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Abstract

This paper establishes, in the setting of Brownian information, a
general equilibrium existence result under a stochastic differential for-
mulation of intertemporal recursive utility. The present class of utility
functionals is generated by a backward stochastic differential equation
and incorporates preference for the local risk of the stochastic utility
process.
The setting contains models in which Knightian uncertainty is repre-
sented in the subjective and objective sense.
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1 Introduction

The aim of this work is to enlarge the class of dynamic utility specification
which ensure an equilibrium in continuous time and under uncertainty. We
are interested in recursive preference structures which allow consideration of
multiple priors.
The standard model in economics assumes an additive utility structure. Ap-
plications of these models to rational asset pricing reflects in the equality
of marginal utilities and the equilibrium state price. In order to tackle the
drawbacks of the standard model, the functional dependency between income
and prices forces to broaden the preference structure or the topology of the
consumption space. Results related to the second possibility may be found
in [HH 92], [BaRi 01] and [MaRi 10] or [DMV 07]. This paper concentrates
on the expansion of utilities which guarantee Arrow-Debreu equilibria in the
space of adapted consumption rate bundles.
In [DuEp 92] a recursive utility specification is introduced, stochastic differ-
ential utility (SDU). This concept factors the future utility of the remaining
consumption stream into the evaluation of the present consumption. This
enables the agent to distinguish the different concepts of risk aversion and
preferences for intertemporal substitution. Whereby in the additive case the
systemically relation of these concepts is unavoidable. With such a utility
specification [DuGeSk 94] prove the existence of equilibria and discuss the
dynamics of efficiency via a system of forward backward integral equation.
In the Brownian setting, [LaQu 03] consider a BSDE approach and extend
the notion of recursive utilities in continuous time. The initial value of a
BSDE

dUt = −f(t, ct, Ut, Zt)dt+ Z ′tdBt, UT = 0,

is the utility of an agent with aggregator f and consumption process c which
lies in the set of positive consumption rates. In this family of utility func-
tionals source-dependent first or second order risk aversion, a kind of asym-
metric risk aversion, can be modeled. Furthermore, the notion of preference
for information, introduced and axiomatized by [Ski 98], in contained in the
present GSDU-class, see also [Laz 04].
This framework covers models where agents are faced with imprecise knowl-
edge about the probability distribution with regard to the underlying risk in
the economy. For instance, in [ChEp 02] Knightian uncertainty is formalized
via the drift uncertainty of an appropriate BSDE. A subclass of the utility
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functionals, namely κ-ambiguity, lies in the class of the considered function-
als. The implications of ambiguity aversion for financial markets and asset
pricing are studied in [EpMi 03] for a two-agent equilibrium setting and in
[EpWa 94] for the discrete time case.
Another class of economies which lies in the scope of the existence result is
related to incomplete preferences motivated by [Bew 02]. Here, the agents
foreclose unmotivated gambles by an inertia principle. In [DaRi 10], Bewley
economies are considered in discrete time. They related them to variational
preference anchored at the initial endowment e, a special case of variational
preferences that have been axiomatized by [MMR 06]. The existence result
applies here as well, whenever the consumption space is of L2(P)-type.
In order to apply our results to the above examples, we cannot assume dif-
ferentiability on the whole domain of the aggregator f . This leads to the
non differentiability of the utility functional and forces to consider supergra-
dients, see [EpWa 94, Section 2.5] for a discussion.
We follow the classical approach dealing with infinite-dimensional commod-
ity and price spaces by introducing the concept of properness (or cone con-
ditions). In [Kl 48], the first relationship between the supporting property of
a convex set and a cone condition is formulated. [ChKa 80] translated this
result into economic theory. For a first overview we refer to [MaZa 91] and
[ATY 00]. The existence proof is an application of the abstract existence re-
sult of [Pod 96]. The empty interior of the positive cone of the consumption
space requests a pointwise (forward-)properness condition which has to hold
at each Pareto optimal consumption.

The paper is organized as follows. Section 2 introduces the model, recasts
the notion of GSDU utility functionals and discusses the supergradient. Sec-
tion 3 considers efficient allocations, proves the boundedness away from zero
of the components and the existence of general equilibrium. Section 4 con-
tains concluding remarks. Proofs of auxiliary results are collected in the
Appendix.

2 The economy

Fix a time set [0, T ], for some T ∈]0,∞[. The probability space (Ω,F ,P) is
equipped with a filtration {Ft}t∈[0,T ] generated by an n-dimensional Brownian
motion {Bt}t∈[0,T ] and satisfying the usual conditions, be given.
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2.1 Consumption and price space

For simplicity, the case of l = 1 commodity is examined.1 We introduce
the Hilbert lattice of optional processes c : Ω × [0, T ] → R, which are finite

with respect to the following norm ‖c‖2 := E[
∫ T

0
‖ct‖2dt]

1
2 , denoted by L2 =

L2(P⊗ dt) := L2(Ω⊗ [0, T ],O,P⊗ dt). The consumption set is given by the
positve cone L2

+.2

The Hilbert space structure of the consumption space allows to consider the
commodity-price duality 〈L2, (L2)∗〉 given by the scalar product of L2.

2.2 Primitives of the economy and main Theorem

The economy consists of m ∈ N agents. Fix the initial endowments ei ∈ L2
+

with
∑m

i e
i = e.

The preference of agent i is described by a utility functional U i : L2
+ → R

which is given by the initial value U0 = E[
∫ T

0
f(t, ct, Ut, Zt)dt] of the solution

of the following backward stochastic differential equation (BSDE)

dUt = −f(t, ct, Ut, Zt)dt+ Z ′tdBt UT = 0. (1)

By generalized stochastic differential utility, GSDU for short, the functional
c 7→ U0 is defined, where U0 is the P-a.s initial value of (1). This is a rigor-
ous formulation of the utility backward recursion principle, considered first
by [DuEp 92] in the continuous time case under uncertainty. In [EKPQ 97,
Proposition 3.5, p.35] time consistency of GSDU is shown which can be seen
as a benchmark for intertemporal preferences. From an economic point of
view, when this BSDE is used to define generalized stochastic differential
utility, it increases the modeling degree of freedom when there is a Z com-
ponent in the aggregator. The quadratic variation of this process is given
by 〈U〉t =

∫ t
0
|Zs|2ds. This ”intensity process ” appears in the intertemporal

aggregator, a direct effect of Z, as a component in the aggregator, can ex-
plicitly express preferences on ”local risk”.
The following assumption will ensure the standard properties of the utility
functional.

1The case of finite commodities can be treated by same argumentation, we refer to
[DuGeSk 94].

2Measures on Ω×[0, T ] which allow considerations of terminal consumption are possible.
In this case the BSDE in (1) has a non trivial terminal condition.
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Assumption 1. The aggregator f is uniform Lipschitz continuous in u and z
with constant k > 0 and satisfies a linear growth condition in c. Furthermore,
f fullfills:

1. For all (t, u, z) ∈ [0, T ]× R× Rn, f(t, ·, u, z) is strictly increasing.

2. For all (t, u, z) ∈ [0, T ]×R×Rn, f(t, ·, u, z) is differentiable on ]0,∞[.

3. δf (c) := sup(t,u,z) |∂cf(t, c, u, z)| <∞ ∀c ∈ R++

4. Define δf (c) := inf(t,u,z) |∂cf(t, c, u, z)|. For every positive sequence

{cn}n∈N which converges to 0, we have δf (cn)
n→∞−→ ∞.

5. For all t ∈ [0, T ], f(t, ·, ·, ·) is a concave and continuous function.

The Lipschitz-growth assumption on the aggregator guarantee unique ex-
istence of (1) for all c ∈ L2, see [EKPQ 97].

The pure exchange economy is given by E =
{

L2
+, U

i, ei
}

1≤i≤m.

An element (c̄1, . . . , c̄m; Π) ∈ (L2)m × L2′, consisting of a feasible allocation
and a non-zero linear price functional, is called a contingent Arrow-Debreu
equilibrium if for each i, c̄i maximizes agent i’s utility over all c ∈ L2

+ satis-
fying Π(ci − ei) ≤ 0 and the allocation c̄ is

∑
c̄i = e. The main result is the

following.

Theorem 1. Suppose the endowment e ∈ L2
+ of the economy is bounded

away from zero. For each agent i Assumption 1 holds and ‖ei‖2 > 0.
Then there exists a contingent Arrow-Debreu equilibrium (c̄1, . . . , c̄m; Π) with
the following properties:

1. For every i, c̄i is bounded away from zero.

2. Π has a Riesz Representation π ∈ L2
+. For every i there is a µi > 0

such that π = µiπ
i(c̄i) where πi(c̄i) is a super gradient density given by

πit(c̄
i) = E(DUf

i, DZf
i)t∂cf

i(t, ct, Ut, Zt)

where (DUf
i
t , DZf

i
t ) ∈ ∂U,Zf(ct).
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The process E(·, ·) and the corespondence ∂U,Zf(·) are defined in Propo-
sition 3 below. The proof of the existence is an application to the abstract
existence result of [Pod 96]. The properties of the equilibrium are based
on a priori estimates, stochastic Gronwall inequalities and the full charac-
terization of the superdifferential. The main step is to prove that optimal
allocations are bounded away from zero.

2.3 Examples

In the following, we present a number of economies such that Theorem 1
applies. We note that, the additive case with a discounting β of future
consumption is related to f(t, c, z, u) = u(c) − βu and can be seen as the
canonical special case. Subjective beliefs are related to f(t, c, z, u) = u(c)−
βu− θ′z, we refer to [LaQu 03, Section 3.1, p.158].

κ-ambiguity
An agent may not know the real world probability measure and is confronted
with a set of prior probability measures. This uncertainty or unmeasurable
risk is referred to as ambiguity. In [ChEp 02], a continuous time model
is introduced which models the set of priors in terms of the density kernel
related to each prior. Let κ = (κ1, . . . , κn) ∈ Rn

+ and define the set of priors

Θ =
{
θ : [0, T ]× Ω→ Rn,O-measurable : θit ∈ [−κi, κi], ∀1 ≤ i ≤ n

}
.

We implement Θ by considering, for each prior θ ∈ Θ, a single SDU model
U θ
t = Eθ[

∫ T
t
g(ct, Ut)|Ft] such that risk aversion and intertemporal preferences

can be encoded in g. One can show, see [ChEp 02, Theorem 2.2, p.1414],
that

Ut = min
θ∈Θ

U θ
t , t ∈ [0, T ],

where the process U solves the BSDE

dUt = −(g(ct, Ut) + min
θ∈Θ

θt · Zt)dt+ ZtdBt

= −g(ct, Ut) + κ · |Zt|dt+ ZtdBt, UT = 0.

Put K = [−κ1, κ1] × . . . × [−κn, κn]. Since z 7→ maxθ∈K θ · z is the convex
conjugate of the indicator function 1K , f is concave in z. Lipschitz continuity
in z is implied by to the boundedness of each κi. The differentiability is not
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satisfied.
Ambiguity aversion is referred to the consideration of the worst case utility.
Heuristically speaking, the bigger κi is, the more ambiguity aversion is as-
signed to the agent.
For each agent k let κk = (κk1, . . . , κ

k
n) ∈ Rn

+ and Θk the corresponding set
of priors. In order to apply the thoerem, we briefly discuss the conditions in
Assumption 1. We may take an SDU aggregator g : R++ × R→ R which is
conform. The concavity, uniform Lipschitz continuity and hence continuity
with respect to the z-component are obvious.
We compute a subset of the super-differential explicitly for a case when
the consumption process generates the solution of the associated BSDE:
ck 7→ (Uk, Zk). Define the worst case Girsanov kernels:

Θk
c =

{
θ ∈ Θk : θ∗ ∈ arg max

y∈Θt

y · Zk
t ∀t ∈ [0, T ]

}
According to Theorem 1 the equilibrium allocation components are bounded
away from zero. By Proposition 3 below, the super-differential can be written
in the form

∂Uk(ck) =
{
π : ∃θ ∈ Θk

c , {πt}t∈[0,T ] =
{
λkt · ∂cgk(ckt , Uk

t ) · zθt
}
t∈[0,T ]

}
where dzθt = −θtzθt dBt and zθ0 = 1.
In comparison with [ChEp 02, Section 5.1] our Inada condtion on f(t, ·, u, z)
(instead of a growth condition on ∂f(t, ·, u, z)) allows a full characterization
of the superdifferential ∂Uk(ck).

Anchored preferences
This example studies an auxilary economy with variational preferences which
guarantee the existence of a Bewley equilibrium.

In [DaRi 10] the concept of a discrete time Bewley economy is considered,
where preferences are allowed to be incomplete. The existence of a Bewley
equilibrium with inertia is established by considering an auxiliary economy
with complete static variational preferences. The set of priors of agent k is
given Θk introduced in Example 1. Let Pk denotes the corresponding set of
probability measures. Fix c, e ∈ L2

+ and a strictly increasing, concave utility
function u : [0, T ] × R+ → R satisfying the Inada conditions in its second
variable.
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As in Definition 2.14 of [DaRi 10], we define the variational utility functional
anchored at e by

V (x) = min
Q∈P

EQ[

∫ T

0

u(t, xt)− u(t, et)dt] (2)

Using similar arguments as in [ChEp 02, Theorem 2.2 (c), p.1414], one ob-
tains that V (x) is the initial value of the solution of the following BSDE

dUt =
[
−(u(t, ct)− u(t, et)) + max

θ∈Θ
θt · Zt

]
dt+ ZtdBt, UT = 0

The existence of the BSDE follows by the same arguments as in Example 1.

2.4 Properties of GSDU

The next propositions deliver the properties of the utility functional.

Proposition 1. 1. If the aggregator f is (strictly) concave in consump-
tion, then the related utility functional is (strictly) concave.

2. If the aggregator f is (strictly) increasing, then the related utility func-
tional is (strictly) increasing. Moreover, if c ≥ ĉ, then for any t ∈ [0, T ]
we have Ut(c) ≥ Ut(ĉ).

3. If the aggregator f is continuous, then the related utility functional is
‖ · ‖2-continuous.

Next, we mention the explicit formula for the differential of the util-
ity functional. We do not assume differentiability on the whole domain
of the aggregator since concavity allows us to consider super-differentials.
The partial super-gradient of the aggregator with respect to the corre-
sponding component x is denoted by Dxf(t, ·, x, ·). The partial super-
differential in utility and intensity, namely ∂U,Zf at (t, c, u, z), consists of
all (DUf(t, c, u, z), DZf(t, c, u, z)) = (a, b) ∈ R× Rn such that

f(t, c+ x, u+ y1, z + y2) ≤ f(t, c, u, z) + ∂cf(t, c, u, z)x+ ay1 + by2.

For k = U,Z, the stochastic process {Dkf(t, ct, Ut, Zt)}t∈[0,T ] is denoted by

Dkf . For any process (a, b) ∈ L1(P⊗ dt)× L2(P⊗ dt;Rn), we introduce the
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stochastic exponential process E(a, b) which is defined as the solution of the
SDE

dEt(a, b)
Et(a, b)

= atdt+ btdBt, E0(a, b) = 1.

Proposition 2. Let Assumption 1 holds, c ∈ L2
+ be bounded away from

zero and (U,Z) be a solution of the BSDE (1). Then, for every process
(DUf,DZf) ∈ ∂U,Zf(c, U, Z), π = {πt}t∈[0,T ] is a super-gradient density of
U0 at c, where

πt = Et(DUf,DZf) · ∂cf(t, ct, Ut, Zt). (3)

Now, we characterize the super differential in terms of super gradient
densities. According to [Gi 82, Theorem 3, p.122] the set of supergradients
of a concave functional U at c is

∂U(c) =
{
f ∈ L2 : ∇+U(c)(y) ≤ f(y) ≤ ∇−U(c)(y) ∀y ∈ L2

}
,

where ∇−U (∇+U) is the left(right)-hand Gateaux derivative. Comparing
these procceses with (3), we observe a supergradient g ∈ ∂U(c) may change
for every (ω, t) the supergradient of the aggregator f .

Proposition 3. Suppose the conditions of Proposition 2 hold. Define the
correspondences (∂U,Zf(c)t)t∈[0,T ], for each t, where ∂U,Zf(c)t : Ω→ P(R1+n)
be given by

∂U,Zf(c)t(ω) = ∂U,Zf(t, ct(ω), Ut(ω), Zt(ω)).

Then we have

∂U(c) = {E(a, b)∂cf(·, c·, U·, Z·) : Et(a, b) ∈ ∂U,Zf(c)t ∀t ∈ [0, T ]} .

3 Existence of equilibria

The objective of this section is to identify efficient and equilibrium allocations
for GSDU preferences.
We begin to characterize Pareto optimal allocations with the solution of a
social planning problem and prove the existence of a solution. Afterwards
we introduce the first order conditions. Moreover we show that Assumption
1 is sufficient to guarantee that the components of the efficient allocation are
bounded away from zero.
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3.1 Preliminaries

Let e ∈ L2
+ denote the endowment process which has to be shared among the

m ∈ N agents.
We define the usual norm on the underlying space for allocations L2,m =
( L2)m, ‖c‖2,m := (

∑m
i=1 E[

∫ T
0
|cit|2dt] )

1
2 , where c = (c1, . . . , cm). By L2,m

+ ,

we denote the positive cone of L2,m and by L2,m
++ the quasi interior. The set

of feasible allocations is defined by Λ(e) :=
{

(c1, ..., cm) ∈ L2,m
+ : e ≥

∑
ci
}

.

A weighting α ∈ Rm
+ induces a representative utility Uα : L2,m

+ →
R, Uα(c1, . . . , cm) :=

∑m
i=1 αiU

i(ci). Uα is related to the social planner
of the economy.
An allocation (ĉ1, . . . , ĉm) ∈ L2,m

+ is α-efficient if it achieves the maximum
over Λ(e), i.e. Uα(ĉ) = maxc∈Λ(e) U

α(c).
A feasible allocation c = (c1, . . . , cm) ∈ Λ(e) is Pareto optimal if there is no
feasible allocation c̄ = (c̄1, ..., c̄m) ∈ Λ(e) such that

∀i ∈ {1, . . . ,m} U i(c̄i) ≥ U i(ci) and ∃i ∈ {1, . . . ,m} U i(c̄i) > U i(ci).

In the following, we state the relation to α-efficiency when utility functionals
are concave.

Proposition 4. Suppose the utility functionals are of GSDU type. Each
aggregator f i : [0, T ] × R+ × R × Rn → R is Lipschitz continuous in utility
and intensity and satisfies a linear growth condition in consumption. On
R+×R×Rn the f i’s are concave and continuous. Then there is an α-efficient
allocation. Moreover, Pareto optimal allocations exists.

Proposition 2 derived the super-differential of the utility functional gen-
erated by an aggregator satisfying Assumption 1. We begin with the first
order conditions of optimality for concave and not necessarily Gateaux dif-
ferentiable functionals. Define the set of feasible directions at ci is given by
F (ci) =

{
h ∈ L2 : ∃µ > 0 ci + µh ∈ L2

+

}
and the set of feasible transfers

H(c) =
{
h ∈ L2,m :

∑
hi = 0, hi ∈ F (ci), 1 ≤ i ≤ m

}
.

Proposition 5. Assume that for each i, the utility functional U i is upper
semi-continuous, strictly increasing, concave. Moreover, U i takes nowhere
the value ∞ and is not equal −∞. The aggregate endowment e is bounded
away from zero.
Then the α-efficiency of ĉ ∈ Λ(e) is equivalent to the existence of a DU i(ĉi) ∈
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∂U i(ĉi), for each i, such that

0 ≥
∑
〈DαiU i(ĉi), hi〉 h ∈ H(ĉ).

Corollary 1. If, for each i, the utility functional U i is upper semi-
continuous, strictly increasing, concave and it takes no where the value ∞
and is not equal −∞, we have the following:

1. If
⋂m
i=1 ∂αiU

i(ĉi) 6= ∅, then ĉ = (ĉ1, . . . , ĉm) is α-efficient.

2. If (ĉ1, . . . , ĉm) is α-efficient and ,for all i, ĉi is bounded away from zero,
then

⋂m
i=1 ∂αiU

i(ĉi) 6= ∅ holds.

3.2 GSDU and efficient allocations

In order to apply the previous result to GSDU we have to establish a criterion
which ensures that the components of the efficient allocation are bounded
away from zero. We use the assumption of Section 2, related to the present
aggregator f i : [0, T ]× R+ × R× Rn → R.

Lemma 1. Suppose Assumption 1 holds. e is bounded away from zero. Fix
an α-efficient allocation c = (c1, . . . , cm) ∈ L2,m

++ . Then, for each i, ci is
bounded away from zero.

Proof of lemma 1. Let ν = P ⊗ dt and take a c ∈ L2,m
++ . For every i we

have U i(ci) > U i(0) since each U i strictly increasing.
Suppose some cj is not bounded away from zero. Then for every h > 0 there
is an Ĥ = Ĥ(h) ∈ O such that ν(Ĥ) > 0 and cj ≤ h on Ĥ. Since e is
bounded away from zero, we have e > C ν-a.e. for some constant C > 0.
This gives us, if C is taken small enough, that there is an agent k such that
ck ≥ C

m
on H ′ ⊂ Ĥ. We choose H = {cj < h} ∩ {C

m
≤ ck ≤ Ck} which has

positive measure.
On the other hand, since c is in the quasi interior of L2,m

+ , for every i, there
is a set Ai ∈ O with ν(Ai) > 0 and a number ai > 0 such that ci ≥ ai on Ai.
We show a Pareto improvement when multiples of H and Aj are traded
between agent j and k .
Let λk ∈]0, h[ and λj ∈]0,

aj
2

[. Define the following BSDEs:

cj 7→ (U,Z), cj − λj1Aj 7→ (UA, ZA) and cj − λj1Aj + λk1H 7→ (UAH , ZAH),
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where U0 = U j(cj), UA
0 = U j(cj − λj1Aj) and UAH

0 = U j(cj − λj1Aj + λk1H)
are the corresponding evaluated utility functionals. We derive

U j(cj − λj1Aj + λk1H)− U j(cj)

≥ E[

∫ T

0

δfj(2h)λk1H(t)− kj|ZAH
t − ZA

t |dt]

− E[

∫ T

0

δfj(
aj

2
)λj1Aj(t) + kj|Zt − ZA

t |dt]

The inequality applied the estimates in Lemma 4 and Lemma 5, given in
Appendix A.2. Next, we compute appropriate estimates for the Z parts.
By the Cauchy-Schwartz inequality and the a priori estimates in [EKPQ 97],
with λ2 = 2k, µ = 1 and β ≥ 2k(1 + k) + 1, we derive:

E[

∫ T

0

|Zs − ZA
s |ds]

≤
( Tλ2

µ2(λ2 − k)
E[

∫ T

0

eβs|f j(s, cjs, Us, Zs)− f j(s, cjs − λj1Aj , Us, Zs)|2ds]
) 1

2

≤ T 1/2 ·
(

2eβTE[

∫ T

0

|f j(s, cjs, Us, Zs)− f j(s, cjs − λj1Aj , Us, Zs)|2ds]
) 1

2

= (2TeβT )1/2E[

∫ T

0

|∂cf j(s, cjs − λj1Aj + ξcs, Us, Zs)λ
j1Aj(s)|2ds]

1
2

≤ (2TeβT )1/2E[

∫ T

0

δfj(
aj

2
)2λj

2
1Aj(s)ds]

1
2

≤ (2TeβT )1/2E[

∫ T

0

δfj(
aj

2
)λj1Aj(s)ds]

The last equality is a pointwise application of the mean value theorem with
some positive process ξc. The last but one inequality is true since we assumed
λj < aj

2
and cj ≥ aj on Aj and because ∂cf

j is decreasing. Analogous
arguments yields,

E[

∫ T

0

|ZAH
s − ZA

s |ds] ≤ (2TeβT )1/2E[

∫ T

0

δfj(
aj

2
)λl1H(s)ds].

Since h can be taken arbitrarily small, δf (2h) becomes arbitrarily large and
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by the last two derivations:

U j(cj − λj1Aj + λl1H)− U j(cj)

≥ e−kjT δfj(2h)E[

∫ T

0

λl1H(t)dt]− e−kjT δfj(
aj

2
)E[

∫ T

0

λj1Aj(t)dt]

−E[

∫ T

0

kj|ZAH
t − ZA

t |dt ]− E[

∫ T

0

kj|Zt − ZA
t |dt]

= λk
(
e−kjT︸ ︷︷ ︸

=bj1

δfj(2h)ν(H)− kj(2T )1/2eβT︸ ︷︷ ︸
=bj2

δfj(
aj

2
)ν(Aj)

)

−λj
(
bj1δfj(

aj

2
)ν(Aj) + bj2δfj(

aj

2
)ν(H)

)
A utility improvement of agent j is related to strict positivity of the last
term. An analogous derivation and a modification of Lemma 4 and Lemma
5 yield the corresponding inequality for agent k.
Hence, in order to achieve a Pareto improvement

1 >
bj1δfj(

aj

2
)ν(Aj) + bj2δfj(

aj

2
)ν(H)

bj1δfj(2h)ν(H)− bj2δfj(a
j

2
)ν(Aj)

·
bk1δfk( C

2m
)ν(Aj) + bk2δfk(a

k

2
)ν(H)

bk1δfk(2Ck)ν(H)− bk2δfk(a
j

2
)ν(Aj)

must hold. If we take a sufficiently small h, then, by the Inada style condition,
δf (2h) becomes arbitrary large. Consequently ν(Ĥ) and hence ν(H) becomes
small. We may choose Aj such that ν(H) = ν(Aj) > 0, this gives us

1 >
bj1δfj(

aj

2
) + bj2δfj(

aj

2
)

bj1δfj(2h)− bj2δfj(a
j

2
)
·
bk1δfk( C

2m
) + bk2δfk(a

k

2
)

bk1δfk(2Ck)− bk2δfk(a
j

2
)
,

by choosing appropriate multiples λk ∈]0, h[ and λj ∈]0,
aj
2

[:

U j(cj − λj1Aj + λk1H) > U j(cj) and Uk(ck + λj1Aj − λk1H) > Uk(ck)

This yields a Pareto improvement, contradicting that (c1, . . . , cm) is a Pareto
optimal allocation. By Corollary 1, this is equivalent to α-efficiency. There-
fore, each cj of the efficient allocation is bounded away from zero. �

3.3 Properness and the proof of the main proof

In this section we deal with the existence of an equilibrium in the sense of
Arrow Debreu. In Appendix A.3, we consider an economy defined on an
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abstract lattice and state the existence of a quasi equilibrium.
The notion of F-properness at x, see Definition 1 in Appendix A.3, can be
written as:

There is a v ∈ L2
+ and an ε > 0 such that for all z with ‖z‖L2 < ε,

U(x+ λ(v − z)) > U(x), for small λ > 0 and x+ λ(v − z) ∈ L2
+.

Now, we establish the existence of an equilibrium when the utility functional
U i : L2

+ → R is given by a GSDU. Assumption 1 ensures that every compo-
nent of the efficient allocation is bounded away from zero.
We prove the existence of the equilibrium by an application of Theorem 2.
Therefore, we need the F -properness to hold at certain points. This is proven
in the following lemma. The principle goes back to [LeV 96] where the case
of separable utilities was treated. Apart from Lemma 1, the main work was
already done in Proposition 2, where the square integrability of the super
gradient density π(c) = E∂cf i(·, c·, U·, Z·) is proved. In this case, 〈π(c), ·〉 is
the supporting linear functional at c.

Lemma 2. Suppose that c = (c1, . . . , cm) is a Pareto optimal allocation with
U i(ci) ≥ U i(ei). Under the assumptions of Theorem 1, the F -properness at
each ci holds.

Proof of lemma 2. By a modification of Lemma 1, each ci is bounded away
from zero. The assumption of a quasi interior allocation may be substituted
by individual rationality.
Fix v ≡ 1 as the properness vector. According to Proposition 2, a super
gradient density π(DU,Zf

i) ∈ L2
++ at ci is given by

π(DU,Zf
i)t = E(DUf

i, DZf
i)t · ∂cf i(t, ct, Ut, Zt).

The parametrization is related to the super-differential ∂U,Zf
i of the aggre-

gator. Define, in accordance to the argumentation below,

V (DU,Zf
i) =

{
z ∈ L2 : 〈π(DU,Zf

i), (1− z)〉L2 > 0
}

and

V :=
⋂

DU,Zf i∈∂U,Zf i

V (DU,Zf
i).

14



V is a neighborhood of 0 in L2:
We show that for each DU,Zf

i there exists an open ball around zero which is
contained in V (DU,Zf

i). Choose some

z ∈
{
y ∈ L2 : ‖y‖L2 <

‖π(DU,Zf
i)‖L1

‖π(DU,Zf i)‖L2

}
arbitrary.

The positivity of π implies

〈π(DU,Zf
i), z〉L2 < ‖π‖L1〈π(DU,Zf

i), 1〉L2 ,

where the last equality holds by the positivity of π(DU,Zf
i). We have z ∈

V (DU,Zf
i). Hence, there is an open ball which is contained in V .

Let ci + λ(1 − z) ∈ L2
+, where z ∈ V is arbitrary and λ > 0 is sufficiently

small. When λ > 0 tends to zero, the term λ−1U i(ci + λ(1 − z)) − U i(ci)
increases, due to the concavity of U i. Fix some z ∈ V . Whenever λ ↘ 0,
the limit of the quotient exists by [Gi 82, Theorem 1, p.117] and we have

lim
λ↘0

U i(ci + λ(1− z))− U i(ci)

λ
≥ 〈π(DU,Zf

i)t(1− z)〉L2 > 0.

The first inequality holds by [Gi 82, Theorem 3, p.122]. The second inequality
is valid since z ∈ V ⊃ Bε(0). Now, consider a sufficiently small λ with
U i(ci + λ(1− z)) > U i(ci). In other words, U i is F-proper at ci . �

Proof of theorem 1. Assumption 1 implies strict monotonicity, concavity
and norm continuity for each utility functional U i. The F-properness at each
ci is the content of Lemma 2, where (c1, . . . , cm) is an α-efficient allocation
with U i(ci) ≥ U i(ei) for all i. The existence of the equilibrium follows from
Theorem 2. We prove the properties of the equilibrium.

1. Pareto optimality follows from Theorem 2 in Appendix A.3. This im-
plies α-efficiency for some α ∈ Rm

+ \ {0}. By Lemma 1, each c̄i is
bounded away from zero.

2. The linear functional Π is L2-continuous. Since P⊗dt is a finite measure
and therefore σ-finite, we conclude that there is a π ∈ L2 such that
Π(·) = 〈·, π〉L2 . Each c̄i is bounded away from zero. Therefore the
set of feasible directions F (c̄i) is norm-dense in L2. The equilibrium
allocation maximizes the utility of each agent:

U i(c̄i) = max
c∈L2

+:Π(ci−ei)≤0
U i(ci) = max

c∈L2
+:g(ci)≤0

U i(ci)
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Each c̄i is bounded away from zero and hence the Slater condition is
satisfied with g( c̄

i

2
) < 0. By the Kuhn-Tucker Theorem, [BaPr 85, The-

orem 3.1.4, p.177], for concave functionals, it is necessary and sufficient
for the optimality of c̄i that there is a µi ≥ 0 such that

0 ∈ ∂ − U i(c̄i) + µiΠ(c̄i), µig(c̄i) = 0

on the set of feasible directions F (c̄i).
U i is strictly monotone, consequently g(c̄i) = 0. µi = 0 would imply 0 ∈
∂U i(c̄i) and this contradicts the strict monotonicity of U i. This proves
the strict positivity of µi and we have, for all h ∈ F (c̄i) , DU i(c̄i)(h) =
µiΠ(h), for some DU i(c̄i) ∈ ∂U i(c̄i). Each c̄i is bounded away from
zero. By Proposition 3 each supergradient has the stated form. �

4 Concluding Remarks

We discuss the equilibrium in terms of generic existence and a possible Rad-
ner embedding.

Generic existence
The framework of the present economy opens the question on generic exis-
tence of equilibria. In finite-dimensional commodity spaces, the usual notion
of genericity corresponds to full Lebesgue measure. In an infinite-dimensional
framework, one way out is to consider sets of first category, meaning that
the set is contained in a countable union of closed sets with empty interior.
In [ArMo 91] and [Mo 94], it is proven that the set of equilibria is of first
category. Strong assumptions of the form ∂u(0) =∞ and {∂u(ct)}t∈[0,T ] ∈ L2

ensure the existence of equilibria. In our recursive GSDU setting, the second
assumption can be written as

{Et(DUf,DZf) · ∂cf(t, ct, Ut, Zt)}t∈[0,T ] ∈ L2.

Such a condition is in some sense ”in” the model since an integrability con-
dition with respect to the gradient of the utility functional is related to new
factors which influence the gradient.
From a topological point of view, Baire’s Category theorem establishes an
empty interior for first category sets. This notion has little measure theoretic
connection. As mentioned in [Ma 85, p.318], topological genericity ”has to
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be thought of much less sharp than measure-theoretic concept available in
the finite-dimensional case”.
The parameter space of the economy is the space of endowments L2,m

+ . We
deal with strong assumption on the (aggregate) endowment process. A pos-
sible rationale for this is the alternative and more satisfactory genericity
concept, namely prevalence. The principle is introduced in [AnZa 01].{

(e1, . . . , em) ∈ L2,m
+ :

∑
ek is bounded away from zero

}
is a set of first category.
But as shown in [AnZa 01, Theorem 3.2, p.17], this set is finite prevalent
in L2,m

+ . Examples related to (finite) shyness and (finite) prevalence can be
found in [AnZa 01, Appendix B].

The state price density and financial markets
As a first step to establish this result as an equilibrium foundation for math-
ematical finance one has to discuss the structure of the state price density.
Under an additional assumption, the appearance of the intensity process Z
in the supergradients still ensures the semimartingale property of the equi-
librium state price density πi(ci) = Df ic(·, ci· , U i

· , Z
i
· )E i. This can be seen as

follows.
Let the aggregate endowment e be a special semimartingale. E is a special
semimartingale by an application of integration by parts. Now, assume that
the partial superdifferential ∂cf does not depend on z and is three times con-
tinuously differentiable, then, following the lines of [DuGeSk 94] there is a
twice continuously differentiable function Ki, depending on (t, e, E , U), such
that the α-efficient allocation can be written as {Ki(·, e·, E·, U·)}mi=1.
Since the process U is a semimartingale, we may apply Ito‘s formula and
observe the special semimartingale property of π. The absolute continuity
of the bounded variation component allow an interpretation of an money
market captured by an interest rate process.
Such a ”Radner embedding”-procedure can be used to observe a consump-
tion based capital asset pricing model, see [DuZa 89]. For the κ-ambiguity
case these can be found in [ChEp 02, Section 5.4, p.1430]. An ambiguity
premium can be observed. This can be used to tackle the so called equity
premium puzzle.
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A Appendix

A.1 Proofs of section 2

Proof of proposition 1. The first two assertions can be found in [EKPQ
97], the third is a modification of [DuEp 92, Proposition 1, p.391]. �

Proof of proposition 2. This follows from Lemma 3, with t = 0. �

Lemma 3. Fix t ∈ [0, T ] and suppose the conditions of Proposition 2 hold,
then for any direction h ∈ L2(P⊗ dt) such that c+ h ∈ L2

++(P⊗ dt) we have

Ut(c+ h)− Ut(c) ≤ E[

∫ T

t

Es
Et
∂cf(s, cs, Us, Zs)hsds|Ft].

Proof of lemma 3. Take a process c ∈ L2
++ that is bounded away from

zero and fix a process h ∈ L2 such that c + h ∈ L2
++. The related utility

processes U and Uh are given by

dUt = −f(t, ct, Ut, Zt)dt+ ZtdBt UT = 0

and dUh
t = −f(t, ct + ht, U

h
t , Z

h
t )dt+ Zh

t dBt Uh
T = 0.

We define Et := Et(DUf,DZf) and prove the following

claim : We have E[supt∈[0,T ] E2
t ] <∞.

proof: The process E admits a decomposition Et = λt · Γt and hence by the
boundedness of the super-gradient w.r.t. the aggregator in utility

λt = exp(

∫ t

0

DUf(s, cs, Us, Zs)ds) ≤ exp(kt). (4)

Boundedness of the super-gradient w.r.t. aggregator in the intensity compo-
nent z implies

E[exp(
1

2

∫ t

0

|DZf(s, cs, Us, Zs)|2ds)] ≤ E[exp(
1

2

∫ t

0

k2ds)] <∞,

the Novikov criterion is satisfied, hence the process Γ, given by

Γt = exp(−1

2

∫ t

0

|DZf(s, cs, Us, Zs)|2ds+

∫ t

0

DZf(s, cs, Us, Zs)
′dBs), (5)
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is indeed a martingale. With regard to the local martingale
∫ ·

0
ΓsdΓs, we take

a localizing sequence of stopping times {τn}n∈N ⊆ [0, T ] such that τn
n→∞−→ T

P-a.s., and we see that for each n,
{∫ t∧τn

0
ΓsdΓs

}
t∈[0,T ]

is a martingale.

By Itô’s formula, the quadratic variation of Γ, the boundedness of the super-
gradient in the intensity component z and Fubini’s theorem, we get

E[Γ2
t∧τn ] = E[1 + 2

∫ t∧τn

0

ΓsdΓs +
1

2

∫ t∧τn

0

2d〈Γ〉s]

= E[1 +

∫ t∧τn

0

Γ2
sDZf(s, cs, Us, Zs)

2ds]

≤ 1 +

∫ t

0

E[Γ2
s∧τn ]k2ds.

Applying the Gronwall lemma with g(s) = E[Γ2
s∧τn ], we conclude that

E[Γ2
T∧τn ] ≤ exp(Tk2) <∞

and by the dominated convergence, E[Γ2
T ] ≤ exp(Tk2). Since Γ is a mar-

tingale, it follows that Γ2 is a submartingale. By virtue of Doob’s maximal
inequality and (5), we deduce

E[ sup
t∈[0,T ]

E2
t ] = E[ sup

t∈[0,T ]

λ2
t sup
t∈[0,T ]

Γ2
t ] ≤ exp(kT )24E[Γ2

T ] <∞.

�
claim : We have E∂cf ∈ L2.
proof: There is a constant C > 0 with c > C P ⊗ dt-a.e. and, since f is
a regular aggregator, the process t 7→ ∂cf(t, ct, Ut, Zt) takes values in [0, K]
P⊗ dt-a.e., where

K = sup
(t,u,z)∈[0,T ]×R×Rn

∂cf(t, C, u, z).

Since c is bounded away from zero, we have ∂cf ∈ L∞(P⊗ dt) and the claim
follows by the previous claim. �

The rest of the prove follows from [SchSk 03, Lemma A.5, p.197]. �

Proof of proposition 3. Following the proof of [Al 97, Theorem 4.3,
p.425] and applying the concave alternative of [FGH 57], we can show that
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the right- and left-hand derivatives represent the superdifferential in terms
of an order interval:

∂U(c) = {g ∈ L2 : ∇+U(c)(ω)t ≤ gt(ω) ≤ ∇−U(c)(ω)t}

The proof that

lim
α↘0

U(c)− U(c+ αh)

α
= 〈∇−U(c), h〉 = 〈E(Dr

Uf,D
r
Zf) · ∂cf, h〉

is an application of results on BSDE depending on parameters, see [EKPQ
97, Proposition 2.4, p.26]. In this case the closed formula of the adjoint
process is given by E . We have

∂U(c) = [E(Dr
Uf,D

r
Zf) · ∂cf, E(Dl

Uf,D
l
Zf) · ∂cf ]

and the assertion follows. �

A.2 Proofs of section 3

Proof of proposition 4. The properties of the aggregator imply the norm
continuity and concavity of the utility functionals. Alaouglu’s theorem im-
plies the weak compactness of Λ(e). Under concavity and upper semi con-
tinuity of the utility functionals α-efficient allocation exists by an abstract
Weierstrass argument. The equivalence between α-efficiency an Pareto opti-
mality is standard in economic theory. �

By ∂L2,mU we denote the super-differential of a functional U on L2,m.
We write 〈DU(c), h〉 for DU(c)(h), where DU(c) is a super-gradient and an
element of the super-differential at c.

Proof of proposition 5. Let g(c1, . . . , cm) =
∑
ci−e and gi(c

1, . . . , cm) =
−ci. Then α-efficiency of ĉ = (ĉ1, . . . , ĉm) can be written as

Uα(ĉ) = max
c′∈Λ(e)

Uα(c′) = min
c′∈L2,m:gi(c′),g(c′)≤0

−Uα(c′).

Since e is bounded away from zero, the Slater condition holds. We apply the
Kuhn-Tucker theorem, [BaPr 85, Theorem 3.1.4, p.177], to −Uα. Hence, ĉ
is α-efficient if and only if there are constants µi, µ ≥ 0 such that

0 ∈ (∂L2,m − Uα)(ĉ) + µ∇L2,mg(ĉ) +
∑

µi∇L2,mgi(ĉ)
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and µg(ĉ) = 0, µigi(ĉ) = 0 i = 1, . . . ,m. Taking the non-negativity
constraints into account and the existence of a−DL2,mUα(ĉ) ∈ (∂L2,m−Uα)(ĉ)
, this is equivalent to

0 ≤ −DL2,mUα(ĉ) + µ∇L2,mg(ĉ) and µg(ĉ) = 0.

Taking the feasible transfers h ∈ H(ĉ) into account, we have

0 ≤ 〈−DL2,mUα(ĉ), h〉L2,m + 〈µ · ∇L2,mg(ĉ), h〉L2,m

= −
∑

αiDU
i(ĉi)hi + µ

∑
hi.

Since the U i’s are strictly increasing, g(ĉ) = 0 follows. �

Proof of corollary 1. 1. Let (h1, . . . , hm) = h ∈ H(ĉ). By assump-
tion there is a DU ∈

⋂m
i=1 ∂αiU

i(ĉi), with Riesz representation π.
This means for each i, there is a DαiU

i(ĉi) ∈ ∂αiU
i(ĉi) such that

DαiU
i(ĉi) = 〈π, ·〉 and therefore∑
〈DαiU i(ĉi), hi〉 =

∑
〈π, hi〉 = 〈π,

∑
hi〉 = 〈π, 0〉 = 0.

Since the U i’s satisfy the conditions of Proposition 5, (ĉ1, . . . , ĉm) is an
α-efficient allocation .

2. For each i, the consumption process ĉi is bounded away from zero.
This implies L∞(P ⊗ dt) ⊆ F (ĉi). Suppose the converse, there are
two agents i and j such that ∂αiU

i(ĉi) ∩ ∂αjU j(ĉj) = ∅. Then there
is an hi ∈ F (ĉi) \ {0}, an hj ∈ F (ĉj) \ {0} and an h ∈ H(ĉ) with
hk = 0 if k /∈ {i, j} such that, for all DαiU

i(ci) ∈ ∂αiU
i(ci) and

DαjU
j(ĉj) ∈ ∂αjU j(ĉj), we have

0 < E[

∫ T

0

hitπ
i(ĉi)t − hitπj(ĉj)tdt]

= E[

∫ T

0

hitπ
i(ĉi)t + hjtπ

j(ĉj)tdt] =
∑
〈DαiU i(ĉi), hi〉L2 ,

where πj(ĉj) is the Riesz representation of DαjU
j(ĉj). But this con-

tradicts Proposition 5. �

The following two results are used in Lemma 1 and in the proof of the
F-properness in Section 3.3. The approach goes back to [DuZa 89]. The
aggregator is not differentiable in u and z (but concave) and hence we need
the following mean value theorem for convex functions.
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Proposition 6. Let g : Rr → R be a lower semi-continuous and convex
function and it takes no where the value −∞ and is not equal +∞. Let X
be a convex set in dom(g), then

x1, x2 ∈ ri(X) := {x ∈ X : ∀y ∈ X∃z ∈ X, ∃t ∈]0, 1[: x = ty + (1− t)z}

implies that there exist a t ∈]0, 1[ and a vector x∗ ∈ ∂g(tx1 + (1− t)x2) ⊂ Rn

such that g(x2) = g(x1) + 〈(x2 − x1), x∗〉Rn.

Proof of proposition 6. [Weg 74,Theorem, p.207]

In the present case Lemma 4 and Lemma 5 are formulated such that
application to the contradiction argument in Lemma 1 ”fits” the agent j.

Lemma 4. Assume that U is a generalized stochastic differential utility gen-
erated by an aggregator f that satisfies Assumption 1. Let A ∈ O and a > 0
be arbitrary. If y, x ∈ L2

+ with y ≥ a on A, x = 0 on Ac and x ≤ a
2
, then

U(y)− U(y − x) ≤ ekTE[

∫ T

0

δf (
a

2
)xt + k|Zs − Z̄s|dt].

Proof of lemma 4. Let (Ut, Zt)t∈[0,T ] = (U,Z) be the solution of the utility
process related to y and (Ū , Z̄) the solution of the utility process related to
y − x where x is chosen as above. f is, by assumption, differentiable in c.
We apply the classical mean value theorem to the consumption component.
Since f is uniformly Lipschitz continuous in u and z, upper semi-continuity
follows and we apply Proposition 6 to −f(t, c, ·, ·). We conclude that there
is an R× R× Rn valued process (ξc, ξU , ξZ) such that

Ut − Ūt = E[

∫ T

t

f(s, ys, Us, Zs)− f(s, ys − xs, Ūs, Z̄s)ds|Ft]

= E[

∫ T

t

∂cf(s, ys + ξcs, Us + ξUs , Zs + ξZs )xs

+DUf(s, ys + ξcs, Us + ξUs , Zs + ξZs )(Us − Ūs)
+〈DZf(s, ys + ξcs, Us + ξUs , Zs + ξZs ), (Zs − Z̄s)〉ds|Ft].

Observe Us − Ūs ≥ 0, for all t ∈ [0, T ], by Proposition 1. since x ≥ 0
and f is increasing in consumption. Combined with the boundedness of the
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super-gradients, we derive:

Ut − Ūt ≤ E[

∫ T

t

∂cf(s, ys + ξcs, Us + ξUs , Zs + ξZs )xs + k(Us − Ūs)

+〈DZf(s, ys + ξcs, Us + ξUs , Zs + ξZs ), (Zs − Z̄s)〉ds|Ft]

≤ E[

∫ T

t

δf (
a

2
)xs + k(Us − Ūs) + k|Zs − Z̄s|ds|Ft]

The last equality holds because x 7→ ∂cf(x, v) is decreasing and using the
estimate δf (

a
2
), since ys(ω) + ξcs(ω) ≥ a

2
on A.

Finally, the first Stochastic Gronwall inequality, see [DuEp 92, Corollary B,
p. 386] evaluated at time zero yields:

U(y)− U(y − x) = U0 − Ū0 ≤ ekTE[

∫ T

0

δf (
a

2
)xs + k|Zs − Z̄s|ds] �

Lemma 5. Assume that U is a generalized stochastic differential utility gen-
erated by an aggregator f that satisfies Assumption 1. Let H ∈ O, h > 0
and y ∈ L2

+ with y ≤ h on H. Then ∀λ ∈ [0, h]

U(y + λ1H)− U(y) ≥ e−kTE[

∫ T

0

δf (2h)λ1H(t)− k|Z̄s − Zs|dt].

Proof of lemma 5. Let (Ut, Zt)t∈[0,T ] = (U,Z) be the solution of the utility
process of the process y and (Ū , Z̄) the solution of the utility process of
y + λ1H , where x is chosen as above. f is differentiable in consumption and
concave in the other components. Applying the mean value theorem for c
and Proposition 3.5.2 for U and Z, there is a R2+n valued process (ξc, ξV , ξZ)
and we have

Ūt − Ut ≥ E[

∫ T

t

δf (2h)λ1H(t)− k(Ūs − Us)− k|Z̄s − Zs|ds|Ft].

The last inequality follows from the application of the estimates δf (2h) (since
ys(ω) + ξcs(ω) ≤ 2h on H) and arguments similar to Lemma 4.
We have Us − Ūs ≥ 0 since z ≥ 0 and f is increasing and therefore, by
Proposition 1. also the utility functional U .
Finally, the second Stochastic Gronwall inequality, see [DuEp 92, Corollary
B, p. 387], evaluated at time zero now gives us:

U(y)− U(y − x) = U0 − Ū0 ≥ e−kTE[

∫ T

0

δf (2h)λ1H(t)− k|Z̄s − Zs|ds] �
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A.3 Quasi-equilibrium in normed lattices

This section presents an existence result for economies where the commodity
space is a certain vector lattice.
Let (L, τ) be the commodity space, a vector lattice with a Hausdorff, locally
convex topology τ . We assume that the positive cone L+ is τ -closed and
the analytic dual space L∗ is a sublattice of L?. The space L? consists of
all order bounded linear forms. A linear form is order bounded if the set
f([x, y]) = {f(z) : z ∈ [x, y]} ⊂ R is contained in a bounded interval for each
order interval {z ∈ X : x ≤ z ≤ y} = [x, y] ⊂ L.

We fix a pure exchange economy with m ∈ N agents E = {L+, Pi, e
i}1≤i≤m in

L such that Pi : L+ → 2L+ are the preference relations on the consumption
set L+ and ei ∈ L+ is the initial endowment of each agent.
An allocation (x1, . . . , xm) is individually rational if ei /∈ Pi(xi) for every i.
A quasi-equilibrium in the economy E consists of a feasible allocation
(x1, . . . , xm) ∈ Lm+ , i.e.

∑
xi = e, and a linear functional π : L → R with

π 6= 0 such that, for all i π(xi) ≤ π(ei) and for any i, y ∈ K+ with y ∈ P (xi)
implies π(y) ≥ π(xi) . The quasi-equilibrium is an equilibrium if y ∈ P (xi)
implies π(y) > π(xi).

We introduce the notion of forward properness whose principle is a mod-
ification of this cone characterization and was introduced in [YaZa 86].

Definition 1. A preference relation P : L+ → 2L+ is F-proper at x ∈ L+ if:
There is a v ∈ L+, some constant ρ > 0 and a τ -neighborhood U satisfying,
with λ ∈]0, ρ[:

If z ∈ U , then x+ λv − z ∈ L+ implies x+ λv − λz ∈ P (x)

The following standard assumptions are needed to establish the existence
of a quasi-equilibrium.

Assumption 2. The economy satisfies the following conditions:

1. y /∈ Pi(y) for all y ∈ L+ and every i

2. Pi(y) is a convex set for all y ∈ L+ and every i.

3. There is a Hausdorff vector space topology η on L such that [0, e] is
η-compact and such that, for every i = 1, . . . ,m, Pi is η-τ continuous,
i.e. the graph.

gr(Pi) = {(x, y) ∈ L× L : x ∈ L+, y ∈ Pi(x)}
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is a relatively open subset of L+ × L+ in the product topology η-τ .

4. Pi(y) ∩ L(e) 6= ∅ for all y ∈ [0, e] and every i.

5. L(e) is τ -dense in L and if (x1, . . . , xm) ∈ Lm+ is an individually rational
and Pareto-optimal allocation, then, for every i, Pi is F-proper at xi.

Theorem 2. Suppose the economy E satisfies Assumption 4.1. Then there
is an x ∈ Lm+ and a p ∈ L∗ such that (x, p) is a non-trivial quasi-equilibrium.

Proof of theorem 2. [Pod 96, Theorem 2, p.471]

If preferences are strictly monotone and continuous and the total endow-
ment is strictly positive, the notions of equilibrium and quasi-equilibrium
coincide. This is can be found in [AB 03, Corollary 8.37, p.233], where it is
requested that L∗ is a sublattice of L?.
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