
Model-based Real-time Visualization of Realistic Three-Dimensional Heat Maps
for Mobile Eye Tracking and Eye Tracking in Virtual Reality

Thies Pfeiffer*, Cem Memili†

Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany

Abstract

Heat maps, or more generally, attention maps or saliency maps are
an often used technique to visualize eye-tracking data. With heat
maps qualitative information about visual processing can be easily
visualized and communicated between experts and laymen. They
are thus a versatile tool for many disciplines, in particular for us-
ability engineering, and are often used to get a first overview about
recorded eye-tracking data.

Today, heat maps are typically generated for 2D stimuli that have
been presented on a computer display. In such cases the mapping of
overt visual attention on the stimulus is rather straight forward and
the process is well understood. However, when turning towards
mobile eye tracking and eye tracking in 3D virtual environments,
the case is much more complicated.

In the first part of the paper, we discuss several challenges that
have to be considered in 3D environments, such as changing per-
spectives, multiple viewers, object occlusions, depth of fixations,
or dynamically moving objects. In the second part, we present
an approach for the generation of 3D heat maps addressing the
above mentioned issues while working in real-time. Our visualiza-
tions provide high-quality output for multi-perspective eye-tracking
recordings of visual attention in 3D environments.

Keywords: 3D, eye tracking, heat map, visualization

Concepts: •Human-centered computing → Heat maps;
•Computing methodologies→ Perception;

1 Introduction

The availability of mobile eye-tracking devices has fostered an in-
creased interest in investigating visual attention in life-sized realis-
tic environments. Mobile eye tracking, however, is more difficult
and resource-intensive to analyse than desktop-based eye tracking.
In particular, current visualization techniques for desktop-based eye
tracking do not directly transfer to mobile scenarios, due to prob-
lems such as dynamic perspectives, occlusions or dynamic environ-
ments. These issues will be discussed in detail in Section 2.

Our work aims at creating realistic 3D heat maps for dynamic 3D
environments, subsuming natural environments recorded with mo-
bile eye-tracking devices as well as eye-tracking recordings in vir-

*e-mail: thies.pfeiffer@uni-bielefeld.de
†e-mail: cmemili@techfak.uni-bielefeld.de

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org. © 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
ETRA 16, March 14 - 17, 2016, Charleston, SC, USA
ISBN: 978-1-4503-4125-7/16/03
DOI: http://dx.doi.org/10.1145/2857491.2857541

Figure 1: The presented approach creates realistic heat maps for
objects that have been moved around and inspected from all sides in
real-time with a high-quality. Here the example of a product picked
from a shelf of a virtual supermarket (see also Figure 5).

tual reality. As a prerequisite, we assume that a 3D model of the
environment is available. This model can either be created manu-
ally or using techniques such as 3D scanning. For dynamic environ-
ments the approach also assumes that changes in the environment
can be tracked. While this assumption will currently not hold for
many application cases of mobile eye tracking, research in other ar-
eas, such as 3D reconstruction, will open up more application areas
in the future.

We have successfully applied the presented approach to situations
in which participants inspect a static real-world scenario, such as
a life-sized car or a kitchen, and to eye-tracking studies in inter-
active virtual reality simulations, such as a virtual supermarket, in
which the dynamic changes of all objects are known at a very high
precision (see Figure 1). The approach integrates nicely with our
work on EyeSee3D for real-time tracking of visual attention in 3D
environments based on mobile eye-tracking devices presented also
in these proceedings [Pfeiffer et al. 2016].

The presented approach is unique in that it takes into account the
depth of fixation, occlusions of foreground objects, binocular eye
tracking and moving and deforming objects. Furthermore, on the
more technical side, it uses multi-texturing to visualize the heat
maps on the target objects’ surfaces, defers the costly normalization
process to a real-time shader, and outputs a set of persistent heat
map textures that can be used to create high-end photo-realistic ren-
derings offline (e.g. for documentation). The approach is optimized
to work on GPUs and operates in real-time for compact scenarios.

The structure of the paper is organized as follows: in the next sec-
tion, we start with an analysis of the requirements and challenges
of heat mapping that are specific for dynamic 3D environments.
Once the grounds are layed, we review the related work in light of
our anaylsis in Section 3, before we present our own approach in
Section 4. In Section 5, we describe the technical implementation
and provide details relevant for reproducing the work, but also for
understanding hardware-based limitations. We then pick up impor-
tant technical challenges and address them in Section 6, before we
conclude in Section 7.

http://dx.doi.org/10.1145/2857491.2857541

2 Analysis of Heat Mapping for Dynamic 3D
Environments

Before we enter into the analysis, we want to distinguish between
two roles: With viewer we will from now on refer to someone
whose gaze is recorded during the inspection of a scene. A re-
viewer, in contrast, is someone investigating the recorded atten-
tional data. The gaze of the reviewer is not necessarily recorded.

Several disciplines have interests in representing and visualizing
areas that attract the visual attention of viewers and historically dif-
ferent terms have been introduced to refer to rather similar things:
attentional landscape [Pomplun et al. 1996], saliency maps, atten-
tion maps, heat map (which is a more general term but often used
interchangeably with attention map, e.g., in the domain of human
factors/user experience) or recently 3D attentional maps or 3D at-
tention volumes. In the following we will use the term heat map.

Starting point of our discussion are situations in which the spread
of visual attention over 3D stimuli, either real or virtual, is to be
recorded and visualized via a heat map. For the recordings, the
viewer might either wear a mobile eye-tracking device and walk
around in a physical setup, sit in front of a desktop virtual-reality
system equipped with a remote eye-tracking system or be equipped
with a mobile eye-tracking device embedded in a head-mounted
display or in the 3D glasses used for a Powerwall or CAVE.

2.1 Requirements

A correct heat map visualization for dynamic 3D environments has
to address the following requirements:

Estimating the 3D point of regard: When tracking gaze on 2D
stimuli, only X and Y coordinates are relevant. Mobile eye-tracking
systems already need to correct for parallax shifts introduced by the
different levels of depth of the objects recorded in the scene camera
video. For a realistic analysis of visual attention in 3D, however, a
correct estimation of the level of depth of a fixation is required to
determine the 3D point of regard.

Modelling 3D attention spreading: A correct model for represent-
ing the spread of attention around the measured 3D point of regard
has to be implemented. In the eye-tracking literature it is common
to assume a 2D Gaussian distribution for that (see formula (1) later
in this paper).

Handling of (partial) occulsions: Objects distributed over a scene
might (partially) occlude each other depending on the perspective
of the viewer. Occlusions may then continuously change over time
as the viewer or the objects are moving.

Handling of dynamic objects: As soon as gaze data is aggre-
gated over time, dynamic objects can become problematic. Most
approaches for generating heat maps are using the global 2D screen
space for representation. However, as soon as an object moves dur-
ing the observed timespan, the attention attributed to the object’s
location will stick to the screen space previously occupied by the
object. This results in invalid visualizations. For realistic heat map
visualizations, the representation has to be attached to the object.

Handling of multiple viewers/perspectives: In desktop-based 2D
situations, the perspective of the viewers is typically fixed and all
viewers perceive exactly the same 2D image. In 3D environments
and in particular in such of natural sizes, viewers perceive the scene
from different perspectives due to the mere facts that they are of
different heights and they are moving around.

Figure 2: Example workflow: inspection of a 3D CAD prototype
of a car in a virtual reality environment (right), real-time genera-
tion of attention textures (top left) and high-quality rendering of the
aggregated heat maps (lower left).

2.2 Technical Challenges

In addition to the substantial requirements, the following technical
challenges are in our opinion relevant to be tackled:

Real-time availability: The aggregation of gaze data and the com-
putation of the heat map is a computationally demanding process.
Creating heat maps as quickly as possible is not only relevant for an
on-line monitoring of gaze data, e.g. for quality control of record-
ings, it will also decrease the time needed for generating visualiza-
tions for offline review.

Easy dissemination: Heat maps are used for qualitative commu-
nication between researchers and their audience. It is therefore
crucial that the audience can access the visualizations in the most
simple way possible. Recent approaches for generating heat maps
for 3D scenes (e.g. [Maurus et al. 2014]), however, require spe-
cial purpose viewers and dedicated graphics hardware. Besides the
problem of distributing this software, such tools also increase the
learning curve for the audience.

Integration into existing workflows: Especially when reviewing
designs, it is important that all visualizations are of high-end qual-
ity. This can be achieved best if the results can be re-integrated into
the existing workflow (CAD, CAM) to create appropriate render-
ings (see Figure 2).

Some self-explanatory requirements are the handling of arbitrary
scenes, a low manual effort in preparing and setting up the analysis
and the support of multiple reviewers.

3 Related Work

A general overview about the state of the art in visualizing eye
tracking data, which also covers heat maps for 2D images, videos
and 3D objects is provided by Blascheck et al. [2014]. Here we
focus on the discussion of heat map visualizations for scenes for
which 3D models are available. The issue of correctly creating heat
maps for 3D environments has, as far as we know, only been consid-
ered by a small number of researchers. We thus decided to provide
a more in-depth discussion of the few individual contributions to
work out the differences of the presented approach to the body of
previous methods, instead of providing a broader coverage of the
field of heat maps for 2D stimuli. We are also postponing the dis-
cussion of whether or not a realistic analysis of a 3D environment
has advantages or disadvantages over the reduction of the stimuli
to 2D to subsequent research. However, in our opinion visualiza-
tions of the spead of visual attention during interactions with ob-

jects, such as depicted in Figure 6, provide a strong argument for
following this line of research.

3.1 Stellmach et al.

Several approaches to visualize visual attention on static virtual 3D
scenes have been described by Stellmach et al. [2010]. Their Pro-
jected Attentional Maps are created based on recorded 3D fixations.
They are 2D heat maps which are overlaid over the 3D scene visual-
ization according to the current perspective of the reviewer. In that
they are close to standard 2D heat maps. However, they ignore the
3D structure of the scene. For their Object-based Attentional Maps
Stellmach et al. aggregate fixations on a per-object level and col-
orize the object with a uni-colored texture accordingly. Their last
approach, the Surface-based Attentional Maps, breaks the attention
analysis down to the level of triangles defining the object’s geome-
try. Each triangle (or vertex) of the object is assigned a color repre-
senting the aggregated and normalized attention. Thus Stellmach et
al. create a “second skin”, as they call it, to represent the Surface-
based Attentional Map. This approach depends, as the authors note,
heavily on the granularity of the mesh. For a fine-grained analysis a
high-density mesh is required. This geometry-based approach has
a severe negative affect on visualization performance.

Note also that the latter two approaches are only considering the
first object that has been hit by a fixation. Attention that might have
been spread to other objects in close vicinity is ignored. While the
authors not explicitly mention dynamic scenes, their two object-
centered approaches (Object-based Attentional Maps and Surface-
based Attentional Maps) could also be applied to dynamic objects.
An advantage of the Object-based Attentional Map is that the re-
sulting colorizations could be exported and used in a high-end ren-
dering system, if the coarse object-level granularity is not of impor-
tance. This approach is thus not useful for design reviews: In their
user study, Stellmach et al. [2010] could show that the granularity
achieved by the Surface-based Attentional Maps was rated more
useful than the simple Object-based Attentional Maps. While the
heat map mesh of the Surface-based Attentional Map could also be
exported, the re-use in a high-end rendering system is not as simple
as with texture-based approaches.

A major problem that remains with the work presented by Stell-
mach et al. [2010] is the way the 3D fixations have been collected
in the first place. They only considered gaze alike mouse input and
used picking to determine the first triangle hit by a ray cast into 2D
screen space (the experiments used only monocular desktop-based
virtual reality). They did not consider the depth of the fixation nor
did they consider visibility when spreading the attention towards
adjacent triangles.

3.2 Duchowski et al.

Duchowski et al. [2012] presented a GPU-based algorithm for the
creation of 2D heat maps for visual attention data collected from
several participants watching the same stimulus video. As their sys-
tem operates on 2D material only, the perspectives of viewer and re-
viewer are fixed. The attention data is also not linked to the attended
area presented in the video, but to the position fixated on screen.
Any temporal aggregation thus results in incorrect mappings to the
presented content if either the camera or the presented objects are
moving. Their overall approach is (1) accumulating Gaussian dis-
tributions for each fixation, (2) searching for maximum intensity
for normalization, (3) normalization, and (4) coloring according to
a selected color ramp. All of these processes were computed on the
GPU, for searching the maximum intensity, they used GPU paral-
lel reductions [Buck and Purcell 2004]. The authors note that their

approach for 2D attention maps could in principle be extended to
support 3D scenes, which is what is elaborated in this paper.

3.3 Work in the ARtSENSE Project

In previous work in the European project ARtSENSE, Hammer
et al. [2013] used a 3D model of the environment and outside-in
tracking based on the scene-camera video of the eye-tracking sys-
tem to determine 3D-fixation locations during the viewer’s visit to
a museum. Based on this work, they developed a GPU-accelerated
visualization-system for heat maps [2014]. Their contribution to the
state-of-the-art is that their approach uses a 3D scene and projects
the viewers’ gaze into the scene while correctly respecting occlu-
sions imposed by objects closer to the viewer than the fixated object
by using Shadow Mapping. To create a heat map from the perspec-
tive of the reviewer, they project a 2D Gaussian distribution for each
considered fixation modeling the spread of attention from the per-
spective of the corresponding viewer into the scene and collect all
these projections in a shader to create a real-time texture overlay
for the screen space, similar to the Projected Attentional Maps but
considering occlusions for the perspective of the reviewer. Their
approach, however, has the drawback that a shadow map has to be
calculated and stored in a texture buffer for every distinct viewing
direction of the viewers, which in a mobile setting could be as many
as sampled fixations. As a consequence, the authors suggested to
use textures of a low resolution, but this results in degradation of
the visual quality.

3.4 Own Previous Work

Previously, we presented work on 3D attention visualization for
viewers moving in an immersive virtual reality environment [Pfeif-
fer 2012]. We also discussed means to estimate the 3D point of
regard based on binocular eye-tracking and eye vergence. For visu-
alization, we proposed 3D volume renderings which are represented
independently of the scene geometry. While the 3D point of regards
provide a sound basis for attention visualization and the attention is
spread over nearby objects, the overall approach creates unrealistic
heat maps, similar to the Projected Attentional Maps, as the scene
geometry is not taken into account: it uses no visibility checks and
attention spreads into the insides and beyond the backside of objects
as well. Also, the approach is memory-wise and computationally
demanding and are not subject to incremental real-time visualiza-
tions except for small scenes.

The approach presented in this paper extends the state-of-the-art
in several ways. First, it is able to consider real 3D distributions
around the 3D point of regard. Second, the 3D point of regard can
be computed either by the geometric approach by intersecting the
line of sight with the 3D model, e.g., when using a monocular eye-
tracking system, or more realistically by making use of binocular
eye-tracking and depth estimations based on eye vergence. Third,
the aggregated attention data is not stored per view but per ob-
ject. This results in several improvements compared to previous
approaches: (a) whether visual attention is analyzed can be selected
on a per-object level, e.g., if only certain exhibits in a museum are
of interest for the analysis, (b) the required memory scales only
with the number of objects and not with the number of participants
or the duration of the observations, (c) the created heat map textures
can be easily made persistent on a per-object basis and (d) the cre-
ated textures can be used to integrate the heat maps in high-quality
renderings of the whole scenery or individual artifacts. The result-
ing 3D model incorporating the heat map visualization can then be
viewed in any 3D presentation software, a special purpose viewer
is no longer required after data aggregation.

4 Proposed Approach: Attention Textures

The basic idea is to represent the 3D heat maps as additional tex-
tures on a per-object level and to generate these textures directly on
the GPU. This texture will be referred to as Attention Texture in the
following.

4.1 The Basic Algorithm

Our algorithm takes as input a set of viewing events E that
are tuples of (head pos, head orient, left eye pos, right eye pos,
left viewing direction, right viewing direction, viewing duration).
Instead of the viewing directions also a previously estimated 3D
point of regard can be used. The heat maps are then generated ac-
cording to the following procedure:

1. Loop over all viewing events in the consideration set

(a) Handle object occlusions for the current viewing event
(viewer’s perspective)

(b) Map the spread of attention around the 3D point of re-
gard on the objects’ Attention Textures

2. Compute the global maximum attention value over all Atten-
tion Textures

3. Render the heat mapped scene from the reviewer’s perspective

The core ideas of the approach are the aggregation of attention in
object-local Attention Textures, the use of up to two shadow maps
for a correct treatment of occlusion, the 3D model for attention
spreading and the defered creation of the heat map only for ren-
dering the view and not for every added fixation event.

4.2 Handling Object Occlusions

First, the viewer’s perspective is taken from the current viewing
event. From this perspective, the algorithm computes a so-called
shadow map (see Section 5.1) to determine partial occlusions up to
the depth of the viewing event’s point of regard. This procedure
is similar to the approach used by Hammer et al. [2013], however,
the technical implementation is different, as will be explained in
Section 5.1.

A special treatment is required for the visualization of binocular
eye-tracking data. To create more realistic heat maps, the algorithm
computes a second shadow map, one for each eye of the viewer,
and considers both shadow maps when determining visibility. If a
3D point is visible for at least one eye, the corresponding Attention
Texture is updated. This is for example relevant to handle fences or
lattice windows correctly.

4.3 Realistic Mapping of Attention

A significant difference to previous work is that we compute a real
3D Gaussian distribution instead of just projecting the 2D Gaus-
sian distribution onto objects. Our approach can also easily be ex-
tended to support even more realistic 3D models of the spread of
attention. However, the 3D Gaussian already creates more realistic
visualizations, as it respects the depth of focus, as depicted in Fig-
ure 3. For example, when the viewer is focusing on a nearby object,
attention is no longer falsely attributed to far away background ob-
jects, which appear only very blurry on the retina. When using the
3D Gaussian mapping, the parameters of the Gaussian have to be
adapted to the depth of the point of regard as the area of similar
accuracy increases with increasing distance (flashlight effect).

Figure 3: The projected 2D Gaussian distribution used in previous
approaches will create artifacts (upper picture). The 3D Gaussian
mapping does not create these artifacts (lower picture) and is more
realistic as it correctly considers the depth of fixation.

Note that this behavior depends on the design of the mapping func-
tion, so if the previous behavior is still wanted, a cone-like Gaussian
extending from the eye of the viewer towards and beyond the fix-
ated target can be used to model the attention spread to achieve the
previous visualizations.

Where the calculated 3D distribution intersects with an object, the
corresponding position is checked against the current shadow map
and if the position is visible to the viewer, the object’s Attention
Texture at that position is updated accordingly. Note that in con-
trast to the approach used by Stellmach et al. [2010], the Attention
Texture’s values are representing the absolute overall attention dis-
tribution; the heat map generation is defered to the rendering step.
Figure 4 depicts the result of this mapping process for a single prod-
uct of a virtual supermarket (see Figure 5).

Figure 4: This is an example of an Attention Texture for one of the
products in a virtual supermarket. The texture has been colorized to
make the different values light up according to the heat map color
mapping. The individual boxes correspond to the different package
sides.

4.4 Computing the Global Maximum Attention Value

To visualize heat maps, the values in the Attention Textures have to
be normalized to project them on the desired color ramp. Therefore,
whenever Attention Textures have been updated and a heat map has
to be drawn, the global maximum of all attention values has to be
computed. Following the idea proposed by Duchowski et al. [2012]
for the similar problem of determining the maximum value of a
single heat map, a naive approach would have to iterate over all At-
tention Textures to determine the individual peaks and then, again,
it would have to iterate over all peaks to find the global maximum.

Figure 5: Example of a virtual supermarket scenario: In this life-
sized immersive virtual reality installation participants could ex-
amine product packages in 3D.During these tasks, participant’s eye
movements were tracked using a mobile eye-tracking system.

This would render the approach described so far intractable for real-
time rendering with reasonable numbers of objects. Our efficient
technical solution to this is described in Section 5.3.

4.5 Rendering for Reviewer or Export

Normalization and color mapping of the heat map is defered to
rendering and efficiently computed on the GPU by shaders. This
reduces the computational demands significantly, as otherwise all
textures of all objects in the scene would have to be updated for
each viewing event. With the optimized approach, only Attention
Textures of visible objects within the range of the 3D distribution
around the 3D point of regard have to be updated.

To augment the scene with the heat maps, a simplified Phong-
Shading approach [Wolff 2011] is used with a colorization accord-
ing to a selected color ramp (for heat maps typically rainbow colors
are used, but see the discussion in [Duchowski et al. 2012] that this
is perceptually misleading). An alpha value is used to blend the
computed heat map color over the original color of the object (see
Figure 1). For this approach, the linear filtering (GL LINEAR) can
be applied to achieve more appealing visual results.

One performance improvement of the presented approach is
achieved by normalizing the attention values on the fly, thus saving
expensive memory operations. As every object’s Attention Texture
would have to be updated, such an approach would quickly be in-
tractable in real-time. However, we also implemented a shader that
creates a new set of textures for the objects based on the Attention
Textures and the chosen mapping. These textures can be exported
to make the heat-mapped results persistent. The created heat map
textures can be imported into the original model, either to explore
the persistent attention data in the original simulation framework
(e.g. using a CAVE or an HMD) or to create high-end renderings
of the collected data. Figure 6 shows a rendering of the exported
Attention Texture using the open-source software Blender.

Figure 6: For each product in the shelves, 3D attention textures
have been calculated and high-quality renderings have been cre-
ated. As participants were able to pick the packages out of the shelf
(see Figure 5), fixations were distributed all over the package (front,
back, sides).

5 Implementation

In the following, we describe more technical details about the heat
map generation. Some of these details are specific to the currently
available graphics hardware. More technical details, include the
program, pictures and videos can be found on the accompanying
website [Pfeiffer and Memili 2016].

5.1 Computing the Shadow Map

We use hardware shadow-mapping [Everitt et al. 2001] to compute
occlusions for each viewing event. As detailed above, we want
to correctly handle binocular viewing perspectives and thus have
adopted the shadow mapping algorithm accordingly. So instead of
a single rendering pass for creating the shadow map, we use two
subsequent passes.

5.2 Shader-based Attention Spreading

Attention spread is computed by rendering all relevant objects us-
ing a dedicated shader. The Attention Texture is used both as render
target for the active frame-buffer object and as sampler for the same
shader to be able to retrieve previous values. We avoid concurrency
problems by refraining from parallel accesses to the same pixels.
Note that texture filtering has to be set to GL NEAREST to avoid
artifacts with surrounding texture pixels not belonging to the rele-
vant region of the object. The appropriate vertex shader is printed
in Listing 1.

1 vertex .texCoords = a_texCoord0 ;
2 g l P o s i t i o n = vec4 (a_texCoord0 *2 − (1 . 0 , 1 . 0)←↩

, 0 . 0 , 1 . 0) ;
3 vertex .position = u_projView * a_position ;
4 vertex .normal = (u_projView * vec4 (a_normal , 1)) .←↩

xyz ;
5 vertex .lightVertexPositionLeft = shadowMatrixLeft←↩

* a_position ;
6 i f (numberOfEyes == 2) {
7 vertex .lightVertexPositionRight = ←↩

shadowMatrixRight * a_position ; }

Listing 1: Vertex shader to prepare the update of Attention
Textures.

The fragment shader is then straightforward (see Listing 2): it reads
the previous value from the Attention Texture, checks if the 3D po-

sition is within a relevant range of the Gaussian distribution (lines
4-6), then checks the shadow maps if the point is visible (line 11)
and only then computes the Gaussian value and updates the Atten-
tion Texture (line 13).

1 f l o a t AV = (t e x t u r e 2 D (AT , texCoords)) .r ;
2 f l o a t maxV = t e x t u r e 2 D (maxAT , texCoords) .r ;
3 / / 0 . compute d i s t a n c e t o gaussvo lume
4 f l o a t dist = d i s t a n c e (point−of−regard , position .←↩

xyz) ;
5 / / 1 . check i f i n s i d e t h e Gauss d i s t r .
6 i f (dist > GaussRadius) {
7 / / e a r l y o u t p o s s i b l e i f n o t i n s i d e
8 exitNoUpdate (AV , maxV) ;
9 } e l s e {

10 / / 2 . check i f v i s i b l e f o r d e f i n e d eye s
11 i f (isVisibleForEyes ()) {
12 / / u p d a t e a t t e n t i o n t e x t u r e
13 exitWithUpdate (dist , AV , maxV) ;
14 } e l s e {
15 / / f r a g m e n t i s o c c l u d e d
16 exitNoUpdate (AV , maxV) ; }}}

Listing 2: Fragment shader to update of Attention Textures.

Occlusion is handled by isVisibleForEyes() based on the computed
shadow maps. It also handles z-Fighting problems by using an
epsilon of 0.001 during the tests. The model of the 3D attention
spread, here the 3D Gaussian model (1), is finally applied for visi-
ble pixels. It is implemented in a user function called by exitWith-
Update.

A(~x) = d(t)e
− |~x−~pPOR|

2

σ(~peye,~x) (1)
with
~pPOR : 3D point of regard
~peye : 3D position of the eye (left or right)
d(t) : time-dependent scaling

5.3 Speeding up Maximum Computation: the Max-
Attention Texture

In a sequential approach to normalization, it is sufficient to store a
single maximum value and update that whenever a higher value is
computed. This, however, does not work when updating the atten-
tion values in parallel using the shader. An ad-hoc approach would
determine the maximum attention value per texture during the up-
date and then, in a post-processing step, find the maximum of all of
these object-local maxima. This, however, has two problems: First,
storage would be needed that scales with the number of attention
textures and second, the shader would run into concurrency prob-
lems when several parallel updates of the current maximum value
take place.

Therefore, our algorithm does not compute the maximum on a per
object basis, but per texture coordinate. For this it only requires
one additional texture the size of the largest Attention Texture being
used. The fragment shader (Listing 2) checks in the exitWithUpdate
function whether the current attention value exceeds the maximum
value over all textures for that coordinate using the Max-Attention
Texture and updates this texture if necessary. The maximum at-
tention value can now be determined using the parallel reductions
approach [Buck and Purcell 2004].

6 Technical Constraints and Optimizations

While the approach presented so far already provides real-time per-
formance for medium-sized scenes, the fillrate needed for updating
the Attention Textures can be a bottle-neck. A low precision of
the shadow maps can lead to visual artifacts. We therefore discuss
some options for optimizations.

6.1 Reducing the Fillrate

To reduce the fillrate, we added a standard viewing-frustum culling
based on bounding spheres to narrow down the set of target ob-
jects whose Attention Textures need to be updated. We also use
the effective size of the Gaussian distribution around the 3D point
of regard as a second optimizing criterion. Note that we need all
objects in between the viewing position and the 3D point of regard
to correctly compute the shadow maps, so we cannot just cull down
to the Gaussian.

Crowded areas with many smaller target objects could still degrade
performance. One way to further reduce the number of tackled pix-
els is back-face culling, which would ideally cut memory access in
half. As the standard OpenGL back-face culling is not compatible
with our optimizations and the binocular occlusion detection, we
implemented back-face culling in a custom geometry shader that is
applied between the vertex and the fragment shader.

6.2 Increasing the Precision of the Shadow Maps

A typical problem of shadow maps is that the precision of the depth
values is constrained by the restrictions of the OpenGL texture. If
precision is too low, false positives will lead to unrealistic atten-
tion distributions. While we use OpenGL textures of a very high
precision, the extension of the relevant scene between the near and
the far plane still has a significant effect on the net precision that
can be achieved. We optimize the near and far planes according to
the depth of the objects closest to the viewer’s position (near plane)
and the depth of the 3D point of regard (far plane) plus the effective
radius of the Gaussian distribution (see Figure 7).

Figure 7: Optimizing near and far planes for shadow mapping.

The next possible improvement would be using Cascaded-Shadow-
Mapping [Dimitrov 2007], Parallel-split Shadow Mapping [Zhang
et al. 2006] or Sample Distribution Shadow Maps [Lauritzen et al.
2011], which improve upon the precision of the shadow maps if the
presented approach is still not sufficient (e.g. with very large scenes
and very distant points of interest).

6.3 Precision of the Attention Textures and Number of
Supported Viewing Events

This leads us to the discussion of the accuracy and number of events
that can be supported by the Attention Textures. Precision is bound
to the format of the texture. On a single logical Attention Texture,

we use the single-channel high-precision format GL R32F sup-
ported by todays consumer graphic cards, providing a 32bit floating
point value.

The precision of the Attention Textures also limits the maximum
number of viewing events. If many viewing events are targeted at
the same pixel over a longer period of time, the limit of the tex-
ture’s floating point representation can be reached. With the normal
single-channel Attention Texture representation, the approach can
account for about 1 million viewing events on the same pixel. Af-
ter that, increasing numbers can still be represented, but with a loss
of precision due to rounding effects. However, with an eye tracker
running at 60 Hz, this problem raises only if viewers are staring for
4.6 hours at exactly the same pixel (given 8 digits of precision).

If this is actually a problem, then additional color channels could
be used to improve the range of the representation. This would,
however, mean that the shader has to do the maths to represent the
floating point value. By combining two channels, viewers could
then stare at the same position for about 53,000 years.

6.4 Optimal Resolution of Attention Textures and Tex-
ture Overlapping

An important factor determining the performance of the presented
approach is the size of the Attention Textures. In our own tests
we used textures sized 1024 × 1024 (4.2MB or 237 objects per
GB of memory). But if less accuracy is sufficient, decreasing the
textures to 512×512 or 256×256 significantly reduces the fillrate
and memory requirements, which can be used to either increase
performance or analyse more target objects at the same time.

The reduction of the texture size, however, comes at a cost (see
Figure 8): by reducing the size, the same number of texture coor-
dinates needs to be mapped to less and less pixels. This increases
the chance of overlapping mappings (red areas in Figure 8). It may
even happen that certain areas of the object’s surface might not be
mapped to valid texture areas any more, which will result in holes
in the visualized heat map.

Figure 8: If the size of an Attention Texture is decreased, this not
only affects the accuracy, but also might induce mapping problems,
highlighted here in red.

Overlapping texture mappings are also found in manually created
models: if several areas of an object show similar textures, the mod-
eler might decide to optimize texture usage by mapping different
regions of the object onto overlapping areas of the texture. While
this may help to save memory for the original object, the original
texture mapping coordinates can no longer be used for the creation
of the Attention Textures. As Figure 9 shows, the attention val-
ues attributed to one area of the object would then also show up on
every other surface area of the object that shared the same texture
coordinates.

This problem can only be solved by remapping the texture coordi-
nates so that they induce no overlays. This can be done either man-
ually or with the support of state-of-the-art modeling tools. At the

Figure 9: If the artist of an object has reused areas of the original
texture for different areas of the object, using the same coordinate
mapping may result in artifacts with our approach (see lower right
corner).

time being, our implementation checks for this problem and pro-
vides a warning, indicating the problematic areas (similar to Fig-
ure 8).

6.5 Reducing Number of Viewing Events

For real-time visualization, one option is to visualize the incoming
attention data as it comes, effectively showing the dwell time on
the target objects and not fixation data in the strict sense. As eye-
tracking data comes in with 60 Hz with our system, we have only
about 17 ms to update the heat map for the next frame. The second
option would be to wait for the more high-level fixation events and
only then update the visualization. As fixations start with duration
of about 90 ms and can go up to several hundred ms, the perfor-
mance, but also the latency of the visualization, would increase five
times or more. The presented shaders support both approaches by
setting the viewing duration of the viewing events accordingly.

6.6 Performance Restrictions based on Memory-
transfer between GPU and CPU

During normalization our approach needs to access the memory
buffers on the GPU to extract the current maximum attention value.
For this we use the function glReadPixels. However, to access the
buffer, CPU and GPU have to synchronize, which leads to a wait on
side of the CPU. To overcome this, we could also use Pixel Buffer
Objects (PBOs) to read the data asynchronously. Then, however,
by the asynchronous reading it could happen that the new global
maximum is not available for the rendering of the directly adjacent
frame. This results in a visualization that is actually representing
a slightly higher attention than what is represented in the Attention
Textures. Note that this is only an artifact of the real-time visual-
ization using the shader. The represented values in the Attention
Textures are always correct.

7 Conclusion

The presented approach for generating realistic 3D heat maps for
visualizing visual attention extends the state-of-the-art in several
ways. It can handle 3D scenes and, based on 3D point of regards,
provides more realistic results by respecting full and partial occlu-
sions. Our 3D model for attention spreading supports binocular
perspectives and depth of focus.

The target objects can also be pre-selected, as attention is stored
on a per-object level. This allows for covering large exhibitions in
which not the architectural details, but certain historic artifacts are
of interest. As the attention is stored object-centered in the texture
of the object, the presented approach can handle moving or even de-
forming objects without any problem. It is also, so far as we know,
the first approach that can handle this taking into account previ-
ous object transformations correctly. If, however, new vertices are
added to the object during transformation, it has to be ensured that
the texture mapping is preserved and new areas are added without
creating texture overlaps.

There are several ways to handle multiple viewers. A direct ap-
proach is to include all viewing events over all viewers in the com-
putation process. Alternatively, a set of Attention Textures can be
created for each viewer and Attention Textures for a specific object
can be aggregated by simply adding up the per-pixel values. This
way it is also easily possible to create visualizations for different
subgroups (based on gender, age, etc.).

One feature of using textures for representing the distribution of at-
tention an object has received is that it allows for an efficient anal-
ysis of aggregations over multiple objects. If one is only interested
in typical distributions of attention on a certain class of objects, for
example a series of signs or information tables with multiple in-
stances within a (digital) signage project, all instances could share
the same attention texture and data will be aggregated efficiently.

Based on a multi-texturing approach, the results can easily be made
persistent and used for high-quality renderings, as has been demon-
strated (see Figure 6). For the presentation of the visualization, our
approach no longer requires a special-purpose tool. The scenes with
augmented heat maps can, e.g., easily be uploaded and visualized
using WebGL on a standard website with current client devices.

For an evaluation of the performance of the system, please be ref-
ered to Pfeiffer and Memili [2015].

7.1 Future Work

Future research could evaluate the 3D model of attention spreading
and improve upon this, e.g., by taking the panum area into account.
In addition to that, the presented approach could be improved to
support transparencies and reflections.

Our next steps will be to merge the presented approach with our
EyeSee3D technology for eye tracking in 3D environments [Pfeiffer
et al. 2016].

Additional material for this paper is available online on the accom-
panying website [Pfeiffer and Memili 2016].

Acknowledgements

This research was supported by the Cluster of Excellence Cognitive
Interaction Technology ’CITEC’ (EXC 277) at Bielefeld Univer-
sity, which is funded by the German Research Foundation (DFG).

References

BLASCHECK, T., KURZHALS, K., RASCHKE, M., BURCH, M.,
WEISKOPF, D., AND ERTL, T. 2014. State-of-the-Art of Visual-
ization for Eye Tracking Data. The Eurographics Association.

BUCK, I., AND PURCELL, T. 2004. GPU gems, chapter ch. 37: A
toolkit for computations on GPUs. Addison-Wesley 2, 626.

DIMITROV, R. 2007. Cascaded shadow maps. Developer Docu-
mentation, NVIDIA Corp.

DUCHOWSKI, A. T., PRICE, M. M., MEYER, M., AND ORERO,
P. 2012. Aggregate gaze visualization with real-time heatmaps.
In Proceedings of the Symposium on Eye Tracking Research and
Applications, ACM, New York, NY, USA, ETRA ’12, 13–20.

EVERITT, C., REGE, A., AND CEBENOYAN, C. 2001. Hardware
shadow mapping. White paper, nVIDIA 2.

HAMMER, J. H., MAURUS, M., AND BEYERER, J. 2013. Real-
time 3D gaze analysis in mobile applications. In Proceedings of
the 2013 Conference on Eye Tracking South Africa, ACM, New
York, NY, USA, ETSA ’13, 75–78.

LAURITZEN, A., SALVI, M., AND LEFOHN, A. 2011. Sample dis-
tribution shadow maps. In Symposium on Interactive 3D Graph-
ics and Games, ACM, New York, NY, USA, I3D ’11, 97–102.

MAURUS, M., HAMMER, J. H., AND BEYERER, J. 2014. Realistic
heatmap visualization for interactive analysis of 3D gaze data.
In Proceedings of the Symposium on Eye Tracking Research and
Applications, ACM, New York, NY, USA, ETRA ’14, 295–298.

PFEIFFER, T., AND MEMILI, C. 2015. GPU-accelerated attention
map generation for dynamic 3D scenes. In Proceedings of the
IEEE VR 2015, IEEE, T. Hllerer, V. Interrante, A. Lcuyer, and
J. E. S. II, Eds., IEEE, 257–258.

PFEIFFER, T., AND MEMILI, C., 2016. Companion website to this
paper: http://etra2016heatmap.eyemovementresearch.com/.

PFEIFFER, T., RENNER, P., AND PFEIFFER-LESSMANN, N.
2016. Model-based real-time analysis of mobile eye-
tracking on static and dynamic three-dimensional scenes.
In ETRA ’16: 2016 Symposium on Eye Tracking Re-
search and Applications Proceedings, ACM Press. DOI:
http://dx.doi.org/10.1145/2857491.2857532.

PFEIFFER, T. 2012. Measuring and visualizing attention in space
with 3D Attention Volumes. In Proceedings of the Symposium
on Eye Tracking Research and Applications, ACM, New York,
NY, USA, ETRA ’12, 29–36.

POMPLUN, M., RITTER, H., AND VELICHKOVSKY, B. 1996. Dis-
ambiguating complex visual information: Towards communica-
tion of personal views of a scene. PERCEPTION-LONDON- 25,
931–948.

STELLMACH, S., NACKE, L., AND DACHSELT, R. 2010.
3D attentional maps: Aggregated gaze visualizations in three-
dimensional virtual environments. In Proceedings of the Inter-
national Conference on Advanced Visual Interfaces, ACM, New
York, NY, USA, AVI ’10, 345–348.

WOLFF, D. 2011. OpenGL 4.0 shading language cookbook. Packt
Publishing Ltd.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-
split shadow maps for large-scale virtual environments. In Pro-
ceedings of the 2006 ACM International Conference on Virtual
Reality Continuum and Its Applications, ACM, New York, NY,
USA, VRCIA ’06, 311–318.

