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Abstract

Although regression models offer a standard tool in machine learning,
there exist barely possibilities to inspect a trained model which go be-
yond plotting the prediction against single features. In this contribution,
we propose a general framework to visualize a trained regression model
together with the training data in two dimensions. For this purpose,
we rely on modern nonlinear dimensionality reduction (DR) techniques.
In addition, we argue that discriminative DR techniques are particularly
useful for the visualization of regression models since they can guide the
projection to be more sensitive for those aspects in the data which are
important for prediction. Given a data set, our framework can be utilized
to visually inspect any trained regression model.

1 Introduction

The increasing complexity of data as concerns their dimensionality, size and
form constitutes a major challenge on the task of automated data analyses. In
many scenarios, it is not possible to formalize an analysis task in advance and,
hence, interactive data analysis is required. In this scenario, humans interac-
tively specify learning goals and the appropriate tools [21, 9, 16, 12] in order
to interpret heterogeneous and high-dimensional data sets. In this context,
data visualization and model interpretability become increasingly important. A
trained regression model is not judged by its prediction error only, rather, other
questions come into focus, such as: what are particularly difficult regions in the
data space for the model, which instances seem to be noisy to the model or
which regions of the data space are too sparsely represented by data?

Data visualization is a particular useful tool, since it presents relations
among many data points in a well comprehensible way for humans. This field
constitutes a well-investigated research topic with many different proposed visu-
alization techniques in the machine learning context. Besides classical methods
such as linear mappings computed by principal component analysis or linear
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discriminant analysis and nonlinear extensions such as the self-organizing map
(SOM) or generative topographic mapping (GTM), a variety of (often nonpara-
metric) dimensionality reduction (DR) techniques has been proposed in the last
decade, such as t-distributed stochastic neighbor embedding (t-SNE), neighbor-
hood retrieval visualizer (NeRV), or maximum variance unfolding (MVU), see
e.g. the articles [18, 10, 7, 17, 20] for overviews on DR techniques. These ap-
proaches are often utilized to visualize data in two dimensions. However, they
cannot be directly applied to additionally project the prediction function of a
trained regression model. Such a visualization could provide further insights
into the regression problem: is the model particularly complex in certain re-
gions of the data space, is it too simplistic in others, how are noisy regions and
outliers treated, how does the model extrapolate, and so on.

Besides approaches to judge the quality of trained regression models with
quantitative estimates [4], there exists only little work which aims to visualize
the regression function itself. For the special case of Decision Trees, a direct
inspection is possible through the special tree structure of the model. However,
these models can get unclear with increasing size and data complexity. More
general approaches such as Breheny and Burchett [2] try to analyze the rela-
tionship between the target and a single explanatory variable by visualizing the
predictions of the model for different values of this variable while keeping the
others fix. However, this approach treats the explenatory variables indepen-
dently (or a small subset simultaneously) and thus cannot find information that
is present in many dependent features.

Our proposed approach, conversely, aims to visualize the whole data set
together with the model in one plot, such treating all features simultaneously.
Our contribution is based on ideas from a similar approach which was designed
recently in our group to visualize classification methods [13]. We adapt these
ideas such that they are applicable to the visualization of regression models.

Given a trained regression model, we identify typical user tasks which can
be addressed with our framework. These include the questions:

1. How complex is the learned function? Does it overfit/underfit some re-
gions?

2. Is the data multi-modal, i.e. are clusters present in the data and how
does the regression model deal with those? What is the prediction for the
regions in-between the clusters?

3. Are specific aspects of the selected model visible (such as local linear
functions) and are these suited for the data at hand.

4. Are there potential outliers in the data and how does the model treat
these?

We will exemplarily show how these questions can be addressed in the experi-
ments section.

The remaining of the paper is structured as follows: First, we discuss popular
dimensionality reduction techniques with certain properties which are important
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for our proposed framework. Section 3 presents our main contribution, the
general framework to visualize regression models. Subsequently, we present
the experiments where we exemplarily address the user tasks and argue that
discriminative DR is particularly suited for this purpose. Finally, section 5
gives a short discussion.

2 Dimensionality Reduction

Dimensionality reduction (DR) mappings try to find low-dimensional embed-
dings π(x) = ξ ∈ Ξ = R2 for given high-dimensional data points x ∈ X = Rd

while preserving as much information as possible. The formalization of the
latter goal, however, yields many different approaches [18, 10, 7, 17, 20].

Having such a dimensionality reduction mapping π, some approaches also
provide an inverse mapping π−1 : R2 7→ Rd. This is in particular the case for
parametric DR techniques. Since we will need such a mapping, we will discuss
how to compute it if it is not provided by the DR method in subsection 2.2.

First, we give a short description of popular DR approaches which we utilize.

• The goal of Multidimensional scaling (MDS) is to embed the data such
that the distances in X and in Ξ agree. If these distances are Euclidean,
MDS is equivalent to PCA. However, other metrics can be integrated
directly.

• One popular nonlinear alternative is the parametric generative topographic
mapping (GTM) [1]. Essentially, GTM relies on data being generated
by a constraint mixture of Gaussians. The centers of the Gaussians are
generated by a smooth mapping from regular lattice positions in a two-
dimensional latent space which can be used for data visualization. GTM
is optimized by a maximization of the data log likelihood function. The
GTM provides a smooth mapping of the data to its low-dimensional pro-
jection π(x) and vice versa π−1(ξ). Different metrics can be integrated
[8].

• T-distributed stochastic neighbor embedding (t-SNE) [17] is a nonpara-
metric approach and defines local neighborhoods in a probabilistic sense
by using Gaussians based on pairwise distances in the feature space and
student-t distributions induced by euclidean distances in the projection
space. Training takes place by a minimization of the error in between
these distributions as measured by the Kullback Leibler divergence.

2.1 Discriminative dimensionality reduction with the Fisher
metric

Dimensionality reduction in general is an ill-defined problem. This is particu-
larly critical if the data is intrinsically high-dimensional and hence not embed-
dable in two dimensions. Then, the DR methods have to make compromises
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and omit information. This choice which information to omit is often arbitrary
or even depends on random aspects.

Hence, the class of discriminative DR approaches has been proposed1. These
methods suggest to use auxiliary information to guide the DR method. These
can be data labels or the values of the target variable, y in our case.

A particular successful and general approach is to use the Fisher information
metric as a basis for the DR techniques. The general idea is to define a Rieman-
nian manifold which takes the auxiliary information of the data into account.
This modified metric can then be plugged into any DR technique which relies
on distances only. This idea has been applied for classification problems very
successfully [11, 13], and very recently for the case of regression problems [15].

The distance from a point x to x′ on the Riemannian manifold can be com-
puted by finding the shortest path

dM (x,x′) = inf
P

∫ 1

0

√
P ′(t)>J(P (t))P ′(t)dt (1)

where the infimum is over all differentiable paths P : [0, 1]→ X with P (0) = x
and P (1) = x′. Here, local distances are defined using the Fisher information
matrix

J(x) = Ep(y|x)

{(
∂

∂x
log p(y|x)

)(
∂

∂x
log p(y|x)

)>}
(2)

at the position x.
In [15], a Gaussian Process is used to estimate p(y|x). Further, approxima-

tions for the path integrals are investigated in [11]. A good compromise be-
tween performance and quality is to restrict arbitrary paths on the Riemannian
manifold to a straight line and to approximate the integral (1) by T piecewise
constant terms. More formally, assume xt = x + (t− 1)/T · (x′ − x). Then the
distance on the manifold dM can be approximated by

dT (x,x′) =

T∑
t=1

√
(xt − xt+1)>J(xt)(xt − xt+1). (3)

2.2 Inverse dimensionality reduction

We have seen in a previous part of this section, that parametric DR methods
often provide an approximate inverse DR mapping π−1, which is not the case
for nonparametric methods.

In this subsection, we repeat the ideas from [13] to define such a mapping
for an arbitrary DR approach.

We assume that points xi ∈ X and projections π(xi) = ξi ∈ Ξ are available.
For an inverse projection, we assume the following functional form

π−1 : Ξ→ X, ξ 7→
∑

j βjkj(ξ, ξj)∑
l kl(ξ, ξl)

(4)

1We use the terms discriminative and supervised as synonyms, in the following.
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where βj ∈ X are parameters of the mapping and kj(ξ, ξj) = exp(−0.5‖ξ −
ξj‖2/(σ

ξ
j )2) constitutes a Gaussian kernel with bandwidth determined by σξ

j .
Summation is over a random subset Ξ′ of the given data projections ξi = π(xi),
or over codebooks resulting from a previously run vector quantization on the
ξi.

Formalizing a valid cost function to optimize the parameters of π−1 consti-
tutes a challenge, if the intrinsic data dimensionality is larger then 2. In this
case, the inverse position of a given projection ξ can be ambiguous. In order
to emphasize those directions in the data space that are relevant for the target
variable we utilize the distance as measured with the Fisher metric in the cost
function:

E =
∑
i

(
d1
(
xi, π

−1(ξi)
)2)

=
∑
i

(
xi − π−1(ξi)

)>
J(xi)

(
xi − π−1(ξi)

)
(5)

We utilize the distance dT with T = 1 in order to save computational time.
This local approximation works usually well since in the course of optimization
the points xi and π−1(ξi) will get close to each other. Minimization of these
costs with respect to the parameters βj takes place by gradient descent.

3 General Framework for Visualizing Regression
Models

In this section, we are in the position to put the pieces together towards a
general framework for the visualization of regression models. We assume the
following scenario: a data set including points xi ∈ X is given. Every data
point is accompanied with a target value yi ∈ R. In addition, a regression
model f : X → R has been trained on the given training set, such as a support
vector machine for regression (SVR). A visualization of the given data set and
the regression model would offer the possibility to visually inspect the prediction
result and to address user tasks as formulated in section 1. We propose a general
framework how to visualize a regression model and a given data set.

3.1 Naive approach

Assuming a nonlinear dimensionality reduction method is given, a naive ap-
proach to visualize a regression model could be like follows:

• Sample the full data space X by points zi.

• Project these points nonlinearly to two-dimensional points π(zi) using
some nonlinear dimensionality reduction technique.

• Display the data points π(xi) and the contours induced by the sam-
pled function (π(zi), f(zi)), the latter approximating the prediction of
the model.
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Figure 1: Illustration of our proposed approach to visualize a regression model
(in this case a Decision Tree ).

This simple method, however, fails unless X is low-dimensional because of two
reasons:

• Sampling X sufficiently requires an exponential number of points, hence
it is infeasible for high-dimensional X.

• It is impossible to map a full high-dimensional data set faithfully to low
dimensions, hence topological distortions are unavoidable when projecting
the prediction function.

The problem is that this procedure tries to visualize the function in the full
data space X. It would be sufficient to visualize only those parts of the function
which are relevant for the given training data and the given prediction function.

3.2 Our proposed approach

Hence, we propose to sample in the projection plane instead of the original data
manifold, and we propose to use a discriminative DR technique to make the
problem of data projection well-posed in the sense that discriminative methods
define clearly what structure preservation means (see [15] for a discussion on
this). Together with the techniques presented in the last section, this leads to
the following feasible procedure for the visualization of regression models:
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• Project the data xi using a nonlinear discriminative DR technique leading
to points π(xi) ∈ Ξ.

• If not provided by the selected DR technique, compute an inverse mapping
π−1 by optimization of equation (5).

• Utilize the mapping f ◦ π−1(z) to visualize the regression function on any
position z ∈ Ξ in the low-dimensional space.

In order to execute the last step, we sample the projection space Ξ in a regular
grid leading to points {zi}ni=1. Finally, we visualize the pairs (zi, f ◦π−1(zi)) as
contours of a two-dimensional plot, or plotting f ◦ π−1(zi) over the third axis
as done in Fig. 1. An illustration of this approach is depicted in Fig. 1 with a
three-dimensional data set, where dimension 3 is irrelevant for prediction (see
section 4 for further details of this data set). The Fisher GTM has been utilized
to obtain π and π−1 in this example.

Unlike the naive approach, sampling takes place in R2 only and, thus, is
feasible. Further, only those parts of the space X are considered along which the
regression function changes. Such, directions irrelevant for the target mapping
are neglected.

3.3 Evaluation measure

In order to evaluate the quality of the obtained visualization of the regression
model, we propose to utilize the Pearson correlation of f(x) and f ◦ π−1 ◦ π(x):

E
{

(f(x)− E (f(x))) ·
(
f ◦ π−1 ◦ π(x)− E

(
f ◦ π−1 ◦ π(x)

))}√
E
{

(f(x)− E (f(x)))
2
}
·
√

E
{

(f ◦ π−1 ◦ π(x)− E (f ◦ π−1 ◦ π(x)))
2
} (6)

This criterion does not measure in how far π−1 is the exact inverse of π.
Obtaining such an inverse mapping would be impossible for the most data sets.
Instead, equation 6 evaluates the precision of π−1 with respect to f , i.e. errors
along directions where f doesn’t chage are not accounted as such. This way, only
directions in the data space are considered which are relevant for the prediction.

This procedure estimates the quality of the visualization of the regression
model at the positions of the data points. Other regions are not evaluated with
this approach. We prefer the Pearson correlation over the normalized MSE,
because the former is always normalized between -1 and 1.

For the computation, we utilize only those points x which were not utilized
to train the mapping π−1. Further, we approximate f ◦ π−1 ◦ π(x) by the
prediction value of the closest sampled point z′ of π(x), simply because we have
already computed f ◦ π−1 for these points.

4 Experiments

In this section we demonstrate our proposed approach with artificial and real
life data sets. We employ the popular Support Vector Machine for regression
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and the Decision Tree scheme as the models that we interpret. Furthermore,
since we do not assume any particular property of the regression model, any
regression scheme could be visualized in the same way. A description of the
models follows.

• The Support Vector Machine for regression (SVR) [19] employs a lin-
ear function f(x) = φ(x)>w in the feature space for prediction. Er-
rors are penalized linearly, where small errors, i.e. predictions lying in
an ε-tube around the target, are not penalized. Since the whole ap-
proach can be formulated using scalar products of the data only, ker-
nels can be employed. In the experiments, we utilize the Gaussian kernel
k(xi,xj) = exp

(
−β‖xi − xi‖2

)
. We use the implementation provided by

the libsvm [5].

• Decision Trees (DecTree) [3] for regression partition the data space X,
where the prediction value in each partition is the mean of the points
lying in the according partition. Splits are optimized such that the mean
squared error is minimized. We utilize the Matlab implementation here.

In the following, we demonstrate how the user tasks described in section
1 can be tackled with of our proposed approach, what effects the choice of
the employed dimensionality reduction can have and we apply our presented
approach to a real world data set. In the following, we briefly characterize the
utilized data sets.

• Data set1 is depicted in Fig. 2 (left) and consist of three two-dimensional
clusters positioned above each other. One of these clusters (the bottom
one) has additional noise in the third dimension. The prediction function
is again encoded in the color and is a squared function of dimension three.

• Data set2 consists of two three-dimensional clusters with an outlier in-
between these two clusters. Fig. 2 (right) depicts this set, where the
color indicates the target variable of the regression task which is a linear
function for the left cluster and a squared function for the right one. In
both cases, the target function depends only on the first two dimensions.

• The diabetes [6] data set describes 442 patients by the 10 features age,
sex, body mass index, blood pressure and 6 blood serum measurements.
The target variable is a measure of the progression of the diabetes disease
one year after feature acquisition.

4.1 Effect of the selected dimensionality reduction tech-
nique

One key ingredient in our proposed approach is the DR. However, since any
DR technique can be applied, we discuss in this section effects of the selected
methods. For this purpose, we train a SVR model on data set1 and visualize it
with different techniques.
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Figure 2: Two toy data sets: data set1 (left) and data set2 (right).

The most common visualization approach is PCA. However, the latter is
driven only by the variance of the data and neglects other structure. Hence,
using PCA for data set1 yields to overlapping clusters and hence to a bad
visualization of the underlying regression model: the accordance as evaluated
by (6) is 0.21, i.e. the visualized model has only a small correlation to the original
one.

In a scenario where the structure of the data is not known, more powerful
nonlinear DR methods can be necessary. We investigate here the two methods
GTM as a generative model and t-SNE as a neighborhood embedding.

Applying our regression model visualization approach to the trained SVR
using the GTM yields a visualization with a quality of 0.95 (as summed up
in Table 1). The visualized model is depicted in the top left corner of Fig. 3.
Although, the accordance of the visualized prediction model with the original
one is high, the visualization tears the cluster structure apart. So, more powerful
methods for DR can increase the visualization quality. However, there still might
be undesired effects, especially if the approaches act in an unsupervised way. An
other option, besides choosing more powerful methods, is to utilize supervised
ones. This can be done, as discussed earlier with the use of a supervised metric.

To demonstrate the effect of such a supervised visualization, we apply our
regression model visualization approach using Fisher MDS, Fisher GTM and
Fisher t-SNE. Applying these techniques, we obtain three different visualizations
of the same regression model. We evaluate them and obtain a quality of 0.99
for each visualization (summed up in Table 1). The visualizations (in Fig. 3)
of Fisher MDS (top right) and Fisher GTM (bottom left) agree largely, while
the Fisher GTM based visualization shows the shape of the squared polynomial
target function without any distortions. In the Fisher t-SNE projection, the
squared prediction for the single clusters can be observed, but it is not so clear
as in the Fisher GTM mapping. One reason for this is that t-SNE often tears
clusters apart since it has a high focus on local neighborhood preservation.
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Figure 3: Four different visualizations of the same regression model. These are
based on (from top left to bottom right): GTM, Fisher MDS, Fisher GTM,
Fisher t-SNE.

4.2 Illustration of potential user tasks

We utilize data set2 to illustrate the identified user tasks. For this purpose, we
train a SVR and a Decision Tree using this data set. For the DR, we employ
the supervised technique Fisher GTM - an unsupervised approach would try
to embed this intrinsically three-dimensional data set in two dimensions and,
hence, might result in an embedding not well suited to visualize the target
function.

Using these ingredients, we can visualize the two regression models with our
proposed approach. Employing the numerical evaluation scheme in 3 implies a
quality of 0.99 for both visualizations, as measured by the Pearson correlation.
I.e. the regression model is shown accurately at least at the positions of the
data. The evaluation results for all experiments are summed up in Table 1.

The resulting visualized models are shown in Fig. 4. The left plot depicts
the SVR and the right one the Decision Tree. In both cases, the first two
coordinate axes encode the two-dimensional embedding space of the data. The
target variable is encoded both by the third axis and by the coloring. The
surface depicts the prediction of the respective regression model.

We exemplarily address the user tasks for these visualizations. Considering
user task 1, the complexity of the prediction functions can be observed directly
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Figure 4: A Fisher GTM induced visualization of the SVR (left) and Decision
Tree (right) with data set1. The continuous surfaces depict the prediction of
the regression models.

in the visualizations: the SVR instance shows a smooth predictive function
while the Decision Tree instance is very complex. This is particularly the case
for the cluster with the squared function: the trained SVR might be considered
underfitted, here. Dealing with user task 2, the user can observe that the
complexities of the target functions are quite different in the two present clusters.
The user could prefer to train two independent local models on these clusters, for
instance. The extrapolation between these clusters is smooth in the left image
but very steep in the right one, which might lead to bad predictions if future
data are expected to lie also between the clusters. In the right visualization, the
piecewise constant regions are good visible which is typical for Decision Tree
models (user task 3). Considering user task 4, the visualizations directly imply
how both models treat the outlier point: the SVR ignores it and the Decision
Tree overfits it. Having this insight, the user can judge which model handles
the data point of interest better, depending on his estimation of the regularity
of this point.

4.3 Applying the proposed framework to real world data

For the diabetes data set, we train the SVR model by splitting the data set
multiple times randomly in a training and a test set in order to estimate a good
parameter value for the kernel of the SVR.

Table 1: Visualization qualities for the regression models, as measured by the
Pearson correlation.

PCA GTM Fisher MDS Fisher GTM Fisher t-SNE

data set1, 0.21 0.95 0.99 0.99 0.99
data set2, SVR – – 0.99 0.99 0.99
data set2, DecTree – – 0.99 0.99 0.99
diabetes – – – 0.94 0.92
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Figure 5: A Fisher GTM (left) and a Fisher t-SNE (right) visualization of a
SVR model trained on the diabetes data set.

In the previous subsections we have argued that discriminative nonlinear DR
methods are best suited for the visualization of regression models. Hence, we
apply two such methods, i.e. Fisher GTM and Fisher t-SNE to the SVR model
trained on the diabetes data set.

The evaluation based on (6) yields a quality value of 0.94 for the visualiza-
tion based on Fisher GTM and a value of 0.92 for the Fisher t-SNE induced
visualization. Both are shown in Fig. 5.

Interestingly, both visualizations agree in that sense that they show an al-
most linear prediction function. We have validated this by training a linear
model and have obtained a similar error on the test data.

5 Discussion

We have proposed a general framework to visualize a given trained regression
model together with the training data. This allows the user to inspect various
properties of the trained model.

While the approach is in that sense general, that it allows to use any DR
and any regression technique, only the Support Vector Regression and Decision
Tree approaches have been utilized so far. Further work will demonstrate this
framework on other regression models as well as on more real life data sets.
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