful alternative to algebraic aggregation theory is the model-theoretic
approach pioneered by Lauwers and Van Liedekerke [1995], as it allows to study
aggregation problems for predicate logic in a natural manner as well. It remains
to be seen whether even many-valued aggregation problems can be studied by
model-theoretic methods; such an approach could pave the way for a systematic
analysis of aggregation problems in many-valued predicate logic. The algebraic
approach to many-valued model theory proposed by Zlato² [1981] might be a
�rst starting point for such an endeavour.
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A Proofs
Proof of Remark 1. Let A be a rational attitude function. Consider any two
M -valuations I, I ′ such that A(p) = I(p) = I ′(p) for all p ∈ X or, more
precisely, A(p) = I([p]≡) = I ′([p]≡) for all p ∈ X. In other words, I and
I ′ are homomorphisms from L/ ≡ to M which agree on the set [X]≡ of ≡-
equivalence classes of elements of X. Thus, they must agree on the closure of
[X]≡ under the operations ¬ and ⊕ in L/ ≡. Call this closure [Y ]≡. Since the
operations ¬ and ⊕ in L/ ≡ are de�ned representative-wise, [Y ]≡ equals the set
of equivalence classes of elements of Y (the closure of X under the operations
¬ and ⊕ in L). It follows that I([p]≡) = I ′([p]≡) for all p ∈ Y .

Proof of Remark 6. Let p0 be as in the statement of Remark 6, let f and f ′

be decision criteria of F , and let x = (xi)i∈N ∈ MN . Then there exists for
each i ∈ N some M -valuation Ii such that Ii(p0) = xi. Now each Ii induces a
rational attitude function Ai de�ned by Ai(p) = Ii(p) for all p ∈ X, so that in
particular Ai(p0) = xi for all i ∈ M . As F is universal, the pro�le A = (Ai)i∈N

is in the domain of F . Hence

f(x) = f (A(p0)) = F (A)(p0) = f ′ (A(p0)) = f ′(x).

Proof of Theorem 11. Let F be a rational, universal, Paretian and strongly
systematisable attitude aggregator, and let f be the decision criterion of F .

Consider any two elements of MN , x = (xi)i∈N and y = (yi)i∈N . Let
p1, p2, p3, q1, q2 be as in the de�nition of agenda complexity. Then on the one
hand, since p1, p2, p3, q1, q2 are strictly contingent by assumption, there exists
for each i ∈ N some M -valuations Ii, I

′
i, I

′′
i such that

• Ii(p1) = xi and Ii(p2) = yi,

• I ′i(q1) = xi,

• I ′′i (p1) = 0.

On the other hand, since p1, p2, p3, q1, q2 were assumed to be as in the de�nition
of agenda complexity, it follows for each i ∈ N ,

• not only Ii(p1) = xi and Ii(p2) = yi, but also Ii(p3) = xi ⊕ yi and
I(p3) = I(p1)⊕ I(p2) for every M -valuation I,

• not only I ′i(q1) = xi, but also I ′i(q2) = ¬xi and I ′(q2) = ¬I ′(q1) for every
M -valuation I ′,

• I ′′i (p1) = 0.

In other words, there exists an N -sequence I = (Ii)i∈N of M -valuations such
that

• I(p1) = x, I(p2) = y, I(p3) = x⊕N y and I(p3) = I(p1)⊕ I(p2) for every
M -valuation I,

• I ′(q1) = x, I ′(q2) = ¬Nx and I ′(q2) = ¬I ′(q1) for every M -valuation I ′,

8



• I ′′(p1) = 0 = 0N .

Next note that by restricting each Ii, I ′i and I ′′i to the set of equivalence classes
of elements of X (recall that I(p) is shorthand for I([p]≡) for any M -valuation I
and any p ∈ L), one obtains rational attitude functions Ai, A′i and A′′i . All Ai,
A′i and A′′i are rational attitude functions and thus can be uniquely extended
to Y by Remark 1. Hence, we have constructed rational pro�les A = (Ai)i∈N ,
A′ = (A′i)i∈N and A′′ = (A′′i )i∈N such that

• A(p1) = x, A(p2) = y, A(p3) = x ⊕N y, and I(p3) = I(p1) ⊕ I(p2) for
every M -valuation I,

• A′(q1) = x, A′(q2) = ¬Nx, and I ′(q2) = ¬I ′(q1) for every M -valuation I ′,

• A′′(p1) = 0N .

Note that since F is universal, the pro�les A,A′, A′′ must be in the domain of
F . Since F is rational, F (A), F (A′) and F (A′′) are rational attitude functions
and thus can be uniquely extended to Y by Remark 1. Moreover, there exist
M -valuations I and I ′ such that F (A)(p) = I(p) as well as F (A′)(p) = I ′(p) for
all p ∈ X and hence, by the homomorphy of I, also for all p ∈ Y . From here, it
follows that

• F (A)(p3) = F (A)(p1)⊕ F (A)(p2),

• F (A′)(q2) = ¬F (A′)(q1).

Let us next exploit the choice of p1, p2, p3, q1, q2 as in the de�nition of agenda
complexity and the strong systematicity of F or the richness of X. This yields
for any M -valuation I which extends F (A),

f(x⊕N y) = f (A(p3)) = I(p3)
= I(p1)⊕ I(p2) = f (A(p1))⊕ f (A(p2)) = f(x)⊕ f(y).

Similarly (this time applying the formulae in the de�nition of agenda complexity
to an M -valuation I which extends F (A′)),

f(¬Nx) = f
(
A′(q2)

)
= I(q2)

= ¬I(q1) = ¬f
(
A′(q1)

)
= ¬f(x).

Thus, f preserves the operators ¬ and ⊕ and maps the zero element 0N of MN

to 0 ∈ M ; hence, f is an MV-homomorphism.
Conversely, let f be an MV-homomorphism. Clearly, the F de�ned by

Equation (1) for all rational pro�les A and all p ∈ X is both systematic and
universal. Moreover, since f is a homomorphism, any composition of f with an
N -sequence of MV homomorphisms from L to M will again be a homomorphism
from L to M . In other words, the composition of f with an N -sequence of
valuations is again a valuation. This shows that the composition of f with a
rational pro�le is a rational attitude function. Hence, the F de�ned by Equation
(1) is rational. Since f(0N ) = f(0) = 0, it is clear that F is Paretian.

Proof of Corollary 12. If M is even a Boolean algebra, then so is MN . By
Theorem 11, the decision criterion f is an MV-homomorphism. Since any
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MV-homomorphism between two Boolean algebras is a Boolean homomorphism
(because the Boolean operations ∨ and ∧ as well as the constant 1 can be de�ned
through ¬ and ⊕: x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y) for all x, y
and 1 = ¬0), it follows that f is actually a Boolean homomorphism. Boolean
algebra teaches that the shell of f , i.e. f−1{1} = f−1{¬0}, is a �lter in 2N

(which is isomorphic to the power-set Boolean algebra of N), and if M = {0, 1},
then the shell of f is even an ultra�lter on N . Now if N is �nite, this means
� as all ultra�lters on �nite sets are principal � that there exists some i0 ∈ N
such that f−1{1} = {C ⊆ N : i0 ∈ C}. This, however, implies that F is a
dictatorship, the dictator being i0.

Proof of Corollary 13. Without loss of generality, we may assume N =
{1, . . . , n} for some positive integer n. By Theorem 11, the decision criterion
f : [0, 1]N → [0, 1] is an MV-homomorphism. This implies, if M is the standard
MV-algebra [0, 1], that

f (x1, . . . , xn)⊕ f (y1, . . . , yn) = f (x1 ⊕ y1, . . . , xn ⊕ yn)

for all x1, y1, . . . , xn, yn ∈ [0, 1]. Hence (by the de�nition of ⊕ in the �ukasiewicz
algebra, i.e. x ⊕ y = min{x + y, 1} for all x, y ∈ [0, 1] and the componentwise
de�nition of⊕ in the direct power [0, 1]N ) one has for all x1, y1, . . . , xn, yn ∈ [0, 1]
with xi + yi ≤ 1 for all i ∈ N ,

f (x1, . . . , xn) + f (y1, . . . , yn) = f (x1 + y1, . . . , xn + yn) . (2)

One can now emulate McConway's [1981] original argument: An iterated
application of the preceding equation yields for all z1, . . . , zn ∈ [0, 1],

f (z1, . . . , zn) = f (z1, 0, . . . , 0) + f (0, z2, . . . , zn)
= f (z1, 0, . . . , 0) + f (0, z2, 0, . . . , 0) + f (0, 0, z3, . . . , zn)

=
n∑

i=1

f


0, . . . , 0︸ ︷︷ ︸

i−1

, zi, 0, . . . , 0︸ ︷︷ ︸
n−i


 .

Hence, de�nining fi by

fi(z) = f


0, . . . , 0︸ ︷︷ ︸

i−1

, z, 0, . . . , 0︸ ︷︷ ︸
n−i




for every z ∈ [0, 1] and each i ∈ N , we obtain

f (z1, . . . , zn) =
n∑

i=1

fi (zi)

for all z1, . . . , zn ∈ [0, 1]. Moreover, Equation (2) also implies fi(x + y) =
fi(x) + fi(y) for all x, y ∈ [0, 1] with x + y ≤ 1 and each i ∈ N . Therefore,
every fi satis�es Cauchy's functional equation. Also, the range of every fi is
by de�nition contained in the range of f and thus in [0, 1], whence fi(x) is
nonnegative for all x ∈ [0, 1] and every i ∈ N . Therefore, there exists for
every i ∈ N some αi such that fi(x) = αix for all x ∈ [0, 1] (cf. Aczél [1961,
1966, Section 2.1.1, Theorem 1]), and this αi must be nonnegative. Thus,
f (z1, . . . , zn) =

∑n
i=1 αizi for all z1, . . . , zn ∈ [0, 1].
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