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1 INTRODUCTION

1 Introduction

"[...] the problems that are solvable the way tic-tac-toe is solvable lie within two or three
inches of the surface, and an ocean of problems deeper than these cannot be guaranteed
of solution."

- W. B. Arthur

Whether economics is an easy or a difficult science depends to a high degree on
the class of problems that researchers consider. The author of the quote understood
that the array of questions that are easily tackled is only a very small subset of the
questions that are of interest. Mathematics offers a large amount of tools, but even
though analytical instruments are a powerful device to understand countless economic
phenomena, in many areas they have sharp limitations, and sometimes their elegance
and intellectual appeal lets one forget that there is a world below this surface of the
ocean of problems. I want to illustrate the high potential of combining simulation with
the traditional mathematical instruments of economic theory and empirical analysis to
construct models, which are not only more realistic in the predictions they make, but
also in the way they operate, imitating a world of high complexity that keeps constantly
computing itself.

In the Guidelines published by the Association of German Engineers, simulation is
defined as the replication of a system with all its dynamic properties in an experimental
model in order to gain knowledge, which can be transferred to reality (VDI [2013]). I
am using the engineers’ definition of simulation not because it is specifically different
from others, but because engineering is probably one of the disciplines where it has
been applied most extensively. Simulation is often understood in conjunction with
the use of computers. Strictly speaking, this does not always have to be the case. In
the early 1950s, a few works were highly published in which authors solved problems
by building electrical circuits to asses the dynamic behavior of certain variables (see
e.g. Morehouse et al. [1950] and Enke [1951]). The rough increase in computing
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1 INTRODUCTION

power, which has happened over the last decades has made simulation more powerful
than it has ever been. This trend has been further amplified by the introduction
of object-oriented programming languages, which started their triumph after C++
had been made publicly available in the beginning of the 90s. Featuring objects,
which can independently assess and modify each others properties, object-oriented
programming is particularly well suited for simulation of economic models. As one
might have guessed, these methods are going to be heavily applied in this work.

In econometric models or models of economic theory with an empirical component,
simulation can be used to validate ideas and conjectures about solution properties.
More importantly, models can be estimated to fit empirical data sets. This is done in
the first chapter of this dissertation. In particular, an interior point solver is used to
solve a very large non-convex optimization problem.

Together with my coauthor, I try to find the best possible stochastic model de-
scribing the outcomes of tournaments of a set of pairwisely compared objects. The
interpretation of these objects being sports teams comes very natural. We assume a
transitive relation between the respective team strengths and formulate a mathemati-
cal concept for expressing stochastic transitivity in a set of constraints on the winning
probabilities in our model. Maximizing the likelihood of a particular tournament (or
"season") to have happened under these constraints turns out to be manageable if one
fixes the ranking of teams, but highly complicated if it is endogenized. After providing
a theoretical examination of the optimization problem and relating it to existing prob-
lems from the literature, we present a branch and bound algorithm which is able to find
the correct ranking for sets of about 11 or 12 teams. For larger leagues a tabu search
algorithm being able to find "good" solutions in short time periods is discussed. In the
empirical section of the paper, we apply these algorithms and test in addition for the
relative performance of some popular ranking methods. This investigation includes a
specifically designed hypothesis test that assumes the correctness of one ranking scheme
before simulating a large set of seasons to find out whether this assumption was correct
in the first place. We find that the superiority of a ranking scheme highly depends on
the type of sport as well as the form of the tournament that is used.

Lacking either the branch and bound algorithm or a modern computer it would
not be possible to gauge the winning and tying probabilities of for instance the Aus-
trian Bundesliga. Hereby, the chapter illustrates how an algorithmic reflection can be
combined with computing power to find out things that seemed inaccessible.

Bringing econometric models closer to reality by applying elaborate algorithms
to enhance estimation procedures, artificially generate test statistics and undertake
other tasks on large data sets has long been understood as being the main application
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1 INTRODUCTION

of simulation within economics. Such a view can only be held in conjunction with
the opinion that standard economic models, including perfectly rational agents who’s
expectations are designed with the purpose of being correct, describe the reality in
a satisfying manner. Such models assume that every individual is informed about
everybody else and has a perfect knowledge about the future, leading to cleared markets
and fulfilled expectations. This static perspective is strictly limited to the consideration
of equilibria, often ignoring if or how the system would move towards them or what
would happen outside. Agent based computational economics is designed to fill this
gap, by setting up an economy as a collection of possibly heterogeneous individuals,
who have certain limitations concerning their mental capabilities or the information
they posses. Hereby models are not only enhanced in their realism, but they are
generalized and can answer a broader set of questions.

In the second chapter of this work, I apply this idea to the discipline of New
Economic Geography (NEG). NEG models explain empirically observed agglomeration
phenomena by setting up multi country models, combining mobile and immobile factors
to attain circular causalities concerning their relocation. The drawback is that most
of the works in this area exclusively consider an equilibrium context of symmetric and
asymmetric solutions. Fowler [2007] was the first one to build an agent based model,
which is also defined out of the static equilibria. I follow his idea of augmentation,
but take as a basis the model by Baldwin [1999], which seems, because of labour
immobility, a lot better suited for european applications. The goal is to improve the
model by substituting perfect foresight concerning future capital returns in favor of a
perceived i.i.d. and later an AR1 process. This brings the necessity to make use of some
ideas from the optimal consumption (also known as "buffer stock saving") literature.
By means of backward induction it is possible to determine optimal consumption as
a function of cash on hand. An approximation of the optimal function allows for the
derivation of some analytic results concerning agglomeration. Towards the end of the
paper, the model is generalized to a world of more than two regions. Apparently not
only preferences and trade barriers play a role, but also the geometric structure of the
global map.

When explicitly considering the additional dimension of time, economic models can
become unhandy very quickly. In dynamic models in which agents adapt, learn, or
predict, fully exhausting the instruments from the theory of dynamical systems is of
particular significance. If there are still open questions, it is equally important to utilize
numerical methods.

The third chapter takes place on a more abstract level, taking a narrower per-
spective to more directly address the problems I see with standard economic modeling.
Usually, economic agents are assumed to deduce the future from their knowledge about
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1 INTRODUCTION

the problem definition, as well as their understanding that others do the same. Individ-
uals are designed like that because abstracting from mental models in favor of a godlike
deductive ability makes life very easy for those who set up the models. However, cog-
nitive psychology shows us that human brains mainly work by association. Our minds
collect and compare patterns that we observe. Especially in situations of complica-
tion, when the human intellectual apparatus ceases to cope, we set up a competition
between hypothetical predictive models to describe the environment. This very idea
is in the focus of Brian Arthur’s El Farol Bar Problem (see Arthur [1994]), which was
later generalized as the so called Minority Game, describing the repeated competition
within a group of agents for a scarce recourse. It turns out that complex dynamics
are robustly generated. However, the causes of these dynamics are not yet very well
understood. In this third chapter, I want to find out, whether the driving force of the
rich dynamics is the predictive behavior of the agents alone. I set up a game theoretic
model, in which repeatedly randomly matched players try to predict their opponents’
behavior by using their personal past experience. It turns out that there is a qualita-
tively different answer to this question for two and three or more player games. For a
single period horizon it is partly possible to arrive at these answers analytically, which
is quite tedious, becoming apparent in the high proportion of proofs in this chapter.
To arrive at the other part of the answers, I again use simulation to calculate time
paths, pre-image plots and bifurcation diagrams. 1 The theory of dynamical systems
has come a long way, but it is just yet not powerful enough to be able to describe the
global behavior of the kind of nonlinear two dimensional delay system I face in this
problem. However, the applied numerical methods help to aid the intuition for what is
going on in the more general cases. It is certainly true that with these instruments we
can only state results for sure for a grid of parameter values, and never for an infinite
set. But I do not only deny the alternative of groping in the dark for these more com-
plicated cases, but I consider it a very important step to gain knowledge of a system’s
behavior in this manner.

In the fourth part of this work I move closer to the original setup of the classical
El Farol Bar problem, in which one observes apparently persistent fluctuations of the
attendance behavior around the bar’s capacity. Whether these fluctuations mirror a
chaotic process, an attractor of a cycle of enormously large period, or rather a very
slow convergence to a steady state solution has not been established yet. I make a first

1For some of these tasks I applied the simulation tool "MacroDyn" (see Böhm and Schenk-Hoppé
[1998]), which I was very happy to work on as a developer together with Prof. Böhm. This tool provides
a wide range of very powerful instruments for the numerical analysis of single and multidimensional
dynamical systems in discrete time. I took Macrodyn from a pure linux console program to a cross
platform application with a universal graphical user interface.
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1 INTRODUCTION

step to a better understanding of the very complicated dynamical system by analyzing
the conditions concerning the existence of a steady state solution. The relative car-
dinality of the sets of predictor endowments with and without steady state solutions,
representing the probability of its existence when randomly assigning prediction rules
to agents, is calculated.

The motivation for this part is particularly nice, because it tries to find an answer
to a question which was only possible to ask using simulation.

It is still a tough task for authors using these new methods of interest to gain wide
acceptance in the community of economists. In this dissertation I want to take up the
cudgels for the targeted use of technology in combination with algorithmic mathemat-
ics. Even very simple dynamic models often have properties that defy any explanation
when purely using traditional analytical methods. I intent to demonstrate how sim-
ulation can aid intuition. The peculiar thing is that this intuition can potentially be
fed back into mathematical and economical research to further boost the progress, the
progress in answering questions of economic concern. The purpose of simulation is to
not being forced to compromise on the substance of them.
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2 PROBABILISTIC TRANSITIVITY IN SPORTS

2 Probabilistic Transitivity in Sports

2.1 Introduction

In many situations we are confronted with data about a certain set of objects which
only include an array of comparisons about two of these objects at a time. Then all
too often the task arises to find the "fairest" or "most legitimate" ranking among all
of the objects in the considered set reaching from the "best" one to the "worst" one.

The probably most popular application of such paired comparisons is sports. In
most sports games two opponents face each other in a duel. The result can be a win
for one of the teams or, depending on the sport, also a tie.

An important attribute of a ranking is that it expresses a transitive relation between
all of its objects. This means that if object or team A precedes B and B precedes C, it
automatically implies that A precedes C. In contrast to this, paired comparison data
can include circular relations, which seem to be inconsistent with this property. In a
tournament it is possible that A beats B, B beats C, but C beats A. It is easy to
imagine that as the number of teams rises, the probability of the occurrence of such
inconsistencies rapidly increases. In the literature many suggestions have been made to
overcome these inconsistencies and find a ranking with a good fit according to different
concepts. A good overview of the classical models for obtaining rankings from data sets
gives Brunk [1960]. One approach that deserves attention is the one proposed by Slater
[1961]. Here the observed number of inconsistencies (in the sense mentioned above) is
minimized. This nontrivial problem later became known as a particular form of the so
called linear ordering problem. For a good survey on the linear ordering problem see
for example Charon and Hudry [2010].

The major issue concerning the mentioned approaches is that despite all of them
having some intuitive appeal, they seem to be rather arbitrary in finding the "right"
ranking. The difference of our approach is that we assume that there actually exists
a correct ranking. Of course we cannot directly observe it, but we can try to find the
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2 PROBABILISTIC TRANSITIVITY IN SPORTS

ranking which is most likely identical to it. To be more precise, we first of all make
the assumption that the outcome of each match follows a trinomial distribution, with
a fixed probability for a loss, a tie, and a win. These unobservable probabilities fulfill
a certain form of transitivity. Applying the respective conditions we can then use a
likelihood function to gauge the chance of the observed set of results given a particular
set of probabilities. Maximizing this likelihood function while fulfilling the transitivity
conditions answers the question about the most likely correct ranking.

In the literature there can be found plenty of works using the concepts of the so
called weak and strong stochastic transitivity. These are definitions, which transfer
the very intuitive concept of transitivity to the world of probabilities. Because in our
model we consider ties and also home/away asymmetries, we are forced to define our
own concept which goes beyond WST and SST.

At this point the optimization problem, which is the main object of the paper, is
completely defined by the set of probabilities for three outcomes for each game, the
likelihood function which shall be maximized, and finally the set of constraints im-
posed by the stochastic transitivity defined above. We are not the first authors trying
to find a maximum likelihood ranking while applying probabilistic transitivity condi-
tions. Thompson and Remage [1964] propose a similar problem of ranking pairwisely
compared objects. The analysis is extended in Singh and Thompson [1968] by the
incorporation of ties. However, Thompson uses only constraints of WST.2 This con-
tributes a lot to the simplicity of the problem and enables Decani [1969] to formulate it
as a linear program and later propose in Decani [1972] a branch and bound algorithm
to solve the problem even more efficiently.

Unfortunately the new set of constraints make things much more complicated. In-
creasing the number of teams leads to a huge number of constraints. And it is straight-
forward to see that the space of transitive probability sets of a particular dimension is
not convex. So it is not a surprise that state of the art solvers do not succeed in finding
the optimal solution to this non-linear, non-convex problem as soon as the number of
teams is increased to more than 5 or 6.

This is why we split up the problem in two parts. The first one is to find the
probability sets and the likelihood for a fixed ranking and the second one is to find the
ranking with the greatest likelihood.

When the goal is to find probabilities for a fixed ranking, while still sticking to the
transitivity definition, the constraints become much simpler.

The problem we arrive at is now very close to the so called isotonic regression
problem in which a set of probabilities needs to be estimated, while one knows their
order according to their magnitude (see Barlow and Brunk [1972] or Van Eeden [1996]

2After the incorporation of ties he naturally can’t use the WST constraints, but has to alter his
concept. However, it still differs substantially from ours which makes a comparison very difficult.
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2 PROBABILISTIC TRANSITIVITY IN SPORTS

for an overview). A reference much closer to the subject of this paper is Brunk [1955].
Here the random variables (in our case the match results) are assumed to follow a
distribution belonging to an exponential family. The single distribution parameter
follows a function depending monotonically on potentially multiple variables. These
variables would in this work correspond to the two teams that are playing. The very
efficient method developed in this paper later became known as the pool adjacent-
violators algorithm (PAVA). The major difference of Brunk’s paper to our approach
is that the trinomial distribution we will be using does not belong to the exponential
family he is referring to. It also has not one but two distribution parameters. So we
are very unfortunate to not being able to apply the PAVA. To be able to estimate not
only ordered binomial but also ordered multinomial distribution parameters Jewell and
Kalbfleisch [2004] developed a modification of this algorithm, the so called m-PAVA.
This algorithm is technically able to solve our first problem, but turns out to be very
inefficient and slow. But there is an alternative. Lim et al. [2009] find that a program
of the kind we are facing can be formulated as a geometric program, which then can be
transformed into a convex program. By applying state of the art interior point solvers,
we are then able to find a solution very efficiently.3

The second part of the problem is more complicated. If we increase the number of
teams, the possible number of orderings rises very quickly. For 4 teams there are 24
possibilities, for 5 teams there are 120 and for 18 teams there are more than 6× 1015.
But even if we’re not able to find the optimal ranking, we are still able to compare
different rankings created by the application of empirically relevant ranking systems.
And this is exactly what we do in the empirical subsection of the paper. Among the
candidates are the classical "three points for a win" and "two points for a win" systems
from soccer and also the Elo system applied e.g. in chess.

To be able to make a good judgment about the true quality of the systems when
applied to different sports, we develop a statistical test. It assumes the trueness of the
null hypothesis stating that one of two ranking systems under consideration is able to
find the correct ordering. Then we estimate all the probabilities and simulate a test
statistic. Combined with the empirically observed likelihoods, we are then ideally able
to reject the null hypothesis which lets us state that here the considered system is not
able to generate the correct ranking.

The paper proceeds as follows. In subsection 2.2 the formal model is introduced. In
subsection 2.4 the problem solution for a known ranking is described, before in part 2.5
we discuss strategies for finding optimal rankings. The next two chapters then describe
the sports data and provide a thorough empirical analysis. Section 2.9 concludes.

3In Lim et al. [2009] investigations geometric programming is more than 150 times faster.
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2 PROBABILISTIC TRANSITIVITY IN SPORTS

2.2 Setup

All sports described above have in common that n teams are competing in a number
of repeated one-on-one games. The results of these games should be aggregated to one
final complete ranking. Let pij be the probability that team i beats team j.
Naturally, we must have ∀ i, j ∈ {1, . . . , n}

pij ∈ [0, 1]

pij + pji ≤ 1 (1)

It can be observed that playing at home (meaning in i’s stadium) and playing away
makes a difference to the winning probabilities. Therefore we introduce different prob-
abilities for at home and away games: pijh is the probability that i beats j at home and
pjia that team j wins against i at i’s stadium.
Therefore (1) changes to

pijh + pjia ≤ 1 ∀i, j ∈ {1, . . . , n}

Since in many sports there exists the possibility of a draw, there is no strict equality.
In fact, the probability of a draw is

qijh = qjia = 1− pijh − pjia.

In this paper, we want to make only one assumption concerning a set of those probabili-
ties. This assumption is based on the concept of weak and strong stochastic transitivity,
which formalizes the very intuitive thought that if team i is better than team j and j
is better than k then i has to be better than k, as well. In a model of symmetric paired
comparison without ties this can be translated fairly easily into stochastic terms.

pij ≥ 1/2 ∧ pjk ≥ 1/2 =⇒ pik ≥ 1/2 (WST)

pij ≥ 1/2 ∧ pjk ≥ 1/2 =⇒ pik ≥ max{pij, pjk} (SST)

Where (SST) is equivalent to

pij ≥ 1/2 =⇒ pik ≥ pjk.

The concept of stochastic transitivity has been widely used in the literature on paired
comparisons, especially in the 60s and 70s (see e.g. Tversky [1969], Chung and Hwang
[1978], Morrison [1963] or Davidson and Solomon [1973]).

The introduction of ties and in addition to that the introduction of a home/away
asymmetry forbid to use this concept directly. (SST) is best interpreted by saying "if
team i is better than team j, it has to have a higher chance of beating any third team
k". But in a world with draws and home advantage we cannot interpret "being better"
as pij > 1/2. Thats why one has to alter this point. This is done in the following
definition.
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2 PROBABILISTIC TRANSITIVITY IN SPORTS

Definition 1 (Transitivity). A set of probabilities will be called transitive if the fol-
lowing holds for every i, j, k, l ∈ {1, . . . , n}, x, y ∈ {a, h} and ∃i′, j′, k′, l′ ∈ {1, . . . , n}:

pikx ≥ pjkx ⇔ pily ≥ pjly

pkix ≥ pkjx ⇔ pliy ≥ pljy

pi′k′x > pj′k′x ⇒ pl′j′x > pl′i′x

(2)

The set of transitive probability sets will be called T .

The first proposition shows that our concept is in fact a generalization of SST.

Proposition 1. Definition 1 is, when assigning 0 to all draw probabilities and ignoring
away/home differentiation, equivalent to (SST).

Definition 2 (Transitive Ranking). A ranking will be called transitive if for all i ranked
above j the following holds:

pikh ≥ pjkh, pkih ≤ pkjh, pika ≥ pjka, pkia ≤ pkja ∀ k ∈ {1, . . . , n}\i, j

The set of probability sets according to this definition will be called T ′.

The fact that a transitive ranking has a set of transitive probabilities and every
set of transitive probabilities has a transitive ranking is established in the following
Proposition.

Proposition 2. A set of probabilities P is in T if and only if it is in T ′.

For the proofs of propositions 1 and 2 see appendix A.

The structure of the constraints and hereby the problem we have to solve becomes
clearer, if we write down the set of pijx values in matrix form and add the constraints
using one particular ranking.

∗ ≤ p12h ≤ p13h ≤ · · · ≤ p1nh

≤ ≤ ≤ ≤ ≤

p21h ≤ ∗ ≤ p23h ≤ · · · ≤ p2nh

≤ ≤ ≤ ≤ ≤

· · · ≤ · · · ≤ · · · ≤ · · · ≤ · · ·

≤ ≤ ≤ ≤ ≤

pn1h≤ pn2h≤ pn3h≤ · · · ≤ ∗


,



∗ ≤ p12a ≤ p13a ≤ · · · ≤ p1na

≤ ≤ ≤ ≤ ≤

p21a ≤ ∗ ≤ p23a ≤ · · · ≤ p2na

≤ ≤ ≤ ≤ ≤

· · · ≤ · · · ≤ · · · ≤ · · · ≤ · · ·

≤ ≤ ≤ ≤ ≤

pn1a≤ pn2a≤ pn3a≤ · · · ≤ ∗


Figure 1: Transitivity matrices for home and away probabilities
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2.3 The Optimization Problem

By assumption, each outcome in a set of paired comparisons is trinomially distributed.
The probability distribution is

Pr{xij = wij} = p
wijh
ijh p

wjia
jia (1− pijh − pjia)mij−wijh−wjia (3)

where wij is the vector consisting of the elements wijh and wjia. xij is the analogously
defined vector of a realization of the corresponding random variable. (3) tells us the
probability of a certain outcome of a game between two particular teams in one par-
ticular stadium. By taking the exponential of the natural logarithm of the left side, we
can write the above equation as

Pr{xij = wij} = exp(wijh ln(pijh) + wjia ln(pjia)

+ (mij − wijh − wjia) ln(1− pijh − pjia))

Let

F [xij, pij] := wijh ln(pijh) + wjia ln(pjia) + (mij − wijh − wjia) ln(mij − pijh − pjia)

The likelihood of a set of particular results to occur will be

Pr{(xij, . . . , xi′j′) = (wij, . . . , wi′j′)} = exp(F [wij, pij] + · · ·+ F [wi′j′ , pi′j′ ])

Let E be the set of all valid (i, j) combinations E = {(i, j)|i, j ∈ {1, ..., n}, i 6= j}.
Then (2) implies that, in order to maximize the likelihood of a set of outcomes, we
have to solve the following maximization problem

max
pij

J [p] =
∑

(i,j)∈E

F [wij, pij] s.t. {pijx | (i, j) ∈ E, x ∈ {h, a}} ∈ T

This is a rather complicated optimization problem, first because the objective func-
tion (the log of the likelihood function) is not linear, and second because we have a
huge number of non-linear constraints, which make the space we are dealing with highly
convoluted and non-convex. We can achieve convexity by fixing a particular ranking
of teams. In this case we face a total number of 2(2(n − 2)n + (n − 1)) constraints.
Note that a simple transformation of parameters cannot help us making the problem
convex. Also it cannot make the problem linear after fixing a ranking. In this highly
simplified case, where the untransformed constraints can be expressed in a linear form,
a logarithmic transformation would make the objective function linear but take away
linearity from the constraints. More details on this will follow in subsection 2.4.2.
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2.4 Optimization under a known ranking

Note that the probabilities depicted in Figure 1 are only the constraints that apply for
one ranking. So the optimization problem can be split into first finding the optimal
(i.e., likelihood maximizing) probabilities that satisfy the monotonicity constraints from
the matrix and second finding the best ranking. It should become clear that if we
consider the indices as variables of the functions ph(i, j) and pa(i, j), then this function
is monotone non-increasing in the first variable and monotone nondecreasing in the
second one. In the considered case the two matrices are only insofar dependent on
each other as the sum of an element of the upper right half of the first matrix depicted
in Figure 1 and the corresponding element of the bottom left half of the second matrix
has to be less than or equal to unity.

2.4.1 Transitivity without draws

Now, let us again compare the original problem to the one in the much simpler case
without ties. Here, the problem of estimating the probabilities is much easier. Given the
above assumptions, the number of wins when two teams play each other a particular
amount of times follows an elementary binomial distribution. This instant allowed
Brunk [1955] to develop an algorithmic approach, building the foundation of what
later became known as the Pool Adjacent Violators Algorithm (PAVA). See also Brunk
[1960] for an application to paired comparisons. It follows a short description of the
estimation procedure.

A lower interval is the set of all points (i, j) for which i ≥ i′, j ≤ j′. So it includes a
point in one of the above matrices as well as all the points in its south-west quadrant.
An upper interval is analogously defined. A lower layer is a union of lower intervals
and an upper layer is a union of upper intervals.

The procedure is now to find the largest upper layer within which the average
number of wins is maximized. That is, we have to find an upper layer with the property
that the number of wins divided by the number of games it comprises is maximal.
For each pij in this layer the maximum likelihood estimate under the monotonicity
constraints we defined is this average number of wins. Next step is to repeat the
procedure on the remaining set of the matrix of results.

To illustrate the approach, consider the following example of a tournament of 4
teams in which each two teams played each other once. (For simplicity we only consider
home games of the row teams, here.)
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Figure 2: PAVA example: Result matrix and p-Matrix

On the left there is the matrix of tournament results. The solid line shows the
first upper layer with an average number of wins of 3/5, giving us the p-value listed
in the right matrix. The second layer includes all the numbers above and to the right
of the dashed line. Here the average value is 1/2 and so on. Having the p-Matrix at
hand, it is straightforward to calculate the maximum likelihood of the tournament to
be 0.03888.

Please note that this algorithm, while being very efficient at finding the probabilities
for a fixed ranking, does not help finding the optimal permutation of the teams. To
find it, one is still forced to apply this algorithm 4! = 24 times for this example.

Unfortunately including the chance of draws forbids to use this very simple and effi-
cient procedure. In the next subsection we show how to arrive at a solution nonetheless.

2.4.2 Solution process for the case including draws

Again focusing on the part of the problem where the ranking is already fixed, allowing
for ties makes the solution procedure much more complicated. Now, the task is not
to estimate ordered binomial, but rather ordered trinomial distribution parameters.
Jewell and Kalbfleisch [2004] developed an extension of the PAV algorithm discussed
above. The Authors call this algorithm the modified- or m-PAV algorithm. In the
process the problem is iteratively broken down into many one dimensional optimization
problems. Since the number of these subproblems grows very quickly with the number
of teams and also the number of adjacent violators, the required computational effort
also does. This is the main reason for Lim et al. [2009] to reconsider the problem,
finding that it can be formulated as a geometric program. Then it can be transformed
into a convex optimization problem, for which one can find a global solution very
efficiently with the help of e.g. interior-point algorithms. Lim et al. [2009] compare the
computational efficiency of the two approaches and find that geometric programming
is much faster than the m-PAV algorithm. These findings facilitate the choice for us
in this paper.

Let us take a look at it in detail. We define wijh to be the empirically observed
number of times team i beats team j at home and tijh = tjia as the number of times
team i ties team j. Let mij be the total number of games between i and j at i’s
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stadium. Consider the optimization problem for a fixed ranking in its raw form.4

min
p

∏
(i,j)∈E

p
−wijh
ijh p

−wjia
jia (1− pijh − pjia)−(mij−wijh−wjia)

s.t.
pijx
pikx
≤ 1 ∀ (i, j) ∈ E, (i, k) ∈ E, j � k, x ∈ {h, a}

pijh + pjia ≤ 1

pijx ≥ 0

(4)

This is a geometric program. The objective function as well as the left side of the first
constraint are monomial and the left side of the second constraint are polynomials. The
third constraint reflects the fact that the domain of our objective function is positive,
as in all geometric programs. The program can easily be transformed to a convex
optimization problem.

min
p

∑
(i,j)∈E

−wijh ln(pijh)− wjia ln(pjia)− (mij − wijh − wjia) ln(1− pijh − pjia)

s.t. ln(pijx)− ln(pikx) ≤ 0 ∀ (i, j) ∈ E, (i, k) ∈ E, j � k, x ∈ {h, a}
ln(eln(pijh) + eln(pjia)) ≤ 0

It is straightforward to show that the logarithm of a posynomial is convex in ln(x),
which proves the fact that this is indeed a convex program. To solve this kind of
program we make use of the software package IPOPT (see Wächter and Biegler [2006]).
In addition to the program it requires the input of the Jacobian and Hessian matrices
of the constraints. It then applies an interior point algorithm and solves our problem
very efficiently, given a fixed ranking. This allows us to compare different ranking
systems.

2.5 Ranking methods

2.5.1 The Linear Ordering Problem

At this point, before proceeding with our efforts of finding solutions to the proposed
problem, it makes sense to consider a related, but as we will see, clearly different prob-
lem. As one of the classical combinatorial optimization problems the linear ordering
problem (LOP) attracted many authors resulting in a huge amount of literature on it.
See for example Marti and Reinelt [2011] for a good introduction to the problem as
well as a review of suitable algorithms. Also feel referred to Charon and Hudry [2010]
for a detailed survey.

If one is given a complete directed graph Dn = (Vn, An) with arc weights cij for
every ordered pair (i, j) ∈ Vn × Vn, the linear ordering problem consists of finding

4The only change made is the conversion to a minimization instead of a maximization problem.

17



2 PROBABILISTIC TRANSITIVITY IN SPORTS

an acyclic tournament T (which corresponds to a permutation of the set of objects
or teams), which maximizes the sum of the arcs which are in agreement with the
direction of the arcs from Dn. So the sum

∑
(i,j)∈T cij has to be maximal. Equivalently

one could formulate the problem as minimizing the so called remoteness corresponding
to minimizing the arc weights pointing in the opposite direction.

A more illustrative representation of the problem is the maximization of the sum
of superdiagonal elements in a matrix by manipulating the row/column ordering. This
is the so called Triangulation Problem.

The reader might already be able to grasp a sense of similarity here. To establish a
direct connection between the LOP and the problem dealt with in this paper, consider a
situation where we fix the probabilities of wins and losses at homogeneous values below
and above the diagonal of the matrix independently of which teams are in question.
This means we set pijh = ph above diagonal and pijh = p

h
below it and analogously for

the away probabilities. Let us consider the case where ph > p
h
and pa > p

a
. Remember

that the goal is to maximize∑
(ij)∈E

wijh ln(pijh) + wjia ln(pjia) + (1− wijh − wjia) ln(1− pijh − pjia)

=
∑

(ij)∈E

wijh ln(ph) + wija ln(pa) + tijh ln(1− ph − pa)

+
∑

(ij)∈E

wijh ln(p
h
) + wija ln(p

a
) + tijh ln(1− p

h
− pa)

where E and E represent the sets of elements above and below the diagonals, respec-
tively.

The results of a particular team in his two games against a particular opponent
makes a certain contribution to the sum. This contribution might be higher because
it is multiplied by higher probabilities if the records are superdiagonal. So we are
confronted with a triangulation problem just like the one described above. Many
Authors suggest an application of the LOP in sports rankings (see e.g. Marti and
Reinelt [2011]). And since it indeed seems well suited for our purposes, we will include
it in the analysis.

2.5.2 Branch and Bound algorithm

Branch and Bound Algorithms are particularly well suited for combinatorial optimiza-
tion problems. As opposed to the other methods we are proposing, this one leads with
certainty to the optimal ranking. For an early survey on Branch and Bound methods
feel referred to Lawler and Wood [1966].

The following steps describe the execution of the algorithm:
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1. Take the next team from the list of all teams

2. Put it in the list of previously selected teams at each possible position

3. For each position calculate an upper bound L above which the likelihood cannot
rise going further down the tree (i.e. after all teams were inserted)

4. Leave the team at the position with the highest upper bound

5. If all teams are inserted go to 6., otherwise go to 1.

6. Compare the likelihood to the best one found so far

7. Cut of the tree at all nodes where L is below the best likelihood

8. Go to the best of the lowest hanging nodes that could not be deleted and start with
1. from there

Before asking how the upper bound estimate L is calculated, lets first focus on the
procedure itself. To understand it better, consider a simple example of three teams
"a" "b" and "c".

a(0)

ba ab(-1.3) (0)

cab bca bac(-2.4) (-1.9) (-1.2)

Figure 3: Branch and Bound Algorithm: An example

We start by inserting team "a". The upper bound for the log likelihood at this
point is still 0, which is indicated in brackets in Figure 3. Then team "b" is added
at each possible position. We see upper bounds of -1.3 and 0, respectively. So we
continue by leaving "b" at the second position and then insert team c at each possible
location. Since the example only includes three teams, we can now calculate the value
of the real objective function instead of calculating L the way it was done previously.
The highest value of the objective function is found using the ordering "bac". This
value of -1.2 now enables us to cut of all hanging nodes, which have an upper bound
below -1.2. So we cut of the tree at "ba", since there is no way, we could get a better
likelihood going down the tree from this node. It is easy to see how the procedure
can save computational effort (even in this tiny example) compared to calculating the
MLE for all permutations.
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The upper bound L is calculated as follows. First the optimization problem (for a
fixed ranking) is applied to the teams that have been inserted so far.

Lemma 1. Adding an additional team into an existing ranking without changing the
relative order of the already existing teams can not increase L.

Proof. It is trivial to see that adding a variable (team) to the maximization problem
without adding additional constraints (results) does not change the maximum like-
lihood (i.e., we are multiplying by 1). Now, adding additional constraints without
changing the objective function or changing the other constraints can never increase
the maximum likelihood and therefore the new L has to be less or equal to the L with
1 team less.

At this stage we could already use this maximum likelihood of the considered subset
of teams for L. But there is a way to reduce the upper bound even further and
thereby make the algorithm a lot more efficient. For each team that is still pending
to be inserted we already know a subset of the constraints that will be applied to the
corresponding probabilities when going further down the tree, no matter where this
particular team will be inserted. Consider a situation where teams 1, ..., k have already
been inserted. Now, for each team l ∈ {k + 1, ..., n} we know that pilx ≤ pi′lx and
plix ≥ pli′x for every i, i′ ∈ {1, ..., k} and x ∈ {h, a} such that i is ranked above i′. For
k = 3 this is depicted in Figure 4.

Figure 4: Calculation of the upper bound L

For every team that has not been inserted yet, we know this subset of constraints. So
we have another optimization problem for each team. The results of these optimization
problems (, having the form of log likelihood values) can be added to the value L.

As mentioned, the algorithm leads for sure to the optimal ordering. The drawback
is that despite of the fairly sophisticated upper bound that we are suggesting, it is
still not efficient enough to be applied to tournaments with more than 11-12 teams5.
Nevertheless the branch and bound algorithm deserves to be included in the empirical
subsection of this paper.

5Depending on the structure of results in the tournament, as well as the users patience.
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2.5.3 Tabu Search

The third ranking algorithm we are suggesting is a heuristic search method. The
advantage of tabu search lies in the combination of local search and a diversification
mechanism. The local search systematically browses through neighborhood solutions,
checking for a possible improvement of the objective value. That the algorithm doesn’t
get stuck in local optima is assured by a memory structure, avoiding previously visited
regions of the solution space, giving a tendency for diversification. A reference with a
related application is Laguna et al. [1999].

The algorithm works as follows:

1. Start from a randomly generated order of teams (call it ρ)

2. Calculate the maximum likelihood for the current ranking L(ρ)

3. Randomly select a team that is not on the "Tabu List" and remove it from the order

4. Insert the team at position i and calculate difference between the maximum likeli-
hood of the new and the original ranking: MoveV alue = L(ρ′)− L(ρ)

5. Repeat 4. for 1 ≤ i ≤ n except for the original position

6. Insert the team at the position with the highest MoveV alue

7. Put the team on the "Tabu List" so that it won’t be selected for the next "TabuTenure"
iterations

8. Go to 2.

Basically what the algorithm does is taking a team from the ranking and trying out
every possible position for it, except for the original one. Important is that the best
among the new positions is selected even if the "MoveV alue" is negative. Different
convergence criteria are possible for the procedure. Since in our analysis the computa-
tional effort in each iteration is fairly large, we use a fixed number of iterations for the
algorithm, so that we can best control the amount of time it takes for the algorithm
to finish.

2.5.4 Popular ranking methods

Finally, we want to take a more practical approach and compare different ranking
systems, which have been used in different fields of sports. We chose the 3 point
system (also known as "Three points for a win"), which awards zero points for a loss,
one point for a draw and three points for a win. The sum of the points together with
the goal difference as a tie breaker then decides upon the ranking. This system has
been used in most soccer leagues since it was officially adopted in 1995 by FIFA.6

6England introduced the system already in 1981. The first time it was used internationally was in
the 1994 World Cup finals.
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Before the 3 point system was introduced, the analogously structured 2 point system
had been widely used in soccer. Here the only difference is that two instead of three
points are awarded for a win.

These two systems are fairly easy to apply and (unfortunately) also very similar to
each other. So as a third candidate for a ranking scheme, we use the Elo rating sys-
tem. The Elo rating system is a system invented by Elo [1978] originally intended as a
rating system for chess. Today it is not only used as for different chess organizations,
including the FIDE and the United States Chess Federation, but also the European
Go Federation, many different computer games and even the National Collegiate Ath-
letic Association, the organization which is responsible for the organization of many
American college sport programs, notable college football and college basketball. The
main differences to the three points for a win is that it factors in the strength of the
opponent: winning against a strong opponent yields more points than winning against
a weak one. This results in the major weakness for our needs: a relatively high number
of games is needed to give meaningful results and the order in which the teams play
matters a lot.

2.6 Comparing the explanatory power of rankings

To further enhance our comparative analysis of ranking systems, we will apply a statis-
tical hypothesis test. In this test two ranking systems are compared, call them system
a and system b. We solve problem (4) for both rankings. The p-matrix calculated with
the constraints generated by one of the rankings, say system a, will yield a likelihood
for the observed season at least as great as the one generated by the other one, say
system b.

L(P̂a(w)|w) ≥ L(P̂b(w)|w)

where P̂a(w) and P̂b(w) are the estimated p-matrices. So we could say, a allows one to
calculate a p-matrix with a higher explanatory value, so it must be the better system.
But in fact, it might have happened by chance, that this ranking system performed
better than the other one. The central question concerns the degree of the odds that
a performed better than b by the observed amount. Let us define the likelihood ratio
as follows

LRa,b = log(L(P̂a(w)|w)))− log(L(P̂b(w)|w)).

We assume a Hypothesis H0 stating that "b is the correct ranking system". Correct
means that it allows us to estimate the right p-values. Using these probabilities for each
match, we simulate a complete season and get a new tournament ŵ for which we again
calculate the likelihoods given P̂a(w) and P̂b(w). This way a few thousand seasons are
simulated and we receive a distribution over the difference of the log-likelihood. In the
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ideal case, the probability (suggested by the simulated distribution) of the observed
difference between the likelihoods is small enough to be able to reject H0 with this very
test size α.

P [LRa,b(ŵ) ≤ LRa,b(w)] < α

So, roughly what we do is assuming that one of the systems is correct, and then we
try to reject this hypothesis, by showing that the probability for another system to be
as much better as empirically observed is very small.

The weakness of this approach is pretty obvious. We are only able to reject the
hypothesis that a particular system is perfectly correct. Even though the data allows
us to make a guess about it, the test does not allow us to make a statement about
which of the two systems in consideration is actually better. So in fact, both of the
systems might be incorrect, but we are only able to reveal the inadequacy of one of
them.

2.7 Data

We obtain the data from different sources. For soccer we focus on the German Bun-
desliga and the British Premier League. For the former we have data from the seasons
1968/69 till 2012/13, for the latter the sample from the seasons 1997/98 till 2012/2013.
Additionally, we included the season 2012/2013 from the the Austrian Bundesliga, be-
cause of its advantage of having only 10 Teams. The scores for all matches, which
are translated to win/draw/loss data, are obtained from the website www.kicker.de.
Notable about the soccer data is that each team plays each other team exactly once at
home and once away in each season. This introduces a symmetry to the data which,
even though it is not necessary, might be considered as desirable and certainly influ-
ences the results of our analysis.

Regarding tennis, we face a different situation. Since there is no league of players in
which each player faces another one a fixed number of times per season we have to go
a different way. We will focus only on the top 10 players according to the official ATP
ranking at the end of each year (obtained from http://www.atpworldtour.com). Then
we collect the data for all the ATPmatches played in this season from http://www.tennis-
data.co.uk. Of course these data sets will be highly asymmetric, because some players
play against each other more that once, and some might not face each other at all
during a season. Another special fact about the tennis data is that we don’t have a
real home away situation.7 Even more importantly, in tennis there is no possibility

7Of course some players might feel more at home when a tournament is taking place in their country
of origin. But since this is very different to the situation of a team playing in its very own stadium in
its city, we will assume that every game takes place on neutral ground.
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of ties. So we face only a binomial distribution for the outcome of each match which
considerably facilitates the optimization procedure.

Concerning American football, we will focus exclusively on the NFL. We have data
on the scores of every NFL game since 1978 from the website http://www.re
pole.com/sun4cast/data.html. The NFL comprises from 28 in the season 1978 to 32
teams in 2012. This is by far the largest group of teams. Almost naturally it follows that
among the samples there is a huge number of teams that don’t face each other during
a season. Which team is playing which is determined by a complicated system, which
shall not be further discussed here. In football draws are possible, but only happen
very rarely. Along with the fact that American football enjoys great popularity, this
makes NFL data very interesting for our analysis.

2.8 Empirical Analysis

We now want to apply the presented methods to real data from sports. Countless
different types of sports are imaginable and probably the readers preferences for what
he would like to see in this section are very heterogeneous. Nevertheless for reasons of
space we want to focus on three types, namely soccer, tennis and American football.
The main questions we seek to answer are, "Is there a tendency for one of the ranking
schemes to be superior to the others according to the criterion we defined?", "If yes,
which one is it?", "Does it depend on the type of sport?" and finally "Are we able to
improve on the rankings found by the simple ranking methods using one of the algo-
rithms presented in subsection 2.5?"

2.8.1 Soccer in Austria: Finding an Optimal Ranking

With the branch and bound algorithm we find our selves equipped with a very powerful
instrument to find the optimal ranking. Unfortunately this algorithm can only be
applied to sets of teams that have a limited size. The first object of our investigation
shall be the Austrian Bundesliga. Its size of 10 teams enables us to apply the discussed
bnb-method. During a season each team plays against each other team four times, two
times at home and two times away. This is different from most other soccer leagues,
but doesn’t increase the computational complexity by much. Here, we consider the
season 2012/2013. To draw a first comparison between the performances of the other
ranking schemes, Table 1 shows the maximum likelihoods that have been calculated.
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Method BnB 2-Point 3-Point LOP Elo Tabu-Search

MLE -129.844 -131.742 -135.561 -140.024 -131.703 -130.465

Table 1: Log likelihood values for the Austrian Bundesliga 12/13

While the ranking corresponding to the solution to the linear ordering problem
gives a relatively low likelihood, the two point system as well as the Elo-system seem
to explain the results a lot better. Nevertheless, none of the systems generates the
optimal ranking found by the branch and bound algorithm. The ranking produced
by the Tabu Search gives a higher likelihood than all the systems, but still is not the
optimal one.

Figure 5 compares the optimal ranking that we found with the actually applied
order, namely the 3-Point ranking. One can see that there are indeed some differences.
Perhaps most striking is that in this season SV Mattersburg was relegated, while in the
optimal ranking Wacker Insbruck would have been relegated. This team was actually
ranked 8th.

3 P Optimal

Figure 5: Rankings resulting from 3-point system and Branch and Bound algorithm

Unfortunately most leagues are larger than the Austrian Bundesliga. The resulting
computational effort makes it virtually impossible for us to find optimal rankings.
which is why in the next subsection we focus on the other methods and compare the
different ranking schemes across panel data from different leagues in different sports.

2.8.2 Ranking Systems and Maximum Likelihood Estimates

To give the reader an impression of how a matrix of estimated outcome probabilities
for each game looks like after the optimization, Figure 6 depicts the probabilities for
home game wins for the Bundesliga season 2012/13 estimated using the "three points
for a win" system.
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0 0 0.31 0.31 0.31 0.31 0.31 0.41 0.41 0.45 0.49 0.49 0.49 0.49 0.49 0.85 0.85 0.85
0 0 0.31 0.31 0.31 0.31 0.31 0.41 0.41 0.41 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44
0 0 0.19 0.31 0.31 0.31 0.31 0.41 0.41 0.41 0.41 0.42 0.42 0.43 0.44 0.44 0.44 0.44
0 0 0.19 0.19 0.19 0.19 0.31 0.38 0.41 0.41 0.41 0.42 0.42 0.42 0.44 0.44 0.44 0.44
0 0 0.075 0.19 0.19 0.19 0.31 0.36 0.36 0.36 0.36 0.36 0.42 0.42 0.42 0.42 0.44 0.44
0 0 0.056 0.19 0.19 0.19 0.19 0.19 0.29 0.29 0.29 0.36 0.36 0.42 0.42 0.42 0.44 0.44
0 0 0.037 0.19 0.19 0.19 0.19 0.19 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.36 0.44 0.44
0 0 0 0 0 0.19 0.19 0.19 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.35 0.44
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.094 0.17 0.3

Figure 6: MLE for pijh using 3-point system

Generally, a striking feature about the structure of the estimated probably matrices
is the occurrence of homogeneous values in certain areas of the matrix, reminding of
the layer structure discussed in section 2.4.1. Remarkable in this particular matrix is
the large number of "1"s in the upper right corner and "0"s in the lower left corner.
The reader might be tempted to argue that these values are fairly unrealistic, because
intuition tells us that even if the strongest team plays the weakest one, in the current
case Bayern München against Greuter Fürth, the chance of the former to win against
the latter will be high, but never 100%. The point is that we only hold this intuition,
because probably at some point in the past we have seen top teams occasionally loosing
against teams that were ranked very low. But since this kind of information is not part
of our estimation procedure, it is only natural that estimates look like this.8

Next, we want to try to improve this ranking by using one of the algorithms pre-
sented in section 2.5. Unfortunately the sample of 18 teams is too large for an applica-
tion of the branch and bound algorithm, which would technically allow us to find the
optimal ranking. So we use the Tabu search method, which we run for 100 iterations.
The resulting ordering as well as the corresponding maximum likelihoods are shown in
Figure 7.

8We have to add, that in case the reader has seen Bayern München play in the season 2012/13, he
most certainly would agree that estimating some probabilities in the right of the upmost row with a
value of 1 most probably only involves a very small error.
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3 P TabuSearch

Figure 7: Rankings resulting from 3-point system and Tabu Search

The Tabu Search finds a ranking that is partly very different from the one deter-
mined using the 3-point system. The biggest difference is the position of "Mainz 05"
jumping from the 13th position to the 4th. The cause of this difference can only be
that "Mainz 05" has won the matches in this season that were particularly important
in the sense of being in accordance with the team having fairly high winning proba-
bilities in general. However, despite of differences in parts, a great similarity between
the rankings can be observed. This similarity can be measured using Spearman’s rank
correlation coefficient defined as ρ = 1− 6

∑
(ri−si)2

n(n2−1)
with ri being the original (3 point)

ranking of team i and si the ranking with the highest maximum likelihood as calculated
with the Tabu Search algorithm. The correlation between the 3-point ranking and the
one found by the Tabu Search is indeed fairly high with a value of about 0.87616.
The difference between the maximum likelihood values however, is in fact very large.
The probabilities found using the Tabu Search ranking make the observed season 3318
times more likely compared to the probabilities found using the 3 point ranking.

As mentioned above, we have data not only on this one Bundesliga season, but on
the ones from the last 50 years.9 For every season that we have data on, we calculated
the maximum likelihood p-matrices as well as the objective function values using the
"2 points for a win", the "3 points for a win", Elo system and the ranking from the
solution to the linear ordering problem. Finally, we used the Tabu search method to
find out, whether or not one is able to improve on one or all of the ranking schemes.
Because from season to season the likelihood values fluctuate heavily, it makes sense
to use the likelihood found by one of the systems as a reference value and plot the

9Because in the seasons 1963/64, 1964/65 and 1991/92 the number of teams in the Bundesliga was
different from 18, we excluded these seasons from the sample. Sacrificing these three data points for
a higher comparability seems reasonable.
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differences to these values in a diagram. As opposed to just plotting the absolute
likelihoods of every system in each year, this technique allows us to better compare the
quality of the rankings throughout the panel data. The system of reference will be "2
points for a win".
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Figure 8: Maximum Likelihoods for Bundesliga and Premier League panel data

Figure 8 (a) and (b) reveal that the two and three point systems are in fact very
close in the maximum likelihoods they "produce". This is not least because in most
cases the rankings determined by the two systems only differ in a few spots. And if the
rankings do not differ much, it’s only natural that the likelihood values won’t be very
far apart either. The two point system allows for a calculation of p-matrices that make
the observed seasons on average across the Bundesliga samples by about 9.8% more
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likely than when using the three point system. In the Premier League the three point
system has a 5.2% higher explanatory power. The Elo-system also gives us likelihoods
in the same range, indicated by the green lines. Actually this is a bit of a surprise,
since there were some hopes that the intuitively very reasonable mechanism of getting
more points for winning against relatively strong opponents would enable us to explain
the observed results better. Still it is not worse than the conventional two and three
point systems. But because of its higher complexity we clearly refrain from making a
recommendation for using this system. The ranking resulting from solving the linear
ordering problem is by far the worst performer in the diagram. One observes it to yield
likelihoods that are on average more that 1000 times smaller that the ones from the
two point system. So we have to clearly reject the suggestion for a possible application
of the LOP in soccer that has been made in the literature.

Another striking feature about the graphs is the position of the likelihood curves
corresponding to the tabu search. The heuristic algorithm is able to improve on every
single ranking from the sample, except for the Premier League seasons 04/05 and 05/06.
On average it helps to explain the results about 457 times better. The graph shows us
that even though the simple ranking schemes produce fairly "good" orderings in the
sense of a high correlation (as seen above), they are far away from being the most likely
correct ones.
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Figure 9: Maximum Likelihoods for ATP panel data

Next, Figure 9 shows the analogue results for the tennis panel data from the last 14
years. The first thing to note is that the two and three point systems produce the same
likelihoods throughout the whole sample, which is why in this graph there is no curve
comparing the two, since it would lie on the x-axis. The reason for this is that in tennis
we do not have draws, so in both systems the players are only ranked according to their
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number of victories. In Figure 9, in addition to the curves from Figure 8, the likelihoods
from the official ATP ranking from the end of each year are listed. This ranking is
determined by awarding different amounts of points for a stage that is reached in the
Grand Slam Tournaments, the ATP World Tour Finals, the Masters 1000, Olympics
etc. Of course this method is very sophisticated and includes also the results of the
matches of the top 10 players against others that might not be in the top 10. This
data is not part of the other systems we are analyzing. According to the criterion
of this work, the ATP ranking performs fairly bad in explaining the observed results.
Interestingly in this tennis sample, the linear ordering ranking produces fairly high
likelihoods, in fact on average higher ones than the n-point and Elo system. Again, in
every year the tabu search algorithm is able to improve on all of the discussed rankings.

Finally, Figure 10 illustrates the results form the same calculations as above, now
for American football results from the National Football League in the US. There is
little difference between 2- and 3 point systems, because draws are very unlikely to
occur. However, the 3 point system is almost at every point at least as good as the
2 point system. The LOP and Elo systems operate in the same range of likelihoods
as well. With NFL data, applying the tabu search is more effortful and thus takes
more time for the same number of iterations, because of the higher number of teams.
However, again, the tabu search improves upon all the rankings in the sample.

-‐15	  

-‐10	  

-‐5	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

78	   79	   80	   81	   82	   83	   84	   85	   86	   87	   88	   89	   90	   91	   92	   93	   94	   95	   96	   97	   98	   99	   100	   101	   102	   103	   104	   105	   106	   107	   108	   109	   110	   111	   112	  

3p-‐2p	  

LOP-‐2p	  

Elo-‐2p	  

TabuSearch-‐2p	  

Figure 10: Maximum Likelihoods for NFL panel data

In general, the difference in the relative likelihoods when applying the Elo/LOP
system and the n-point systems between soccer on the one hand and tennis and Amer-
ican football on the other could be due to the heterogeneity in the number of games
played between the teams in tennis and football as opposed to the symmetric situation
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in soccer. Certainly a system like "two points for a win" doesn’t seem to be partic-
ularly well suited in a situation where teams play different amounts of matches. And
as explained further above, here it could be justified to give 1 and -1 points instead
of 0 and 2 for a win and a loss, respectively. However, implementing this changes not
much and even reduces the average likelihood a bit. Another explanation could be the
sport itself. It might be due to the result generating probabilities themselves, that for
one sport different ranking schemes are better suited then others. Indeed, it is easy to
show that in the space of transitive probability matrices, there are areas where each
of the considered systems is most likely to generate a ranking closest to the real one.
This is an interesting direction for further theoretical research.

2.8.3 Hypothesis Testing

Now we are going further in the analysis of ranking systems than just observing which
ordering scheme is able to generate a higher maximum likelihood value. We will con-
sider two examples, which will help deepen the understanding of the problem, but will
also clearly highlight the limitations of this hypothesis testing approach, as described
in section 2.6.

Consider the Bundesliga season 2011/2012. Looking at Figure 8 reveals that for this
data set the 3 point system performed better than the 2 point system. The difference
between the two maximum likelihood logs is 0.564. But the central question is "did
this MLE difference appear because the underlying unobservable probabilities make
the 3 point system more appropriate than the 2 point system in this season or could it
in fact be the other way around with the observation just happening by chance?".

To answer this question, assume the correctness of the Hypothesis H0: "The 2 point
system puts the teams in the correct order". We will test H0 against the alternative
Hypothesis H1: "The 3 point system puts the teams in the correct order". Now, for the
two systems the probability matrices P̂2p(w) and P̂3p(w) are estimated. Using P̂2p(w)

5000 seasons are simulated. Then L(P̂2p(w)|ŵ) and L(P̂3p(w)|ŵ) are calculated for
each of the seasons. Their respective frequency distribution is depicted in Figure 11
(a) and (b). The distribution of their difference, which corresponds to the ratio of the
likelihoods without logs is plotted in Figure 11 (c).
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(b) L(P̂3p(w)|ŵ)
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Figure 11: Simulated test statistic for Bundesliga hypothesis test32
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Looking closely at the first two diagrams reveals that the distribution of L(P̂3p(w)|ŵ)

is shifted a little bit to the left relative to the one of L(P̂2p(w)|ŵ). This is intuitively
correct because it is only natural that the probability matrix that generated the sea-
sons of the sample gives the higher likelihood values than the matrix P̂3p(w), which
has nothing to do with the season simulation. Now to find out the confidence level
with which we would be able to reject H0 one has to compare the observed likelihood
ratio to the likelihood ratio distribution in Figure 11 (c). This procedure shows us that
assuming the correctness of H0, the probability of the likelihood ratio being ≤ 0.564

is only 11%. So we are able to reject the Hypothesis that the 2 point system gives the
correct ranking with test size α = 0.11, meaning that the probability of not making
an error of the first kind is 0.89. One has to be careful not to misinterpret this result.
It means that we are able to reject the hypothesis that the 2 point system gives the
correct ranking. However, this does by no means imply that the 3 point system gives
the correct ranking.

Now let us conduct a second hypothesis test, this time using tennis data. A good
experiment would be to test for the correctness of the LOP system against the 3 point/2
point system in the year 2012. In this year the LOP produced a considerably higher
likelihood than the 2 point system (see Figure 9 ), so we would like to know if this was
just a random result or if we can actually conclude that the underlying probabilities
favor the LOP scheme in the sense of telling us the truth about the ordering of tennis
players. The hypothesis are:

H0: "The 2 point system puts the teams in the correct order"

H1: "The solution to the LOP puts the teams in the correct order"

Assuming the correctness ofH0, we again estimate the probability matrices and then
simulate 5000 seasons. Hereby we always assume that the mij values stay constant,
i.e. the amount of times players meet is the same in every simulation. We proceed as
above by calculating the test statistic for the likelihood ratio and then comparing it to
the empirically observed one. We have:

LR2p,LOP = log(L(P̂2p(w)|w)))− log(L(P̂LOP (w)|w)) = −6.9103

The simulated test statistic tells us that in case H0 is correct, the probability of an
occurrence of such a small likelihood ratio is only 0.02%. It follows that we can reject
H0 with test size α = 0.02 (i.e. a confidence level of 99.98%).

2.9 Conclusion

We constructed a statistical model describing the outcomes of sports matches. The
model assumes a transitive relationship between the relative strengths of the teams.
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The resulting constraints turn out to be very restrictive, which is illustrated by the
rapidly shrinking size of the parameter space shown in appendix B. The incorporation of
ties as well as home/away asymmetries makes our model much more complicated than
the related isotonic regression problem. The discussed branch and bound algorithm is
capable of solving the problem for up to 12 teams. For larger data sets, a tabu search
heuristic has been proposed. The empirical subsection of the paper first illustrates
the structure of an optimized probability matrix with an example. We have shown
that in the example the maximum likelihood produced by the tabu search is more that
3000 times higher than the one resulting from an application of the 3-point system.
But this does not mean that the two rankings are strongly uncorrelated as seen from
the high value of Spearman’s rank correlation coefficient. Panel data has been used
to compare different ranking systems in three types of sports. In soccer, data from
German Bundesliga and English Premier League have shown that the 2- and 3-point
systems are very close to each other in the maximum likelihoods they produce, which
is not a surprise when considering their structural similarity. Hopes were higher for the
performance of the Elo system, because as opposed to the traditional point systems
it considers the opponents strength. However, on average the generated MLEs were
in the same range as the ones from the n-point systems. This result also applies for
ATP tennis and NFL American football data. So the additional degree of complexity
seems to be enough of a justification for not giving a recommendation towards an
introduction of the Elo system. A difference worth mentioning is that the ranking,
which results from the LOP performs fairly well in tennis and American football, but
worse than everything else in soccer. We show that almost in every sample across
all considered types of sports we are able to improve on the rankings produced by
the considered systems by using tabu search. This illustrates that there might be a
system that is much better at finding the most likely correct ranking, possibly without
the inclusion of a great complexity. As a final remark, we want to mention that the
framework presented in this paper has its natural limitations and leaves out many
important aspects that should be considered when choosing or designing a ranking
scheme. Things like opponents incentives during a match and the resulting effects on
the observers level of thrill or the occurrence of winning decision as late as possible
during a season could be interesting points for further research.
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A Proofs

Proof of proposition 1: Ignoring the away/home differentiation, we can write pikx as
pik. With 0 probabilities of draws, equation 1 is now

pik = 1− pki

and therefore equation 2 is then equivalent to

pik ≥ pil ⇔ pjk ≥ pjl

pi′k′ > pj′k′ ⇒ pl′j′ > pl′i′
(5)

Now we have to show that (SST ) =⇒ (5) and (5) =⇒ (SST ).
(SST ) =⇒ (5):

We are dividing this case into two cases: For pik ≥ 1
2
≥ pjk we can see:

pij ≥ pkj = 1− pjk ≥
1

2

SST
==⇒ pix ≥ pjx ∀x

For every other case we can assume wlog that pik ≥ pjk ≥ 1
2

pij ≥
1

2

SST
==⇒ pix ≥ pjx ∀x

pij <
1

2
=⇒ pji >

1

2

SST
==⇒ pjk > pik

Which is a contradiction to the assumption, therefore pij ≥ 1
2
.

(5) =⇒ (SST ):

pjk > pik
(5)
=⇒ pli > plj ∀l

⇒ pii > pij
pii=1/2
====⇒ pij <

1

2

Proof of proposition 2: Define a ranking from best to worst ρ(i) : {1, .., n}( {1, ..., n}
such that pikx ≥ pjkx ⇒ ρ(i) < ρ(j) and pkix ≤ pkjx ⇒ ρ(i) < ρ(j).

pikx ≥ pjkx ⇔ ρ(i) < ρ(j)⇔ pily ≥ pjly ∀i, j, k, l, x, y
pkix ≥ pkjx ⇔ ρ(j) < ρ(i)⇔ pily ≥ pjly ∀i, j, k, l, x, y

pi′k′x > pj′k′x ⇔ ρ(j) < ρ(i) and ρ(i) � ρ(j)∃i′, j′, k′, x
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B Parameter space

In this subsection we explore the effect of transitivity conditions on the parameter
space of winning probabilities to illustrate the limitations enforced by it. To do that
we compare the size of the parameter space with transitivity to the space of unrestricted
winning probabilities Sn, e.g. every pij, pji fulfilling pij + pji = 1.
The space of parameters including the transitivity conditions is a subset of this set
Sn. Sn(R) is hereby defined as the size of this space relative to Sn only considering
the restrictions for pij ∈ R. The unrestricted parameter space is in this simple case:
Sn = [0, 1]

n(n−1)
2 which can be easily seen by the fact that every pji is completely

determined by pij. The restricted space for n players and the transitivity conditions
for every (i, j) ∈ Kn with Kn = {(i, j)|i, j ∈ {1, 2, ..., n}, i < j} is therefore

Sn(Kn) =

bi,j+1∫
bi+1,j

Sn(Kn\{(i, j)})dpij

with

Sn((i0, j0)) =

bi0,j0+1∫
bi0+1,j0

dpi0j0

and

bi,j :=


pij, for (i, j) ∈ Kn

0.5, for i = j

0, else

As this fairly complicated recursive integral may be hard to interpret, table 2 gives
the values for the relative size of the transitive parameter space for up to five teams.
It can be seen that the size rapidly shrinks and it is not hard to imagine that for a
league comprising e.g. 18 teams the conditions are in this sense very strict.

n 2 3 4 5 6 7

relative
size

1 1
4

1
120

1
40320

1
203212800

1
19313344512000

Approximation 1 0.25 8.3× 10−3 2.5× 10−5 4.9× 10−9 5.2× 10−14

Table 2: Relative size of the transitive parameter space
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C Code

The first code listing shows the problem definition of an optimization with fixed team
ordering, so that the ipopt framework will understand it.

1 #inc lude " nf l_nlp . hpp"
2

3 #inc lude <ca s s e r t >
4 #inc lude <iostream>
5 #inc lude <math . h>
6

7 s t a t i c i n t t=50;
8

9 s t a t i c i n t w [ 3 ] [ 5 0 ] [ 5 0 ] ;
10 s t a t i c double p [ 2 ] [ 5 0 ] [ 5 0 ] ;
11

12

13 us ing namespace Ipopt ;
14

15 // cons t ruc to r
16 nfl_NLP : : nfl_NLP ( i n t myw [ ] [ 5 0 ] [ 5 0 ] , double ∗ myp [ ] [ 5 0 ] [ 5 0 ] , double∗& ←↩

zielwert , i n t myt )
17 {
18 zielwert = &zw ;
19 t=myt ;
20

21 f o r ( i n t h=0; h<3; h++) {
22 f o r ( i n t k=0; k<t ; k++) {
23 f o r ( i n t l=0; l<t ; l++) {
24 w [ h ] [ k ] [ l ]=myw [ h ] [ k ] [ l ] ;
25 myp [ h ] [ k ] [ l]=&p [ h ] [ k ] [ l ] ;
26 }
27 }
28 }
29

30 }
31

32 // de s t ru c t o r
33 nfl_NLP : : ~ nfl_NLP ( )
34 {}
35

36 // r e tu rn s the s i z e o f the problem
37 bool nfl_NLP : : get_nlp_info ( Index& n , Index& m , Index& nnz_jac_g ,
38 Index& nnz_h_lag , IndexStyleEnum& ←↩

index_style )
39 {

37



2 PROBABILISTIC TRANSITIVITY IN SPORTS

40 // The problem desc r ibed in nfl_NLP . hpp has 4 va r i ab l e s , x [ 0 ] ←↩
through x [ 3 ]

41 n = 2∗pow (t , 2 ) ;
42

43 // one equa l i t y c on s t r a i n t and one i n e qua l i t y c on s t r a i n t
44 m = pow (t , 2 ) + 4∗t∗(t−1) ;
45

46 // in t h i s example the jacob ian i s dense and conta in s 8 nonzeros
47 nnz_jac_g = 2∗m ;
48

49 // the he s s i an i s a l s o dense and has 16 t o t a l nonzeros , but we
50 // only need the lower l e f t corner ( s i n c e i t i s symmetric )
51 nnz_h_lag = 2∗n−4∗t ;
52

53 // use the C s t y l e index ing (0−based )
54 index_style = TNLP : : C_STYLE ;
55

56 re turn true ;
57 }
58

59 // r e tu rn s the va r i a b l e bounds
60 bool nfl_NLP : : get_bounds_info ( Index n , Number∗ x_l , Number∗ x_u ,
61 Index m , Number∗ g_l , Number∗ g_u )
62 {
63 // here , the n and m we gave IPOPT in get_nlp_info are passed back ←↩

to us .
64 // I f des i r ed , we could a s s e r t to make sure they are what we think ←↩

they are .
65

66 // the v a r i a b l e s have lower bounds o f 0
67 f o r ( Index i=0; i<2∗t∗t ; i++) {
68 x_l [ i ] = 0 . 0 ;
69 }
70

71 // the v a r i a b l e s have upper bounds o f 1
72 f o r ( Index i=0; i<2∗t∗t ; i++) {
73 x_u [ i ] = 1 . 0 ;
74 }
75

76

77 Index i = 0 ;
78 f o r ( Index k=0; k<t ; k++) {
79 f o r ( Index l=0; l<t ; l++) {
80 g_l [ i ] = −2e19 ;
81 g_u [ i ] = 1 . 0 ;
82 i++;
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83 }
84 }
85 f o r ( Index h=0; h<2; h++) {
86 f o r ( Index k=0; k<t ; k++) {
87 f o r ( Index l=0; l<t ; l++) {
88 i f (l<t−1) {
89 g_l [ i ] = −2e19 ;
90 g_u [ i ] = 0 . 0 ;
91 i++;
92 }
93 i f (k<t−1) {
94 g_l [ i ] = −2e19 ;
95 g_u [ i ] = 0 . 0 ;
96 i++;
97 }
98 }
99 }

100 }
101

102 re turn true ;
103 }
104

105 // r e tu rn s the i n i t i a l po int f o r the problem
106 bool nfl_NLP : : get_starting_point ( Index n , bool init_x , Number∗ x ,
107 bool init_z , Number∗ z_L , Number∗ ←↩

z_U ,
108 Index m , bool init_lambda ,
109 Number∗ lambda )
110 {
111 assert ( init_x == true ) ;
112 assert ( init_z == f a l s e ) ;
113 assert ( init_lambda == f a l s e ) ;
114

115 // i n i t i a l i z e to the g iven s t a r t i n g po int
116 f o r ( Index i=0; i<2∗t∗t ; i++) {
117 x [ i ] = 0 . 4 ;
118 }
119

120 re turn true ;
121 }
122

123 // r e tu rn s the value o f the ob j e c t i v e func t i on
124 bool nfl_NLP : : eval_f ( Index n , const Number∗ x , bool new_x , Number& ←↩

obj_value )
125 {
126 assert (n == 2∗t∗t ) ;
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127

128 obj_value=0;
129 Index i=0;
130 f o r ( Index k=0; k<t ; k++) {
131 f o r ( Index l=0; l<t ; l++) {
132 i f (k !=l ) {
133 obj_value += (−w [ 0 ] [ k ] [ l ]∗ log (x [ t∗k+l ]+0.000001) − w←↩

[ 1 ] [ l ] [ k ]∗ log (x [ t∗t+t∗l+k ]+0.000001) − (w [ 2 ] [ k ] [ l]−w←↩
[ 0 ] [ k ] [ l]−w [ 1 ] [ l ] [ k ] ) ∗log(1−x [ t∗k+l]−x [ t∗t+t∗l+k←↩
]+0.000001) ) ;

134

135 i++;
136 }
137 }
138 }
139

140 re turn true ;
141 }
142

143 // return the grad i en t o f the ob j e c t i v e func t i on grad_{x} f ( x )
144 bool nfl_NLP : : eval_grad_f ( Index n , const Number∗ x , bool new_x , Number∗←↩

grad_f )
145 {
146 Index i=0;
147 f o r ( Index h=0; h<2; h++) {
148 f o r ( Index k=0; k<t ; k++) {
149 f o r ( Index l=0; l<t ; l++) {
150 i f (k !=l ) {
151 i f (h==0)
152 grad_f [ i ] = −w [ h ] [ k ] [ l ] / ( x [ t∗t∗h+t∗k+l←↩

]+0.000001) + (w [ 2 ] [ k ] [ l]−w [ h ] [ k ] [ l]−w [1−h ] [←↩
l ] [ k ] ) /(1−x [ t∗t∗h+t∗k+l]−x [ t∗t∗(1−h )+t∗l+k←↩
]+0.000001) ;

153 e l s e
154 grad_f [ i ] = −w [ h ] [ k ] [ l ] / ( x [ t∗t∗h+t∗k+l←↩

]+0.000001) + (w [ 2 ] [ l ] [ k]−w [ h ] [ k ] [ l]−w [1−h ] [←↩
l ] [ k ] ) /(1−x [ t∗t∗h+t∗k+l]−x [ t∗t∗(1−h )+t∗l+k←↩
]+0.000001) ;

155 }
156 e l s e {
157 grad_f [ i ] = 0 ;
158 }
159 i++;
160 }
161 }
162 }
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163

164 re turn true ;
165 }
166

167 // return the value o f the c on s t r a i n t s : g ( x )
168 bool nfl_NLP : : eval_g ( Index n , const Number∗ x , bool new_x , Index m , ←↩

Number∗ g )
169 {
170 Index i = 0 ;
171 f o r ( Index k=0; k<t ; k++) {
172 f o r ( Index l=0; l<t ; l++) {
173 g [ i ] = x [ t∗k+l ]+x [ t∗t+t∗l+k ] ;
174 i++;
175 }
176 }
177 f o r ( Index h=0; h<2; h++) {
178 f o r ( Index k=0; k<t ; k++) {
179 f o r ( Index l=0; l<t ; l++) {
180 i f (l<t−1) {
181 g [ i ] = x [ t∗t∗h+t∗k+l]−x [ t∗t∗h+t∗k+l+1] ;
182 i++;
183 }
184 i f (k<t−1) {
185 g [ i ] = x [ t∗t∗h+t∗(k+1)+l]−x [ t∗t∗h+t∗k+l ] ;
186 i++;
187 }
188 }
189 }
190 }
191 re turn true ;
192 }
193

194 // return the s t r u c tu r e or va lue s o f the jacob ian
195 bool nfl_NLP : : eval_jac_g ( Index n , const Number∗ x , bool new_x ,
196 Index m , Index nele_jac , Index∗ iRow , Index ←↩

∗jCol ,
197 Number∗ values )
198 {
199 i f ( values == NULL ) {
200 // return the s t r u c tu r e o f the jacob ian
201

202 // t h i s p a r t i c u l a r jacob ian i s dense
203

204

205 Index z=0;
206 Index r=0;
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207 f o r ( Index k=0; k<t ; k++) {
208 f o r ( Index l=0; l<t ; l++) {
209 iRow [ z ] = r ;
210 jCol [ z ] = t∗k+l ;
211 z++;
212 iRow [ z ] = r ;
213 jCol [ z ] = t∗t+t∗l+k ;
214 z++;
215

216 r++;
217 }
218 }
219 f o r ( Index h=0; h<2; h++) {
220 f o r ( Index k=0; k<t ; k++) {
221 f o r ( Index l=0; l<t ; l++) {
222 i f (l<t−1) {
223 iRow [ z ] = r ;
224 jCol [ z ] = t∗t∗h+t∗k+l ;
225 z++;
226 iRow [ z ] = r ;
227 jCol [ z ] = t∗t∗h+t∗k+l+1;
228 z++;
229 r++;
230 }
231 i f (k<t−1) {
232 iRow [ z ] = r ;
233 jCol [ z ] = t∗t∗h+t∗k+l ;
234 z++;
235 iRow [ z ] = r ;
236 jCol [ z ] = t∗t∗h+t∗(k+1)+l ;
237 z++;
238 r++;
239 }
240 }
241 }
242 }
243 assert (z==nele_jac ) ;
244 }
245 e l s e {
246 Index z=0;
247 Index r=0;
248 f o r ( Index k=0; k<t ; k++) {
249 f o r ( Index l=0; l<t ; l++) {
250 values [ z ] = 1 ;
251 z++;
252 values [ z ] = 1 ;
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253 z++;
254

255 r++;
256 }
257 }
258 f o r ( Index h=0; h<2; h++) {
259 f o r ( Index k=0; k<t ; k++) {
260 f o r ( Index l=0; l<t ; l++) {
261 i f (l<t−1) {
262 values [ z ] = 1 ;
263 z++;
264 values [ z ] = −1;
265 z++;
266 r++;
267 }
268 i f (k<t−1) {
269 values [ z ] = −1;
270 z++;
271 values [ z ] = 1 ;
272 z++;
273 r++;
274 }
275 }
276 }
277 }
278 assert (z==nele_jac ) ;
279 }
280

281 re turn true ;
282 }
283

284 // return the s t r u c tu r e or va lue s o f the he s s i an
285 bool nfl_NLP : : eval_h ( Index n , const Number∗ x , bool new_x ,
286 Number obj_factor , Index m , const Number∗ lambda←↩

,
287 bool new_lambda , Index nele_hess , Index∗ iRow ,
288 Index∗ jCol , Number∗ values )
289 {
290 i f ( values == NULL ) {
291 // return the s t r u c tu r e . This i s a symmetric matrix , so we f i l l←↩

the lower l e f t
292 // t r i a n g l e only .
293 Index i=0;
294 f o r ( Index h=0; h<2; h++) {
295 f o r ( Index k=0; k<t ; k++) {
296 f o r ( Index l=0; l<t ; l++) {
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297 i f (k !=l ) {
298 iRow [ i ] = t∗t∗h+t∗k+l ;
299 jCol [ i ] = t∗t∗h+t∗k+l ;
300 i++;
301

302 iRow [ i ] = t∗t∗h+t∗k+l ;
303 jCol [ i ] = t∗t∗(1−h )+t∗l+k ;
304 i++;
305 }
306 }
307 }
308 }
309 }
310 e l s e {
311 // return the va lue s . This i s a symmetric matrix , f i l l the ←↩

lower l e f t
312 // t r i a n g l e only
313

314 Index i=0;
315 f o r ( Index h=0; h<2; h++) {
316 f o r ( Index k=0; k<t ; k++) {
317 f o r ( Index l=0; l<t ; l++) {
318 i f (k !=l ) {
319 i f (h==0){
320 values [ i ] = obj_factor ∗( w [ h ] [ k ] [ l ]∗ pow (x [←↩

t∗t∗h+t∗k+l ]+0.000001 , −2) + (w [ 2 ] [ k ] [ l←↩
]−w [ h ] [ k ] [ l]−w [1−h ] [ l ] [ k ] ) ∗pow((1−x [ t∗t∗←↩
h+t∗k+l]−x [ t∗t∗(1−h )+t∗l+k ]+0.000001)←↩
,−2) ) ;

321 i++;
322 // std : : cout << " va lues [ " << i << " ] = " << ←↩

va lue s [ i ] << std : : endl ;
323 values [ i ] = obj_factor ∗0 . 5∗ ( (w [ 2 ] [ k ] [ l]−w←↩

[ h ] [ k ] [ l]−w [1−h ] [ l ] [ k ] ) ∗pow((1−x [ t∗t∗h+t←↩
∗k+l]−x [ t∗t∗(1−h )+t∗l+k ]+0.000001) ,−2) ) ;

324 }
325 e l s e {
326 values [ i ] = obj_factor ∗( w [ h ] [ k ] [ l ]∗ pow (x [←↩

t∗t∗h+t∗k+l ]+0.000001 , −2) + (w [ 2 ] [ l ] [ k←↩
]−w [ h ] [ k ] [ l]−w [1−h ] [ l ] [ k ] ) ∗pow((1−x [ t∗t∗←↩
h+t∗k+l]−x [ t∗t∗(1−h )+t∗l+k ]+0.000001)←↩
,−2) ) ;

327 i++;
328 // std : : cout << " va lues [ " << i << " ] = " << ←↩

va lue s [ i ] << std : : endl ;
329 values [ i ] = obj_factor ∗0 . 5∗ ( (w [ 2 ] [ l ] [ k]−w←↩
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[ h ] [ k ] [ l]−w [1−h ] [ l ] [ k ] ) ∗pow((1−x [ t∗t∗h+t←↩
∗k+l]−x [ t∗t∗(1−h )+t∗l+k ]+0.000001) ,−2) ) ;

330 }
331 i++;
332 }
333 }
334 }
335 }
336 }
337

338 re turn true ;
339 }
340

341 void nfl_NLP : : finalize_solution ( SolverReturn status ,
342 Index n , const Number∗ x , const ←↩

Number∗ z_L , const Number∗ z_U ,
343 Index m , const Number∗ g , const ←↩

Number∗ lambda ,
344 Number obj_value ,
345 const IpoptData∗ ip_data ,
346 IpoptCalculatedQuantities∗ ip_cq )
347 {
348 // here i s where we s t o r e the s o l u t i o n to v a r i a b l e s
349 // so we could use the s o l u t i o n .
350

351 f o r ( Index h=0; h<2; h++) {
352 f o r ( Index k=0; k<t ; k++) {
353 f o r ( Index l=0; l<t ; l++) {
354 // std : : cout << x [ t ∗ t ∗h+t ∗k+l ] << " " ;
355 p [ h ] [ k ] [ l ]=x [ t∗t∗h+t∗k+l ] ;
356 }
357 // std : : cout << " " << std : : endl ;
358 }
359 // std : : cout << " " << std : : endl ;
360 }
361

362 zw = obj_value ;
363 }

The second code snippet shows how the program reads 5 NFL seasons, puts them
in different orders, and then optimizes the probabilities and prints them.

1 i n t main ( i n t argv , char ∗ argc [ ] )
2 {
3

4 // Create a new in s t anc e o f the nlp
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5 SmartPtr<TNLP> mynlp ;
6 SmartPtr<TNLP> mynlp2 ;
7

8 // Create a new in s t anc e o f IpoptApp l i ca t ion
9 SmartPtr<IpoptApplication> app = IpoptApplicationFactory ( ) ;

10

11 // Change some opt ions
12 app−>Options ( )−>SetIntegerValue ( " p r i n t_ l ev e l " , 0) ;
13 app−>Options ( )−>SetNumericValue ( " t o l " , 1e−4) ;
14 app−>Options ( )−>SetStringValue ( "mu_strategy" , " adapt ive " ) ;
15 app−>Options ( )−>SetStringValue ( " output_f i l e " , " ipopt . out" ) ;
16

17 // I n t i a l i z e the IpoptApp l i ca t ion and proce s s the opt ions
18 ApplicationReturnStatus status ;
19 status = app−>Initialize ( ) ;
20 i f ( status != Solve_Succeeded ) {
21 std : : cout << std : : endl << std : : endl << "∗∗∗ Error during ←↩

i n i t i a l i z a t i o n ! " << std : : endl ;
22 re turn ( i n t ) status ;
23 }
24

25 srand ( time ( NULL ) ) ;
26

27

28 double ∗ z ; // Var iab le f o r the l i k e l i h o o d
29 i n t tempW50 [ 3 ] [ 5 0 ] [ 5 0 ] ; // temporary r e s u l t matr i ce s
30

31 f o r ( Index h=0; h<3; h++)
32 f o r ( Index k=0; k<50; k++)
33 f o r ( Index l=0; l<50; l++)
34 tempW50 [ h ] [ k ] [ l ]=w050 [ h ] [ k ] [ l ] ;
35

36 double l [ 1 4 ] [ 6 ] ;
37

38 // f o r the years 2000 t i l l 2005 , the n f l data i s read from the f i l e s
39 f o r ( i n t jahr=100; jahr<105; jahr++) {
40 i n t t ;
41 i f (jahr<95)
42 t=28;
43 e l s e i f (jahr<99)
44 t=30;
45 e l s e i f (jahr<102)
46 t=31;
47 e l s e
48 t=32;
49
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50 t=10;
51

52

53 einlesenNfl (jahr , t ) ;
54

55 // order accord ing to the 2 po int system and run the ←↩
opt imiza t i on

56 ordneNachPunkteSystem50 (2 , w50 , t ) ;
57 mynlp2 = new nfl_NLP (w50 , p50 , z , t ) ;
58 app−>OptimizeTNLP ( mynlp2 ) ;
59 l [ jahr ] [1]=−∗z ;
60

61 // order accord ing to the 3 po int system and run the ←↩
opt imiza t i on

62 ordneNachPunkteSystem50 (3 , w50 , t ) ;
63 mynlp2 = new nfl_NLP (w50 , p50 , z , t ) ;
64 app−>OptimizeTNLP ( mynlp2 ) ;
65 l [ jahr ] [2]=−∗z ;
66

67 // order accord ing to the LOP system and run the opt imiza t i on
68 ordneNachLOP50 (w50 , t ) ;
69 mynlp2 = new nfl_NLP (w50 , p50 , z , t ) ;
70 app−>OptimizeTNLP ( mynlp2 ) ;
71 l [ jahr ] [3]=−∗z ;
72

73 // order accord ing to the ELO system and run the opt imiza t i on
74 ordneNachSchach50 (w50 , t ) ;
75 mynlp2 = new nfl_NLP (w50 , p50 , z , t ) ;
76 app−>OptimizeTNLP ( mynlp2 ) ;
77 l [ jahr ] [4]=−∗z ;
78

79 // run the tabu search f o r 100 i t e r a t i o n s and then run the ←↩
opt imiza t i on

80 l [ jahr ] [ 5 ]= tabuSearch50 (100 ,t ) ;
81

82 // p r i n t out the r e s u l t s
83 cout<<l [ jahr ][0]<<" "<<l [ jahr ][1]<<" "<<l [ jahr ][2]<<" "<<l [ jahr←↩

][3]<<" "<<l [ jahr ][4]<<" "<<l [ jahr ][5]<<endl ;
84 cout<<endl ;
85 }
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3 An ACE approach to the constructed cap-
ital model

3.1 Introduction

There are countless examples to motivate the attempt to explain the logic behind
economic agglomeration effects on different levels, which is the main idea of the New
Economic Geography. One of the most prominent instances is the highly skewed dis-
tribution of income across the globe. In 2005, 78% of world GDP was produced in the
high income counties which comprise only 16% of the world’s population and 26% of
the global land area (see Brakman et al. [2009]). On an intra country perspective, in
the Île de France (the metropolitan area of Paris) almost a third of the French income
is produced by only 18.9% of the population and on 2.2% of the area of France (see
Hall and Jones [1999]). Finally, on an even smaller scale, there are clusters of industrial
activities (often dominated by a certain kind of technology) in areas like Silicon Valley.

From the beginning of the 1990s on, the discipline of the New Economic Geography
(NEG) evolved mainly around the core periphery model by Krugman [1990] and the
vertically linked industries model by Venables [1996] and Krugman and Venables [1995].
While being very similar from a mathematical perspective, Krugman’s model is better
suited for application for example in the U.S., because of its assumption concerning
worker mobility. The Venables model seems to fit better for the situation in Europe,
where labor is not so mobile.

Both models feature an immobile agricultural sector, which fosters a dispersed
economic activity. However, there are two kinds of agglomeration forces, which came to
be known as demand-linked and cost-linked circular causality (which shall be explained
using the logic of the core periphery model). The former describes the effect that when
a firm moves from one of two initially symmetrically sized regions to the other, workers
will follow, which induces expenditure shifting. Naturally, firms prefer to be in the
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region where expenditures are higher, which causes further production shifting and
hereby closes the circle. In addition to this effect, the moving firm will lower the price
index in the receiving nation, meaning that under real wage equalization nominal wages
will be lower in that region. This in turn increases the competitiveness of the receiving
nation fostering agglomeration even further.

Because of the high degree of complexity that these effects inevitably bring along,
these original NEG models are not analytically tractable, which paved the way for a
number of modifications to these approaches. Among them is the "endogenous capital"
(or "constructed capital") model by Baldwin [1999]. Its roots can be found in the
footloose capital model by Martin and Rogers [1995]. Baldwin assumes that the factor
of labor is locally fixed in favor of an endogenization of capital. Capital can be produced
in a country and it is also subject to a depreciation process. If a country produces a large
amount of capital, this produces returns, which increases expenditures and potentially
attracts more capital. This circular causality is very similar to the mechanisms of the
original NEG models and leads to the result that there exists a critical level of trade
freeness beyond which catastrophic agglomeration occurs. One of the advantages of
the endogenous capital model is that this point can be explicitly determined.

The bulk of the NEG models are based on general equilibrium approaches. Their
subject is the description of economic states, where markets clear, no changes in the
variables involved occur, and perfect predictions concerning the future are made. Sit-
uations out of these perfect world states are not only unaddressed, but cannot even be
characterized using the given equations. Fowler [2007] tackles this issue by converting
the classical cp-model to an agent based framework. This enables him to analyze the
dynamic behavior of the model outside of equilibrium. That the construction of an
agent based model of this kind, which is very close to the original model, is not an
easy task is shown by the fact that the agent based model has some severe weaknesses
including the independence of worker’s location and firm’s labor demand. This is why
Fowler [2011] improved his work by an enhanced version of the agent based framework.

Some other attempts like for instance Baldwin [2001] have been made to at least
define the NEG models outside of equilibrium, most of them building on the core
periphery model. Fujita and Mori [2005] have pointed out the fact that, because
there has been a great progress in computational power and in the relevant software
instruments, the obvious next step are numerically computable NEG models. Indeed,
there has been a persistent trade of between the realism and tractability of NEG models
and, while simplified, analytically solvable scenarios won’t loose their importance, a
numerical analysis can open the door for understanding more about distance between
economic regions.

This paper builds on the constructed capital model by Baldwin [1999], makes it
dynamic in nature and extends its domain to out of equilibrium states. The original

49



3 AN ACE APPROACH TO THE CONSTRUCTED CAPITAL MODEL

model uses an optimal control approach to help agents solve the inter temporal utility
optimization problem they face. This means that agents make their saving decisions
with perfect knowledge about all other agents’ decisions in the future, creating a self
fulfilling prophecy for the level of the capital rental rate. We are more realistically
assuming that agents face uncertainty concerning future rental rates. The literature on
inter temporal expenditure optimization helps us to formulate an approach, by which
we can determine an optimal consumption function. Including this kind of function
into the original model reveals some differences as opposed to the equilibrium structure
discussed by Baldwin.

Section 3.2 gives a quick introduction to the constructed capital model as in Baldwin
[1999], before section 3.3 sets up and tackles the stochastic expenditure optimization
problem. Section 3.4 derives some analytic results concerning the stability of the re-
sulting equilibrium points. After that, sections 3.5 and 3.6 discuss some bifurcation
diagrams for different parameter settings. Section 3.7 introduces autoregressive inter-
est rate expectations as opposed to the i.i.d. behavior that was assumed before. Then,
section 3.8 gives some examples of possible trajectories and investigates wether inter
equilibrium jumps can be triggered solely by expectational shocks. Finally, section 3.9
extends the model to an n-country setting. Section 3.10 concludes.

3.2 Model

3.2.1 Basic assumptions

The basis for the investigations conducted in this work is the model by Baldwin [1999].
We are dealing with interrelated regions, each one working similar to an economy
described by the Ramsey model. Important to note is that as opposed to not only
Baldwin’s model, but also most dynamic modifications of the standard Core-Periphery
model as e.g. Krugman [1992], our model is discrete with respect to time.

In our economy there are two factors, namely labor (L) and capital (K). Both
factors are immobile and non-traded. Each of the two countries under consideration
has a fixed number of inhabitants, who are endowed with a fixed amount of labor
in each period and an initial amount of capital which is endogenous in later periods.
An agent can work in one of two sectors namely agriculture or manufacturing. In
agriculture an homogeneous good is produced under constant returns to scale. To be
more specific, one unit of food is produced using aa units of L and 0 units of K. In
the spirit of the Dixit-Stiglitz monopolistic competition model, in the manufacturing
sector one specific kind of product from a continuum of varieties is produced requiring
a fixed cost of one unit of K and a variable cost of am units of L. So when producing
xi units of variety i, costs of π+wamxi arise during production, where π is the nominal
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rental rate for a unit of capital, which shall be a central element of the model. Finally,
an agent can either spent her wage w on consumption of the mentioned goods or invest
the money in order to receive capital returns allowing for higher consumption levels in
future periods.

3.2.1.1 Capital investment

The capital that has been invested by the agents is integrated to form the region’s
capital stock K. K corresponds to the number of firms in that region, because each
firm producing one product requires one unit of capital. As mentioned, in every period
the agents can make such an investment (or disinvestment) decision and hereby increase
or decrease their own as well as the nation’s capital stock. Additionally, the capital
wares out and loses a proportion of δ of its value in every period. So the capital
dynamics are described by

ki,t+1 = (1 + πt − δ)ki,t + li,t/Pk (6)

K =
∑

ki

where li,t = w− et is the portion of an agent’s labor income she invests in period t. Pk
is the price of one unit of capital. It can be imagined as purely dictated by technology
in the sense of efficiency of capital generation. The term in brackets reflects the real
interest rate, which will be referred to as rt from now on.

Manufacturing as well as the agricultural good is traded among the two regions. As
usual in the new economic geography, the agricultural good is free of transportation
costs, whereas the manufacturing products experience iceberg transportation costs,
meaning that τ ≥ 1 units have to be shipped in order for one unit to arrive. No
revenues are generated by the occurrence of these costs.

3.2.1.2 Agents’ preferences

All consumers have the following logarithmic utility function consisting of a term CA,t

for consumption of the agricultural good and a composite term CM,t comprising a CES
combination of all the manufacturing goods.

U =
∞∑
t=0

(1− ρ)tln(Cα
M,tC

1−α
At )

CM =

(∫ K+K∗

i=0

c
1−1/σ
i di

)1/(1−1/σ)

, σ > 1, 0 < α < 1

The elasticity of substitution parameter σ influences the well known love of variety
effect. Future utility is discounted by ρ > 0. And since, as mentioned above, one unit
of capital corresponds to one firm and one variety, integrating over varieties corresponds
to integrating over the sum of home and foreign capital K and K∗.
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3.2.2 Consumer and firm optimization

From the preferences given above, a set of results can be derived. Given a level of
expenditure, a consumer will allocate a fraction of 1 − α of them on the agricultural
good and the rest on manufacturing goods. Among the latter, the fraction spent on
each one depends on the relation of its price to the overall price index.

cj =
sj
pj
αE , sj =

p1−σ
j∫ K+K∗

i=0
p1−σ
i di

Since these equations are rather standard, I won’t go into detail concerning their
derivation. The same applies for the firms’ profit maximization. Before turning to the
equations for optimal prices and resulting profits, consider Baldwin’s [1999] very useful
set of normalizations . First the wage in agriculture is normalized to 1 and units of that
good are chosen such that aa = 1 and because of constant returns to scale and perfect
competition, we have pa = 1. Now as long as in both countries the agricultural good is
produced, we have wage equalization, because in this sector there are no transportation
costs. The labor market is competitive so the wage in manufacturing will also be 1.
The optimization of the firms’ profit function implies

pj =
amσw

σ − 1
.

If one chooses units of manufacturing goods such that the unit input coefficient becomes
am = σ−1

σ
, then pj = 1. Firms selling their goods in the neighbor county will forward

the transport costs to consumers and charge a price of τ .
Plugging these values into the representative firms profit function, one gets

πt =
(α
σ

)
(s11Et−1 + s12E

∗
t−1), π∗t =

(α
σ

)
(s21Et−1 + s22E

∗
t−1) (7)

with s11 =
1

Kt + φK∗t
, s12 =

φ∗

φ∗Kt +K∗t
, s21 =

φ

Kt + φK∗t
, s22 =

1

φ∗Kt +K∗t
,

where s11 is the part of home countrie’s expenditures spent at home, s12 is the part of
foreign countrie’s expenditures spent on products produced in the home country and
so on. 10 φ = τ 1−σ and φ∗ = (τ ∗)1−σ represent the freeness of trade ranging from 0 for
prohibitive trade barriers to 1 for free transportation.

10The reason for the index of E being t− 1 instead of t is the timing in our model. First the capital
is subject to the interest rate, then the wage is received and finally the agent consumes. Because
capital can never be negative, consumption in t must be based on capital after being subject to the
interest rate. If this very interest rate would depend on the expenditures in t, this would lead to a
recursion. This reasoning will become more apparent further below.
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3.3 Intertemporal expenditure optimization

Traditional economic modeling assumes perfect foresight of all agents concerning what
is happening in the economy in future periods. This includes the knowledge of indi-
viduals about firms’ behavior and most importantly about saving decisions of their
fellow consumers. Hereby they are also assumed to know the future rental rate. This
is exactly the assumption Baldwin [1999] makes. He then uses dynamic programming
to solve for the Euler equation, which is well known from other models. In our discrete
world, the Euler equation used by Baldwin would look like so

et+1 = rt(1− ρ)et.

Now, the change in consumption is set to zero, which implies et = et+1. 11 The im-
portant point is that by this step, one restricts the attention exclusively to the steady
state(s) of the system. The only question answered is "what happens if everybody
expects the same constant rate of return for his capital and is correct in his expecta-
tion?". Everything that happens out of this perfect world equilibrium is not addressed
by the research so far. In fact we do not even know if or how the system moves towards
these equilibria or if it rather ends up somewhere else in case the initial conditions
are different from the equilibrium values or if an agent makes a small mistake in his
behavior or expectations. While what has been done so far is certainly interesting and
its justification is beyond debate, it is not a true dynamic analysis.

To change this fact, I am going to assume a more realistic consumption behavior of
the agents. There is a considerable amount of literature on optimal consumption/sav-
ings behavior in case of uncertainty. Consider a setting like the one in Phelps [1962].
About the same assumptions are made in Levhari and Srinivasan [1969]. Even though
the ones made here are slightly different, the derivation that follows will be very close
to the latter work.

Just like it is the case in our model, the agent receives a certain and constant income
in every period and faces a decision of how much to consume and how much to save.
The amount saved is subject to a stochastic interest rate, which is for now assumed
to be i.i.d. and the agent seeks to maximize the expected discounted sum of future
utilities.

max E

[
∞∑
t=0

(1− ρ)tu(et)

]
. (8)

12 Before we proceed, we have to define what will be called "cash on hand". It is the
amount of money that an agent can maximally spend in a given period. Note that this

11In the continuous framework Baldwin [1999] uses, the equivalent condition is Ė = 0.
12Usually one would expect the letter c for consumption. To stay consistent with the notation from

above, we continue to use e for expenditure.
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amount will be different from the capital multiplied by its price, because according to
our assumptions concerning the timing, capital gains are received, then the wage is
received and finally the agent consumes. So cash on hand is defined as follows.

xt = ktrtPk + w (9)

Plugging this definition into (6), yields the dynamics

xt+1 = (xt − et)rt+1 + w (10)

For the optimal consumption path the term (8) can be expressed as a so called value
function. The only argument of the value function is the agent’s cash on hand in
period 0. This is because capital (and hereby equivalently cash on hand) is the only
state variable, which is also why optimal consumption in period t can be expressed as
a function of cash on hand in that same period.

Vt(xt) = E

[
T∑
τ=t

(1− ρ)τ−tu(eτ )

]
,

where
eτ = fτ (xτ )

is period t’s optimal consumption.
Using the value function we can easily derive the Bellman equation.

Vt(xt) = max
0≤et≤xt

[u(et) + (1− ρ)EVt+1[(xt − et)rt+1 + w]] (11)

Taking the derivative with respect to et leads to

u′(et) = (1− ρ)E[rt+1V
′
t+1[(x0 − et)rt + w]] (12)

Next, we make use of the Envelope Theorem. Plugging in the optimal consumption
et = ft(xt) into (11) gives

Vt(xt) = u(ft(xt)) + (1− ρ)EVt+1[(xt − ft(xt))rt+1 + w],

which can be differentiated on both sides with respect to xt, yielding

V ′t (xt) = f ′t(xt)u
′[ft(xt)] + (1− ρ)(1− f ′t(xt))E

[
rt+1V

′
t+1[(xt − ft(xt))rt+1 + w]

]
.

Finally, using (12) we get
V ′t (xt) = u′[ft(xt)]

and
u′[ft(xt)] = (1− ρ)E [rt+1u

′[ft+1((xt − ft(xt))rt+1 + w)]] .
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With the logarithmic utility assumed in the model here, this gives the expression

1

ft(xt)
= (1− ρ)E

[
rt+1

ft+1((xt − ft(xt))rt+1 + w)

]
. (13)

Attempts to find the function(s) ft have among others been made by Zeldes [1989],
Deaton [1989] and Carroll [1997]. However, all these authors have been concerned
with a slightly different problem. They assume a stochastic labor income instead of a
stochastic interest rate. For this problem Carroll [2004] derives conditions under which
the consumption rule ft will converge to a fixed function as the agents’ lifetime gets
infinitely large. Of course our stochastic interest rate problem is different. So we can
not use these theoretical results. But since the structure of the problem is very similar,
we can still apply the numerical methods used by the authors to find a consumption
rule.

Before we apply this method, we need to make an assumption concerning the inter-
est rate’s presumed distribution. Note that this is not an assumption about the actual
behavior of the interest rate. We cannot make this kind of assumption, because r is
completely endogenous in the model. Rather we only determine the agent’s believes
about the interest rate’s distribution. It is common practice to assume that returns
are log-normally distributed. For our numerical purposes the lognormal distribution
is approximated by a discrete grid. The method we are going to apply then works by
backward induction. Since we say that there are no bequests, we know that for the
agent it will be optimal to consume everything she has in the last period of her life.

fT (xT ) = xT

If we now choose a value for XT−1, we are able to numerically determine the optimal
consumption cT−1 = fT−1(XT−1) by using (13). We do this for a grid of XT−1 values
and then approximate fT−1(xT−1) by a linear interpolation of the resulting points. In
the next step we chose values for XT−2 and use the function fT−1(xT−1) in combination
with (13) to determine fT−2 and so on.

Figure 12 shows how the consumption function, starting from a 45 degree line
reflecting the recommendation to spend everything, eventually moves towards its final
position.

The first thing that catches ones eye, when looking at the figure, is that the final
function resembles the form of a piecewise linear function. For lower cash on hand
values, the function commands the agent to spend everything she has, while for higher
x values there should be some saving.

This is a very similar result to the one of Carroll. In Carroll [1996] and Carroll
[2004] he finds that under certain conditions regarding the impatience of the consumer,
at every instant cash on hand will be guided back to a fixed target level. This means
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that the optimal consumption rule can be expressed as

f(xt) = eopt + g(xt − xopt),

where xopt is the optimal level of cash on hand, that the agent always seeks to attain and
eopt is the agent’s expenditure level for the case in which it actually reaches xt = xopt.
Of course this implies that g(0) = 0.

T
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T-20

0 1 2 3 4
xt0.0

0.5

1.0
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et

Figure 12: Convergence of the optimal consumption function for i.i.d. interest rates
(ρ = 0.1, µ = 1.1, σ = 0.05, w = 1)

Taking the first order taylor expansion around the point xt = xopt yields

f(xt) ≈ eopt + g′(0)(xt − xopt)

If we change parameters, we can write this affine linear function in a form, which is
better suited for the analytical challenges we will face later on.

f(xt) ≈ w + β∗(xt − x̄∗)

Even though the interpretation of the two new parameters of the function are not as
clear as the one for eopt and xopt we can still say that the optimal cash on hand level is
determined by x̄∗, and the function’s slope is controlled by β∗.

Since we agreed on the fact that agents cannot spend more than xt, we need to
make a definition by cases analogously to Allen and Carroll [2001].

f θ(xt) =

{
w + β(xt − x̄) if w + β(xt − x̄) ≤ xt

xt if w + β(xt − x̄) > xt
(14)
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where θ = {β, x̄} are the only two parameters that describe the function. For now
let us assume that every agent knows from the start about the optimal parameters θ∗

leading to the correct first order taylor expansion. Parameters being "optimal" means
that they are optimal corresponding to the believes the agent has about the mean and
standard deviation of the random interest rate process. Perhaps this process does not
really exist, but the point of this paper is to study what happens if the agents believe
it does.

3.4 System behavior with piecewise linear consumption

In this subsection we make use of the piecewise linear expression in (14) to be able to
derive some analytical results.

We now have a complete dynamical system defined by the equations (6), (7), (10)
and (14). The system for the two country model looks as follows

Kt+1 = (1 +
πt
Pk
− δ)︸ ︷︷ ︸

rt

Kt +
wL− Et

Pk
, K∗t+1 = (1 +

π∗t
Pk
− δ)︸ ︷︷ ︸

r∗t

K∗t +
wL ∗ −E∗t

Pk

with πt = (
α

σ
)(s11Et−1 + s12E

∗
t−1), π∗t = (

α

σ
)(s21Et−1 + s22E

∗
t−1)

s11 =
1

Kt + φK∗t
, s12 =

φ∗

φ∗Kt +K∗t
, s21 =

φ

Kt + φK∗t
, s22 =

1

φ∗Kt +K∗t
,

Xt = KtrtPk + wL, X∗t = K∗t r
∗
tPk + wL∗

Et =

{
wL+ β(Xt − X̄) if wL+ β(Xt − X̄) ≤ Xt

Xt if wL+ β(Xt − X̄) > Xt

E∗t =

{
wL∗ + β∗(X∗t − X̄∗) if wL∗ + β∗(X∗t − X̄∗) ≤ X∗t
X∗t if wL∗ + β∗(X∗t − X̄∗) > X∗t

(15)

Note that in this formulation capital letters are used for expenditures, capital and
cash on hand, because agents behave homogeneously. Everybody is assumed to have
the same function for expenditures and the quantities are just summed up, which leads
directly to the dynamics for the aggregate values. L and L∗ are the sizes of the labor
forces in both countries. Although we agreed on w being normalized to 1, it is explicitly
mentioned in the above equation just for clarification.

To make things simpler and to further pursue the idea that consumers are homoge-
nous, we assume the consumption function parameters to be constant across borders
as well. That is we take X̄ = X̄∗ (, which is the nation’s aggregated optimal cash on
hand) and β = β∗. Furthermore we consider the case of symmetric regions for now
(i.e. L = L∗).
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Now let us consider the steady state equilibria of the dynamical system. It turns out
that there are five of them. One symmetric equilibrium, two core periphery equilibria
and two intermediate ones. The symmetric equilibrium has the following constant
values for capital and expenditures, respectively.

K = K∗ =
L(βσ − α) + βX̄(α− σ)

Pk(αβ + σ(δ(β − 1)− β))
, E = E∗ = − σ(L(δ + β)− δβX̄)

αβ + σ(δ(β − 1)− β)

The core periphery equilibrium with the home country as the core has the values

K =
L(α(β − 2) + βσ) + βX̄(α− σ)

Pk(αβ + σ(δ(β − 1)− β))
, K∗ = 0,

E =
δβσX̄ − L(αβ + σ(δ + β))

αβ + σ(δ(β − 1)− β)
, E∗ = L.

Of course the other core periphery equilibrium looks exactly the same with the values
between the regions interchanged, because of the symmetry between countries.

The expressions for the fourth and fifth equilibrium are very lengthy. As opposed
to the other steady states of the system, the expressions for this equilibrium depend
on φ. In the diagrammatic analysis below, we will see why this makes sense. Because
of their limited range of existence, the huge mathematical terms involved, as well as
their instability, these steady states shall not be further discussed here.

To draw inferences about the stability of the equilibria, we need to calculate the
eigenvalues of the Jacobian of the vector valued function

Kt+1(Kt, K
∗
t , Et, E

∗
t , Et−1, E

∗
t−1)

K∗t+1(Kt, K
∗
t , Et, E

∗
t , Et−1, E

∗
t−1)

Et(Kt, K
∗
t , Et−1, E

∗
t−1)

E∗t (Kt, K
∗
t , Et−1, E

∗
t−1)

 =


Kt+1(Kt, K

∗
t , Et−1, E

∗
t−1)

K∗t+1(Kt, K
∗
t , Et−1, E

∗
t−1)

Et(Kt, K
∗
t , Et−1, E

∗
t−1)

E∗t (Kt, K
∗
t , Et−1, E

∗
t−1)


Let J be the Jacobian of this function. Then the eigenvalues of J evaluated at the
respective equilibrium point will give information about its asymptotic stability.

Of course the resulting 4× 4 matrix is anything but easy to handle. But luckily J
has some nice symmetry properties that enable us to calculate the eigenvalues at the
two equilibrium points.

3.4.1 Stability properties of the symmetric equilibrium

In our further analysis, we must distinguish between the cases X̄ < L and X̄ ≥ L,
because the system behaves fundamentally different in these parameter ranges. But
how can we interpret these two parameter regions? For X̄ < L (which means x̄ < w)
the agent is impatient enough to spend his whole labor income when this is the only
thing he has at hand. On the other hand, when X̄ > L, the agent is willing to save
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a certain part of his wage. To be more formal, at the point where X̄ = L an agent
with an empty bank account will be indifferent between consuming everything he has
in each period and saving a very small amount ε for the future. So we have

log(w) + (1− ρ)log(w) = log(w − ε) + (1− ρ)Et [log(w + rt+1ε)] .

If we rearrange and take the limit

1− ρ = lim
ε→0

log(w − ε)− log(w)

log(w)− Et [log(w + rt+1ε)]
,

which would yield 1− ρ = 1/r for a perfectly predictable interest rate, but cannot be
simplified further for the general case of a distribution of r.

In both cases that we distinguish (X̄ < L and X̄ ≥ L) the eigenvalues of the
symmetric equilibrium are

λsym,1 = λsym,2 = 0

λsym,3 =
αβ + (1− δ)(1− β)σ

σ

λsym,4 =
1

σ(φ+ 1)2(wL(βσ − α) + βX̄(α− σ))
·

[wL(α2β(φ2 − 1)− ασ(δ(β − 1)(φ− 1)2 + β2(φ2 − 4φ− 1)− β(φ− 1)2 + (φ+ 1)2)

+(δ − 1)(β − 1)βσ2(φ+ 1)2) + βX̄(α2(β − βφ2) + ασ(δ(β − 1)(φ− 1)2

−(φ+ 1)(2β − φ− 1))− (δ − 1)(β − 1)σ2(φ+ 1)2)].

(16)

Proposition 3. Under the dynamics of system (15), for β < αL
σwL+αX̄−σX̄ and wL < X̄

there exists a level of trade freeness φcrit with 0 < φcrit < 1 such that for φ ≤ φcrit the
symmetric equilibrium is stable and for φ > φcrit it is unstable.

Proof. For the symmetric equilibrium point to be asymptotically stable all eigenvalues
must be less than 1 in absolute value. For λsym,3 this is given because 1 = β+(1−β) >

β + (1− δ)(1− β) > α
σ
β + (1− δ)(1− β) = λsym,3. The first inequality holds because

0 < δ < 1 and the second one because 0 < α < 1 < σ, according to our (fairly weak)
assumptions. Since every term involved is nonnegative, we also have λsym,3 ≥ 0.

The situation concerning λsym,4 is more complex. Proposition 3 is proven if we
show:

1. λsym,4(β, φ) is continuous on the interval β ∈ [0, αL
σwL+αX̄−σX̄ ), φ ∈ [0, 1].

2. λsym,4(βfix, φ) = 1 has at most 2 solutions for φ if we fix βfix ∈ [0, αL
σwL+αX̄−σX̄ ).

3. λsym,4(β, 0) < 1 for β ∈ [0, αL
σwL+αX̄−σX̄ )
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4. λsym,4(β, 1) ≥ 1 for β ∈ [0, αL
σwL+αX̄−σX̄ )

The first point is the most straightforward one, since the only discontinuity point of
λsym,4(β, φ) is where its denominator crosses 0. This happens for β = αL

σL+αX̄−σX̄ . For
smaller values the denominator is negative and the function λsym,4(β, φ) is continuous.

Point 2 is readily observed when we set λsym,4 = 1 and see that this results in a
quadratic equation in φ. This implies that there are at most two solutions to it.

To establish point 3, let us calculate the term for λsym,4(β, 0). It simplifies to
αβ+(1−δ)(1−β)σ

σ
, which is the same term as the one for λsym,3. So we know from the

initial argumentation that it is ≤ 1.
Point 4 is shown if we show that

λsym,4(β, 1)− 1 =
β(L− X̄)(αβ + σ(δ(β − 1)− β))

L(βσ − α) + βX̄(α− σ)

is positive for β ∈ [0, αL
σwL+αX̄−σX̄ ). Setting the expression equal to 0 and solving for

β gives the solutions 0 and δσ
α+δσ−σ . It is easy to see that the latter value is never in

[0, 1], so it is never in the considered interval. Now if the derivative of λsym,4(β, 1) at
β = 0 is positive, then we are done.

∂λsym,4
∂β

|β=0,φ=1 =
(L− X̄)δσ

Lα

This expression is clearly positive for L > X̄.

Increasing β above αL
σwL+αX̄−σX̄ leads to an interval of λsym,4 < −1 before indicating

stability again. Since such high values for β are quite unrealistic (none of our simulated
consumption functions came close to this value), this case won’t be discussed in further
detail.

For X̄ > L the very last part of the proof does not work anymore. In fact, the
considered derivative will always be negative which means that for high trade freeness
the eigenvalue is less than one. But there will still be some intermediate values of φ
for which the symmetric equilibrium gets destabilized by raising λsym,4 above 1. This
is true until a critical value of X̄, call it X̄crit is crossed, above which the eigenvalue is
always less than 1. This can be shown by demonstrating that λsym,4 is monotonically
decreasing in X̄ and in the limit for X̄ →∞ everywhere smaller than 1.

X̄crit can be analytically determined by solving λsym,4 = 1 for φ, then setting the
square root component of the solution equal to zero and solving for X̄. The analytical
expression for X̄crit can be found in the appendix.

As mentioned, beyond X̄crit the eigenvalues are all smaller than 1. However, for
some very weird parameter combinations including an unrealistically huge deprecia-
tion rate, λsym,4 can become smaller than -1. So we cannot make anymore general
statements about the stability of the symmetric equilibrium here.
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3.4.2 Stability properties of the core-periphery equilibrium

For X̄ < L, the eigenvalues of the core-periphery equilibrium are

λcp,1 = λcp,2 = λcp,3 = 0

λcp,4 =
αβ + (1− δ)(1− β)σ

σ
.

(17)

This means that for small X̄, the cp-equilibrium is always stable, independently of
the other parameter values.

The intuition for this is straightforward. Consider the consumption function in
Figure 13 (a). In the diagram, the dynamical system is broken down to a single
dimensional system, abstracting from the effect of Xt of rt. In fact, because of the
multiple dimensions it is not possible to depict Xt+1 as a line in a diagram like this.
Nevertheless, it can help understand what is going on. Let’s assume a population size
of L = 1. In the core-periphery case, the peripheral country will be at Xt = 1, which
is exactly where the dashed line, indicating Xt+1, crosses the 45◦ line. After a small
capital shock the country will be back in the equilibrium point by the next period,
because the consumers will spend everything they have at hand, no matter if it is a
little bit less or a little bit more than the steady state value. The core country will be
at the point where the dashed line crosses the 45◦ line for the second time. At first
sight this point is unstable because the slope of the Xt+1 curve is greater than unity.
But there is another important mechanism in our model, namely that the interest rate
rises if the capital decreases and vice versa. Of course a change in the interest rate
will also influence the Xt+1 curve in the graph. In particular, it means that in case of
a small positive capital shock for the core country, the slope of Xt+1 will drop which
will lead to the crossing point with the 45◦ line to shift to the right so that the capital
stock will move back to its steady state value. Note that this effect is independent of
trade costs, since the capital stock in the peripheral country is 0 anyway, so that the
core country is the only one influencing its rate of return.
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(a) X̄ < L
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(b) X̄ > L

Figure 13: Stability of the asymmetric equilibrium
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For completeness we also need to mention that for X̄ < L both countries having a
zero capital stock and consuming their wage income in every period is also an equilib-
rium. In Figure 13 this would correspond to both counties residing at Xt = 1. In this
scenario the interest rate would rise to infinity, which makes it essentially unrealistic,
because consumers would definitely be willing to save in this case. However, since their
mental capabilities are kind of limited here and they continue assuming that this in-
terest rate was just a very lucky draw out of the constant distribution, the equilibrium
exists here. This is about to change later on in this paper.

For X̄ > L the pure cp-equilibrium does not exist anymore. Consider Figure 13
(b). Now there is only one point, where the Xt+1 curve crosses the 45◦ line. This is
the point that corresponds to the "core" in Figure 13 (a). This alone does not mean
that there cannot exist any asymmetric equilibrium. However, now there can never be
a country which is truly the "periphery" in the sense of having a zero capital stock. To
see this, note that according to equation (9), we must have xt = w = 1, which means
Xt = L in order for the capital stock to be 0. For the Xt+1 curve to cross the 45◦ line
at 1, we must have r = 0. This in turn would require an infinitely large capital stock
in one of the two countries, which is impossible.

Finally, there is the boundary case for which X̄ = L. Here the kinks of the con-
sumption curve and the future cash on hand curve coincide. For a particular rate of
return the two curves can even totally coincide to the left of 1. So a core periphery
situation does definitely exist, but its stability properties in this scenario are highly
non-trivial.

3.5 Bifurcation analysis of the piecewise linear case

The central object in the new economic geography are the transportation costs or the
corresponding value of trade freeness. These transportation frictions are the channel
through which the idea of distances is implemented in NEG models. For this reason
the so called tomahawk diagrams have become a tradition in the field. For the case
of symmetric transportation costs, they proved to be a very useful instrument for
evaluating the existence and stability of equilibria.

In this section, we aim to apply this instrument to our model in order to find
out wether our predictions of the previous section were correct as well as to gain
a better understanding of the system’s behavior depending on φ. Figure 14 shows
the equilibrium capital stocks of the two symmetrically sized nations for all levels of
trade freeness. Note that (even thought the diagrams shall be of qualitative nature),
as opposed to many other authors, I plot absolute values of K and K∗ instead of
world capital stock shares on the vertical axis. The main reason for this is better
comparability with the numerical experiments further below.
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Figure 14: "Tomahawk" diagram for piecewise linear consumption behavior

Figure 14 (a) shows the equilibria of our system for high consumption function
intercepts (X̄ < L) . As explained, in this parameter case, the cp-equilibrium is always
stable, which is indicated by the solid lines at the top and bottom of the diagram. For
low trade freeness, the symmetric equilibrium is also stable before at a certain value
φcrit it becomes unstable.

When analyzing the eigenvalues we saw that for L ≤ X̄ ≤ X̄crit the symmetric
equilibrium will be stable for very high and very low trade freeness, while being un-
stable for some intermediate range. This is exactly what can be observed in Figure
14 (b). As stated in subsection 3.4.2, the cp-equilibrium does not exist anymore in its
pure form, but vanishes in favor of an asymmetric equilibrium no longer featuring full
agglomeration. Furthermore, for different levels of trade freeness, the transitions are
not catastrophic anymore, but rather smooth now.

Finally, for X̄ values beyond the critical threshold that was discussed above the
only existing steady state is the symmetric one.

Now let us attempt a first comparison of these findings with the results of Baldwin
[1999]. The reader shall be reminded that the central question we seek to answer is
whether a more realistic consumption behavior with expectations concerning the inter-
est rate alter the agglomeration tendencies between regions in this type of model. In
this subsection we replaced the perfect foresight Euler equation resulting from an opti-
mal control approach by an approximation to the consumption function that resembles
optimal behavior when agents assume i.i.d. interest rates. For large intercepts of the
non liquidity constrained part of the consumption function (corresponding to a kink
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further to the right) we can partly confirm the results from the original model. In our
model as well as the Baldwin case, there exists a critical trade freeness above which the
symmetric equilibrium gets unstable. However, a new kind of information is that in
this parameter case, the cp-equilibrium is stable, regardless of the level of trade costs.
Also new are the results for large X̄, where the qualitative system behavior exhibits
radically new forms.

3.6 Bifurcation analysis for simulated consumption functions

In the previous subsections, we made use of the piecewise linear approximation to the
optimal consumption functions. A piecewise linear function not only resembles the
form of the true consumption function very closely, but also performs well in terms of
sacrificed utility, when used instead of the true function. However, taking a close look at
the shape of the numerically determined solution for the optimal consumption function
resulting from our inter temporal optimization problem reveals what one would expect,
namely that instead of the kink there is a smooth curvature which continues for higher
values of xt. In this subsection we want to investigate whether this makes a difference
with respect to the system’s behavior.

When replacing the approximation with the true function, the analysis we con-
ducted in Figure 13 will not be the same. It is hard to make any conjectures about
what might happen, but even a small alternation to the form of the consumption
especially around the kink might play a central role.

In Figure 15 a bifurcation diagram for our model using a numerically determined
consumption function is depicted. For the consumption function the agents assume a
real rate of return drawn from a lognormal distribution with mean 1.05 and standard
deviation 0.05. The rest of the parameters are given in the Title of Figure 15. 13

13The reason for using these apparently odd numbers for the random process is that with these
parameters the distribution has a mean of 1.05 and a standard deviation of 0.05
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Figure 15: Equilibria depending on trade freeness for assumed i.i.d. interest rates
(ρ = 0.05, α = 0.4, σ = 2, δ = 0.08, µ = 1.0488, σ = 0.04759)

The equilibrium structure is similar to the piecewise linear case for low values of X̄
from Figure 14. The cp-equilibrium is stable for all trade cost levels and the symmetric
equilibrium gets destabilized above a certain level of φ. Please note that the nature of
the diagram in Figure 15 is different from the one in Figure 14. While the curves in
the latter result from the analytical expressions for the equilibrium points, we are now
only able to numerically analyze the system’s behavior for a very fine grid of initial
conditions. This is the only reason why also the unstable equilibrium points partly
appear in the diagram. Interestingly this also reveals the fact that the intermediate
equilibrium points do not seem to be very strong repellers. Even after 10000 periods
the system is still in a state very close to the unstable equilibrium, provided it started
sufficiently close to it. This is in contrast to the symmetric equilibrium for high trade
freeness. Even for appropriate initial conditions the system moves away very quickly.
All in all, we are able to say that the structure of equilibria in this parameter case
seems to resemble the well known tomahawk structure which we find in many NEG
models, among them the original core periphery model by Krugman [1990].

Before we finish this subsection, let us conduct some comparative statics. Note that
the sharply curved part of the consumption function just used lies somewhere around
L, which means that if we were to find a piecewise linear function approximating the
consumption function resulting from the parameter case just used, the value for X̄
would also lie in this region.

If we were to increase the mean of the interest rate distribution assumed by the
agents, the right part of the consumption function would shift down and the kink
would move to the left. This makes perfect sense, because with a ceteris paribus higher
expected interest rate it is better for the agents to consume less and entertain a higher
capital stock. A recall of chapter 3.5 lets us suspect a stabilization of the symmetric
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equilibrium and a disappearance of the cp-solution. This is exactly what happens. First
the tomahawk like area shifts to the right before vanishing, leaving the symmetric case
as the only stable steady state.

A similar effect occurs, when lowering ρ reflecting the impatience parameter of the
consumers. Of course a ceteris paribus more patient agent will have a lower consump-
tion function resulting in the same effect concerning the equilibria as above.

An operation going into the opposite direction will shift the tomahawk like part
of the graph to the left and then shrink the equilibrium capital stocks of both, the
symmetric and the asymmetric equlibria including the cp-solution.

3.7 Autoregressive return expectations

The next step is to let the agents no longer believe that the rates of return are i.i.d.,
but that they follow an AR1 process. Agents now think that rt+1 is determined as
follows.

log(rt+1)− log(r̄) = (log(rt)− log(r̄))ξ + εt

where εt ∼ N(0, σ) is a normally distributed shock and r̄ is the interest rate that
the system is expected to converge back to on average. So the larger ξ, the larger
is the effect of a high or low interest rate that gets carried over to the next period.
The stochastic Euler equation can be derived analogously to above, only that now the
consumption function has not one but two arguments, namely the state variables xt
and rt.

We now seek to find the function that satisfies

1

f(xt, rt)
= (1− ρ)E

[
rt+1

f(xt+1, rt+1)

]
.

Figure 16 depicts the new function f(xt, rt) that was numerically determined using
the same method from above. The difference is that now we have to iterate over a two
dimensional state space, which makes the computation a lot more effortful.
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Figure 16: Optimal consumption function for AR1 interest rates (ρ = 0.05, w = 1, r̄ =

1.0488, σ = 0.0476, ξ = 0.1)

Let us now include this new function as the consumers behavior into our model. Fig-
ure 17 shows the bifurcation diagram using ξ = 0.1, r̄ = 1.0488 and εt ∼ N (0, 0.0476).
Note that for ξ = 0 this process would be the same as the one considered in the
previous subsection, having a mean of 1.05 and a standard deviation of 0.05. In the
diagram we see that an assumed autocorrelation between the interest rates in succes-
sive periods will have a stabilizing effect on the two region system. The tomahawk like
part of the graph gets shifted to the right and it gets shrinked a bit so that before the
cp-equilibrium gets unstable, it looses its nature of being a true core periphery state.
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(b) ξ = 0.2

Figure 17: Optimal consumption function for AR1 interest rates (ρ = 0.05, w = 1, r̄ =

1.0488, σ = 0.04759)

This trend continues for higher values of ξ until eventually only the symmetric
equilibrium remains in the system. 14 This leads us to the conclusion that highly

14Note that the intermediate equilibria only appear in the graphs because of numerical reasons, just
like above. The same applies for the small symmetric part after the intermediate equilibria vanished,
where the symmetric state is just not repelling enough for the system to leave it after 10000 periods.
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anticipated interest rate persistence has a strong stabilizing effect on the symmetric
outcome. The intuition is that if agents believe that a high interest rate will somewhat
get carried over to the next period, they will save more if the interest rate is high and
save less if it is low. Since the home capital stock is the major magnitude of influence
on the home interest rate, it is only natural that (at least as long as trade barriers are
not extraordinarily low) it will pull the system towards the symmetric state.

3.8 Disequilibrium dynamics

In the preceding subsections we saw that under certain conditions several steady states
of the system can be stable at the same time. But a very important question is wether
it is possible to transfer the system from one equilibrium to another. I want to go even
further and ask, whether such an equilibrium transition can be accomplished when
fueled only by a temporary shock in expectations.

The numerical experiment that is conducted is fairly simple. First, the system
is initialized with conditions close to or at the symmetric equilibrium. For the con-
sumption behavior, the function et = f(xt, rt) is used, which assumes an AR1 process
for the returns, just like above. We use the same parameters from Figure 17 (b)
(ρ = 0.05, w = 1, r̄ = 1.0488, σ = 0.0476, ξ = 0.2) in both countries. Then we
wait for 500 periods to make sure the system has converged to the symmetric steady
state, before we introduce an expectational shock in one of the countries, in this case
the foreign one. For tshock periods, the agents in the foreign country now believe that
the fundamental rate of return r̄ is 1.1 instead of 1.0488. After this, the original
expectations are again in place.

Figure 18 shows the expenditures, the capital stocks, and the profits in both coun-
tries for 2000 periods. The solid line indicates the system’s behavior for tshock = 1,
whereas for the dashed line tshock = 8 is used. It can be seen that in both regions,
especially in the foreign country, where the shock is applied, expenditures drop consid-
erably right after period 500. As a consequence of the drastically reduced expenditures,
the capital stock in the foreign country increases. On the contrary, the capital stock in
the home country drops. This is because the reduced exports to the foreign region and
the hereby decreased rental rate hurt the home country’s capital stock more than the
additional savings could compensate. Now, in the case of a single period shock (solid
line), all the variables slowly converge back to their symmetric equilibrium values. As
opposed to this, for a larger shock endurance (dashed line) the economic variables
reside at some asymmetric values before converging to the "close to core periphery"
state, discussed in the previous section.
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Figure 18: Dynamics starting at the symmetric steady state with a 1 (solid) and 8
(dashed) period expectational shock in the foreign country at t = 500 (φ = 0.6, ρ =

0.05, α = 0.4, σ = 2, δ = 0.08, w = 1, r̄ = 1.0488, σ = 0.0476, ξ = 0.2)

In the next set of graphs in Figure 19 the opposite situation is shown. Here the
system starts from a core periphery state. Then, the same expectational shock as
above is applied. The question would be wether it is also possible to get from a cp-
equilibrium into a symmetric steady state. As can be seen in the Figure, for a large
enough shock this is indeed possible. Again, the single period shock does not suffice to
leave the cp-state in the long run, whereas the longer 8 period shock pushes the system
into the symmetric equilibrium, where it then resides forever. Another interesting fact,
which is not depicted in any of the graphs is that if we increase the trade freeness to
a level, where the symmetric equilibrium is no longer stable, the system may also be
transferred from one cp-equilibirum to the other.
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Figure 19: Dynamics starting at an asymmetric steady state with a 1 (solid) and 8
(dashed) period expectational shock in the foreign country at t = 500 (φ = 0.6, ρ =

0.05, α = 0.4, σ = 2, δ = 0.08, w = 1, r̄ = 1.0488, σ = 0.0476, ξ = 0.2)
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3.9 N-Region Model

So far we only considered our framework in the context of two regions or countries. A
possible next step would be to ask what happens if we were to extend the model to
N regions. Of course, we can no longer determine the steady states analytically when
choosing a large N , but we want to consider the behavior of the model with the help
of some simulations. The generalized model is

Ki,t+1 = (1 +
πi,t
Pk
− δ)︸ ︷︷ ︸

ri,t

Ki,t +
w − Ei,t
Pk

,

with πi,t = (
α

σ
)

N∑
j=1

sijEj,t−1

sij =
φij∑N

j=1 φijKj,t

,

Xi,t = Ki,tri,tPk + wL,

Ei,t =

{
wL+ β(Xi,t − X̄) if wL+ β(Xi,t − X̄) ≤ Xi,t

Xi,t if wL+ β(Xi,t − X̄) > Xi,t .

(18)

As can be seen, the generalization does not complicate the formulas all too much.
The law of motion for the state variable K stays the same and country i’s profit now
depends on the expenditure shares the country receives from all other countries. To
calculate all shares sij we need a matrix of values reflecting the trade freeness between
each two regions. Let us consider a grid of regions in which transportation costs are
proportional to the distance dij between them.

φij = (1 + tstepdij)
1−σ

dij =
√

∆x2 + ∆y2,
(19)

where ∆x = |xi − xj| and ∆y = |yi − yj| are the horizontal and vertical steps on the
grid between two regions.

Figure 20 shows five simulations for different parameter values. A grid of 100
countries with 20 rows and 5 columns on a flat slice is considered. A flat map implies
that the rightmost region faces a distance of no less than 5 steps to the leftmost
region, and by the same logic, from top to bottom one has to travel 20 steps. Initially
every region possesses the same capital stock with only a tiny variation (to escape a
possible unstable symmetric solution). We mainly distinguish between low and high
saving tendencies of the consumers reflected by X̄ being below or 1, and high and low
transportation costs controlled by the parameter tstep.
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Under a reasonable value for tstep of 0.01, implying that 1% of the goods melt away
per step on the grid, we observe a core in the middle of our map, which is much more
dispersed if consumers tend to save more (Figure 20 (a) vs. (c)). In the case of very
high transportation costs, multiple distinct cores on the map are the stable outcome.

Surprising is the model behavior under high X̄ values when transportation costs
are increased (Figure 20 (c) vs. (d)). In this scenario the core seems to get more
concentrated, contradicting the intuitive result from the two country case, in which
high transportation costs promoted a symmetric outcome.

(a) X̄ = 0.95,
τstep = 0.01

(b) X̄ = 0.95,
tstep = 0.8

(c) X̄ = 1.05,
tstep = 0.01

(d) X̄ = 1.05,
tstep = 0.1

(e) X̄ = 1.05,
tstep = 0.8

Figure 20: World of N countries on a slice (γ = 0.1, α = 0.4, σ = 2, δ = 0.08)

Now, what happens if we get rid of the assumption that our world is a slice with
strict boundaries on the sides? A much more realistic assumption concerning the
map shape would be that if one exits on one side, one directly reenters on the other.
The same applies for left and right, as well as for top and bottom. Connecting the
edges like this, gives us a world in the shape of a torus. The distances are calculated
just like in (19), only that now ∆x = Min(|xi − xj|, ncolums − |xi − xj|) and ∆y =

Min(|yi − yj|, nrows − |yi − yj|).
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Figure 21: Torus shaped map

Using the same parameter values as in the experiment before, Figure 22 shows some
differences in the equilibrium distribution of manufacturing activity across the map. In
panel (a) we see again a single industrial core, just like above in Figure 20, only that
now the location of the core is not in in the center. In fact, since the wold is symmetric
now, depending on the initial conditions, the core can be located anywhere on the
map. Increasing the transportation costs leads to the appearance of several cores of
manufacturing activity, which are distributed fairly evenly. Of course this looks also
different from above.

For the case of more patient consumers (corresponding to a larger X̄), we observe
a very even distribution of manufacturing activity. The torus map seems to favor the
symmetry of the equilibrium outcome a lot. For higher trade barriers this seems to
remain true. Only after increasing tstep to levels above 0.8, we begin to observe some
agglomeration effects.

(a) X̄ = 0.95,
τstep = 0.01

(b) X̄ = 0.95,
tstep = 0.8

(c) X̄ = 1.05,
tstep = 0.01

(d) X̄ = 1.05,
tstep = 0.1

(e) X̄ = 1.05,
tstep = 0.8

Figure 22: World of N countries on a torus (γ = 0.1, α = 0.4, σ = 2, δ = 0.08)

So we can state that the form of the world that is considered has an important
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influence on the nature and magnitude of agglomeration effects in multi country models
of larger size.

3.10 Conclusion

We followed Fowler [2007] in building a dynamic new economic geography model, which
is not only defined in the steady states, but also outside of it. Agents, who predict their
fellows’ behavior in all future periods with perfect accuracy were replaced by agents
who optimize with the prospect of an uncertain future.

We observe structurally similar results for the case of impatient agents, marked
by the well known tomahawk bifurcation diagram. More patient, or concerning the
return distribution optimistic agents seem to foster the stability of a symmetric equi-
librium and the destabilization of equilibria featuring catastrophic agglomeration. If
agents assume an AR1 return process instead of i.i.d. returns, then a higher perceived
autocorrelation will stabilize the symmetric equilibrium also in regions of relatively
low trade costs. Also, we observed that the core periphery states gradually lose their
extreme nature.

Expectational shocks are able to transfer the two region economy from cp-states to
symmetric ones and the other way around.

A generalization of the two country model to more countries makes it possible to
numerically analyze agglomeration effects on a 2 dimensional map of regions. Low trade
costs will result in a single core, in which all manufacturing activity is located. Higher
trade costs lead to multiple cores distributed across the map. Agents with a higher
willingness to save make the distribution much more dispersed. However, as opposed
to the two country model, there are stable solutions not featuring perfect symmetry.
Finally, we saw that the geometry of the map plays a decisive role for the resulting
agglomeration effects. A recommendation for further research into this direction will
inevitably bring along a deeper integration of the disciplines of economic geography
and spacial economics.

The strong need for a dynamic out of equilibrium extension of the models of the
new economic geography is more than obvious. The sharp limitations of analytical
instruments cannot be a justification to ignore what happens outside of symmetry,
outside of perfect foresight and outside of a two country context. The last point alone
showed that broadening the picture in this class of models can considerably enrich the
set of results.
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A Explicit solution for φcrit

Solving λsym,4 = 1 for φ yields the two solutions

φcrit,1/2 = 1
αβ+σ(δ(−β)+δ+β))(L(α−βσ)+βX̄(σ−α))

·

[−αδβσL+ αδσL− 2αβ2σL+ αβσL+ αδβ2σX̄ − αδβσX̄ + αβ2σX̄

− δβ2σ2L+ δβσ2 + L+ β2σ2L+ δβ2σ2X̄ − δβσ2X̄ − β2σ2X̄ ± 1

2

√
a1 ]

where

a1 = 4σ2(L(α(δ(β−1)+β(2β−1))+βσ(δ(β−1)−β))+βX̄(σ(δ(−β)+δ+β)−α(δ(β−1)+β)))2

+ 4(αβ + σ(δ(β − 1)− β))(αβ + σ(δ(−β) + δ + β))(L(α− βσ) + βX̄(σ − α))2

For β = 0 we have a1 = 0, which means that in this case there is only one solution.
From the proof of proposition 1 we know that ∂λsym,4

∂β
|β=0,φ=1 > 0 for L > X̄. Together

with the fact that a1 is positive for positive β, we can say that we get the value for
φcrit that applies in our range of parameters when we subtract the square root in the
above term.

B Explicit solution for X̄ s.t. φcrit is unique

Because of the quadratic nature of the term of λsym,4, we get two solutions for φcrit,
as seen above. When X̄ is increased, then before λsym,4 is everywhere smaller than 1
(which is eventually the case, which can be seen taking the limit), there exists an X̄,
for which there is exactly one φcrit. This is the case, when a1 = 0. Solving a1 = 0 for
X̄ yields the solution

X̄ = 1

λ
(
α3λ2−2α2λ2σ+αλσ2(4δ(λ−1)+λ)+4δ(λ−1)σ3(δ(λ−1)−λ)

) ·
[ wL

(
α
3
λ
2 − α2

λ
2
(λ + 1)σ + αλσ

2
(
2δ
(
λ
2 − 1

)
+ λ(3λ− 2)

)
+ 2(λ− 1)σ

3
(
δ
2
(
λ
2 − 1

)
− 2δλ− λ2

))
± 2

√
(λ− 1)2σ2wL2(σ(δ(λ− 1)− λ)− αλ)(αλ + σ(δ(λ− 1)− λ))3 ] .

C Code

The following function simulates the n-country model for 150000 periods. The stored
results are displayed in real time by a window object, which is not shown in the listing.
The code is written in Objective-C.
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1 − ( void ) simulation{
2

3 T = 150000; //Total number o f pe r i od s s imulated
4 n = 1 ; //number o f consumers per country
5

6 // other model parameters
7 alpha = 0 . 4 ;
8 sigma = 2 ;
9 delta = 0 . 0 8 ;

10 rho = 0 . 1 5 ;
11 w = 1 .0/ ( f l o a t )n ;
12

13 xi=0.0;
14

15 // shares , p r o f i t s , and c a p i t a l are i n i t i a l i z e d f o r per iod 1
16 f o r ( i n t i=0; i<Laender ; i++)
17 f o r ( i n t j=0; j<Laender ; j++)
18 s [ i ] [ j ]=1;
19

20 f o r ( i n t i=0; i<Laender ; i++)
21 pi [ i ]=1;
22

23 f o r ( i n t i=0; i<Laender ; i++){
24 i f (i<10)
25 K [ i ]=K0 ;
26 e l s e i f (i>89)
27 K [ i ]=K0 ;
28 e l s e
29 K [ i ]=K0 ;
30

31 }
32

33 //matrix o f t r an spo r t a t i on c o s t s i s c a l c u l a t ed us ing a f l a t map or ←↩
a torus

34 [ self transportMatrixInit ] ;
35 [ self sliderInit ] ;
36

37 f o r ( i n t i=0; i<Laender ; i++)
38 E [ i ]=w ;
39

40 f o r ( i n t i=0; i<Laender ; i++)
41 r [ i ]=1;
42

43

44 // consumers in every country are i n i t i a l i z e d with a random cap i t a l ←↩
endowment ( a l s o random pr e f e r en c e have been t e s t ed )
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45 std : : default_random_engine generator ( ( unsigned i n t ) time (0 ) ) ;
46 std : : normal_distribution<f l o a t > distribution1 ( 0 , 0 . 0 0 ) ;
47 std : : normal_distribution<f l o a t > distribution2 ( 0 , 0 . 3 / ( f l o a t )n ) ;
48

49 f o r ( i n t land=0; land<Laender ; land++) {
50 theConsumers [ land ] = [ [ NSMutableArray alloc ] init ] ;
51 f l o a t Ktemp = 0 ;
52 f o r ( i n t ci=0; ci<n ; ci++) {
53 Consumer∗ aConsumer = [ [ Consumer alloc ] init ] ;
54

55 aConsumer . gamma=gamma ; //+d i s t r i b u t i o n 1 ( genera tor ) ;
56 aConsumer . kbar=Kbar /( f l o a t )n ; //+d i s t r i b u t i o n 2 ( genera tor ) ;
57 aConsumer . e = w ;
58 aConsumer . k = MAX (0 , K [ land ] / ( f l o a t )n+distribution2 (←↩

generator ) ) ;
59

60 [ theConsumers [ land ] addObject : aConsumer ] ;
61

62 Ktemp += aConsumer . k ;
63 E [ land ] += aConsumer . e ;
64 }
65 K [ land ]=Ktemp ;
66 }
67

68 // here the ac tua l s imu la t i on beg ins
69 f o r ( i n t t=0; t<T ; t++) {
70 Kbar=KbarVorbereitet ;
71 gamma = gammaVorbereitet ;
72 i f ( matrixAktualisieren ) {
73 [ self transportMatrixInit ] ;
74 matrixAktualisieren=f a l s e ;
75 }
76 //view o f the window ob j e c t i s t o ld to update i t s content
77 [ [ self . window contentView ] setNeedsDisplay : YES ] ;
78

79 //new share s are c a l c u l a t ed
80 f o r ( i n t i=0; i<Laender ; i++){
81 f o r ( i n t j=0; j<Laender ; j++){
82 f l o a t temp = 0 ;
83 f o r ( i n t k=0; k<Laender ; k++)
84 temp+=phi [ k ] [ j ]∗ K [ k ] ;
85 s [ i ] [ j ]=phi [ i ] [ j ] / temp ;
86 }
87 }
88

89 //new p r o f i t s are c a l c u l a t ed
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90 f o r ( i n t i=0; i<Laender ; i++) {
91 f o r ( i n t j=0; j<Laender ; j++)
92 pi [ i]+=s [ i ] [ j ]∗ E [ j ] ;
93 pi [ i ]∗=(alpha/sigma ) ;
94 }
95

96 // i t e r a t e through a l l the c oun t r i e s
97 f o r ( i n t i=0; i<Laender ; i++) {
98 E [ i ]=0;
99 K [ i ]=0;

100 r [ i ] = 1+pi [ i ] / Pk−delta ;
101

102 // . . . and i t s consumers
103 f o r ( Consumer∗ aConsumer in theConsumers [ i ] ) {
104 aConsumer . gamma=gamma ;
105 aConsumer . kbar = Kbar /( f l o a t )n ;
106

107 f l o a t xt = aConsumer . k∗r [ i ]∗ Pk + w ; // cash on hand
108

109 // determine the expend i ture s ( p i e c ew i s e l i n e a r func t i on←↩
)

110 aConsumer . e = MAX ( MIN (xt , w+aConsumer . gamma ∗(xt−←↩
aConsumer . kbar ) ) , 0 ) ;

111

112 //new c ap i t a l
113 aConsumer . k = r [ i ]∗ aConsumer . k + (w−aConsumer . e ) /Pk ;
114

115 // expendi ture and c ap i t a l aggregat i on
116 E [ i ] += aConsumer . e ;
117 K [ i ] += aConsumer . k ;
118

119 }
120 }
121 }
122 }
123

124

125 − ( void ) transportMatrixInit {
126 f o r ( i n t i=0; i<Laender ; i++){
127 f o r ( i n t j=0; j<Laender ; j++){
128 // Flat world
129 // f l o a t deltaX = f ab s f ( i%Spalten−j%Spalten ) ;
130 // f l o a t deltaY = f ab s f ( i / Spalten − j / Spalten ) ;
131 //Torus
132 f l o a t deltaX = MIN ( fabsf (i%Spalten−j%Spalten ) , Spalten−←↩

fabsf (i%Spalten−j%Spalten ) ) ;
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133 f l o a t deltaY = MIN ( fabs (i/Spalten − j/Spalten ) , ( Laender/←↩
Spalten )−fabs (i/Spalten − j/Spalten ) ) ;

134 f l o a t tau = 1+tstep∗sqrt ( deltaX∗deltaX+deltaY∗deltaY ) ;
135 phi [ i ] [ j ] = pow (tau , 1−sigma ) ;
136 }
137 }
138

139 f o r ( i n t i=0; i<Laender ; i++)
140 phi [ i ] [ i ]=1;
141 }
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4 The evolution of inductive reasoning

4.1 Introduction

It is alway intriguing when a very simple model with only minor assumptions and
constructual effort yields very rich and complex results. One good example for this
is the El Farol Bar Problem invented by Arthur [1994]. 100 agents have to decide
repeatedly wether to go to a bar which offers a special music program every thursday
night. However, the bar only offers space for 60 people and if more show up, the evening
is going to be unenjoyable for everyone who went there. The task that the agents face
is straightforward: predict how many people will go to the bar in the next period
and then attend themselves if and only if this prediction is less than or equal to the
bar’s capacity. The prediction is made using the attendance numbers from the recent
past. Instead of deducing a certain outcome from complete information about the
environment combined with an uncompromising rationality assumption, agents induce
future outcomes by observing past states of the system they are part of. This way the
expectations are generated by the agents’ actions which are themselves a product of
their expectations.

Around this issue many works appeared and a whole literature was created using a
slightly generalized version of the El Farol model which later became known as the Mi-
nority Game (see Challet et al. [2013] and Coolen [2005]). The existing literature offers
a very deep analysis of the occurring effects using involved mathematical instruments
partly aided by statistical physics, but they fail to identify a cause in the complexity
of the dynamics.

Inspired by the idea of these works, inductively reasoning agents have been intro-
duced to artificial stock marked models, two of the most famous ones being Arthur et al.
[1996] and Brock and Hommes [1997]. In these models the same feedback mechanism
applies and dynamics partly resembling stylized facts from real markets are generated.

Peculiar to me is the fact that this mechanism of observing and predicting has not

80



4 THE EVOLUTION OF INDUCTIVE REASONING

been widely applied in the area of game theory. There are models, in which agents
remember or observe other agents’ past, like e.g. Heller and Mohlin [2014]. However,
agents still use this information to behave perfectly rational and the analysis is again
purely equilibrium driven.

The idea of inductive reasoning very well corresponds to intellectual processes that
humans apply in various decision situations. When people face a problem beyond
a certain degree of complicatedness, they do no longer apply the kind of rationality
that classical game theory assumes them to hold, simply because the capacity of their
minds is exceeded. Also agents might not be able to collect enough information to
understand the game as a whole. The result is that players can not assume others
to behave rationally, hereby creating opportunities for them to exploit their mistakes.
Consequently, we find ourselves describing an out of equilibrium context, a world of
predicting and acting, a world that collectively reacts to its own actions.

In this paper I want to investigate the very core of this idea and strip down com-
monly used side components to a minimum to be able to isolatedly assess the dynamic
implications of inductive reasoning. Game theory offers the kind of simple setting to
meet these requirements as a framework for the analysis. I will use a model close to
the classical setup of evolutionary game theory. An infinite population of individuals
is repeatedly matched to play a game. As opposed to the traditional idea of agents
programmed to play a fixed strategy all the time, agents are now programmed to use
a fixed predictor all the time. They then apply the best response correspondence to
decide which strategy to use. The dynamics of applied actions shall be one of the main
objects of our investigation.

The paper is divided as follows. In section 4.2 I introduce the model and explain
how agents condition on their experienced past. In section 4.2.1 I apply the model
to two player games, before applying it to three and more player games in subsection
4.2.2. In part 4.3 I will discuss the implications of predictive agents on equilibrium
concepts from evolutionary game theory. Section 4.4 concludes.

4.2 The Model

Imagine a world consisting of N → ∞ players, who are repeatedly paired with a
randomly chosen opponent to play a 2-, and laterK > 2-player game with actions A and
B. Payoffs are described by the utility function ui(n, s), where n is the number of players
who play A against the agent in the current game and s ∈ {A,B} are the two possible
actions that one can take. This utility function can potentially be heterogeneous across
agents. Each round every agent gets paired with a different agent. Since agents to
not have an information concerning which strategy their current opponents are going
to play, they use predictors to forecast their opponents’ actions. A predictor maps
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the actions of the M previous opponents, met in the most recent encounters, to the
expected number of A-players in the game that the agent is taking part in in current
period, denoted by ne.

Definition 3. A mapping ψ : [0, K]M → [0, K],

(nt−1, ..., nt−M)→ ψ(nt−1, ..., nt−M) = ne is called a predictor.

Using the best response correspondence of the respective game, one can map the
prediction of A-playing opponents to the strategy that is optimal to use. Plugging in
the prediction mapping into the best response correspondence, we can simply say that
agents condition their actions in the current period on their past opponents’ actions.
Formally, one can write the best response correspondence as

ξ(ne) := arg max
s∈{A,B}

u(ne, s) ,

and the players’ action as a reaction to his personal experience in the past as

st = ξ(ψ(nt−1, ..., nt−M))

The goal shall be to describe the evolution of the overall players who play A in period
t, denoted by xt. So in terms of the El Farol Bar Problem, I want to investigate the
attendance behavior in a 2 (corresponding to Hawk-Dove) or more player bar game
with N/K bars without learning. But for now, we are abstracting from any specific
payoff structure, because we do not yet need it.

4.2.1 Two player games

Let us consider an infinitely large population. This is a model similar to the classical
evolutionary game theory setup in which an infinite population repeatedly plays a game.
The important difference is that in these models players are programmed to play the
same fixed strategy all the time. Here I want to enable agents to think inductively and
make the choice of their action dependent on their experience in the recent past.

First, consider a situation in which the players only look backM = 1 period. There
are 4 different types of agents, namely those who

1. never play A, no matter what happened last period

2. play A, if and only if their previous opponent (the one they got paired with in
t− 1) played B in the last period (anti-imitation)

3. play A, if and only if their previous opponent played A in the last period (imita-
tion)
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4. always play A, no matter what happened last period

The following table lists the actions taken by the different types for different ob-
served histories.

hist. \ type 1 2 3 4
A B B A A
B B A B A

The share of players playing action A in period t, xt determines the probability of
meeting an A-player when the matching process is random. The probability of meeting
a B-player will be 1− xt. Let ai be the share of type i agents in the population, which
is fixed. Of course

∑
i ai = 1. Now xt will evolve as follows.

xt = f(xt−1) = a1 · 0 + a2(1− xt−1) + a3xt−1 + a4 · 1 (20)

Note that this process is deterministic. This is caused by the law of large numbers
and is critically dependent on the assumption of an infinitely large population.

Now the question is how xt will behave over time. Will it fluctuate as in the classical
Bar Problem?

Theorem 1. Suppose that M = 1 and that at least two types i and j exist in the
population (aiaj > 0 , i 6= j). Then for every set of parameters (a1, a2, a3, a4) ∈ A

independent of the initial condition x0

lim
t→∞

xt = x̄ =
a2 + a4

1 + a2 − a3

Proof. Let (X, d) be a metric space. According to the well known definition, a mapping
f : x → x is a contraction mapping if there exists a constant c with 0 ≤ c < 1 such
that

d(f(x), f(y)) ≤ c d(x, y) ∀ x, y ∈ X (21)

f(.) is a linear equation and it is easy to see that it maps from (0, 1) to (0, 1). So
if we can show that there exists a constant c such that (21) is fulfilled, we know that
(20) is a contraction.

|f(x)− f(y)| = | [a2(1− x) + a3x+ a4]− [a2(1− y) + a3y + a4] |

= |a3 − a2||x− y| < c|x− y|

So the mapping f(.) is a contraction. According to the Banach fixed point theorem,
we can say that f(.) has exactly one fixed point in (0, 1). Furthermore this fixed point
will be globally attracting. By solving f(x) = x it can be determined to be a2+a4

1+a2−a3
.
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So unlike in the El Farol setting, in the long run we won’t observe any fluctuations
in the average choice of strategies across the population. However, this does not mean
that, when starting outside of it, the steady state will be reached right away. There
can be considerable fluctuations on the way there. Strong and fast enough learning
mechanisms (corresponding to agents changing their prediction rules) known from El
Farol and the Minority game might still prevent the system from reaching it. So the
result does only say that in an infinite population, one period conditioning alone is in
the long run not responsible for unsteady dynamics of any kind.

Now, let us go one step further and enable the agents not only to look back one
period, but two periods into their past. Now conditioning on 4 possible personal
histories, the number of agent types rapidly increases to 222

= 16.

hist. \ type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
AA B B B B B B B B A A A A A A A A
AB B B B B A A A A B B B B A A A A
BA B B A A B B A A B B A A B B A A
BB B A B A B A B A B A B A B A B A

Analogous to above the difference equation can be constructed, now multiplying
the respective shares of A and B players to calculate the required probabilities of being
matched with the specific strategy users.

xt = f(xt−1, xt−2) =a2((1− xt−1)(1− xt−2))+

a3((1− xt−1)xt−2)+

a4((1− xt−1)(1− xt−2) + (1− xt−1)xt−2)+

a5(xt−1(1− xt−2))+

a6((1− xt−1)(1− xt−2) + xt−1(1− xt−2))+

a7(xt−1(1− xt−2) + (1− xt−1)xt−2)+

a8(xt−1(1− xt−2) + (1− xt−1)xt−2 + (1− xt−1)(1− xt−2))+

a9(xt−1xt−2)+

a10(xt−1xt−2 + (1− xt−1)(1− xt−2))+

a11(xt−1xt−2 + (1− xt−1)xt−2)+

a12(xt−1xt−2 + (1− xt−1)xt−2 + (1− xt−1)(1− xt−2))+

a13(xt−1xt−2 + xt−1(1− xt−2))+

a14(xt−1xt−2 + xt−1(1− xt−2) + (1− xt−1)(1− xt−2))+

a15(xt−1xt−2 + xt−1(1− xt−2) + (1− xt−1)xt−2)+

a16

(22)

This equation is more that unhandy, but it can be simplified to.

xt = f(xt−1, xt−2) = axt−1xt−2 + bxt−1 + cxt−2 + d (23)
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with

(i) 0 ≤ a+ b+ c+ d ≤ 1

(ii) 0 ≤ d ≤ 1

(iii) 0 ≤ b+ d ≤ 1

(iv) 0 ≤ c+ d ≤ 1

(v) − 1 ≤ a+ b ≤ 1

(vi) − 1 ≤ a+ c ≤ 1

where (i) and (ii) come from the fact that if in t − 1 and t − 2 every (no) agent
played A, we must have 0 ≤ f(1, 1) ≤ 1 (0 ≤ f(0, 0) ≤ 1). Similarly, (iii) and (iv)

reflect the conditions 0 ≤ f(1, 0) ≤ 1 and 0 ≤ f(0, 1) ≤ 1 that have to be true in
(22). Finally, (v) and (vi) can be directly calculated from 22. The set of admissible
parameter combinations will be called P .

Bektešević et al. [2014] investigate a similar system and provide a thorough global
analysis. However, in this reference all parameters are assumed to be non-negative,
making the equation non-decreasing in both of its variables. That in turn facilitates the
analysis considerably and diminishes its use for our purposes to a point of orientation.

Proposition 4. For every parameter set with a 6= 0, the system (23) has at least one
and at most two fixed points:

x̄1 =
(1− b− c)−

√
(1− b− c)2 − 4ad

2a
, x̄2 =

(1− b− c) +
√

(1− b− c)2 − 4ad

2a
,

Proof. To show that the two fixed points always exist, we have to establish that the
term under the square root Γ = (1−b−c)2−4ad is always non-negative. First, consider
the case a < 0. Because both components of the sum are now non-negative, we have
Γ ≥ 0. The case a > 0 is not quite as straight forward. To minimize Γ such that our
linear restrictions are fulfilled, it is easy to see that we need to choose a = d, because
if a < d or a > d we can decrease Γ by equalizing them to a∗ = d∗ = a+d

2
, which

won’t violate any of the restrictions. Furthermore if a = d, according to (i) we must
have |b+ c| ≤ 1, which means that ∂Γ

∂a
, ∂Γ
∂b
, ∂Γ
∂c
, ∂Γ
∂d
≤ 0. So if we make sure that at the

upper bound of (i) Γ ≥ 0, the existence of the fixed point(s) is proven. To see why
this is true, imagine we were solving an optimization problem minimizing the objective
function Γ(a, b, c, d) s.t. (i) is true, ignoring all other constraints.

So let use a = d = 1
2
(1− b− c) to get

Γ = (1− b− c)2 − 4

(
1

2
(1− b− c)

)2

= 0 ,

which implies that Γ ≥ 0.
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To complete the picture, let me mention that for the case of a = 0 there is one
single fixed point at x̄ = d

1−b−c .

Proposition 5. x̄1 is always in [0, 1].

Proof. The first step is to show that x̄1 ≥ 0. Consider the case where a < 0. Here,
because −4ad ≥ 0, we have (1− b− c) ≤

√
(1− b− c)2 − 4ad and since the dominator

is negative, x̄1 ≥ 0. In case a > 0 we know that b + c < 1 and so (1 − b − c) > 0. So
we see that (1− b− c) >

√
(1− b− c)2 − 4ad and thus again x̄1 ≥ 0.

Showing that x̄1 ≤ 1 is a bit more tedious. The fixed point only includes the sum
of b and c and because we face symmetric constraints concerning the two, we can set
b = c. Now let us consider an optimization problem only including two of our many
constraints.

max
a,b,d

1− 2b−
√

(2b− 1)2 − 4ad

2a
s.t. a+ 2b+ d ≤ 1

b+ d ≤ 1

The Kuhn-Tucker approach yields the three candidate solutions {a,−a, a+1}, {a, b,−a−
2b+ 1} and {a, b, d}. Because the first one is a subset of the others, we can safely plug
in the first solution to get the largest value the fixed point can take, while still obeying
the parameter constraints.

1 + 2a−
√

(−1− 2a)2 − 4a(1− a)

2a
= 1

In case of a = 0, our single fixed point at x̄ = d
1−b−c will also be in [0, 1], which is a

direct consequence of (i).

Corollary. If the proportions of agents unconditionally playing A and B are both dif-
ferent from zero (a1a16 > 0), then x̄1 is always in (0, 1).

Proposition 6. x̄2 is never in (0, 1).

Proof. First, consider the case of a < 0. Because according to (ii) 0 ≤ d ≤ 1, we can
see that

√
(1− b− c)2 − 4ad ≥ 1 − b − c. Because we know that the square root is

going to be positive we find a non-negative numerator and negative denominator. So
x̄2 ≤ 0.

Next, consider the case of a > 0. According to (i) and (ii) we must have 1−b−c > 0.
So it is easy to see that x̄2 is going to be positive, which means we have to show that
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x̄2 ≥ 1. In order to minimize x̄2, consider the partial derivatives. Directly observable,
we have ∂x̄2

∂a
< 0 and (for the current case) ∂x̄2

∂d
< 0. Furthermore we have

∂x̄2

∂b
=

b+c−1√
(b+c−1)2−4ad

− 1

2a
,

which, using −1 + b + c < 0, is also negative. The symmetry makes sure that also
∂x̄2

∂c
< 0. The negative partial derivatives indicate that the minimal value of our fixed

point must be at the upper bound of (i), meaning that we can search at a+b+c+d = 1.
Plugging in 1− a− d for b+ c leads to

a+ d+
√

(a− d)2

2a
=

{
1 if a ≥ d
d
a

if a < d.

Since min
a<d

d
a
> 1, we have established the result that x̄2 /∈ (0, 1).

So apparently our system has at most one fixed point (henceforth called x̄ = x̄1)
inside of the domain we are interested in. So, except for boundary cases, if players use
second order predictors, there is only one single proportion of the population playing a
certain strategy that reproduces itself, just like it was the case for first order predictors.
The question remains as to wether this state is stable.

In order to tackle this question, let us write the second order difference equation in
vector form, so that it becomes a system of first order.

Xt =

(
xt

xt−1

)
=

(
f(xt−1, xt−2)

xt−1

)
= F (Xt−1)

Lemma 2. If at least one of the proportions of agents unconditionally playing A and B
is different from zero (a1 +a16 > 0) and Γ 6= 0, then for each parameter set (a, b, c, d) ∈
P ∃ (c1, c2, c3) such that V (X) = c1(x1 − x̄)2 + c2(x2 − x̄)2 + c3(x1 − x̄)(x2 − x̄) is a
Liapunov function of (22) on an ε-neighborhood of the fixed point Sε = {X | ||X−X̄|| <
ε}

Proof. Let δ1 = xt−1 − x̄ and δ2 = xt−2 − x̄. Then we can write (23) as

f(xt−1, xt−2) = axt−1xt−2 + bxt−1 + cxt−2 + d

= a(x̄+ δ1)(x̄+ δ2) + b(x̄+ δ1) + c(x̄+ δ2) + d

= x̄+ (ax̄+ b)δ1 + (ax̄+ c)δ2 + aδ1δ2

Because we only consider an arbitrarily small neighborhood of the fixed point,
implying an arbitrarily small δi, we are save to drop the last term of the sum, since
|aδ1δ2| � |x̄+ (ax̄+ b)δ1 + (ax̄+ c)δ2|.
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Now we can calculate

V (X) = V ((x1, x2)) = c1δ
2
1 + c2δ

2
2 + c3δ1δ2

V (F (X)) = V (f(x1, x2), x1)

= c1 [x̄+ (ax̄+ b)δ1 + (ax̄+ c)δ2]2 + c2δ
2
1 + c3 [x̄+ (ax̄+ b)δ1 + (ax̄+ c)δ2] δ1

We have to show that V (F (X)) ≤ V (X) ∀X ∈ Sε and V (F (X)) < V (X) ∀X ∈
Sε \ {X̄}. Clearly V (F (X̄)) = V (X̄). So to accomplish the condition it will be enough
to establish the strict concavity of W (X) = V (F (X))−V (X) at X̄. For that I will set
up the Hessian Matrix of W (X) and show that it is negative definite. The Hessian is

HW =

(
2
(
c2 + c3(b+ ax̄) + c1

(
b2 + 2ax̄b+ a2x̄2 − 1

))
c3(c+ ax̄− 1) + 2bc1(c+ ax̄) + 2ac1x̄(c+ ax̄)

c3(c+ ax̄− 1) + 2bc1(c+ ax̄) + 2ac1x̄(c+ ax̄) 2
(
c1c

2 + 2ac1x̄c+ a2c1x̄
2 − c2

) )

We need zTHWz = h11z
2
1 + h12z1z2 + h21z1z2 + h22z

2
2 = h11z

2
1 + 2h12z1z2 + h22z

2
2 ≤ 0

for every non zero column vector z.
I (arbitrarily) choose the sufficient conditions h11 = h22 = −1 and h12 = 0. Soving

this system of equations for the Lyapunov Function parameters (c1, c2, c3) yields

c1 = − ax̄+ c− 1

Γ(b− c+ 1)(ax̄+ c+ 1)

c2 = − (ax̄+ c− 1)(ax̄+ c)2

Γ(b− c+ 1)(ax̄+ c+ 1)
+

1

2

c3 =
2(ax̄+ b)(ax̄+ c)

Γ(b− c+ 1)(ax̄+ c+ 1)

To see that the common denominator is different from 0, note that b−c = (b+d)−(c+d)

and since a1 + a16 > 0 we must have either b+ d > 0 or c+ d < 1 and so b− c+ 1 > 0.
Concerning (ax̄+ c+ 1) note that ∂(ax̄+c+1)

∂c
≥ ∂(ax̄+c+1)

∂a,b,d
, which means that minimizing

this term we can set c = −1. This simplifies the term to be minimized to ad. Similar
to above, since a1 + a16 > 0 we must have either c+ d > 0 or b+ d < 1. In the former
case we must have d > 1, which is impossible, so the latter case leads us to d = 1

and b < 0. For (i) to be fulfilled a must now be strictly positive. So ad > 0 and also
(ax̄+ c+ 1) > 0.

We have established that a Lyapunov Function exists under the required conditions.

Lemma 3. If a1 + a16 > 0 and Γ = 0, then the fixed point x̄ is globally attracting.

Proof. If Γ = 0 then x̄1 = x̄2, which implies that the single fixed point will be at 0 or
1.

If x̄ = 0, then d = 0. But since Γ = 0, b+c = 1 and so a < 0 because of a1 +a16 > 0.
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Just as in the above proof, let δ1 = xt−1 − x̄, δ2 = xt−2 − x̄ and

f(xt−1, xt−2) = x̄+ (ax̄+ b)δ1 + (ax̄+ c)δ2 + aδ1δ2

= bδ1 + cδ2 + aδ1δ2

< Max[δ1, δ2] ,

where the last step follows directly from the above conditions and the fact that
δ1,2 ≥ 0.

In case x̄ = 1, we must have a+ b+ c+ d = 1. So there is no agent unconditionally
playing B, implying there must be agents unconditionally playing A, such that d > 0.
For Γ = 0, a must be strictly positive. In fact, for Γ to be minimal, it must be equal
to d. So we can write 2a+ b+ c = 1.

f(xt−1, xt−2)− 1 = (a+ b)δ1 + (a+ c)δ2 + aδ1δ2

> Min[δ1, δ2] ,

where the last step follows directly from the above conditions and the fact that δ1,2 ≤
0.

The next result directly follows from the lemmas concerning the existence of a
Lyapunov function on a neighboring set of the fixed point and the global stability in
the special case of Γ = 0.

Theorem 2. If M = 2 and a1 + a16 > 0, then x̄ is asymptotically stable.

An extensive numerical analysis indicates that the fixed point x̄ is not only locally,
but globally stable on (0, 1). This seems to be true even though the map for a two-
period horizon is not a contraction anymore. Experiments over a very fine grid of the
parameter space of the considered difference equation have been carried out, unfailingly
exhibiting limt→∞ = x̄. Figure 23 illustrates the typical system behavior for a more or
less random parameter set.
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(a) Vector plot, displaying F (X)−X
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(b) Pre-images of an ε-square around x̄

Figure 23: Global attraction for a10 = 1
2
and ai = 1

30
for i ∈ {1, ...16} \ 10

Here every predictor is equally popular within the population, except for predictor
number 10, which is favored a bit. The vectors in picture (a) clearly show a converging
behavior to the fixed point which lies in this case at 1/2. Graph (b) shows a very small
neighborhood of x̄ in a red color. The set of points that is directly mapped into this
square (F−1(X) X ∈ Sε) is colored in blue. The next preimages are then drawn in
green, yellow, cyan and purple, respectively. In addition, a sample trajectory starting
at the bottom right corner is delineated.

In Bektešević et al. [2014] the global attractivity of system (23) is shown analytically
for positive parameters. Because the system loses its monotonicity property when
allowing for negative coefficients, one cannot use the known theorems for such systems
anymore making it a very difficult task to prove the global attractivity. However, the
results of Bektešević et al. [2014] are not completely useless since they enable us to
state (with certainty) that for great parts of the space of predictor distributions (the
ones corresponding to a, b, c, d ≥ 0) the system possesses a fixed point with basin of
attraction extending over the whole interval (0, 1)2.

In the numerical analysis I went one step further and analyzed the dynamics for
predictors with a maximal horizon of 3 periods. This increases the number of possible
predictors to 223

= 256. The experiments indicate that the proportion of strategy A
playing agents again converges to a constant level. However, since the parameter space
is very large, we cannot guarantee a robust behavior. This leaves me to classify this
last point as a conjecture.

90



4 THE EVOLUTION OF INDUCTIVE REASONING

4.2.2 Three and more player games

Up to now players in the infinite population were randomly drawn together in pairs to
play a two player game. In this subsection I want to extend this idea to games of three
and more players in order to find out wether the dynamics of the proportion of people
playing a specific strategy qualitatively changes.

Let us consider an infinite population of agents who are randomly arranged into
groups of three to play a game with payoffs who shall, just like above, be arbitrary
for now. To keep things simple, let the considered game be symmetric. 15 The game
still will have two strategies. A typical player in this scenario faces now the task to
not only predict whether or not his single opponent is going to be choosing strategy
A, but whether zero, one, or all of his opponents will do so. Let us consider the case
of a single period memory. Here, the number of possible predictors is 231

= 8. Let kA,t
be the number of A playing opponents of an agent. The predictors(, or better: "their
behavioral consequences") can be seen in the table below.

hist. \ type 1 2 3 4 5 6 7 8
kA,t = 2 B B B B A A A A
kA,t = 1 B B A A B B A A
kA,t = 0 B A B A B A B A

The difference equation becomes

xt = f(xt−1) =a2(1− xt−1)2 + a32(1− xt−1)xt−1 + a4((1− xt−1)2 + 2(1− xt−1)xt−1)

+ a5x
2
t−1 + a6(x2

t−1 + (1− xt−1)2) + a7(x2
t−1 + 2(1− xt−1)xt−1) + a8 .

I want to choose a parameter set in order to demonstrate that there can be indeed a
qualitative change in the dynamics. In the considered scenario most of the agents in
this population will use predictor type 2, which means they will choose A if and only
if none of their opponents played A in the previous round. The rest of the predictors
are evenly distributed across the population.

15I do this for simplicity, but also to stay close to the El Farol game, which is a symmetric n-player
two-strategy game. However, note that for asymmetric games the results will be very similar.
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(a) cobweb plot
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Figure 24: Two cycle for a2 = 0.93 and ai = 0.01 for i ∈ {1, ...8} \ 2, x0 = 0.5

Figure 24 shows the existence of a two cycle. Solving f 2(x) = x, this two-cycle
can be determined to go through the points x1/2 = 3

46

(
7±
√

37
)
. As can be seen in

the graph, the fixed point at about 0.4 exists as well. However, it is unstable for the
considered parameter set.

Figure 25: Bifurcation diagram for a variation of a1 = 0.94 − a2 with ai = 0.01 for
i ∈ {1, ...8} \ {1, 2}

Figure 25 shows what happens when varying the shares of predictors 1 and 2. In
the bifurcation diagram we start at the same parameter set as above and then relocate
the share of people using predictor 2 from 0 to 0.94, resulting in type 1 shares ranging
from 0.94 to 0.

So apparently there is a fundamental difference in the infinite population strategy
dynamics which appear in 2 player games vs. those appearing in 3 player games. While
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in the former we saw a convergence to a stable steady state, in the latter we observe
two cycles for some parameter sets. But is that all that can happen? The natural
question arises whether it is possible to create other, more sophisticated dynamics as
well.

In the El Farol Bar Problem and in the Minority Game the observed dynamics are
complex. As this paper is somehow driven by the fascination concerning the causes
of these complex dynamics, I want to stay close to the original scenario. 16 Now we
change our 3-player game to a 100-player game, just like Arthur’s El Farol Bar Problem
is played by 100 people. Of course with 100 players, even if the horizon angents are
conditioning upon is only one period, the number of possible predictors will be huge,
which is why I only want to consider 4 of them. Type 1 will imply always playing
strategy A (or, in the El Farol terminology, "go to the bar"), type 2 will imply never
playing A, type 3 will imply choosing A if and only if 60 or less of the opponents in
the last round played A and type 4 will imply choosing A if and only if more than 70
of the last rounds opponents did so. 17 The resulting difference equation is

xt = a1 + a3

60∑
k=0

(
100

k

)
xkt−1(1− xt−1)100−k + a4

100∑
k=71

(
100

k

)
xkt−1(1− xt−1)100−k

The following figures show what can happen if we choose different values for the pop-
ulation proportions who use these four predictors.
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(a) a1 = 0.43, a2 = 0.07
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(b) a1 = 0.48, a2 = 0.02

Figure 26: Cobweb plot for a3 = 0.3, a4 = 0.2, x0 = 0.5

In Figure 26 (a) we see a cycle of period 4. When shifting a few people from type
2 to type 1 predictors, we observe a much richer dynamic behavior.

16Of course the infinite population assumption I make, makes still a considerable difference.
17Choosing these prediction models may seem a bit arbitrary and in fact it is. But it is possibly

one of the simplest choices to illustrate the point I want to make.
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(a) bifurcation diagram (b) Lyapunov Exponent

Figure 27: a1 = 0.5− a2, a3 = 0.3, a4 = 0.2, x0 = 0.5

Figure 27 (a) shows the observed phenomenon from the cobweb plot in a bifurcation
diagram. Several period doubling bifurcations are taking place, before the complex
orbits occur. The Lyapunov Exponents λ which are plotted in Figure 27 (b) exhibit
positive values for these parameter ranges, which is a strong indicator for topological
chaos.

To wrap up this section we can state that in contrast to the attracting constant
orbits occurring in 2-player games played by an infinite population using prediction
models, much richer dynamics are evoked if more that 2 players are included in the
game.

4.3 Evolutionary Stability

So far we looked at the dynamics that occur when agents in an infinite population
use predictors to decide which strategy they use in a repeated setting. Apart from
the number of possible strategies, no actual game was considered. This is about to
change in this subsection. I want to apply the described model to the classical notion
of evolutionary stable equilibria.

The concept of an evolutionary stable strategy (ESS) was developed to formalize
the idea of evolutionary forces. In a large population individuals are programmed to
play the same pure or mixed strategy over and over again to be repeatedly matched
with each other. If now some small proportion of mutants playing a different strategy is
created, evolutionary forces will select against them, if their expected payoff is smaller
than the one of the incumbents. Any strategy that by this mechanism is able to prevent
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any mutant strategy from invading it, is considered evolutionary stable. One can sort
of project the interpretation of a large population of randomly matched individuals,
who each play a fixed strategy to two individuals each playing mixed strategies. The
same can be done in a world of agents who condition on their past. So let us call
the set of mixed strategies of agents using predictors of order M by ∆M . So the
traditionally used set of mixed strategies will be denoted by ∆0 and its elements will
be the probabilities of playing strategy A, denoted by x ∈ ∆0. For M ≥ 1 we need to
name the prediction type and an initial condition at which the agents start, because at
the moment of their creation there will be no past to condition on. An element of ∆M

will thus be a tuple consisting of the prediction type and an initial condition. So for
example (a1, a2, a3, x0) ∈ ∆1, where ai is the proportion or probability of the agent’s
prediction type (naturally a4 = 1−a1−a3−a3) and x0 is the "virtual past", with which
he is created. The sequence xt of mixed strategies that the agent then actually applies
over time is not defined by the agent alone, but is rather a result of the interplay with
the rest of the population18. Note that even though caused by the vector notation
mathematically it is not quite correct, we effectively have ∆M ⊂ ∆M+1. For example
a traditional mixing behavior without consideration of the past can also be achieved
by mixing between agent types 1 and 4, which again is included in ∆1.

The concept of evolutionary stability was defined by Smith and Price [1973] and
Smith [1974].

Definition 4. x is an evolutionary stable strategy (ESS) if for every strategy y ∈
∆0\{xESS} there exists some ε̄y ∈ (0, 1) such that u[x, εy+(1−ε)x] > u[y, εy+(1−ε)x]

holds for all ε ∈ (0, ε̄y).

As mentioned above, in this classical evolutionary game theory setting agents are
programmed to play a fixed mixed or pure strategy all the time. But what if we
allow agents to be programmed in a more sophisticated way. Just like described in the
preceding subsections, agents could be able to take into account their past experience
in order to decide which strategy to apply. An important difference is that in the
traditional setting expected payoffs do not change over time. In the new situation,
payoffs can vary over time because even apart from evolutionary forces, an equilibrium
might not be reached right away. In subsection 4.2.1 we saw that a steady state will
(or for M ≥ 2 "most probably will") be reached eventually. But on the way to this
steady state there might be fluctuations or other unsteady dynamics which will affect
the agents’ utility. To capture these effects of time variant expected utility, it makes
sense to use a time discounted sum of all future utilities.

U [(xt)
∞
t=0, (yt)

∞
t=0] =

∞∑
t=0

(1− ρ)t u[xt, yt]

18Or the single other opponent, depending on the interpretation.
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Let us consider a symmetric 2by2 game with the following payoffs.

A B

A pAA/pAA pAB/pBA

B pBA/pAB pBB/pBB

Then the utility function will be

U [(xt)
∞
t=0, (yt)

∞
t=0] =

∞∑
t=0

(1−ρ)t [xtytpAA+xt(1−yt)pAB+(1−xt)ytpBA+(1−xt)(1−yt)pBB].

For the first result of this chapter, we do not yet really need this new utility for-
mulation and can still stick to the static variant. It addresses the question wether an
evolutionary stable strategy in the classical sense still fulfills the criterion if we add
predictive agents to the picture.

Proposition 7. In any symmetric 2by2 game, a pure or mixed strategy evolutionary
stable equilibrium can be invaded by agents who imitate their last opponent. Formally:
∃ y ∈ ∆1 s.t. U [(yt)

∞
t=0, (εyt + (1− ε)xESS)∞t=0] ≥ U [(xESS)∞t=0, (εyt + (1− ε)xESS)∞t=0].

Proof. Let xESS be the evolutionary stable strategy. Now assume a small fraction of
agents is created who imitate the behavior of their last opponent. Then the dynamics
for the share of A-playing agents will be

xt = εxt−1 + (1− ε)xESS . (24)

It is easily observable that the only steady state of this system is x̄ = xESS. Because
we have u[xESS, εy + (1− ε)xESS] > u[y, εy + (1− ε)xESS] for all y ∈ ∆0\{xESS} and
small enough ε, we would require the steady state to be exactly at x̄ = xESS anyway.
So if we picked an initialization of x0 = xESS, the steady state would be reached right
away and will never be left. This implies that there won’t be any fluctuations created
in the dynamics and the steady state value of agents who effectively play A is not
changed even though the composition of the population changed.

So we found that for (0, 0, 1, xESS) ∈ ∆1 such that u[yt, εyt + (1 − ε)xESS] =

u[xESS, εyt + (1 − ε)xESS] ∀t and so we also have U [(yt)
∞
t=0, (εyt + (1 − ε)xESS)∞t=0] =

U [(xESS)∞t=0, (εyt + (1− ε)xESS)∞t=0].

I have to add that we were only able to take away the property of evolutionary
stability from the pure strategies when adding conditioning agents. However, since
no one is able to beat a Nash equilibrium, it is clear that the ESSs remain neutrally
stable. 19 Think of some minor punishment for an intellectual process, because e.g.

19Replacing ">" by "≥" in the definition of ESS yields the definition of NSS.
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conditioning on period t− 1 might be more effortful than just playing a fixed strategy
all the time. Binmore and Samuelson [1992] analyze finite automata in repeated games
and work with a lexicographic order, marginally handicapping more complex automata.
If we were to introduce a similar rule, then the new agents were not anymore able to
invade.

Now I want to ask the question in the other direction. Can there be compositions
of predictive agents that make it impossible for non-predictive agents to invade?

Imagine a symmetric 2by2 coordination game. That means in our payoff matrix
we have pAA > pBA, pBB > pAB. Now, suppose there is a population of agents who
act opposite to their last opponents’ behavior (type 2 agents). The corresponding
difference equation for the strategy dynamics is

xt = (1− xt)

It is straightforward to see that for each starting value (except for 1/2) we will have a
cycle of minimal period 2. Starting for instance at x0 = 0 will make sure that agents
alternately coordinate on the two pure strategy Nash equilibria of the game. Now, if a
group of mutants of any type composition is created, the difference equation changes.
Take for example an invasion of a few constantly B-playing and a few constantly A-
playing individuals. This leads to a convergence to the steady state, as was shown in
Theorem 1 in subsection 4.2.1.
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Figure 28: a1 = 1
100

, a2 = 98
100

, a3 = 0, a4 = 1
100

, x0 = 1
100

Initially, when the fluctuations are still strong, it is impossible for other agent
types to coordinate with the incumbents on playing the two Nash equilibria, one after
the other. As the graphs of Figure 28 indicate, convergence to the steady state can
potentially be quite slow. And since we discount the state utility of future periods,
intuition suggests that the mutants might die out before enough convergence took
place.
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The next theorem formalizes this intuition.

Theorem 3. In any symmetric 2by2 coordination game, acting opposite to one’s last
opponent’s strategy is evolutionary stable.

Formally: If z = (0, 1, 0, z0) with z0 6= 1
2
is the strategy of purely opposing the

last opponents behavior (zt = (1 − xt−1)), then for each y ∈ ∆1\{z} and δ ∈ (0, 1)

∃ε̄y ∈ (0, 1) s.t.

U [(zt)
∞
t=0, (εyt + (1− ε)zt)∞t=0] > U [(yt)

∞
t=0, (εyt + (1− ε)zt)∞t=0]

holds for all ε ∈ (0, ε̄y).

Proof. When a proportion of size ε of a mutant group of general composition invades
the incumbent population consisting exclusively of type 2 agents, then the dynamics
become

xt = (1− ε)zt + εyt

⇔ xt = (1− ε)(1− xt−1) + ε(a2(1− xt−1) + a3xt−1 + a4)

⇔ xt + ((1− ε) + ε(a2 − a3))xt−1 = (1− ε) + ε(a2 + a4)

Let us set the initial condition to be x0 = 0. Then the solution to this inhomogeneos
first order difference equation can by the usual methods be determined to be

xt =
ε(a2 + a4) + (1− ε)
ε(a2 − a3) + (2− ε)

− (ε(a2 + a4) + (1− ε))(ε(a3 − a2) + (ε− 1))t

ε(a2 − a3) + (2− ε)

This solution is well defined for ε = 0, as well as for small positive values. Also we find
that the static utility function u[xt, yt] = xtytpAA + xt(1 − yt)pAB + (1 − xt)ytpBA +

(1 − xt)(1 − yt)pBB is continuous over the whole range of its arguments. These facts
considerably simplify the analysis.

For the incumbents’ utility, we have

lim
ε→0

U [(zt)
∞
t=0, (εyt + (1− ε)zt)∞t=0] =

(1− δ)pAA + pBB
2δ − δ2

(25)

And for the mutants utility, we have

lim
ε→0

U [(yt)
∞
t=0, (εyt + (1− ε)zt)∞t=0]

=
((a2 + a4)(δ − 1)pAA − (a3 + a4)pAB) + ((a2 + a4)(1− δ)− 1)pBA + (−1 + a3 + a4)pBB

(δ − 2)δ

(26)

Subtracting (25) and (26) gives us

(1− δ)(1− a2 − a4)(pAA − pBA) + (a3 + a4)(pBB − pAB)

(2− δ)δ
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Since we are dealing with a coordination game, the payoffs have to fulfill pAA > pBA

and pBB > pAB. The only way that this utility difference is not strictly positive is
when a2 = 1. But this case is excluded by y ∈ ∆1\{z}. So we have established that
the incumbents utility is always strictly greater than the mutants utility.

So there can be both, static behavioral forms loosing their property of being evo-
lutionary stable as well as dynamic forms being able to prohibit any form of invasion,
be it by inductive or by traditionally mixing agents.

4.4 Conclusion

Within an infinitely large population, even without the presence of evolutionary forces,
inductive behavior can lead to nontrivial dynamics in the shares of applied strategies.
However, we saw that in two player games in the case of agents who look back only a
single period, the dynamics always converge if at least two different agent types exist
in the population. When extending the depth of the agents’ memory to 2 periods we
are still able to analytically show local stability for the unique interior fixed point.
Numerically we also observed global attractivity of this fixed point. Experiments also
suggest that the same result applies for M = 3. If more than two players are paired
in a game, the results qualitatively change and cycles of higher periods emerge. Also
a complex, possibly chaotic behavior can be observed. In the final subsection we saw
that when including inductive agents into the framework of evolutionary game theory,
evolutionary stable strategies can loose their defining property.

The theory of difference equations is very close to enabling us concluding a global
stability for higher order cases. In this respect the suggestion for further research is
very concrete and clear. But there are other, more creative extensions, if you will, like
embedding inductive agents into a form of replicator dynamics. This is only one of
many imaginable aspects expanding on this topic.

The traditional theory of repeated games might in parts be an elegant construct,
but it is incredibly far away from giving a plausible description of how people behave
in complex situations. It is not a necessity that individuals start playing repeatedly
all at the same time, assume that everybody else behaves rationally and then behave
rationally themselves. Removing one brick from this wall takes the theory of repeated
games from a static concept to a dynamic, needless to say, more realistic one. This is
why I personally consider it inevitable that future research goes deeper into this very
promising direction of inductive reasoning that I was only able to touch at its surface.
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A Code for pre pre-image map

These functions, written in Objective-C, generate a random parameter set for the
system with a horizon of two periods, and then check for a fine grid of initial conditions
how many iterations are necessary to arrive at an epsilon neighborhood of the fixed
point.

1 − ( void ) urbild{
2 double xbar = ((1−b−c )+sqrt ((1−b−c )∗(1−b−c )−4∗a∗d ) ) /(2∗a ) ; // f i x ed ←↩

po int
3 [ self defineNewMap ] ; // randomly a new map i s generated
4

5 double epsilon = 0 . 0 1 ; // s i z e o f the square , where the po in t s are ←↩
checked to land in

6

7 // i n i t i a l i z e the array to s t o r e the number o f i t e r a t i o n s un i t l the ←↩
t r a j e c t o r y i s c l o s e enough

8 f o r ( i n t x1=0;x1<1000;x1++){
9 f o r ( i n t x2=0;x2<1000;x2++){

10 schritteBisInEpsilonQadrat [ x1 ] [ x2 ]=0;
11 }
12 }
13

14 // i t e r a t e over the whole s t a t e space to c l a s s i f y the preimages
15 f o r ( double x1=0;x1<1.0; x1+=0.001){
16 f o r ( double x2=0;x2<1.0; x2+=0.001){
17 x [0 ]= x2 ;
18 x [1 ]= x1 ;
19 i n t ti=1;
20 // apply the map un t i l we are ep s i l o n c l o s e
21 whi le ( MAX ( fabsf (x [ ti−1]−xbar ) , fabsf (x [ ti−2]−xbar ) ) > ←↩

epsilon ) {
22 ti++;
23 schritteBisInEpsilonQadrat [ ( i n t ) (x1 ∗1000) ] [ ( i n t ) (x2←↩

∗1000) ] = ti−2;
24 x [ ti ] = a∗x [ ti−1]∗x [ ti−2]+b∗x [ ti−1]+c∗x [ ti−2]+d ;
25 }
26 }
27 }
28

29 // t e l l the window to d i sp l ay the changes
30 dasFenster−>urbildNeu=true ;
31 [ [ self . window contentView ] setNeedsDisplay : YES ] ;
32 }
33
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34 //new model parameters are generated in t h i s func t i on
35 − ( void ) defineNewMap{
36 a = −2.0+3.0∗( double ) rand ( ) /RAND_MAX ;
37 b = −1.0+2.0∗( double ) rand ( ) /RAND_MAX ;
38 c = −1.0+2.0∗( double ) rand ( ) /RAND_MAX ;
39 d = ( double ) rand ( ) /RAND_MAX ;
40 // check f o r the cond i t i on s on the parameters
41 whi le ( !(0<a+b+c+d && a+b+c+d<1 && 0<b+d && b+d<1 && 0<c+d && ←↩

c+d<1 && −1<a+c && a+c<1 && −1<a+b && a+b<1) ) {
42 a = −2.0+3.0∗( double ) rand ( ) /RAND_MAX ;
43 b = −1.0+2.0∗( double ) rand ( ) /RAND_MAX ;
44 c = −1.0+2.0∗( double ) rand ( ) /RAND_MAX ;
45 d = ( double ) rand ( ) /RAND_MAX ;
46 }
47 x [ 0 ]=( double ) rand ( ) /RAND_MAX ;
48 x [ 1 ]=( double ) rand ( ) /RAND_MAX ;
49 }
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5 A steady state attendance at El Farol

5.1 Introduction

Experiments with the El Farol Bar problem as originally proposed by Arthur [1994]
show the seemingly very robust existence of a fluctuating behavior concerning the
bar attendance. These fluctuations appear so random, that many subsequent authors
(e.g. Casti [1996]) conjectured a chaotic process. However, Shalizi and Albers [2002]
argue that what is observed is not topological chaos. It is well known, that in high-
dimensional dynamical systems the approach to periodic attractors can be so slow
that they are never reached in simulations (Dyson [1979]). Wether or not the orbits
that occur are chaotic or rather reflect a very slow convergence to periodic attractors
hasn’t been fully established as of this writing. Could it be that eventually the system
approaches a very regular, perhaps even a steady behavior? Böhm [2015] establishes
the existence of an ε-perfect predictor and argues that the failure of agents finding
rational prediction rules which stabilize is not due to a non-existence of perfect rules,
but rather to the failure of agents to identify the correct class of predictors from which
the perfect ones can be chosen.

I seek to analyze the impact of certain limitations of the agents’ mental capabilities
on the existence of a stable attendance behavior. To be more specific, one of the goals
shall be to answer the question as to wether it is a coincidence that in the typical El
Farol experiment we do not observe steady state orbits.

5.2 The formal model

In the usual setting, all agents from the set I = {1, ..., N} are equipped with a number
of randomly chosen predictors. Here, a predictor ψ is a map from the last T ≥ 1

periods’ attendances, denoted by (nt−1, ..., nt−T ) to the expected number of people
being at the bar in the upcoming period net . But if agents only have a subset from the
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(depending on the history depth T ) very large space of possible predictors at hand,
then it is clear that it might not be possible to generate certain orbits, among which
possibly being several or all orbits featuring a constant attendance. I will identify a
necessary and sufficient condition for the set of predictor sets that agents are equipped
with, such that a steady state solution exists under very weak assumptions about the
learning algorithm that agents apply to select among their forecasting models.

A player’s utility depends on his own action x ∈ {1, 0}, where 1 is attending the
bar and 0 is staying at home, and the number of people at the bar n. I assume
the standard utility function, featuring a fixed high utility for an evening at a non
overcrowded bar with capacity c, a fixed low utility for an evening at an overcrowded
bar and an intermediate utility for an evening at home which is normalized to 0.

u(x, n) =


0 if x = 0

uf if x = 1 and n > c

us if x = 1 and n ≤ c,

(27)

with us > 0 > uf . The resulting best response correspondence is

ξ(ne) =

{
0 if ne > c

1 if ne ≤ c.
(28)

Using the defined notation, facing a specific attendance history (nt−1, ..., nt−T ) agent
i’s action using predictor ψi,j will be

xi,t = ξ(ψi,j(nt−1, ..., nt−T )) , i ∈ I , ψi,j ∈ ωi

where ωi is the set of prediction models that agent i can choose from. It is a subset of
the set of predictors, ωi ⊂ Ψ. Concerning the question which predictors are selected I
make the assumption of a rule under which the predictor with the highest valuation is
deterministically chosen. Valuations of the models with the lowest absolute prediction
errors are monotonically increased, meaning that in the long run, the predictor with
the lowest prediction error is favored. In case of two prediction errors of equal size,
the continually chosen predictor is determined by the initial conditions. Note that this
naturally includes the learning mechanism Arthur [1994] uses, where the valuation of a
predictor is calculated by forming a convex combination between last period’s valuation
and the inverse prediction error of the current period.

The intuition for the condition for the existence of a steady state is the following. If
a steady state with an attendance of n̄ exists, we must be able to find at least n̄ agents
who’s most accurate predictor (being fed with the constant history of n̄) predicts an
attendance lower or equal to the bar’s capacity. Conversely there must be at least
N − n̄ agents who’s best predictor predicts an attendance strictly greater than the
bar’s capacity. This is formalized in the following proposition.
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Proposition 8. A steady state solution with constant attendance of n̄ =
∑

i∈I xi,t

exists if and only if:

|I0,n̄| ≥ N − n̄
|I1,n̄| ≥ n̄ ,

where

I0,n̄ = {i ∈ I : ∃ψi,j ∈ ωi ∧ψij(n̄, ..., n̄) > c∧ |ψij(n̄, ..., n̄)−n̄| ≤ |ψij′(n̄, ..., n̄)−n̄| ∀ψij′ ∈ ωi\ψi,j}

I1,n̄ = {i ∈ I : ∃ψi,j ∈ ωi ∧ψij(n̄, ..., n̄) ≤ c∧ |ψij(n̄, ..., n̄)−n̄| ≤ |ψij′(n̄, ..., n̄)−n̄| ∀ψij′ ∈ ωi\ψi,j}

Proof. The direction "⇐" is straightforward. According to the assumption concerning
the learning rule, in the long run, agents must use their most accurate predictors. The
two sets I0,n̄ and I1,n̄ identify all agents who’s best predictors recommend staying at
home and going to the bar, respectively, when confronted with a constant history of n̄
attendances. So in the set of agents there are n̄ who have an optimal predictor telling
them to go, so in the long run they will go. Conversely, there are N − n̄ agents who
have an optimal predictor telling them to stay at home, which in the long run they will
do. Choosing the appropriate initial conditions will then implement the attendance of
exactly n̄.

To establish "⇒" first consider a case where |I0,n̄| < N − n̄. This implies that the
set of agents who’s best predictor commanding them to go is strictly better than their
best predictor commanding them not to go has cardinality > n̄. Formally

|{i ∈ I : ∃ψi,j ∈ ωi ∧ψij(n̄, ..., n̄) ≤ c∧ |ψij(n̄, ..., n̄)−n̄| < |ψij′(n̄, ..., n̄)−n̄| ∀ψij′ ∈ ωi\ψi,j}| > n̄

Since agents must use their most accurate predictors. This means that the attendance
will eventually rise above n̄.

For the case of |I1,n̄| < n̄, an analogous reasoning applies.

Let us denote the set of all subsets of the predictor space Ψ by Ω. An element
ωi = {ψ1, ..., ψm} ∈ Ω represents a mental model endowment of one agent. The
subset of Ω in which all predictor sets have the property that when facing a constant
attendance history of n̄ one of the most accurate predictors predicts an above (below
or equal) capacity attendance will be called Ωn̄c0 (Ωn̄c1). Note that Ωn̄c0 ∪ Ωn̄c1 = Ω,
but Ωn̄c0 ∩ Ωn̄c1 6= ∅.

As mentioned above, in the El Farol and Minority Game literature it is common to
equip all agents with a number of uniformly chosen random predictors. I am interested
in the probability that such a model setup can generate a constant attendance orbit.
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For that we need the set of predictor endowments of all N agents, which will be called
ΦN . These are all N dimensional vectors who’s components are taken from Ω. Formally

ΦN = {(ω1, ..., ωN) : ωi ∈ Ω ∀ i ∈ I}.

The predictor endowments with the property that they can generate a constant orbit
for a bar with capacity c will be called ΦN c steady. All elements of ΦN c steady have at
least n̄ entries which are also elements of Ωn̄c1 and at least N − n̄ entries which are also
elements of Ωn̄c0 for some n̄.

ΦN c steady ={φ ∈ ΦN : ∃ n̄ s.t. |{i ∈ I |ωi ∈ {φk : k ∈ {1, ..., N}} ∩ Ωn̄c0}| ≥ N − n̄
∧ |{i ∈ I |ωi ∈ {φk : k ∈ {1, ..., N}} ∩ Ωn̄c1}| ≥ n̄}

I want to determine |ΦN c steady |
|ΦN |

.

5.3 Calculation

5.3.1 Analytic approach

Consider an agent, who gets assigned two random predictors. If the steady state is
n̄, then this corresponds to simply choosing two integers on the interval [0, N ]. The
predictor, which is chosen in the long run, is the one with the lowest absolute prediction
error, corresponding to the distance between its prediction and n̄. Here it becomes very
obvious that the desired magnitude |ΦN c steady |

|ΦN |
is independent of the horizon agents look

back in the past.

Figure 29: Two predictors with steady state n̄

Let p0 and p1 be the probabilities that the best of two randomly chosen predictors
(uniform distribution), facing a constant history of n̄ will command an agent to go to
the bar or to stay at home, respectively. p01 is the overlap between the two, corre-
sponding to the probability that one of the best predictors recommends going and the
other recommends staying at home. This would mean that, choosing the right initial
conditions, both actions are possible.

p0 =

(
N − c
N + 1

)2

+
(2

1

) c+ 1

N + 1

N − c
N + 1

1

N − c

min (2(n̄− c)− 1, 1) +
N∑

a=min(c+2(n̄−c),N)

max

(
a− 2(a− n̄) + 1

c+ 1
, 0

)
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p1 =

(
c+ 1

N + 1

)2

+
(2

1

) c+ 1

N + 1

N − c
N + 1

1

N − c

 N∑
a=min(c+2(n̄−c),N)

min

(
c− (a− 2(a− n̄)) + 1

c+ 1
, 1

)
p01 = p0 + p1 − 1

Figure 29 illustrates the idea behind the above formulas. For the best of two
predictors recommending to stay at home we can either have that both predictors
predict a number greater than c. This event has a probability of

(
N−c
N+1

)2. The other
way it could happen is if one of the two predictors lies between 0 and c and the other
between c + 1 and N . If now the greater prediction lies in the interval drawn in red,
then it is for sure the best. If it lies outside the red interval, we have to make sure
the lower prediction is small enough to be further away from n̄. So the green line shall
indicate the variable a, handled in the sum in the last term. For the p1 formula an
analogous logic applies. Please note that the above formulas are only correct if n̄ ≥ c.
For the complementary case, the rightmost terms have to be altered.

To find out the probability that the steady state with attendance n̄ exists, we need
to aggregate these probabilities over the whole population of N individuals. Each agent
is assigned two predictors and the aggregate outcome, where each agent uses his best
predictor, has to be an attendance of exactly n̄. Otherwise this particular steady state
does not exist.

According to the proposition in section 5.2, the size of group 0 (agents who’s best
model indicates staying at home is optimal) has to be at least N − n̄ and of group 1
(agents who’s best model indicates going to the bar is optimal) has to be at least n̄.
Since the two groups overlap, one has to use a multinomial distribution.

Let F (n1, n2, n3) be the cumulative distribution function of the multinomial distri-
bution with N trials and probabilities p0 − p01, p1 − p01 and p01

20. The function gives
the probably of at most n1 individuals belonging not to group 1, at most n2 individuals
belonging not to group 0, and at most n3 individuals belonging to both groups.

Then

F (N − n̄, n̄, N)

gives the probability that the steady state at n̄ exists.
Let us consider an example. As in Arthur’s original setting, let N = 100 and

c = 60. Then the probabilities that an agent will or won’t attend at a steady state of
n̄ = 65 are p1 = 4713

10201
and p0 = 5550

10201
, respectively. Plugging this into the multinomial

distribution yields a value of 0.0000866548. So the relative size of the space of predictor
endowments across 100 agents, in which this particular steady state of an attendance
of 65 exists, is very small.

20Note that these three numbers sum to 1.
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To find out the chance of any steady state to exist, one has to repeat this procedure
and then sum over all possible n̄. Since this involves a lot of effort, including a case
differentiation concerning the relative location of n̄ and because we can only cover
the case of agents being equipped with exactly 2 predictors, I suggest switching to a
simulation approach at this point.

5.3.2 Numerical approach

Numerically determining |ΦN c steady |
|ΦN |

under the restriction of a particular amount of
prediction models that agents are endowed with will be accomplished by a Monte Carlo
Simulation approach. The program is written in C and its task is to save |ΦN c steady |

|ΦN |
for

all predictor quantities between 2 and 200. The code is shown in the listing below.

1 void probabilityForSteadyStateExistance ( ) {
2 i n t N = 100 ; //Number o f agents
3 i n t psi [ 1 0 0 ] [ 2 0 1 ] [ 1 0 1 ] ; // Pr ed i c t o r s
4 i n t c = 60 ; //Bar ' s capac i ty
5 double x [ 2 ] ={0 ,0}; //Number o f Agents who stay at home/go to ←↩

the bar
6 bool ssPossible = f a l s e ;
7 double pSs = 0 ; //Steady s t a t e p r obab i l i t y
8 i n t numberOfRuns = 10000;
9

10 FILE ∗file ;
11 file = fopen ( " . . . / pSs . csv " , "w" ) ;
12

13 f o r ( i n t numberOfPredictors =2; numberOfPredictors<=200; ←↩
numberOfPredictors+=1) {

14 pSs=0;
15 f o r ( i n t a=0; a<numberOfRuns ; a++) {
16 ssPossible = f a l s e ;
17

18 // Pred i c t o r s are randomly as s i gned
19 f o r ( i n t i=0; i<N ; i++) //Agents
20 f o r ( i n t j=0; j<numberOfPredictors ; j++) // Pred i c t o r s
21 f o r ( i n t n=0; n<N+1; n++) // H i s t o r i e s
22 psi [ i ] [ j ] [ n ] = floor ( ( double ) rand ( ) /RAND_MAX ∗(N←↩

+1) ) ;
23

24

25 f o r ( i n t n=0; n<101; n++) {
26 x [ 0 ]=0 ;
27 x [ 1 ]=0 ;
28 f o r ( i n t i=0; i<N ; i++) {
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29 //Best p r ed i c t o r i s found
30 i n t minDistance=999999;
31 f o r ( i n t j=0; j<numberOfPredictors ; j++)
32 i f ( abs ( psi [ i ] [ j ] [ n]−n )<minDistance )
33 minDistance = abs ( psi [ i ] [ j ] [ n]−n ) ;
34

35 f o r ( i n t j=0; j<numberOfPredictors ; j++) {
36 i f ( abs ( psi [ i ] [ j ] [ n]−n )==minDistance ) {
37 i f ( psi [ i ] [ j ] [ n]<=c )
38 x [1 ]++;
39 e l s e
40 x [0 ]++;
41 }
42 }
43 }
44 //Check whether attendance number f i t s
45 i f (x [0]>=(N−n ) && x [1]>=n )
46 ssPossible = true ;
47 }
48

49 i f ( ssPossible )
50 pSs++;
51 }
52

53 pSs/=(double ) numberOfRuns ;
54 fprintf (file , "%d , %l f \n" , numberOfPredictors , pSs ) ;
55 }
56

57 fclose ( file ) ;
58 }

Agents will simply be equipped with random predictors before the program will
run through all possible steady state solutions. For each one the best predictor(s)
of each agent will be determined. Then the program checks what would happen if
the agents actually applied these predictors and acted according to the best response
correspondence. The number of agents who attend the bar or stay and home will
be stored in an array called "x". These numbers are then compared to the assumed
steady state. If the attendance fits to it, then the variable "pSs" is incremented. This
is repeated "numberOfRuns" times and in the end the value is divided by the number
of runs before being saved to the file.

The output of the program, using the parameters from Brian Arthur’s original setup,
can be seen in the diagram shown in Figure 30. Note that the qualitative properties of
the solution are robust for other capacities and population sizes.
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Figure 30: Relative cardinality of predictor endowments with steady state for different
amounts of predictors per agent (N = 100, c = 60)

One could have guessed that the probability of a steady state existence goes to zero
when increasing the number of predictors per agent to really high values. When every
agent is able to make any prediction, then everybody will be able to predict exactly n̄
and as long as n̄ ≤ c, everybody will go to the bar, falsifying the initial assumption of
an attendance of n̄ and hereby excluding the existence of that steady state. Similarly,
if n̄ > c everybody will predict an overcrowded bar and nobody will go so again the
steady state won’t exist. 21

All this is not true for lower values of the number of predictors. Interestingly for
two predictors per agent |ΦN c steady |

|ΦN |
starts at 70% and then it increases when increasing

the agents mental capabilities, so to say, by providing them with more predictors. At
about 27 predictors per agent there seems to be a maximal value of around 95% for a
steady state to exist, before the numbers drop monotonically towards zero.

So apparently, the existence of a steady state critically depends on the agents’ men-
tal capabilities. Agents being able to choose from intermediate amounts of randomly
generated prediction models make sure that the existence of a steady state attendance
orbit is almost certain. More interestingly, increasing the agents’ prediction skills,
lowers the relative size of the predictor endowment space with the steady state ex-
istence property. From a game theoretic perspective, smarter agents thus make the
implementation of any of the pure Nash equilibrium solutions essentially impossible.

21Note that in my program, I do not exclude the perfect resemblance of two prediction models of
one agent. As long as the agents consider at least one period of the past attendance, the space of
prediction models is large enough to justify this simplification. For the case of every agent actually
possessing every possible predictor, the relative cardinality is 0.
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5.4 Conclusion

I built a formal model to find out the conditions that are necessary and sufficient for a
steady state solution in the classical setup of the El Farol Bar Problem. The analysis
was directed towards the relative size of the space of predictor endowments across the
agents with and without the existence of a steady state. An analytic approach is surely
possible and was able to guide our intuition concerning what the conditions structurally
imply. A numerical simulation revealed that (using Arthur’s parameter set) the prob-
ability of a steady state existence when uniformly randomly assigning prediction rules
to the agents starts at intermediate values for 2 predictors per agent, then rises close
to 1 before dropping to eventually approach 0 for large predictor endowments.

It would be intriguing to know whether these steady states, given their existence,
are attracting at least on a local neighborhood of attendance histories and predictor
valuations. Also, an object of further research could be the existence of low period
cycles.

Not much is known about the dynamic behavior of classifier systems, especially
in the context of a from an agent’s perspective ill-defined competition for a scarce
resource, like the El Farol Bar Problem and the Minority Game. However, I doubt
that these systems have to remain black boxes.
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