
Center for

Mathematical Economics

Working Papers 533
January 2016

Fear of the Market or Fear of the

Competitor? Ambiguity in a Real

Options Game

Tobias Hellmann and Jacco J.J. Thijssen

Center for Mathematical Economics (IMW)
Bielefeld University
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Abstract

In this paper we study a two–player investment game with a first mover advantage in continuous time

with stochastic payoffs, driven by a geometric Brownian motion. One of the players is assumed to be

ambiguous with max–min preferences over a strongly rectangular set of priors. We develop a strategy

and equilibrium concept allowing for ambiguity and show that equilibria can be preemptive (a player

invests at a point where investment is Pareto dominated by waiting) or sequential (one player invests as

if she were the exogenously appointed leader). Following the standard literature, the worst–case prior for

the ambiguous player if she is the second mover is obtained by setting the lowest possible trend in the set

of priors. However, if the ambiguous player is the first mover, then the worst–case prior can be given by

either the lowest or the highest trend in the set of priors. This novel result shows that “worst–case prior”

in a setting with geometric Brownian motion and κ–ambiguity over the drift does not always equate to

“lowest trend”.
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1 Introduction

Many, if not most, investment decisions taken by firms are characterized by substantial upfront sunk costs,

(partial) irreversibility, and uncertainty over future cash flows (cf. Dixit and Pindyck (1994)). As has been

well–recognized since Knight (1921), the uncertainty over future cash flows can seldomly be captured by a

unique probability measure. That is to say, there is typically ambiguity over the correct probability measure.

Extensive experimental evidence has shown that decision makers are typically ambiguity averse (cf. Ellsberg

(1961)).

By incorporating an ambiguity aversion axiom into the subjective expected utility framework, Gilboa

and Schmeidler (1989) have shown that ambiguity averse decision makers act as if they maximize expected

utility over the worst–case prior within a (subjectively chosen) set of priors. In the context of a firm’s

investment decision it is common to assume that future cash flows develop according to a (continuous–

time) stochastic process. In most of the literature it is assumed that cash flows grow at an expected growth

rate, augmented with shocks that follow a (continuous–time) random walk. Incorporating ambiguity in

such a setting is typically done by assuming that at any time t the expected growth rate is not known,

but can take any value in a given set (this is often referred to as drift ambiguity). The worst–case in this

situation is the lowest possible expected growth rate (cf. Nishimura and Ozaki (2007)). So, in the Gilboa

and Schmeidler (1989) framework applied to investment problems, the presence of drift ambiguity leads the

firm to act cautiously: by considering the worst possible expected growth rate the firm values future cash

flows assuming that nature will act malevolently. One could interpret this as a “fear of the market”.

In this paper we extend this kind of analysis by including the effects of competition. In most markets firms

are not making investment decisions in isolation; rather decisions are taken in a competitive environment,

often oligopolistic in nature. This implies that a firm not only is ambiguous about future cash flows, but also

about its competitors’ actions. After all, suppose that a firm has just invested in a new technology to obtain

a cost advantage, but that its competitor still has the option to invest as well. It is natural to assume that

investment by the competitor lowers the first adopter’s cash flows. It is similarly innocuous to assume that

the competitor will make its investment decision when it expects the future cash flows to be high enough.

This implies that, in expectation, the competitor will invest sooner when the expected growth rate of cash

flows is higher. This, in turn, means that the worst–case for the first adopter is represented by the earliest

possible time, in expectation, that the competitor invest, i.e. the highest possible expected growth rate. One

can think of this as a “fear of the competitor”.

The problem we address in this paper is two-fold. First, we investigate how these two diametrically op-
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posed “fears” balance: what is the worst–case at any given time t when “fear of the market” suggests the

lowest possible expected growth rate, but “fear of the competitor” suggests the highest possible expected

growth rate? It turns out that we can compute the worst-case prior explicitly: it is either the lowest or the

highest expected growth rate. The regions where each of these worst cases dominates the other can, as we

show, be computed exactly. Secondly, we investigate the impact of ambiguity on equilibrium investment

behavior. In particular, we are interested in (i) constructing an appropriate notion of strategy for timing

games with an ambiguous player,1 and (ii) explore the differences in equilibrium behavior between ambigu-

ous and non–ambiguous players. The latter goal leads us to study an investment game between two firms,

one ambiguous and one non–ambiguous.

Our modeling of drift ambiguity follows the seminal contribution of Chen and Epstein (2002), who

developed a solid framework for dealing with Gilboa and Schmeidler (1989) max–min preferences in a

continuous time multiple prior model of ambiguity. This model has been applied to several problems in

economics and finance to gain valuable insights in the consequences of a form of Knightian uncertainty, as

opposed to risk, on economic decisions. The main insight of Chen and Epstein (2002) is that in order to find

the max–min value of a payoff stream under a particular kind of ambiguity (called strongly rectangular)

we need to identify the upper–rim generator of the set of multiple priors, and value the payoff stream as if

this were the true process governing the payoffs. Finding this upper–rim generator is particularly easy if

attention is restricted to so-called κ-ignorance, a form of drift ambiguity, where at each point in time the

drift is assumed to lie within the same compact set.

In this paper, we extend the single–firm Nishimura and Ozaki (2007) model to a timing game between

two firms, which both have the option to invest in a project. We assume that one firm is ambiguous about the

process governing cash-flows and that the other firm (potentially) has a cost disadvantage.2 This assumption

is made to illustrate the difference an introduction of ambiguity makes compared to a purely risky world in

a game theoretic model of investment.

Our main conclusions are as follows. First, contrary to all of the literature on κ–ignorance in a real

options framework, the worst–case prior is not always the lowest possible trend. As in any timing game, an

ambiguous player has to consider the payoffs of the leader and follower roles. The payoffs of the latter role

1Since the seminal contribution of Fudenberg and Tirole (1985) for deterministic timing games, many attempts to defining

equilibria in stochastic timing games have been made such as Thijssen (2010), Thijssen et al. (2012), de Villemeur et al. (2014),

Boyarchenko and Levendorski (2014), Azevedo and Paxson (2014), Huisman and Kort (2015).
2The assumption that only one firm is ambiguous is not critical. In fact, Section 6 shows that our results can easily be adopted

to the case where both firms are ambiguous, possibly to a different degree.
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follow along very similar lines as in Nishimura and Ozaki (2007), i.e. the worst–case payoff corresponds to

valuing the follower’s payoff stream as if the payoffs are driven by the diffusion with the lowest admissible

trend under κ–ignorance. For the leader’s payoff, however, the situation is different, because of the interplay

between the two opposing forces of “fear of the market” and “fear of the competitor”. In Section 3, we use

an analysis based on backward stochastic differential equations and g–expectations, as introduced by Peng

(1997), to study which effect dominates. It turns out that for small values of the stochastic process, the worst-

case always corresponds to the lowest admissible trend, whereas for higher values the highest admissible

trend may represent the worst-case, depending on the underlying parameters. This result also constitutes a

contribution to the ambiguity literature, because we provide a very natural setting in which the worst–case

prior is non–trivial.

Secondly, in Section 4 we show that equilibria can be of two types. First, there may be preemptive

equilibria in which one of the firms invests at a time where it is not optimal for either firm to do so. This

type of equilibrium is familiar from the literature ( e.g. Fudenberg and Tirole (1985), Weeds (2002), Pawlina

and Kort (2006)) but we use a technique recently developed by Riedel and Steg (2014) to rigorously prove

existence of this type of equilibrium. It should be pointed out here that in a preemptive equilibrium it is

known a.s. ex ante which firm is going to invest first. This firm will invest at a point in time where its leader

value exceeds its follower value, but where its competitor is indifferent between the two roles. A second

type of equilibrium that can exist is a sequential equilibrium, in which one firm invests at the same it would

if it knew that the other firm could not preempt. Each game always has at least an equilibrium of one of

these two types, which can not co–exist. These two types of equilibrium each lead to a clear prediction, a.s.,

as to which firm invests first. The role of first mover depends crucially on the levels of ambiguity and cost

(dis–) advantage, as we show in a numerical analysis.

As mentioned above we obtain our equilibrium results by using techniques developed by Riedel and

Steg (2014). It should be pointed out that we cannot simply adopt their strategies to our setting due to the

presence of an ambiguous player. In fact, the notion of extended mixed strategy as introduced in Riedel

and Steg (2014) presents a conceptual problem here. An extended mixed strategy consists, in essence, of a

distribution over stopping times as well as a coordination device that allows players to coordinate in cases

where equilibrium considerations require one and only one firm to invest and it is not clear a priori which

firm this should be. In our model we need this coordination device as well, but we do not want ambiguity to

extend to the uncertainty created by this coordination mechanism, i.e. ambiguity is over payoffs exclusively.

This presents problems if we want to define payoffs to the ambiguous firm if it plays a mixture over stopping

times. For equilibrium existence, however, such mixtures are not needed, so we choose to restrict attention
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to what we call extended pure strategies, which consist of a stopping time and an element related to the

coordination mechanism mentioned above. By making this simplifying assumption, together with strong

rectangularity of the set of priors, we can write the worst–case payoff of a pair of extended pure strategies

as a sum of worst–cases of leader and follower payoffs.

In Section 5 we provide some comparative statics. In particular, we explore the effect of a change in

(i) the degree of ambiguity, (ii) the volatility and (iii) firm 2’s cost–disadvantage on equilibrium outcomes.

We show numerically that the investment thresholds of the ambiguous firm increase with the degree of

ambiguity. Due to the construction of the set of priors via κ–ignorance, an increase of volatility not only

increases the variance of future payoffs, but it also expands the set of priors. It turns out that both firms’

investment thresholds rise with the volatility. Due to the effect on the set of priors, however, the thresholds

of the ambiguous firm are more affected by a change of the volatility than those of the unambiguous firm.

Finally, while Pawlina and Kort (2006) argue that in a purely risky world, the low–cost firm always becomes

the leader, we show that this might change if the low–cost firm is sufficiently ambiguous.

2 The Model

We follow Pawlina and Kort (2006) in considering two firms that are competing to implement a new tech-

nology. Uncertainty in the market is modeled on a filtered probability space (Ω,F , (Ft)t≥0 ,P) using a

geometric Brownian motion
dXt

Xt
= µdt+ σdBt, (1)

where (Bt)t≥0 is a Wiener process. The sunk costs of investment are I > 0 for firm 1 and ηI , η > 0 for

firm 2. Typically, we will assume that η > 1, so that firm 1 has a cost advantage.

The payoff streams are given by processes (Dk`Xt)t≥0, where Dk`, k, ` = 0, 1, denotes a scaling factor

if the firm’s investment status is k (k = 0 if the firm has not invested and k = 1 if the firm has invested) and

the investment status of the competitor is ` ∈ {0, 1}. It is assumed that D10 > D11 ≥ D00 ≥ D01 ≥ 0, and

that there is a first mover advantage, i.e. D10 −D00 > D11 −D01.

We assume that, although firm 1 has a cost advantage, it is also ambiguous about the drift µ. Following the

recent literature on drift ambiguity in continuous time models, we model priors that the firm considers using

a set of density generators. Denoting this set of density generators by Θ, the set of probability measures that

constitutes the firm’s set of priors is denoted by PΘ. A process (θt)t≥0 is a density generator if the process
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(
M θ
t

)
t≥0

, where
dM θ

t

M θ
t

= −θtdBt, M θ
0 = 1, (2)

is a P–martingale. Such a process (θt)t≥0 generates a new measure Pθ via the Radon–Nikodym derivative

dPθ/dP = M θ
∞.

In order to use density generators as a model for ambiguity the set Θ needs some more structure. Fol-

lowing Chen and Epstein (2002), the set of density generators, Θ, is chosen as follows. Let (Θt)t≥0 be a

collection of correspondences Θt : Ω � R, such that

1. There is a compact subset K ⊂ R, such that Θt(ω) ⊆ K, for all ω ∈ Ω and all t ∈ [0, T ];

2. For all t ∈ [0, T ], Θt is compact-valued and convex-valued;

3. For all t ∈ (0, T ], the mapping (s, ω) 7→ Θs(ω), restricted to [0, t]× Ω, is B[0, t]×Ft-measurable;

4. 0 ∈ Θt(ω), dt⊗ dP-a.e.

The set of density generators is then taken to be,

Θ = {(θt)t≥0 |θt(ω) ∈ Θt(ω), dP− a.e., all t ≥ 0},

and the resulting set of measures PΘ is called strongly-rectangular. For sets of strongly rectangular priors

the following has been obtained by Chen and Epstein (2002):

1. P ∈PΘ;

2. All measures in PΘ are uniformly absolutely continuous with respect to P and are equivalent to P;

3. For every X ∈ L 2(Ω,F ,P), there exists P∗ ∈PΘ such that for all t ≥ 0,

EP∗ [X|Ft] = inf
Q∈PΘ

EQ[X|Ft]. (3)

Finally, for further reference, define the upper-rim generator (θ∗t )t≥0, where

θ∗t = arg max{σw(t)θt|θt ∈ Θt}. (4)

Note that (θ∗t )t≥0 ∈ Θ.

From Girsanov’s theorem it immediately follows that under Pθ ∈PΘ, the process
(
Bθ
t

)
t≥0

, defined by

Bθ
t = Bt +

∫ t

0
θsds,
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is a Pθ-Brownian motion and that, under Pθ, the process (Xt)t≥0 follows the diffusion

dXt

Xt
= µθ(t)dt+ σdBθ

t ,

where

µθ(t) = µ− σθt.

In the remainder we will assume that Θt = [−κ, κ], for all t > 0, for some κ > 0. Denote ∆ =

[µ, µ] = [µ − σκ, µ + σκ]. This form of ambiguity is called κ–ignorance (cf. Chen and Epstein (2002)).

The advantages of using this definition of ambiguity are that (i) Θ is strongly rectangular so that the results

stated above apply and (ii) the upper–rim generator takes a convenient form, namely θ∗t = κ, for all t ≥ 0.

In addition, it can easily be shown that
(
Bθ
t

)
t≥0

is a P-martingale for every (θt)t≥0 ∈ Θ.

Note that Cheng and Riedel (2013) show that κ−ignorance can be applied in an infinite time horizon. In

particular, they show that value functions taken under drift ambiguity in the infinite time horizon are nothing

but the limits of value functions of finite time horizons T as T →∞.

In our model, we assume firm 1 to be ambiguity averse in the sense of Gilboa and Schmeidler (1989).

Finally, the discount rate is assumed to be r > µ and to apply to both firms.

3 Leader and Follower Value Functions

3.1 The Non–Ambiguous Firm

Assume firm 1 becomes the leader at t. Then the non–ambiguous firm 2 solves the optimal stopping problem

F2(xt) = sup
τF2 ≥t

EP

[∫ τF2

t
e−r(s−t)D01Xsds+

∫ ∞
τF2

e−r(s−t)D11Xs − e−r(τ
F
2 −t)ηI

∣∣∣Ft

]
. (5)

Thus, τF2 is the optimal time at which firm 2 invests as a follower.

On the other hand, if the non–ambiguous firm becomes the leader at a certain point in time t, its value

function is

L2(xt) = EP

[∫ τF1

t
e−r(s−t)D10Xsds+

∫ ∞
τF1

e−r(s−t)D11Xsds− ηI
∣∣∣Ft

]
, (6)

where τF1 denotes the optimal time at which the ambiguous firm invests as a follower. From the standard

literature on real options games (cf. Pawlina and Kort (2006)) we know that the former value function can

be written as

F2(xt) =


xtD01
r−µ +

(
xF2 (D11−D01)

r−µ − ηI
)(

xt
xF2

)β(µ)
, if xt ≤ xF2 ,

xtD11
r−µ − ηI if xt > xF2 ,

(7)
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where τF2 is the first hitting time (from below) of an endogenously determined threshold xF2 , i.e

τF2 = inf{s ≥ t|Xs ≥ xF2 }.

The standard procedure of dynamic programming yields that the threshold xF2 is given by

xF2 =
β(µ)

β(µ)− 1

ηI(r − µ)

D11 −D01
,

where β(µ) is the positive root of the fundamental quadratic 1/2σ2β(µ)(β(µ)− 1) + µβ(µ)− r = 0, i.e.

β(µ) =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
> 1.

Similarly, we will show below that firm 1’s optimal stopping time in the follower role is the first hitting

time (from below) of a threshold xF1 <∞, i.e.

τF1 = inf{s ≥ t|Xs ≥ xF1 }.

By applying the standard techniques of backward induction and dynamic programming, one can therefore

show that the leader value (6) is given by

L2(xt) =


xtD10
r−µ − ηI +

xF1 (D11−D10)
r−µ

(
xt
xF1

)β(µ)
, if xt ≤ xF1 ,

xtD11
r−µ − I, if xt > xF1 .

Finally, it is possible that both firms invest simultaneously at t. One can show that in that case the value

function of firm 2 is

M2(xt) := EP
[∫ ∞

t
e−r(s−t)D11Xsds− ηI

∣∣∣Ft

]
=
xtD11

r − µ
− ηI.

3.2 The Ambiguous Firm

If ambiguity is introduced, the standard techniques for computing the value functions are not applicable any

longer. In our case, where ambiguity is modeled by a strongly rectangular set of density generators, one

needs, in contrast to the standard case, to allow for changing priors over time.

The value functions for the ambiguous firm 1 of the follower and leader roles are given by

F1(xt) := sup
τF1 ≥t

inf
Q∈PΘ

EQ
[∫ τF1

t
e−r(s−t)D01Xsds+

∫ ∞
τF1

e−r(s−t)D11Xs − e−r(τ
F
1 −t)I

∣∣∣Ft

]
(8)

and

L1(xt) := inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft

]
− I, (9)
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respectively.

If the set of priors PΘ is strongly rectangular, it turns out that problem (8) can be reduced to a standard

optimal stopping problem and, hence, can be solved by using standard techniques. This reduction is possible

due to the following lemma, the proof of which is standard and is, thus, omitted.

Lemma 1. Let PΘ be strongly–rectangular. Then

F1(xt) = sup
τF1 ≥t

EP
θ∗
[∫ τF1

t
e−r(s−t)D01Xsds+

∫ ∞
τF1

e−r(s−t)D11Xsds− e−r(τ
F
1 −t)I

∣∣∣Ft

]
, (10)

where (θ∗t )t≥0 is the upper–rim generator (4).

Hence, for the follower problem of the ambiguous firm, the worst–case is always induced by the worst

possible drift µ. This observation indeed makes sense, since the actions of the leader have no influence

on the decision of the follower once the leader has invested. The problem, therefore, reduces to one of a

“monopolistic” decision maker. Nishimura and Ozaki (2007) already showed that for such decisions, the

worst–case is always given by the worst possible trend µ.

In other words, we find that the follower value of the ambiguous firm can be expressed by

F1(xt) =


xtD01
r−µ +

(
xF1 (D11−D01)

r−µ − I
)(

xt
xF1

)β(µ)
, if xt ≤ xF1 ,

xtD11
r−µ − I if xt > xF1 ,

(11)

where

xF1 =
β(µ)

β(µ)− 1

I(r − µ)

D11 −D01
.

In a similar way, one can argue that for simultaneous investment the value function of firm 1 is induced

by the worst–case µ and therefore

M1(xt) := inf
Q∈PΘ

EQ
[∫ ∞

t
e−r(s−t)D11Xsds− I

∣∣∣Ft

]
=
xtD11

r − µ
− I.

The next theorem describes the leader value function of the ambiguous firm. Two cases are distinguished

there. If the difference D10 − D11 is sufficiently small, we find that the worst–case is, as before, always

induced by µ. In case this condition is not satisfied, the worst–case is given by µ for small values xt up to

a certain threshold x∗, where it jumps to µ. The intuition for this fact can already be derived from equation

(9); the lowest trend µ gives the minimal values for the payoff stream (DklXt). However, the higher the

trend µ the sooner the stopping time τF2 is expected to be reached. The higher payoff stream (D10Xt) is

then sooner replaced by the lower one (D11Xt). If the drop of the payoffs becomes sufficiently small, the

former effect always dominates the latter. In this case the worst–case is given by µ for each xt.

9



Theorem 1. The worst–case for the leader function of the ambiguous firm is always given by the worst

possible drift µ if and only if the following condition holds

D10 −D11

D10
≤ 1

β1(µ)
. (12)

In this case, the leader function becomes

L1(xt) =


D10xt
r−µ −

(
xt
xF2

)β1(µ)
D11−D10
r−µ xF2 − I if xt < xF2

D11xt
r−µ − I if xt ≥ xF2 .

(13)

On the other hand, if D10−D11
D10

> 1
β1(µ) , then there exists a unique threshold x∗ ∈ (0, xF2 ) such that µ is

the worst–case on {Xt < x∗} and µ is the worst–case on {x∗ ≤ Xt < xF2 }. Furthermore, in this case the

leader value function is given by

L1(xt) =



D10xt
r−µ −

1
β1(µ)

D10x∗

r−µ
(
xt
x∗

)β1(µ) − I if xt < x∗

D10xt
r−µ +

(x∗)β2(µ)x
β1(µ)
t −(x∗)β1(µ)x

β2(µ)
t

(x∗)β2(µ)(xF2 )β1(µ)−(x∗)β1(µ)(xF2 )β2(µ)

(
D11
r−µ −

D10
r−µ

)
xF2

+
(xF2 )β1(µ)x

β2(µ)
t −(xF2 )β2(µ)x

β1(µ)
t

(x∗)β2(µ)(xF2 )β1(µ)−(x∗)β1(µ)(xF2 )β2(µ)

[(
1− 1

β1(µ)

)
D10
r−µ −

D10
r−µ

]
x∗ − I if x∗ ≤ xt < xF2

D11xt
r−µ − I if xt ≥ xF2 ,

(14)

where β1(µ) > 1 and β2(µ) < 0 are the positive and negative roots of the quadratic equation 1/2σ2β(µ)(β(µ)−

1) + µβ(µ)− r = 0, respectively.

In case the worst–case is not trivially given by the lowest possible trend, the value function contains the

terms

(x∗)β2(µ)x
β1(µ)
t − (x∗)β1(µ)x

β2(µ)
t

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)
and

(xF2 )β1(µ)x
β2(µ)
t − (xF2 )β2(µ)x

β1(µ)
t

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)
,

which admit a clear interpretation: they represent the expected discount factor of the first hitting time of

firm 2’s follower threshold conditional on it being reached before x∗ is reached, and the expected discount

factor of the first hitting time of x∗ conditional on it being reached before firm 2’s follower threshold,

respectively.

Figure 1 depicts the implications of Theorem (1). In case the drop of the payoff from being the only one

who has invested to the situation that both players have invested is sufficiently big, the value x∗ distinguishes

between the regions where each of the two “fears” dominates.

For the proof of Theorem (1), we need a different approach compared to the standard literature on real

option games. We use backward stochastic differential equations and g-expectations as introduced by Peng
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Figure 1: The critical value x∗ differentiates between two “regimes”.

(1997). The advantage of this approach lies in the fact that we know the value of our problem at the entry

point of the follower. This value yields the starting point for a backward stochastic differential equation. The

non–linear Feynman–Kac formula reduces the problem to solving a particular non–linear partial differential

equation. From this PDE we are eventually able to derive the worst–case prior.

Proof.

Denote

Yt := inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft] .

Applying the time consistency property of a strongly rectangular set of density generators gives

Yt = inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]

= inf
Q∈PΘ

EQ
[

inf
Q′∈PΘ

EQ
′

[∫ τF2

t
e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣FτF2

] ∣∣∣Ft]

= inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+ e−r(τ

F
2 −t) inf

Q′∈PΘ
EQ
′

[∫ ∞
τF2

e−r(s−τ
F
2 )D11Xsds

∣∣∣FτF2
] ∣∣∣Ft]

= inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+ e−r(τ

F
2 −t)Φ(xτF2

)
∣∣∣Ft] ,

where

Φ(xt) := inf
Q∈PΘ

EQ
[ ∫ ∞

t
e−r(s−t)D11Xsds

∣∣∣Ft] =
D11xt
r − µ

. (15)
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Chen and Epstein (2002) show that Yt solves the BSDE

−dYt = g(Zt)dt− ZtdBt,

where, in this case, the generator, g, is given by

g(z) = −κ|z| − rYt +XtD10.

The terminal boundary condition is given by

YτF2
= Φ(xF2 ),

In the terminology of Peng (2013), we say that the leader value is the g–expectation of the random

variable e−r(τ
F
2 −t)Φ(xF2 ), i.e.

Yt = Eg[e−r(τ
F
2 −t)Φ(xF2 )|Ft].

Denote the present value of the leader payoff by L, i.e.

L(xt) = Yt.

The non–linear Feynman–Kac formula3 (Peng, 2013, Theorem 3) implies that L solves the non–linear

PDE

LXL(x) + g(σxL′(x)) = 0,

where LX is the characteristic operator of the SDE (1). Hence, L solves

1

2
σ2x2L′′(x) + µxL′(x)− κσx

∣∣L′(x)
∣∣− rL(x) +D10x = 0. (16)

Expression (16) implies that µ is the worst–case on the set {x ≤ xF2 |L′(x) > 0} and µ is the worst–case on

{x ≤ xF2 |L′(x) < 0}.

The unique viscosity solution to the PDE (16) is given by

L(µ, x) =
D10x

r − µ
+Axβ1(µ) +Bxβ2(µ), (17)

where µ equals either µ or µ. The constants A and B are determined by some boundary conditions.

One can easily see that for x close to zero we have L′(x) > 0. Now two cases are possible: Either

L′(x) > 0 for all x ∈ [0, xF2 ] or we can find (at least) one point x∗ at which the worst–case changes from µ

to µ.

3Note that Peng (1991) shows that the non–linear Feynman–Kac formula not only holds for deterministic times but also first

exit times like τF2 , even if it does not hold a.s. that {τF2 <∞}.
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Let us first assume that µ is always the worst–case. Since β2(µ) < 0, we have B = 0. In order to

determine the constant A, we apply a value matching condition at xF2 that gives

L(µ, xF2 ) =
D10x

F
2

r − µ
+A1x

F
2
β1(µ)

=
D11x

F
2

r − µ
.

This implies

A1 =
D10 −D11

r − µ
xF2

1−β1(µ)
,

and therefore

L(xt) =
D10xt
r − µ

+

(
xt

xF2

)β1(µ) D11 −D10

r − µ
xF2 . (18)

We get that µ is always the worst–case on [0, xF2 ] if and only if L′(x) ≥ 0 for all x ≤ xF2 . Due to the

continuity and concavity of the value function (18), this is equivalent to the condition

L′(xF2 ) ≥ 0.

Therefore,

L′(xF2 ) =
D10

r − µ
+

(
D11 −D10

r − µ

)
β1(µ)

(
xF2
xF2

)β1(µ)−1

≥ 0

⇐⇒ D11 −D10 ≥ −
D10

β1(µ)

⇐⇒ D10 −D11

D10
≤ 1

β1(µ)
.

If this condition is not satisfied, the worst–case changes at some point x∗ < xF2 from µ to µ, where x∗

is determined by the condition L′(x∗) = 0. We denote by L̃1(µ, x) the solution to (17) on [0, x∗] and by

L̂1(µ, x) the solution to (17) on [x∗, xF2 ]. The unknowns in equation (17) are determined by applying twice a

value matching condition and once a smooth pasting condition (see also Cheng and Riedel (2013)). Indeed,

it must hold that

1. L̂1(µ, xF2 ) = Φ(xF2 ),

2. L̃1(µ, x∗) = L̂1(µ, x∗),

3. L̃′1(µ, x∗) = L̂′1(µ, x∗).

In case µ is not always the worst–case, the unique viscosity solution of (17) is given by

L(xt) = 1xt<x∗L̃1(µ, xt) + 1xt≥x∗L̂1(µ, xt),

13



where

L̃1(µ, xt) =
D10xt
r − µ

− 1

β1(µ)

D10x
∗

r − µ

(xt
x∗

)β1(µ)
,

and

L̂1(µ, xt) =
D10xt
r − µ

+
(x∗)β2(µ)x

β1(µ)
t − (x∗)β1(µ)x

β2(µ)
t

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
(xF2 )β1(µ)x

β2(µ)
t − (xF2 )β2(µ)x

β1(µ)
t

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗.

We can easily verify that L̂1 and L̃1 satisfy the boundary conditions. Indeed,

L̂1(µ, xF2 ) =
D10x

F
2

r − µ
+

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
(xF2 )β1(µ)(xF2 )β2(µ) − (xF2 )β2(µ)(xF2 )β1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗

=
D10x

F
2

r − µ
+

(
D11

r − µ
− D10

r − µ

)
xF2

=
D11x

F
2

r − µ

=Φ(xF2 ).

and

L̂1(µ, x∗) =
D10x

∗

r − µ
+

(x∗)β2(µ)(x∗)β1(µ) − (x∗)β1(µ)(x∗)β2(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
(xF2 )β1(µ)(x∗)β2(µ) − (xF2 )β2(µ)(x∗)β1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗

=
D10x

∗

r − µ
+

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗

=
D10x

∗

r − µ
− 1

β1(µ)

D10x
∗

r − µ

=L̃1(µ, x∗).

To prove the smooth pasting condition at x∗ requires a bit more work. Firstly, we observe that the value x∗

is chosen such that it always holds that L̃′1(µ, x∗) = 0.

The next lemma shows that there exists such a value x∗, which is unique and also satisfies L̂1(µ, x∗) = 0.

Lemma 2. If D10−D11
D10

> 1
β1(µ) , then there exists one and only one value x∗ that solves L̂′1(µ, x∗) = 0 on

(0, xF2 ].
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Figure 2: The leader and follower value functions of the ambiguous and non–ambiguous firm.

The proof is reported in the Appendix.

Remark 1. The leader value function L1 is always concave on [0, xF2 ] even if the worst–case changes at

some point. We prove this fact in the Appendix.

Figure 2 shows a typical run of the leader and follower value functions of both the ambiguous and the

non–ambiguous firm. We observe that the leader value function of firm 1 drops below its follower value

function if xt is close to xF2 . The reason for that is that xF1 and xF2 differ (in the illustrated case we have

xF2 < xF1 ). That means that the leader and follower value functions hit the shared value function M at

different times. This is the case because xF1 and xF2 are determined using a different trend. But even if firms

use the same prior, in some cases we would observe this pattern, namely if we consider cost–asymmetric

firms, i.e. if η > 1.

3.3 Optimal Leader Threshold

Next we want to determine the optimal time to invest as a leader. Suppose firm 2 knows it will not be

preempted and searches for the optimal time to invest. It then faces at time t the following optimal stopping
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problem:

L∗2(xt) = sup
τ tL,2≥t

EP

[∫ τ tL,2

t
e−r(s−t)D00Xsds+

∫ τF1

τ tL,2

e−r(s−t)D10Xsds

+

∫ ∞
τF1

e−r(s−t)D11Xsds− e−r(τ
t
L,2−t)ηI

∣∣∣Ft].
The solution can be found by applying the standard techniques and is well known from the literature: it is

given by

τ tL,2 = inf{s ≥ t|Xs ≥ xL2 },

where

xL2 =
β1(µ)

β1(µ)− 1

ηI(r − µ)

D10 −D00
.

The ambiguous firm solves the following optimal stopping problem

L∗1(xt) = sup
τ tL,1≥t

inf
Q∈PΘ

EQ
[∫ τ tL,1

t
e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds

+

∫ ∞
τF2

e−r(s−t)D11Xsds− e−r(τ
t
L,1−t)I

∣∣∣Ft].
Again, in order to determine this stopping time for the ambiguous firm, we cannot apply the standard pro-

cedure. Nevertheless, the stopping time does not differ from the one of a non–ambiguous firm given a drift

µ.

Proposition 1. The optimal time to invest as a leader for the ambiguous firm is given by

τ tL,1 = inf{s ≥ t|Xs ≥ xL1 },

where

xL1 =
β1(µ)

β1(µ)− 1

I(r − µ)

D10 −D00
.

For the proof we refer to the Appendix.

4 Equilibrium Analysis

The appropriate equilibrium concept for a game with ambiguity as described here is not immediately clear.

In this paper, we consider two types of equilibria: preemptive equilibria in which firms try to preempt each

other at some times where it is sub–optimal to invest, and sequential equilibria, where one firm invests at its

optimal time.
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4.1 Strategies and Payoffs

The appropriate notion of subgame perfect equilibrium for our game is developed in Riedel and Steg (2014).

Let T denote the set of stopping times with respect to the filtration (Ft)t≥0. The set T will act as the set

of (pure) strategies. Given the definitions of the leader, follower and shared payoffs above, the timing game

is

Γ =
〈

(Ω,F , (Ft)t≥0 ,P),PΘ,T ×T , (Li, Fi,Mi)i=1,2, (πi)i=1,2

〉
,

where, for (τ1, τ2) ∈ T ×T ,

π1(x0) = inf
Q∈PΘ

EQ[L1(x0)1τ1<τ2 + F1(x0)1τ1>τ2 +M1(x0)1τ1=τ2 ], and

π2(x0) = EP[L2(x0)1τ1>τ2 + F2(x0)1τ1<τ2 +M2(x0)1τ1=τ2 ].

The subgame starting at stopping time ϑ ∈ T is the tuple

Γϑ =
〈

(Ω,F , (Ft)t≥ϑ,P),PΘ,Tϑ ×Tϑ, (Li, Fi,Mi)i=1,2, (π
ϑ
i )i=1,2

〉
,

where Tϑ is the set of stopping times no smaller than ϑ a.s.,

Tϑ := {τ ∈ T |τ ≥ ϑ,P− a.s.},

and, for (τ1, τ2) ∈ Tϑ ×Tϑ,

πϑ1 (xϑ) = inf
Q∈PΘ

EQ[L1(xϑ)1τ1<τ2 + F1(xϑ)1τ1>τ2 +M1(xϑ)1τ1=τ2 |Fϑ], and

πϑ2 (xϑ) = EP[L2(xϑ)1τ1>τ2 + F2(xϑ)1τ1<τ2 +M2(xϑ)1τ1=τ2 |Fϑ].

As is argued in Riedel and Steg (2014), careful consideration has to be given to the appropriate notion of

strategy. They show that the notion of extended mixed strategy is versatile and intuitively appealing. For the

subgame Γϑ this is a pair of processes (Gϑ, αϑ), both taking values in [0, 1], with the following properties.4

1. Gϑ is adapted, has right–continuous and non–decreasing sample paths, with Gϑ(s) = 0 for all s < ϑ,

P− a.s.

2. αϑ is progressively measurable with right–continuous sample paths whenever its value is in (0, 1),

P− a.s.

3. On {t ≥ ϑ}, it holds that

αϑ(t) > 0⇒ Gϑ(t) = 1, P-a.s.

4Note that the properties below hold for all Q ∈ PΘ if they hold for P, because all measures in PΘ are equivalent.
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We use the convention that

Gϑ(0−) ≡ 0, Gϑ(∞) ≡ 1, and αϑ(∞) ≡ 1.

For our purposes extended mixed strategies are, in fact, more general than necessary. Therefore, we

will restrict attention to what we will call extended pure strategies. For the subgame Γϑ this is a pair of

extended mixed strategies (Gϑi , α
ϑ
i )i=1,2, where Gϑi is restricted to take values in {0, 1}. In other words, in

an extended pure strategy a firm does not mix over stopping times, but potentially mixes over its “investment

intensity” αϑ.

An extended pure strategy for the game Γ is then a collection (Gϑ, αϑ)ϑ∈T of extended pure strategies

in subgames Γϑ, ϑ ∈ T satisfying the time consistency conditions that for all ϑ, ν ∈ T it holds that

1. ν ≤ t ∈ R+ ⇒ Gϑ(t) = Gϑ(ν−) + (1−Gϑ(ν−))Gν(t), P-a.s. on {ϑ ≤ ν},

2. αϑ(τ) = αν(τ), P-a.s., for all τ ∈ T .

The importance of the α component in the definition of extended pure strategy becomes obvious in the

definition of payoffs. Essentially α allows both for immediate investment and coordination between firms.

It leads to investment probabilities that can be thought of as the limits of conditional stage investment

probabilities of discrete–time behavioral strategies with vanishing period length (cf. Fudenberg and Tirole

(1985)). In the remainder, let τ̂ϑi be the first time that αϑi is strictly positive, and let τ̂ϑ be the first time that

at least one αϑ is non–zero in the subgame Γϑ, i.e.

τ̂ϑi = inf{t ≥ ϑ|αϑi (t) > 0}, and τ̂ϑ = inf{t ≥ ϑ|αϑ1 (t) + αϑ2 (t) > 0},

respectively. At time τ̂ϑ the extended pure strategies induce a probability measure on the state space

Λ = { {Firm 1 becomes the leader}, {Firm 2 becomes the leader}, {Both firms invest simultaneously} } ,

for which we will use the shorthand notation

Λ = { (L, 1), (L, 2),M } .

Riedel and Steg (2014) show that the probability measure on Λ, induced by the pair (αϑ1 , α
ϑ
1 ), is given by

λϑL,i(τ̂
ϑ) =



αϑ
i,τ̂ϑ

(1−αϑ
j,τ̂ϑ

)

αϑ
i,τ̂ϑ

+αϑ
j,τ̂ϑ
−αϑ

i,τ̂ϑ
αϑ
j,τ̂ϑ

if τ̂ϑi = τ̂ϑj and αϑi (τ̂ϑi ), αϑj (τ̂ϑi ) > 0

1 if τ̂ϑi < τ̂ϑj , or τ̂ϑi = τ̂ϑj and αϑj (τ̂ϑj ) = 0

0 if τ̂ϑi > τ̂ϑj , or τ̂ϑi = τ̂ϑj and αϑj (τ̂ϑj ) = 0

1
2

(
lim inft↓τ̂ϑi

αϑi (t)(1−αϑj (t))

αϑi (t)+αϑj (t)−αϑi (t)αϑj (t)
if τ̂ϑi = τ̂ϑj , αϑi (τ̂ϑi ) = αϑj (τ̂ϑj ) = 0,

+lim supt↓τ̂ϑi
αϑi (t)(1−αϑj (t))

αϑi (t)+αϑj (t)−αϑi (t)αϑj (t)

)
and αϑi (τ̂ϑi +), αϑj (τ̂ϑj +) > 0,
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and

λϑM (τ̂ϑ) =


0 if τ̂ϑi = τ̂ϑj , αϑi (τ̂ϑi ) = αϑj (τ̂ϑi ) = 0, and αϑi (τ̂ϑi +), αϑj (τ̂ϑi +) > 0

αϑ
i,τ̂ϑ

αϑ
j,τ̂ϑ

αϑ
i,τ̂ϑ

+αϑ
j,τ̂ϑ
−αϑ

i,τ̂ϑ
αϑ
j,τ̂ϑ

otherwise.

Note the following:

1. If τ̂ϑi < τ̂ϑj there is no coordination problem: firm i becomes the leader λ-a.s. at τ̂ϑi ;

2. If τ̂ϑi = τ̂ϑj , but αϑj (τ̂ϑj ) = 0, there is no coordination problem: firm i becomes the leader λ-a.s. at τ̂ϑi ;

3. In the degenerate case where τ̂ϑi = τ̂ϑj , αϑi (τ̂ϑi ) = αϑj (τ̂ϑj ) = 0, and αϑi (τ̂ϑi +), αϑj (τ̂ϑj +) > 0, the

leader role is assigned at time τ̂ϑi , effectively on the basis of the flip of a fair coin;

4. Firm 1 is not ambiguous over the measure λ.

In order to derive the payoffs to firms, let τϑG,i denote the first time that Gϑi jumps to one, i.e.

τϑG,i = inf{t ≥ ϑ|Gϑi (t) > 0}.

The payoff to the ambiguous firm of a pair of extended pure strategies ((G1, α1), (G2, α2)) in the sub-

game Γϑ is given by

V ϑ
1 (Gϑ1 , α

ϑ
1 , G

ϑ
2 , α

ϑ
2 ) := inf

Q∈PΘ
EQ
[
1τϑG,1<min{τϑG,2,τ̂ϑ}

(∫ τϑG,1

ϑ
e−r(s−ϑ)D00Xsds+

∫ τF2

τϑG,1

e−r(s−ϑ)D10Xsds

+

∫ ∞
τF2

e−r(s−ϑ)D11Xsds− e−r(τ
ϑ
G,1−ϑ)I

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[
1τϑG,2<min{τϑG,1,τ̂ϑ}

(∫ τϑG,2

ϑ
e−r(s−ϑ)D00Xsds+

∫ τF1

τϑG,2

e−r(s−ϑ)D01Xsds

+

∫ ∞
τF1

e−r(s−ϑ)D11Xs − e−r(τ
F
1 −ϑ)I

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[
1τϑG,1=τϑG,2<τ̂

ϑ

(∫ τϑG,1

ϑ
e−r(s−ϑ)D00Xsds

+

∫ ∞
τϑG,1

e−r(s−ϑ)D11Xsds

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[

1τ̂ϑ≤min{τϑG,1,τ
ϑ
G,1}

λϑL,1(τ̂ϑ)

(∫ τ̂ϑ

ϑ
e−r(s−ϑ)D00Xsds

+

∫ τF2

τ̂ϑ
e−r(s−ϑ)D10Xsds+

∫ ∞
τF2

e−r(s−ϑ)D11Xsds− e−r(τ
ϑ
G,1−ϑ)I

)∣∣∣Fϑ

]
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+ inf
Q∈PΘ

EQ
[

1τ̂ϑ≤min{τϑG,1,τ
ϑ
G,1}

λϑL,2(τ̂ϑ)

(∫ τ̂ϑ

ϑ
e−r(s−ϑ)D00Xsds

+

∫ τF1

τ̂ϑ
e−r(s−ϑ)D01Xsds+

∫ ∞
τF1

e−r(s−ϑ)D11Xs − e−r(τ
F
1 −ϑ)I

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑM (τ̂ϑ)

(∫ τ̂ϑ

ϑ
e−r(s−ϑ)D00Xsds

+

∫ ∞
τ̂ϑ

e−r(s−ϑ)D11Xsds

)∣∣∣Fϑ

]
.

Hence, the payoff of the ambiguous firm can written as

V ϑ
1 (Gϑ1 , α

ϑ
1 , G

ϑ
2 , α

ϑ
2 ) := inf

Q∈PΘ
EQ
[
1τϑG,1<min{τϑG,2,τ̂ϑ}

L1(xϑ)
∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τϑG,2<min{τϑG,1,τ̂ϑ}

F1(xϑ)
∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τϑG,1=τϑG,2<τ̂

ϑM1(xϑ)
∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,1(τ̂ϑ)L1(xϑ)
∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,2(τ̂ϑ)F1(xϑ)
∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑM (τ̂ϑ)M1(xϑ)
∣∣∣Fϑ

]
.

In the same way, the payoff for the unambiguous firm can be written as

V ϑ
2 (Gϑ2 , α

ϑ
2 , G

ϑ
1 , α

ϑ
1 ) :=EP

[
1τϑG,2<min{τϑG,2,τ̂ϑ}

L2(xϑ)
∣∣∣Fϑ

]
+EP

[
1τϑG,1<min{τϑG,2,τ̂ϑ}

F2(xϑ)
∣∣∣Fϑ

]
+EP

[
1τϑG,1=τϑG,2<τ̂

ϑM2(xϑ)
∣∣∣Fϑ

]
+EP

[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,2(τ̂ϑ)L2(xϑ)
∣∣∣Fϑ

]
+EP

[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,1(τ̂ϑ)F2(xϑ)
∣∣∣Fϑ

]
+EP

[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑM (τ̂ϑ)M2(xϑ)
∣∣∣Fϑ

]
.
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4.2 Preemptive and Sequential Equilibria

An equilibrium for the subgame Γϑ is a pair of extended pure strategies
(
(Ḡϑ1 , ᾱ

ϑ
1 ), (Ḡϑ2 , ᾱ

ϑ
2 )
)
, such that for

each firm i = 1, 2 and every extended pure strategy (Gϑi , α
ϑ
i ) it holds that

V ϑ
i (Ḡϑi , ᾱ

ϑ
i , Ḡ

ϑ
j , ᾱ

ϑ
j ) ≥ V ϑ

i (Gϑi , α
ϑ
i , Ḡ

ϑ
j , ᾱ

ϑ
j ),

for j 6= i. A subgame perfect equilibrium is a pair of extended pure strategies
(
(Ḡ1, ᾱ1), (Ḡ2, ᾱ2)

)
, such

that for each ϑ ∈ T the pair
(
(Ḡϑ1 , ᾱ

ϑ
1 ), (Ḡϑ2 , ᾱ

ϑ
2 )
)

is an equilibrium in the subgame Γϑ.

There are several types of equilibria of interest in this model. Fix ϑ ∈ T . For firm i we denote the

optimal time of investment, assuming that the other firm cannot preempt, in the subgame Γϑ by τϑL,i, i.e.

τϑL,i = inf{t ≥ ϑ|Xt ≥ xLi }.

We also define the preemption region as the part of the state space where both firms prefer to be the leader

rather than the follower, i.e.

P = {x ∈ R+|(L1(x)− F1(x)) ∧ (L2(x)− F2(x)) > 0}.

The first hitting time of P in the subgame Γϑ is denoted by τϑP .

We distinguish between two different equilibrium concepts. Lemma (3) establishes existence of a pre-

emptive equilibrium.

Lemma 3. (Riedel and Steg (2014)) Suppose ϑ ∈ T satisfies ϑ = τϑP P− a.s. Then
(
(Gϑ1 , α

ϑ
1 ), (Gϑ2 , α

ϑ
2 )
)

given by

αϑi (t) =


1 if t = τ tP , Ljt = F jt , and (Lit > F it or F jt = M j

t )

1L1
t>F

1
t
1L2

t>F
2
t

Ljt−F
j
t

Ljt−M
j
t

otherwise,

for any t ∈ [ϑ,∞) and Gϑi = 1t≥ϑ, i = 1, 2, j ∈ {1, 2} i, are an equilibrium in the subgame at ϑ.

In this kind of equilibrium both firms try to preempt each other. Investment takes place sooner than it

optimally would, i.e. the time one firm would invest without the fear of being preempted. The resulting

equilibrium in the latter case is called sequential equilibrium. For certain underlying parameters, the pre-

emption time τϑP is greater than the optimal investment time τϑL,i of some firm i. A sequential equilibrium is

then given by the next lemma.

Lemma 4. Suppose ϑ = τϑL,i < τϑP , P-a.s. for one i ∈ {1, 2}. Then
(
(Gϑ1 , α

ϑ
1 ), (Gϑ2 , α

ϑ
2 )
)

given by

αϑi (ϑ) = 1, Gϑi (t) = 0 for all t < ϑ, Gϑj (t) = 0 for all t ≤ ϑ

is an equilibrium in the subgame at ϑ.
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Proof. The stopping time τϑL,i is determined in Proposition (1) as the stopping time that maximizes the

leader payoff. Hence, without the threat of being preempted by its opponent, i.e. τϑL,i < τϑP P-a.s., it is not

optimal to deviate for firm i. Firm j does not want to stop before τϑL,i as its payoff of becoming the leader is

strictly smaller than becoming the follower up to τϑP .

Now, we are finally able to formulate a subgame perfect equilibrium for our game.

Theorem 2. There exists a subgame perfect equilibrium ((G1, α1), (G2, α2)), where for each ϑ ∈ T , αϑi

and Gϑ1 given by

(i) Lemma (3) if either ϑ ≥ τϑP P-a.s. or τϑP ≤ τϑL,i P-a.s.

(ii) Lemma (4) otherwise (i.e. ϑ < τϑP P-a.s. and τϑP > τϑL,i P-a.s.).

Proof. Optimality for case (ii) follows along the same lines as in the proof of Lemma (4).

If ϑ ≥ τϑP P− a.s., then optimality for case (i) follows directly from Lemma (3). What remains to prove

is that, in case ϑ < τϑP P− a.s., neither of the firms wants to invest sooner than τϑP .

We start with firm 2. Suppose that firm 1 plays the preemption equilibrium strategy. Then if firm 2 plays

the preemption strategy, its payoff is V2(x) = Ex[e−rτPL2(xP )], for any x < xP . This is the case, because,

either the other firm is indifferent between the leader and follower role at xP , in which case firm 2 becomes

the leader, or firm 2 is indifferent in which case F2(xP ) = L2(xP ).

Note that we have V2(x) = Ex[e−rτPL2(xP )] =
(
x
xP

)β1(µ)
L2(xP ) (cf. Dixit and Pindyck (1994,

Chapter 9, Appendix A)). V2 is a strictly increasing function, with V2(xP ) = L2(xP ) and V2(0) = 0 >

L2(0), so that V2(x) > L2(x) for any x < xP .

The only deviations τ̂ that could potentially give a higher payoff have τ̂ < τP , P-a.s. Consider the first

hitting time τ̂ of some x̂ < xP . Let V̂2 denote the payoff to firm 2 of this strategy (while the other firm plays

its preemption strategy). For x̂ ≤ x < xP , it holds that V̂2(x) = L2(x) < V2(x).

For x < x̂, note that V̂2(x) =
(
x
x̂

)β1(µ)
L2(x̂) = L2(x̂)

x̂β1(µ)x
β1(µ). Consider the mapping x 7→ L2(x)

xβ1(µ) . This

function attains its maximum at xL2 > xP . Therefore, its derivative is positive on (0, xP ), implying that

V2(x) > V̂2(x). Any stopping time τ can be written as a mixture of first hitting times. So, no stopping time

τ̂ with τ̂ < τP , P-a.s. yields a higher payoff than τP .

For firm 1, the argument is similar after realizing that V1(x) = L1(xP )

x
β1(µ)

P

xβ1(µ) and V̂1(x) = L1(x̂)

x̂β1(µ)x
β1(µ).

This holds because xP < xL1 < x∗, so that µ is the trend under the worst–case measure for every x ∈ (0, xP ].
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Figure 3: Thresholds for varying κ, with D10 = 1.8, D11 = 1, D01 = 0, D00 = 0, r = 0.1, σ = 0.1,

µ = 0.04, I = 100 and η = 1. The black line indicates the threshold for first investment in equilibrium.

5 Comparative Statics

In this section, we analyze the sensitivity of equilibria with respect to a change of the degree of ambiguity,

κ; the volatility, σ; and the cost difference, η, respectively.

5.1 Comparative Statics With Respect to κ

Nishimura and Ozaki (2007) argued that in a monopolistic model where the firm faces κ–ignorance, an

increase in κ postpones investment and decreases the profit.

In our duopoly framework, we observe that both the leader and the follower value function of the am-

biguous firm decrease with an increase of κ.

For equilibrium outcomes it is important to investigate how investment times (or thresholds) vary with a

change of κ. We find that the follower investment threshold of the ambiguous firm rises if κ increases, as in

Nishimura and Ozaki (2007). Hence, the non–ambiguous firm’s payoff increases as it enjoys the benefits of

being the only one who has invested for a longer time. Further, we easily see that xL1 increases with κ.

To see what happens to the preemption time τ1
P := inf{t ≥ 0|L1(xt) ≥ F1(xt)}, we need to consider

L1 − F1. Both functions L1 and F1 decline by a decrease of κ. However, due to the complexity of the

ambiguous firm’s leader value function, it is not possible to come up with an analytic result about which

function decreases more. For this reason, we consider some numerical examples which suggest that the
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Figure 4: Thresholds for varying σ, with D10 = 1.8, D11 = 1, D01 = 0, D00 = 0, r = 0.1, κ = 0.5,

µ = 0.04. I = 100 and η = 1. The black line indicates the threshold for first investment in equilibrium.

leader function is more affected by a change of κ than the follower function.

Figure 3 depicts the change of the leader thresholds as well as the preemption thresholds of both firms

with respect to κ. Starting with completely symmetric firms (η = 1 and κ = 0), Figure 3 shows that both

the preemption threshold and the leader threshold of firm 1 increase with κ. This indicates that L1 decreases

more in κ than F1. This observation makes sense; if it were the other way around, firm 1 could benefit from

an increase of κ. Indeed, if firm 1’s preemption threshold would decrease more than firm 2’s, firm 1 might

benefit by receiving the leader role for ever bigger κ.

Note that there is a qualitative change of equilibrium around κ ≈ .48. For smaller values of κ there is a

preemption equilibrium, where firm 2 moves first at the preemption threshold of firm 1. For larger values

of κ, firm 1’s preemption threshold is so high that firm 2 can invest at its leader threshold, i.e. there is a

sequential equilibrium.

5.2 Comparative Statics With Respect to σ

Comparative statics with respect to the volatility σ are even more complex, because a change in σ affects

not only the volatility but also the interval of possible trends, since [µ, µ] = [µ − σκ, µ + σκ]. Note that

a change in σ and a change in κ of the same magnitude have exactly the same impact on the interval of

possible trends.
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µ = 0.04, I = 100 and κ = 0.5. The black line indicates the threshold for first investment in equilibrium.

From the standard literature on real options it is well known that an increase of σ increases the investment

threshold of a monopolistic firm in a purely risky environment (cf. Nishimura and Ozaki (2007)).

Figure 4 shows what happens to the investment thresholds in our framework. All thresholds for both firms

increase with the volatility. Due to the effect on the interval of possible trends, however, firm 1’s thresholds

rise much stronger.

There is a qualitative change of equilibrium around σ ≈ .091. For smaller values of σ there is a pre-

emption equilibrium, where firm 2 moves first at the preemption threshold of firm 1. For larger values of σ,

firm 1’s preemption threshold is so high that firm 2 can invest at its leader threshold, i.e. there is a sequential

equilibrium.

5.3 Comparative Statics With Respect to η

In a purely risky framework, the firm that has the lower investment cost always becomes the leader (cf.

Pawlina and Kort (2006)). This result, however, might change if ambiguity is introduced. Figure 5 shows

that even if the the non–ambiguous firm has a higher cost of investment, it might become the leader anyway.

Ambiguity, therefore, might outbalance the cost advantage of firm 1.

From Figure 5 we can observe that the preemption threshold as well as the leader threshold of firm 2

increase with η. To the far right, there does not even exist a preemption threshold anymore, as the cost dis-
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advantage is so big that firm 2’s leader function always lies below its follower function on [0, xF1 ]. Firm 1’s

leader threshold is unaffected by a change of η. Its preemption threshold, however, is (slightly) decreasing.

The reason for this fact might not be obvious in case condition (12) is not satisfied. First note that firm

1’s follower function is not affected by a change of η. Further note that the preemption point can only lie

in the region where L1 is increasing. This means that, if the worst–case changes at some point, then the

preemption point is smaller than x∗. Thus, the function needed to be considered is

D10xt
r − µ

− 1

β1(µ)

D10x
∗

r − µ

(xt
x∗

)β1(µ)
− I.

This function is also not directly affected by a change of η. Yet, due to the fact that xF2 increases with η, L1

increases in the region [x∗, xF2 ]. Since the smooth pasting condition has to be fulfilled, this implies that x∗

moves to the left. This, however, means that L1 is also increasing in the region before x∗ is reached. This

implies that the preemption threshold of firm 1 is decreasing.

There are several points where the qualitative nature of equilibrium changes. For small values of η, firm 2

is the first firm to invest and it does so at its leader threshold; this represents a sequential equilibrium. In

this region, no preemption thresholds exist, because firm 2’s advantage is so great that firm 1 would never

wish to preempt. For values of η approximately in the interval [.95, 1.35], firm 2 invests first at firm 1’s

preemption threshold in a preemptive equilibrium. For even larger values of η, approximately in the interval

[1.35, 1.5], the cost disadvantage becomes large enough relative to firm 1’s ambiguity that the role of first

mover switches: firm 1 invests first at firm 2’s preemption threshold in a preemptive equilibrium. Finally,

for η > 1.5, the cost disadvantage is so large that firm 2’s preemption threshold lies above firm 1’s leader

threshold, so that firm 1 invests first at its leader threshold in a sequential equilibrium.

6 The Case where Both Firms are Ambiguous

We want to emphasize that our analysis is independent of the assumption that only one of the firms is

ambiguous. Throughout the paper, this assumption is made in order to elaborate the difference that an

introduction of ambiguity makes in contrast to a purely risky world.

We may very well allow for both firms to be ambiguous about the trend of the underlying dynamics. We

even do not need to require that the firms have the same degree of ambiguity (same κ).

In fact, for the analysis of the worst–case prior, it is only required that the degree of ambiguity and the cost

of investment of each player are common knowledge (such that each firm is able to compute the follower

threshold of its competitor). The determination of the follower and leader value functions of a second
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µ = 0.04, η = 1, I = 100 and κ2 = 0.3. The black line indicates the threshold for first investment in

equilibrium.

ambiguous firm is completely analogous to the analysis in Section 3.2. Recall that ambiguity is assumed

not to be about strategies but about payoffs exclusively. This implies, knowing the new value functions, the

equilibrium analysis follows along the same lines as presented in Section 4.

In Figure 6, we draw firms’ thresholds for the case that both players are κ–ignorant, possibly to a different

degree. The firms are assumed to be symmetric in terms of the investment costs. The degree of ambiguity

for firm 2 is κ2 = 0.3. We vary the degree of ambiguity for the first firm and see that both the preemption

threshold and the leader threshold of firm 1 are strictly increasing, whereas the preemption threshold as well

as the leader threshold of firm 2 are slightly decreasing.

We now only get preemptive equilibria: firm 1 preempts firm 2 for small values of κ1, whereas firm 2

preempts firm 1 for larger values of κ1. Note that the domain of κ1 is bounded by the condition that r > µ,

i.e. that κ1 < (r − µ)/σ. This means that Figure 6 can not be extended beyond κ1 ≈ .6. So, while one

might expect that for κ1 > .6 firm 2 invests first in a sequential equilibrium, this can not be verified.
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Appendix

A Proof of Lemma (2)

In this section, we show that if the worst–case for the leader value is not always given by the worst possible

trend, there exists a unique value x∗ at which the worst–case changes from µ to µ.

Proof. The critical value x∗ is found by applying the smooth pasting condition L̂1(µ, x∗) = 0. The first

derivative of L̂1 is given by

L̂′1(µ, x) =
D10

r − µ
+
β1(µ)(x∗)β2(µ)xβ1(µ)−1 − β2(µ)(x∗)β1(µ)xβ2(µ)−1

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
β2(µ)(xF2 )β1(µ)xβ2(µ)−1 − β1(µ)(xF2 )β2(µ)xβ1(µ)−1

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

[(
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

]
x∗.

In order to prove the existence of x∗, we will show that if x∗ ↑ xF2 , L̂′1(µ, x∗) becomes negative, and if

x∗ ↓ 0, L̂′1(µ, x∗) becomes positive.

We have

L̂′1(µ, x∗) =
D10

r − µ
+

(β1(µ)− β2(µ))(x∗)β1(µ)+β2(µ)−1

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
β2(µ)(xF2 )β1(µ)(x∗)β2(µ) − β1(µ)(xF2 )β2(µ)(x∗)β1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

[(
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

]
.

Clearly, limx∗↓xF2
L̂′1(µ, x∗) has the same sign as the following expression.

D10

r − µ

(
(xF2 )β2(µ)(xF2 )β1(µ) − (xF2 )β1(µ)(xF2 )β2(µ)

)
(A.1)

+ (β1(µ)− β2(µ)) (xF2 )β1(µ)+β2(µ)

[
D11

r − µ
− D10

r − µ
−
(

1− 1

β1(µ)

)
D10

r − µ
+

D10

r − µ

]
.

Using the fact that 1
β1(µ) <

D10−D11
D10

yields that (A.1) is smaller than

(β1(µ)− β2(µ)) (xF2 )β1(µ)+β2(µ) 1

r − µ
(D11 −D10 +D10 −D11) = 0. (A.2)

Considering the case x∗ ↓ 0, one can easily see that limx∗↓0 L̂
′
1(µ, x∗) has the same sign as

lim
x∗↓0

{
D10

r − µ

(
(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

)
+ (β1(µ)− β2(µ)) (x∗)β1(µ)+β2(µ)−1

(
D11

r − µ
− D10

r − µ

)
xF2
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+ β2(µ)(xF2 )β1(µ)(x∗)β2(µ) − β1(µ)(xF2 )β2(µ)(x∗)β1(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)}

= lim
x∗↓0

{
(x∗)β2(µ)

(
D10

r − µ

(
(xF2 )β2(µ) − (x∗)β1(µ)−β2(µ)

)
+ (β1(µ)− β2(µ))(x∗)β1(µ)−1

(
D11

r − µ
− D10

r − µ

)
xF2

+
(
β2(µ)(xF2 )β1(µ) − β1(µ)(x∗)β1(µ)−β2(µ)(xF2 )β2(µ)

)((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

))}

= lim
x∗↓0

(x∗)β2(µ)︸ ︷︷ ︸
→+∞

{
D10

r − µ︸ ︷︷ ︸
>0

(xF2 )β2(µ) − (x∗)β1(µ)−β2(µ)︸ ︷︷ ︸
→0



+ (β1(µ)− β2(µ))(x∗)β1(µ)−1︸ ︷︷ ︸
→0

(
D11

r − µ
− D10

r − µ

)
xF2

+

β2(µ)(xF2 )β1(µ)︸ ︷︷ ︸
<0

−β1(µ)(x∗)β1(µ)−β2(µ)︸ ︷︷ ︸
→0

((1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
︸ ︷︷ ︸

<0

}
.

Therefore, we get L̂′1(µ, x∗) > 0 for x∗ close to 0. Due to continuity of L′2 on [0, xF2 ], we can find in that

region a solution to L̂′1(µ, x∗) = 0.

The uniqueness of x∗ is automatically given by the uniqueness of the solution to PDE (16).

B Concavity of L1

In this section we prove that the leader function of the ambiguous firm is concave on [0, xF2 ] . In case the

worst–case prior is always induced by the lowest possible trend, this statement is trivial. The next proof

shows that concavity is not lost even if the worst–case changes at some point.

Proof. Suppose condition (12) is not satisfied (i.e. µ is not always the worst–case). The concavity of L1(x)

for x < x∗ is trivial. We therefore consider the second derivative of L1(x) in the interval [x∗, xF2 ).

L̂′′1(µ, x) =
β1(µ)(β1(µ)− 1)(x∗)β2(µ)xβ1(µ)−2 − β2(µ)(β2(µ)− 1)(x∗)β1(µ)xβ2(µ)−2

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

×
(
D11

r − µ
− D10

r − µ

)
xF2

+
β2(µ)(β2(µ)− 1)(xF2 )β1(µ)xβ2(µ)−2 − β1(µ)(β1(µ)− 1)(xF2 )β2(µ)xβ1(µ)−2

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)
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×
[(

1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

]
x∗.

Now, we have

β1(µ)(β1(µ)− 1)xβ1(µ)−2

[(
D11

r − µ
− D10

r − µ

)
xF2 (x∗)β2(µ)

−
((

1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗(xF2 )β2(µ)

]

< β1(µ)(β1(µ)− 1)xβ1(µ)−2x∗(xF2 )β2(µ)

[(
D11

r − µ
− D10

r − µ

)
−
((

1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)]

= β1(µ)(β1(µ)− 1)xβ1(µ)−2x∗(xF2 )β2(µ)

[
D11

r − µ
− D10

r − µ
+

1

β1(µ)

D10

r − µ

]

< β1(µ)(β1(µ)− 1)xβ1(µ)−2x∗(xF2 )β2(µ) 1

r − µ
[D11 −D10 +D10 −D11]

= 0,

where we used the fact that x∗(xF2 )β2(µ) < (x∗)β2(µ)(xF2 ) (because x∗ < xF2 and β2(µ) < 0) and
D10−D11
D10

> 1
β1(µ) .

In a similar, way we can show that

β2(µ)(β2(µ)− 1)xβ2(µ)−2

[
−
(
D11

r − µ
− D10

r − µ

)
xF2 (x∗)β1(µ)

+

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗(xF2 )β1(µ)

]
< 0,

which proves the concavity of L1.

C Proof of Proposition (1)

The proof follows along similar lines to the proof of Theorem (1). We use the same procedure, but now we

consider the value function in the continuation region, i.e. before any investment has taken place. Applying

the BSDE approach with different value matching and smooth pasting conditions eventually yields the

desired stopping time.

Proof.
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Denote

Yt = inf
Q∈PΘ

EQ
[ ∫ τ tL,1

t
e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft].

Using the time consistency property of a strongly rectangular set of density generators yields

Yt = inf
Q∈PΘ

EQ
[ ∫ τ tL,1

t
e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]

= inf
Q∈PΘ

EQ
[

inf
Q′∈PΘ

EQ
′

[∫ τ tL,1

t
e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds

+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Fτ tL,1

]∣∣∣Ft]

= inf
Q∈PΘ

EQ
[∫ τ tL,1

t
e−r(s−t)D00Xsds+ e−r(τ

t
L,1−t) inf

Q′∈PΘ
EQ
′

[∫ τF2

τ tL,1

e−r(s−τ
t
L,1)D10Xsds

+

∫ ∞
τF2

e−r(s−τ
t
L,1)D11Xsds

∣∣∣Fτ tL,1
]∣∣∣Ft]

= inf
Q∈PΘ

EQ
[∫ τ tL,1

t
e−r(s−t)D00Xsds+ L1(xτ tL,1)

∣∣∣Ft] .
Following Chen and Epstein (2002), Yt solves the BSDE

−dYt = g(Zt)dt− ZtdBt,

for the generator

g(z) = −κ|z| − rYt +XtD00.

The boundary condition is given by

Yτ tL,1 = L(xL1 ),

where L(xL1 ) is given by Theorem (1) and xL1 = xτ tL,1 .

Denote the present value of the leader payoff by Λ, i.e.

Λ(xt) = Yt.

The non–linear Feynman–Kac formula implies that Λ solves the non–linear PDE

LXΛ(x) + g(σxΛ′(x)) = 0.
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Hence, Λ solves

1

2
σ2x2Λ′′(x) + µxΛ′(x)− κσx

∣∣Λ′(x)
∣∣− rΛ(x) +D00x = 0. (C.1)

In the continuation region the leader function has to be increasing, hence Λ′ > 0. This implies that µ is the

worst–case in the continuation region.

Therefore, equation (C.1) becomes

1

2
σ2x2Λ′′(x) + (µ− κσ)xΛ′(x)− rΛ(x) +D00x =

1

2
σ2x2Λ′′(x) + µxΛ′(x)− rΛ(x) +D00x = 0.

The general increasing solution to this PDE is

Λ(x) =
D00x

r − µ
+A2x

β1(µ).

We have to distinguish two cases here. Either the condition given in Theorem (1) holds which means that

the boundary condition takes the form (13) or the boundary condition becomes (14).

We will show that for both cases, the optimal threshold to invest becomes

xL1 =
β1(µ)

β1(µ)− 1

I(r − µ)

D10 −D00
. (C.2)

If condition (12) is satisfied, the boundary condition is given by

L1(xL1 ) =
D10x

L
1

r − µ
+

(
xL1
xF2

)β1(µ)
D11 −D10

r − µ
xF2 − I.

Otherwise, the boundary condition is given by

L1(xL1 ) =
D10x

L
1

r − µ
− 1

β1(µ)

D10x
∗

r − µ

(
xL1
x∗

)β1(µ)

− I.

In addition to the value matching condition, we apply a smooth pasting condition. Here, smooth pasting

implies that the derivatives of the value function Λ and L coincide at xτ tL,1 , i.e.

Λ′(xτ tL,1) = L′1(xτ tL,1). (C.3)

This condition ensures differentiability at the investment threshold.

Applying condition (C.3) gives

D00

r − µ
+ β1(µ)A2x

L
1
β1(µ)−1

=
D10

r − µ
+ β1(µ)A1x

L
1
β1(µ)−1

,

where

A1 =

(
1

xF2

)β1(µ)−1 D11 −D10

r − µ
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in the first case and

A1 = − 1

β1(µ)

D10x
∗

r − µ

(
1

x∗

)β1(µ)

in the second.

Hence,

A2 =
D10 −D00

r − µ
1

β1(µ)

1

xL1
β1(µ)−1

+A1.

Applying the value matching condition finally yields

D00x
L
1

r − µ
+

(
D10 −D00

r − µ
1

β1(µ)

1

xL1
β1(µ)−1

+A1

)
xL1

β1(µ)
=
D10x

L
1

r − µ
+A1x

L
1
β1(µ) − I

⇐⇒ D10 −D00

r − µ
xL1 −

D10 −D00

r − µ
1

β1(µ)
xL1 = I

⇐⇒
β1(µ)− 1

β1(µ)

D10 −D00

r − µ
xL1 = I,

and therefore, for both cases, it holds that

xL1 =
β1(µ)

β1(µ)− 1

I(r − µ)

D10 −D00
.

References

Azevedo, A. and Paxson, D. (2014). Developing real option game models. European Journal of Operational

Research, 237(3):909–920.

Boyarchenko, S. and Levendorski, S. (2014). Preemption games under levy uncertainty. Games and Eco-

nomic Behavior, 88(0):354–380.

Chen, Z. and Epstein, L. (2002). Ambiguity, risk, and asset returns in continuous time. Econometrica,

70(4):1403–1443.

Cheng, X. and Riedel, F. (2013). Optimal stopping under ambiguity in continuous time. Mathematics and

Financial Economics, 7(1):29–68.

de Villemeur, E. B., Ruble, R., and Versaevel, B. (2014). Investment timing and vertical relationships.

International Journal of Industrial Organization, 33:110 – 123.

Dixit, A. K. and Pindyck, R. S. (1994). Investment under uncertainty. Princeton Univ. Press, Princeton, NJ.

33



Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75:643–

669.

Fudenberg, D. and Tirole, J. (1985). Preemption and rent equilization in the adoption of new technology.

Review of Economic Studies, 52(3):383–401.

Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of Mathe-

matical Economics, 18(2):141–153.

Huisman, K. J. and Kort, P. M. (2015). Strategic capacity investment under uncertainty. The RAND Journal

of Economics, 46(2):376–408.

Knight, F. H. (1921). Risk, Uncertainty and Profit. Houghton Mifflin Co, Boston, MA.

Nishimura, K. G. and Ozaki, H. (2007). Irreversible investment and knightian uncertainty. Journal of

Economic Theory, 136(1):668–694.

Pawlina, G. and Kort, P. M. (2006). Real options in an asymmetric duopoly: Who benefits from your

competitive disadvantage? Journal of Economics & Management Strategy, 15(1):1–35.

Peng, S. (1991). Probabilistic interpretation for systems of quasilinear parabolic partial differential equa-

tions. Stochastics and Stochastic Reports, 37(1-2):61–74.

Peng, S. (1997). Backward sde and related g-expectation. Backward Stochastic Differential Equation,

Pitman res. Notes Math. Ser., 364, Longman, Harlow, 141–159.

Peng, S. (2013). Nonlinear expectation theory and stochastic calculus under knightian uncertainty. In Real

Options, Ambiguity, Risk and Insurance, volume 5 of Studies in Probability, Optimization and Statistics.

A. Bensoussan, S. Peng, and J. Sung, IOS Press, Amsterdam.

Riedel, F. and Steg, J.-H. (2014). Subgame-perfect equilibria in stochastic timing games. Working Paper

524, Center for Mathematical Economics, Bielefeld University, (524).

Thijssen, J. J. (2010). Preemption in a real option game with a first mover advantage and player-specific

uncertainty. Journal of Economic Theory, 145(6):2448–2462.

Thijssen, J. J., Huisman, K., and Kort, P. (2012). Symmetric equilibrium strategies in game theoretic real

option models. Journal of Mathematical Economics, 48(4):219–225.

34



Weeds, H. (2002). Strategic Delay in a Real Options Model of R&D Competition. Review of Economic

Studies, 69(3):729–47.

35


	Deckbl533_neu
	text533_neu

