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Universitätsstraße 25
D-33615 Bielefeld · Germany

e-mail: imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/

ISSN: 0931-6558

mailto:imw@uni-bielefeld.de
http://www.imw.uni-bielefeld.de/wp/


Cognitive Empathy in Conflict Situations∗

Florian Gauer† and Christoph Kuzmics‡

January 12, 2016

Abstract

Two individuals are involved in a conflict situation in which pref-

erences are ex ante uncertain. While they eventually learn their own

preferences, they have to pay a small cost if they want to learn their

opponent’s preferences. We show that, for sufficiently small positive

costs of information acquisition, in any Bayesian Nash equilibrium

of the resulting game of incomplete information the probability of

getting informed about the opponent’s preferences is bounded away

from zero and one.
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If you know the enemy and know yourself, you need not fear the

result of a hundred battles. If you know yourself but not the enemy,

for every victory gained you will also suffer a defeat. If you know

neither the enemy nor yourself, you will succumb in every battle.

— Sun Tzu, The Art of War, approximately 500BC

1 Introduction

It is probably rare in a conflict situation that we know the exact cardinal

preferences of our opponent.1 Consider, for instance, a penalty kick in

soccer. This is as close as one can imagine to a pure conflict (i.e. zero-

sum) situation. The kicker wants to score, the goalkeeper wants to prevent

that. Imagine then that the goalkeeper incurred, earlier in the game, a

slight injury, a bruising on her left side, which might induce her to have a

slight additional preference for jumping to the right. The question we are

interested in in this paper is whether or not the other player, the kicker,

would, at some small cost, like to find out about this slight injury and its

consequences for her opponent’s preferences.

This cost can be in terms of effort or even money going into the ac-

tual acquisition or purchase of this piece of information. Alternatively it

could also be in terms of mental costs. If the kicker saw the slight injury,

will she reason through its preference consequences for her opponent? The

latter interpretation leads us to the term “cognitive empathy” in our title,

as defined in psychology as the process of understanding another person’s

perspective (see e.g. Davis, 1983), which can be traced back to at least

Köhler (1929), Piaget (1932), and Mead (1934).2 Building the possibil-

ity of empathy acquisition (or, respectively, information acquisition) into

1In the quote from Sun Tzu stated above, it is difficult to know what he meant
with “knowing yourself” and “knowing your enemy”. The last sentence of the quote, for
instance, seems to suggest that it is in fact impossible that two generals know neither
themselves nor their enemy, as presumably we cannot have that both “succumb” in the
battle between them. What we take from the quote, however, is the idea implicitly
suggested there that “knowing your enemy” is something one can acquire.

2This is in contrast to “affective empathy” which is defined as a person’s emotional
response to the emotional state of others (see again Davis, 1983) and the two are not
necessarily related. Shamay-Tsoory et al. (2009) find that different areas of the human
brain are responsible for “cognitive” and “affective” empathy. Rogers et al. (2007) find
that people with Asperger syndrom lack “cognitive” but not “affective” empathy.
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a conflict game with incomplete information, we are then interested in the

following questions. To which extent do players acquire empathy in equi-

librium? How does the possibility of empathy acquisition affect players’

action choices in the game? Finally, how do the answers to these questions

depend on the value of the cost of empathy acquisition?

To answer these questions we build a simple model. There are two

players and two actions for each player. Each player can be one of a finite

number of different preference types. The distribution over all preference

types is commonly known (to avoid confounding our results with higher-

order belief effects). Both players, before learning their own types (this

is for convenience), simultaneously decide whether or not to pay a small

amount of cost c ≥ 0 in order to learn the opponent’s type. Players do

not observe their opponent’s choice of empathy acquisition. After learning

their own and, if appropriate, their opponent’s type, players then choose,

as a function of what they know, a (possibly mixed) action. We focus

on two-player two-action Bayesian conflict games. These are such that

if the types of players were common knowledge then any such complete

information “realized type game” must have a unique Nash equilibrium

and that Nash equilibrium must be in completely mixed strategies. We

investigate Bayesian Nash equilibria of these games.

For such games we show that for sufficiently low positive costs of empa-

thy acquisition the probability of empathy acquisition is strictly bounded

away from zero and one in any Bayesian Nash equilibrium of this game.3

These bounds do not depend on the costs of empathy acquisition beyond

the requirement that these costs are sufficiently small. In other words, in

any equilibrium of this game, players randomize strictly between acquiring

empathy and not acquiring it. It turns out that even if the cost is zero, the

game, besides a “full empathy equilibrium”, still has such an equilibrium

with strict mixing between acquiring empathy and not acquiring it.

There are at least two different interpretations of our model. One,

along the lines as suggested above, is such that players are highly rational

but have some small costs of reasoning about their respective opponent’s

preferences. This model could then be about the two individuals engaged

3In fact, for a player’s equilibrium probability of empathy acquisition to be strictly
greater than zero, her opponent must have (at least two) distinct payoff types.
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in the penalty kick, but could also be about firms engaging in conflict or

indeed, as in the quote by Sun Tzu above, military generals engaged in war.

We prefer to think of this model, however, in its evolutionary inter-

pretation. That is there is mother nature (or evolution) who works on

everyone of her subjects independently and has their material interests at

her heart. Nature knows that her subjects will be involved in all sorts

of conflict situations throughout their life. Nature then decides whether

or not she should spend some small amount of fitness cost to endow her

subject with cognitive empathy, which would allow her subject to always

learn (in fact, to always know) the opponent’s preferences. Whether or not

the subject has cognitive empathy is not observable by her opponent. Our

results then imply that nature (guiding play to Bayesian Nash equilibrium)

endows some but not all of her subjects with cognitive empathy even if the

costs of doing so are essentially zero.

1.1 Related Literature

This paper is related to the literature on the evolution of preferences for

strategic interaction, initiated by the so-called “indirect evolutionary ap-

proach” of Güth and Yaari (1992) and Güth (1995). Individuals who are

randomly matched to engage in a given form of strategic interaction are

first given a utility function by mother nature. Mother nature works on

every player separately and aims to maximize this player’s material pref-

erences. Players evaluate outcomes of play with the preferences given to

them by mother nature. There are two kinds of results in this literature.

Assuming that individuals (automatically) observe their opponents’ pref-

erences, in many settings non-material preferences arise as mother nature’s

optimal choice (see e.g. Koçkesen et al., 2000a,b; Heifetz et al., 2007a,b;

Dekel et al., 2007; Herold and Kuzmics, 2009). On the other hand, assum-

ing that individuals cannot observe their opponents’ preferences, essentially

only allows material preferences as mother nature’s optimal choice (see

e.g. Ely and Yilankaya, 2001; Ok and Vega-Redondo, 2001). This induced

Robson and Samuelson (2010) to wish that the potential observability of
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preferences is also made subject to evolutionary forces.4 Some work in that

direction has recently been begun by Heller and Mohlin (2015a,b).5 Our

model can be seen as to tackle the question of the evolution of observability

of preferences without modelling the evolution of preferences.

Another such model is given in Robalino and Robson (2012, 2015). In

their model, individuals are interacting in ever changing environments. An

individual with “theory of mind” is able to use past experiences of opponent

play to predict more quickly how her opponent will play. Thus, even if it is

somewhat costly, there is a strict benefit from having a “theory of mind”.

One could argue that the incomplete information (about opponents’ pref-

erences) in our model is somewhat akin to the ever changing environment

in Robalino and Robson (2015). Our model has no explicit learning. One

could perhaps argue it is implicit in our use of Bayesian Nash equilibrium.

Our example of a non-conflict game provides a similar result as that in

Robalino and Robson (2015) in that any Bayesian Nash equilibrium must

exhibit “full” cognitive empathy, i.e. with probability one. When we focus

on conflict games alone, we find a starkly contrasting result in that any

Bayesian Nash equilibrium must exhibit “partial” cognitive empathy, i.e.

the probability of acquiring empathy is bounded from below as well as from

above, even when costs of acquiring empathy tend to zero.

Aumann and Maschler (1972), provide an example of a complete in-

formation bimatrix game, due to John Harsanyi, to discuss the relative

normative appeal of maxmin and Nash equilibrium strategies. The game is

a two-player two-action game and not quite zero sum with a unique Nash

equilibrium which is in completely mixed strategies. In this game, Nash

equilibrium strategies and maxmin strategies differ for both players. Yet

the expected payoff to a given player in the Nash equilibrium is the same

as the expected payoff that this player can guarantee herself by playing her

4Similarly (Samuelson, 2001, p. 228) states: “Together, these papers highlight the
dependence of indirect evolutionary models on observable preferences, posing a challenge
to the indirect evolutionary approach that can be met only by allowing the question of
preference observability to be endogenously determined within the model.”

5The former is a model in which, while individual preferences evolve, so do individu-
als’ abilities to deceive their opponents. The latter asks the question whether cooperation
can be a stable outcome of the evolution of preferences in the prisoners’ dilemma when
players can observe and condition their play on some of their opponent’s past actions
(in encounters with other people).
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maxmin strategy. Pruzhansky (2011) provides a large class of complete in-

formation bimatrix games that have this feature. If this is the case, would

one not, for this class, recommend players to use their maxmin strategies?

In our model, in which players have uncertainty about their opponent’s

preferences, and therefore in some sense greater uncertainty about their

opponent’s strategy, one might think that the appeal of maxmin strate-

gies is even greater. Yet, in our model there may be a strict benefit from

deviating from maxmin strategies.

The literature on level-k thinking (see e.g. Stahl and Wilson, 1994, 1995;

Nagel, 1995; Ho et al., 1998; Costa-Gomes et al., 2001; Crawford, 2003;

Costa-Gomes and Crawford, 2006; Crawford and Iriberri, 2007) typically

finds that individuals engaged in game theory experiments do not all reason

in the same way as individuals seem to have different “theories of mind”. In

that sense, our paper can be loosely interpreted as a model to understand

why there may be individuals of different levels of strategic thinking.

There is a literature on information acquisition in oligopoly mod-

els as in e.g. Li et al. (1987), Hwang (1993), Hauk and Hurkens (2001),

Dimitrova and Schlee (2003), and Jansen (2008), where firms can ac-

quire information about the uncertain market demand before engaging in

oligopoly competition. Market demand enters all agents’ profit functions,

whereas in our model the information a player might acquire is exclusively

about the opponent’s preferences. More general models in which play-

ers acquire information about an uncertain parameter affecting all players’

preferences are given in Hellwig and Veldkamp (2009), Myatt and Wallace

(2012), and Amir and Lazzati (2014), as well as in Persico (2000) and

Bergemann et al. (2009) in a mechanism design context.

Solan and Yariv (2004) consider a sequential model of two-player two-

action interaction in which one player chooses a (possibly mixed) action

first, then a second player can buy, at some cost, information about the

first player’s (realized) action before finally then also choosing an action

herself. The second player can also choose the precision of the information

purchased. The structure of the game is common knowledge. In particular

the first player is fully aware that she might be spied upon. Thus “spying”

in their model is about the opponent’s already determined action with

complete information regarding payoffs, whereas in our model “spying” (or
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cognitive empathy as we call it) is about the opponent’s preferences.

Closest is perhaps Mengel (2012), who studies a model in which indi-

viduals play many games and ex ante do not know which game they are

playing. Individuals can partition the set of games in any way they like,

with the understanding that any two games in the same partition element

cannot be distinguished. The individual can condition her action only on

the partition element. Adopting a partition comes at some cost, called rea-

soning costs, and finer partitions are more costly than coarser ones. One

difference between Mengel (2012) and what we do here is, therefore, that

in our model players always learn their own payoff type, while in Mengel

(2012) individuals do not necessarily even learn their own payoff type. An-

other difference is in the choice of solution concept, we study Bayesian Nash

equilibria while Mengel (2012) studies asymptotically stable strategy pro-

files under some evolutionary process. Both these differences are probably

only superficial. The real difference between the two papers is the class of

games they study within their respective models. Our main results deal

with the case of conflict games. Mengel (2012) does not explicitly study

this class. Therefore, the nature of our results is also different.6

The rest of the paper is organized as follows. Section 2 states the model.

Section 3 provides the main result, further characterizes equilibrium strat-

egy profiles, and provides a uniqueness result. Finally, Section 4 concludes

with a discussion of further properties of equilibria in Bayesian conflict

games as well as a discussion of possible variations of the model.

6The main results in Mengel (2012) are that strict Nash equilibria, while (evolu-
tionarily) stable if the game is commonly known, can be made unstable under learning
across games; that weakly dominated strategies, while unstable if the game is commonly
known, can be stable under learning across games; and that, if all games have distinct
Nash equilibrium supports, learning across games under small reasoning costs leads to
individuals holding the finest partition with probability one. Our paper is silent on all
these results as our conflict games do not have strict Nash equilibria, do not have weakly
dominated strategies, and are such that all (what we call realized type) games are such
that their Nash equilibria all have full support. All our results, thus, add to the results
in Mengel (2012). One could probably translate our main result into the language of
Mengel (2012) as follows. If having the finest partition in the model of Mengel (2012) is
essentially the same as acquiring cognitive empathy in our model, then our result, that
in conflict games we expect proper mixing between acquiring empathy and not acquiring
it, suggests that, in conflict games, learning across games as in Mengel (2012) would
lead to individuals properly mixing between different partitions, including the finest as
well as the coarsest.
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2 The Model

There are two players p ∈ {B, R}, “blue” and “red”. Each player p can

have one of a finite number np of possible (payoff) types θp ∈ Θp. There

are commonly known full support probability distributions over types given

by µp : Θp → (0, 1] for both players p ∈ {B, R}. Abusing notation slightly

we sometimes write µθp

instead of µp(θp). The types of the two players

are then drawn from the respective distribution statistically independently

from each other. Every type of every player has the same finite set of

possible actions at her disposal, given by A = {a1, ..., am}.7 Payoffs to

player p ∈ {B, R} are then given by the utility function uθp

: A × A → R,

where the first argument depicts the action taken by player p and the second

the one taken by her opponent −p. Note that different types have different

utility functions and that utility functions do only depend on the chosen

action pair and not directly on the opponent’s type.

Before players learn their own type, i.e. at the complete ex-ante stage,

each of them can independently and secretly invest a cost of c ≥ 0 in order

to acquire cognitive empathy. This cost is then simply subtracted from the

player’s payoff. A player who acquires empathy then, at the interim stage,

learns not only her own type but also the type of her opponent. These

player types are then called informed. Note, however, that an informed

type is not able to observe her opponent’s choice of empathy acquisition.

We further assume that there is only no empathy or full empathy. When we

speak of a player having partial empathy we mean that this player random-

izes between no and full empathy.8 A player who does not acquire empathy

learns, at the interim stage, only her own type. The corresponding player

types are then called uninformed.

A strategy of player p ∈ {B, R} is then given by a pair
(

ρp, (σθp

)θp∈Θp

)

where ρp ∈ [0, 1] is the probability of empathy (or information) acquisition,

7In principle, one could consider action sets of different cardinality for both players.
The paper, however, focuses on what we call conflict games. A crucial feature of conflict
games is that its “realized type games” (defined below) have a unique equilibrium and
that equilibrium is in completely mixed strategies. One can verify that this implies that
the two players must have the same number of actions.

8Throughout the paper, partial empathy usually comprises the case that the corre-
sponding player acquires empathy with probability zero while it always excludes empathy
acquisition with probability one.
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and σθp

: Θ−p ∪ {∅} → ∆(A), the action strategy, is the (mixed) action to

be played by player p of type θp ∈ Θp against any opponent of known type

θ−p ∈ Θ−p, when informed, and of unknown type (which is indicated by

the player receiving the uninformative “signal” ∅), when uninformed.

Our solution concept is Bayesian Nash equilibrium. One interpretation

of equilibrium play is that it is the outcome of a long and slow evolutionary

process. It is well known (see e.g. Nachbar, 1990) that if any strategy

profile is the outcome of a reasonable evolutionary process, it must be an

equilibrium. As our main result holds for all equilibria of the game, it is

therefore true for all candidates of an evolutionary stable outcome.9

The paper almost exclusively focusses on what we call Bayesian conflict

games.10 For any pair of types θB ∈ ΘB and θR ∈ ΘR we define the realized

type game as the complete information game that would result if it were

common knowledge among the two players that they are of exactly these

two types. The Bayesian game is then a Bayesian conflict game if every

possible realized type game has a unique Nash equilibrium and if this Nash

equilibrium is in completely mixed strategies.11

3 Results

We first show that for positive costs of empathy acquisition there cannot be

an equilibrium of a conflict game in which both players choose to acquire

empathy with probability one.

Proposition 1. Consider a Bayesian conflict game. If costs of empathy

acquisition are positive, then no strategy profile with full empathy, i.e. with

(ρB, ρR) = (1, 1), can be a Bayesian Nash equilibrium. On the contrary, if

costs are zero, there is such a full empathy equilibrium.

9It is also well known that not all games have evolutionary stable outcomes. There
can, for instance, be cycles in behavior. Such cycles then tend to cycle around equilibria
(see e.g. Hofbauer and Sigmund, 1998, Chapter 7.6).

10Section 4.3 provides an example of a non-conflict game.
11In our main theorem and propositions we write “Bayesian conflict game”, to ensure

that a reader who only browses the paper understands that the conflict games studied
in this paper have incomplete information. Everywhere else in the paper we simply
write “conflict game” with the understanding that we are nevertheless dealing with a
Bayesian conflict game. Analogously, we refer to Bayesian Nash equilibria of Bayesian
conflict games simply as equilibria of conflict games.
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Proof of Proposition 1. Suppose a conflict game has an equilibrium with

(ρB, ρR) = (1, 1). Then whenever two types θB ∈ ΘB and θR ∈ ΘR meet,

it is common knowledge that this is the case and, as this happens with

positive probability, they must play a Nash equilibrium of the correspond-

ing realized type game. Any realized type game by definition has a unique

Nash equilibrium and this Nash equilibrium is in completely mixed strate-

gies. Thus, every type of every player in every situation is always indifferent

between all her pure actions. Hence, when costs are positive, any player

would be better off not acquiring empathy, thus saving c > 0, and play-

ing any (mixed) action. Arriving at a contradiction, we therefore have the

proof for c > 0. Observe however that this saving opportunity disappears

for c = 0 meaning that in this case the above strategy profile is indeed an

equilibrium of the conflict game.

Note that Proposition 1 leaves open the possibility that one (and only

one) player acquires empathy with probability one. Turning to a population

interpretation of (mixed) equilibrium (as in evolutionary game theory),

Proposition 1 states that we expect at least a fraction of the population for

at least one player position to not have cognitive empathy in equilibrium.

Suppose we consider symmetric conflict games, such as a Bayesian ver-

sion of the well known rock-scissors-paper game. Suppose we are interested

in the single population evolutionary model. That is, there is one popula-

tion of individuals from which repeatedly two are randomly drawn to play

the game. Then the appropriate solution concept is symmetric Bayesian

Nash equilibrium and Proposition 1 then implies that this single population

has a fraction of individuals without cognitive empathy.

Proposition 1 leaves open the possibility that, as costs of empathy ac-

quisition tend to zero, the equilibrium probability of empathy acquisition

tends to one. To see that this is at least not generally true, we turn to

our main result and our analysis of two-action Bayesian conflict games,

conflict games in which each player has two actions available. In such

games one player, termed B (or blue) throughout the paper, always wants

to coordinate actions while the other, termed R (or red) throughout the

paper, wants to mis-coordinate actions. The Bayesian uncertainty is then

only about the intensity of these preferences. One could thus alternatively
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describe a two-action conflict game as a non-zero sum version of matching

pennies with incomplete information.

The following theorem is the main result of this paper. It establishes

that in any equilibrium of a two-action conflict game for any of the two

players the probability of empathy acquisition is bounded away from zero

(if the considered player’s opponent has at least two distinct types) and,

even more importantly, bounded away from one for all sufficiently small

positive costs. In order to state this theorem we require one additional

piece of notation. In a two-action conflict game, for any player p ∈ {B, R}

of any type θp ∈ Θp denote by x(θp) the probability of action H that, if

played by the opponent, makes θp indifferent between the two actions.12

One could call x(θp) the indifference probability of type θp. By assumption

we have x(θp) ∈ (0, 1) for all θp ∈ Θp and p ∈ {B, R}. Further, denote by

θp
max (θp

min) a type with maximal (minimal) indifference probability x(θp).

Theorem 1. Consider a two-action Bayesian conflict game. There ex-

ists C > 0 such that for all p ∈ {B, R} we have in any Bayesian Nash

equilibrium that

(i) ρp ≥ x(θ−p
max) − x(θ−p

min) if c ∈ [0, C) and

(ii) ρp < max
{

x(θ−p
max), 1 − x(θ−p

min)
}

if c ∈ (0, C).

The proof of this theorem is delegated to the appendix. The proof

rests on two lemmas that are of some independent interest. We now state

these lemmas, one after the other, give their respective proof (or a sketch

thereof with the full proof in the appendix), and then sketch how they

combine with some additional work to establish that equilibrium empathy

acquisition probabilities are bounded away from zero and one.

We first show that in equilibrium any uninformed player type must

be indifferent between both actions. Just as we do this for the indifference

probabilities, we omit the subscript H for ease of notation when considering

action strategies in two-action conflict games from here on.

12For a player p ∈ {B, R} we call two types θ
p

1
, θ

p

2
∈ Θp

distinct if x(θp

1
) 6= x(θp

2
).
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Lemma 1. Consider a two-action Bayesian conflict game. Then there

exists C > 0 such that for all c ∈ [0, C), p ∈ {B, R} and θp ∈ Θp

∑

θ−p∈Θ−p

µθ−p
(

ρ−pσθ−p

(θp) + (1 − ρ−p)σθ−p

(∅)
)

= x(θp) (1)

in any Bayesian Nash equilibrium.

Sketch of Proof of Lemma 1. Suppose there is a player, w.l.o.g. blue, of

some type that is uninformed and not indifferent between her two actions.

Suppose, w.l.o.g. that she prefers action H . As she is uninformed, she is

facing a (mixed) action that is a convex combination of all (mixed) actions

of all opponent (red player) types. As she prefers H against this mixture,

and as she prefers to coordinate actions, this mixture must place a relatively

high probability on H . But as this mixture is a convex combination of

mixed actions of all red types there must be one red type who also plays H

with higher probability. Thus, the same blue player type, when informed

and facing that red type, also plays H . But then the red player, the mis-

coordination player, of this type, when informed and playing against the

considered blue type, must play T as she is facing the pure action H . This

can then be argued to imply on the one hand that the red player is not

acquiring empathy with high probability and on the other hand that she

is not playing close to T when of the considered type and uninformed.

But then, as costs are small, she should deviate to acquire empathy with

probability one and to play T when meeting this given blue type.

The second result we need is that, for positive costs, in equilibrium for

each of the two players there must be a type who, when informed cannot

be indifferent between both actions against all opponent types.

Lemma 2. Consider a two-action Bayesian conflict game.13 If c > 0, then

for any Bayesian Nash equilibrium and p ∈ {B, R} with ρp > 0 there must

13The reader may feel that we use an overabundance of different types in the statement
of this lemma. This is, unfortunately, necessary. There are three different types for each
player, denoted θ̄p, θ̂p, and θ̃p. It is important to realize that generally it may well be
that all three types on each side are different from each other. In the case where there
are only two types for one player, then some of these three types naturally must coincide.
This additional structure allows us to prove more in such cases. See Proposition 3.
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exist θ̄p ∈ Θp and θ̂−p, θ̃−p ∈ Θ−p such that

ρ−pσθ̂−p

(θ̄p) + (1 − ρ−p)σθ̂−p

(∅) > x(θ̄p), (2a)

ρ−pσθ̃−p

(θ̄p) + (1 − ρ−p)σθ̃−p

(∅) < x(θ̄p). (2b)

For p = B
(

p = R
)

this induces σθ̄B

(θ̂R) = 1 and σθ̄B

(θ̃R) = 0
(

σθ̄R

(θ̂B) =

0 and σθ̄R

(θ̃B) = 1
)

.

Proof of Lemma 2. This proof is similar to that of Proposition 1. Suppose

a player p ∈ {B, R} does acquire empathy with some positive probability

ρp > 0 in equilibrium while costs are positive, i.e. c > 0. Now assume that

every type θp of player p, when informed, is indifferent between the two ac-

tions H and T against any opponent type θ−p. Then player p could benefit

strictly from deviating to acquiring empathy with probability zero (thus,

saving costs c > 0 with probability ρp > 0) and playing any (mixed) action

(not losing anything because of the complete indifference). Arriving at a

contradiction, we therefore have that there must be at least one player type

θ̄p strictly preferring H or T against some opponent type here. Together

with Lemma 1 this concludes the proof.

For the special case that the opponent −p only has one possible type,

Lemma 2 has the obvious implication that for any positive cost of empathy

acquisition player p does not acquire empathy in any equilibrium.

Consider first Part (i) of Theorem 1, which states that there is a specific

lower bound on the equilibrium probabilities of empathy acquisition.

Sketch of Proof of Theorem 1(i). The key to this part is Lemma 1. It

states that every type of any player, when uninformed, must be indiffer-

ent between both actions as long as costs are sufficiently small. Consider,

w.l.o.g., the red player and assume that x(θR
max) > x(θR

min) (otherwise the

lower bound is trivially satisfied). Now both player types θR
max and θR

min

must be indifferent between both actions when uninformed. These two red

types, however, face the same distribution over actions if the blue player’s

probability of empathy acquisition is zero. Why? If the blue player did not

acquire empathy, she cannot recognize the red player’s type and cannot

condition her action strategy on that information. On the other hand, the

two (extreme) red types cannot be both indifferent between the two actions
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if they are facing the same distribution. Thus, arriving at a contradiction,

it must be that the blue player acquires empathy with positive probability.

In fact the exact lower bound can be obtained by taking the difference

between Equation(s) (1) for the extreme types θR
max and θR

min.

The key statement in Part (ii) of the theorem is that it establishes an

upper bound, strictly below one, for each player’s equilibrium probability

of empathy acquisition. What this upper bound is, is less important. In the

appendix we, in fact, prove two results that imply the existence of an upper

bound strictly below one. One is as stated in Theorem 1(ii), the other is

stated in the appendix as Theorem 1(ii)’. The respective statements are

similar but neither implies the other. The former is more elegant in its

expression, the latter is more intuitive in its proof. Therefore, we choose

to present the sketch of proof for Theorem 1(ii)’ here.

Sketch of Proof of Theorem 1(ii)’. W.l.o.g. we focus on the blue player

(the coordination player). Assume that the blue player acquires empa-

thy with a probability greater than the stated bound and close to one. By

Lemma 2 we know that, in equilibrium, there must be a type of blue player

who, when informed, strictly prefers to play H against some type of red

player. This type of red player, when informed herself and meeting the

given type of blue player, then faces with high likelihood an informed blue

player who plays H . Her best response then (being the mis-coordination

player) is to play T against this blue type. But as the informed blue type’s

equilibrium action against this red type is H , two things must be true about

the red player. First, she cannot be too informed, i.e. her probability of

acquiring empathy must be low, and second, when she is of the considered

type and uninformed, she must play H with a high probability. But then,

as the cost of empathy acquisition is small, the red player could strictly

benefit from deviating to acquire empathy and then, when she is of this

type, play T against this blue type. We thus arrive at a contradiction.

While we do not know whether there are equilibria in general two-action

conflict games in which a player’s probability of empathy acquisition is close

to the upper bound stated in Theorem 1, for small costs, there is always

an equilibrium in which the lower bound is achieved.
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Proposition 2. For every two-action Bayesian conflict game there exists

C > 0 such that for all c ∈ [0, C) it has a Bayesian Nash equilibrium with

ρp = x(θ−p
max) − x(θ−p

min) for both p ∈ {B, R}.

The proof of this proposition is given in the appendix. The key to

reaching the lower bound for the probability of empathy acquisition is to

let all informed types of player p ∈ {B, R} play H against opponent type

θ−p
max and T against type θ

−p
min. Taking into account Lemma 1, this im-

mediately pins down the equilibrium probability of empathy acquisition of

player p and it is exactly the lower bound. The equilibrium is then fur-

ther constructed by letting uninformed types mix in a way that makes the

opponent −p indifferent between acquiring empathy and not doing so.

With more than two types for one player and at least two for the other,

this kind of equilibrium can be constructed in different ways. In general,

this gives rise to a continuum of equilibria that differ in terms of players’

action strategies but not in terms of their information strategies. In what

follows, any representative of this class is called a partial empathy equilib-

rium. Note, however, that a player acquires empathy with probability zero

in such an equilibrium if her opponent does not have distinct types.

We do not know whether general two-action conflict games with positive

costs of empathy acquisition can actually have equilibria in which a player’s

probability of empathy acquisition is strictly greater than this lower bound.

For any such game with either two types for both players or a single type

for one player we can show, however, that the partial empathy equilibrium

considered in the proof of Proposition 2 is indeed the only equilibrium.

Proposition 3. For every two-action Bayesian conflict game with only

one type for one player and more than one type for the other player or

with exactly two types for both players there exists C > 0 such that for

all c ∈ (0, C) and p ∈ {B, R} the probability of empathy acquisition is

ρp = x(θ−p
max) − x(θ−p

min) in any Bayesian Nash equilibrium. In these cases

the Bayesian Nash equilibrium is uniquely determined by the strategy profile

considered in the proof of Proposition 2 if there is a unique maximal type

θp
max and a unique minimal type θ

p
min for both players p ∈ {B, R}.14

14In the case in which one player has a single type the equilibrium is in fact unique
only in terms of action strategies played with positive probability in equilibrium.
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The proof is again given in the appendix. The key for this proposition

is to realize that with a limited number of types for at least one player we

can pin down behavior of all types of this player fairly quickly with the help

of Theorem 1. Things turn out to be much more complex if both players

have many types, as then all we know is, for instance, that there is one

type of player red who plays H against some type of player blue, but we do

not know which types these are. If there are only two types on both sides,

for instance, then by starting with one type who does something specific

against one opponent type all other types’ behavior follows.

4 Discussion and Conclusion

In this paper we study two-player conflict situations with ex-ante uncer-

tainty over (the exact) opponent preferences for both players. We allow

players, before learning their own payoff type, to acquire cognitive empa-

thy at some (small) cost. Cognitive empathy enables a player to learn the

preferences of her opponent in all situations. There are at least two ways we

can interpret this model. The first interpretation is that there are indeed

two strategic opponents (the two soccer players from the introduction, two

firms, two military generals, etc.) who are involved in a conflict situation

and who can acquire information about their opponent’s ex-ante unknown

preferences. Given this interpretation, we find that in equilibrium these

strategic players do not fully acquire information about their opponent’s

preferences, even if the cost of doing so is vanishingly small. A second in-

terpretation is that there are many individuals who are often and randomly

engaged in pairwise conflict situations and mother nature can endow these

individuals (each individual separately) with cognitive empathy, i.e. with

the ability to understand opponents’ preferences, at some positive cost (e.g.

by providing an additional brain function). Under the assumption that na-

ture then guides play to an evolutionary stable state, which must be a

Bayesian Nash equilibrium of this game, our results imply that nature en-

dows some but not all of her subjects with cognitive empathy, even if the

costs of doing so are essentially zero.

Our model is simple and sparse and many alterations and additions

are conceivable. In what follows we discuss additional consequences of our
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results as well as some possible modifications of our model.

4.1 Empathy Acquisition at Zero Costs

In this subsection we provide a corollary to (the proof of) Proposition 2

for the special case of zero costs of empathy acquisition that allows us to

provide additional intuition for our main result.

Corollary 1. Any two-action Bayesian conflict game with c = 0 has a

Bayesian Nash equilibrium with partial empathy, i.e. ρp ∈ [0, 1), and

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅) = x(θ−p)

for all p ∈ {B, R}, θp ∈ Θp, θ−p ∈ Θ−p.

This corollary implies that an outside observer who can observe the

two players’ types would observe, for any pair of types, a frequency of ac-

tions exactly as given by the Nash equilibrium of the realized type game

(in which that game is common knowledge) and, therefore, the same fre-

quency of actions as in the full empathy equilibrium. In other words, even

though, when the two types meet, players are far from having common

knowledge that the two are of these particular types, they nevertheless, on

average, manage to play “as if” they had common knowledge of this fact.15

If an outside observer, however, were to be able to track individuals be-

havior throughout many interactions, then this observer could distinguish,

by means of the observed frequency of behavior, those individuals that are

empathic from those that are not. This observer could then also distinguish

whether the partial or full empathy equilibrium is played.

4.2 Equilibrium Payoffs

In this subsection we turn to a discussion of equilibrium payoffs in two-

action conflict games with the (costly) possibility of empathy acquisition.

Note that, when we talk about the payoff to an (informed) type, we mean

the payoff without taking into account the costs of empathy acquisition

15This insight could be useful if one were to attempt to generalize our result to more
than two actions.
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that players have to bear. In contrast, these costs are included when we

consider players’ ex-ante expected payoffs. In what follows, the full em-

pathy equilibrium under zero costs, which we know from Proposition 1, is

referred to as the benchmark case. Consider first the case of small costs.

Corollary 2. Consider a two-action Bayesian conflict game. There exists

C > 0 such that for all c ∈ (0, C) in any Bayesian Nash equilibrium

(i) every player obtains an ex-ante expected payoff equal to her ex-ante

expected payoff in the benchmark case,

(ii) every uninformed type for each player obtains the same expected pay-

off as she does in the benchmark case, and

(iii) for each player acquiring empathy with positive probability there is at

least one type who, when informed, obtains a strictly higher expected

payoff than she obtains in the benchmark case.

This set of statements is a corollary to Lemma 1, Theorem 1, and Propo-

sition 1. Part (i) follows from the fact that all types, when uninformed, are

indifferent between both actions in any equilibrium by Lemma 1 and all

players acquiring empathy with positive probability are ex-ante indifferent

between acquiring empathy and not doing so by Theorem 1(ii). Part (ii)

follows from Lemma 1 alone. Part (iii) follows from Part (i) and the fact

that players have to bear a cost of c > 0 to acquire empathy.

This corollary states that there is a sense in which in two-action conflict

games, for all sufficiently low cost levels, all equilibria are ex ante payoff

equivalent (if we consider payoffs net of costs). As costs are positive, this

implies that some types of players must, when informed, expect higher

payoffs than they expect when they are uninformed. One can show by

example that this need not be the case for all types and may even be true

for only one type.

Before we turn to the case of large costs, it is fruitful to partition

the class of conflict games into two subclasses. These are inspired by

Pruzhansky (2011). For every type θp ∈ Θp of a player p ∈ {B, R} de-

fine the type-induced zero-sum game as the complete information game in

which player p has preferences given by her type, i.e. given by uθp

, and her
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opponent has preferences −uθp

. We call a type immunizable (or robustly

immunizable) if the type induced zero-sum game has no strictly dominated

mixed action strategy (or no weakly dominated mixed action strategy)

for both players.16 We call a conflict game immunizable if every type of

every player is immunizable. If in a conflict game there is at least one

non-immunizable type, then this game is called non-immunizable.

We choose the label “immunizable” because of a result due to

Pruzhansky (2011, p. 355). He shows that in any complete information

game with two immunizable players both players have “equalizer” strate-

gies. If a player adopts an “equalizer” strategy, she gets the same expected

payoff regardless of the action taken by the opponent. He then shows in his

Lemma 1, that in any complete information game with immunizable play-

ers on both sides every equalizer strategy is a maxmin strategy. Moreover,

he then shows in his Lemma 2 that in such games equalizer strategies guar-

antee the player the Nash equilibrium payoff. This generalizes the insight

found by Aumann and Maschler (1972) in their example.

Remark 1. Consider a two-action Bayesian conflict game with costs of

empathy acquisition so high that any strategy including empathy acquisition

is dominated by one without empathy acquisition. If this game is immuniz-

able, then in any Bayesian Nash equilibrium

(i) every player of every (necessarily uninformed) type obtains an ex-

pected payoff that is at least as large as in the benchmark case, and

(ii) every player p ∈ {B, R} with at least two robustly immunizable types

θ
p
1, θ

p
2 ∈ Θp with x(θp

1) 6= x(θp
2) obtains an ex-ante expected payoff

strictly larger than her ex-ante expected payoff in the benchmark case.

If this game is non-immunizable, then in any Bayesian Nash equilibrium

(iii) every player of every (necessarily uninformed) non-immunizable type

obtains an expected payoff that strictly exceeds her maxmin payoff.

In a Bayesian Nash equilibrium of a non-immunizable game there can be

16Note that in a conflict game no type has a dominated action strategy. A type in a
conflict game is therefore (robustly) immunizable if her fictitious zero-sum opponent in
the type-induced zero-sum game has no strictly (weakly) dominated strategy.
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(iv) (necessarily uninformed) types of a player who obtain an expected

payoff that is strictly larger, resp. strictly lower, than her expected

payoff in the benchmark case, and even

(v) players with an ex-ante expected payoff that is strictly larger, resp.

strictly lower, than her ex-ante expected payoff in the benchmark case.

Part (i) of the remark follows from the result of Pruzhansky (2011)

that in such games any type of any player’s maxmin payoff is equal to her

Nash equilibrium payoff in any realized type game. The latter payoff is the

payoff this type of player obtains in the benchmark case. As she can always

guarantee herself this payoff by playing her maxmin action strategy, she can

certainly never receive less in any equilibrium for any cost level. Moreover,

as players are uninformed here, each type faces the same average opponent

action strategy. Under the additional assumption of Part (ii) this means

that in any equilibrium at least one of the two robustly immunizable types

must have incentives to play a pure action strategy which makes her strictly

better off than in the benchmark case. This, together with Part (i), then

proves Part (ii). Part (iii) of the remark follows from the observation that

in a two-action conflict game, to prevent a non-immunizable player type

from obtaining strictly more than the maxmin payoff, the opponent needs

to play a pure action. However, one can show that in any equilibrium of

such a game the opponent, on average, does not use a pure action strategy.

Therefore every such player type must receive a payoff that is strictly larger

than her maxmin payoff. Finally, to see Parts (iv) and (v) of the remark,

consider the following example.

Example 1. Consider the two-action Bayesian conflict game with action

set A = {H, T}, type sets ΘB = {θB
1 , θB

2 } and ΘR = {θR
1 , θR

2 }, probability

distributions over types µB = µR =
(

1
2
, 1

2

)

, and payoffs given in Figure 1

with a, b ∈ R (where player B chooses rows and R chooses columns).

In this example, types θB
1 and θR

1 are (robustly) immunizable, while

types θB
2 and θR

2 are non-immunizable. The indifference probabilities are

given by x(θB
1 ) = 1

2
, x(θB

2 ) = 2
3
, x(θR

1 ) = 1
2
, and x(θR

2 ) = 4
5
.

One can verify that the following is an equilibrium of this game under

large costs. Obviously, we need to have ρB = ρR = 0, i.e. no empathy is

acquired. Furthermore, let σθB
1 (∅) = σθR

2 (∅) = 1 and σθB
2 (∅) = σθR

1 (∅) = 0.
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H T

uθB
1 :

H 1 −1
T −1 1

H T

uθR
1 :

H −1 1
T 1 −1

H T

uθB
2 :

H 3 −1
T 2 1

H T

uθR
2 :

H −2 −3
2

T 1 −1

Figure 1: Payoffs of the conflict game in Example 1.

One can then verify that type θB
2 receives an equilibrium payoff of 3

2

while in any realized type game her payoff in the unique Nash equilibrium

would be 5
3
. Her payoff in the considered equilibrium of the conflict game

under large costs is thus strictly lower than her payoff in the benchmark

case. On the other hand, type θR
2 receives an equilibrium payoff of −1

2

which is strictly larger than her payoff of −7
5

which she obtains in any re-

alized type game and, thus, in the benchmark case. As in the considered

equilibrium all other types expect the same payoff (of zero) as in the bench-

mark case, player B receives a lower ex-ante expected payoff here than in

the benchmark case, while for player R the opposite is true.

4.3 A Non-Conflict Example

In this subsection we provide, as a point of contrast to our main results, a

non-conflict example.

Example 2. Consider a symmetric setup in which both players p ∈ {B, R}

can have one of three types ΘB = ΘR = {θ1, θ2, θ3} chosen uniformly (i.e.

µθ = 1
3

for all θ ∈ Θp) for the two players. Both players can choose

between two actions H and T . Type θ1 finds action H strictly dominant,

type θ3 finds action T strictly dominant, and type θ2 has pure coordination

preferences. These payoffs, in matrix form, are given in Figure 2.

H T

uθ1:
H 1 1
T 0 0

H T

uθ2:
H 1 0
T 0 1

H T

uθ3:
H 0 0
T 1 1

Figure 2: Payoffs of the non-conflict game in Example 2

21



For costs of empathy acquisition sufficiently low (c < 1
9
) this game has

no equilibrium in which a player acquires empathy with probability less

than one. Suppose a player (say blue) attaches positive probability to not

acquiring empathy. Red makes her choice of action dependent on her own

type with dominant action types playing their dominant actions. Now

consider the uninformed coordination type of blue. The best she can do

is to play a best response to the given (mixed) action of the coordination

type of red. W.l.o.g. let this best response action be H . The uninformed

coordination type of blue then receives a payoff of zero against the red

type with dominant action T . For blue switching to acquiring empathy

with probability one and playing T against the T dominant action type of

red is then beneficial if c < 1
9
.17

4.4 The Timing of Decisions

Given the evolutionary interpretation of our model in which nature’s sub-

jects play many conflict games with often different preferences and oppo-

nents throughout their life, it seems appropriate that nature makes the

decision about empathy acquisition at the very beginning. Also for the

other interpretation, in which players are consciously strategic about their

choice of information acquisition, it can make sense to have the information

acquisition decision before knowing the exact nature of the conflict situa-

tion. A soccer team may study the opposing goalkeeper for the eventuality

of a penalty kick before knowing which of their own players will actually

take the penalty kick. A military general might want to spy on her oppo-

nent’s strengths (and thus preferences) before knowing the future strength

of her own troop or on which terrain, in which place, at which state of

the war etc. the actual battle will take place. One could imagine a firm

to acquire information about another firm’s cost structure before knowing

the exact demand function in markets the two firms compete in.

Yet, there are certainly cases, in which the reverse timing, in which play-

ers consider acquiring the information about their opponent’s preferences

17 Suppose individuals choose whether or not to acquire empathy after they learn
their own type. The two dominant action types do not acquire empathy now, but for c

small enough (now c < 1

3
) coordination types acquire empathy with probability one in

any equilibrium of this game.
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only after they know their own preferences, is more plausible.

We do not believe that reversing the timing in our model would change

the main messages of our paper. We did not go through this model thor-

oughly, but only looked at two examples. First, as mentioned in Footnote

17, for the given non-conflict example (see Example 2), the main insight

there does not change even if we reverse the timing. We have also looked at

the reverse-timing model for a two-action two-type conflict example. While

small details change, the main result, that for small positive costs of em-

pathy acquisition any equilibrium has partial cognitive empathy, seems to

remain unchanged.18 In fact, in the equilibrium in this example, all types

acquire partial empathy: the probability of empathy acquisition is, as in

our main result, bounded from below and above.

4.5 Degrees of Cognitive Empathy

Another issue, especially for the evolutionary interpretation of our model,

is this. If nature has to make her decision on cognitive empathy at the

beginning once and for all possible situations, then these “all possible situ-

ations” should probably cover more than just conflict games. And, if these

situations include, for instance, the three possible types (for both players)

as given in our non-conflict example, then for small costs nature would al-

ways endow her subjects with full empathy. One could now state that it is

then a question of which is smaller, the cost of empathy acquisition or the

probability of these three types, but this is not where we want to go in this

discussion. Instead, we think that a better model in such cases would be

one in which nature can give her subjects degrees of empathy. For instance,

nature could give us enough cognitive empathy to always check whether or

not our opponent has a dominant action strategy, but if our opponent does

not, nature may not give us more cognitive empathy to differentiate our

opponent’s preferences further. The result would then be as in our model.

A related consideration is the following. Consider, for convenience, two-

action conflict games with two types per player. For these games Proposi-

tion 3 implies that a player’s probability of empathy acquisition is exactly

18To be precise, we used one such example and Gambit by McKelvey et al. (2014) and
found exactly one equilibrium. We have not attempted to prove that this equilibrium is
unique but we conjecture that it is.
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given by the difference of the two indifference probabilities of her two oppo-

nent types. This means that the more similar her two opponent types are,

the more similar are their indifference probabilities and the less empathy is

acquired by her in equilibrium. This is also true for the lower bound estab-

lished for the probability of empathy acquisition in our main theorem. In

particular, this implies that the more different kinds of situations a person

faces, i.e. the bigger the possible difference between the possible opponent

types, the more empathy is acquired. If this goes as far as to include even

dominant strategy types, she will acquire full empathy in equilibrium.

But if we insist in considering a large set of possible situations, we

believe our model of full or no empathy acquisition is too simple. A more

appropriate model in this case would be one of “rational (in)attention” as

in the decision theoretic models of Sims (2003, 2006); Matêjka and McKay

(2012, 2015). Adapting these models to our strategic interaction setting

could be done by allowing players to buy signals about their opponent’s

preferences of any precision with costs increasing in the information content

of these signals. Another model would be to allow individuals to acquire

multiple signals of whatever precision, one after the other, about their

opponent’s preferences, before making their final action decision. While we

do not think that the main insight of our paper would change in such a

model, especially of the latter variety, such a model might nevertheless add

substantial additional insights.

A Proofs

Throughout this section we again abuse notation of action strategies in

two-action conflict games slightly by denoting by σθp

(·) ∈ [0, 1] the prob-

ability of H chosen by player p of type θp. For ease of notation, when

it comes to the arguments of utility functions uθp

, we also only mention

the probabilities of action H . And finally, let Uθp

Info denote the (interim)

expected payoff of a type θp ∈ Θp of player p if she acquired empathy and

before she learns her opponent’s type. Similarly, Uθp

N denotes the expected

payoff of a type θp of player p who did not acquire empathy.
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A.1 Proof of Lemma 1

For p ∈ {B, R}, θp ∈ Θp we define

CBH (θB, θR) := uθR

(0, 1) − uθR

(x(θB), 1),

CBT (θB, θR) := uθR

(1, 0) − uθR

(x(θB), 0),

CRH (θB, θR) := uθB

(1, 1) − uθB

(x(θR), 1), and

CRT (θB, θR) := uθB

(0, 0) − uθB

(x(θR), 0).

Notice that CB
·(θB, θR) > 0

(

CR
·(θB, θR) > 0

)

for all θB ∈ ΘB, θR ∈ ΘR as

player R wants to mis-coordinate (as player B wants to coordinate). Let

C := min
a∈{BH ,BT ,RH ,RT }

min
θB ,θR

µθB

µθR

Ca(θB, θR).

W.l.o.g. we consider player p = B and assume that we have

∑

θR

µθR
(

ρRσθR

(θ̄B) + (1 − ρR)σθR

(∅)
)

> x(θ̄B)

for some θ̄B ∈ ΘB.19 Since player B wants to coordinate actions, this

implies σθ̄B

(∅) = 1 (if ρB < 1). Furthermore, if a probability weighted sum

of terms exceeds x(θ̄B) then at least one term must exceed x(θ̄B) as well.

Thus, there must exist a type θ̄R such that

ρRσθ̄R

(θ̄B) + (1 − ρR)σθ̄R

(∅) > x(θ̄B). (3)

In turn, this implies σθ̄B

(θ̄R) = 1 (if ρB > 0), meaning that

ρBσθ̄B

(θ̄R) + (1 − ρB)σθ̄B

(∅) = 1 > x(θ̄R).

Moreover, it is obvious that this equality and inequality also hold for ρB = 0

and ρB = 1. As player R wants to mis-coordinate, this implies σθ̄R

(θ̄B) = 0

(if ρR > 0). Inserting the latter into Inequality (3) gives (1 − ρR)σθ̄R

(∅) >

x(θ̄B). Again, it is obvious that this inequality is satisfied for ρR = 0 as

well. It follows from this that 1 − ρR > x(θ̄B) and σθ̄R

(∅) > x(θ̄B). Hence,

19Observe that the subsequent line of argument is almost identical for the reversed
inequality as well as for p = R. Thus, we can omit these cases.
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for c ∈ [0, C) player R can improve her payoff by deviating to a strategy

with ρ̂R = 1 and obtaining an additional payoff of at least

(1 − ρR)
(

µθ̄R

µθ̄B
(

uθ̄R

(0, 1) − uθ̄R

(σθ̄R

(∅), 1)
)

− c

)

>x(θ̄B)
(

µθ̄R

µθ̄B
(

uθ̄R

(0, 1) − uθ̄R

(x(θ̄B), 1)
)

− c

)

> 0.

We thus arrive at a contradiction.

A.2 Proof of Theorem 1

An additional technical lemma is needed in order to prove Theorem 1.

Lemma 3. Consider α, β ′, β ′′, γ ∈ R where β ′ − β ′′ ≤ α. Then (at least)

one of the following three conditions must be satisfied:

α + (1 − α)γ = β ′ and (1 − α)γ = β ′′, (4a)

α + (1 − α)γ > β ′ or (4b)

(1 − α)γ < β ′′. (4c)

Proof of Lemma 3. Suppose none of the three conditions is satisfied. Then

α + (1 − α)γ < (≤)β ′ and (1 − α)γ ≥ (>)β ′′.

In either case, subtracting the second from the first inequality yields α <

β ′ − β ′′ ≤ α, a contradiction.

We can now turn to the proof of Theorem 1.

Part (i): Lower Bound

Lemma 1 and Equation (1) imply for p ∈ {B, R}

ρp
(
∑

θp

µθp

σθp

(θ−p
max)

︸ ︷︷ ︸

≤1

−
∑

θp

µθp

σθp

(θ−p
min)

︸ ︷︷ ︸

≥0

)

= x(θ−p
max) − x(θ−p

min).

Hence, we have that ρp ≥ x(θ−p
max) − x(θ−p

min).

Part (ii): Upper Bound
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Consider player p. If ρp = 0 then the statement is trivially satisfied. Thus,

suppose that ρp > 0. We need to distinguish two different cases.

Case 1: ρ−p = 0

Given the lower bound we proved in Part (i), we then must have that

x(θp
max) = x(θp

min). Lemma 2 then implies that there are two opponent

types θ̂−p and θ̃−p such that σθ̂−p

(∅) > x(θp) and σθ̃−p

(∅) < x(θp) for

all θp. For p = B
(

p = R
)

this induces σθp

(θ̂−p) = 1 and σθp

(θ̃−p) = 0
(

σθp

(θ̂−p) = 0 and σθp

(θ̃−p) = 1
)

for all θp ∈ Θp. Applying Lemma 1 yields

ρp
(
∑

θp

µθp

σθp

(θ̂−p)

︸ ︷︷ ︸

=1 (=0)

−
∑

θp

µθp

σθp

(θ̃−p)

︸ ︷︷ ︸

=0 (=1)

)

= x(θ̂−p) − x(θ̃−p).

Taking into account Part (i) this gives

ρp = x(θ−p
max) − x(θ−p

min) < min
{

x(θ−p
max), 1 − x(θ−p

min)
}

(5)

≤ max
{

x(θ−p
max), 1 − x(θ−p

min)
}

.

Case 2: ρ−p > 0

The reasoning is very similar for both players and w.l.o.g. we consider the

case p = B. Again, Lemma 2 implies that there is a type θ̄B and that there

are two opponent types θ̂R and θ̃R such that

α + (1 − α)γ = ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅),

(1 − α)γ = ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅)

with α = ρB and γ = σθ̄B

(∅). As we have already seen that x(θR
max) −

x(θR
min) is a lower bound for ρB, according to Lemma 3 one of the following

three subcases must apply:

Subcase 2(a): ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) = x(θ̂R) and

ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) = x(θ̃R)

This subcase is straightforward. We simply have

ρB = x(θ̂R) − x(θ̃R) ≤ x(θR
max) − x(θR

min) < max
{

x(θR
max), 1 − x(θR

min)
}

.
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Subcase 2(b): ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) > x(θ̂R)

This subcase implies that σθ̂R

(θ̄B) = 0. Moreover, by Lemma 1 there must

exist θ̆B 6= θ̄B such that

ρBσθ̆B

(θ̂R) + (1 − ρB)σθ̆B

(∅) < x(θ̂R). (6)

This induces σθ̂R

(θ̆B) = 1. Furthermore, due to Inequality (2a) we have

x(θ̄B) < ρR σθ̂R

(θ̄B)
︸ ︷︷ ︸

=0

+(1 − ρR)σθ̂R

(∅) = (1 − ρR)σθ̂R

(∅).

Applying Lemma 3 again – here with α = ρR, β ′ = x(θ̆B), β ′′ = x(θ̄B), and

γ = σθ̂R

(∅) – then gives

x(θ̆B) < ρR + (1 − ρR)σθ̂R

(∅) = ρRσθ̂R

(θ̆B) + (1 − ρR)σθ̂R

(∅). (7)

This induces σθ̆B

(θ̂R) = 1, which put into Inequality (6), yields ρB + (1 −

ρB)σθ̆B

(∅) < x(θ̂R) and ρB < x(θ̂R) ≤ max
{

x(θR
max), 1 − x(θR

min)
}

.

Subcase 2(c): ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) < x(θ̃R)

This subcase proceeds analogously to the previous one and is omitted.

A.3 An Alternative to Theorem 1

Theorem 1(ii)’. Consider a two-action Bayesian conflict game. For all

ǫ > 0 there exists C > 0 such that for all p ∈ {B, R} and c ∈ (0, C) we

have ρp < min
{

x(θ−p
max), 1−x(θ−p

min)
}

+ǫ in any Bayesian Nash equilibrium.

Proof of Theorem 1(ii)’. From Inequality (5) in Case 1 of the proof of

Part (ii) of Theorem 1 we already know for p ∈ {B, R} that ρp <

min
{

x(θ−p
max), 1 − x(θ−p

min)
}

in any equilibrium with ρ−p = 0. Therefore,

we only need to consider the case ρ−p > 0.

For p ∈ {B, R}, θp ∈ Θp we define

CBH (ǫ, θB, θR) :=uθR

(0, x(θR) + ǫ) − uθR

(x(θB), x(θR) + ǫ),

CBT (ǫ, θB, θR) :=uθR

(1, x(θR) − ǫ) − uθR

(x(θB), x(θR) − ǫ),

CRH (ǫ, θB, θR) :=uθB

(1, x(θB) + ǫ) − uθB

(x(θR), x(θB) + ǫ), and
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CRT (ǫ, θB, θR) :=uθB

(0, x(θB) − ǫ) − uθB

(x(θR), x(θB) − ǫ).

Notice that, as in the proof of Lemma 1, we have CB
·(ǫ, θB, θR) > 0

(

CR
·(ǫ, θB, θR) > 0

)

for all θB ∈ ΘB, θR ∈ ΘR as player R wants to mis-

coordinate (as player B wants to coordinate). Based on this let

C(ǫ) := min
a∈{BH ,BT ,RH ,RT }

min
θB ,θR

µθB

µθR

Ca(ǫ, θB, θR).

Now assume that the statement of the theorem does not to hold. Then

there must exist c ∈ (0, C(ǫ)) such that

(a) ρp ≥ x(θ−p
max) + ǫ or

(b) ρp ≥ 1 − x(θ−p
min) + ǫ

for some p ∈ {B, R} in an equilibrium. Again, the reasoning is almost

identical for both players and w.l.o.g. we consider p = B.

Case (a): ρB ≥ x(θR
max) + ǫ

By Lemma 2 there exist types θ̄B ∈ ΘB, θ̂R ∈ ΘR such that σθ̄B

(θ̂R) = 1.

We then have

ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) ≥ x(θ̂R) + ǫ > x(θ̂R). (8)

This implies that σθ̂R

(θ̄B) = 0 as player R wants to mis-coordinate and as

ρR > 0. Inserting this into Inequality (2a) gives (1 − ρR)σθ̂R

(∅) > x(θ̄B).

From this we deduce that 1 − ρR > x(θ̄B) and σθ̂R

(∅) > x(θ̄B). Now

consider an alternative strategy for player R with ρ̆R = 1 and σθR

(θB) a

best response for all θB ∈ ΘB, θR ∈ ΘR. By Inequality (8) deviating to this

strategy player R would obtain an additional payoff of at least

(1 − ρR)
(

µθ̄B

µθ̂R
(

uθ̂R

(0, ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅))

− uθ̂R

(σθ̂R

(∅), ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅))
)

− c

)

≥(1 − ρR)
(

µθ̄B

µθ̂R
(

uθ̂R

(0, x(θ̂R) + ǫ) − uθ̂R

(σθ̂R

(∅), x(θ̂R) + ǫ)
)

− c

)

>x(θ̄B)
(

µθ̄B

µθ̂R
(

uθ̂R

(0, x(θ̂R) + ǫ) − uθ̂R

(x(θ̄B), x(θ̂R) + ǫ)
)

− c

)

> 0
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as we have c ∈ (0, C(ǫ)). We, thus, arrive at a contradiction.

Case (b): ρB ≥ 1 − x(θR
min) + ǫ

The proof is analogous to that of Case (a) and omitted.

A.4 Proof of Proposition 2

The proof is by construction. We identify a particular strategy profile
(

ρp, (σθp

)θp∈Θp

)

p∈{B,R}
with the desired property and then show that it is

an equilibrium. Let

ρp = x(θ−p
max) − x(θ−p

min), (9a)

σθp

(∅) =
1

1 − ρp
x(θ−p

min) ∀θp ∈ Θp\{θp
max, θ

p
min} (9b)

σθp

(θ−p) =







1
ρp

(

x(θ−p) − x(θ−p
min)

)

if ρp > 0

0 if ρp = 0
∀θp ∈ Θp, θ−p ∈ Θ−p.

(9c)

Note that σθp

(θ−p
max) = 1 and σθp

(θ−p
min) = 0 for all p ∈ {B, R} and θp ∈ Θp

if x(θ−p
max) > x(θ−p

min).20 The strategy profile is, thus, fully specified except

for the behavior of uninformed extreme types. In the case that x(θp
max) >

x(θp
min) let σθp

max(∅) and σθp

min(∅) be chosen to satisfy

∑

θ−p

µθ−p
(

uθ−p

(1, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅))

− uθ−p

(0, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅))
)

=
c

µθp
max

(10)

and

µθp
max

µθp
max + µθp

min

σθp
max(∅) +

µθp

min

µθp
max + µθp

min

σθp

min(∅) =
1

1 − ρp
x(θ−p

min). (11)

In the case that x(θp
max) = x(θp

min) however let

σθp
max(∅) = σθp

min(∅) =
1

1 − ρp
x(θ−p

min). (12)

20This means that in case that they are informed, both players of any type play pure
action strategies against extreme type opponents.
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For the remainder of the proof we distinguish these two cases.

Case 1: x(θp
max) > x(θp

min)

Before we move on to prove that the considered strategy profile is indeed

an equilibrium in this case, we need to make sure that it is well-defined.

For this we need to show that Equation (10) has a feasible solution for

c = 0 and c > 0 sufficiently small. Consider

σθp
max(∅) =

1

1 − ρp

(

x(θ−p
min) + ǫp

)

=
x(θ−p

min) + ǫp

1 − x(θ−p
max) + x(θ−p

min)
,

where ǫp ∈ R. For c = 0 let ǫp = 0. We then have σθp
max(∅) ∈ (0, 1) and

LHS of (10) =
∑

θ−p

µθ−p
(

uθ−p

(1, x(θ−p)) − uθ−p

(0, x(θ−p))
)

= 0 = RHS of (10)

since player −p of type θ−p is indifferent between both actions if the oppo-

nent plays x(θ−p). Equation (11) then implies σθp

min(∅) = σθp
max(∅).

Now consider c > 0. Notice first that the left-hand side of (10) is a

linear function in ǫp which is strictly decreasing (increasing) for p = B

(p = R). To see this, consider temporarily and w.l.o.g. −p = B and some

type θB whose payoffs are represented by the matrix

H T

H uH,H uH,T

T uT,H uT,T

where uH,H, uH,T , uT,H, uT,T ∈ R. As player B wants to coordinate actions,

we must have uH,H > uT,H and uT,T > uH,T . Further, we calculate x(θB) =
uT,T −uH,T

uH,H−uT,H+uT,T −uH,T
. Our claim follows immediately as this gives

uθB

(1, x(θB) + ǫR) − uθB

(0, x(θB) + ǫR)

=uH,H(x(θB) + ǫR) + uH,T (1 − x(θB) − ǫR)−

−uT,H(x(θB) + ǫR) − uT,T (1 − x(θB) − ǫR)

=(uH,H − uT,H + uT,T − uH,T )(x(θB) + ǫR) − (uT,T − uH,T )

=(uH,H − uT,H + uT,T − uH,T
︸ ︷︷ ︸

>0

)ǫR.
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So, generally speaking, we have that for every c > 0 sufficiently small there

exists a unique ǫB < 0 (ǫR > 0) such that both Equations (10) and (11)

are fulfilled and σθp
max(∅), σθp

min(∅) ∈ [0, 1].

We now turn to proving that the proposed strategy profile is indeed an

equilibrium. Suppose that in the conflict game both players B and R are

playing a strategy as considered above. Then player −p ∈ {B, R} cannot

improve by deviating if the following conditions are satisfied:

• σθ−p

(θp) is a best response to ρpσθp

(θ−p) + (1 − ρp)σθp

(∅) for all θp ∈

Θp, θ−p ∈ Θ−p,

• σθ−p

(∅) is a best response to
∑

θp µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

for

all θ−p ∈ Θ−p,

•
∑

θ−p µθ−p

Uθ−p

Info =
∑

θ−p µθ−p

Uθ−p

N + c.

In the following let c = 0 or c > 0 sufficiently small as mentioned above.

Further let p = B (p = R). Consider first the action strategies that types

of player −p face when they are informed. We calculate for θ−p ∈ Θ−p,

θp ∈ Θp\{θp
max, θ

p
min}:

ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅) = x(θ−p) + ǫp ≤ (≥)x(θ−p),

ρpσθp

min(θ−p) + (1 − ρp)σθp

min(∅) = x(θ−p) − µθ
p
max

µ
θ

p

min

ǫp ≥ (≤)x(θ−p),

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅) = x(θ−p).

(13)

Hence, σθ−p

(θp
max) = 1 and σθ−p

(θp
min) = 0 are indeed best responses for all

p ∈ {B, R}, θ−p ∈ Θ−p. Against all other types θp ∈ Θp\{θp
max, θ

p
min}, any

informed type θ−p ∈ Θ−p is indifferent between both actions.

Beyond that, any uninformed player type θ−p ∈ Θ−p faces

∑

θp

µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

=µθp
max

(

x(θ−p) + ǫp
)

+ µθp

min

(

x(θ−p) −
µθp

max

µθp

min

ǫp
)

+
∑

θp /∈{θp
max,θp

min
}

µθp

x(θ−p)

=x(θ−p)

and is therefore indifferent between both actions.
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Finally, we have to examine the expected payoffs. For an uninformed

player type θ−p ∈ Θ−p we have

Uθ−p

N = uθ−p

(

σθ−p

(∅),
∑

θp

µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
))

= uθ−p
(

σθ−p

(∅), x(θ−p)
)

.

If θ−p is informed, then her expected payoff (ex costs) is given by

Uθ−p

Info =
∑

θp

µθp

uθ−p
(

σθ−p

(θp), ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

= µθp
maxuθ−p

(

1, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
)

+

µθp

minuθ−p

(

0,
1

µθp

min

(

x(θ−p) −
∑

θp 6=θp

min

µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
))
)

+

∑

θp /∈{θp
max,θp

min
}

µθp

uθ−p
(

σθ−p

(θp), x(θ−p)
)

= µθp
max

(

uθ−p
(

1, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
)

−

uθ−p
(

0, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
))

+ uθ−p
(

0, x(θ−p)
)

Notice that according to (13) we have Uθ−p

Info ≥ uθ−p
(

0, x(θ−p)
)

= Uθ−p

N for

all θ−p ∈ Θ−p. Taken together we get

(10) ⇔
∑

θ−p

µθ−p

(

µθp
max

(

uθ−p
(

1, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
)

− uθ−p
(

0, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
))

+ uθ−p
(

0, x(θ−p)
)
)

=
∑

θ−p

µθ−p

uθ−p
(

σθ−p

(∅), x(θ−p)
)

+ c

⇔
∑

θ−p

µθ−p

Uθ−p

Info =
∑

θ−p

µθ−p

Uθ−p

N + c.

This means that player −p is indeed indifferent between acquiring empathy

and not acquiring it. Thus, we established that player −p has no incentives

to deviate from the considered strategy in this case.

Case 2: x(θp
max) = x(θp

min)

Suppose again that both players B and R are playing a strategy as
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considered above. As according to Equation (9a) we have ρ−p = 0 in this

case, player −p cannot improve by deviating if the following conditions

are satisfied:

• σθ−p

(∅) is a best response to
∑

θp µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

for

all θ−p ∈ Θ−p,

•
∑

θ−p,θp µθ−p

µθp

uθ−p
(

sθ−p

(θp), ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

≤
∑

θ−p µθ−p

Uθ−p

N + c for all
(

sθ−p

(θp)
)

θ−p,θp
∈ ∆(A)n−p×np

.

Taking into account Equations (9) and (12), concerning the first condition

we simply have

∑

θp

µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

=
∑

θp

µθp

x(θ−p) = x(θ−p).

Hence, this condition is obviously fulfilled as any uninformed type θ−p is

indifferent between both actions.

The second condition states that the ex-ante expected payoff of player

−p from not acquiring empathy must be greater than or equal to the maxi-

mal payoff (minus costs) she could get instead from acquiring empathy and

playing freely choosable action strategies which can be conditioned on the

opponent’s type. For all θ−p,
(

sθ−p

(θp)
)

θp
we have

∑

θp

µθp

uθ−p
(

sθ−p

(θp), ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
︸ ︷︷ ︸

=x(θ−p)

)

= uθ−p
(

·, x(θ−p)
)

.

On the contrary, type θ−p receives

Uθ−p

N = uθ−p
(

σθ−p

(∅), x(θ−p)
)

if she is uninformed. Thus, we have

∑

θ−p,θp

µθ−p

µθp

uθ−p
(

sθ−p

(θp), ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

=
∑

θ−p

µθ−p

Uθ−p

N

for all
(

sθ−p

(θp)
)

θ−p,θp
∈ ∆(A)n−p×np

. This concludes Case 2 and the proof

as a whole.
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A.5 Proof of Proposition 3

Recall the proof of Theorem 1. In Case 1 of Part (ii) we already established

that we must have

ρp = x(θ−p
max) − x(θ−p

min) (14)

if ρ−p = 0 for p ∈ {B, R}. Notice that ρp > 0 then implies

x(θ−p
max) > x(θ−p

min). Taking into account Theorem 1(i) in this situa-

tion we also have that 0 = ρ−p ≥ x(θp
max) − x(θp

min) ≥ 0, and thus

ρ−p = x(θp
max) − x(θp

min). In what follows we distinguish the two cases

considered in the proposition.

Part 1: nB = 1 and nR > 1 (nB > 1 and nR = 1, respectively)

W.l.o.g. consider the case nB = 1 (such that ΘB = {θB}) and nR > 1 and

let c ∈ (0, C) sufficiently small. Assume that ρR > 0 in an equilibrium.

Then according to Lemma 2 there must exist θ̄R and θ̂B, θ̃B fulfilling

Inequalities (2). This however implies θ̂B 6= θ̃B which is a contradiction

as we have nB = 1. Thus, we must have ρR = 0 which (together with the

above considerations) establishes uniqueness of the empathy levels for this

part of the proof.

By assumption we have that x(θR
max) > x(θR) > x(θR

min) for all θR ∈

ΘR\{θR
max, θR

min}. We now show that the equilibrium considered in the proof

of Proposition 2 is unique up to variations of the action strategies σθR

(θB)

which are played with probability ρR = 0. Notice first that according to

Lemma 1 we must have

ρBσθB

(θR) + (1 − ρB)σθB

(∅) = x(θR) (15)

for all θR ∈ ΘR. Taking into account Equation (14) this gives

(x(θR
max) − x(θR

min))(σθB

(θR
max) − σθB

(θR
min)) = ρB(σθB

(θR
max) − σθB

(θR
min))

= x(θR
max) − x(θR

min).

Hence, we must have σθB

(θR
max) = 1 and σθB

(θR
min) = 0. Again according
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to Lemma 1 this implies that

σθB

(θR) = σθB

(θR) − σθB

(θR
min) =

1

ρB
(x(θR) − x(θR

min)) ⇔ (9c)

for all θR ∈ ΘR. Moreover, by Equation (15) this induces

σθB

(∅) =
1

1 − ρB
x(θR

min) ⇔ (9b).

As x(θR
max) > x(θR) > x(θR

min) we have σθB

(θR) ∈ (0, 1) for all θR ∈

ΘR\{θR
max, θR

min}. This means that θB must be indifferent against any op-

ponent type θR ∈ ΘR\{θR
max, θR

min} if she is informed. Thus, we must have

σθR

(∅) = x(θB) for all θR ∈ ΘR\{θR
max, θR

min}. Equation (1) of Lemma 1

then transforms to

∑

θR

µθR

σθR

(∅) = x(θB)

⇔
µθR

max

µθR
max + µθR

min

σθR
max(∅) +

µθR
min

µθR
max + µθR

min

σθR
min(∅) = x(θB) ⇔ (11).

Together with Equation (10) (for p = R) this then uniquely determines

σθR
max(∅) and σθR

min(∅). The reasoning is the same for nB > 1, nR = 1.

Part 2: nB = nR = 2

In this case we have Θp = {θp
max, θ

p
min} for p = B, R. We already know

that uniqueness of the empathy levels follows immediately if we have

ρp = 0 for some p ∈ {B, R}. So in this regard we only need to consider the

case that ρB, ρR > 0. Again, we recall the proof of Theorem 1 and take

Case 2 with p = B as a starting point. Consider its three subcases.

Subcase (a): ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) = x(θ̂R) and

ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) = x(θ̃R)

This subcase is again straightforward as we simply have ρB = x(θ̂R)−x(θ̃R)

and know already that it is ρB ≥ x(θR
max) − x(θR

min). Therefore it must be

θ̂R = θR
max and θ̃R = θR

min.

Subcase (b): ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) > x(θ̂R)
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Recall Inequality (7). Lemma 1 then implies that

ρRσθ̃R

(θ̆B) + (1 − ρR)σθ̃R

(∅) < x(θ̆B)

as here it is {θR ∈ ΘR | θR 6= θ̂R} = {θ̃R}. In turn, this induces σθ̆B

(θ̃R) =

0. Moreover, recall that it is σθ̄B

(θ̃R) = 0, σθ̄B

(θ̂R) = 1 and σθ̆B

(θ̂R) = 1.

Further, we know again by Lemma 1 that it must be

ρB
(
∑

θB

µθB

σθB

(θR
max) −

∑

θB

µθB

σθB

(θR
min)

)

= x(θR
max) − x(θR

min).

If it were θ̂R = θR
min, θ̃R = θR

max, then this would imply ρB = x(θR
min) −

x(θR
max) ≤ 0. So it must be θ̂R = θR

max, θ̃R = θR
min which implies ρB =

x(θR
max) − x(θR

min).

Subcase (c): ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) < x(θ̃R)

This subcase proceeds analogously to Subcase (b) and is therefore omitted.
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