Automatische Sacherschließung elektronischer Dokumente

Mathias Lösch

Universitätsbibliothek Bielefeld

Mathias.Loesch@uni-bielefeld.de

100. Deutscher Bibliothekartag, 8. Juni 2011

Hintergrund

- DFG-Projekt »Automatische Anreicherung von OAI-Metadaten«
- Förderung Oktober 2009–September 2011
- Partner:
 - Universitätsbibliothek Bielefeld
 - Abteilung für geisteswissenschaftliche Fachinformatik, Unversität Frankfurt/Main
 - Institut für automatische Sprachverarbeitung, Universität Leipzig

Agenda

- Motivation
- 2 Automatische Klassifikation
- Use Cases
- Zusammenfassung

- Motivation
- 2 Automatische Klassifikation
- **3** Use Cases
- Zusammenfassung

Motivation

- Wissenschaftliche Suchmaschine
- Zugriff auf > 28 Mio Dokumente
- Aggregation der Inhalte von > 1.800
 Dokumentenservern

Motivation

- wenig Sacherschließungsinformationen in den Metadaten
- sehr heterogene Erschließungsformen:
 - Fach- und Universalklassifikationen
 - Kontrollierte Vokabulare
 - Freie Schlagwörter
 - ...

Motivation BASE DDC-Browsing

Erschließung nach DDC:

- ~400.000 Dokumente
- $\bullet \approx$ 1,4% der Datenbasis

- **1** Motivation
- 2 Automatische Klassifikation
- **3** Use Cases
- Zusammenfassung

Automatische Klassifikation

Dewey Decimal Classification

Vorteile der DDC

- universal
- international starke Verbreitung (~200.000 Bibliotheken weltweit)
- Numerische Notation/Dezimalstruktur: Sprachunabhängige Kodierung der Klassen, auf-/absteigende Traversierung durch Trunkierung/Expansion der Nummern einfach möglich
- Durch Empfehlung von DINI in der deutschen Repository-Landschaft meist-verwendete Klassifikation

Automatischer Klassifikator

Maschinelles Lernen (Sebastiani, 2002)

- Automatische Generierung eines Klassifikators aus Beispieldokumenten
- Lernen von Klassen durch extensionale Beschreibung (= Aufzählung von Beispielen)

Automatischer Klassifikator

Lernphase

Applikationsphase

Trainingsdokumente (Lösch et al., 2011)

- Konstruktion eines DDC-kategorisierten Textkorpus aus der BASE-Datenbasis
- Metadaten + Volltexte
- Deutsch und Englisch
- semi-automatische Vergabe von DDC-Nummern über Konkordanzen
- ~100.000 Dokumente

Probleme bei der Korpuserstellung

- Schiefe Verteilung der Dokumente über die DDC-Klassen
- Wenig Beispieldokumente in den Geisteswissenschaften
- Dokumentakquise ab der dritten DDC-Ebene (1.000 Klassen) extrem aufwändig mangels guter Sacherschließungsinformationen

Aktuelle Ergebnisse

- Klassifikationsgenauigkeit auf den ersten beiden DDC-Ebenen bis zu 90% (Waltinger et al., 2011)
- testweise Anreicherung von bisher nicht-klassifizierten Dokumenten mit DDC-Nummern in BASE (derzeit ca. 50.000)

- Motivation
- 2 Automatische Klassifikation
- **3** Use Cases
- Zusammenfassung

- Trend zu disziplinspezifischen Dokumentenservern
 - arXiv.org (Physik)
 - PubMed (Life sciences)
 - EconStor (Wirtschaft)
 - SSOAR (Sozialwissenschaft)

. . .

 Interesse an automatischer Extrahierung fachlicher Subsets aus der BASE-Datenbasis

Belieferung von Fachrepositorien

Verbesserung der Sacherschließung in institutionellen Repositorien

Vorschlagsystem für die Metadatenerfassung

Vorschlagsystem für die Metadatenerfassung

BASE Browsing

- Motivation
- 2 Automatische Klassifikation
- **3** Use Cases
- Zusammenfassung

(Vorläufige) Erkenntnisse

- Schwierigkeiten
 - Akquise von Trainingsdaten
 - Ab DDC Ebene 3: Abdeckung problematisch
- Erfolge
 - Grobklassifikation (1. und 2. Ebene) gut automatisierbar
 - automatische Vergabe von DNB-Sachgruppen (DINI-Empfehlung) auf jeden Fall erreichbar
 - semi-automatische Verfahren (Vorschlagssysteme) umsetzbar
- Ausblick
 - Bereitstellung einer Klassifikationsschnittstelle für Vorschlagssysteme
 - Verbesserung des Klassifikators: Erprobung anderer Algorithmen, interaktives Lernen durch intellektuelle Korrektur
 - Erforschung neuer Zielklassifikationen

Vielen Dank für die Aufmerksamkeit!

Mathias.Loesch@uni-bielefeld.de

Literatur

- Lösch, M., U. Waltinger, W. Horstmann, and A. Mehler (2011). Building a DDC-annotated corpus from OAI metadata. *Journal of Digital Information 12*(2).
- Mehler, A. and U. Waltinger (2009). Enhancing document modeling by means of open topic models: Crossing the frontier of classification schemes in digital libraries by example of the DDC. *Library Hi Tech* 27(4), 520–539.
- Sebastiani, F. (2002). Machine learning in automated text categorization. *ACM Computing Surveys 34*(1), 1–47.
- Waltinger, U., A. Mehler, M. Lösch, and W. Horstmann (2011). Hierarchical classification of OAI metadata using the DDC taxonomy. In R. Bernardi, S. Chambers, B. Gottfried, F. Segond, and I. Zaihrayeu (Eds.), *Advanced Language Technologies for Digital Libraries (ALT4DL)*, LNCS. Berlin: Springer. To appear.

