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Abstract

Rapid advances of information technology have entailed an ever increasing amount of

digital data, which raises the demand for powerful data mining and machine learning

tools. Due to modern methods for gathering, preprocessing, and storing information,

the collected data become more and more complex: a simple vectorial representation,

and comparison in terms of the Euclidean distance is often no longer appropriate to

capture relevant aspects in the data. Instead, problem-adapted similarity or dissimilarity

measures refer directly to the given encoding scheme, allowing to treat information

constituents in a relational manner.

This thesis addresses several challenges of complex data sets and their representation

in the context of machine learning. The goal is to investigate possible remedies, and

propose corresponding improvements of established methods, accompanied by examples

from various application domains. The main scientific contributions are the following:

(I) Many well-established machine learning techniques are restricted to vectorial input

data only. Therefore, we propose the extension of two popular prototype-based clustering

and classification algorithms to non-negative symmetric dissimilarity matrices.

(II) Some dissimilarity measures incorporate a fine-grained parameterization, which

allows to configure the comparison scheme with respect to the given data and the problem

at hand. However, finding adequate parameters can be hard or even impossible for

human users, due to the intricate effects of parameter changes and the lack of detailed

prior knowledge. Therefore, we propose to integrate a metric learning scheme into a

dissimilarity-based classifier, which can automatically adapt the parameters of a sequence

alignment measure according to the given classification task.

(III) A valuable instrument to make complex data sets accessible are dimensionality

reduction techniques, which can provide an approximate low-dimensional embedding of

the given data set, and, as a special case, a planar map to visualize the data’s neighbor-

hood structure. To assess the reliability of such an embedding, we propose the extension

of a well-known quality measure to enable a fine-grained, tractable quantitative analysis,

which can be integrated into a visualization. This tool can also help to compare different

dissimilarity measures (and parameter settings), if ground truth is not available.

(IV) All techniques are demonstrated on real-world examples from a variety of applica-

tion domains, including bioinformatics, motion capturing, music, and education.
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Chapter 1.

Introduction

Chapter overview This chapter introduces the research topics presented in this work, and establishes

some basic terminology as well as mathematical formalization. Our notion of complex data is presented,

along with its particular challenges for machine learning and the important role of data representations

in this context. The chapter closes with an overview of the key contributions and structure of the thesis.

1.1. Motivation

Due to rapid advances of information technology in recent decades, very large amounts

of digital data have become available in nearly every discipline and application field

today. The possibilities to collect data grow significantly, with an increasing availability

of high-resolution sensor technology, massive storage capacities, as well as pervasive

networking and computing options. Given the overwhelming size and detail of modern

data collections, it can become hard for human users to access the underlying information

and extract knowledge, even for experts in the field. Therefore, research in machine

learning and related areas1 aims to provide techniques, which facilitate or automate the

interpretation of given input data.

While their underlying methodology can take many shapes, the techniques usually ad-

dress a general problem structure, which applies to a multitude of application domains.

Typical problem types in machine learning are, for example, regression, clustering, clas-

sification, and dimensionality reduction; see [35, 16] for a comprehensive introduction.

Accordingly, a generic interface for the input data is necessary, since knowledge and in-

formation can be represented in different ways in every application scenario. Hence, all

given information must be arranged in a standardized input format, which we refer to as

data representation. However, the treatment according to a generic problem framework

1The fields of data analysis, computational intelligence, neural computation, pattern recognition, in-

formation retrieval, statistical modeling, and machine learning all share the common principle to

automatically abstract from given input data, and thereby infer knowledge.

1



2 Chapter 1. Introduction

with a structurally restricted representation poses a challenge: some types of data are

difficult to handle, due to their inherent complexity. In this thesis, we identify particu-

lar aspects that characterize such complex data, and investigate their consequences for

machine learning. We propose techniques to tackle these problems by facilitating and ex-

tending existing methods, and evaluate their properties in several real-world application

examples.

In the following Section 1.2, we will describe different aspects that characterize data

in the context of machine learning, and discuss the crucial role of data representations.

After introducing the typical workflow in a machine learning scenario, we focus on two

prevalent forms of data representation, the feature-based and the dissimilarity-based

representation. Their strenghts and weaknesses with regard to complex data are debated,

and exemplified in a simple application with a text database. Section 1.3 provides an

overview of the thesis’ structure, and presents the main scientific contributions in this

work, linking to the core topics of the remaining chapters.

Mathematical notation The list below describes the general style of mathematical

notation in this thesis:

Sets are capital letters of various fonts, e.g. X, A, B

Data are roman letters, e.g. x, y ∈ X

Data vectors are denoted by boldface roman letters, e.g. x,y ∈ RD

Other vectors or items are greek and roman letters, e.g. α ∈ RN , b ∈ B

Set elements are enumerated by superscripts, e.g. {x1, . . . ,xN} = X

Typical enumerators are i, j, k, l, p, q, s, t, as in: xi,xj ∈ X

Raw data items or sequences are overlined letters, e.g. āi, āj ∈ A

Entries in a vector are the corresponding italic letter,

enumerated by subscripts per dimension: xi =
(
xi1, . . . , x

i
D

)
∈ RD

Exponentials of enumerated items are parenthesized: (xik)
2 = xik · xik

Matrices are boldface capital letters (if possible), e.g. X, D, Ω

The transpose is signified by the ⊺ symbol: x⊺, X⊺, (xi)⊺

Entries may also be addressed by a bracket notation,

. . . the k-th element in vector x :
[
xi
]
k
= xik

. . . the element at row i, column k of matrix X : [X](i,k) = xik

. . . all elements in row i, or respectively column i: [X](i,·) = xi = [X⊺](·,i)

. . . sometimes we will use a shorthand: Xik = [X](i,k)
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1.2. Data and representation

1.2.1. Workflow pipeline for machine learning applications

[B] data representation[B] data representation

[C] machine[A] raw data [C] machine
l i

[A] raw data
[B ] t ti t learning[B2] representation type[B1] preprocessing g[ 1] p p g

f ti b d
di i l d feature-based vectorial

function based on
digital data, e.g. feature-based, vectorial

oror
images, texts, basic

decision tool
g

DNA sequences (dis)similarity basedDNA sequences, (dis)similarity-based
goal-oriented

exploratory toolsensor signals,...
goal-oriented

exploratory tool
method orientedmethod-oriented

others, e.g. recursive, ..., g ,

Figure 1.1.: The typical processing pipeline for a machine learning application: A col-

lection of raw data is transferred to a generic data representation, e.g. based on features

or pairwise (dis)similarities, often via several preprocessing steps. Thereafter, a machine

learning method can be applied to create a model of the given data, typically with the

possibility to extend the model to unseen data of the same form. This model can serve as

an automatic decision scheme, or an exploratory tool for a human expert of the respective

domain.

So far, we described the benefits of machine learning techniques, and their ability to

process digital data in a generic framework. In this thesis, we will recognize machine

learning as a means to create a model of a data collection. To realize this goal in a

technical system, the workflow is typically organized as a chain of processing stages. A

general, abstract overview of such a processing pipeline is illustrated in Figure 1.1.

The following example demonstrates a typical realization of this workflow in practice:

A database of scanned handwritten digits (0-9) is given in the form of grayscale images

with 16-by-16 pixels, corresponding to the “raw data” in block [A]. With several pre-

processing techniques (from the established image recognition literature), the pictures

are rotated and centered according to the visible cipher, see block [B1] “preprocessing”.

Each image is then turned into a real-valued vector by concatenating the rows of pixel

values, see block [B2] “representation type”. Finally, in block [C] “machine learning”, the

resulting set of vectors (together with expert annotations of the correct digit in the re-

spective image) is used to train a classifier model, e.g. a support vector machine (SVM),

which is able to recognize some percentage, e.g. 96%, of the images correctly.

The specific implementation of all steps in the workflow depends heavily on the ap-

plication goal, and it involves crucial design decisions. This ranges from the appropriate

representation of information to the selection of a particular machine learning technique,
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as well as meta-parameters. Generally, the choice of a representation is highly non-trivial,

especially with regard to complex data and their structural characteristics. In practice,

the challenges of workflow design are typically faced with human ingenuity and informed

decisions based on expertise in the particular application domain. Ultimately, domain-

specific knowledge and hand-crafted adaptation by human experts remain a neccessity

in most practical scenarios. In recent literature, this fundamental problem received more

and more attention, and methods to circumvent domain-specific, hand-tailored design are

addressed in the context of novel research branches, such as autonomous learning2 [34].

This thesis marks one step towards the autonomous, task-driven learning of representa-

tions for complex data. In the following, we will take a closer look at the single stages

in the described workflow.

[A] Raw information In the beginning of the pipeline, we have digital information avail-

able in some predefined format. We will refer to this as raw data or raw information.

For example, data could be digital images (in a photo database), texts (product descrip-

tions in an online store), DNA sequences (in a biological directory of bacteria), sensor

signals (recorded by a robotics platform), or many other kinds of digital information

from various application scenarios. The given format needs to be clearly interpretable,

and it must allow to distinguish single entities, i.e. instances, of data. For example, if

the data came from sensors in an industrial machine, one could consider the readings of

all sensors at a distinct point in time as a single instance. Typically, a finite collection

of instances forms a data set, for example a record of historical sensor readings.

[B] Data representation In order to use machine learning techniques, the raw informa-

tion needs to be represented in an appropriate form. This data representation provides

a single, generic interface to machine learning methods in the subsequent pipeline stage.

We will discuss some established types of representation in the following sections, focus-

ing on the two prevalent forms: feature-based and dissimilarity-based representations.

They have different strengths and weaknesses in their ability to reproduce the original

raw information. Additionally, machine learning methods are often limited to a specific

form of input data. We will therefore examine the representation’s characteristic prop-

erties as well as limitations in Sections 1.2.3 and 1.2.4, and exemplify the consequences

in a practical application scenario.

[B1] Preprocessing Transferring raw information to a generic data representation is a

crucial step which usually involves hand-tailored solutions according to expert knowl-

edge in the application field. Several preprocessing steps may be performed during this

transition, in order to prepare the data representation in favor of a given machine learn-

ing problem. We will roughly distinguish three types of preprocessing operations, with

2http://www.autonomous-learning.org

http://www.autonomous-learning.org
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regard to their purpose (although they cannot be seen as fully separable in practice):

(I) Basic preprocessing steps are applied to make the data representation robust in

terms of technical and numerical aspects. This may include simple normalization

steps, like a whitening transformation [35]. One particular intention is the reduc-

tion of noise, which is a common phenomenon in real-world data. For example,

electronic sensors often yield small numerical fluctuations in their readings, due

to technical or physical limitations and uncertainty. Based on expert knowledge

about the given application, one could therefore remove small changes in the data

representation via a simple thresholding or averaging scheme, without dismissing

critical information.

(II) Goal-oriented preprocessing aims to prepare the data representation in such a way,

that important information w.r.t. the given application is strongly expressed, while

unwanted and misleading information is reduced or entirely removed. A typical

example is to account for invariances in the data: given a machine learning prob-

lem, it may be beneficial to treat some pairs of data instances as equal, although

their representation differs. Therefore, the preprocessing steps should yield equal

representations for the respective pairs. In this way, the resulting representation

becomes invariant w.r.t. certain changes in the raw data, and it ignores some in-

formation which is irrelevant for the given problem.

(III) Method-oriented preprocessing is based on the fact that machine learning methods

are often bound to a specific type of data representation, for theoretical or techni-

cal reasons. Some methods may require a certain numerical domain for the input

values, or assume a specific distribution therein. If an algorithm requires input

values that constitute a notion of proximity between data instances, it would need

either similarity, or dissimilarity values (distances being a special case thereof).

In many practical applications, problem-specific (dis)similarity measures are avail-

able for this purpose. Depending on the required input format for the machine

learning method (similarities or dissimilarities), we can perform a transformation

in either direction, i.e. converting similarities to dissimilarities, and vice versa. The

mathematical background, as well as standard procedures, can be found in the lit-

erature, see [106], for example. We will address this particular topic in more detail

for dissimilarity-based data representations, in Section 1.2.4.

[B2] Representation type Generally, preprocessing is used to prepare the data represen-

tation, but also to alter an existing one. Several consecutive operations may be necessary

to arrive at the intended representation, with the desired properties. Therefore, even

when a generic format is accomplished (like a set of feature vectors), additional prepro-

cessing might be performed, as indicated by the forward and backward arrows between

[B1] and [B2] in Figure 1.1. Common types of data representations are described in more
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detail in Sections 1.2.3 and 1.2.4. While subsequent machine learning techniques mainly

process the information contained in the given representation, they may incorporate

additional knowledge. This could be expert knowledge about an assumed data distri-

bution, or expected output values, which are known to be correct for certain inputs. A

very common case of additional knowledge are available class labels: discrete categories

to which given data instances are attributed, and which constitute referential evidence

in the application scenario. Since not all machine learning techniques require this extra

information, we do not include it explicitly in our description of data representations,

or in our schematic of the processing pipeline. Instead, it is assumed to be provided by

an expert user who controls the overall machine learning workflow.

[C] Machine learning After a data representation is fixed, it can be used as input for

an adequate machine learning algorithm. This algorithm creates a model of the available

input data, during a training procedure. The model can be realized in various forms.

Typically, we have a mapping of every input to an output value or vector, however, this

mapping might not be accessible in an explicit functional form. Therefore, extending

the trained model to unseen input data can sometimes require additional effort. A large

variety of methods is readily available for different purposes. The exact goal depends

on the application scenario. In the following, we will refer to this as the learning goal

or learning problem. In this thesis we will focus on two general purposes of machine

learning:

• As an exploratory tool, to provide assistance for field experts:

This can make large collections of digital data more accessible, for example by

clustering the data set, or by creating a visualization based on a low-dimensional

embedding. The learning process is usually unsupervised, meaning that known

output values (e.g. class-labels) are not included in the training. However, available

labels can provide helpful indication, when domain experts want to inspect and

explore the data model.

• As a discrete decision tool, to automatically categorize input data:

Based on given data samples, a classification model can be trained, and is thereafter

able to assign new, unseen data to the predefined classes, respectively. In this case,

available class labels are incorporated in the training, also known as supervised

learning. (Since we are only interested in discrete decisions, we will not consider

machine learning techniques for regression in this thesis.)

Although there are specialized techniques for either one purpose, some methods address

both objectives with one learning model.
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1.2.2. Challenges of complex data

In this section, we will briefly characterize complex data and the specific challenges for

machine learning.

Example – literature database To exemplify the nature of complex data, let us assume

a practical scenario: a hypothetical collection of electronic books from the English fic-

tional literature, where we can access the full text of every book in a standardized digital

format. Suppose that the raw data of book number i in the collection A is given as a

sequence āi ∈ A, with entries āi =
(
ai1, . . . , a

i
I , . . . , a

i
|ā|

)
∈ Σ

|ā|
char comprised of alphabetic

characters and punctuation symbols in the alphabet Σchar. (This example is inspired

by the Project Gutenberg3 online database, which will be addressed in experiments in

later chapters.) Let us assume that our learning goal is a clustering of all books, as

an exploratory tool for field experts: unsupervised clustering can help experts to gain

a structured overview of the entire database, in order to identify thematic groups and

styles, for example, to distinguish genres like science fiction, historical novels, romantic

literature, etc.

One aspect of complexity is the sheer length of sequences: books are likely to con-

tain more than 500,000 characters, with an average of 5 letters per word in the English

language. Very long sequences are common in some application fields, such as bioinfor-

matics, where DNA or RNA strings are processed, or in industrial applications, where

discrete time series are addressed. In this particular example, the sequence lengths can

be reduced effectively, by shifting the symbolic domain to a higher level of abstraction:

instead of characters as the basic symbolic alphabet, we can consider words. Given the

raw texts, we can easily extract a respective sequence of words by scanning the text

for delimiters, such as white spaces and punctuation marks. Thereby, the set of all ap-

pearing unique terms in the entire book collection yields a symbolic alphabet Σterm, on

which these word sequences are based. However, the reduction to roughly one fifth of the

original length is then traded for a considerably larger alphabet: while |Σchar| would be

less than 100 symbols, the number of unique words |Σterm| would likely surpass 20,000,

even if different grammatical forms of words are not distinguished4.

Other complex characteristics, which are common in real-world data, are structural

relations. Texts written in a natural language exhibit intricate structural properties.

The most obvious is the sequential succession of characters (and words): a sequence

is characterized by the fact that symbols are ordered and thus have a relation to their

respective predecessor or successor. Additionally, we can observe the hierarchical forming

of symbolic entities: a certain sequence of letters forms a term, and a certain group of

terms forms a phrase or a sentence. This hierarchy follows syntactic and grammatical

3http://www.gutenberg.org
4See http://www.mine-control.com/zack/guttenberg/ for some statistical observations on the

Project Gutenberg database.

http://www.gutenberg.org
http://www.mine-control.com/zack/guttenberg/
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rules of the language. If we consider symbolic entities in this hierarchy (like terms or

phrases), there are additional semantic relationships among them, which are tightly

linked to the established syntactic structures. The main reason is that the semantic

meaning of terms is highly contextual. For example, when an adjective is used in a

predicative manner, it is related to a noun (or pro-noun) and thereby modifies the

noun’s meaning. These relationships lead to further structural formation.

Aspects of complex data The example demonstrates several aspects of complexity in

real-world data. On an abstract level, we can summarize the following challenges which

characterize complex data sets:

• Curse of dimensionality: In complex data, many different types of information

can be present. This heterogeneity leads to many degrees of freedom, so that a

large number of features is required for its description. In terms of vectors, this

corresponds to a very high dimensionality. At the same time, data are often sparse,

due to the sheer amount of possible feature combinations in addition to the fact that

only few descriptors are usually present for every given data point. This causes

many machine learning algorithms to suffer from the curse of dimensionality, a

well-known effect regarding high-dimensional spaces, see e.g. [15].

• Big data: The term “big data” describes an emerging research topic, which ad-

dresses limitations of current machine learning techniques regarding very large

data sets, see [63, 140]. These issues overlap significantly with the challenges of

complex data, where a high number of instances and/or high dimensionality is

common. Due to aspects of compositionality (see below), it may be hard or even

impossible to treat data instances separate from their context in the data set, or

to isolate individual constituents of the data. A fast random access to the entire

data set may thus be required, which implies that the data representation must fit

entirely into the working memory of the machine.

• Compositionality: The encoding of complex data often involves syntactic struc-

tures, with pervasive relationship rules, and inherent contextual dependencies.

Therefore, it is hard to isolate basic constituents of the data from their context.

At the same time, identifying distinct relationships between syntactic elements

can be difficult. As a result, there may be infinite possibilities to form structural

entities, e.g. by grouping possibly related constituents. The basic problems of

compositionality in complex data have been addressed in the literature, see [49].

To make complex data sets accessible for established machine learning methods, the data

representation plays an important role. In the following, we will explain the feature-

based, and the dissimilarity-based representation in more detail, and discuss in how far

complex aspects can be captured with these data description schemes.
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1.2.3. Feature-based representation

One common way of representing a collection of data is based on features, i.e. a fixed

set of quantitative attributes or criteria, for which a corresponding numeric value can

be provided for every data instance. Assuming a fixed ordering of features, each data

instance (also referred to as sample) is therefore described by a finite tuple of values, and

can thus be expressed as a feature vector x = (x1, . . . , xD) ∈ RD in the D-dimensional

Euclidean space. We assume that a finite number of N instances is given in a data set,

so we have a set of vectors: xi ∈ X ⊂ RD, i ∈ {1, . . . , |X| = N}. The individual vectors

are usually assembled to form the rows of a matrix X ∈ RN×D, where [X]i,k =
[
xi
]
k
=

xik, i ∈ {1, . . . , N}, k ∈ {1, . . . , D}. This matrix X is often referred to as the data table5.

The choice and formal definition of quantitative features is typically hand-tailored to

a specific application or learning goal. According to this specification, attributes are

collected and prepared for each data instance. This process is called feature extraction

in the literature, and may involve various operations to recover, analyze, or evaluate

properties from raw digital information.

Since data are thereby defined as points in a vector space, we can directly refer to the

Euclidean distance6 between vectors. Given data xi and xj , it is defined as

∥xi − xj∥ =

√√√√ D∑
k=1

(
xik − xjk

)2
.

A feature-based representation is generally applicable to many different kinds of in-

formation, as long as a fixed set of features can be extracted from the raw data. Con-

sequently, there is a large variety of established machine learning algorithms available,

which require inputs in the form of feature vectors, see [35, 73, 114]. However, the sim-

plicity and generality of the format involves certain caveats. As stated earlier, it is not

clear a priori which representation is well-suited for a given problem. This extends to the

choices of defining and extracting features in a constructive manner. In practice, these

design decisions are typically based on expertise in the particular application domain.

We assume that every feature has a meaning in the context of the given application,

hence the semantic interpretation of vector dimensions is straightforward. However, it is

also possible to obtain data vectors where this is not the case. For example, vectors may

result from a low-dimensional embedding of high-dimensional data, e.g. by referring to

the popular principal component analysis (PCA) [35]. Thereby, the semantic interpreta-

tion of vector dimensions becomes more complex, or may not exist at all. This describes

a generalization of the feature-based data representation, which we refer to as a vectorial

representation.

5By convention, data x are row vectors (and rows of X) in this thesis. For the sake of coherence with

some referenced literature, we will explicitly point out when data are treated as column vectors.
6Machine learning algorithms typically address the derivative of the distance function, wherefore it is

common to consider squared Euclidean distances ∥xi − xj∥2, for the sake of simplicity.
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Example – feature representation of literature collection In our example from Sec-

tion 1.2.2, a collection of e-books is given in the form of plain text sequences. For these

raw data, we can define a set of features in a straightforward fashion, by referring to the

statistics of words occurring in each text. To measure word occurrences, let us assume a

simple dictionary for now, which consists of the most common 1000 nouns in the English

language, where k ∈ {1, . . . , D = 1000} refers to each individual noun. Then, the book

āi can be represented as a vector xi ∈ RD, in which every entry xik states, how often the

k-th term of the dictionary occurs in this book.

Given the goal to distinguish books according to major topics, the data representa-

tion should capture the overall thematic content of a book. Therefore, we can enhance

the described feature extraction by including basic preprocessing steps, well-known in

text analysis and natural language processing. For example, the Porter stemming algo-

rithm [108] reduces all terms in the texts (and in the dictionary) to their word stem, so

that different grammatical forms and inflections are no longer distinguished. Thereby,

the data representation becomes invariant to different grammatical usages of the same

basic terms. Another common preprocessing step is to scale the term frequencies in-

versely according to their total number of occurrences in the entire book collection.

This decreases the numerical impact of very common (and usually less-discriminative)

words in relation to rare terms in the corpus.

Representing complex data with vectors According to the previously described chal-

lenges of complex data, we will examine the limitations of a vectorial data representation.

Curse of dimensionality When dealing with complex data, it is typical that a high

number of features is necessary to sufficiently describe a data instance. In our example,

the number of features D is determined by the size of the considered dictionary, and

it directly affects at what level of detail the statistics of term occurrences are realized.

With a large corpus of texts containing diverse themes, the vocabulary can be very

different among the books. To cover this variety, and potentially account for unseen

data, which is not in the collection so far, the dictionary must have a reasonable size.

This leads to high-dimensional, but only sparsely populated vectors. Usually, it is not

clear a priori, which features are relevant. An abundance of irrelevant information can

cause the distribution and structure of the data to be unnecessarily complex and not

favorable for the given problem. Dimensionality reduction techniques can provide help

in this case, and we will discuss this topic in detail in Chapter 4.

Big data The memory demand of the data table X has a complexity of O(N · D),

meaning that a very high number of instances (e.g. N > 200, 000) in conjunction with a

very large quantity of features (e.g. D > 30, 000) can lead to a data table, which does not
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fit into the working memory of a common computer7. However, the dimensionality of

the vectorial representation is fixed priorly, so that the memory demand increases only

linearly with additional data. Moreover, one can rely on operations in Euclidean vector

spaces to circumvent memory issues, such as vector quantization, feature selection, and

vectorial matrix decompositions. Hence, vectorial representations are a good solution to

tackle the computational demand of big data.

Compositionality The possibilities to incorporate aspects of compositionality in a

feature-based data representation are inherently limited. Given the simple tabular struc-

ture, the data description is highly restricted, as compared to intricate encoding schemes

that are possible in the original raw information. In our example, each book consists

of a sequence of terms āi ∈ A, with entries āi =
(
ai1, . . . , a

i
I , . . . , a

i
|āi|

)
∈ Σ

|āi|
term. A

feature representation based on the occurrence statistics of single terms (i.e. symbols

in Σterm) fully neglects the symbol’s sequential order, among other structures, such as

syntax, grammar, sentence separation, etc. The only possibility is to define features that

take relations into account and convey them quantitatively. For example, to incorpo-

rate the sequential order to a certain degree, we can refer to the occurrence statistics

of subsequences, so-called n-grams of symbols. n-grams are tuples in Σn
term, typically

with a length of 1 < n < 10, in practice. One obvious drawback is that the alphabet

size increases exponentially by |Σterm|n. Consequently, if the frequencies of all possible8

n-grams are recorded as features, the memory complexity becomes O (N ·Dn). Hence,

even for relatively small D, the problems of high dimensionality apply.

Implicit structural features There exists a very elegant trick to get around the com-

putational burden posed by n-grams, provided subsequent machine learning algorithms

rely on pairwise dot products only: the n-gram representation can be computed only

implicitly, relying on the popular kernel trick [118]. This way, structure kernels arise,

such as the spectrum kernel or string kernel, allowing for an efficient computation which

is polynomial in n, by relying on dynamic programming or suffix trees [90, 84]. Similar

ideas have also been proposed for more general data structures, such as trees or graphs,

although there exist principled problems which prohibit an efficient computation of ex-

pressive kernels for complex graph structures [41, 98]. We will not investigate structure

kernels in detail in this thesis, rather we take the more general view of a dissimilarity-

based representation of data, as described in the following section.

7A double-precision floating point number typically uses 64 bits of memory, i.e. 8 bytes. Therefore, an

array of 200, 000 · 30, 000 values would take ≈ 48 gigabytes.
8In natural language text, many n-grams of words could be excluded, because they are semantically

incorrect and would never appear in any text.
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1.2.4. Dissimilarity-based representation

In contrast to extracting features for every single instance of raw data, we can consider

pairs of instances, and evaluate how much they have in common, or, conversely, how dif-

ferent they are. Treating pairs of data instead of single items constitutes a fundamentally

different approach. We will distinguish three general ways to obtain a (dis)similarity-

based data representation from raw information:

(I) The given information naturally exhibits pairwise proximity values:

In some cases, the available data directly yields pairwise relations in a quantitative

manner, such as the connectivity strengths in social networks, travel distances

between geographic locations, or opinion-based surveys about item similarities.

(II) An algorithm evaluates the proximity between given pairs of raw data:

Using specific algorithms, we can numerically assesses some notion of proximity9

between raw data items. Many different techniques are available for this purpose,

often specialized for a certain data format, and with a specific application field in

mind, e.g. the dynamic time warping measure to compare audio signals [101].

(III) Pairwise distances are calculated based on an existing vectorial representation:

Whenever a vectorial representation of the data is available, as described in the

previous section, any mathematical distance expression for vectors can be utilized.

Apart from the common Euclidean distance, one can use (parameterized) variants,

such as Lp-metrics, general quadratic forms, or divergence measures.

We will focus on the options (II) and (III), where an algorithm or a mathematical

function – in the following called (dis)similarity measure – is applied to obtain pairwise

proximity values. Formally, we can define a (dis)similarity measure as a function d :

A×A → R, which assigns a non-negative scalar to every given pair
(
āi, āj

)
∈ A2 of raw

(preprocessed) data, as (
āi, āj

)
7−→ d(āi, āj) = [D]i,j

where D is the (dis)similarity matrix holding all pairwise results. We will occasionally

use the shorthand dij = d(āi, āj), when the reference to concrete data is not necessary,

or it is clear from the context.

It can be show, that a similarity matrix can always be transferred to a corresponding

dissimilarity matrix, without loosing information. The inverse is not true. In terms of

representing data, dissimilarities are therefore a more general format than similarities.

Hence, we will refer to dissimilarity measures and dissimilarity-based data representa-

tions exclusively, in the following, whereby similarities are implicitly included in our

discussion.

9Throughout this thesis, we will use proximity as a general term: depending on the given context, it

can mean either the similarity, or the dissimilarity between the respective entities.
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Relationship between vectorial and dissimilarity-based data representations Option

(III) in our list states a simple observation: if vectorial data xi ∈ RD are given in

the Euclidean space RD, we can directly obtain a dissimilarity-based representation.

Referring to the canonical metric based on the vector norm, we can obtain the Euclidean

distance dij = ∥xi − xj∥ for all pairs (i, j). In contrast, when a pairwise dissimilarity

measure is given, with values d(āi, āj), then an accurate Euclidean embedding might not

exist. That is, there may not exist a mapping function ψ : A → RD′
to points in a real

vector space RD′
, so that their distances accurately reflect the given dissimilarities, i.e.

ψ satisfies

d(āi, āj) = ∥ψ(āi)− ψ(āj)∥ for all i, j ∈ {1, . . . , |A|} .

Therefore, a dissimilarity-based representation is a more general format, compared to a

feature-based or vectorial representation. This gain relies on the fact that a dissimilarity

function is less restrictive than a metric distance (of which the Euclidean distance is a

special case).

So far, we required only a non-negative output in our definition of a dissimilarity

function. In the remainder of this thesis, we will typically assume the following properties

for a dissimilarity-based data representation: non-negativity, symmetry, and the identity

of indiscernibles (also known as reflexivity). That is, for all i, j it holds:

• dij ≥ 0 (non-negativity),

• dij = dji ⇐⇒ D = D⊺ (symmetry),

• dii = 0 ⇐⇒ D has zero diagonal (identity of indiscernibles).

We may refer to this type of dissimilarities as relational data, in the following. These

requirements are common in practice, for several reasons: Non-negativity and zero self-

dissimilarities are intuitive conditions for any natural notion of dissimilarity between

items. In addition, many machine learning algorithms rely on symmetry to maintain

certain mathematical properties, for example a symmetrical invariance within the un-

derlying objective function, such as the quantization error [76]. In the definition of

practical dissimilarity measures, the three stated conditions are often inherently sat-

isfied. A metric distance is additionally required to obey the triangle inequality. By

dropping this restriction, dissimilarity-based representations become more flexible and

general. However, the three stated conditions still ensure that there exists an accurate

embedding of the given dissimilarities to vectorial distances in a pseudo-Euclidean space.

This refers to an indefinite inner product space, which provides a less restrictive con-

cept of pairwise distances, as compared to the classical Euclidean space, and it will be

addressed in Chapters 2 and 3.

Examples of dissimilarity measures A simple and yet powerful dissimilarity measure

for symbolic sequences is the normalized compression distance (NCD) [87]. The NCD is
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an approximation of a theoretical, universal distance measure for symbolic strings, the

so-called “normalized information distance”, which is uncomputable. This theoretical

distance relies on the uncomputable Kolmogorov complexity of a string [88], which can,

however, be approximated by a real-world compression algorithm. If ā is a symbolic

string, let C (ā) be the length of a byte sequence returned by a lossless compression

algorithm, from which the exact input sequence can be reconstructed. For two sequences

āi, āj , and some compatible real-world compression function C, the NCD is defined as

dNCD(ā
i, āj) =

C
(
āi • āj

)
−min

{
C
(
āi
)
, C
(
āj
) }

max
{
C (āi) , C (āj)

}
where (āi • āj) is the concatenation of strings. The working principle is based on the

fact that the compressor utilizes recurring patterns in the string, in order to encode it

more efficiently and achieve a reduction in size. If āi and āj exhibit shared patterns,

then these similarities will facilitate the compression of their concatenation C
(
āi • āj

)
.

See [87] for an elaborate formal introduction of the NCD measure. The normalized

information distance, due to its theoretical definition, can be seen as a metric in the

precise mathematical sense, and thus it also fulfills the three conditions stated above [87].

However, its practical counterpart, the NCD, often yields numerical deviations, due to

its inherent approximation based on a real-world compressor. To create a dissimilarity-

based representation using the NCD, we therefore assume simple numerical corrections

to ensure that D is non-negative, symmetrical, and has a zero diagonal.

Other examples for popular (dis)similarity measures are

• the Hamming distance from information theory [55]

• alignment functions, popular in bioinformatics applications [122]

• the earth-mover’s distance, used in image retrieval and pattern recognition [113]

• the Jaccard index or Tanimoto coefficient from statistics [62]

Example – dissimilarity representation of literature collection Let us return to our

previous example of English books. Given any dissimilarity measure d for books āi ∈ A,

we can create a dissimilarity matrix D with entries [D]i,j = d(āi, āj). According to

option (III), on page 12, we can obtain dissimilarities by referring to an existing vectorial

representation. In this case, we can use the features of term frequencies, established in

the previous section, and denote the Euclidean distance between corresponding feature

vectors xi,xj as dtf(ā
i, āj) = ∥xi − xj∥. In contrast, we can use the NCD measure

dNCD(ā
i, āj), referring to option (II), on page 12. However, dtf dismisses the sequential

structure of terms, so a stylistic expression in the ordering of the words is not captured

by the data representation. Instead, dNCD is based on a compression algorithm, which

typically uses a sliding-window-technique to find recurring patterns in a given sequence.
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Therefore, the NCD dissimilarity will reflect differences in the sequential patterns of the

given strings, and is not invariant to a reordering of words.

Representing complex data via dissimilarities As in the previous section, we will de-

bate in how far this type of representation is affected by the challenges of complex data.

Curse of dimensionality The dimensionality of a dissimilarity-based representation can

be determined by referring to the pseudo-Euclidean embedding of given dissimilarities,

see Chapter 2 and [106]. An upper bound for its dimensionality is given by the number of

instances in the data set, i.e. the dimensionality scales with N . Therefore, the underlying

space is always limited to the dimensionality necessary to cover the known data, and

we avoid potential overhead to represent yet unseen information in future data. This

means that problems regarding the curse of dimensionality are avoided, unless a very

large number of instances is addressed.

Big data The memory complexity of a dissimilarity matrix is O(N2), since all pairs

of instances are addressed. If a subsequent machine learning method relies on a fast

access to the entire matrix, the number of instances must be restricted to fit the data

into the working memory, e.g. up to N ≈ 40, 000 for modern desktop computers. This

inherent quadratic memory complexity poses a major limitation when addressing big

data sets with dissimilarity-based representations. However, possible remedies have been

proposed in the literature, such as low-rank matrix approximation techniques like the

Nyström approximation [137], which we will utilize in Chapters 2 and 3.

Compositionality A significant advantage of a dissimilarity-based representation is

that structural aspects of the data can be incorporated, if they are addressed by the

mechanics of the dissimilarity function. The context and structure of data constituents

can be compared by algorithmic means. For example, alignment measures are designed

specifically to compare strings by aligning similar sequential patterns. In order to ad-

dress more diverse aspects of compositionality, it is possible to combine the results from

different dissimilarity functions, or even nested comparison algorithms.

1.2.5. Other types of data representation

Another very popular way to represent complex data is in terms of non-vectorial struc-

tures which explicitly encode the correlation of data constituents. Examples for such

structures are sequences of possibly unlimited length, tree structures or graph struc-

tures. Naturally, such representations require machine learning technology which is

capable of dealing with such complex structures instead of mere vectorial data, kernels,

or dissimilarities only. Successful approaches cover recursive networks, graph networks,

or statistical relational models [53, 52, 8, 99, 115]; however, we will not consider these

complex machine learning models in this thesis. Rather, we will focus on ways how
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to better handle complex data if represented in vectorial form or in terms of pairwise

dissimilarities only.

1.3. Thesis overview

1.3.1. Scientific contributions

In the previous sections, we have identified challenges of complex data in the context of

machine learning. The next chapters introduce techniques to address some of the raised

issues, focusing on the general problem of representing complex data sets and making

them accessible for machine learning methods. The following are the main scientific

contributions of this thesis:

(A) Interface of established classification models to dissimilarity data

Section 1.2.4 explains how a dissimilarity-based data representation is better suited

to incorporate aspects of compositionality from the given raw information, as

compared to feature vectors. However, many well-established machine learning

techniques are restricted to vectorial input data only. Therefore, we propose the

extension of two popular prototype-based clustering and classification methods to

non-negative symmetric dissimilarities (so-called relational data):

(i) the relational learning vector quantization (relational LVQ), – an intuitive

supervised classification scheme, based on Hebbian learning principles;

(ii) the relational generative topographic mapping (relational GTM) – an unsu-

pervised learning method, useful for data inspection and visualization.

Both techniques offer an easy access and interpretation of the resulting model,

which constitutes a particular convenience when addressing complex data sets.

(B) Task-driven learning of dissimilarity-based data representations

So far, we discussed different generic formats to represent data, which serve as a

single interface to machine learning methods. The representation typically encodes

available information without taking their relevance for the learning goal into ac-

count. Therefore, several so-called metric learning techniques have been proposed

to automatically adapt the data representation with respect to a specific task, via

its underlying metric, see [11] for an overview. While this is well-established for

vector quantization based on feature representations, see [119, 121, 43], we pro-

pose to transfer this principle to adapt parameterized dissimilarity measures in

conjunction with the classifier training itself. This establishes a first step towards

the autonomous, task-driven learning of representations for complex data.
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(C) Expert tools to assess the suitability of data representations

Machine learning methods for dimensionality reduction provide a low-dimensional

vectorial embedding of a given data set, while preserving the original (high-dimen-

sional) neighborhood structure as well as possible. They are a valuable instrument

to make complex data accessible, for example by visualizing the data set in two or

three dimensions. Since dimensionality reduction usually implies information loss,

we propose a fine-grained extension to a quality assessment technique, which indi-

cates the reliability of the embedding for every given data instance. Additionally,

we transfer this principle to enable an unsupervised comparison between different

dissimilarity-based data representations arising from the same raw information.

Both techniques can be integrated directly in embedded visualizations, like 2D or

3D scatter plots of the data. This provides tools to investigate the suitability of a

data representation visually and quantitatively w.r.t. a certain application.

(D) Diverse practical application examples

This thesis proposes techniques to facilitate and extend existing machine learning

algorithms, with regard to complex data and their representation. To demonstrate

the capability of each method, we address corresponding real-world problems from

a variety of application domains; some of them were investigated in collaboration

with field experts. The underlying problems and experimental results are presented

in the corresponding chapters, covering the following topics:

• intelligent tutoring systems (ITSs), which provide computer-based assistance

and feedback for students, e.g. to learn programming skills;

• sequential data from several bioinformatics databases;

• motion capturing for human pose detection, as well as motion sequences

• symbolic sequences in the context of music information retrieval, as well as

text mining data sets from e-books and smartphone applications.

1.3.2. Structural overview

The remainder of this thesis is structured as follows:

Chapter 2 “Tools for supervised and unsupervised learning with dissimilarity data” (p. 23)

In this chapter, contribution (A) is presented, where two well-established cluster-

ing and classification models (LVQ and GTM) are extended by an interface for

dissimilarity data. We first introduce LVQ, and propose its extension to relational

LVQ. Its classification performance is evaluated on benchmark sets of dissimilarity

data, before briefly highlighting the interpretable classifier model on an example

from the literature database Project Gutenberg.
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Thereafter, GTM is described, with its counterpart for dissimilarity data, rela-

tional GTM. Again, its capabilities as a classifier are demonstrated for benchmark

data sets, and the inherent possibility to visualize the data model is exemplified

for a set of symbolic sequences derived from a classical music database.

Chapter 3 “Adaptive metrics for complex data” (p. 45)

This chapter covers contribution (B), where we propose the learning of metric

parameters to adjust a dissimilarity-based data representation in favor of a given

classification task. We first review an established metric learning scheme, based on

feature vectors for LVQ. Thereafter, we transfer this principle to relational LVQ,

where parameters of an alignment dissimilarity measure for sequences are adapted

to improve the classification accuracy. Metric learning is illustrated and evaluated

on several real-world examples, using motion capturing data, educational data

from the ITS domain, and sequences from bioinformatics.

Chapter 4 “Unsupervised suitability assessment for data representations” (p. 83)

In this chapter, we cover the contribution (C), which addresses a quantitative

analysis to assess the suitability of data representations. First, we briefly review

established dimensionality reduction techniques, which provide a visual overview

of the neighborhood structures in a given data set. We discuss a quality measure to

evaluate how accurately these neighborhoods are represented, before extending the

existing method to allow for more fine-grained inspection and control. Thereafter,

the principle is transferred to an unsupervised comparison of dissimilarity-based

data representations. These techniques are demonstrated on several benchmark

data sets, including motion capturing frames, as well as a text database of smart-

phone applications.

Chapter 5 “Conclusion” (p. 129)

The last chapter summarizes this work and points out future research perspectives.
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Chapter 2.

Tools for supervised and unsupervised

learning with dissimilarity data

Chapter overview This chapter presents the extension of two well-established clustering and classi-

fication models (LVQ for supervised, and GTM for unsupervised learning) by an interface for dissimilarity

data. We arrive at “relational LVQ” and “relational GTM”, in which the benefits of dissimilarity-based

data representations can be utilized, while an intuitive access to the classifier model remains possible.

Due to an inherently large memory complexity, we introduce and evaluate approximation techniques for

relational methods, in the particular case of relational LVQ.

Parts of this chapter are based on:

[J12] A. Gisbrecht, B. Mokbel, F.-M. Schleif, X. Zhu, and B. Hammer. Linear time relational prototype based learning.

Int. J. of Neural Systems, 22(5), 2012.

[C12a] B. Hammer, B. Mokbel, F.-M. Schleif, and X. Zhu. White box classification of dissimilarity data. In HAIS

2012, volume 7208 of LNCS, pages 309–321, 2012.

[J11] A. Gisbrecht, B. Mokbel, and B. Hammer. Relational generative topographic mapping. Neurocomputing,

74(9):1359–1371, April 2011.

[C10a] A. Gisbrecht, B. Mokbel, and B. Hammer. Relational generative topographic map. In ESANN 2010, pages

277–282, 2010.

2.1. Motivation

In the previous Chapter, we have characterized complex data, and the problem that

simple feature vectors may not be appropriate to capture the underlying information.

Instead, the data can be represented via pairwise proximity values: problem-adapted

similarity or dissimilarity measures address the raw data instances in pairs, and thereby

refer directly to the given encoding scheme, allowing to treat information constituents in

a relational manner. Such measures are widely used in many application fields: In bioin-

formatics tools, the comparison between raw data instances (e.g. symbolic sequences,

mass spectra, or metabolic networks) is driven by complex alignment techniques, back-

23
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ground information, or general principles of information theory, see [107, 94, 61]. Another

example is the popular earth-mover’s distance [113] used in image processing, which takes

accumulated pixel transformations into account to compare the given images. Multime-

dia applications process audio, video, and motion sequences via specialized alignment

algorithms, such as the well-known dynamic time warping, see [101].

Often, the resulting dissimilarity-based data representations cannot be transferred

directly to an equivalent vectorial description of the data: if the proximity measure does

not fulfill the properties of a metric, an accurate Euclidean embedding of the data does

not exist. In addition, even if a truthful Euclidean embedding exists, its dimensionality

can be as large as the number of data instances N , and the worst case complexity of

its computation is O(N3). Hence, it is infeasible for many practical applications. This

constitutes a limitation for several classical machine learning and data mining tools

in their original form. For example, various clustering and classification algorithms

have been proposed for vectorial input data only, such as the popular learning vector

quantization (LVQ) [73, 114] for supervised learning, which relies on data vectors; as

well as, the self-organizing map (SOM) [73], neural gas (NG) [97], and the generative

topographic mapping (GTM) [17] for unsupervised learning.

Therefore, many kernel-based classifiers, as well as “kernelized” extensions of estab-

lished methods have been proposed in the last decades, which offer the possibility to

address pairwise similarities as input data, given by inner products in a (potentially

unknown) kernel space1. The most well-known and well-investigated example is the

support vector machine (SVM) [30], which first introduced the kernel trick. Extensions

of classical methods are, e.g., kernel NG [109, 118] and kernel SOM [93, 96, 19]; for

an overview, please refer to [37]. However, kernel techniques are limited to positive

semi-definite similarity matrices, as we will elaborate in Subsection 2.2.3.

On the other hand, the learning tasks become more and more complex, so that the

specific objectives and the relevant information are not clear a priori. This leads to

increasingly interactive systems, which allow humans to shape the objectives according

to human insights and expert knowledge at hand and to extract the relevant information

on demand [67]. This principle requires intuitive interfaces to the machine learning

technology which enable humans to interpret the way in which decisions are taken by the

system. Hence these requirements lead to the necessity that machine learning techniques

provide information, which can directly be displayed to the human observer.

Although techniques like SVM or Gaussian processes [110] provide efficient state-of-

the-art algorithms with excellent classification ability, it is often not easy to manually

inspect the way in which decisions are taken. Hence, it is hard to visualize its decisions to

domain experts in such a way that the results can be interpreted and valuable knowledge

can be inferred based thereon. The same argument, although to a lesser degree, is valid

for alternatives such as the relevance vector machine [127] or sparse models, which,

1In the literature, the kernel space is also called feature space.
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though representing decisions in terms of sparse vectors or class representatives, typically

still rely on complex nonlinear combinations of several terms [127, 26].

Dissimilarity- or similarity-based machine learning techniques such as nearest neigh-

bor classifiers rely on distances of given data to known labeled data points. Hence it is

usually very easy to visualize their decision: the closest data point or a small set of clos-

est points can account for the decision, and this set can directly be inspected by experts

in the same way as any data instance. Because of this simplicity, (dis)similarity tech-

niques enjoy a large popularity in application domains, whereby the methods range from

simple k-nearest neighbor classifiers (k-NN) [35] to advanced techniques, such as affinity

propagation (AP) [39], which represents a clustering in terms of typical exemplars.

(Dis)similarity-based techniques can be distinguished by different criteria:

• The number of data used to represent the classifier, ranging from dense models,

such as k-NN, to sparse representations, like prototype-based methods. To arrive

at easily interpretable models, a sparse representation in terms of few data points

is necessary.

• The degree of supervision, ranging from unsupervised clustering techniques, like

AP, to supervised learning methods, taking class labels into account.

• The complexity of the dissimilarity measure which the methods can deal with,

ranging from vectorial techniques restricted to Euclidean spaces, adaptive tech-

niques which learn the underlying metric [119], up to tools which can deal with

arbitrary (dis)similarities [50]. Typically, Euclidean techniques are well-suited for

simple classification scenarios, but fail if high dimensionality or complex structures

are encountered.

2.1.1. Scientific contributions and structure of the chapter

In this chapter, we propose two additions to the range of available clustering and clas-

sification methods for dissimilarity data, which offer particularly interesting features

regarding complex data sets. – Both methods are based on sparse prototypes that cover

the data, and allow for an easy inspection of the classifier model:

Relational LVQ In Section 2.2, we present an extension to LVQ: a supervised technique,

which is based on intuitive Hebbian learning principles and offers model trans-

parency via class exemplars in the data space.

Relational GTM In Section 2.3, we briefly introduce an extension to GTM: an unsu-

pervised method, which includes the possibility to visualize class structures in a

low-dimensional map, similar to SOM, but with inherent regularization options.
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The key ingredient is taken from existing approaches in the domain of unsupervised

learning [50, 106]: if prototypes are represented implicitly as linear combinations of data

in a so-called pseudo-Euclidean embedding or, more generally, a Krein space (see [106,

p.77]), all necessary distances between data and prototypes can be computed without an

explicit reference to a vectorial representation. This principle holds for relational data,

i.e. a non-negative, symmetric dissimilarity matrix with zero diagonal.

2.2. Relational learning vector quantization

2.2.1. Introduction

Learning vector quantization (LVQ) constitutes one of the few methods to infer a sparse

representation in terms of prototypes from a given data set in a supervised way [73].

Hence, it offers a good starting point as an intuitive classification technique, in which

decisions can directly be inspected by humans. Although original LVQ has been intro-

duced on rather heuristic grounds [73], recent developments in this context provide a

solid mathematical derivation of its generalization ability and learning dynamics: explicit

large-margin generalization bounds of LVQ classifiers are available [31, 119]; further, the

dynamics of LVQ-type algorithms can be derived from cost functions which model the

classification accuracy referring to the hypothesis margin or a statistical model, for ex-

ample [119, 121]. Interestingly, already the dynamics of simple LVQ, as proposed by

Kohonen, provably leads to surprisingly good generalization characteristics when inves-

tigated in the framework of the theory of online learning [14].

When dealing with modern application scenarios, one of the largest drawbacks of

LVQ type classifiers is their dependency on the Euclidean metric. Because of this,

LVQ is not suited for complex or heterogeneous data sets where input dimensions have

different relevance or where high dimensionality leads to accumulated noise disrupting

the classification. This problem can partially be avoided by vector-based metric learning

approaches, see e.g. [119], which turn LVQ classifiers into state-of-the-art techniques, e.g.

for applications involving humanoid robotics, computer vision, or medical diagnostics,

see [33, 69, 6]. We will investigate this approach later, in Chapter 3.

However, if data are inherently non-Euclidean, these techniques cannot be applied.

In this section, we propose an extension of generalized LVQ (GLVQ) [114, 119] to gen-

eral dissimilarity data; GLVQ being a popular LVQ-type algorithm derived from a cost

function which is related to the hypothesis margin. This way, the technique becomes

directly applicable for data sets, which are characterized in terms of relational data only.

Interestingly, the classification performance is comparable to the state-of-the-art, but

GLVQ additionally offers an intuitive interface in terms of prototypes [28].

Due to its dependency on the dissimilarity matrix, relational GLVQ has squared com-

plexity, and the computation of the dissimilarities often constitutes the bottleneck in

applications. By integrating approximation techniques [137], the effort can be reduced
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to linear time and memory complexity. We demonstrate the feasibility of this approach

with the popular SwissProt protein database [18].

2.2.2. Generalized learning vector quantization

We assume a set of given data xi ∈ X, i = 1, . . . , N . In the case of classical LVQ,

we assume that data are vectors xi = xi ∈ RD. Prototypes wj ∈ RD, j = 1, . . . ,M

decompose the data into receptive fields

R(wj) =
{
xi
∣∣ d(xi,wj) ≤ d(xi,wk) for all k = 1, . . . ,M

}
,

where d is the squared Euclidean distance d(xi,wj) = ∥xi −wj∥2 . In broad terms, the

goal of vector quantization techniques is to find prototypes, which represent a given data

set as accurately as possible, so that the representatives ‘cover’ the data. In supervised

learning, all data xi are equipped with class labels c(xi) ∈ {1, . . . , L}, where L is the

total number of classes. Similarly, every prototype carries a priorly fixed label c(wj).

A data point is classified according to the class of its closest prototype. This as-

signment can be evaluated via the classification accuracy
∑M

j=1

∑
xi∈R(wj) δ̂

(
c(xi) =

c(wj)
)
/N with the Kronecker delta function δ̂. As an explicit objective for optimization,

this function is not a good choice, due to vanishing gradients and discontinuities. There-

fore, LVQ relies on a reasonable heuristic by performing Hebbian updates of the proto-

types, given a data point, see [73]. Recent alternatives derive similar update rules from

explicit objective functions, which are related to the classification accuracy, but display

better numerical properties such that efficient optimization is possible [119, 114, 121].

Given a data point xi, we will use w+(xi) to refer to the prototype which is closest to

xi and has a matching label c
(
w+(xi)

)
= c(xi). The squared distance between them is

d
(
xi,w+(xi)

)
, and will be denoted as d+(xi), as a shorthand. Accordingly, w−(xi) refers

to the closest prototype with a different label c
(
w−(xi)

)
̸= c(xi), and the corresponding

distance is denoted by d−(xi).

Generalized LVQ (GLVQ) [114] relies on a cost function, which can be related to the

generalization ability of the classifier [119]. GLVQ minimizes the error term

EGLVQ =
N∑
i

Ei
GLVQ =

N∑
i

Φ

(
d+(xi)− d−(xi)

d+(xi) + d−(xi)

)
, (2.1)

where Φ is a differentiable monotonic function, such as the hyperbolic tangent or the

sigmoid. Since a data point xi is classified correctly, if and only if d−(xi) is larger than

d+(xi), this cost function constitutes a reasonable choice. It has been shown that the

difference d+(xi) − d−(xi) can be related to the so-called hypothesis margin of LVQ

classifiers, a quantity which directly regulates the generalization ability of the resulting

classifier [119]. For numerical reasons, this numerator is normalized to the interval [−1, 1]

to prevent divergence of the prototypes.
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For the learning algorithm, update rules can be derived thereof, by means of standard

gradient techniques. After presenting the data sample xi, its closest correct and wrong

prototype, respectively, are adapted according to the rules:

∆w+(xi) ∼−Φ′(µ(xi)
)
· µ+(xi) · ∇w+(xi)d

+(xi) (2.2)

∆w−(xi) ∼ Φ′(µ(xi)
)
· µ−(xi) · ∇w−(xi)d

−(xi)

where

µ(xi) =
d+(xi)− d−(xi)

d+(xi) + d−(xi)
,

µ+(xi) =
2 · d−(xi)(

d+(xi) + d−(xi)
)2 , µ−(xi) =

2 · d+(xi)(
d+(xi) + d−(xi)

)2 .
For the squared Euclidean distance, the derivative yields ∇wjd(xi,wj) = −2(xi −wj),

leading to Hebbian update rules of the prototypes according to the class information.

GLVQ constitutes one particularly efficient method to adapt the prototypes according

to a given labeled data set. Alternatives can be derived based on a labeled Gaussian

mixture model, see e.g. [121]. Since the latter can be highly sensitive to model meta-

parameters [14], we focus on GLVQ.

2.2.3. Pseudo-Euclidean embedding of dissimilarity data

In this section, we recall and transfer theoretical insights from [106, 50, 28] for our

cause. We assume that data xi are represented by non-negative pairwise dissimilarities

dij = d(xi, xj), and D ∈ RN×N refers to the corresponding dissimilarity matrix. We also

assume symmetry dij = dji and a zero diagonal dii = 0, and thereby refer to relational

data, as explained in Chapter 1. dij may not be Euclidean distances, i.e. for pairs (xi, xj)

it is not guaranteed that Euclidean vectors (xi,xj) can be found with dij = ∥xi − xj∥.
However, for every such dissimilarity matrix D, there exists an embedding in a so-

called pseudo-Euclidean space, which is a vector space with an indefinite inner product,

see [106]. The squared pairwise distances in this pseudo-Euclidean embedding yield

exactly the dissimilarities in D. Accordingly, an associated similarity matrix S exists,

which contains the pairwise inner products calculated in this space. Even though the

explicit embedding may not be known to us, we can obtain the inner products from the

given dissimilarities, by so-called double centering, as explained in [128, p.258] and [106]:

S = −UDU/2 where U = (I− 11⊺/N), (2.3)

with the identity matrix denoted as I and an N -dimensional column vector of ones 1.

We can explicitly determine the pseudo-Euclidean embedding via an eigenvector de-

composition of S: Let p be the number of positive eigenvalues, and q be the number

of negative eigenvalues. Then, a symmetric bilinear form is induced by ⟨xi,xj⟩p,q =

(xi)⊺Ip,qxj , where Ip,q is a diagonal matrix with p entries 1, and q entries −1. Taking
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the eigenvectors of S multiplied by the square root of their absolute eigenvalues, we can

obtain vectors xi in pseudo-Euclidean space, so that dij = ⟨xi − xj ,xi − xj⟩p,q holds for

every pair of data, see [106].

Hence, we can obtain facts about the embedding, by observing the eigenspectrum of

S: If and only if S is positive semidefinite (psd in the following), then the inner products

originate from a Euclidean vector space, which is a special case of the pseudo-Euclidean

space. Correspondingly, the entries in D are squared Euclidean distances. However, if

some eigenvalues are negative, a Euclidean space is not sufficient to represent the given

(dis)similarities. In general, we can summarize these characteristics of S by a signature:

the tuple (p, q,N − p− q), in which N − p− q are the remaining zero eigenvalues.

Positive semi-definite similarity matrices are also referred to as kernel matrices or

Gram matrices, and many machine learning methods require this type of similarity data,

such as the popular support vector machine (SVM) [30]. If S is not psd, a correction

of the matrix can be employed, at the risk of some information loss. The following

techniques are common: the spectrum of the matrix S is changed via operations such

as clip (negative eigenvalues are set to 0), flip (absolute values are taken), or shift (a

summand is added to all eigenvalues). For a detailed explanation, please refer to [106, 28].

Interestingly, some operations, such as shift, do not affect the location of local optima

in some important cost functions, like the quantization error, see [76]. However, the

transformation can severely affect the performance of optimization algorithms, see [50].

As an alternative, data points can be constructed as vectors, in which the elements are

given by the similarities to all other data. Then, standard distance measures or kernel

functions are applied to pairs of these vectors, as if they were classic feature vectors. In

the following, this correction technique is referred to as similarities as features. In [28],

an extensive comparison of these preprocessing methods was conducted for a variety of

benchmarks with SVM.

All of the named operations which involve an eigenvalue decomposition have a com-

putational complexity of O(N3), for example the explicit embedding in the pseudo-

Euclidean space, as well as checking and correcting the signature to ensure a psd kernel.

In the following sections, we will utilize the fact that a pseudo-Euclidean embedding must

exist for relational data. However, by addressing it only implicitly, we will circumvent

the computational burden to create the explicit embedding, as proposed in [50].

Conversely, if the data are given by symmetric similarities in a matrix S, they can be

seen as inner products between vectors in an (unknown) pseudo-Euclidean embedding.

We can determine the corresponding squared distances, as

[D](i,j) = [S](i,i) + [S](j,j) − 2 [S](i,j) . (2.4)

This conversion requires O(N2) time. Hence, it is generally possible to create relational

data (i.e. dissimilarities) from such similarities, and we will omit a separate discussion

of equivalent similarity-based data representations in the remainder of this thesis.



30 Chapter 2. Tools for supervised and unsupervised learning with dissimilarity data

2.2.4. GLVQ for dissimilarity data

Vector operations in learning algorithms can be directly transferred to the pseudo-

Euclidean space, i.e. we can define prototypes as linear combinations of data in this

space. Hence, we can perform techniques such as GLVQ explicitly in pseudo-Euclidean

space since it relies on vector operations only. One problem of this explicit transfer is

the computational complexity of the embedding, which is O(D3), and, further, the fact

that out-of-sample extensions to new data points characterized by pairwise dissimilarities

are not immediate. Because of this fact, we are interested in efficient techniques which

implicitly refer to this embedding only. As a side effect, such algorithms are invariant

to coordinate transforms in pseudo-Euclidean space. The key assumption is to restrict

prototype positions to linear combinations of data points of the form

wj =
N∑
i

αj
ix

i with
N∑
i

αj
i = 1 .

Hence, each vector αj =
(
αj
1, . . . , α

j
N

)
, j ∈ {1, . . . ,M} holds the coefficients describing

the respective prototype wj implicitly, as shown in [50]. Since prototypes are located at

representative points in the data space, this is reasonable. According to [50], dissimilar-

ities can then be computed implicitly, by means of

d(xi,wj) =

N∑
k

αj
kdik − 1

2

N∑
kl

αj
kα

j
l dkl (2.5)

=
[
D · αj

]
i
− 1

2
· (αj)⊺Dαj .

This observation constitutes the key to transfer GLVQ to relational data. Prototype

wj is represented implicitly via the coefficient vector αj and distances are computed

by means of these coefficients. The corresponding cost function of relational GLVQ

(RGLVQ) becomes:

ERGLVQ =

N∑
i

Ei
RGLVQ =

N∑
i

Φ

(
[Dα+]i − 1

2 · (α+)⊺Dα+ − [Dα−]+i − 1
2 · (α−)⊺Dα−

[Dα+]i − 1
2 · (α+)⊺Dα+ + [Dα−]i − 1

2 · (α−)⊺Dα−

)
,

where, as before, the closest correct and wrong prototype are referred to, now in terms

of the corresponding coefficients α+ and α−, respectively. A simple stochastic gradient

descent leads to adaptation rules for the coefficients α+ and α− in relational GLVQ:

component k in the respective coefficient vector is adapted as

∆α+
k ∼ −Φ′(µ(xi)) · µ+(xi) ·

∂
(
[Dα+]i − 1

2 · (α+)⊺Dα+
)

∂α+
k

∆α−
k ∼ Φ′(µ(xi)) · µ−(xi) ·

∂
(
[Dα−]i − 1

2 · (α−)⊺Dα−)
∂α−

k
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where µ(xi), µ+(xi), and µ−(xi) are as in Equation 2.2. For a prototype wj , the partial

derivative yields

∂
(
[Dαj ]i − 1

2 · (αj)⊺Dαj
)

∂αj
k

= dik −
N∑
l

dklα
j
l .

Naturally, alternative gradient techniques can be used. After every adaptation step,

normalization takes place to guarantee
∑N

i αj
i = 1. We also restrict the possible proto-

type positions to the convex hull of the data by enforcing all αj
i ≥ 0 in every iteration.

This way, a learning algorithm which adapts prototypes in a supervised manner, simi-

lar to GLVQ, is given for general dissimilarity data, whereby prototypes are implicitly

embedded in pseudo-Euclidean space. The prototypes are initialized as random vectors

corresponding to random values αj
i which sum to one. It is possible to take class infor-

mation into account by setting all αj
i to zero which do not correspond to the class of the

prototype. Out-of-sample extension of the classification to new data is possible, based

on the following observation, see [50]: given a novel data point x, which is characterized

by its pairwise dissimilarities Dx to all the data used for training, the dissimilarity of x

to a prototype wj is d(x,wj) = D⊺
x · αj − 1

2 · (αj)⊺Dαj .

2.2.5. Reducing computational demand via Nyström approximation

RGLVQ (just like SVM) depends on the full dissimilarity matrix and thus displays

quadratic computational and memory complexity in N . Depending on the chosen dis-

similarity measure, the main computational bottleneck is given by the calculation of the

dissimilarity matrix itself. Alignment of biological sequences, for example, is quadratic in

the sequence length (linear, if approximations such as FASTA are used), so that a com-

putation of the full dissimilarities for about 11,000 data points (the size of the SwissProt

data set as considered below) would already lead to a computation time of more than

eight days (with 4 processor cores at 2.5 GHz, alignment done by the Smith-Waterman

algorithm [122]) and a storage requirement of about 500 Megabyte, assuming double

precision.

The Nyström approximation, as introduced by Williams and Seeger in [137], allows

for an efficient approximation of a kernel matrix by a low-rank matrix. This method can

be directly transferred to dissimilarity data, see [116]. The basic principle is to pick a set

of representative landmarks V ⊂ X, |V| = V , and consider the rectangular sub-matrix

DV,X of dissimilarities between landmarks and all data instances (e.g. sequences). This

matrix is of linear size, assuming that V is fixed. The full matrix can be approximated in

an optimal way, in the form Dν = D⊺
V,XD−1

V,VDV,X ≈ D where DV,V is the square sub-

matrix of D, and D−1
V,V refers to its pseudo-inverse. While calculating the full pairwise

dissimilarity matrix D takes O(N2) time, the complexity to produce its approximated

counterpart Dν is dominated by the calculation of DV,X in O(V · N) steps, and the

pseudo-inverse D−1
V,V , which is O(V 3). This results in an overall complexity of O(V 2 ·N),
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which becomes profitable when N is increasing while V is assumed to be constant. The

resulting approximation is exact, if V corresponds to the rank of matrix D.

Note that the Nyström approximation can be directly integrated into the distance

computation of relational GLVQ, in such a way that the overall training complexity is

linear instead of quadratic. We refer to results obtained by a Nyström approximation

by the superscript RGLVQν . We use 10% landmarks by default, i.e. V = ⌊0.1 · N⌋.

2.2.6. Interpretability of relational prototypes

Relational GLVQ extends GLVQ to general dissimilarity data. Unlike Euclidean GLVQ,

it represents prototypes indirectly by means of coefficient vectors, which are not directly

interpretable since they correspond to positions in pseudo-Euclidean space. However,

because of their representative character, we can approximate these pseudo-Euclidean

points by their respective closest exemplars, i.e. raw data instances originally contained

in the training set. Unlike prototypes, these exemplars can be directly inspected. We

refer to such an approximation as k-approximation, if a prototype is substituted by its k

closest exemplars. We will see in experiments that the resulting classification accuracy is

still rather good for small values k ∈ {1, . . . , 5}. We refer to results, which were obtained

using a k-approximation, by the subscript RGLVQk.

2.2.7. Experiments

We evaluate relational GLVQ for several benchmark data sets characterized by pairwise

dissimilarities. These data sets have been used extensively in [28] to evaluate SVM

classifiers for general (dis)similarity data. Since SVM requires a psd kernel matrix,

appropriate preprocessing has been done in [28] in 5 variants: flip, clip, shift, and simi-

larities as features in conjunction with the linear and Gaussian kernel, respectively. In

addition, we consider a few benchmarks from the biomedical domain. The data sets are

as follows:

Amazon47 consists of 204 data points from 47 classes, representing books and their

similarity based on customer preferences. The similarity matrix S was symmetrized

and transferred by means of D = exp(−S), see [76].

Aural Sonar consists of 100 signals with two classes (target of interest/clutter), repre-

senting sonar signals with dissimilarity measures according to an ad hoc classifica-

tion of humans.

Cat Cortex consists of 65 data points from 5 classes. The data originate from anatomic

studies of cats’ brains. The dissimilarity matrix displays the connection strength

between 65 cortical areas. A preprocessed version as presented in [47] was used.

Chromosomes constitutes a benchmark data set from the Copenhagen Chromosomes

database of cytogenetics [91]. A set of 4,200 human chromosomes from 21 classes
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(the autosomal chromosomes) are represented by grey-valued images. These are

transferred to strings measuring the thickness of their silhouettes. These strings

are compared using edit distance with insertion/deletion costs 4.5 [122, 103].

Face Recognition consists of 945 samples with 139 classes, representing faces of people,

compared by the cosine similarity.

Patrol consists of 241 data points from 8 classes, corresponding to seven patrol units

(and non-existing persons, respectively). Similarities are based on clusters named

by people.

Proteins is a data set described in [100], consisting of 213 globin proteins, which are

compared based on their evolutionary distance. The samples originate from dif-

ferent protein families: hemoglobin-α, hemoglobin-β, myoglobin, etc. Here, we

distinguish 4 classes: HA, HB, MY, GG/GP.

SwissProt consists of 10,988 samples of protein sequences in 32 classes, and is a sub-

set from the well-known SwissProt database [18]. The considered subset refers

to the release 37, mimicking the setting as proposed in [74]. The full database

consists of 77,977 protein sequences. The 32 most common classes such as Globin,

Cytochrome a, Cytochrome b, Tubulin, Protein kinase st, etc. provided by the

Prosite labeling [42] where taken, leading to 10,988 sequences. We calculate a

similarity matrix based on a 10% Nyström approximation. These sequences are

compared using exact Smith-Waterman alignment. This database is the standard

source for identifying and analyzing protein measurements such that an automated

sparse classification technique would be very desirable. A detailed analysis of the

prototypes of the different protein sequences opens the way towards an inspection

of typical biochemical characteristics of the represented data.

Vibrio consists of 1,100 samples of vibrio bacteria populations characterized by mass

spectra. The spectra contain approx. 42,000 mass positions. The full data set

consists of 49 classes of vibrio-sub-species. The mass spectra are preprocessed

with a standard workflow using the BioTyper software [94]. Typically, mass spectra

display strong correlations between neighboring entries, due to the dependency of

subsequent masses. Therefore, problem-adapted similarities, as described in [94],

are beneficial. In our case, similarities are calculated using a specific similarity

measure provided by the BioTyper software. The Vibrio similarity matrix S has

a maximum score of 3. The corresponding dissimilarity matrix is obtained as

D = 3− S.

Voting contains 435 samples in 2 classes, representing categorical data compared based

on the value difference metric.
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RGLVQ AP SVM Signature # Prototypes

Aural Sonar 88.4 (1.6) 68.5 (4.0) 87.0-85.8∗ (61,38,1) 10

Amazon47 81.0 (1.4) 75.9 (0.9) 82.4-19.7∗ (192,1,11) 94

Cat Cortex 93.0 (1.0) 80.4 (2.9) 95.0-72.0 (41,23,1) 12

Chromosomes 92.7 (0.2) 89.5 (0.6) 95.1-92.2 (1951,2206,43) 63

Face Rec. 96.4 (0.2) 95.1 (0.3) 96.1-95.7∗ (45,0,900) 139

Patrol 84.1 (1.4) 58.1 (1.6) 88.0-61.3∗ (54,66,121) 24

Proteins 92.4 (1.9) 77.1 (1.0) 98.8-97.6 (169,38,6) 20

SwissProt 81.6 (0.1) 82.6 (0.3) 82.1-78.0 (2028,2,8958) 64

Vibrio 100 (0.0) 99.0 (0.0) 100 (499,502,99) 49

Voting 94.6 (0.5) 93.5 (0.5) 95.1-94.5∗ (16,1,418) 20

Table 2.1.: Mean classification accuracies (and standard deviations) of prototype-based

classification with relational GLVQ, in comparison to SVM (an SMO implementation)

with psd corrections, and to AP with posterior labeling, for several dissimilarity data

sets. The accuracies are obtained in a ten-fold cross-validation with ten repeats (only

two-fold for SwissProt). SVM results, marked with ∗, are taken from [28]. The number

of prototypes used for RGLVQ and AP, as well as the signature of the corresponding

dissimilarity matrix are included. For SVM, the respective best and worst result using

the different preprocessing mechanisms (flip, clip, shift, and similarities as features with

linear and Gaussian kernel) are reported.

In case the given dissimilarities were not numerically symmetric, we symmetrized the

matrix D by using D̃ = (D + D⊺)/2 . Diagonal values were set to zero, ignoring any

self-dissimilarities:
[
D̃
]
(i,i)

= 0, ∀i ∈ {1, . . . , N} .
As pointed out in [28], these matrices cover a diverse range of different characteristics,

so that they constitute a well-suited test bench to evaluate the performance of algorithms

for similarities/dissimilarities. In addition, benchmarks from the biomedical domain have

been added, which constitute interesting applications per se. Many data sets are non-

Euclidean, the signatures2 can be found in Table 2.1. For every data set, we optimized

the number of prototypes in a repeated cross-validation, see Table 2.1. The evaluation

of the results is done by means of the classification accuracy obtained on the test set

in a ten-fold cross-validation with ten repeats (two-fold cross-validation for SwissProt).

Classes are reasonably balanced in the data sets, the largest observed difference in class

sizes being 26% of the total number of data points. For this reason, and to maintain

comparability with [28], we consider the classification accuracy to be an appropriate

evaluation measure. For comparison, we report the results of a SVM after appropriate

preprocessing of the dissimilarity matrix to guarantee a psd kernel [28]. In addition, we

report the results of AP [39], a powerful unsupervised exemplar-based technique, which

optimizes the quantization error for arbitrary similarity matrices, based on a message-

passing algorithm for a corresponding factor graph representation of the cost function.

2For the signatures, we considered an eigenvalue to be numerically zero, if its absolute was ≤ 10−4.
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RGLVQ RGLVQ1 RGLVQ3 RGLVQν RGLVQν
1 RGLVQν

3

Aural Sonar 88.4 (1.6) 78.7 (2.7) 86.4 (2.7) 86.4 (0.8) 79.7 (2.6) 84.3 (2.6)

Amazon47 81.0 (1.4) 67.5 (1.4) 77.2 (1.0) 81.4 (1.1) 66.2 (2.6) 77.7 (1.2)

Cat Cortex 93.0 (1.0) 81.8 (3.5) 89.6 (2.9) 92.2 (2.3) 79.8 (5.5) 89.5 (2.8)

Chromosomes 92.7 (0.2) 90.2 (0.0) 91.2 (0.2) 78.2 (0.4) 84.4 (0.4) 86.3 (0.2)

Face Rec. 96.4 (0.2) 96.8 (0.2) 96.8 (0.1) 96.4 (0.2) 96.6 (0.3) 96.7 (0.2)

Patrol 84.1 (1.4) 51.0 (2.0) 69.0 (2.5) 85.6 (1.5) 52.7 (2.3) 72.0 (3.7)

Proteins 92.4 (1.9) 69.6 (1.7) 79.4 (2.9) 55.8 (2.8) 64.1 (2.1) 54.9 (1.1)

Vibrio 100 (0.0) 99.0 (0.1) 99.0 (0) 99.2 (0.1) 99.9 (0.0) 100 (0.0)

Voting 94.6 (0.5) 93.7 (0.5) 94.7 (0.6) 90.5 (0.3) 89.5 (0.9) 89.6 (0.9)

Table 2.2.: Mean classification accuracies (and standard deviations) of relational GLVQ,

obtained in a repeated ten-fold cross-validation. We compare the training with the full

dissimilarity matrix to the Nyström approximation technique, as well as the use of full

prototype coefficients αj in comparison to the k-approximation technique.

In this case, the classification is obtained by posterior labeling. For RGLVQ, we train

the technique with the full dissimilarity matrix, and compare the result to the sparse

models, obtained via k-approximation with k ∈ {1, 3} and a Nyström approximation

of the dissimilarity matrix using 10% of the training data. The mean classification

accuracies are reported in Table 2.2 and Table 2.1.

Interestingly, in all cases but one (the almost Euclidean data set Proteins), results are

comparable to SVM taking the respective best preprocessing, as reported in [28]. Unlike

SVM, relational GLVQ makes this preprocessing superfluous. In contrast, SVM may

require preprocessing to guarantee a psd kernel matrix. Further, different preprocessing

can lead to very diverse accuracy as shown in Table 2.1, no single preprocessing being

universally suited for all data sets. Thus, these results seem to substantiate the finding

of [76], that the correction of a non-psd Gram matrix can influence the classification

accuracy. Further, an improvement of the classification accuracy as compared to the

state-of-the-art unsupervised prototype-based technique AP (using the same number of

prototypes) can be observed, which is statistically significant in all cases (according to

a two-sided t-test with a 5% significance level). This shows the benefits of including

supervision in the training objective, if classification is the goal.

Unlike for SVM, which is based on support vectors in the data set, solutions are

represented as typical prototypes. Similar to AP, these prototypes can be approxi-

mated by k nearest exemplars, representing the classification explicitly in terms of few

data points instead of prototypes. As can be seen from Table 2.2, in only two cases

the 3-approximation leads to a loss in accuracy of more than 5%. Interestingly, a 3-

approximation of a prototype-based classifier for the SwissProt benchmark even leads

to an increase of the accuracy from 81.6% to 84.0%.

The Nyström approximation offers a linear time and space approximation of relational

GLVQ performed on the full matrix. The changes in accuracy due to this approximation
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are documented in Table 2.2 for all except the SwissProt data set – since the computation

of the full dissimilarity matrix for the Swissprot data set would require more than 8

days on a standard PC, we used a Nyström approximation right from the beginning for

SwissProt. The quality of the approximation depends on the rank of the dissimilarity

matrix. Thus, the results differ a lot depending on the characteristics of the eigenvalue

spectrum for the data. Interestingly, it seems possible in more than half of the cases to

substitute full relational GLVQ by this linear complexity approximation without much

loss of accuracy. Recently, an efficient test has been proposed, which allows to judge

the suitability of a Nyström approximation prior to training, based on the subsampling

only, see [60].

As a further demonstration, we show the result of RGLVQ, trained to classify a small

set of e-books, taken from the Project Gutenberg literature database3. The pairwise dis-

similarities of 84 books, from 4 different authors, were calculated by the normalized com-

pression distance (NCD) [87]. One prototype per class is used with a 3-approximation

for visual inspection. In Fig. 2.1, books and representative exemplars found by RGLVQ3

are displayed in a 2D embedding, obtained by a dimensionality reduction technique

(t-distributed stochastic neighbor embedding (t-SNE) [131], see Chapter 4). While SVM

leads to a classification accuracy of more than 95% (like RGLVQ), it picks almost all data

points as support vectors, i.e. no direct interpretation is possible. In case of RGLVQ3,

we can see how the data structure is mostly covered by the exemplars in the visualiza-

tion, some of them being well-known works of the respective author, like Jane Austen’s

“Emma” and Jules Verne’s “A Journey to the Centre of the Earth”.

2.2.8. Concluding remarks

This section presented an extension of generalized learning vector quantization to non-

Euclidean data sets, characterized by relational data. By referring to an implicit embed-

ding of data in a pseudo-Euclidean space, we have a theoretical foundation to represent

prototypes in the data space. A corresponding extension of the cost function of GLVQ

was proposed, and a very powerful learning algorithm can be derived. In most cases,

it achieves a classification performance comparable to SVM, but without the necessity

for preprocessing to ensure a psd kernel matrix. It yields the possibility to interpret

the classification model in terms of the prototypes, and their corresponding exemplars

in a k-approximation. As a first step to an efficient linear approximation, the Nyström

technique has been tested, leading to promising results in a number of benchmarks, par-

ticularly making the technology feasible for interesting large data collections, such as

the SwissProt database.

3http://www.gutenberg.org

http://www.gutenberg.org
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Figure 2.1.: Visualization of e-book data set and typical exemplars found by RGLVQ3.

2.3. Relational generative topographic mapping

2.3.1. Introduction

Classical data mining tools such as the self-organizing map (SOM) [73], or its statistical

counterpart, the generative topographic mapping (GTM) [17], provide a sparse represen-

tation of high-dimensional data by means of latent points arranged in a low-dimensional

neighborhood structure, which is useful for visualization. GTM has been proposed as a

probabilistic model to represent high-dimensional data by a sparse lattice of points in

a latent space, such that visualization, compression, and data inspection become possi-

ble. However, SOM and GTM have been introduced for Euclidean vectors only. Several

extensions of SOM to the more general setting of (dis)similarity data, have been pro-

posed, including median SOM which restricts prototype locations to data points [74],

online SOM and batch SOM using a kernelization of the classical approach [19, 139],

and methods which rely on deterministic annealing techniques borrowed from statistical

physics [45]. For GTM, a complex noise model, as proposed in [126], allows the extension

of the method to discrete structures, like sequences.

In [50], the relational SOM has been proposed: an extension of SOM for dissimilarity

data, relying on the same principle used for relational LVQ earlier in this chapter. In this

section, we transfer this idea to GTM. We show that an EM algorithm can be derived

to obtain the parameters of the model by maximizing the data log-likelihood. The

performance of this method – relational GTM – is demonstrated on several benchmark

sets. Since the basic principle is analog to the one for relational LVQ discussed earlier,

we will keep our presentation and experimental evaluation in this section rather concise.
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2.3.2. Generative topographic mapping (GTM)

The GTM [17] yields a generative probabilistic model for vectorial data x ∈ RD. The

model is a mixture of Gaussians, where the centers are induced by a regular grid of latent

points u in a latent space. The latent points are mapped to prototypical target vectors

u 7→ w = f(u,H) in the data space, via a function f . This function is parameterized

by H. A typical choice for f is a generalized linear regression model

f : u 7−→ Φ(u) ·H ,

with base functions Φ, e.g. equally spaced Gaussians with variance σ−1. Every latent

point u induces the Gaussian distribution

p(x|u,H, β) =
(
β

2π

)D/2

exp

(
−β
2
∥x− f(u,H)∥2

)
(2.6)

of variance β−1, generating a mixture of M modes

p(x|H, β) =
M∑
k=1

p(uk)p(x|uk,H, β) (2.7)

in which p(uk) is typically chosen uniformly, as p(uk) = 1/M . GTM training optimizes

the data log-likelihood

ln

(
N∏
i=1

(
M∑
k=1

p(uk)p(xi|uk,H, β)

))
(2.8)

with respect to H and β. This can be done by means of an Expectation Maximization

(EM) approach. The generative mixture component uk for a data point xi is treated

as a latent variable. If we choose a uniform distribution of the latent points, which is

peaked with p(uk) = 1/M at their grid positions, and a generalized linear regression

model, EM training can be performed. EM computes the responsibilities

Rki(H, β) = p(uk|xi,H, β) =
p(xi|uk,H, β)p(uk)∑
k′ p(x

i|uk′ ,H, β)p(uk′)
(2.9)

of the k-th component, for point number n, in alternation with the model parameters

H and β. The parameters H are given by

Φ⊺GoldΦH⊺
new = Φ⊺RoldX , (2.10)

in which R are the responsibilities, Φ is the matrix of base functions evaluated at

points uk, and X is the data matrix. G is a diagonal matrix holding the accumulated

responsibilities [G](n,n) =
∑

iRki(H, β). To compute the variance β−1, we solve

1

βnew
=

1

ND

∑
k,i

Rki(Hold, βold)
∥∥∥Φ(uk)Hnew − xi

∥∥∥2 . (2.11)
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2.3.3. Relational GTM

As for relational LVQ in the previous section, we now assume the case that data xi are no

longer represented by single vectors xi, but indirectly, in terms of pairwise dissimilarities

dij = d(xi, xj). Like before, we refer to relational data, and can thus assume that a

pseudo-Euclidean embedding with corresponding data vectors xi exists, but is unknown

to us. Hence, prototypical targets w in the data space cannot be determined explicitly

as vectors, and a direct computation of the probability from Equation (2.6) is no longer

possible. Therefore, we will employ the same technique as previously in Subsection 2.2.4,

and replace the explicit distance between prototypes w = f(u,H) and data vectors x.

We, again, assume an implicit representation of each prototype by a linear combination

of the data, as proposed in [50]:

wk =

N∑
i=1

αk
i x

i where

N∑
i=1

αk
i = 1 . (2.12)

Hence, a prototypewk is represented by the coefficient vector αk. This allows to compute

distances between the (unknown) data vectors and the prototypes, as follows:∥∥∥xi −wk
∥∥∥2 = [Dαk]i −

1

2
· (αk)⊺Dαk (2.13)

In [50], this observation was utilized to derive a relational variant of SOM. The same

principle allows us to generalize GTM to relational data, given by a dissimilarity matrix

D. We restrict prototype vectors wk to linear combinations of data points, as in (2.12).

Hence, we can directly treat the mapping of latent points to prototype points as a

mapping from the latent space to the coefficients:

f : uk 7−→ αk = Φ(uk) ·H (2.14)

where Φ refers to base functions, e.g. equally spaced Gaussians, with variance σ−1 in

the latent space. We want to point out that the coefficients are not restricted to non-

negative values in this case, i.e. αk
i ∈ R. Therefore, the (unknown) target vectors may

lie outside the convex hull of the data points in the pseudo-Euclidean embedding. To

achieve a representative topological map, this seems like a reasonable assumption, if a

smooth mapping from the latent space to the data space is intended.

To apply (2.13), we set the restriction∑
i

[Φ(uk) ·H]i = 1 (2.15)

Based on (2.6), the likelihood function (2.8) can be computed without an explicit ref-

erence to the prototypes wk, since the distance is given by (2.13). As for GTM, we

can employ an EM optimization scheme to arrive at solutions for the parameters β and

H. Again, the mode uk responsible for data point xi serves as a latent variable. EM
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training computes the responsibilities (2.9) using the distance (2.13), in alternation with

the parameters H and β, which are obtained by optimizing the expectation∑
k,i

Rki(Hold, βold) ln p(x
i|uk,Hnew, βnew) (2.16)

with respect to H and β, under the constraint (2.15). This constrained optimization

problem can be solved with the method of Lagrange multipliers, which is detailed in [J11].

The result is analog to the equations (2.10) and (2.11), with two minor differences:

• In (2.10), the data matrix X is replaced by the identity matrix I. This results from

the fact that data points xi are represented in the α-space of linear combinations

of data by a vector of zeros, with one entry [α′]i = 1.

• In (2.11) the squared Euclidean distance is given by the implicit distance compu-

tation from (2.13).

We refer to this method as relational GTM (RGTM). The initialization uses a two-

dimensional embedding of the dissimilarities as Euclidean vectors, obtained via the di-

mensionality reduction technique multidimensional scaling (MDS), see [80] as well as

Chapter 4. The details of the initialization method are provided in [J11].

2.3.4. Experiments

First, we test RGTM on several benchmark dissimilarity data sets as introduced in

the previous Section 2.2, which have also been used in [28, 50]: Cat cortex (65 data

points and 4 classes), Patrol (241 points, 8 classes), Voting (435 samples, 2 classes),

Protein4 (226 points, 5 classes), Aural sonar (100 points, 11 classes). For every data

set, a symmetric dissimilarity matrix with zero diagonal is given, which originates from

a problem-adapted dissimilarity measure based on raw data instances, as explained in

Section 2.2.7. The data sets were preprocessed in the same way as for RGLVQ.

Since these data sets are labeled, it is possible to evaluate the result via the classi-

fication accuracy obtained by posterior labeling. Thereby, posterior labeling of RGTM

takes place based on the majority label of the accumulated responsibility of a latent

point for data points carrying this label. We report the results of a cross-validation

(CV) with ten repeats, where we use 2-fold CV for the Cat cortex data and Aural sonar

data and 10-fold CV for the other data sets to maintain comparability with the results

from [50]. To apply cross-validation, out-of-sample extensions of the assignments can

be computed in the same manner as for RGLVQ, see Subsection 2.2.4. In all cases, we

use 100 latent points and 4 base functions given by Gaussians. This global parameter

setting was optimized with regard to all data sets.

4This set slightly differs from the setting in Section 2.2.7. We used 5 classes, as proposed in [47], with a

rather unbalanced class distribution: HA (31.86%), HB (31.86%), MY (17.26%), GG/GP (13.27%),

and others (5.75%)
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RNG DA RGTM

Cat cortex 69.8% (7.6) 80.3% (8.3) 76.5% (6.3)

Proteins 91.9% (1.6) 90.7% (0.8) 93.6% (0.4)

Aural sonar 83.4% (1.4) 85.6% (2.6) 83.7% (2.6)

Patrol 66.5% (2.4) 52.1% (5.1) 66.6% (4.6)

Voting 95.0% (0.4) 95.1% (0.5) 93.8% (0.6)

Table 2.3.: Mean classification accuracies (and corresponding standard deviations) ob-

tained by a repeated cross validation on the described benchmark data sets.

The initial β, which determines the bandwidth of the base functions, has only a slight

effect on the algorithm, if it stays in a reasonable interval. Here, the number of base

functions is chosen as small as possible to preserve the topology of the data. Changing

the number of latent points generally changes only the sampling of the data but the

shape of the map stays the same. With a smaller number, the algorithm is faster and

sparsity of the representation is increased; with a larger number, the algorithm is slower

but more details in the data relations can be discovered. For an example of this scaling

effect, please refer to [J11].

The respective classification accuracies obtained on the test set are listed in Table 2.3.

For comparison, we report the classification accuracy of deterministic annealing (DA)

and relational neural gas (RNG) as presented in [50]. We can observe that RGTM is

always competitive to these two alternatives and is even better for three of the five

classification tasks. Hence, RGTM offers a feasible alternative to DA and RNG as a

classifier.

Method Parameter Setting

RGTM number of latent points 900 (30-by-30 grid)

RGTM number of base functions 4 (2-by-2 grid)

RGTM number of training epochs 30

RSOM number of neurons 900 (30-by-30 grid)

RSOM number of training epochs 500

RSOM initial neighborhood range N/2

Table 2.4.: Meta-parameter settings used for the visualization experiments.

Visualization of classical music data set In the following, the visualization features

of RGTM are briefly demonstrated. For a more thorough discussion, please refer to

the article [J11]. We show the topographic mapping in case of a dissimilarity data

set, which is derived from a classical music archive. The individual pieces of music are
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originally given in the form of symbolic sequences in the MIDI file format5, describing

the progression of musical notes for all playing instruments in parallel. The information

content is therefore comparable to written music sheets. We used a dissimilarity measure

presented in [C09a], which imposes a tree structure on the polyphonic note progressions

over time, in order to separate parallel melodic sequences, e.g. to split lead melodies from

the accompanying chord progressions. For each musical piece, the separated melodic

lines are concatenated to a single symbolic sequence, using a relative encoding for the

progression of pitch changes and rhythmic expression. Overall, this yields a partial

invariance to pitch translation (transposition) and time scaling, for individual parallel

melodies. All sequence pairs are finally compared with the normalized compression

distance (NCD), see [87], resulting in a relational data representation.

The data set consists of 1068 sonatas by 5 composers from two consecutive eras of

western classical music: the period of the Viennese Classic (by Ludwig van Beethoven,

Wolfgang Amadeus Mozart, and Joseph Haydn, around 1730-1820 AD), and the Baroque

era (by Domenico Scarlatti and Johann Sebastian Bach, around 1600-1760 AD). The

musical pieces were taken from the online MIDI database “Kunst der Fuge”6. Class

labels are assigned according to the composer, however, we will omit a quantitative

evaluation of the classification results, since there is no ground truth available for this

kind of data set. Still, the visualization features of RGTM can be demonstrated in

comparison to the existing RSOM, as shown in Figure 2.2. We can see that RGTM

displays the class structure more distinctly, i.e. clusters for composers are more clearly

visible.

In this case, RGTM and RSOM were trained with the parameters listed in Table 2.4.

As before, we used the majority vote for posterior labeling. The variance of the base

functions, σ−1, was set in a way that fits the distance between neighboring base function

centers. In the RSOM, the neighborhood range defines how much the update process of

one neuron influences the neighboring neurons in the RSOM grid, for details, see [50].

Its initial value r0 was set to half the number of data points. The range is annealed

exponentially to 0.01 during training, by calculating the range for the current epoch

as rc = r0 · (0.01/r0)(ec/e), where e refers to the total number of epochs, and ec is the

current epoch count. The chosen settings were optimized for each method according to

visual appearance only.

After the training of RGTM, different labeling strategies can be employed, which we

will exemplify for this data set. Labeling by majority vote – as previously applied –

means that a prototype in the grid is assigned the label of the majority of data points

in its receptive field. This is displayed in Figure 2.2 for both, the RGTM and RSOM.

Alternatively, one can label the RGTM prototypes as follows: a latent point in the

grid is assigned the class label, which is carried by the data points that have the highest

5http://midi.org/
6http://www.kunstderfuge.com

http://midi.org/
http://www.kunstderfuge.com


2.3. Relational generative topographic mapping 43

accumulated responsibility for this latent point. Note that every latent point will have at

least some small responsibility with respect to any data point. Therefore, all prototypes

in the map would get assigned a class label, and no unlabeled points (dead units) would

appear. To control this behavior for visualization tasks, it is useful to set a threshold for

the value of responsibility, below which the latent point remains without any label, i.e.,

a class label is only assigned to a latent point, if the responsibility of at least one data

point for this latent point exceeds the threshold. Thus, adjusting this threshold controls

how many dead units will appear in the map eventually. The resulting maps are shown in

Figure 2.3 for two different threshold values. These visualizations emphasize the overall

class distribution, as opposed to the map with majority vote labeling in Figure 2.2,

where local spatial and structural relationships are more accurately represented.

(a) RGTM

Bach

Beethoven

Haydn

Mozart

Scarlatti

(b)

Classes
(c) RSOM

Figure 2.2.: RGTM (left) and RSOM (right) visualization of a data set of classical sonatas

by Beethoven (102), Haydn (172), Mozart (147), Bach (92), and Scarlatti (555). The

prototypes (latent points) in the grid are marked using posterior labeling by the majority

vote principle. The RGTM grid shows a noticeable separation of the musical pieces by

composer, where mostly the comprehensive work of Bach marks a blend between the

Viennese Classic and Baroque era. The arrangement seems meaningful since Bach’s

work is considered influential for both musical eras. Also the distinct style of Scarlatti

is represented. In the grid on the right, generated with RSOM, the separation of the

composers is less distinct.

2.3.5. Concluding remarks

In this section, we have described how GTM can be extended to address dissimilarity-

based data representations. The experiments demonstrated that the classification per-

formance is comparable to alternatives, such as deterministic annealing and relational
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(a) RGTM - responsibility thresh-

old 10−3

Bach

Beethoven

Haydn

Mozart

Scarlatti

(b)

Classes
(c) RGTM - responsibility thresh-

old 10−8

Figure 2.3.: Two visualizations of the sonatas data set using the posterior labeling by

responsibilities with different threshold values. On the left, where the threshold is higher

(10−3), there are more unlabeled prototypes than in the map on the right, where the

threshold is set lower (10−8). For comparison see Fig. 2.2 (left), where the posterior

labeling was done by majority vote.

neural gas. However, as a particular benefit, RGTM yields a sparse representation of the

data in terms of latent points in a regular grid (a latent space). Given that the latent

grid is a low-dimensional structure, we can utilize it to visualize class structures of the

data in a topographic map, similar to SOM. Additionally, it is possible to regularize the

mapping of latent points to their targets in the data space (the prototypes) appropri-

ately. However, since each prototype is described by a vector of coefficients w.r.t. all

data, we arrive at a O(N2) time and memory complexity, like in the case of relational

LVQ. As a possible remedy, the Nyström approximation can be applied for RGTM as

well, in analogy to Section 2.2.5. We will omit a further investigation of this subject

here; please refer to [C10c] for an evaluation of the Nyström method in the context of

RGTM.



Chapter 3.

Adaptive metrics for complex data

Chapter overview In this chapter, we discuss techniques to adapt data dissimilarities in a way that

facilitates classification with LVQ. This is achieved by learning the underlying metric parameters during

classifier training, according to given class labels. Established metric learning schemes for vectorial LVQ

are briefly reviewed and demonstrated. To address more complex dissimilarity-based data representa-

tions, we propose the transfer of this idea to relational LVQ, using an alignment measure for symbolic

sequences.

Parts of this chapter are based on:

[J15] B. Mokbel, B. Paassen, F.-M. Schleif, and B. Hammer. Metric learning for sequences in relational LVQ. Neuro-

computing, (accepted/in press), 2015.

[C14c] B. Mokbel, B. Paassen, and B. Hammer. Efficient adaptation of structure metrics in prototype-based classifi-

cation. In ICANN 2014, pages 571–578, 2014.

[C14b] B. Mokbel, B. Paassen, and B. Hammer. Adaptive distance measures for sequential data. In ESANN 2014,

pages 265–270, 2014.

[TR12] B. Mokbel, M. Heinz, and G. Zentgraf. Analyzing motion data by clustering with metric adaptation. In Proc.

of ICOLE 2011, number MLR-01-2012 in Machine Learning Reports, pages 70–79, 2012. ISSN: 1865-3960.

3.1. Motivation

All similarity- or dissimilarity-based classification and clustering techniques crucially

depend on the underlying metric or proximity measure to address the data. Hence,

these techniques fail if the choice of the metric or its parameterization are not suited for

the given task. This observation motivated research about metric adaptation strategies

based on given training data: today, several highly efficient metric learners are readily

available for the vectorial setting, and the area constitutes a well-established field of

research, see e.g. the excellent overview articles [11, 75].

For vectorial data representations, metric learning generally aims at an automatic

adaptation of the Euclidean distance towards a more general (possibly local) quadratic

form, based on auxiliary information. Most strategies act solely upon the metric and

45
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are not interlinked with the subsequent classification or clustering method. This has the

advantage that efficient, usually convex optimization schemes can be derived. However,

no such technique currently offers an adaptation which is efficient with respect to data

size and dimensionality, which can deal with local metrics, and which can be accompanied

by guarantees of learning theory.

By linking metric adaptation to the subsequent classification tool, the property of a

convex cost function is lost, depending on the considered classifier. However, metric

learning can be integrated efficiently into the classification scheme, and results from

learning theory can be derived by referring to the resulting function class. This has been

demonstrated in the context of learning vector quantization (LVQ), where metric learn-

ing opened the way towards efficient state-of-the-art results in various areas, including

biomedical data analysis, robotic vision, and spectral analysis [6, 33, 69, 13, 72, 9]. In

Chapter 2, we already pointed out several benefits of LVQ-based classifiers. One of the

striking properties is the intuitive definition of the classifier models in terms of prototyp-

ical representatives. They enjoy a wide popularity in application domains, particularly if

human inspection and interaction are necessary, or life-long model adaptation is consid-

ered [117, 73, 71]. Modern LVQ schemes are accompanied by mathematical guarantees

about their convergence behavior and generalization ability [119, 121]. Metric adap-

tation techniques in LVQ do not not only enhance the representational power of the

classifier, but also facilitate interpretability by means of an attention focus regarding

the input features and possible direct data visualization in case of low-rank matrices

[119, 24]. We will briefly demonstrate the capabilities of these techniques later in this

chapter, using real-world data sets from a motion tracking camera.

As we have pointed out earlier, most classical LVQ approaches can process vectorial

data only, limiting the suitability of these methods regarding complex data structures,

such as sequences, trees or graph structures, for which a direct vectorial representation

is often not available. In Chapter 2, we presented relational LVQ as an extension to

address dissimilarity data, in which an implicit pseudo-Euclidean embedding opens the

possibility of smooth prototype updates, even for discrete data structures. These tech-

niques yield competitive results to modern kernel classifiers, see [51]. However, relational

LVQ shares the sensitivity of LVQ with respect to a correct metric parameterization.

For structure metrics, such as sequence alignment, metric parameters correspond to the

choice of the underlying scoring matrix in case of symbolic sequences over a discrete al-

phabet, or the choice of relevance weights for the sequence entries in case of sequences of

numeric vectors. Note that there exist ad hoc techniques how to pick a suitable scoring

function e.g. in the biomedical domain: prime examples are given by the PAM or BLO-

SUM matrices often used for aligning DNA sequences, which rely on simple evolutionary

models and corresponding data sets [57, 122]. It is, however, not clear in how far these

scoring matrices are suitable for a given classification task. Thus, the question arises,

how to extend metric learning strategies to the case of structure metrics.
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It has been pointed out in a recent survey [11] that structure metric learning consti-

tutes a novel, challenging area of research with high relevance, and only a few promising

approaches exist, particularly in the context of sequence alignment. Sequence alignment

plays a major role in the biomedical domain, for processing time series data, or for string

comparisons. Its optimum computation is usually based on dynamic programming or

even more efficient approximations thereof. The question of how to infer an optimal

scoring matrix from aligned sequences has been investigated under the umbrella term of

‘inverse alignment’. Several promising approaches have been proposed in this context.

While the resulting techniques can be accompanied by theoretical guarantees in simple

settings, more complex approaches often rely on heuristics, see e.g. [48, 125, 12]. A

popular platform which combines various adaptation methods for scoring functions is

offered by SEDiL, for example [20].

In our scenario, however, we are dealing with the different question of how to infer

structure metric parameters, given a classification task. Hence, optimal alignments

are not known, rather data are separated into given classes, and metric parameters

should be adapted such that sequences within one class are considered similar by the

alignment. Eventually, this question aims at the identification of structural invariances

for the given classification task at hand: which structural substitutions do not deteriorate

the classification result? In this chapter, we will investigate in how far structure metric

learning can be introduced into relational LVQ in a similar way as for its vectorial

counterparts. For this purpose, we approximate discrete alignment by a differentiable

function, and show that metric learning is possible based on the relational LVQ cost

function and gradient mechanisms.

3.1.1. Scientific contributions and structure of the chapter

This chapter presents the following key contributions:

• A novel approach for metric learning is proposed, driven by the cost function of

the relational LVQ classification technique, in order to adapt parameters of a dis-

similarity measure for structured data, in particular symbolic sequences. Metric

adaptation is performed in conjunction with the classifier’s own optimization pro-

cedure, providing a seamless integration.

• The proposed learning scheme is realized and demonstrated in particular for se-

quence alignment, where the complex choice of the underlying scoring parameters

is inferred from the data. Practical experiments show how metric adaptation does

not only facilitate class-discrimination, but also increases the interpretability of

the classifier model.

• Several approximation techniques are investigated, in order to compensate for the

inherent high computational cost of the metric learning algorithm.
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The remainder of the chapter is structured as follows: First, in Section 3.2, we will

briefly introduce metric learning techniques in LVQ for vectorial data representations.

Its advantages regarding the interpretability of the classifier model, will be demonstrated

in a small application example for human pose detection for motion capturing data.

Thereafter, we will focus on parameterized dissimilarity measures, instead of vectorial

data descriptions. Considering sequence alignment as a particularly interesting case, we

will explain its objective and efficient computation via dynamic programming, in Sec-

tion 3.3. By approximating the alignment with a smooth function, derivatives become

well-defined, and metric adaptation can be integrated into the relational LVQ update

rules. In this context, we introduce efficient approximations that warrant the feasibil-

ity of the algorithm. In Section 3.5, we demonstrate the behavior of our method in

simple mock-up scenarios, where ground truth for the metric parameters is available,

and the resulting cost surfaces can be inspected directly. Afterwards, in Section 3.6, we

investigate the efficiency and effectiveness of the technique in two real-world examples,

one dealing with discrete sequences from bioinformatics, where the scoring matrix is

adapted, the other originating from the domain of educational tutoring systems, where

metric parameters correspond to the relevance of multi-dimensional sequence entries.

Finally, we discuss additional approximations to tackle large data sets: on the one hand,

alignment paths with small contribution can be ignored; on the other hand, general-

purpose approximations, such as the Nyström technique, can be integrated easily into

the workflow to reduce the number of necessary distance calculations. We briefly un-

derline the validity of these techniques in one of our example scenarios, before closing

with a brief summary of open questions in Section 3.7. We will occasionally refer to

additional information in the Appendix.

3.2. Vector-based metric learning in LVQ

We recall, from Chapter 2, that the learning behavior and classification scheme of GLVQ

relies on a distance measure d:

• To classify a data point, it is assigned the label of its closest prototype, w.r.t. d.

• To train the classifier, the cost function in Eq. 2.1 (page 27) is minimized, wherein

each summand evaluates the difference d(xi,w+)− d(xi,w−) for a data xi.

In the classical GLVQ algorithm, by Sato and Yamada [114], d is the squared Euclidean

distance d(xi,wj) = ∥xi−wj∥2 . However, it has been shown, that this distance function

can be exchanged by generalized Euclidean metrics [119], or less conventional choices

like divergence measures [65]. In [119], the authors proposed to use a general quadratic

form:

dΛ(x
i,wj) = (xi −wj)Λ(xi −wj)⊺ with Λ = Ω⊺Ω . (3.1)
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This distance dΛ is parameterized by a matrix Λ, employing the comprehensible notion

that Ω defines a linear mapping, by which the data and the prototypes are transformed:

dΛ(x
i,wj) =

(
(xi −wj)Ω⊺

)2
=
(
xiΩ⊺ −wjΩ⊺

)2
.

Therefore, the result is simply given by the standard squared Euclidean distance for the

transformed vectors, after the mapping. The condition Λ = Ω⊺Ω ensures symmetry in

Λ, resulting in an overall symmetric distance function.

As in other supervised metric learning schemes, the key idea in [54] and [119] is to

adapt metric parameters Λ in such a way, that the distance function facilitates classi-

fication for the given data. This goal is realized by training Λ in conjunction with the

GLVQ online learning scheme: The prototype updates remain identical to the classic

GLVQ algorithm, although using the parameterized distance. After each update step,

matrix Λ is also adapted in a stochastic gradient descent to optimize the GLVQ cost

function. Hence, every iteration of the training algorithm includes two separate up-

dates: (i) the prototype update with a fixed metric according to the current Λ, and (ii)

the metric adaptation with fixed prototypes. A derivative of the cost function EGLVQ

w.r.t. Ω yields the metric update rules (the full gradient terms can be found in [119]).

Two particular variants of GLVQ have been proposed, which employ the inherent metric

adaptation scheme for the distance dΛ:

GRLVQ: Generalized Relevance Learning Vector Quantization, see [54].

In this variant, Λ is restricted to a diagonal matrix, so that each entry
[
Λ
]
(k,k)

scales the contribution of the corresponding k-th dimension in the data and pro-

totypes, i.e. [xi]k, [w
j ]k. While this does not utilize all degrees of freedom in the

parameters, it allows for a very straightforward interpretation: if data are provided

in a feature-based representation,
[
Λ
]
(k,k)

can be seen as the relevance of a certain

feature for class discrimination in the classifier model. Therefore, we will refer to

the diagonal of Λ as the relevance profile.

GMLVQ: Generalized Matrix Relevance Learning Vector Quantization, see [119].

In case of GMLVQ,Λ is a full matrix. In addition to the scaling of single dimensions

via the diagonal entries, this also allows to regulate the emphasis of every pairwise

correlation between data dimensions. An off-diagonal entry
[
Λ
]
(k,l)

, k ̸= l states,

how relevant the correlation of the feature pair (k, l) is for class discrimination in

the model. Obviously, this concept is more powerful to alter the metric, however,

its interpretation can be less intuitive in practical applications. We will refer to Λ

as the relevance matrix.

In summary, the combination of GLVQ and metric learning offers interesting benefits: On

the one hand, the resulting prototype vectors can be interpreted directly (in terms of the

feature-based data representation), and yield intuitive access to the classification model.

On the other hand, trained metric parameters can reveal the semantic influence of feature
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dimensions for the classification problem, and yield additional insight for experts in the

field. Please refer to [119] for an elaborate discussion about metric learning in GLVQ,

and to [6] for a particularly successful practical application in the biomedical domain.

In the following, we will present a simple real-world example, as a proof-of-concept to

demonstrate the utility of metric learning in GLVQ.

3.2.1. Motion tracking data

The 3-dimensional tracking of human and animal body movement is important in various

areas of science. Researchers, for example in the fields of biology, medicine, robotics, or

sports, investigate such data to reveal patterns and complex interaction rules in natural

motion [101, 104, 32]. Since the precision and the availability of motion tracking tech-

nology is increasing, intelligent analysis methods become necessary to assist researchers

in identifying relevant information in large amounts of data. Although the raw data

usually consists of multiple 3-dimensional vectors, the data precision and characteristics

vary depending on the kind of tracking system. Today, many kinds of systems are avail-

able, ranging from large expensive motion capturing setups involving several distributed

cameras and delivering very robust data at a high spatial resolution, to less sophisti-

cated, small, cheap, and mobile solutions using only a single camera. Hence, there is a

variety of options available for researchers to gather motion data. However, regarding

the automatic analysis of this complex data, there is no general recipe in order to extract

high-level information. Tools for clustering and visualization (see overviews in e.g. [80],

and [35, ch. 10]) are widely applicable and can make the data accessible for experts in

order to gain motor-functional insights from complex motion scenarios. In this context,

metric learning algorithms [54, 119, 43] offer useful features. On the one hand, the

prototype-based clustering technique can be used to categorize motion patterns, yield-

ing a classifier for later recorded data, while the resulting prototypes may reveal typical

poses or patterns, since they can be interpreted directly. On the other hand, with the

addition of metric learning, the most relevant joint angles or spatial correlations can be

identified automatically.

Our following experiments use a small data set of human poses, and a motion sequence,

recorded with the single-camera tracking system Kinect1 from Microsoft. We will also

refer to other motion tracking data sets later in this thesis.

Representation In general, tracking data is often given as a sequence of multiple 3-

dimensional vectors over a certain number of time steps, in the following referred to

as frames. Each vector represents the positions of certain points on the target body

in a steady coordinate system defined by the tracking device, in the following referred

to as the world coordinate system. In partially rigid bodies of animals or humans, the

movement is constrained by the underlying skeleton and the capabilities of the joints.

1http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/

http://research.microsoft.com/en-us/um/redmond/projects/kinectsdk/
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Figure 3.1.: The joints and bones of the skeleton provided by OpenNI & NiTE (Version

1.3.0) when using a Kinect camera (view from the back).

Rigid parts, called segments or bones are connected by flexible joints characterized by

their degrees of freedom (DoF) and their motion range. Therefore, it is sufficient to track

only a few points (markers) on the body, and model its skeletal properties based on prior

knowledge about the tracking target, instead of tracking a high-resolution point cloud,

for example. Usually, for every frame, the locations of the joints are calculated from the

marker positions, but some markerless tracking devices yield joint positions directly, like

in our technical setup.

Kinect, the single-camera system which we use, provides an RGB image and a depth

view of the scene. To access the preprocessed information of joint positions, we used the

software OpenNI2, and the middleware NiTE3 which infers a human skeleton structure

by depth and texture cues only, without the need for special physical tracking markers,

like reflective dots on the target body. NiTE & OpenNI provide 3D coordinates for every

joint of this simplified human skeleton, see Figure 3.1. Because of the system’s technical

limitations, there are significant simplifications as compared to a natural skeleton: only

the most important joints are considered, and some bones remain in a fixed orientation

relative to each other. From the given joint positions expressed in world coordinates,

2http://www.openni.ru and http://github.com/OpenNI/OpenNI2
3http://www.openni.ru/files/nite/index.html

http://www.openni.ru
http://github.com/OpenNI/OpenNI2
http://www.openni.ru/files/nite/index.html
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Figure 3.2.: Flag semaphore signals. The ‘Space’ signal was not used in our recorded

data set. (Picture from Wikimedia Commons4.)

we derived a more abstract representation, based on joint angles. This is important,

since the data representation should reflect the skeleton’s ability to move joints (mostly)

independently from the other joints. In case of the Kinect software, we achieved this

preprocessing step by utilizing particular restrictions and rigidness in the skeleton. The

details are specified in a technical report, see [TR12].

To arrive at the joint angle representation, we employed the concept of a kinematic

chain: A skeleton can be interpreted as a graph structure, usually an acyclic directed

graph (i.e. tree), with one joint serving as the root node. This (strictly hierarchical)

structure is called an open kinematic chain and yields the basis for representing motion

data in many technical domains, see e.g. [101] for a thorough description. In our case,

the root is the neck joint, and all edges are directed away from the neck. Centered

at every joint, we established a local coordinate system, which is independent of the

bones in lower hierarchical levels. Therefore, the orientation of a bone which connects

to the next joint in the chain can be described in the local system. The use of spherical

coordinates is typical for this purpose, i.e. angles, where ϕ defines the rotation around

the Z-axis and θ is the elevation from the X-Y-plane. Our naming scheme for the joint

angles is the following: Every bone has a parent and a child node in the chain. While

the orientation of the bone is expressed in the local coordinate system of the parent

joint, we name the angle according to the child, i.e. the bone’s end. For example, “R

Elbow Theta” is the elevation of the right upper arm bone in the right shoulder’s local

4Fig. 3.2 image source: http://commons.wikimedia.org/wiki/File:Semaphore Signals A-Z.jpg

http://commons.wikimedia.org/wiki/File:Semaphore_Signals_A-Z.jpg
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Figure 3.3.: The bar plot shows the diagonal of the matrix Λ, i.e. the relevance profile

of the GRLVQ classifier model, for the flag semaphore data set.

coordinate system.

This data representation yields desired invariances: A translational and rotational

invariance of the entire body w.r.t. the world coordinate system leads to poses being

represented equally, if the tracked person uses the same body posture, but is standing in

a different location or orientation within the camera’s field of vision. Further, joint angles

for a certain bone are (mostly) not affected by changes in the other joints of the kinematic

chain. In order to train GRLVQ and GMLVQ models in the following experiments, we

use 16 of these local angles to describe the input data in a feature-based representation.

The angles5 are listed in Figure 3.3.

3.2.2. Proof-of-concept example

We used two small data sets, where we have strong assumptions about the relevance

of features for class discrimination, and can thus compare our expectations with the

outcome of the metric learning process.

Flag semaphore data The first data set consists of 26 static poses, which can be

distinguished by the shoulder angles only. The poses are taken from the flag semaphore,

a code to communicate at a distance by means of visual signals, common in the maritime

world prior to the Morse code. The signaling person would usually hold flags, rods, or

5Due to technical restrictions in the camera system and software, several of the torso joints remain

rigid. Therefore, our calculation of joint angles is only valid for the limbs, as specified in [TR12]. In

the experiments, we used only the movable limb joints, see Fig. 3.3.
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paddles in their hands for better visibility, although their presence or absence does not

affect the code. Certain constellations of arm orientations represent the letters in the

alphabet from A to Z, see Figure 3.2. These 26 poses (we omitted any special signals

like the ‘Space’ symbol) have been recorded from 4 different test subjects, resulting

in 104 total data points with 4 samples per class. We trained the GLVQ algorithm

(without metric adaptation), and the GRLVQ (with a diagonal matrix Λ) with one

prototype per class on the entire data set. While GLVQ achieved 90% training accuracy,

GRLVQ resulted in 100% training accuracy. Due to the small number of available

samples, we tested the generalization ability of the GRLVQ model only in terms of an

online recognition in front of the camera, with positive results: all signal poses were

classified correctly, and fluent switches between neighboring poses were possible. Due to

the mentioned invariances in the data representation, the classification model was not

affected by global orientation changes of the body6.

The relevance profile, shown in Figure 3.3, clearly singles out the angles of the left

and right elbow elevation as the most important for class separation, which matches our

expected response of the algorithm. Since the relevance learning scheme finds merely

some possible configuration to separate the classes, the other angles are also contributing

partially. The emphasis on the two important shoulder angles leads to an increased ro-

bustness of the classification. For example, the orientation of the legs becomes irrelevant

for the signal recognition.

Walking-sequence data The second data set consists of four short sequences, showing

two different walking styles, each recorded from two different persons. The two walking

behaviors represent our classes in the data, which are partly antagonistic w.r.t. joint

angle progressions: The first is a normal straight human walk, where the left arm and

right leg move in one direction at the same time (e.g. forward), while the right arm

and left leg move in the opposite direction (e.g. backwards). The other walking style

uses the opposite (unnatural) combination, where the left arm and left leg move in the

same direction at a time, and the right limbs in the opposite direction at the same time.

All sequences together consist of 265 frames, which were recorded at a rate of 30 Hertz,

they show about 3 strides of each walking style per person. We used each frame as an

individual data sample, without any handling or preprocessing of the time-series aspects

in the data. The class labels per frame correspond to the walking style.

GLVQ (without metric adaptation), and GMLVQ (with an adaptive matrix Λ) were

trained with 5 prototypes per class in 50 epochs, on a random sample consisting of 90%

of all data instances, leaving the rest for testing the model. With GLVQ, we achieved a

classification accuracy of 88% on the training set and 75% on the test set. The GMLVQ

model yields an improved accuracy, with 91% on the training set and 92% on the test

6A video of the online recognition is available on the web, which demonstrates the robustness and the

invariances of our classification model: http://mokbel.de/phd/Flag Recognition.avi

http://mokbel.de/phd/Flag_Recognition.avi
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Figure 3.4.: The matrix Λ of the GMLVQ classifier model trained on the walking-

sequence data set. Correlations of the left and right limb angles have high absolute

values, and are thus utilized more in the problem-adapted metric of the trained classifier.

set. In addition to the enhanced classification results, GMLVQ offers additional insights

with the adapted metric: the trained parameters Λ are shown in Figure 3.4. Note, that

the sign of the values in the matrix are not really meaningful and interpretable as the

respective positive or negative correlations of the joint angles in either one of the classes.

Instead, only the absolute values in the matrix say, how much the pairwise correlation

of these dimensions was utilized for the class separation found by the classifier model,

which might translate to semantic meaning regarding the classes. As expected in this

case, a pattern of correlations of the left and right limb angles is clearly visible, with

strongly expressed correlations between the left and right knee and elbow angles, for

instance.

From these examples, we can see how metric learning in GLVQ offers an interesting

perspective as a powerful classifier, but also as a data analysis tool for real-world appli-

cations. However, the concept relies on vectorial data representations. Since Chapter 2

described the relational GLVQ method to address dissimilarity-based data representa-

tions, we will now investigate the possibility to transfer metric learning to dissimilarity

measures in relational GLVQ, in the remainder of this chapter.
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3.3. Sequence alignment as a parameterized dissimilarity

measure

In the previous section, we have discussed how the distance measure is a crucial compo-

nent in the LVQ classifier; not only in terms of the classification accuracy (since LVQ is

based on a winner-takes-all scheme), but also in terms of a more intuitive understanding

of the classifier model. In this section, we want to transfer this to relational GLVQ

(RGLVQ), which was introduced in Chapter 2. In case of vector-based GLVQ, a param-

eterized distance can be adapted automatically in conjunction with the learning process.

We are interested in possibilities to extend RGLVQ in a similar fashion, aiming at the

twofold goal: to improve the accuracy and generalization ability of the resulting proto-

type model, and to enhance its interpretability by learning explicit structural invariances

in terms of metric parameters. In the following, we will consider one particularly relevant

type of structured data and corresponding metric, namely sequential data and sequence

alignment. Note that the proposed rationale can be extended to alternative structure

metrics, as long as they are differentiable with respect to metric parameters.

Assume an alphabet Σ is given, which can be discrete or continuous. We denote se-

quences with entries aI ∈ Σ as ā = (a1, . . . , aI , . . . , a|ā|). Thereby, their length |ā| can
vary. The set of all sequences is denoted as A = Σ∗. We assume that a symmetric dis-

similarity measure dλ : Σ×Σ → R, with zero self-dissimilarities, is given to quantify the

dissimilarity between single elements of the alphabet. This measure involves parameters

λ which we would like to adapt by means of metric learning. Common choices of the

dissimilarity measure are, for example:

• A scoring matrix for discrete alphabets |Σ| <∞:

Let k = aI ∈ Σ, m = bJ ∈ Σ be symbols from the respective sequences ā, b̄. Then,

the dissimilarity dλ(aI , bJ) = λkm ≥ 0 specifies the substitution costs if symbol k

is aligned with symbol m.

• A relevance weighting for vectorial sequence entries:

Let aI ,bJ ∈ Σ = Rn be vectorial elements from the respective sequences ā, b̄.

The notation arI refers to the r-th entry in the vector aI = (a1I , . . . , a
n
I ). Then,

dλ(aI ,bJ) =
∑n

r=1 λr · dr(arI , brJ) is a weighted sum of appropriate non-negative

and symmetric dissimilarity measures dr for each dimension. Therefore, the value

λr ≥ 0 specifies the ‘relevance’ of the r-th dimension for all sequence elements

w.r.t. the given task.

Alignment incorporates the possibility of deletions and insertions to be able to compare

two sequences of different lengths. For this purpose, the alphabet Σ is extended by

a specific symbol, the gap “−”. Similarly, the dissimilarity measure is extended to

incorporate gaps, using the same symbol for simplicity:

dλ : (Σ ∪ {−})2 −→ R
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specifying the gap costs

dλ(aI ,−) = dλ(−, aI) ≥ 0 .

We exclude the case of two gaps being aligned, by the choice dλ(−,−) = ∞.

Based on these definitions, a dissimilarity measure for sequences can be defined via

alignment: A (global) alignment of sequences ā and b̄ consists of extensions ā∗ ∈ (Σ ∪
{−})∗ and b̄∗ ∈ (Σ ∪ {−})∗ by gaps such that |ā∗| = |b̄∗|. The overall costs of a fixed

alignment is comprised of the sum of pairwise local distances d(a∗I , b
∗
I). The optimal

alignment costs (which we also refer to as alignment dissimilarity) are given by the

minimal achievable costs

d∗(ā, b̄) = min


|ā∗|∑
I=1

dλ(a
∗
I , b

∗
I)
∣∣ (ā∗, b̄∗) is alignment of (ā, b̄)

 . (3.2)

Although this definition inherently considers all possible arrangements (which is an

exponential number), these costs can be computed efficiently based on the following

dynamic programming (DP) scheme. We use the shorthand notation ā(I) = (a1, . . . , aI)

and b̄(J) = (b1, . . . , bJ) to denote the first I or J components of a sequence. Then, the

following Bellman equality holds for the alignment costs of the parts ā(I) and b̄(J):

d∗(ā(0), b̄(0)) = 0 , (3.3)

d∗(ā(0), b̄(J)) =
J∑

J ′=1

dλ(−, bJ ′) ,

d∗(ā(I), b̄(0)) =

I∑
I′=1

dλ(aI′ ,−) ,

d∗(ā(I + 1), b̄(J + 1)) = min
{
ARep := d∗(ā(I), b̄(J)) + dλ(aI+1, bJ+1),

AIns := d∗(ā(I + 1), b̄(J)) + dλ(−, bJ+1),

ADel := d∗(ā(I), b̄(J + 1)) + dλ(aI+1,−)
}
.

Note that the three terms ARep, AIns, ADel, respectively, refer to the cases

• replacement : symbols aI+1, bJ+1 are aligned (called match if aI+1=bJ+1),

• insertion: symbol bJ+1 is aligned with a gap,

• deletion: symbol aI+1 is aligned with a gap.

This recursive scheme can be computed efficiently in time and memory O(|ā| · |b̄|) based
on dynamic programming.
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3.4. Learning scoring parameters from labeled data

Sequence alignment crucially depends on the local dissimilarities dλ, which in turn are

determined by the parameters λ. For a discrete alphabet, these parameters correspond

to the scoring matrix which quantifies the costs of substituting a symbol by another one

(i.e. for symbolic replacements, insertions, or deletions). We propose an adaptation of λ

based on the RGLVQ error function, given labeled training data. This provides a way

to automatically learn a suitable parameterization of the alignment dissimilarity for a

given task.

We transfer the basic idea that was precedented for vectorial LVQ in [119]: simul-

taneously to prototype updates, the alignment parameters are optimized by means of

a gradient descent based on the RGLVQ error. Thus, we consider the derivative of

summand Ei
RGLVQ corresponding to a sequence āi w.r.t. one parameter λq in λ:

∂Ei
RGLVQ

∂λq
= Φ′ · 2d−(āi)

(d+(āi) + d−(āi))2
· ∂d

+(āi)

∂λq
(3.4)

− Φ′ · 2d+(āi)

(d+(āi) + d−(āi))2
· ∂d

−(āi)

∂λq

with

∂d(āi, w̄j)

∂λq
=
∑
k

αj
k∂d

∗
ik/∂λq −

1

2

∑
kl

αj
kα

j
l ∂d

∗
kl/∂λq (3.5)

where d∗ik refers to the alignment dissimilarity of sequences i and k. An alignment d∗(ā, b̄)

as introduced above is not differentiable. Therefore, we consider an approximation, which

we call soft alignment. We substitute min by

softmin(v1, . . . , vm) =
m∑
i

vi ·
exp(−βvi)∑m
j exp(−βvj)

with the derivative

softmin′(vi) =
(
1− β · (vi − softmin(v1, . . . , vm))

)
· exp(−βvi)∑m

j exp(−βvj)
,

for a fixed “crispness” β ≥ 0, β ∈ R, where β → ∞ corresponds to the discrete minimum

function. The derivative ∂d∗(ā, b̄)/∂λq can be computed in a DP scheme analog to the
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alignment:

∂d∗(ā(0), b̄(0))

∂λq
= 0 , (3.6)

∂d∗(ā(0), b̄(J))

∂λq
=

J∑
J ′=1

∂dλ(−, bJ ′)

∂λq
,

∂d∗(ā(I), b̄(0))

∂λq
=

I∑
I′=1

∂dλ(aI′ ,−)

∂λq
,

∂d∗(ā(I + 1), b̄(J + 1))

∂λq
= softmin′(ARep) ·

(
∂d∗(ā(I), b̄(J))

∂λq
+
∂dλ(aI+1, bJ+1)

∂λq

)
+ softmin′(AIns) ·

(
∂d∗(ā(I + 1), b̄(J))

∂λq
+
∂dλ(−, bJ+1)

∂λq

)
+ softmin′(ADel) ·

(
∂d∗(ā(I), b̄(J + 1))

∂λq
+
∂dλ(aI+1,−)

∂λq

)

The full derivation of Equation 3.6 is specified in the Appendix Section A.1.

The derivative ∂dλ
(
ā(I), b̄(J)

)/
∂λq depends on the choice of the dissimilarity measure

dλ. For the two particularly interesting cases of discrete symbolic, and vectorial sequence

entries, we get:

• Dissimilarities for a discrete alphabet dλ(aI , bJ), with scoring parameters λkm:

∂dλ(aI , bJ)

∂λkm
= δ̂(aI , k) · δ̂(bJ ,m)

∂dλ(aI ,−)

∂λkm
= δ̂(aI , k) · δ̂(−,m)

∂dλ(−, bJ)
∂λkm

= δ̂(−, k) · δ̂(bJ ,m), with Kronecker-Delta δ̂

• Dissimilarities for a vector alphabet dλ(aI ,bJ) =
∑n

r=1 λr · dr(arI , brJ), with rele-

vance weights λr:

∂dλ(aI , bJ)

∂λr
= dr(a

r
I , a

r
J)

∂dλ(aI ,−)

∂λr
= dr(a

r
I ,−)

∂dλ(−, bJ)
∂λr

= dr(−, arJ)

where, in the latter case, parameterized gap costs are considered as a suitable

extension of dr. For real numbers, this can be chosen as dr(a
r, u) for some constant

u ∈ R such as u = 0, for example.
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The costs of computing the derivative ∂d∗(ā, b̄) are O(|ā| · |b̄|), as for alignment itself.

This, however, has to be performed for every possible parameter. Further, due to the

implicit prototype representation as a convex combination, it has to be computed for

all pairs of sequences to achieve a single update step, see Eq. 3.5. Hence, costs amount

to O
(
|λ| · N2 · max

{
|ā|
∣∣ ā is sequence in the training set

}2)
for an update, where N

denotes the number of training sequences, which is infeasible. Therefore, we will present

an efficient approximation in the following, where every prototype is substituted by a

convex combination over a fixed number of k data instances only.

Approximation of prototypes by closest exemplars Equation 3.5 contains two sums

which both refer to all sequences āl in the given set, weighted by a corresponding coef-

ficient αj
l . Therefore, computing the update for one sample āi requires the derivatives

for all sequences āl, l ∈ {1, . . . , N}.
To avoid this, we can transfer the principle of k-approximation, as introduced in

Chapter 2, Subsection 2.2.7 for RGLVQ: we may limit the dependency of metric updates

to only a few exemplar sequences per prototype, by restricting the coefficients αj to their

largest k components. The empirical results from Chapter 2 indicate that it works well

for the positional updates of RGLVQ prototypes, even when choosing k ≪ N in real

data distributions.

Transferring this approximation to the representation of prototypes for metric adap-

tation, we calculate the derivative ∂d(āi, w̄j)/∂λq based only on a subset of sequences,

namely the prototype’s exemplars āl, l ∈ Ej where Ej is a set of indices with fixed size

k = |Ej |. The indices Ej refer to the k largest components in the respective weight vector

αj . Therefore, the number of exemplars k is a meta-parameter in our method, which

will be discussed further in Section 3.5.2. For the minimal choice k = 1, the derivative

reduces to the single term ∂d∗il/∂λq, i.e. a soft alignment derivative between the sam-

ple sequence āi and only one exemplar āl. Even this coarse approximation seems to

work well for practical data, as will be shown in later experiments. This approximation

makes updates feasible, and allows for a user-controlled compromise between precision

and speed of the metric adaptation. The complexity of a single update therefore reduces

severely to O
(
|λ| · k2 ·max

{
|ā|
∣∣ ā is sequence in the training set

}2)
.

Hebbian learning as a limit case Finally, we want to point out that, in a limit case, the

derived update rules strongly resemble Hebbian learning, hence the metric adaptation

follows intuitive learning steps. We consider the limit where every prototype can be

approximated by one data point, i.e. αj
l is 0 for all but one l, so the approximation by

k = 1 is exact. Then, the derivative in Equation 3.5 is dominated by only one summand,

namely the derivative of the alignment distance between a given training sequence and

the corresponding prototype’s single exemplar sequence. Further, the considered limit

case refers to a crisp instead of a soft minimum, i.e. a softmin function with β → ∞.

Hence, only one path, the optimal alignment path, is relevant in the computation of
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the alignment dissimilarity. On this path, the contribution of a considered parameter is

measured, as follows:

• for a specified pair of symbols, in case of a discrete alphabet, it is the number of

the alignments of this pair on an optimal alignment path,

• for a given dimension in case of vectorial sequence entries, it is the optimal align-

ment distance restricted to the dimension in question.

A more formal demonstration is given in the Appendix Section A.1.

For both settings, this number represents the learning stimulus, which (i) decreases

the corresponding metric parameter if the labeling is correct, and (ii) increases the

corresponding metric parameter if the labeling is incorrect. In general, normalization

can take place, since the number of parameters |λ| is fixed. Hence:

• For a discrete alphabet, in the limit, symbolic replacements are marked as costly if

they contribute to a wrong labeling, while they become inexpensive if the labeling

is correct.

• For vectorial alphabets, those vector dimensions are marked as relevant where the

small values indicate a closeness to a correctly labeled prototype, while dimensions

are marked as irrelevant otherwise.

3.5. Practical implementation

In this section, we will discuss the practical realization of the proposed metric learning

strategy. First, we describe how the actual learning algorithm is implemented, followed

by a discussion about meta-parameters and their influence. Thereafter, we investigate

the algorithm’s performance for artificial data in a first proof-of-concept evaluation and

exemplify general characteristics of the error function.

3.5.1. Algorithm overview

To summarize our method, we provide pseudo-code in Algorithm 1 for the case of a

discrete symbolic alphabet, i.e. the result of metric learning is a scoring matrix λ with

entries λkm. The algorithm works in a similar fashion for vectorial sequence entries. Since

a learning step for the metric terms is more costly than an update of the prototypes, the

former requiring alignment calculations, we always perform several prototype updates

before addressing the metric parameters. We refer to this as a batch update since,

typically, a batch of data points is considered. Similarly, metric parameter updates are

performed in batches to avoid recurring alignments for sequences in the batch.

As an initial solution for λ, see Line 1, a simple configuration is applied, in the following

referred to as equal costs: we set λkm = 1/|Σ| for all pairs (k,m) ∈ (Σ∪{−})2, k ̸= m, and
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add small random noise to break ties in the initial alignments. Only symbolic matches

require no costs: λkk = 0. During the adaptation (see Line 12), small or negative values

λkm < ϵ = 0.005/|Σ| are reset to ϵ in order to keep D non-negative, and to ensure that

an alignment always favors matches (k, k) over the trivial alternative of a deletion (k,−)

directly followed by an insertion (−, k) or similar unnecessary replacements. RGLVQ

requires symmetric dissimilarities in D, which is ensured if the scoring matrix λ is itself

symmetric. Therefore, we enforce the symmetry of λ after every update, in Line 13. We

will refer to the part from Line 5 to 14 as one epoch of learning.

Algorithm 1: RGLVQ with metric adaptation

Data: a set of training sequences {ā1, . . . , āN} = S ∋ āi over an alphabet Σ

Parameters: metric learning rate η, number of exemplars k, crispness β,

classic RGLVQ parameters (e.g. number of prototypes M)

Result: a set of prototypes {α1, . . . , αM} ∋ αj , a scoring matrix λ

1 initialize parameters λ ∈ R(|Σ|+1)2 , e.g. with equal costs as in Sec. 3.5.1

2 calculate all dissimilarities D according to λ

3 initialize prototypes αj near the center of the corresponding class

4 for number of epochs do

// classic RGLVQ update:

5 perform (batch) update of prototypes αj acc. to Equation 2.2

// find representative sequences for each prototype:

6 for j = 1 to M do

7 determine k exemplar sequences āl ∈ S with indices l ∈ Ej for

prototype αj , as the k largest entries αj
l

// update of metric parameters:

8 for i = 1 to N do

9 foreach pair of symbols (k,m) ∈ (Σ ∪ {−})2, k ̸= m do

10 gradient descent step: λkm := λkm − η · ∂Ei
RGLVQ

∂λkm

11 if λkm < ϵ then

12 enforce small positive costs by setting: λkm := ϵ

13 symmetrize: λ := (λ⊤ + λ) / 2

14 re-calculate dissimilarities D according to new λ



3.5. Practical implementation 63

3.5.2. Meta-parameters

Since our metric adaptation scheme optimizes the RGLVQ error function via a stochastic

gradient descent, there are several meta-parameters that influence this learning process:

(I) RGLVQ meta-parameters

(II) the learning rate η

(III) the number of exemplars k

(IV) the ‘crispness’ β in the softmin function

(I) The RGLVQ meta-parameters are comprised of the number of training epochs, the

prototype learning rate, and the number of prototypes. It has been observed in exper-

iments with RGLVQ, that the algorithm is not sensitive to its meta-parameters: few

prototypes often yield excellent results, and there is a small risk of overfitting even when

a large number of prototypes is considered [51].

The necessary number of epochs and prototype learning rate are correlated, requiring

a higher number of epochs when a smaller learning rate is chosen, and vice versa. In

all our experiments, the number of epochs was fixed to 10. This choice is well justified,

since a plausible convergence was achieved within the given time frame: during the last

training epoch, the absolute error changes by less than 2% of the final error value, in

every experiment.

The number of prototypes is crucial to determine the complexity of classification

boundaries in RGLVQ, as is generally the case in prototype-based classifiers. For mul-

timodal classes, too few prototypes lead to a high classification error. However, in

particular in the light of an adaptive and hence very flexible metric, a good starting

point is to train the classifier in the most simplistic setting with only one prototype

per class, and increasing the number when necessary. To automatically adjust the num-

ber of prototypes, quite a few incremental variants of LVQ have been proposed, see

e.g. [33, 70, 142]. Interestingly, for a complex image segmentation task, only few proto-

types (3-4 per class, on average) were generated, supporting the claim that rather small

LVQ networks already show representative behavior in particular in the context of an

adaptive metric [33].

In our experiments, we will generally focus our discussion on the choice of one proto-

type per class, which allows us to emphasize the capability of adding sufficient complexity

to the classifier model via metric adaptation only. For comparison, we will report the

classifier performance using more prototypes, in addition to the highlighted results.

(II) The learning rate η for metric parameters is, in contrast to the prototype learning

rate, a sensitive meta-parameter for the optimization via stochastic gradient descent.

Considering parameters for alignment scoring in particular, changes in the gap costs

(i.e. for deletions λk− and insertions λ−m) have a stronger influence on the overall
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alignment than single pairwise replacement costs λkm. Therefore, it can be advisable to

assign separate learning rates ηGap and ηRep for the respective costs, similar to previous

vectorial metric adaptation in the context of LVQ [119]. In this way, it is also possible

to restrict the adaptation to parameters of interest, and limit the degrees of freedom for

learning. In our experiments, we will not use this separation and generally maintain the

simpler case of a single η.

(III) The number of exemplars k determines by how many real sequences a prototype wj

is represented in the update rule for metric parameter learning. As described in the end

of Section 3.4, this is an approximation of the precise theoretical update where k = N .

While a lower number could hypothetically decrease precision, it has shown to work

well in practice, even for choices k ≪ N , for example k = 1. Since the approximation

strongly influences the computational demand of a single update step, the parameter

has an immense impact on the overall runtime. The minimum choice of k = 1 yields

the fastest update calculation, and usually provides sufficiently accurate results from our

practical experience. In fact, all experiments presented in the remainder of this chapter

rely on this setting, and we could achieve no considerable improvement in these cases,

by choosing a larger number of exemplars k > 1.

(IV) The crispness in the softmin function β influences the classifier training progress.

In the following Sections 3.5.3 and 3.5.5, its direct effect on the convergence character-

istics are discussed in artificial data scenarios. In Figure 3.5, we can see how a lower

crispness (e.g. for β = 2) generally slows down the adaptation, while higher values seem

to facilitate a faster convergence, sometimes at the expense of robustness (see β = 80 in

Figure 3.5b). Generally, we can observe that β directly affects the convergence charac-

teristics, with an optimal value lying in a medium range.

3.5.3. Proof-of-concept with artificial data

We designed two artificial data sets with class structures that demonstrate the method’s

ability to adequately adapt (i) replacement costs and (ii) gap costs for the case of discrete

sequence entries. Both data sets contain random sequences which follow deliberate

structural patterns, such that a specific parameter configuration in the scoring matrix λ

leads to a perfect class separation, while a naive choice of costs λ causes severe overlaps

between classes.

Replacement data: In this data set, all strings have 12 symbols, randomly generated

from the alphabet Σ = {A,B,C,D} according to the regular expressions:

(A|B)5 (A|B) (C|D) (C|D)5 for the first, and (A|B)5 (C|D) (A|B) (C|D)5 for the second

class. Hence, replacements of A or B by C or D are discriminative, while replacements

A with B, and C with D are not. After the training of λ, we expect high costs for

discriminative replacements, while other replacement costs in λ are close to zero. Also,
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Figure 3.5.: The figures show the average test accuracy achieved during 10 epochs of

RGLVQ training in a 5-fold cross-validation with 5 repeats on artificial data sets. The

dashed black line represents the training without adapting λ, and serves as a baseline

in which the classifier remains close to random guessing. The other curves show the

accuracies achieved with the proposed metric adaptation scheme, for different settings of

the ‘crispness’ parameter β. The adaptation yields nearly perfect results in all settings,

while the convergence characteristics are slightly affected by β.

we expect positive gap costs, since gaps could otherwise circumvent the alignment of the

discriminative middle parts.

Gap data: The second data set focuses on gap scoring. Strings in the first class are

random sequences āi ∈ Σ10 of length 10, whereas strings āl ∈ Σ12 in the second class are

longer by 2 symbols. Therefore, replacements of letters are not discriminative, while the

introduction of any gaps discriminates classes. Thus, gap costs are expected to become

high, while any other replacements should cost less.

Evaluation: For each data set, we created N = 100 sequences (50 for each class) and

evaluated the average classifier performance in a 5-fold cross-validation with 5 repeats.

RGLVQ was trained using one prototype per class, for 10 epochs. The learning rate for

the adaptation of λkm was set to η = 1/N , and the number of exemplars k = 1. We use

the aforementioned equal costs for the initial alignment parameters λ. Several settings of

the ‘crispness’ β in the softmin function have been evaluated, but for now let us consider

the intermediate setting of β = 5. We will discuss the influence of this meta-parameter

later in this Section, and in Section 3.5.5.

The experimental results in Figure 3.5 show a drastically increased accuracy when

adapting λ, for example, with β = 5 a perfect average test accuracy of 100% (with 0

deviation) was achieved after the 4th epoch. Consequently, the adapted λ represent

ideal scoring matrices for both data sets, which exactly fulfill our aforementioned expec-

tations: Figure 3.6 exemplarily shows the respective λ matrices before and after training

from the last respective cross-validation run. For comparison, we trained RGLVQ in the
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Figure 3.6.: Visualizations of the scoring matrix λ, where color/intensity encodes the

values. On the left is a standard choice of λ as equal costs which serves as the initial

state for the training, the middle and right show the final state of λ after adaptation,

fulfilling the expectations for the respective artificial data set.

classical fashion, based on fixed dissimilarities D, without adapting the underlying scor-

ing parameters. In this case, λ refers to the initial equal costs, which does not emphasize

class-discrimination. As expected, classification remains close to random guessing in this

setting, see the baseline in Figure 3.5: the average test accuracy after training was 64%

for the Replacement data and 61% for the Gap data.

Figure 3.5 shows the progression of accuracy during training, for different values of

the ‘crispness’ β. For lower settings (e.g. β = 2), we can see that the final level of

accuracy is often achieved in later epochs, which indicates that the metric adaptation

is slower. In contrast, higher values facilitate a faster adaptation, sometimes at the

expense of robustness (see β = 80 in Figure 3.5b). In Section 3.5.5, we will demonstrate

the influence of β in a soft alignment, implying its impact on the metric adaptation

process and convergence characteristics.

From the proof-of-concept we can conclude that the proposed supervised metric adap-

tation strategy is indeed able to single-out discriminative parameters, which leads to a

clear class separation and enables the training of a robust classifier model in our ex-

amples. The training arrives at the expected results, even for k = 1, the most efficient

approximation where each (virtual) prototype is represented by only one (tangible) ex-

emplar sequence. In the following, we will first observe the characteristics of the RGLVQ

error function w.r.t. metric parameters in our toy scenario, and thereafter, take a closer

look on the crispness in a soft alignment.

3.5.4. RGLVQ error function surface

To get an impression of the characteristics of the RGLVQ error function with regard

to metric parameters, we visualize its values for varying parameter settings as a 3-D

surface. Therefore, we simplify our artificial data sets even further, to restrict to only

a few degrees of freedom in the parameters λ. We obtained an adapted λ, as well as

prototype positions α1, α2 from a single training run of 10 epochs (β = 10, η = 0.07/N).

To evaluate various configurations of λ, a pair of entries (λkm, λqr) will be iterated over
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Figure 3.7.: The error ERGLVQ for the simplified Gap data, evaluated with all parameter

combinations (λA−, λB−) in steps of 0.1 over the interval [0, 1], while replacement costs

are at a low constant λAB ≈ ϵ. As expected, the error surface drops smoothly to a low

plateau, when both gap cost parameters are increased.

all combinations, while keeping the others fixed to their final state after training. Given

the prototypes, we can visualize ERGLVQ as a surface for all combinations (λkm, λqr).

The simplified Gap data consists of random sequences over the two-letter alphabet

Σ = {A,B}, as before with length 10 in the first, and length 12 in the second class, and

N = 100. Again, the introduction of any gaps is crucial for class-discrimination, so a

minimum of the error surface is expected for settings where both costs λA− and λB−,

become high. Figure 3.7 shows ERGLVQ for configurations (λA−, λB−) in increasing steps

of 0.1 over the interval [0, 1]. The remaining third parameter in λ is fixed to the final

value after training, in this case it is close to the small constant λAB ≈ ϵ. As expected,

the error surface drops smoothly to a low plateau, when both gap costs are increased.

For the simplified Replacement data, we now use the three-letter alphabet Σ =

{A,B,C}, and regular expressions (A|B)5 B C (B|C)5 and (A|B)5 C B (B|C)5 to gener-

ate sequences in the first and second class, respectively. ERGLVQ is then evaluated for

all combinations of λAB and λAC (see Figure 3.8a), as well as λAB and λBC (Figure 3.8b).

The respective remaining parameters in λ are constant at their final value from training,

with low λAC ≈ ϵ, and high λBC, λA−, λB−, λC− > 0.7. Since only replacements (B,C)

and (C,B) are relevant for class-discrimination, we expect the error function to approach

its minimum when λAB as well as λAC are low, and λBC is high. The surfaces in Figure

3.8 meet these expectations, with a monotonic decrease of error toward the optimum.

In a realistic scenario, the number of metric parameters is likely to be much higher.

For sequence alignments with a scoring matrix for discrete alphabets (where we assume

symmetry and a zero diagonal in λ), the number of free parameters is (|Σ|2 + |Σ|)/2,
i.e. it grows quadratically with the size of the alphabet. Their influence on the RGLVQ

error can be rather complex, including intricate dependencies among the parameters

themselves. Therefore, we can expect the error function to exhibit several local optima

w.r.t. changes of metric parameters in a real data scenario.
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Figure 3.8.: Surfaces of ERGLVQ for the simplified Replacement data, evaluated with

parameter combinations λAB and λAC (left), as well as λAB and λBC (right) in steps of

0.1 over the interval [0, 1]. The respective remaining parameters are constant at the final

value after training. As expected, the error approaches its minimum for λAB = λAC = 0

and λBC = 1.

3.5.5. Influence of crispness on the alignment

In this paragraph, we demonstrate, on a small example, how soft alignment (with its

crucial parameter β) compares to classical sequence alignment (which is the limit case

of soft alignment, for β → ∞). Here, we address only the calculation of the alignment

distance, not the learning of parameters. As described in Section 3.3, page 58, the

alignment of two sequences can be calculated by DP via a recursive algorithm, see

Equation 3.4. All different possibilities to partially align the sequences and accumulate

costs can be assembled in a DP matrix:[
M
]
(I,J)

= M(I,J) = d∗
(
ā(I), b̄(J)

)
∀ 0 ≤ I ≤ |ā|, 0 ≤ J ≤ |b̄|

The upper left entry M(0,0) = d∗
(
ā(0), b̄(0)

)
= 0 represents the initialization of the

recursive calculation, while the bottom right entry contains the final accumulated costs

for the full alignment M(|ā|,|b̄|) = d∗(ā, b̄).

In a crisp alignment (where β → ∞), the accumulated cost at a position M(I+1,J+1) is

determined by selecting the discrete minimum among the choices {ARep, AIns, ADel}, see
Equation 3.4. This means that every value M(I+1,J+1) depends on only one of the pre-

ceding entries
{
M(I,J),M(I+1,J),M(I,J+1)

}
. In contrast, using a softmin function (with

smaller β) means that all choices contribute to the result to a certain extent. Therefore,

M(I+1,J+1) depends on several preceding entries in the DP matrix. Accordingly, sub-

optimal alignment choices have an increasing influence on the accumulated cost if β is

decreased.

To demonstrate the impact of parameter β, we investigate the characteristics of M in

a simple example. Consider the alignment of a sequence ā = (AAAAAAAAA) with itself
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Figure 3.9.: The images demonstrate the impact of different choices of ‘crispness’ β on

the DP matrix M for a trivial alignment of ā = (AAAAAAAAA) with itself, using the

simple scoring scheme of λAA = 0 and λA− = λ−A = 1. Each figure shows a color-coded

view of values in M for a setting β ∈ {0, 12 , 1,∞}. While the diagonal is the optimal

alignment path in all four settings, it becomes more distinguished as a low-cost path

when β is high. With lower β values, sub-optimal alignment operations (in this case

off-diagonal entries) get a higher contribution to the accumulated cost in the optimal

path along the diagonal.

(i.e. ā = b̄), using the simple scoring scheme λAA = 0 and λA− = λ−A = 1. Obviously,

in a crisp sequence alignment, the optimal alignment path would match all symbols(
āI , b̄I

)
= (A,A) without making use of deletions or insertions. This corresponds to

the diagonal of M, ending at a total cost of zero. Since only insertions or deletions

can increase the accumulated cost in this case, the optimal alignment path (along the

diagonal, using only matches) remains zero in every step, as can be seen in Figure 3.9d.

The three images on the left (Figures 3.9a-3.9c) show the corresponding DP matrix for

values β ∈ {0, 12 , 1}: when increasing β from zero to one, the optimal path becomes more

pronounced and stands out with significantly lower costs. Accordingly, the accumulated

cost of the entire alignment drops for higher β.

For β = 5, the alignment approaches the de facto crisp condition. With λAA =

0, λA− = λ−A = 1, the weight by which a match operation ARep for (A,A) contributes to

the softmin choice is

softmin(ARep, AIns, ADel) =
e(−5·0)

e(−5·1) + e(−5·1) + e(−5·0) =
1

2 e(−5) + 1
≈ 0.99 .

Therefore, insertions and deletions only contribute 1% to the total soft alignment in this

case. For other scoring schemes, a higher β might be required to achieve the de facto

crisp alignment. It is therefore helpful to evaluate softmin values exemplarily, given a

scoring λ, to assess the impact of a certain β setting.
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3.6. Experiments with real-world data

In this section, we investigate the classification performance of our method on two real-

world data sets. Additionally, we will take a look at general class-separation in the

original and the adapted data dissimilarities, as well as interpretable aspects of the

resulting adapted metric parameters.

3.6.1. Experimental procedure

Our experimental procedure, applied for both data sets, is summarized in the following.

As before, the accuracy of an RGLVQ classifier with fixed metric parameters serves as

a baseline, and is compared to the accuracy achieved via the proposed adaptation of

metric parameters during RGLVQ training. This comparison directly reflects benefits

which the classifier gains from metric adaptation. We report the respective average

training and test accuracies (along with their standard deviation) obtained in a 5-fold

cross-validation with 10 repeats.

To assess the overall class-separation without relying specifically on RGLVQ, we

further evaluate the corresponding data dissimilarities before and after the metric is

adapted. In the latter case, we use the adapted metric parameters resulting from the

last respective cross-validation run of RGLVQ.

First, we report the average test accuracy of a support vector machine classifier (SVM),

along with its corresponding average number of support vectors (#SV). The quantity

of support vectors reflects the complexity of an SVM’s classification boundary, where

a lower number suggests that class-separation is easier in the given data, while higher

values (up to the total number of given training data) indicate overlapping classes. In

our practical implementation, we use the Open Source software LIBSVM 7 3.18, and

perform a 5-fold cross-validation with 10 repeats, based on the original, as well as the

adapted metric. However, in order to apply SVM correctly, we need to obtain a valid

kernel matrix from given dissimilarities dij in the matrix D. Therefore, we first use

Torgerson’s double centering, see [128, p.258] to get similarities, as:

[S](i,j) = sij = −1

2
·
(
d2ij − (cj)2 − (ri)2 + o2

)
where cj , ri, o are the mean of the j-th column, of the i-th row, and of all values in

D, respectively. Thereafter, a kernel matrix K is created from S by correcting possible

non-metric aspects in the given similarities, via ‘flipping’ negative Eigenvalues of S, as

described in [51].

Further, the accuracy of a simple k-nearest-neighbor classifier (k-NN) is evaluated,

using k = 5 neighbors. Obviously, k-NN and SVM are expected to achieve a higher

accuracy in general, since the model complexity in the sparse RGLVQ classifier is highly

7http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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restricted by using only one prototype per class. For these evaluation models, we will

therefore focus on differences between fixed and adapted dissimilarities, instead of com-

paring the sparse RGLVQ model with SVM or k-NN classification in terms of accuracy.

As an additional quantitative indicator, independent of any particular classification

model, we measure the ratio of mean intra-class distances to mean inter-class distances, in

the following referred to as separation ratio. Here, smaller values indicate a clearer class-

separation in general, which is an expected result from the metric adaptation procedure.

3.6.2. Copenhagen Chromosomes

We recall, from Subsection 2.2.7 in Chapter 2, the Chromosomes data set, which con-

sists of sequences that represent band patterns from the Copenhagen Chromosomes

database [91]. For this experiment, however, we will refer to a smaller subset of the

database and use a different dissimilarity measure for the given sequences. Every se-

quence encodes the differential succession of density levels observed in gray-scale images

of a human chromosome. Since 7 levels of density are distinguished, a 13-letter alphabet

Σ = {f, . . . , a,=,A, . . . ,F} represents a difference coding of successive positions, where

upper and lower case letters mark positive and negative changes respectively, and “=”

means no change8. Table A.1 on page 137 in the Appendix Section A.2 lists all symbols

with their associated difference levels, and the number of occurrences in the considered

data set. From the database we use the “CopChromTwo” subset for binary classifica-

tion, containing classes 4 and 5 with 200 sequences each (N = 400). In the literature,

these two classes have been reported to yield a lower recognition rate than the others,

see [40]. The authors in [40] used an organized ensemble of multilayer perceptrons to

classify all 22 chromosomes in the Copenhagen database, and list the classification ac-

curacies for individual classes. For the chromosomes 4 and 5, they report 91% and 89%

accuracy on the test set, respectively, whereas the overall average is 95.86%. However,

since every class is addressed by a one-versus-all classifier, these values are not directly

comparable to the binary classification task on which we will focus in the following. To

handle the full 22-class database, a local scoring matrix λj for every prototype αj would

be necessary, which is the subject of ongoing work, see Section 3.7.

For the Copenhagen Chromosomes data, assumptions about a meaningful parameteri-

zation of the metric are available in [64]. The authors propose a weighting scheme for the

edit distance, where replacement costs are the absolute difference of corresponding den-

sity changes: for example, λ a e = |−1− (−5)| = 4, and λ f F = |−6− 6| = 12. The intro-

duction of any gaps requires half the maximum of replacement costs, i.e. λk− = λ−m = 6

for all k,m ∈ Σ. See Figure 3.10b for the full cost matrix9. Therefore, we compared

two different options to initialize metric parameters λ in our experiment: (i) using the

cost pattern from [64], and (ii) using the simple initialization with equal costs. For both

8For details, see http://algoval.essex.ac.uk/data/sequence/copchrom/
9Symbols f,F did not occur in the CopChromTwo subset and were thus not considered.

http://algoval.essex.ac.uk/data/sequence/copchrom/
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Figure 3.10.: Metric parameters and results for the Chromosomes data set. The bot-

tom left shows the initial alignment scoring pattern in the parameters λ according to

a weighting scheme from [64]. The bottom right shows an adaptation of λ where costs

for an insertion or deletion of the most frequent symbol “=” are strongly reduced, and

replacements of neighboring symbols are decreased slightly. The graphs in the top figure

show that the adaptation improves classification accuracy over 10 learning epochs in a

repeated 5-fold cross-validation.

cases, we compare the classification performance of RGLVQ with and without metric

adaptation, as before. In the latter case, RGLVQ training uses fixed dissimilarities based

on the respective initial costs λ. The choice of meta-parameters was optimized w.r.t. the

data in a 5-fold cross-validation with 10 repeats, setting crispness β = 20, and learning

rate η = 0.45/N to adapt λ. In order to minimize the computational effort, we chose

k = 1, which prove to be sufficient.

First, we consider the initialization of λ according to the weighting scheme from [64].

The results are displayed in Figure 3.10, and Table 3.1 (the two top rows). With fixed

metric parameters, the final classification accuracies are rather low with 73% average

test accuracy, see the baseline in Figure 3.10a. This is expectable, since the number of

prototypes for RGLVQ was deliberately chosen to be only one per class, which implies
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Method Init. Train (Std) Test (Std) SVM (#SV) 5-NN Sep.

Fixed λ prior 74% (2%) 73% (6%) 97% (174) 95% 0.93

Adapted λ prior 97% (2%) 97% (2%) 98% (129) 98% 0.91

Fixed λ equal 89% (3%) 89% (6%) 96% (210) 97% 0.99

Adapted λ equal 95% (1%) 95% (3%) 97% (139) 97% 0.93

Table 3.1.: Performance of RGLVQ for the Chromosomes data set, comparing fixed vs.

adaptive metric parameters λ, measured by the average Training and Test accuracies

and their standard deviation (Std) in a 5-fold cross-validation with 10 repeats. From

the respective last run, dissimilarities induced by λ are evaluated by 5-NN classification

accuracy, the separation ratio (Sep., where smaller is better), as well as the average test

accuracy of SVM (and number of support vectors #SV) from a repeated 5-fold cross-

validation. All results are reported for two initialization methods for λ: equal costs, and

a weighting scheme from [64] using prior knowledge.

minimal complexity of the classification boundary. Using more prototypes yields some

improvements: with 3, 5, and 7 prototypes per class, 79%, 79%, and 81% average test

accuracy is achieved, respectively.

However, metric adaptation with only one prototype enables a nearly perfect average

accuracy of 97% for training and test sets. This demonstrates how a problem-adapted

metric can alleviate the given classification task, even without a complex classifier model.

(We observed no considerable benefit, when more prototypes are used.) Interestingly,

this major improvement was achieved by subtle changes in λ from the initial scoring (see

Figure 3.10b) to the final state after training (see Figure 3.10c, taken from the last cross-

validation run). The adaptation mainly changes the replacement costs for neighboring

scales of difference: many values on the first off-diagonals become nearly zero, signifying

that these symbols are interchangeable within classes. At the same time, the gap costs

for the symbol “=” become lower, which can be attributed to the fact that it is the most

frequent symbol in the set (see Table A.1 in the Appendix Section A.2).

Comparing the class-separation in the fixed vs. the adapted dissimilarities, we observe

that the separation ratio drops and the 5-NN accuracy improves, as reported in Table 3.1.

Also, the average number of support vectors used in the trained SVM classifiers decreases

drastically, which indicates a less complex classification boundary. This underlines our

hypothesis, that metric learning can greatly facilitate class-discrimination, especially

when the parameterization of the underlying dissimilarity measure is complex.

In the next step, we consider the case of initializing λ with equal costs (meta-parameters

set to β = 7, η = 0.45/N , k = 1). Surprisingly, this very simple setting of λ yields higher

accuracies than the cost pattern proposed in [64], see the bottom two rows in Table 3.1.

Without any adaptation of the alignment costs, RGLVQ achieves 89% average test ac-

curacy for one prototype per class. This can be improved by increasing the model

complexity: 93%, 95%, and 95% average test accuracy are achieved with 3, 5, and 7
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prototypes per class, respectively. Learning the metric parameters provides the same

level of improvement to 95%, however, with only one prototype, since the underlying

data representation is tuned according to the classification task. Thereby, the resulting

model is very sparse, and it offers the possibility to inspect and interpret the adapted

metric parameterization. In this case, increasing the number of prototypes also results

in a slightly better classification performance: for example, 5 prototypes per class yield

96% average test accuracy. Although the 5-NN accuracy is not increased, the separation

ratio is improved by the metric adaptation, and the average number of support vectors

for SVM drops, again supporting our claim.

3.6.3. Intelligent tutoring systems for Java programming

In the context of educational technology, intelligent tutoring systems (ITSs) have greatly

advanced in recent years. The goal of these systems is to provide intelligent, one-on-

one, computer-based support to students, as they learn to solve problems in a type of

instruction that is often not available because of scarce (human) resources [133, 29, 136].

One approach to facilitate ITSs is based on the automatic clustering and classification

of student solutions, see [46] and [C13b]. Therefore, a crucial ingredient is a reliable

(dis)similarity measure for pairs of solutions [C13b]. While a solution could be repre-

sented in many forms, we will focus here on a representation as a (multi-dimensional)

sequence. In this experiment, we will consider the dissimilarity between Java programs,

as an example pointing towards the idea of adaptive metrics in an ITS for Java pro-

gramming, as described in [C13b]. Given the complexity of syntactic structures, we

demonstrate how the parameterization of such a dissimilarity measure can be adapted

to facilitate a classification task.

To properly model Java programs as sequential data, we no longer consider discrete

symbolic sequences as before, but instead refer to sequences with more complex, multi-

modal entries. Each entry, in the following called a node, holds a collection of properties,

where the number of properties K is fixed a priori for the given data set. For every single

property, either a finite discrete symbolic alphabet, or a numeric domain is defined a

priori. Given the property number κ ∈ {1, . . . ,K}, we refer to its designated alphabet

or domain as Σκ, i.e. the set of all possible values for that property. A multi-modal

sequence is denoted by: ã = (a1, . . . , aI , . . . , a|ã|) where aI is a node, and aκI refers to

the (symbolic or numeric) content of property number κ in this node.

In the case of Java, the nodes represent syntactic building blocks of a Java pro-

gram, which were extracted from the abstract syntax tree via the official Oracle Java

Compiler API. Properties are, for example, the node’s position in the source code file

(codePosition, an array of integers indicating the starting and ending line and column),

the type of this node (e.g. a method declaration, a variable declaration, an assignment,

etc.), or more specific properties like the name of a variable, method or class that is

declared.
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To define a parameterized alignment measure for such multi-modal sequences, we will

use a generalization of the two alignment scenarios described in Section 3.3, on page 56.

We adopt the relevance weighting from vectorial sequence alignment, but loose the re-

striction to numerical vectors containing real-valued entries, in favor of a more general

notion of nodes containing multiple properties. Therefore, we replace the ‘inner’ dissim-

ilarity measures for each vector dimension with a measure for each property: assume a

symmetric dissimilarity dκ : Σκ × Σκ → [0, 1] for each property κ. This measure can be

parameterized by some λ (denoted as dκλ), but if this is not specified, we simply assume

dκ(s, t) = 0 ⇔ s = t, and dκ(s, t) = 1 ⇔ s ̸= t for all symbols or values s, t ∈ Σκ ∪ {−}
in the corresponding symbolic alphabet or numeric domain. This means that costs for

replacements, insertions, and deletions can be specified, which corresponds to the case

of a scoring matrix in Section 3.3, but now individually for every property κ. Then, we

redefine the ‘outer’ dissimilarity between single nodes as:

dg(aI , bJ) =

K∑
κ=1

gκ · dκλ(aκI , bκJ) .

The vector g = (g1, . . . , gK) contains the relevance weights gκ for each property κ, which

lie in the interval [0, 1] and are normalized to sum up to one. Thus, for gκ = 1, no other

property is considered, but κ. If gκ = 0, the property κ does not contribute to the

alignment at all.

In this experiment, our goal is to learn the metric parameters of both, the outer and

inner dissimilarity, i.e. gκ and λ, respectively. Therefore, we use a two-stage consecutive

process: first, we fix the ‘inner’ parameterization λ for all properties κ, and adapt

the ‘outer’ parameters gκ. Thereafter, the resulting weights gκ remain fixed, and the

‘inner’ parameters λ are adapted for the property with the highest relevance, given by

argmaxκ∈{1,...,K}(gκ). For the adaptation in each stage, we can directly transfer the

respective learning scheme for relevance weights and scoring matrices, as described in

Section 3.4.

The Sorting data set consists of a collection of Java programs, which are freely available

in online code-sharing platforms. The programs implement two different algorithms

to sort sets of integer numbers: we collected N = 78 programs in total, of which 44

implement the BubbleSort algorithm, and 34 realize InsertionSort. From each program,

the sequence of syntactic nodes was extracted by a parser, where 8 properties are defined

for every node. A list of the properties is given in Figure 3.11a.

Initially, every property κ ∈ {1, . . . , 8} is weighted equally, with gκ = 1/8. First,

we aim to learn a configuration of weights gκ to facilitate class discrimination. The

RGLVQ classifier was trained, with and without metric adaptation, for 10 epochs with

one prototype per class, in a 5-fold cross-validation with 5 repeats. The meta-parameters

for metric learning were set to: η = 0.002/N , k = 1, and β = 200 (i.e. using a de facto

crisp alignment).
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Figure 3.11.: Results for the Sorting data set, in which the (semantically sound) adap-

tation of weights gκ for properties κ (left) yields an improvement of 11% in average test

accuracy (right) in a 5-fold cross-validation with 5 repeats.

The results in Figure 3.11 and Table 3.2 (the two top rows) show that RGLVQ with

metric adaptation improves the average test accuracy by 11%, compared to the default

metric with all equal weights gκ. Under the initial metric paramterization, even a higher

number of prototypes in RGLVQ does not yield comparable performance: for 7 proto-

types per class, the average accuracy is 72% on the test set. The 5-NN accuracy and

separation ratio are also improved by the metric adaptation, and the average number of

support vectors for SVM decreases, indicating a simpler classification boundary.

The resulting weights are reported in the bar graph in Figure 3.11a and can be inter-

preted as semantically sound for the classification task: type is weighted as the most

relevant property, while parent and codePosition are deactivated entirely. This is jus-

tified, since type holds the most important semantic information by specifying one out

of 29 possible categorial values encoding the basic functionality of the respective syntax

part. (The alphabet for this property refers to token types in the abstract syntax tree of

a program, a full list of symbols and corresponding Java code examples can be found in

Section A.3 in the Appendix.) In contrast, (i) parent and (ii) codePosition clearly in-

troduce noise w.r.t. classification, since they encode (i) the index of the previous node in

the syntax tree, and (ii) the position in the raw source code file, both of which can drasti-

cally change from minor alterations in the program and are thus not discriminative. The

intermediate weights for the remaining properties like className and returnType are

also justified, since they convey valuable information about the semantics, like the class

of (return) variables, such as Integer or String. However, since they are empty for many

nodes, the lower relevance, as compared to type, can be explained. Interestingly, the

property name refers to textual definitions for variable, class, and function names, freely

chosen by the programmer. Of course, such names are not guaranteed to be meaningful

for class-discrimination, and could potentially introduce noise in the data. However,

since our set contains programs from an educational context, these names are likely to
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Method Init. Train (Std) Test (Std) SVM (#SV) 5-NN Sep.

Fixed g λ equal 75% (3%) 70% (14%) 75% (58) 82% 0.93

Adapted g λ equal 81% (3%) 81% (12%) 87% (49) 87% 0.81

Adapted λ g prior 83% (2%) 82% (9%) 87% (49) 87% 0.81

Table 3.2.: Performance of RGLVQ for the Sorting data set, comparing fixed vs. adaptive

metric parameters (λ and g), measured by the average Training and Test accuracies

and their standard deviation (Std) in a 5-fold cross-validation with 5 repeats. From

the respective last run, dissimilarities (induced by λ or g) are evaluated with the 5-NN

classification accuracy, the separation ratio (Sep., where smaller is better), as well as the

average test accuracy of SVM (and number of support vectors #SV) from a repeated 5-

fold cross-validation. The results refer to a two-stage learning process: the adaptation of

property weights g (in the two top rows) where λ is set to equal costs, and the subsequent

adaptation of costs λ (in the bottom row) where g is fixed to the result of the previous

learning procedure.

be defined in an explanatory fashion, which justifies the intermediate weighting.

To facilitate the classification further, we assume the trained weights gκ as fixed, and

subsequently adapt the metric again, now by learning the parameters dκλ for the most

relevant property type. Thus, κ refers to the index of property type in the following,

and we focus on the alphabet Σκ of 29 symbols, as listed in the Appendix Section A.3.

We therefore return to the learning scheme for alignment scoring parameters dκλ, in the

following denoted as λkm for symbols k,m ∈ Σκ ∪ {−}. The subsequent adaptation

improves the results again, by 1% for the average test accuracy. While this is only a

moderate quantitative enhancement, it can be seen as a refinement of the metric, since

the standard deviation of training and test accuracies was reduced, suggesting a higher

robustness, see Table 3.2 (the bottom row).

3.6.4. Reducing computational demand

Besides an approximation of prototypes by its k most prominent exemplars, a variety

of further approximation techniques can be integrated to enhance the computational

performance. While these methods are not mandatory for standard data sets, they

become necessary as soon as larger data sets, e.g.N > 500 are addressed: The complexity

of RGLVQ scales quadratically with the number of data points, so that it becomes

infeasible for large data sets. We will discuss two options for speedup, which consider

two different bottlenecks of the computational load:

• The first part addresses the computation of derivatives with respect to metric

parameters: soft alignment requires the consideration of the full alignment path

for every metric parameter, while crisp alignment reduces to contributions of the

optimal path only. We will consider an approximation scheme, which disregards
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small contributions of the alignment paths, enabling a computation of the deriva-

tives in linear time with respect to sequence length in the best case, as compared

to squared complexity. This approximation is particularly relevant for long input

sequences.

• The second part addresses the computation of dissimilarities by means of a refer-

ence to the full dissimilarity matrix D: the full dissimilarity matrix scales quadrat-

ically with the number of data. We can approximate D by a low rank matrix via

the popular Nyström approximation. Since D is used in matrix vector operations

only, a low rank approximation speeds up these operations to linear instead of

quadratic time with respect to the number of sequences. This approximation is

particularly relevant if a large number of training sequences is considered.

Approximated alignment derivative As before, we exemplarily consider the setting of

a discrete alphabet and the adaptation of the scoring matrix, parameterized by λkm.

The overall runtime for online learning of metric parameters is strongly affected by the

computational effort to calculate a single alignment derivative: given a set of sample

sequences S and the set of exemplars Ej for one prototype αj in one learning epoch, the

derivative ∂d∗(āi, w̄l)/∂dλ is calculated for all pairs of samples āi ∈ S and exemplars

w̄l ∈ Ej , i.e. it is done |S| × |Ej | = N · k times for the update w.r.t. one prototype in one

epoch alone.

Therefore, we empirically evaluate the speedup gained from dropping alignment paths

with a small contribution, as follows: In the limit β → ∞, contributions restrict to

the best alignment path, hence derivatives ∂d∗(ā, b̄)/∂λkm for all λkm can be computed

in time O(|ā|+ |b̄|) based on the DP matrix. In general, derivatives are weighted sums

corresponding to alignments of the symbols k andm at some position (I, J) of the matrix.

Weighting takes into account all possible paths which include this pair according to the

path eligibility measured by softmin′(Ai) for actions Ai ∈ {ARep, AIns, ADel} on the path.

The worst case complexity is O(|ā| · |b̄| · |Σ|2), using backtracing in the alignment matrix.

We propose an approximation based on the observation that a small softmin′(Ai) leads

to a small weight of paths including Ai. Hence, we store the 3 terms ARep, ADel, AIns

together with the distances softmin(ARep, ADel, AIns) in the data structure of the DP

matrix, and we cut all values softmin′(Ai) < θ for a fixed threshold θ ≥ 0. Backtracing

depends on the nonzero values only, so that a speedup to linear complexity is possible

in the best case.

The threshold θ therefore determines that values softmin′(Ai) < θ are ignored in the

backtracing of alignment paths. Since the impact of θ depends on the alphabet size and

sequence length, it should be tuned according to good classification results for the given

data set. Typical values lie in the interval θ ∈ [0.01, 0.2]. As a simple test scenario, we

created several sets of random sequences, each consisting of 10 sequences āi ∈ ΣL with

Σ = {A,B,C,D}, with four different choices of length L. For various thresholds θ, we
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tracked the runtime of calculating alignment derivatives for all 100 sequence pairs on

a standard laptop computer with an Intel Core i7 processor (4 cores at 2.9 GHz, and

calculations done in parallel). The results in Table 3.3 clearly show how increasing θ

drastically reduces the computational effort, especially for longer sequences.

To demonstrate that reasonable approximations do not impede classifier performance

in practice, we performed single training runs on the Chromosomes data from Sec-

tion 3.6.2, using a random split of 80% training and 20% test data, with various settings

of θ. The training was performed on a server computer with two Intel Xeon X5690

processors (each with 6 cores at 3.47 GHz), using the same meta-parameter settings as

in the original experiment. Table 3.4 lists the achieved test accuracies and runtimes, in

comparison with the original result from Section 3.6.2. The values show that a slight

approximation with θ = 0.1 already reduces the average runtime for one learning epoch

by 21%, without decreasing the classification accuracy. More crude degrees of approxi-

mation yield further, but marginal speedup, which stagnates for settings θ ≥ 0.2, while

the accuracy drops continuously to 90% for the extreme setting of θ = 0.65. In general,

choices θ > 1/3 carry the risk of loosing potentially valuable learning stimuli, since all

three values ARep, AIns, ADel could be lower than θ for certain steps in the soft alignment,

and therefore this entire alignment path would be ignored.

Table 3.3.: Runtimes (in seconds) to calculate the alignment derivatives for all pairs of

random strings āi ∈ ΣL, i ∈ {1 . . . 10}, using different thresholds θ and β = 10. (Note,

that this is not a classification task to discriminate labeled data, but a plain runtime test

using all pairs of sequences. Therefore, no classification accuracies are reported.)

Sequence length L 100 150 200 250

Runtime for θ = 0 7.2 24.6 87.6 426

Runtime for θ = 0.15 4.2 13.2 31.8 98.4

Runtime for θ = 0.2 1.8 6.6 13.8 27.0

Runtime for θ = 0.25 1.2 3.6 7.2 13.2

Table 3.4.: RGLVQ with metric adaptation, evaluated in single training runs on the

Chromosomes data from Section 3.6.2, using an approximation technique to calculate the

alignment derivative. The degree of approximation is controlled via the threshold θ by

which marginally contributing alignment paths are neglected in the derivative calculation,

i.e. with higher θ the approximation becomes more crude. For each setting of θ, the final

test accuracy is reported, along with the average runtime for one learning epoch (in

seconds). For small settings of θ, the approximation yields speedup without sacrificing

accuracy.

Degree of approximation no approx. θ = 0.1 θ = 0.2 θ = 0.35 θ = 0.65

Epoch runtime in s (%) 303 (100%) 240 (79%) 225 (74%) 228 (75%) 228 (75%)

Test accuracy avg. 95% 97% 95% 94% 90%
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Nyström approximation In our algorithm, metric parameters λ are adapted in every

epoch. They induce a different dissimilarity measure, thus D needs to be re-calculated

according to this new parameterization, see Line 14 in Algorithm 1 on page 62. To avoid

the repeated alignment between all sequence pairs, we refer to the Nyström technique

to approximate the full matrix as Dν ≈ D.

We recall, from Chapter 2, Subsection 2.2.5, that the Nyström approximation can be

integrated into RGLVQ to achieve considerable speed-up. To demonstrate the suitability

of Nyström approximation for our method, we replaced the corresponding dissimilarity

calculations in our algorithm, and consider single training runs on the Chromosomes

data from Section 3.6.2. Using this data set, with N = 400 sequences, we can showcase

the validity of the Nyström technique in principle. However, since the approximation

trades the O(N2) complexity for O(V 2 ·N) based on the chosen number of landmarks

V , the benefits become more apparent in large-scale scenarios, where the number of

sequences is very high, e.g. N > 1000, and a choice V ≪ N is justified. For the

selection of appropriate landmark sequences, we use a random sample of the data in

the corresponding epoch. This simple strategy relies on no assumptions about the data

structure, and has shown to work well in our experiment. However, more informed

selection plans can be found in the literature, see [141] for example.

The results in Table 3.5 show that the average runtime for one training epoch is de-

creased by 17%, when 70% of the data are chosen as landmarks, i.e. V = ⌊0.7 · N⌋.
However, this causes a slight drop in test accuracy, from 95% to 89%. Interestingly, we

observe that the accuracy does not decrease monotonically with the crudeness of the

approximation: using 80% of all sequences as landmarks yields a better accuracy than

using 90%. In the context of Nyström approximation, this effect has been observed in

the literature for the Copenhagen Chromosomes data, see [143]. A plausible explana-

tion would be that noise in the data representation is suppressed at a certain level of

approximation. Our experiment shows, that the Nyström approximation is a valid tech-

nique to decrease the computational effort of the proposed algorithm. A more elaborate

evaluation is the subject of ongoing work, since a realistic application scenario would

involve larger data sets.

Table 3.5.: RGLVQ with metric adaptation, evaluated in single training runs on the

Chromosomes data, using the Nyström approximation to (repeatedly) calculate the dis-

similarity matrix Dν ≈ D. The degree of approximation is controlled via the number

of landmarks V , in relation to the total number of sequences N , i.e. with lower V the

approximation becomes more crude. For each setting of V , the final test accuracy is

reported, along with the average runtime for one learning epoch (in seconds).

Degree of approximation no approx. V = ⌊0.9 ·N⌋ V = ⌊0.8 ·N⌋ V = ⌊0.7 ·N⌋
Epoch runtime in s (%) 303 (100%) 274 (91%) 261 (87%) 251 (83%)

Test accuracy 95% 91% 93% 89%
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3.7. Discussion

The metric adaptation scheme proposed in this chapter transfers the principle of rele-

vance learning to the structural domain, by addressing sequence alignment in particular.

However, the approach opens the way towards efficient metric adaptation schemes for

distance-based methods in other discrete structure spaces, such as trees or graph struc-

tures. A similar metric learning becomes possible, provided the metric is differentiable

with respect to its significant parameters. Note that, unlike the approach [66], we do not

assume differentiability of the dissimilarity measure with respect to the data structures

itself, but differentiability with respect to the adaptive metric parameters only. Hence,

discrete structure spaces are covered by our proposed technique.

So far, our method relies on a global metric with one set of parameters λ. This can

be problematic, if relevant structural constituents change, depending on their position

in the data space, as is common e.g. for classification problems with more than two

classes. In this context, it could be beneficial to use class-specific parameter sets λj

associated with every prototype wj . For vectorial LVQ, this ‘local’ metric learning has

been proposed in [119, 51], and it could be transferred to the relational setting. However,

its computational efficiency becomes problematic, due to the computational demand for

calculating individual dissimilarity matrices for every parameter set λj . In this context,

it might be worthwhile to investigate efficient low-rank metric approximations only.

Another important question arises in the context of the interpretability of metric

parameters: it is not clear whether parameter configurations are unique, and whether

invariances exist, caused e.g. by structural invariances. In the latter case, metric parame-

ters do not necessarily relate to the true relevance of these structural constituents, rather

random effects can occur. This property has recently been observed in the vectorial set-

ting, when dealing with very high data dimensionalities. In this case, high relevance can

be related to correlations of data dimensions in some cases, falsely suggesting a high

feature relevance if interpreted directly [123]. Therefore, before relying on the inter-

pretation of metric parameters, a normalization of the representation with respect to

structural invariances is mandatory. For structural data, similar effects can be expected.

Therefore, it is the subject of ongoing work to exactly identify these invariances for a

given metric, and to devise unique representatives of the resulting equivalence classes

for valid interpretation.





Chapter 4.

Unsupervised suitability assessment for data

representations

Chapter overview This chapter presents quantitative criteria and visualization tools to assess the

suitability of data representations in an unsupervised scenario. Since low-dimensional Euclidean em-

beddings of data can serve as an alternative representation, and help humans to investigate the data’s

neighborhood structure, we demonstrate how their reliability can be measured and integrated into a visual-

ization. Additionally, we transfer this principle to achieve an unsupervised comparison between different

dissimilarity measures for the same given data set.

Parts of this chapter are based on:

[J13] B. Mokbel, W. Lueks, A. Gisbrecht, and B. Hammer. Visualizing the quality of dimensionality reduction. Neu-

rocomputing, 112:109–123, 2013.

[C12f] B. Mokbel, S. Gross, M. Lux, N. Pinkwart, and B. Hammer. How to quantitatively compare data dissimilarities

for unsupervised machine learning? In ANNPR 2012, volume 7477 of LNCS, pages 1–13, 2012.

[C11b] B. Hammer, M. Biehl, K. Bunte, and B. Mokbel. A general framework for dimensionality reduction for large

data sets. In WSOM 2011, pages 277–287, 2011.

4.1. Motivation

In the previous chapters, we have discussed dissimilarity-based data representations

as a means to tackle particular challenges of complex data. In this chapter, we will

address several problems regarding complex data and dissimilarity data, which arise in

the absence of a classification task, i.e. if class-labels are not available.

In Chapter 2, we raised the issue that many established machine learning methods

are restricted to Euclidean vector spaces, often requiring vectorial input data. As one

possibility to circumvent this limitation, we proposed extensions of popular prototype-

based techniques to process (non-Euclidean) dissimilarity data directly. However, there

is an alternative approach, which is independent of the applied learning scheme: given

a dissimilarity matrix, an approximate vectorial representation can be calculated, via

83
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so-called dimensionality reduction (DR) techniques, which replicates the original data

structure and distribution. This Euclidean embedding may then serve as a substitute

input for machine learning algorithms. The same principle can be helpful, if a feature-

based data description is available, but it is very high-dimensional. By substituting the

original feature vectors with lower-dimensional counterparts, we can avoid or diminish

problems regarding high-dimensional spaces in the learning procedure, such as the curse

of dimensionality, or computational demand that scales with the number of features.

4.1.1. Scientific contributions and structure of the chapter

In this chapter, we will discuss methods to evaluate the suitability of data represen-

tations for unsupervised learning tasks, addressing two important questions: (i) How

can we assess the quality of low-dimensional embeddings, as a substitute for the given

original data representation? (ii) How can we compare given dissimilarity-based data

representations, without addressing a specific machine learning method?

The following key contributions are presented:

• A generic approach for quality assessment in DR, introduced by Lee and Verleysen

in [81], is extended by a point-wise evaluation scheme. This allows for a direct

integration of local quality ratings into a scatter plot for 2D or 3D embeddings.

• We refine the parameterization of the given quality measure to enable more fine-

grained control in the evaluation process.

• We transfer the quality evaluation framework to enable the comparison of general

dissimilarity matrices. This way, it is possible to assess, prior to learning, in how

far two different dissimilarity measures or choices of parameters lead to different

results, and if so, for which data they differ.

The following Section 4.2 briefly describes some well-known DR techniques to obtain

a Euclidean embedding from high-dimensional vectors or pairwise dissimilarities1. As

an interesting special case, DR methods are able to produce an embedding in a two- or

three-dimensional Euclidean space, which allows for a direct visualization of the data

set’s neighborhood structure.

Since the substitute vectors are usually an approximation of the original data, we

discuss methods to evaluate their individual reliability in an unsupervised setting, in

Section 4.3, and thereby propose a conceptual extension of the evaluation framework

established in [81]. This provides a tool to assess the suitability of the alternative data

representation at a fine-grained level, which can be accompanied by intuitive visualiza-

tions of the data distribution.

1We recognize DR not only as a tool for visualization, but also to create an alternative, low-dimensional

data representation for subsequent machine learning. Note, however, that DR methods are often

themselves deemed machine learning, as they utilize similar concepts and optimization schemes.
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In Section 4.4, we will address the problem that users who control the overall pro-

cessing pipeline (see Chapter 1) are often faced with an abundance of design choices

regarding dissimilarity measures. On the one hand, several different measures are usu-

ally available for a certain data type, e.g. for symbolic sequences. On the other hand,

their parameterization can have a strong impact on the outcome, as was discussed in de-

tail in Chapter 3. This increases the need to compare different dissimilarity-based data

representations quantitatively. We propose a technique which realizes such a comparison

per data instance, alongside visualizations obtained by DR.

4.2. Low-dimensional Euclidean embeddings

Dimensionality reduction (DR) is a common problem in the field of data analysis. In

broad terms, the goal of DR is to find low-dimensional vectors {y1, . . . ,yN} = Y ⊂ RL,

which resemble the distribution and structure of a data set {x1, . . . , xN} = X. The

target dimensionality L is determined a priori, typically by a user. The data X may be

given explicitly in the form of high-dimensional vectors xi = xi ∈ RD, or represented

implicitly by providing a matrix of pairwise dissimilarities d(xi, xj) = [D](i,j). We refer

to this as the input data. The resulting vectorial representation Y is accordingly called

output data, or simply the embedding, in the following. If the inputs are vectors in RD,

and thus their dimensionality is known to be D, we typically assume that L < D is

chosen, in order to achieve a reduction of the dimensionality. An important special

case is to select L = 2 or L = 3, which allows to visualize the data distribution in

a two- or three-dimensional scatter plot. This way, human experts can easily inspect

neighborhood structures in large data collections, and gain additional insights about the

data set’s characteristics.

To realize a mapping X ∋ xi −→ yi ∈ Y ⊂ RL, a broad variety of techniques2 has

been proposed in the machine learning literature, see e.g. [80, 23, 131, 132] and [C11b]

for overviews. Although the earliest techniques, e.g. multidimensional scaling, have been

proposed more than 50 years ago, DR still constitutes a very active research field. Many

methods have been proposed with a clear focus on visualization, i.e. an embedding in

2D or 3D space. However, the underlying principles are usually independent of a specific

target dimensionality, so that an arbitrary L < D may be chosen. Successful applications

of DR can be found in diverse areas, such as robotics, medicine, the web, biology, etc.,

see [105, 5, 83, 68], for example.

While the embedding Y aims to adequately resemble the original data X, dimen-

sionality reduction constitutes an ill-posed problem: not all the structure and relations

2 Note, that some techniques aim to reduce the number of instances |Y | < |X| in addition to the

dimensionality reduction, resulting in a condensed representation of the original data, such as the

GTM presented in Chapter 2. However, we will assume |Y | = |X| in the following, meaning that

every input has exactly one low-dimensional counterpart. This does not rule out that some vectors

in Y may be equal, i.e. at the same position in the output space RL.
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that exist in intrinsically high-dimensional data can be faithfully represented in a lower-

dimensional space, and it is not clear which relations should be preserved. The com-

promises ultimately depend on the given data set and the application scenario at hand.

In the following, we will assume that the intrinsic dimensionality of the original data is

higher than the one of the embedding space. Therefore, the user faces the problem of

choosing an appropriate DR technique, and an adequate configuration of its parameters,

along with other design choices that affect the DR procedure, e.g. preprocessing steps.

The variety of possible strategies has resulted in the development of many different DR

techniques. Often, the algorithms are based on the optimization of an objective function,

in which the goal for preserving information is formalized in mathematical terms. In

the following, we will briefly introduce three established DR methods, which constitute

particular landmarks in the field of DR. For detailed explanations, please refer to the

overviews in [80, 23, 131, 132], and the individual references therein. Other techniques

will be mentioned briefly, without detailing the mathematical background. Given the

premise of this chapter, we restrict our discussion to unsupervised DR techniques only.

In our formalization, we will denote distances in the original data space by d
(
xi, xj

)
=

dij and in the embedding by δ
(
yi,yj

)
= δij . It is assumed, that δij is the Euclidean

distance, while dij can be a dissimilarity measure for raw data, as discussed in the

previous chapters.

Principal component analysis (PCA)

One simple, and yet fundamental, DR method is the well-known principal component

analysis (PCA), see [80][ch. 2] and [35][ch. 10]. PCA uses an unsupervised linear trans-

formation of the data, which minimizes the loss of information, as measured by the sum

of squared errors. The method is restricted to vectorial input data. PCA defines a linear

mapping yi = xi ·A for input vectors xi, where the projection matrix A is the solution

to the costs

min
N∑
i

∥∥xi − xiAA⊺∥∥2
for orthonormal vectors in the columns of A. It can be shown algebraically, that these

vectors correspond to the directions of the largest variance in the data set, i.e. the

principal components. They are also the eigenvectors of the data covariance matrix. By

specifying the number of principal components used in the projection, we can regulate the

embedding dimensionality L. Due to its simplicity and well-understood behavior, PCA is

often used for data visualization, although the linear mapping function severely restricts

its versatility. Modern DR methods commonly use nonlinear mapping schemes. Several

approaches have been proposed which can be interpreted as nonlinear extensions of PCA,

such as kernel PCA [120], auto-encoding neural networks [59], or projections based on

principal curves which pass through the ‘center’ of the high-dimensional data [44].
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Multidimensional scaling (MDS)

The approach of PCA can be described as a global preservation strategy for pairwise

inner products of the data, aiming for an embedding which reproduces the largest con-

tributions of the metric in the data space, for vectorial input data. Multidimensional

scaling3 (MDS), see [80], formulates an error term to express the distortion of distances

explicitly. However, it is often reasonable to focus on maintaining local neighborhoods

(i.e. small distances) as good as possible, while the accurate replication of global neigh-

borhoods (i.e. large distances) is less critical in the embedding. Therefore, it incorporates

a weighting scheme to control the emphasis in the error function.

MDS aims to preserve distances dij by minimizing

EMDS =

N∑
ij

Wij

(
dij − δij

)2
,

where the weights Wij can be chosen appropriately, e.g. emphasizing the contribution

of small distances by Wij = 1/dij , see [80]. Optimization can take place by gradient

descent methods, typically starting with a random initial solution for the embedding

points yi. Given the straightforward formalization of the preservation goal, MDS is a

simple and well-established nonlinear mapping technique for general dissimilarity data.

Stochastic neighbor embedding (SNE) and t-distributed SNE (t-SNE)

The formulation of MDS aims to replicate the (weighted) pairwise distances, based on

their exact numerical representation. Instead, Stochastic neighbor embedding (SNE) [58]

uses a more abstract representation of pairwise proximity, by defining probabilities for

point neighborhoods

pj|i =
exp

(
−dij
2σi

)
∑

k ̸=i exp
(
−dik
2σi

) and qj|i =
exp (−δij)∑
k ̸=i exp (−δik)

in the data space (pj|i) and the embedding (qj|i), assuming squared data distances dij .

Then, it minimizes the Kullback-Leibler divergence ESNE = −
∑

ij pj|i log
pj|i
qj|i

, where

individual bandwidths σi are determined for every point, according to the so-called

perplexity meta-parameter. The perplexity is an integer, which can be thought of as a soft

k-ary neighborhood: it specifies the approximate number of neighbors with neighborhood

probability qj|i which is not in the tail of the Gaussian function. The bandwidth σi for

a given point is then automatically adjusted with a search algorithm to best meet this

requirement. A gradient descent is used for the optimization of the cost function.

3 While the name can address a whole class of algorithms, we will use the term multidimensional

scaling for a type that is known as non-metric MDS in many textbooks, i.e. preserving distances by

minimizing a weighted error term, measuring the differences between dij and δij .
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SNE suffers from the so-called crowding problem, which describes the particularly

frequent issue that many points are crowded in the embedding, see [131]. The en-

hanced technique t-distributed stochastic neighbor embedding (t-SNE) avoids this issue,

by assuming a long-tail distribution in the embedding space, the student-t distribution,

see [131]. This allows for an approximation of medium-sized distances in the data by

longer distances in the embedding, reflecting the fact that low-dimensional embedding

spaces offer less degrees of freedom to depict a large number of medium distances cor-

rectly. The SNE cost function is slightly modified to EtSNE =
∑

i

∑
j pij log

(
pij
qij

)
, where

pij =
pj|i+pi|j

2N symmetrizes the conditional probabilities, and

qij =

(
1 + δij/ς

)− ς+1
2∑

k ̸=l

(
1 + δkl/ς

)− ς+1
2

is given by student-t with parameter ς = −1, for example. Optimization takes place by

means of a gradient method.

The t-SNE method is widely used today, and its underlying concept has spawned

several similar techniques in recent years, taking a probabilistic approach to DR and

drawing inspiration from information retrieval, such as the neighborhood retrieval vi-

sualizer (NeRV) [135], and the Jensen-Shannon embedding (JSE) [79]. These three

state-of-the-art techniques (t-SNE, NeRV, and JSE) are rather similar, and their cost

functions can be written in a unified form, where only components and parameters are

altered, see [79].

General remarks about DR

Among the plethora of available DR techniques, the three methods described above

stand out as important landmarks in the history of the research field. Although PCA and

MDS are no longer considered state-of-the-art for visualization purposes, they are rather

easy to explain, and are therefore popular outside the machine learning and DR research

community, see [15, 4, 3]. In practical applications among several other disciplines, these

methods are still widely used and appreciated for their simplicity. Among modern non-

linear embedding techniques, t-SNE is considered particularly popular and has been

described as a leap forward in DR quality [79]. Hence, we will focus on these three

techniques in our experiments and examples in the remainder of this chapter.

The different approaches result in qualitatively very different visualizations for a given

data set, see the overview papers [80, 131] for direct comparisons. Therefore, it is not

clear a priori, which DR technique is best suited for the task at hand. In addition,

virtually all recent techniques have parameters to control (in some way) the preservation

strategy for the embedding. Hence, depending on the chosen parameters, even a single

DR method can lead to vastly diverse results. Moreover, many nonlinear DR techniques

do not arrive at a unique solution due to random aspects of the algorithm. Instead,
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they can produce different outputs in every run, corresponding to different local optima

of the objective. Therefore, it is possible that qualitatively different solutions can be

obtained by a single method with a single set of model parameters.

Assessing the reliability of an embedding

Usually it is not clear whether differences in the dimensionality reduction (between dif-

ferent methods, parameters or runs) represent different relevant aspects in the data or

signify unsuitability of a method. Further, it can happen that suboptimal results are

obtained simply because of numerical problems, such as (bad) local optima. At the same

time, it is very hard for humans to judge the quality of a given embedding by visual

inspection. The user cannot compare it against a ground truth, as this data is inacces-

sible due to its high dimensionality. Therefore, we need formal measures which judge

the quality of a given data embedding. Such formal measures should evaluate, in an

automated and objective way, in how far the structure of the original data is preserved

in the low-dimensional representation. Apart from their importance for practical appli-

cations, quality measures are generally relevant to automatically evaluate and compare

DR techniques for research. As reported in [135], a high percentage of publications on

data visualization evaluates results in terms of visual impression only – in [135], about

40% of the 69 referenced papers did not use any quantitative evaluation criterion. Even

if formal evaluation criteria are used, these differ from one application to the next, refer-

ring e.g. to a local misclassification error for labeled data [132, 135], the reconstruction

error provided an inverse mapping is possible [81], or local preservation of neighbor-

hoods [135]. Further, many popular benchmark data sets in the literature are artificially

generated and thus are of limited use for a realistic evaluation of DR methods [132]. Al-

though a few real-world data sets are currently available (see e.g. [131]), there does not

exist a large variety of data encompassing different characteristics together with suitable

evaluation criteria.
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4.3. Quantitative quality assessment

Section overview In this Section, we will first give a short overview over existing

approaches of quality assessment for dimensionality reduction in Subsection 4.3.1, and

will discuss some fundamental features which distinguish their strategies, concluding

with the general motivation for our own approach. Thereafter, we will focus on the

co-ranking matrix from [81], which serves as a unifying framework to represent several

other measures. In Subsection 4.3.2, we will briefly describe the co-ranking matrix itself,

and, in Subsection 4.3.3, propose to augment data visualizations by point-wise quality

contributions based on the co-ranking framework. Subsection 4.3.4 discusses how a fairly

simple parameterization in established quality measures causes problems regarding the

interpretability of the evaluation results. We propose a new parameterization which

allows for more fine-grained control over the evaluation focus, and which facilitates

a more specific analysis of the given embedding. After we demonstrate the benefits

of our approach on several artificial examples, we show, in Subsection 4.3.5, how it

performs in real-world visualization scenarios in comparison with the former model. In

Subsection 4.3.6, we briefly summarize our findings and point out follow-up questions.

4.3.1. Principles of quality assessment for DR

Several quality criteria to evaluate DR have been proposed in recent years, see [81] for an

overview of the more prominent measures. However, the problem to define formal criteria

suffers from the ill-posedness of DR itself: it is not clear a priori which structural aspects

of the data should be preserved in a given task. Generally, the existing quality measures

evaluate in how far the original data relations agree with the ones of the embedding.

A similar notion forms the basis for most objective functions in DR methods, but the

specifics and priorities of the agreement calculation are a matter of ongoing research and

debate. By formalizing an objective, every DR strategy gives rise to a perfect mapping

in terms of the global optimum of this objective, and thus it incorporates a quality

measure in itself. However, the goal of DR is to produce a representative embedding of

the data and, thus, algorithmic aspects such as easy optimization are a prior motive,

while a quality measure is used to gain insight into the properties of the embedding.

Therefore, the quality measure can and should be general, as well as understandable,

so the user can easily interpret its results, and thus judge the trustworthiness of the

embedding. Regarding application scenarios, a formal quality evaluation can assist the

user in two ways, to which we will refer in our further discussion:

(a) Given a data set, formal measures help to compare different DR methods along

with their parameter settings, as demonstrated in extensive experiments, e.g.

in [135, 81, 82, 79]. Therefore, by iterative comparison, a DR method’s parameter

configuration could be optimized interactively. A relatively coarse-grained, overall

quality assessment seems sufficient for this purpose.
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(b) Given a single embedding, formal measures can provide the user with information

about the qualitative characteristics of the observed embedding. Since the user

intends to gain knowledge about the original data, it is beneficial to analyze – in

detail – the approximative representation in the embedding. For this task, fine-

grained evidence is necessary, see [7, 129].

In the following, we will briefly discuss existing strategies for quality assessment in the

literature and point out some basic distinguishing features. DR evaluation compares

characteristics derived from the data X to corresponding characteristics derived from

the embedded points Y . Since a formal mathematical characterization together with a

unifying framework of many DR evaluation techniques has already been developed [81],

we do not aim at a formal definition of the particular methods. Instead, we highlight

distinguishing characteristics of the evaluation methods.

Distances vs. ranks Most DR evaluation techniques relate to pairwise distances of data

in some way. One fundamental distinguishing aspect is whether the pairwise distances in

the high-dimensional data are compared directly with the low-dimensional setting, or if

only their order, i.e. ranks, is considered. All evaluation measures mentioned in [81, 124]

use ranks, whereas in [135] the criteria precision and recall may be evaluated for any

form of proximity measure, including ranks of distances, or distances itself. From the

measures presented in [44], the quality of point neighborhood preservation and quality

of group compactness are both based on K-nearest-neighbors, i.e. they consider ranks;

while the quality of distance mapping can be evaluated for both, distances and ranks

alike. While absolute distance information is lost when only the order of distances is

considered, it has the benefit that any notion of pairwise proximity in the original data

(e.g., distances, dissimilarities, similarities, neighborhood probabilities) is comparable

with the Euclidean distances of the embedded data points, since ordering the neighbors

of a point is possible in all these cases. Further, ranks are invariant to monotonic

transformations of the distances.

Neighborhood scales Many quality measures aim to give an overview of the visu-

alization’s characteristics on different scales, by considering the agreement rates over

varying neighborhood sizes (usually averaged over all data points). This facilitates to

some extent the fine-grained analysis mentioned in our introductory statement (b). The

neighborhoods are either defined via hyperspheres of a radius ϵ centered at each point,

or, alternatively, as the K nearest neighbors of each point. All measures discussed

in [81, 38, 124] use K-neighborhoods, while in [135] ϵ-hyperspheres are considered. Note,

that the latter case is more general, since an ϵ-radius can serve as a boundary for any

kind of proximity, including ranks4.

4When distances are replaced by their respective ranks, limiting to a radius of size ϵ for a point means

choosing its ϵ nearest neighbors.
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Agreement evaluation Based on these neighborhoods for some fixed K or ϵ, there are

different possibilities to evaluate the agreement between the characteristics in the high-

dimensional data and its counterpart in the embedding. Some quality measures simply

calculate the ratio of agreed points within these regions, see e.g. [81, 38]. Others consider

a weighted combination of the agreement rate inside and outside of the neighborhoods,

like the mean relative rank errors from [80]. A recent criterion known as local strict rank

order preservation [124] counts strictly preserved ranks. Instead of counting the number

of agreed neighbors, the quality of distance mappping [44] uses the correlation of pairwise

distances between the original and the embedded data. For the precision and recall for

DR, as defined in [135], one can use ranks instead of pairwise distances between the data,

which leads to defining regions of ϵ nearest neighbors. Then, precision and recall are both

equal to calculating the average number of agreeing neighbors, which coincides exactly

with the quality QNX from [81], the quality of point neighborhood preservation in [44],

as well as the agreement rate from [38]; criteria which were all proposed independently.

Supplemental to the quality from [81], the behavior indicator gives insight about the types

of errors which occur in the visualization: either points become closer in the embedding,

or points are farther apart than in the original, called intrusive or extrusive behavior,

indicated by values below or above zero respectively. While most of these concepts aim

at our scenario described in (a), the behavior indicator reveals more details about the

embedding’s characteristics.

Aggregation of pointwise contributions Point-wise agreement rates (i.e. independently

regarding every point’s neighborhood) are usually aggregated to fewer numeric values,

in order to deliver a compact evaluation result, like a curve over growing ϵ or K. For

the aggregation, a simple average is often used. While this is beneficial when comparing

several DR techniques for the same data set, as addressed in statement (a), the aggrega-

tion hides the local quality characteristics of the embedding, which would be beneficial

regarding our statement (b).

Scale-independent criteria To obtain even fewer numeric values which subsume the

quality on all (or some important) neighborhood scales, different possibilities can be

found in the literature. In [82] averaging the quality curve QNX(K) over certain ranges

of K has been proposed. A splitting point Kmax is defined as the first maximum of the

curve with respect to its baseline. Then, the mean quality for all k ≤ Kmax represents

the local quality, whereas the mean quality over all K > Kmax defines the global quality.

Recently, in [79, 78], Lee and colleagues presented a new averaging scheme for the

quality curveQNX(K): First, the baseline is subtracted, and the quality value is weighted

evenly for all neighborhood scales K, in order to gain a more equalized and intuitive

representation. This results in a justified measure RNX(K), for which a logarithmically

weighted average, or area under the curve, can be considered, indicating where the gross

mass of the RNX(K) curve is distributed. The logarithmic weighting emphasizes local
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neighborhood preservation in the measure. See [79] for examples of the adjusted quality

curves and the resulting average indicators.

Other measures to judge the overall topology at once are, for example, the quality

of distance mapping proposed in [44] which calculates the Pearson or Spearman cor-

relation coefficients between all pairwise distances in the high-dimensional versus the

low-dimensional setting, yielding a single value. For efficiency, the authors propose to

calculate the correlation only on a representative subset of pairwise distances, selected by

the natural PCA procedure, see [44]. For the topographic mapping with self-organizing

maps (SOMs) [73], the topographic product has been proposed, which yields a single

value to assess the topographic disturbances in the map, see [10]. It basically considers

the distances between pairs of nearest neighbors, hence it is easily possible to generalize

the topographic product to any high- and low-dimensional point configurations (without

the fixed lattice of a SOM).

A single quantitative quality rating greatly benefits overall comparison of DR methods

as stated in (a), while a fine-grained analysis of a given visualization is not supported.

Supervised evaluation There are also measures which take class labels of the data into

account, like e.g. the quality of group compactness in [44], the K-nearest-neighbor error

of the embedding in [135], or which even introduce a local labeling in the original data

space to judge the preservation of local neighborhoods via this labeling [132]. We will

not discuss these further, since we focus strictly on an unsupervised evaluation scenario.

General remarks From the existing literature, we see that many quality measures are

suitable for a situation where the user wants an overall comparison of a number of

different embeddings of the same data, e.g. originating from different DR methods or

different parameter settings, as described in statement (a) on page 90. However, there are

only few approaches which aim at a more fine-grained analysis of a single visualization,

mentioned in (b). Some measures are useful for compromises between (a) and (b), by

evaluating the quality over all neighborhood scales, e.g. in [135, 81]. However, only

the works [7, 129] aim fully towards the scenario (b), by integrating visual cues about

local reliability directly into the embedding. Their idea is to provide the user with

sufficient information to compensate for the distortions in the observed visualization,

when reasoning about the original data. These approaches are, however, not directly

linked to any of the referenced formal quality measures. Therefore, our goal is to extend

the formal evaluation based on the well-established co-ranking matrix [81] toward a more

fine-grained analysis.

After introducing the co-ranking matrix in the next section, we will utilize a decom-

position into point-wise quality contributions in Subsection 4.3.3. In Subsection 4.3.4 we

will point out certain disadvantages of the quality framework with regard to our purpose

of fine-grained analysis and control, and propose to circumvent these disadvantages with

a different parameterization.
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4.3.2. Evaluating DR based on the co-ranking matrix

Referring to the high-dimensional data set X =
{
x1, . . . , xN

}
⊂ RD and the low-

dimensional data set Y =
{
y1, . . . ,yN

}
⊂ RL, the rank of xj with respect to xi in

RD is given by

rij = |{k | dik < dij or (dik = dij and 1 ≤ k < j ≤ N)}| .

Analogously, the rank of yj with respect to yi in the low-dimensional space is

ρij = |{k | δik < δij or (δik = δij and 1 ≤ k < j ≤ N)}| .

The differences Rij = ρij − rij are the rank errors. The co-ranking matrix C [81] can be

seen as a histogram of all rank errors, and is defined by

Ckl = |{(i, j) | rij = k and ρij = l}|.

Pairs of points which change their rank between the original data and its projection are

considered errors of the DR procedure. They result in non-zero off-diagonal entries in

the co-ranking matrix. A point yj with rij > ρij is called an intrusion, with rij < ρij it

is an extrusion. Usually, a DR method cannot embed all relationships of data faithfully.

Often, the focus is on the preservation of local relationships. The co-ranking matrix

offers a framework, in which several existing evaluation measures can be expressed, as

pointed out in [81]: local continuity meta criterion (LCMC) [27], trustworthiness &

continuity (T&C) [134], and mean relative rank errors (MRRE) [80]. Essentially, these

quality measures correspond to weighted sums of entries Ckl of the co-ranking matrix

for regions k ≤ K and/or l ≤ K, with a fixed neighborhood range K.

In [81], a comprehensible (unweighted) sum has been proposed, the quality QNX:

QNX(K) =
1

KN

K∑
k=1

K∑
l=1

Ckl =
1

KN

N∑
i=1

|Axi ∩Byi |. (4.1)

where Axi = {j|rij ≤ K} and Byi = {j|ρij ≤ K} are the index sets of K nearest neigh-

bors of point xi in the high-dimensional data, and, respectively, yi in the embedding.

Hence, this normalized sum is simply the average ratio of K nearest neighbors coinciding

in the original and the embedded data. Therefore, it summarizes all ‘benevolent’ points

which maintain a rank below K, which are also called mild in- and extrusions. Figure 4.1

shows a schematic picture of how the co-ranking matrix is partitioned via K, and how

intrusions and extrusions appear in the matrix.

To display the quality, usually a curve of QNX(K) is plotted for a range of different

settings of K. An example is given in Figure 4.2 for the classical swiss roll data set,

which has often been used for illustration purposes in the DR literature, see e.g. [80].

In our case, the original three-dimensional data consists of 1000 points sampled from

the curled two-dimensional manifold, see Figure 4.2a. It was reduced to two dimensions
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Figure 4.1.: Large-scale structure of the co-ranking matrix. On the left, the matrix is

split into blocks to show different types of intrusions and extrusions. In a perfect mapping,

the co-ranking matrix will be a diagonal matrix. The image on the right shows how rank

differences will alter the matrix. If a neighbor moves further away in the embedding (an

extrusion) it will appear to the right of the diagonal. Similarly, intrusions appear to the

left of the diagonal.

using t-SNE [131] with the perplexity parameter set to 50, see Figure 4.2c. The 2D

embedding produced a piecewise ‘unrolled’ view of the original spiral strip, where some

continuous regions were separated and the data is depicted as three distinct patches5.

In the embedding, most local neighbors stay in the proximity, corresponding to a quality

close to 1, while not all neighbors are preserved in larger neighborhood sizes, see Fig-

ure 4.2b. Here, the nonlinear structure of the swiss roll comes into the play: while points

on different ends of the swiss roll are relatively close as measured using the Euclidean

distances in 3D, these are far away in the 2D unfolding of the spiral strip. The expected

quality of a random mapping serves as a baseline for QNX(K), see [81, 82] and [38] for

a formal derivation. It is displayed as the dotted line in Figure 4.2b. Therefore, with K

approaching the total number of points, quality values of 1 are reached slowly, a necessity

corresponding to the baseline.

4.3.3. Point-wise quality measure

We argue, that it is important to provide the user with information about the reliability

of the displayed embedding, as mentioned in (b). Integrated visual cues indicating the

5Note, that we did not use pairwise geodesic distances to represent the original data, despite our

knowledge of the underlying manifold. Instead, we calculated Euclidean distances in the original

3-dimensional space to reveal more clearly the effects of the quality evaluation. Moreover, the t-SNE

method is generally more suited to embed data which is arranged in clusters, as opposed to data

lying continuously on a manifold. We deliberately chose the method for this example to demonstrate

the quality evaluation with the typical effects of separating or condensing neighboring points due to

the method’s inherent assumption of an underlying cluster structure.
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reliability of every single mapped point can help the user reason about the original data

based on the embedding. Ideally, the user is not only able to identify erroneous regions

in the visualized data, but can also get an intuition about the structure of the original

data. In a real visualization task, the expert user would have semantical knowledge

about the data that might imply certain structural assumptions or expectations. Of-

ten, additional information is available, like the membership to semantically meaningful

classes in the data. When the expert combines such semantic knowledge with the given

visualization, the augmented display might help to distinguish whether the observed

local errors are artifacts of the DR procedure, or structures which are in fact contradic-

tory in low-dimensions. While the approaches presented in [7, 129] provide very effective

heuristics to do so, surprisingly, none of the formal evaluation measures mentioned so

far have been directly integrated into the visualization display. As mentioned, many of

the measures explained in Subsection 4.3.1 are aggregated values consisting of point-wise

quality contributions (or error rates analogously), and thus yield the possibility to be

extended in such a way.

Pointwise co-ranking matrices In the following we will derive the point-wise quality

contributions which are aggregated in the measure QNX(K). A co-ranking matrix can

be seen as the joint histogram of ranks in the high- and low-dimensional data, as stated

in [81]. For every single point, it contains the ranks of all its N − 1 neighbors. Every

co-ranking matrix C can therefore be decomposed into per-point permutation matrices

Cyi
for every point yi ∈ X with C =

∑N
i=1C

yi
where

Cyi

kl = |{j | ρij = k and rij = l}| .

Hence, the point-wise contributions of the quality QNX directly follow as

Qyi

NX(K) =
1

K

∑
k≤K

∑
l≤K

Ci
kl =

1

K
|Axi ∩Byi |

which, averaged over all points, again yields the quality measure

QNX(K) =
1

N

N∑
i=1

Qyi

NX(K) .

Thus, every mapped point can be colored based on its quality Qyi

NX(K) for relevant K.

The parameter K is either chosen according to relevant structural criteria such as a local

extremum of the curve QNX, or determined interactively according to the user’s needs.

Figure 4.2d shows an example for the swiss roll data set, where the points are colored

by Qyi

NX(14) with K = 14 chosen according to the first local optimum of the quality

curve. While it indicates small errors for almost all of the points in the inner parts

of the patches, it also reveals the positions of stronger topological mismatches on the
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borders of the visualized patches. These errors are caused by the unrolling and tearing

of the original manifold, and are clearly revealed by the coloring via point-wise quality.

Hence this augmentation of the DR according to local quality highlights those regions

where the user cannot rely on the visualization.

4.3.4. Parameterization of the quality measure

Even in very simple settings, however, it is difficult to interpret the shape of the curve

QNX(K) and the related local quality measure Qyi

NX(K), in particular the parameter K

is a fairly simple, but sometimes unintuitive control mechanism. To demonstrate this

problem, we will consider a few simple examples of two-dimensional toy data, where we

performed no reduction of the dimensionality, but created artificial ‘mappings’ which

map the input data to a different configuration of points in the plane. Although we have

direct access to the original data structure as well as the specific characteristics of the

mapping in these cases, we found that the types of our deliberately implanted errors are

hard to recognize from the results of the quality measure QNX.

First, we consider a very simple scenario: A row of equidistant points is mapped to a

row where the points are swapped in pairs, as depicted in Figure 4.3a. Any even number

of points could be chosen arbitrarily. When examining this scenario, we find that the

maximum absolute rank error between the original and the switched points is 4 for the

entire data set, and independent from the total number of points (for example, when

point d moves left, and its right neighbor e moves right)6. Intuitively, if we consider rank

error sizes up to 4 as acceptable, this mapping is perfect. This is, however, not indicated

by QNX(4) in the graph in Figure 4.3c (which displays the quality for a row of 20 points

which are swapped in this manner): the quality is below one for most K ≥ 4. It is hardly

possible to gain insight about the characteristics of the errors based on the observation

of QNX(K) and the mapped points alone, although the errors in this scenario can be

fully characterized by local pairwise swapping.

The problem arises, because small rank errors can have an effect over larger ranges

of K: regarding some reference point yi, let us consider a faraway neighbor yj with

the original rank rij = K For the quality QNX(K), this point is considered benign (i.e.

it adds to the quality) as long as its rank stays at K or intrudes to some lower rank

1 ≤ ρij < K, whereas this neighbor would be regarded as erroneous immediately with

just a slightly higher rank of K + 1 for instance. On the other hand, a close neighbor,

e.g. with rank 1, is allowed to extrude up to a rank of K and still adds to the quality

rating, although the rank difference can be rather large. This seems to be an unbalanced

characteristic of the quality measure in general.

A look at the co-ranking matrix in Figure 4.3b reveals the distribution of rank changes

6Note, that for these equidistant points, ties in the pairwise distances need to be broken to arrive at

proper ranks. In case of a tie, we define that the point with the lower alphabetical letter gets assigned

the lower rank.
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Figure 4.2.: An example of the qualitative evaluation for an embedding of the well-known

artificial swiss roll data. On the upper left, the original 3D data is shown, and on the

lower left is the 2D embedding obtained by the t-SNE method (with a perplexity of

50). The different symbols serve as a reference to the original positions on the spiral-

shaped manifold. The upper right shows the classical evaluation via the quality graph

over QNX(K). The lower right shows the embedding, colored by the proposed point-wise

qualities Qyi

NX(14). While the DR method mostly ‘unrolled’ the original manifold rather

truthfully, the strip is torn into several pieces, and the locations of the tears are clearly

indicated by the coloring.
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for this simple example. Since the rank error is always smaller than 5, only 4 off-diagonals

of the co-ranking matrix are not equal to 0, since the ith off-diagonal corresponds to rank

errors of size i. However, the quality QNX is a sum over a square block of the co-ranking

matrix, like many other DR evaluation measures described in [81]. This observation

also suggests how the quality measure can be altered to achieve a more appropriate

parameterization: rather than considering a rectangular sub-matrix, it should focus on

a limited number of off-diagonals corresponding to the rank deviation that is considered

acceptable.

b a d c f e h g

a b c d e f g h

(a) Switching of points

r r r rr r r rr r r r rr r r r rr r r rr r r r rr r r r rr r r rr r r r rr r r r rr r r rr r r r rr r r rr rr r

(b) C

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Q
N

X

Neighborhood sizes K

 

 

←K = 4

(c) QNX(K)

K
t

K
s

 

 

5 10 15

5

10

15

0

0.2

0.4

0.6

0.8

1

(d) QND(Ks,Kt)

Figure 4.3.: The upper left shows the artificial mapping, which is a simple switching

scheme of a row of one-dimensional points. Obviously, rank errors are at most four (in

case of tie breaks) in this setting. This is mirrored by the shape of a co-ranking matrix

for the same setting with 20 points (upper right) for which four off-diagonals are non-

vanishing. However, the established measure QNX(K) is below 1 for almost all K (on

the bottom left), which is hard to link back to the mapping’s characteristics. For our

proposed measure (on the bottom right), QND(Ks,Kt) = 1 for all K ≥ 4.

Looking at the rather comprehensible and straightforward definition of QNX, we find

that the parameter K serves two different purposes: on the one hand, K identifies a

region of interest by determining the size of the neighborhood of every point in the

original data, namely rij ≤ K. On the other hand, it determines the size and shape

of errors which are tolerated for points in the region of interest: every ρij ≤ K is

acceptable and adds to the overall quality. This parameterization has the effect that

small rank errors can contribute to the shape of the curve QNX(K) on every scale of
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Figure 4.4.: Change of the summation area of the co-ranking matrix for precise control

over the region of interest and the tolerated rank errors.

K. While this is no immediate drawback when merely comparing several DR methods,

i.e. the usage scenario described in (a) on page 90, the effect can be problematic when

a fine-grained analysis of a visualization is desired, like in case (b) on page 91. As

stated in Subsection 4.3.1, the quality measure QNX is similar (or equal) to several other

evaluation criteria which rely on the same part Ckl, k, l ≤ K of the co-ranking matrix.

Hence, this problem is present in all these evaluation measures.

To circumvent the described problem, we propose a different, more fine-grained as-

sessment of quality based on the co-ranking matrix, which (i) identifies benign points by

their amount of deviation from the original rank, rather than their absolute rank in the

embedding, and (ii) allows for separate control over the region of interest and the size of

the tolerated errors. We therefore replace the single parameter K by the pair (Ks,Kt),

where Ks determines the region of interest (alias the significant ranks) and Kt is the size

of tolerated rank errors. Further, rather than tolerating errors within a certain region

of the projection, we explicitly consider a limit on the absolute rank errors. The new

measure is defined as:

QND(Ks,Kt) =
1

KsN

∑
i≤Ks

∑
j:|i−j|≤Kt

Cij .

Since the second sum is limited to entries j : |i− j| ≤ Kt, i.e. rank errors |i− j| smaller

than Kt, we now sum over a part of the co-ranking matrix which is oriented according

to the diagonal, see the schematic in Figure 4.4b. By controlling the two parameters of

the quality measure, the user can assess the compliance with specific requirements for

the embedding. For example, common tasks would be to assess:

(I) the preservation of local relationships (chosen by small Ks and small Kt);

(II) the amount of errors originating in fairly local neighborhoods, but are deviating

largely from the original rank (small Ks, large Kt);

(III) the preservation of global relationships in the data (large Ks, smaller Kt).
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To get a rich impression of a visualization’s qualitative characteristics, the quality

QND(Ks,Kt) is now parameterized by two values. Hence, rather than in a single curve,

the results are now represented by a surface. The full quality surface can easily be

displayed as a colored matrix, where the position (Ks,Kt) is assigned a color value

according to QND(Ks,Kt), see Figure 4.3d for an example. The matrix in Figure 4.3d

shows the results for our example of 20 swapped points. It clearly reveals that all entries

for Kt ≥ 4 yield the maximum quality, which is the expected behavior.

In the following artificial example, we will further demonstrate the more directly

controllable characteristics of our approach. We consider three simple scenarios, mapped

from two-dimensional points to a new point distribution in 2D. The original data consist

of three well-separated Gaussian clusters, containing 100 points each, see Figure 4.5a.

As a ‘mapping’, we consider the points obtained by (i) a random permutation of the

points within every cluster, see Figure 4.5b, (ii) a switch of the two leftmost clusters,

see Figure 4.5c, and (iii) the middle and leftmost cluster stacked on top of each other,

see Figure 4.5d. These artificial mappings represent typical behavior of DR embeddings

since they capture (i) local distortions, (ii) a tearing of regions, and (iii) an overlay of

regions, which are common effects due to the low dimensionality of the projection space.

The resulting curves for QNX are depicted in Figure 4.6a. Although we know the

exact behavior of the mapping in this case, it is not easy to link the entire shape of

the curves to the characteristics of the respective mapping. In setting (i), the random

permutation of points within the clusters causes a vast number of local errors, which

is clearly indicated by the low quality for K < 100. Farther neighbors change their

rank as well, because of the permutation within the neighboring clusters. However, the

absolute size of all rank errors in the mapping is strictly below 100, when considering

only a single cluster, which cannot be inferred on the basis of the quality curve. The

quality matrix for the new measure QND in Figure 4.6b clearly shows the errors which

are present rather steadily over all scales of Ks, whereas the quality is perfect for all pairs

(Kt > 100,Ks < 100), which implies that the absolute size of rank errors caused by the

mapping for a single cluster is below this range. When considering large neighborhoods

of interest with Ks > 100, the quality is very good for 100 < Kt < 150, and perfect for

all Kt > 150. The type of errors that appear here are more rare, the extreme case would

be, that a point on the very right of a cluster moves to the very left of its cluster, and

a neighbor originally on the left, moves to the very right of its cluster. The absolute

rank error for this type cannot exceed half of the total number of points, as indicated

by QND(Ks,Kt) = 1 for all Kt > 150. This mapping refers to the evaluation tasks (I)

and (III) as described on page 100, i.e. the upper left part of the quality surface for (I),

and the lower left/middle part for (III).

For mapping (ii), the curve of QNX in Figure 4.6a reveals that there are no errors on

a small neighborhood scale (below the cluster size of 100), whereas the quality drops

severely beyond this scale. The corresponding matrix of QND in Figure 4.6c gives us the
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Figure 4.5.: These scatter plots show a simple example of deliberately designed artificial

mappings, which resemble typical effects of DR procedures and serve as a demonstration

benchmark for our quality evaluation. The upper plot depicts the original data consisting

of 3 Gaussian clusters in 2D. The plot below shows how the data was randomly shuffled

within each cluster, where black lines are drawn from every point to its original position,

to demonstrate the permutation. The last two plots show, respectively, how two clusters

are switched, and stacked on top of each other.

same information, but also reveals that the absolute size of rank errors is below 200 by

showing a perfect quality for all K ≥ 200. This is expected, since there are only two

clusters involved in errors. We also see a sharp rise in quality at Kt = 100, because for

the points of the rightmost cluster, two thirds of all neighbors (the points of the other

clusters) change their ranks by exactly 100 due to the switching. From the perspective of

the leftmost cluster, there are also some rank errors of size 100 to 200, which is indicated

by the slight coloring in the region 100 ≤ Kt < 200. Mapping (ii) refers to the evaluation

task (III) on page 100, i.e. the lower left to middle part of the surface.
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In the evaluation for mapping (iii), the curve of QNX shows a steadily diminished

quality until K ≈ 125, a scale which cannot be linked to the structural knowledge about

the data. Thereafter, the curve steadily rises to the maximum. From this, we can gather

that there are relatively little global errors, however, the matrix for QND in Figure 4.6d

gives more insight: we can see that the errors originating in small regions (small Ks) are

rather small, i.e. there are errors only for Kt < Ks approximately. On larger scales, the

number of errors increases along with the tolerance Kt, which implies that the absolute

size of rank errors increases. This is expected, since the stacking of the clusters causes

small deviations from the original ranks when considering small neighborhoods, as well

as large errors when considering large neighborhoods. However, the quality is perfect

for Kt > 200 which, again, suggests that there are only two clusters involved in the

occurring errors. This mapping is linked to the evaluation tasks (I) and (II).

In order to reduce the computational cost of calculating QND(Ks,Kt) for all pairs

(Ks,Kt) ∈ {1, . . . , N − 1}2 in a practical evaluation scenario, it is reasonable to calculate

only the quality values for the following three curves instead of the full surface:

• the values QND(Ks,Kt) with Ks = Kt ∈ {1, . . . , N − 1}, which resembles the

original curve from QNX(K) over growing neighborhood sizes, but with a different

area of summation, taking the error size into account; the corresponding part of

the co-ranking matrix is depicted in the schematic in Figure 4.4c. This means

that the size of tolerated errors is growing as the considered region of interest gets

larger. We then denote the measure by QND(Kst) with Kst := Ks = Kt.

• QND(Ks,Kt) for all Ks ∈ {1, . . . , N − 1} and fixed Kt, i.e. the mapping’s charac-

teristics under a fixed assumption about the failure tolerance, as only the region

of interest grows.

• QND(Ks,Kt) for all Kt ∈ {1, . . . , N − 1} with a constant Ks, i.e. for a fixed neigh-

borhood size of interest, as the failure tolerance increases.

In the latter two cases, the respective fixed parameters can be selected according to

the user’s prospect, e.g. on which scale the visualization is required to be trustwor-

thy. Figure 4.7 shows how the combination of these curves for QND offers an adequate

approximation of the full surfaces from Figure 4.6.

The evaluation in these artificial cases is simplified by the assumption of equal cluster

sizes, which yield a natural threshold for the parameters. While this was helpful to clarify

the proposed parameterization, the benefits of the two parameters become apparent

when the aggregated overview of the mapping quality is combined with a point-wise

evaluation, which is introduced in the following section.
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(d) QND(Ks,Kt), left two clusters merged

Figure 4.6.: The figures show the evaluation for the artificial mappings from Fig. 4.5, first

with curves obtained by the classical quality measure QNX (the top figure), and with the

quality surfaces resulting from the newly proposed QND measure (in the three remaining

figures), each being a counterpart to one of the curves above.
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(b) QND(Kst)
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(c) QND(Ks, 30)
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(d) QND(30,Kt)

Figure 4.7.: This figure shows a different representation of the qualitative evaluation

presented in Fig. 4.6 for the artificial mappings of three clusters shown in Fig. 4.5. In the

upper left are the curves for QNX(K) (the same as in Fig. 4.6a). The other three plots

show an alternative, lean representation of the QND measure, which needs less computa-

tional effort. The upper right shows QND(Kst) for all Kst := Ks = Kt ∈ {1, . . . , N − 1},
meaning that the measure tolerates all absolute rank errors which are smaller than the

current neighborhood of interest. (Here, the y-axis is scaled differently to highlight the

details.) The graphs in the bottom left capture the mapping’s characteristics under a

fixed assumption about the failure tolerance, as only the region of interest grows, in this

case for an error tolerance of 30. The bottom right shows the graphs for QND(30,Kt) for

all Kt ∈ {1, . . . , N − 1}, i.e. the average quality of the 30 nearest neighbors, as the failure

tolerance increases. These graphs capture the essential content of the surfaces shown in

Fig. 4.6, requiring far less computational effort.

Controllable point-wise quality For the new measure QND, the definition of the point-

wise quality is analogous to the one from Subsection 4.3.3:

Qyi

ND(Ks,Kt) =
1

Ks

∑
k≤Ks

∑
l:|k−l|≤Kt

Ci
kl

where QND(Ks,Kt) =
∑N

i=1Q
yi

ND(Ks,Kt)/N . Here, the benefits of the new parame-

terization are particularly noticeable, since the user is able to tune the parameters to

make specific types of embedding errors directly visible. We consider the example from

Figure 4.2, and show how the previous point-wise quality compares to the new definition

in Figure 4.8. The problem of QNX described above becomes apparent when looking

at Qyi

NX: at a scale K, the measure considers very different types of errors at once. In

this case, we see small rank errors caused by fairly local permutations of points within

the unfolded pieces of the strip, which exhibit a lighter color. Also, we observe a small
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number of strongly colored points on the edges where tearing occurred and lead to larger

rank errors. In contrast, the new measure Qyi

ND exclusively singles out the tearing, since

in this case the small rank errors within the unfolded patches are below the tolerance

threshold of Kt = 14, while larger errors which originate in small regions of 14 nearest

neighbors (Ks) are caused by the tearing only, and diminish the quality in this parameter

configuration.

 

 

worst

best

(a) Qyi

NX(14)

 

 

worst

best

(b) Qyi

ND(14, 14)

Figure 4.8.: This figure compares the two proposed point-wise quality measures for the

same embedding of the swiss roll data by t-SNE, as introduced in Fig. 4.2. On the left,

we show the points colored according to Qyi

NX(14) (the same as in Fig. 4.2d). On the right,

the points’ color coding is obtained by Qyi

ND(14, 14). Both measures highlight the tearing

of the original manifold, but Qyi

ND shows only the torn regions and almost no local errors

within the unrolled patches, since absolute rank errors below 14 are explicitly tolerated.

(The sequence of class labels from the inside to the outside of the original spiral-shaped

manifold is: ◦▽�♢△, see Fig. 4.2a.)

4.3.5. Experiments with real-world data

In this section, we demonstrate the quality evaluation framework on two real-world data

sets, and showcase the augmented visualization along with the classical evaluation by the

quality curve QNX. For the dimensionality reduction of the data, we applied the standard

linear technique PCA projecting the data on the first two principal components, as well

as the well-known modern nonlinear method t-SNE.

Runner data The first data set is a motion capture sequence, freely available from

the Open Motion Data Project at the Ohio State University7. It contains the three-

7sequence Figure Run 1 from http://accad.osu.edu/research/mocap/mocap data.htm

http://accad.osu.edu/research/mocap/mocap_data.htm
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dimensional positions of 34 tracking markers over 217 time steps. The sequence shows

a person, who begins to run from a forward-leaning position, and takes about five

strides during which the inclination of the body becomes upright. Figure 4.9 shows

2D-embeddings of the original 102-dimensional points. To clarify the sequential rela-

tion of the visualized data, we connected points from consecutive frames by a line. We

deliberately chose this data set, because here the user has additional knowledge about

the original underlying manifold, and can directly inspect where a DR technique did not

represent the manifold truthfully. Therefore, the visual augmentation to detect tearing

and overlapping of the manifold is superfluous. However, since data lying on an (un-

known) underlying manifold structure are common in general practical applications, this

showcases the insights we can gain from the point-wise quality evaluation.

The embeddings of both, PCA and t-SNE, show a similar shape of a ‘tail’ which leads

into a spiral structure. This can be explained by the sequence starting from a leaning

posture (the tail) and progressing to several strides of upright running (the spiral). In

case of PCA, the sequence of points is overlapping at several positions, while the t-SNE

method splits some of the consecutive points apart but shows less overlap in general.

The t-SNE embedding also produced some crowds and zig-zag shapes along the point

sequence. We report the corresponding quality curves in Figure 4.10.

In case of the PCA, both measures Qyi

NX and Qyi

ND show, that some of the overlapping

regions have a reduced quality. However, the measure QND identifies less regions to be

severely erroneous, due to the tolerance of Kt = 20, compare, for example, the overlap

on the left of the scatter plots in Figures 4.9a and 4.9b. This indicates that the rank

error for these points must be below 20, while the highlighted regions contain larger

errors. Depending on the practical purpose, the user may want to be aware of the severe

mismatches, neglecting tolerable errors. Similar characteristics can be observed in the

Figures 4.9c and 4.9d for t-SNE. The tearing of the sequence is distinctly highlighted as

erroneous in the coloring by Qyi

ND. Here, the advantage of the parameterization becomes

particularly apparent: the user may choose via Kt not to highlight the tolerable local

errors which are caused by the crowding and zig-zag patterns.
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Figure 4.9.: The figure shows a PCA and a t-SNE embedding (with perplexity 30) of

the runner data, each colored by the pointwise quality Qyi

NX(20) and Qyi

ND(20, 20), re-

spectively. Points from consecutive motion capture frames are connected by a line. For

Qyi

NX(20), various types of errors arising in neighborhoods of 20 points are highlighted

all at once, while Qyi

ND(20, 20) is able to identify where the neighbors deviate from their

original rank by more than 20. This gives a clearer indication of where the underlying

manifold is not truthfully represented, e.g. torn apart in case of t-SNE.
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Figure 4.10.: The quality curves of QNX (a) and QND (b,c,d) for the PCA and the t-SNE

embedding of the runner data, see Fig. 4.9. The curves show that the t-SNE embedding

is more truthful in displaying the local relationships, whereas PCA preserves more of the

ranks in the larger neighborhoods. The curves for QND(Ks, 20) in the lower left (for a

fixed error tolerance of 20) reveal that there are many errors in the t-SNE embedding

when considering larger neighborhoods. On the other hand, the curves over QND(20,Kt)

in the lower right show that the errors in the t-SNE embedding are only of very small

magnitude when considering 20 nearest neighbors.

COIL-20 data The second data set, the Columbia University Image Library from [102],

consists of 1440 gray-value images in a resolution of 128 × 128, which show 20 small

objects, photographed from 72 consecutive rotation angles. Each class in the data cor-

responds to photos of one particular object. Because of the consecutive angles, we can

assume that the original data is clustered by their class membership, and that within a

class, the data are situated on a ring-shaped manifold.

In Figure 4.11 and 4.13, we show an embedding by PCA and t-SNE, respectively, with

points colored by their quality Qyi

ND(10, 10). Since we chose Ks = Kt = 10, the measure

highlights absolute rank errors larger than 10, originally situated among the 10 nearest

neighbors of a point. Figure 4.12 shows the corresponding quality curves. The PCA

embedding is generally of a low quality, as indicated by the coloring in Figure 4.11b, and

the curves in Figure 4.12. For the t-SNE embedding, the coloring in Figure 4.13b reveals

distinct defects in the clusters, seemingly either caused by the tearing or contracting of

the original manifold within a cluster, or by overlaying separated clusters.
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Figure 4.11.: On the left, we show a PCA embedding of the COIL-20 data where each

point’s class membership is represented by a distinct combination of a marker symbol

and color. On the right, points are colored by their quality Qyi

ND(10, 10). The embedding

exhibits a low quality at almost every position, since there are many rank errors > 10

occurring in the 10 nearest neighbors.
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(c) QND(Ks, 10)
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Figure 4.12.: This figure shows quality evaluations for the PCA and t-SNE embeddings

of the COIL-20 data (see Fig. 4.11a,4.13a). The curves in (a) are the quality QNX, while

(b,c,d) show the quality curves resulting from the QND measure. Both, QNX and QND

clearly identify that the PCA embedding fails to reliably represent the local relationships,

while the t-SNE embedding sacrifices some of the global relationships but is generally

depicting the smaller neighborhoods rather truthfully.
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Figure 4.13.: The figure shows a t-SNE embedding of the COIL-20 data, the perplexity

parameter was set to 15. In the upper visualization, points are marked according to

their classes by combinations of marker shape and color. The points in the lower picture

are colored by their quality Qyi

ND(10, 10). Since the region of interest Ks as well as the

failure tolerance Kt were both set to 10, we can see where some of the clusters, which

are assumed to be on a ring-shaped manifold originally, have been torn or contracted

severely.
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(b) QND(Kst)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

Q
N

D
(K

s)

K
s

Data: MNIST

(c) QND(Ks, 70)
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Figure 4.14.: This figure shows the qualitative evaluations for the t-SNE embedding of

the MNIST data (see Fig. 4.15). The curves in (a) are the quality QNX, while (b,c,d)

show the quality curves resulting from the QND measure. The curves indicate that the

distortions in the mapping are generally quite large. Even in a range of 70 neighbors,

there are many errors, and the rank errors have a size of up to 3000, see the curve for

QND(70,Kt). Only the very small neighborhood ranges are depicted rather truthfully, as

seen on the very left of the curves for QNX(K) and QND(Kst).

MNIST data The third data set MNIST from [77] consists of 60,000 gray-value images

of handwritten digits8 from 0 to 9. Each image comes at a resolution of 28× 28 and is

therefore represented as a vector of 784 dimensions. Applying t-SNE on the full data set

of 60,000 images is not feasible in terms of memory demand and computational effort.

We therefore used a random sample of 10,000 points for our experiments. For this data

set, we have no prior assumption about an underlying manifold structure, but we can

assume that there are clusters according to the ten digits.

Figure 4.15 shows a visualization with t-SNE. We now omitted the corresponding

PCA embedding since it shows a considerably inferior quality, similar to the case of

the COIL-20 data. In Figure 4.16, the embedding is colored by the point-wise quality

Qyi

ND(300, 300), and Figure 4.14 shows the quality curves. The embedding shows the

expected cluster structure according to the digits, however, the classes are only weakly

separated and they are partially overlapping. Although the overall quality is diminished

by these effects, we can see in the point-wise evaluation that the errors are less pro-

nounced for the digits 0, 1, 6, and 7. The other digits show a lower quality, especially

in the border regions, presumably caused by the stronger overlaps.

8For further information, see http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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Figure 4.15.: This figure shows a t-SNE embedding of the MNIST data consisting of

10,000 data points, where the perplexity parameter was set to 30. Each point’s class

membership is represented by a distinct combination of a marker symbol and color.

Additionally we highlighted the corresponding digit in each cluster center. We see that

the data are arranged in clusters according to the classes, but are generally close together

with some significant overlaps between classes.
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Figure 4.16.: The figure shows the point-wise quality Qyi

ND(300, 300) for the t-SNE em-

bedding of the MNIST data from Fig. 4.15. As expected from the curves of Fig. 4.14,

we generally see many errors in the visualization. Furthermore, we can observe that the

overlaps of the classes cause stronger errors. This is less pronounced for the digits 0, 1,

6, and 7. The classes 2, 3, 5, and 8 show many disturbances in the defined range of 300

neighbors, deviating from the original rank by more than 300.
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Figure 4.17.: The figure shows a small survey about the computing time to calculate

the co-ranking matrix from given ranks rij , ρij . The ranks were calculated from uni-

formly random points in ten dimensions which were randomly mapped to points in two

dimensions. We used various data set sizes N ∈ {500, . . . , 8000} and tracked the run

time of a standard Matlab implementation. One curve shows the computation times on

a standard laptop machine with a 2.0 Ghz dual core processor and 2 GB of RAM, where

the memory limitation allowed a maximum set size of 3500. The other curve represents

a desktop computer using 4 CPU cores with 2.5 Ghz each, and 6 GB of memory.

Computational effort and speedup In real-world data sets, such as MNIST, sizes in

the order of several thousand data points become more and more common. Since the

computational demand for the discussed quality evaluation is rather high, we address this

topic shortly. If ranks are given, assembling the pointwise co-ranking matrices requires

a lookup operation for every pair of points, therefore the time complexity is O(N2).

To give an impression of the practical computational effort, we tracked the run time to

calculate the classical co-ranking matrix for random mappings of sizes between 500 and

8000 points on a standard laptop, as well as a modern desktop computer, see Figure 4.17.

To tackle this practical issue, we investigated in how far a random subsampling of

the points affects the outcome of the quality. In a small experiment, we performed a

subsampling of the t-SNE embedding of the COIL-20 data from Figure 4.13, where we

randomly sampled 30% of the points, i.e. 432 out of 1440 (using the same subset of

the original as well as the embedded points). This procedure was repeated 20 times,

evaluating the quality QNX every time. In Figure 4.18 we show the respective maximum

and minimum of the resulting curves, together with the original quality curve as given

in 4.12a. The figure shows that the deviation from the original curve is relatively small,

from which we can conclude that subsampling seems to be a valid possibility to approxi-

mate the quality evaluation using less computational effort. While this shows only QNX

exemplarily, we observed a similar effect for the QND measure.

Subsampling could open the way towards an interactive graphical user interface, where

the user can observe a given visualization augmented by the point-wise quality, and di-

rectly try different parameter settings for Ks,Kt. Since the computational effort and

memory demands can be limited by sampling a fixed number of points, the interface

can be updated instantly and the user can quickly browse various combinations. To-
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Figure 4.18.: The figure shows the quality QNX for random subsamples of the t-SNE

embedding from Fig. 4.13. As a reference, the line marked by pentagrams is the original

quality from the full data set, as given in 4.12a. We sampled 20 times a random subset

of 30% of the total points, and calculated the QNX based on this subset only. From

the 20 iterations, the gray line shows the minimal outcoming value for the respective

neighborhood size, while the black line shows the maximum. The neighborhood sizes of

the original curve were aligned in relation to the respective value in the sampled case.

The upper figure displays the graphs for all possible neighborhood sizes, and the lower

figure shows a zoomed view, focusing on the neighborhoods up to 100 points only. The

deviation from the original curve is fairly small, although the co-ranking matrix is based

only on the subsample.

gether with techniques to accelerate the DR process itself, see e.g. [C12d], mapping and

evaluation would become feasible even for very large data sets.
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4.3.6. Discussion

In this section, we have discussed the established co-ranking framework, which unifies

several quality criteria for dimensionality reduction. To yield a richer impression of the

embedding’s local characteristics, we proposed a point-wise quality measure, following

directly from individual co-ranking matrices. These local quality ratings can be used to

augment the given data embedding by meaningful color values which highlight distor-

tions in the visualization for user-specified neighborhood scales. We further suggested

to improve the parameterization of the original quality measure to enable more control

over the evaluation’s focus. In several artificial and real-world experiments, we demon-

strated the benefits of our evaluation framework, and discussed possibilities to reduce

the computational demand with an interactive user interface in mind.

From the presented work, one very important question arises: How valuable are the

discussed quality criteria for human users? Ultimately, this question can only be an-

swered by conducting user studies, which is a challenging topic of ongoing research.

Given the ill-posed nature of DR for visualization, this question touches a wide area

of related open problems and challenges. For example, there are no clearly structured

benchmark scenarios for DR so far, which incorporate an explicit formulation of the

expected outcome, or user expectations. This makes an evaluation of quality assessment

highly challenging. User expectations, usability, and accessibility of DR methods are

emerging topics in recent literature, see [86, 85, 21]. Related issues generate increasing

interest and debate among researchers in the information visualization field (where top-

ics often address human-computer interaction), and the machine learning community

(where the attention is mainly focused on mathematical principles behind the embed-

ding), see [68]. In this regard, a quantitative evaluation of DR methods constitutes a

valuable asset for interactive user interfaces, in the future.
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4.4. Comparing dissimilarity-based representations

In Chapter 1, we pointed out that for complex data, the pairwise (dis)similarity often

serves as the interface of the application scenario to the machine learning tool. Hence,

the learning process and its outcome are severely influenced by the choice of the dissim-

ilarity measure. While dissimilarity measures for supervised settings can eventually be

compared by the classification error, the situation is less clear in unsupervised domains

where a clear objective is lacking. The question occurs, how to compare dissimilarity

measures and their influence on the final result in such cases. In this section, we propose

to use the quantitative measure introduced earlier in this chapter, to compare, whether

(and on which scale) dissimilarities coincide for an unsupervised learning task. Essen-

tially, the measure evaluates in how far neighborhood relations are preserved if evaluated

based on rankings, which provides a robustness of the measure against scaling of data.

Apart from a global comparison, local versions allow to highlight regions of the data

where two dissimilarity measures induce the same results.

Section overview After a brief introduction, we will discuss different existing options

for an unsupervised comparison of dissimilarity matrices in Subsection 4.4.2. The pre-

viously described quality assessment framework yields an adequate choice, since it com-

pares two dissimilarity matrices based on their induced neighborhood structure. In

Subsection 4.4.3 and 4.4.4, we will demonstrate this technique on examples, and end

with concluding remarks in Subsection 4.4.5.

4.4.1. Introduction

The proposed framework can be beneficial to answer questions, such as: How can we

decide whether a variation of the metric (or its parameters) results in changes of the

data representation for the subsequent machine learning task? Are there possibilities

to compare whether (and if so, in which regions) two metrics differ, regarding machine

learning?

For supervised learning, a few extensive comparisons have been conducted in the

literature, about how different dissimilarity measures influence the outcome, see, e.g.

[89] for the performance of different dissimilarities for content-based image retrieval, [95]

for an according study in the symbolic domain, [25] for the comparison of distances for

probability measures, or [28] for the performance of classifiers on differently preprocessed

dissimilarity matrices to arrive at a valid kernel. This clearly demonstrates how the

difference of dissimilarity-based data representations has an impact on the results, as we

detailed also in the previous Chapter 3.

The situation is less clear when dealing with unsupervised domains. Unsupervised

learning is essentially ill-posed and the final objective depends on expert evaluation. The

primary mathematical goal is often to cluster or visualize data, such that an underlying
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structure becomes apparent. Quite a few approaches for unsupervised learning based

on general dissimilarities have been proposed in the past: kernel clustering techniques,

such as kernel SOM or kernel NG [139, 109]; or relational clustering as proposed for

fuzzy-k-means, SOM, or NG [56, 50], as well as relational GTM discussed in Chapter 2.

Further, many state-of-the art nonlinear visualization techniques like t-SNE are based

on pairwise dissimilarities rather than vectors [131, 80].

4.4.2. How to compare dissimilarity measures?

We assume that data xi are sampled from some underlying data space. These data are

input to an unsupervised machine learning algorithm by means of pairwise dissimilarities

dij = d(xi, xj). Interestingly, although the chosen dissimilarity structure crucially de-

termines the output of any machine learning algorithm based thereon, no framework of

how to compare different dissimilarities for unsupervised domains is commonly accepted

in the literature. The question occurs what is the relevant information contained in a

dissimilarity, which guides the output of such an algorithm? Interestingly, even slight

changes of the dissimilarity, such as a shift, can severely influence the result of an unsu-

pervised algorithm, as shown in [50]. Apart from generic mathematical considerations,

indications for the answer to this question may be taken from attempts to formalize ax-

ioms for unsupervised learning [1, 85, 135, 81]. Here, guidelines such as scale-invariance,

rank-invariance, or information retrieval perspectives are formalized. In the following,

we will discuss different possibilities to compare dissimilarity measures. We assume that

pairwise dissimilarities d1ij and d2ij are given, which are to be compared.

Matrix comparison: The pairwise dissimilarities d1ij and d2ij give rise to two square

matrices D1 and D2 respectively, which could directly be compared using some matrix

norm. This possibility, however, is immediately ruled out when considering standard

axioms for clustering [1], for example. One natural assumption is scale-invariance of the

unsupervised learning algorithm. Scaling the matrix, however, does affect the resulting

matrix norm. More generally, virtually any matrix norm severely depends on specific

numeric choices of the representation rather than the global properties of the data.

Induced topology: An alternative measure which ignores numerical details but focuses

on basic structures could be connected to the mathematical set-theoretic topology of a

data space. Every distance measure induces a topology. Hence, it is possible to compare

whether the topological structure induced by two metrics is equivalent. In mathematics,

two metrics are called topologically equivalent if the inequality c·d1(xi, xj) ≤ d2(xi, xj) ≤
c′ ·d1(xi, xj) holds for all xi, xj for some constants 0 < c ≤ c′, since they induce the same

topology in this case. It can easily be shown that any two metrics in a finite-dimensional

real vector space are topologically equivalent. However, this observation shows that this

notion is not appropriate to compare metrics with respect to their use for unsupervised
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learning: topologically equivalent metrics such as the standard Euclidean metric and the

maximum-norm yield qualitatively different clusters in practical applications, as we will

demonstrate in an example in Subsection 4.4.3.

Rank preservation: One axiom of clustering, as formalized in [1], is the invariance to

rank-preserving distortions. Indeed, many clustering or visualization techniques take into

account the ranks induced by the given dissimilarity measure only, this way achieving a

high robustness of the results. Examples include algorithms based on winner-takes-all

schemes, or extensions such as vector quantization, NG, SOM, or similar approaches.

Also, many visualization techniques try to preserve local neighborhoods as measured

by the rank of data. How can rank-preservation be evaluated quantitatively? One way

is to transform the matrices D1 and D2 into rank matrices, i.e. matrices which contain

permutations of the numbers {0, . . . , N−1}. Then, these two matrices could be compared

by their column-wise correlation. However, usually the preservation of all ranks is not

as critical as the preservation of a local neighborhood for most machine learning tools,

such that different scales of the neighborhood size should be taken into account. In the

previous Subsection 4.3, we explained the co-ranking framework which can be seen as a

way to observe this rank-preservation property according to various neighborhood sizes

of interest.

Information retrieval based comparison: Information retrieval constitutes a typical

application area for unsupervised learning. Therefore a comparison of dissimilarity mea-

sures based on this perspective would be interesting. Assume a user queries a database

for the neighborhood of xi. What is the precision/recall, if d2 is used instead of d1?

When defining the notion of neighborhood as the K nearest neighbors, precision and

recall for a query xi are both given by the term |{xj | d1(xi, xj) ≤ K ∧ d2(xi, xj) ≤ K}|
normalized by K. Summing over all xi and dividing by N yields an average of all possi-

ble queries. In fact, this instantiation of a quality measure coincides with an evaluation

within the co-ranking framework, which we introduced in Section 4.3.

How can the co-ranking quality assessment measure be used to compare two dissim-

ilarities? Since QNX(K) essentially evaluates in how far a rank-neighborhood induced

by dij coincides with a rank-neighborhood induced by δij , we can directly apply this

measurement to two given dissimilarity measures d1 and d2, and obtain a quantitative

statement about the rank-preservation of d2 given d1. Since QNX(K) is symmetric, the

ordering of the dissimilarities is not important.

4.4.3. Comparison of metrics for the Euclidean vector space

We start with an illustrative example, which shows that the measure QNX(K) allows

to identify situations where dissimilarities induce similar/different results. We restrict

to the two-dimensional Euclidean vector space where data are distributed uniformly,
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or in clustered form, respectively, see Figure 4.19. For these data, we compare the

Euclidean distance to the Lp norm, with p ∈ {1, 3, 6} as well as the maximum-norm as

the limit case. We can see the effect of these choices by using a metric multidimensional

scaling (MDS) to project the data to the Euclidean plane, see Figures 4.20 and 4.21.

Obviously, if data is distributed uniformly, a smooth transition from L1 to L∞ can be

observed, as expected, whereby the global topological form does not change much. This

observation is mirrored in the co-ranking evaluation, see Figure 4.22. The quality curves

change smoothly and have a value near 1, indicating a good agreement of the topologies.

Note that these metrics are topologically equivalent in the mathematical sense, which is

supported by the observation made in this case.

The situation changes if more realistic settings are considered, i.e. if structure is present

in the data. We consider three clusters and the same setting as before. Here, the metric

L1 and L∞ yield very different behavior, as can be seen in the projection in Figure 4.21,

as well as in the evaluation in Figure 4.22. Thus, equivalence in terms of mathematical

topology does not imply that the overall neighborhood structures are similar, for realistic

settings where cluster structures are present in the data distribution. The co-ranking

framework mirrors the expected differences in these settings. Note, that due to the choice

of K, differences at various scales are observable as well. In Figure 4.22, the underlying

structure with cluster sizes of 100 can be clearly recovered from the quality curves.

4.4.4. Comparison of non-Euclidean settings

In the previous sections, we introduced a mathematical approach to compare two dissim-

ilarity measures, and demonstrated it on artificial data sets. In this section, we use two

real world data scenarios as a first proof-of-concept study, to show the usefulness of our

approach given domain-specific – and possibly non-Euclidean – dissimilarity measures.
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Figure 4.19.: Original artificial data in the two-dimensional plane with, uniform distri-

bution (a) and clustered distribution (b).
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MDS mapping of L1 distances
MDS mapping of L3 distances MDS mapping of L6 distances MDS mapping of Linf distances

Figure 4.20.: Comparison of Lp-norms on uniform square data. (L1, L3, L6, L∞ l.t.r.)

App description texts Current research in the area of semantic web utilizes state-of-

the-art machine learning and data visualization techniques, in order to automatically

organize and represent vast data collections within user-friendly interfaces. Here, so-

phisticated dissimilarity measures for textual content play an important role. Our first

experimental scenario relates to a typical machine learning task in this context. It con-

sists of descriptions from 500 randomly collected applications, available on the online

platform Google Play9. Google Play is a large distribution service for digital multimedia

content which currently offers over 1.3 million downloadable programs (commonly re-

ferred to as apps) for the mobile operating system Android. Each app is attributed to one

of 34 categories, while every category belongs to one of the two major branches “Games”

or “Applications”. The content of every app is summarized in a textual description of

about 1200 characters on average. Our 500 apps come from two categories: 293 from

“Arcade & Action” (in Games), and 207 from “Travel & Local” (in Applications). In

the following they will be referred to as class 1 and 2, respectively. We consider three

different measures to calculate dissimilarities between the descriptions:

(I) Euclidean distances on the tf-idf weights, where weight vectors are calculated from

the frequencies of the appearing terms (tf) and their inverse frequency of occurrence

in all documents (idf), see [111],

9http://play.google.com

MDS mapping of L1 distances

MDS mapping of Linf distances

Figure 4.21.: MDS projection using Lp-norms on three clusters data. (L1, L∞)

http://play.google.com
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Figure 4.22.: Comparison of the dissimilarities using the co-ranking framework: uniform

square (top) and three clusters (bottom).

(II) the Cosine distance on the term frequencies, which is calculated as c(a,b) :=

1−
(
(a⊺b)/(π ∥a∥ ∥b∥)

)
, where a and b are vectors of term frequencies for the two

respective documents,

(III) the normalized compression distance (NCD) [87], which is a string dissimilarity

measure described in Chapter 1, Subsection 1.2.4, in this case using the Lempel-

Ziv-Markov chain compressor (LZMA).

While the first two measures are based on basic word statistics, the NCD also takes

structural aspects into account implicitly, since the lossless compressor utilizes recurring

patterns in the texts to reduce the description length. Prior to applying the dissimilarity

measures, we used a standard preprocessing workflow of stopword reduction and Porter

stemming [108].

Figure 4.23 shows MDS visualizations of the three different dissimilarities, as well as

evaluation curves from the comparison of Euclidean distances versus the Cosine and the

NCD measure. For the visualizations in Figure 4.23a, 4.23b, 4.23d, we used non-metric

MDS with squared stress. From the evaluation curves in Figure 4.23c we see that the
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agreement of the Euclidean distances to the Cosine and NCD measure is low in general,

with values below 0.6, even for very small neighborhood sizes. Although the visual-

izations indicate a qualitatively similar structure, the overall ranks seem to be rather

different, which is also reflected in the visualizations to some extent: Figure 4.23a shows

a small number of outliers, while there are fairly distinct clusters in Figure 4.23d; and

Figure 4.23b shows both characteristics: similarly dense regions and some widespread

outliers. In this real world data set, every pair of measures showed a low agreement

when compared with the evaluation framework, with QNX(K) < 0.6 for all K < 100.
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(d) MDS map of NCD distances

Figure 4.23.: Comparison of three dissimilarity measures for a real-world showcase data

set consisting of 500 textual descriptions of Android apps.
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Java programs The second example is related to current challenges in the research

of intelligent tutoring systems (ITS), as previously addressed in Chapter 3, Subsec-

tion 3.6.3. Our data set consists of 169 short Java programs which represent student

solutions, originating from a Java programming class of first year students at Clausthal

University of Technology, Germany. We used the open source plagiarism detection soft-

ware Plaggie [2] to extract a tokenized representation (a token stream) from each given

Java source code. Based on the token streams, we consider four different dissimilarity

measures:

(I) Euclidean distances on the tf-idf weights like in the previous data set, however, tf

and idf now refer to the occurrence of each token instead of term,

(II) the Cosine distance on the token frequencies,

(III) the normalized compression distance (NCD) on the token streams,

(IV) Greedy String Tiling (GST) which is the inherent similarity measure that Plaggie

uses to compare the given sources [2, 138]; since GST yields a similarity matrix

S, with values in the interval (0, 1) and self-similarities of 1, we converted S into

dissimilarities by taking D =
√
1− S, as proposed in [106].

Figure 4.24 shows the quality QNX(K) when comparing Euclidean distances to Cosine,

GST, and NCD dissimilarities. The curves show the highest similarity to the Cosine

distances, especially high in small neighborhood ranges, which is expected due to the

fact that both are based on token frequencies. Interestingly, the curves of the Cosine

and the GST measure show a similar shape in comparison to Euclidean distances, which

may indicate a similar response to certain structural aspects in the data, in contrast to

the steadily growing curve for NCD.
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Figure 4.24.: QNX(K) when comparing Euclidean distances to Cosine, GST, and NCD

dissimilarities used on our second real-world showcase data set consisting of 169 student

solutions from a Java programming class.
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Figure 4.25 demonstrates our proposed framework for the pointwise comparison of

dissimilarity measures on the same data scenario. The coloring in 4.25c and 4.25d

refers to Qxi

NX(20), which is the agreement of the 20-neighborhood for every point xi

as compared to the other dissimilarity measure. To link the coloring scheme to the

evaluation curves, K = 20 is highlighted on the graphs in Figure 4.24. The pointwise

evaluation clearly reveals a region of data which is very close in the Euclidean case, but

was considered very dissimilar by the GST measure.

4.4.5. Discussion

In this section, we have discussed the comparison of dissimilarity measures for unsuper-

vised learning tasks, based on rank-preservation criteria. This opens the way for several

topics of ongoing research: To test the proposed comparison scheme in the context of

a typical machine learning workflow, one could refer to classification methods for rela-

tional data, such as RGTM and RGLVQ introduced in Chapter 2, and investigate how

differences in the input data representation (i.e. from different dissimilarity measures)

influence the output of the method. While different input matrices are compared in

an unsupervised manner, one could refer to data sets where class labels are available,

and explicitly track changes in the resulting classification accuracies. Another canonical

application field are metric learning techniques, as presented in Chapter 3: When the pa-

rameters of a dissimilarity measure are adapted during training, the induced changes in

the data representation could be observed directly, on a local and global scale. With the

help of DR techniques, even a visual representation of these metric changes is possible,

which is the subject of ongoing work.
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Figure 4.25.: Pointwise comparison of dissimilarity measures used on a data set of 169

student solutions from a Java programming class. The dissimilarities from two measures

(Euclidean and GST) are embedded in 2D using non-metric MDS, see (a) and (b). The

different symbols for points in the visualizations do not correspond to given semantic

class labels, but to the quadrants of the cartesian coordinate system in (a), to give some

indication of how the point locations differ to the map of GST in (b). The pointwise

coloring in (c) and (d) shows for each point, how much the neighbor ranks for K = 20 in

the Euclidean case differ from the ranks given by GST.





Chapter 5.

Conclusion

Summary In this thesis, we discussed particular challenges of machine learning, regard-

ing complex data and their representation. We identified three distinctive characteristics

of complex data sets: high dimensionality in vectorial data description schemes, large set

sizes due to contextual relationships among instances, and strongly pronounced aspects

of compositionality in the encoding. In this regard, feature-based data representations

are usually not well-suited, because they have limited capabilities to account for hetero-

geneous information and structured encoding schemes. One promising strategy is the

use of domain-specific dissimilarity measures to obtain pairwise proximities between raw

data instances, in which aspects of compositionality are treated explicitly in comparison

to another instance. For a resulting dissimilarity-based data representation, the inherent

dimensionality is bounded by the number of data points.

We demonstrated how such a relational data representation can be integrated in two

classical prototype-based machine learning methods, for unsupervised and supervised

scenarios. Several benchmark experiments proved the viability of this approach, showing

competetive results compared to established kernel classifiers. Particular advantages are

that prototype-based learning with relational data is not restricted to metric distances,

and yields an interpretable model via representative exemplars in the data space.

Further, we addressed specific caveats of dissimilarity-based data representations,

along with corresponding remedies. One problem is the inherent quadratic complex-

ity, which can be circumvented via low-rank matrix approximations like the Nyström

technique. In experiments with several benchmark data sets, we confirmed the suitabil-

ity and efficiency of this approximation in case of the relational LVQ classifier. Another

important issue is the intricate choice of parameters when applying dissimilarity mea-

sures on complex data sets. Therefore, we proposed a learning scheme, which adapts the

parameters of a sequence alignment measure to the given classification problem. This

has shown to facilitate the classification accuracy in experiments on real-world data

sets, while simplifying the necessary classification boundary, i.e. decreasing the number

of support vectors in an SVM.

For unsupervised learning scenarios, low-dimensional Euclidean embeddings of the
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data offer interesting possibilities: they can serve as an alternative data representation,

but also yield an approximative basis for visualizations, in which the data set’s neigh-

borhood structure becomes easily observable. In this context, quantitative measures are

available to assess the reliability of a given embedding, independent of the learning task.

We proposed an extension to integrate such a quality criterion into the corresponding vi-

sualization, on a point-wise basis. Further, a different parameterization was introduced,

which allows for more fine-grained control in the assessment procedure. Intuitive results

have been presented for reference data, illustrating the working principle and practical

value of the measure, particularly in cases where strong assumptions about the original

data structure were available as tentative ground truth. The same principle can be uti-

lized to compare different dissimilarity measures for the same data set. To prove the

concept, we presented results for artificial and real-world data sets with accompanying

visualizations. These tools can help to assess the suitability of data representations, in

the absence of an explicit classification goal.

Future work Based on the work presented in this thesis, we can point out several

avenues of ongoing research. To avoid overlaps with specific open problems that were

mentioned in the previous chapters, the prospects stated here are more general in nature.

In this thesis, we have focused on the principle of relational prototypes, in order to ad-

dress input data represented by pairwise proximities, and how corresponding techniques

can be derived from classical prototype-based machine learning models. A complemen-

tary strategy is the “kernelization” of learning methods, in which the central notion of

proximity is based on inner products, and can be exchanged by an appropriate kernel

function. While the latter is a more widespread approach, recent literature establishes

relational methods as a distinct alternative, due to the advantage of a precise theoretical

foundation for non-metric dissimilarities, see [51, 112]. Since kernel matrices can be

converted to dissimilarities without loosing information, the relational approach is more

general. Therefore, a new class of algorithms becomes available, for which thorough

comparative studies should be considered. Apart from an empirical evaluation, there

are open questions regarding the theoretical properties of non-Euclidean dissimilarities

in the context of machine learning. One concrete example is the probabilistic inter-

pretation for RGTM, from Chapter 2: while GTM yields a probabilistic model of the

data in the Euclidean space, these properties are no longer guaranteed for the pseudo-

Euclidean embedding of relational data. Similarly, it is not clear in how far fundamental

concepts from learning theory can be transferred to prototype-based learning models in

the pseudo-Euclidean space, see [50, 106].

In the previous chapters, we addressed several application scenarios, which bear po-

tential for an integration into practical software environments in the future. In this

regard, intelligent tutoring systems (ITSs), as mentioned in Chapter 2, are a particu-

larly promising area to adopt machine learning techniques. An ITS is a specific type

of educational software, that supports students in their learning process, e.g. to learn
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Java programming skills, by providing individual feedback to students while they fulfill

a given assignment. The research program FIT 1 is currently aiming to realize adaptive

feedback mechanisms in a new, domain-agnostic ITS, using machine learning methods.

The novelty of this approach is its independence of a particular tutoring domain: feed-

back strategies are abstract and rely only on the student’s current solution, together with

a database of finished examples, which are all encoded in a generic graph format. By

training the metric parameters according to given data, a problem-adapted dissimilarity

measure can identify meaningful examples for feedback in a particular domain. In our

ongoing work, this generic approach will be integrated into a flexible software architec-

ture that fits into existing landscapes of educational software, see [C13a], [J14]. Field

studies about the plausibility of the automatically generated feedback are currently being

conducted by experts in the fields of ITSs and computer-aided education [J14], [C13b].

Based on the resulting dissimilarity-based data representation, it becomes possible to

investigate a student’s learning progress over time, which will be subject of the follow-up

research project DynaFIT. One important topic in the field of computer-aided education

are open learner models [22, 92], whereby students can inspect their learning progress

and current state, and teachers may observe individual learning characteristics. With

increasingly complex ITSs, there is a strong demand for visualization techniques to cre-

ate a compact display of learner model data, e.g. as visual feedback for students and

teachers [36].

Dimensionality reduction (DR) offers great potential to visualize data in intuitive user

interfaces. It is a promising tool to make data representations accessible and compre-

hensible for expert users, especially when combined with prototype-based classification

models. While the resulting low-dimensional embeddings are often only depicted in sim-

ple scatter plots of the data, one can imagine more sophisticated, interactive display

techniques to explore very large data collections easily. Current research of DR methods

is concentrated in the machine learning community, with a strong focus on mathematical

strategies to obtain meaningful embeddings of high-dimensional data. This encompasses

recent algorithmic solutions to handle very large data sets efficiently, and thereby ad-

dress ample real-world applications [130], and [C13d]. However, only few studies have

been conducted so far, that thoroughly investigate the benefits of modern nonlinear DR

from the viewpoint of human computer interaction, taking usability, perception, and

cognition into account, see [86, 85, 21]. This open topic has recently spawned fruitful

debate with researchers from the information visualization community, see [68]. In this

regard, more user-centered studies and evaluations become necessary to substantiate the

potential of DR for visualization. The combination of sophisticated data-driven math-

ematical approaches with the visual appeal and usability of information visualization

techniques could offer mutual benefit.

1Learning Feedback in Intelligent Tutoring Systems (FIT) is a research program funded by the German

Science Foundation (DFG) within the priority programme 1527 “Autonomous Learning”.
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Additional information

A.1. Derivative of soft alignment

Recall the definition of the soft minimum:

softmin(x1, . . . , xn) =
1

Z

∑
i

pi · xi

where

pi = exp(−β · xi)

Z =
∑
j

pj

The derivative of the soft sequence alignment dissimilarity with respect to the parameter

λq is given as:

∂

∂λq
softmin(x1, . . . , xn) =

∂

∂λq

1

Z

∑
i

pi · xi

=
1

Z2

[(∑
i

∂

∂λq
pi · xi

)
· Z −

(∑
i

pi · xi

)
·
(

∂

∂λq
Z

)]

=
1

Z

[∑
i

∂

∂λq
pi · xi − softmin(x1, . . . , xn) ·

∂

∂λq
Z

]
(∗)

Furthermore:

∂

∂λq
pi · xi =

(
∂

∂λq
pi

)
· xi + pi ·

(
∂

∂λq
xi

)
= pi · (−β) ·

(
∂

∂λq
xi

)
· xi + pi ·

(
∂

∂λq
xi

)
= pi ·

(
∂

∂λq
xi

)
· (−β · xi + 1)
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and:

∂

∂λq
Z =

∑
j

∂

∂λq
pj

=
∑
j

pj · (−β) ·
∂

∂λq
xj

It follows:

(∗) = 1

Z

∑
i

pi ·
(

∂

∂λq
xi

)
· (−β · xi + 1)− softmin(x1, . . . , xn) ·

∑
j

pj · (−β) ·
∂

∂λq
xj


=

1

Z

[∑
i

pi ·
(

∂

∂λq
xi

)
· (−β · xi + 1) +

∑
i

softmin(x1, . . . , xn) ·
(
pi · β · ∂

∂λq
xi

)]

=
1

Z

[∑
i

pi ·
(

∂

∂λq
xi

)
· (−β · xi + 1) + softmin(x1, . . . , xn) ·

(
pi · β · ∂

∂λq
xi

)]

=
1

Z

∑
i

pi ·
(

∂

∂λq
xi

)
· [−β · xi + 1 + softmin(x1, . . . , xn) · β]

=
1

Z

∑
i

pi ·
(

∂

∂λq
xi

)
· [1− β · (xi − softmin(x1, . . . , xn))]

=
∑
i

(
∂

∂λq
xi

)
· softmin′(xi)

with

softmin′(xi) =
pi
Z

· [1− β · (xi − softmin(x1, . . . , xn))]

This directly leads to Equation 3.6.

Hebbian learning as a limit case The derivative has a particular nice interpretation

for β → ∞. Consider:

pi
Z

=
exp(−β · xi)∑
j exp(−β · xj)

=
exp(−β · xi) · exp(β ·min(x1, . . . , xn))∑
j exp(−β · xj) · exp(β ·min(x1, . . . , xn))

=
exp[−β · (xi −min(x1, . . . , xn))]∑
j exp[−β · (xj −min(x1, . . . , xn))]

Consider two distinct cases for xj :

• xj = min(x1, . . . , xn). Then:

exp[−β · (xj −min(x1, . . . , xn))] = exp[−β · 0] = 1
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• xj > min(x1, . . . , xn). Then (using β → ∞):

exp[−β · (xj −min(x1, . . . , xn))] ≈ 0

Let i1, . . . , iT be the indices, for which xit = min(x1, . . . , xn). Then it follows:

∑
j

exp[−β · (xj −min(x1, . . . , xn)) ≈
T∑
t=1

exp[−β · (xit −min(x1, . . . , xn)) =
T∑
t=1

1 = T

which in turn leads to:

pi
Z

≈ δ̂min(xi)

where

δ̂min(xi) :=

{
1
T if xi = min(x1, . . . , xn)

0 otherwise

Now it is obvious that softmin does indeed approach min for large β:

softmin(x1, . . . , xn) =
1

Z

∑
i

pi · xi ≈
T∑
t=1

1

T
·min(x1, . . . , xn) = min(x1, . . . , xn)

For softmin′(xit) we get:

softmin′(xit) =
pi
Z

· [1− β · (xi − softmin(x1, . . . , xn))]

≈ 1

T
· [1− β · (xit −min(x1, . . . , xn))]

=
1

T
· [1− β · 0]

=
1

T

For all other xj with xj > min(x1, . . . , xn):

softmin′(xj) =
pi
Z

· [1− β · (xj − softmin(x1, . . . , xn))]

≈ 0 · [1− β · (xj −min(x1, . . . , xn))]

= 0



136 Appendix A. Additional information

Therefore: softmin′(xi) = δ̂min(xi). Consider Equation 3.6 again, and plug in that result:

∂d∗(ā(I + 1), b̄(J + 1))

∂λq
= δ̂min(ARep) ·

(
∂d∗

(
ā(I), b̄(J)

)
∂λq

+
∂dλ(aI+1, bJ+1)

∂λq

)

+ δ̂min(AIns) ·

(
∂d∗

(
ā(I + 1), b̄(J)

)
∂λq

+
∂dλ(−, bJ+1)

∂λq

)

+ δ̂min(ADel) ·

(
∂d∗

(
ā(I), b̄(J + 1)

)
∂λq

+
∂dλ(aI+1,−)

∂λq

)

Recall Equation 3.2 and consider the optimal extensions ā∗ and b̄∗ using argmin instead

of min. Using a simple inductive argument it clearly follows:

• For the case of symbolic sequences:

∂

∂λkm
d(ā, b̄) =

|ā∗|∑
i=1

δ̂(a∗i , k) · δ̂(b∗i ,m)

• For the case of vectorial sequences:

∂

∂λr
d(ā, b̄) =

|ā∗|∑
i=1

dr(a
∗
i
r, b∗i

r)

where a∗i
r = ψ if a∗i = − and b∗i

r = ψ if b∗i = −.

This strongly resembles Hebbian learning as argued in Section 3.4.
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A.2. Information about the Chromosomes data set

Σ ∆ # occ.

f -6 0

e -5 32

d -4 149

c -3 468

b -2 770

a -1 2542

= 0 17675

A +1 2746

B +2 596

C +3 318

D +4 195

E +5 114

F +6 0

Table A.1.: The differential encoding for sequences from the Chromosomes data, de-

scribed in Section 3.6: each symbol of the alphabet Σ represents a level of difference

∆ in the density along a banded chromosome. The number of occurrences (# occ.) of

each symbol are reported for the “CopChromTwo” set, which is a subset of the original

Copenhagen Chromosomes database, see [91, 64].
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A.3. Information about the Sorting data set

Σκ for property ‘type’ Example

array access arr[4]

array type int[]

assignment tmp = arr[i]

binary arr[i] > arr[i + 1]

block { ... }

break break;

class public class MyClass { ... }

compilation unit The entire program file

compound assignment a += 2

do while loop do{ i++;} while(i < 10);

expression statement tmp = arr[i];

for loop for(i = 1; i < 10; i++) { ... }

identifier i

if if(i > 10){ ... }

import import java.util.HashMap;

literal 5

member select arr.length

method int my_fun(int i) { ... }

method invocation bubble(A, l, r)

modifiers public

new array new arr[4]

new class new ArrayList<Integer>()

parameterized type new ArrayList<Integer>

parenthesized (arr[i] > arr[i + 1])

primitive type int

return return arr;

unary i++

variable int i = 0;

while loop while (swapped) { ... }

Table A.2.: The alphabet Σκ for property type used in the Sorting data set, in Section

3.6: every symbol of the alphabet (left), with an example Java code snippet illustrating

the respective type (right).
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K. Mäkisara, O. Simula, and J. Kangas, editors, Proceedings of the International Conference on

Artificial Neural Networks 1991, Espoo, Finland, pages 397–402. Amsterdam; New York: North-

Holland, 1991.

[98] G. D. S. Martino, N. Navarin, and A. Sperduti. A memory efficient graph kernel. In The 2012

International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, June 10-15,

2012, pages 1–7. IEEE, 2012.

[99] G. D. S. Martino and A. Sperduti. Mining structured data. IEEE Comp. Int. Mag., 5(1):42–49,

2010.

[100] H. T. Mevissen and M. Vingron. Quantifying the Local Reliability of a Sequence Alignment.

Protein Engineering, 9(2):127–132, 1996.

[101] M. Müller. Information retrieval for music and motion. Springer, 2007.

[102] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library (COIL-20). Technical

report, Department of Computer Science, Columbia University, Feb 1996.

[103] M. Neuhaus and H. Bunke. Bridging the Gap Between Graph Edit Distance and Kernel Machines.

Series in machine perception and artificial intelligence. World Scientific, 2007.

[104] V.-H. Nguyen, F. Merienne, and J.-L. Martinez. An efficient approach for human motion data

mining based on curves matching. In L. Bolc, R. Tadeusiewicz, L. Chmielewski, and K. Woj-

ciechowski, editors, Computer Vision and Graphics, volume 6374 of Lecture Notes in Computer

Science, pages 163–184. Springer Berlin Heidelberg, 2010.



Bibliography 149

[105] M. Pechenizkiy, A. Tsymbal, and S. Puuronen. Local dimensionality reduction within natural

clusters for medical data analysis. In Computer-Based Medical Systems, 2005. Proceedings. 18th

IEEE Symposium on, pages 365–370, June 2005.

[106] E. Pekalska and B. Duin. The Dissimilarity Representation for Pattern Recognition. Foundations

and Applications. World Scientific, 2005.

[107] O. Penner, P. Grassberger, and M. Paczuski. Sequence alignment, mutual information, and dis-

similarity measures for constructing phylogenies. PloS One, 6(1), 2011.

[108] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[109] A. K. Qinand and P. N. Suganthan. Kernel neural gas algorithms with application to cluster

analysis. In Proceedings of the Pattern Recognition, 17th International Conference on (ICPR’04)

Volume 4 - Volume 04, ICPR ’04, pages 617–620, Washington, DC, USA, 2004. IEEE Computer

Society.

[110] C. E. Rasmussen and C. K. Williams. Gaussian Processes for Machine Learning. Adaptative

computation and machine learning series. University Press Group Limited, 2006.

[111] S. Robertson. Understanding inverse document frequency: On theoretical arguments for IDF.

Journal of Documentation, 60(5):503–520, 2004.

[112] F. Rossi. How many dissimilarity/kernel self organizing map variants do we need? In T. Vill-

mann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps and

Learning Vector Quantization (Proceedings of the 10th International Workshop on Self Organizing

Maps, WSSOM 2014), volume 295 of Advances in Intelligent Systems and Computing, pages 3–23,

Mittweida (Germany), 7 2014. Springer International Publishing.

[113] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image

databases. In Proceedings of the Sixth International Conference on Computer Vision, ICCV ’98,

pages 59–, Washington, DC, USA, 1998. IEEE Computer Society.

[114] A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. Mozer,

and M. E. Hasselmo, editors, NIPS, pages 423–429. MIT Press, 1995.

[115] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network

model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[116] F.-M. Schleif and A. Gisbrecht. Data analysis of (non-)metric proximities at linear costs. In E. R.

Hancock and M. Pelillo, editors, SIMBAD, volume 7953 of Lecture Notes in Computer Science,

pages 59–74. Springer, 2013.

[117] F.-M. Schleif, B. Hammer, M. Kostrzewa, and T. Villmann. Exploration of mass-spectrometric

data in clinical proteomics using learning vector quantization methods. Briefings in Bioinformatics,

9(2):129–143, 2008.

[118] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

[119] P. Schneider, M. Biehl, and B. Hammer. Distance learning in discriminative vector quantization.

Neural Computation, 21:2942–2969, 2009.

[120] B. Schölkopf, A. J. Smola, and K. R. Müller. Kernel principal component analysis. Advances in

kernel methods: support vector learning, pages 327–352, 1999.

[121] S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation, 15(7):1589–1604,

2003.

[122] V. Sperschneider. Bioinformatics. Springer, 2008.

[123] M. Strickert, B. Hammer, T. Villmann, and M. Biehl. Regularization and improved interpretation

of linear data mappings and adaptive distance measures. In IEEE SSCI CIDM 2013, pages 10–17.

IEEE Computational Intelligence Society, 2013.



150 Bibliography

[124] J. Sun, C. Fyfe, and M. Crowe. Extending sammon mapping with bregman divergences. Inf. Sci.,

187:72–92, Mar. 2012.

[125] A. Takasu, D. Fukagawa, and T. Akutsu. Statistical learning algorithm for tree similarity. In IEEE

Int. Conf. on Data Mining, ICDM, pages 667–672, 2007.

[126] P. Tiño, A. Kabán, and Y. Sun. A generative probabilistic approach to visualizing sets of symbolic

sequences. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’04, pages 701–706, New York, NY, USA, 2004. ACM.

[127] M. E. Tipping. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res.,

1:211–244, Sept. 2001.

[128] W. Torgerson. Theory and methods of scaling. Wiley, 1958.

[129] A. Ultsch and H. Siemon. Kohonen’s self organizing feature maps for exploratory data analysis.

In Proceedings of INNC’90, pages 305–308. Kluwer, 1990.

[130] L. van der Maaten. Accelerating t-SNE using tree-based algorithms. Journal of Machine Learning

Research, 15:3221–3245, 2014.

[131] L. van der Maaten and G. Hinton. Visualizing high-dimensional data using t-SNE. Journal of

Machine Learning Research, 9:2579–2605, November 2008.

[132] L. van der Maaten, E. Postma, and H. van den Herik. Dimensionality reduction: A comparative

review. Technical report, Tilburg University Technical Report, TiCC-TR 2009-005, 2009.

[133] K. Vanlehn. The behavior of tutoring systems. International Journal of Artificial Intelligence in

Education, 16:227–265, August 2006.

[134] J. Venna and S. Kaski. Local multidimensional scaling. Neural Netw., 19:889–899, 2006.

[135] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval perspective to

nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res., 11:451–490, 2010.

[136] E. Wenger. Artificial intelligence and tutoring systems: computational and cognitive approaches

to the communication of knowledge. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1987.

[137] C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In

T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing

Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA,

pages 682–688. MIT Press, 2000.

[138] M. Wise. Running Karp-Rabin matching and greedy string tiling. Technical report, University of

Sydney, Basser Dept. of Computer Science, 1993.

[139] H. Yin. On the equivalence between kernel self-organising maps and self-organising mixture density

networks. Neural Netw., 19(6):780–784, July 2006.

[140] Y. Zhai, Y.-S. Ong, and I. Tsang. The emerging ”big dimensionality”. Computational Intelligence

Magazine, IEEE, 9(3):14–26, Aug 2014.

[141] K. Zhang and J. T. Kwok. Clustered Nyström method for large scale manifold learning and

dimension reduction. IEEE Transactions on Neural Networks, pages 1576–1587, 2010.

[142] X. Zhu. Adaptive prototype-based dissimilarity learning. PhD thesis, Bielefeld University, Faculty

of Technology, Bielefeld, Germany, 2015.

[143] X. Zhu, A. Gisbrecht, F.-M. Schleif, and B. Hammer. Approximation techniques for clustering

dissimilarity data. Neurocomputing, 90:72–84, 2012.


	Introduction
	Motivation
	Data and representation
	Workflow pipeline for machine learning applications
	Challenges of complex data
	Feature-based representation
	Dissimilarity-based representation
	Other types of data representation

	Thesis overview
	Scientific contributions
	Structural overview
	Publications and funding in the context of this thesis


	Tools for supervised and unsupervised learning with dissimilarity data
	Motivation
	Scientific contributions and structure of the chapter

	Relational learning vector quantization
	Introduction
	Generalized learning vector quantization
	Pseudo-Euclidean embedding of dissimilarity data
	GLVQ for dissimilarity data
	Reducing computational demand via Nyström approximation
	Interpretability of relational prototypes
	Experiments
	Concluding remarks

	Relational generative topographic mapping
	Introduction
	Generative topographic mapping (GTM)
	Relational GTM
	Experiments
	Concluding remarks


	Adaptive metrics for complex data
	Motivation
	Scientific contributions and structure of the chapter

	Vector-based metric learning in LVQ
	Motion tracking data
	Proof-of-concept example

	Sequence alignment as a parameterized dissimilarity measure
	Learning scoring parameters from labeled data
	Practical implementation
	Algorithm overview
	Meta-parameters
	Proof-of-concept with artificial data
	RGLVQ error function surface
	Influence of crispness on the alignment

	Experiments with real-world data
	Experimental procedure
	Copenhagen Chromosomes
	Intelligent tutoring systems for Java programming
	Reducing computational demand

	Discussion

	Unsupervised suitability assessment for data representations
	Motivation
	Scientific contributions and structure of the chapter

	Low-dimensional Euclidean embeddings
	Quantitative quality assessment
	Principles of quality assessment for DR
	Evaluating DR based on the co-ranking matrix
	Point-wise quality measure
	Parameterization of the quality measure
	Experiments with real-world data
	Discussion

	Comparing dissimilarity-based representations
	Introduction
	How to compare dissimilarity measures?
	Comparison of metrics for the Euclidean vector space
	Comparison of non-Euclidean settings
	Discussion


	Conclusion
	Additional information
	Derivative of soft alignment
	Information about the Chromosomes data set
	Information about the Sorting data set

	Publications in the context of this thesis
	Bibliography

