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Abstract

Time series prediction constitutes a classic topic in machine learning
with wide-ranging applications, but mostly restricted to the domain of
vectorial sequence entries. In recent years, time series of structured data
(such as sequences, trees or graph structures) have become more and more
important, for example in social network analysis or intelligent tutoring
systems. In this contribution, we propose an extension of time series mod-
els to strucured data based on Gaussian processes and structure kernels.
We also provide speedup techniques for predictions in linear time, and we
evaluate our approach on real data from the domain of intelligent tutoring
systems.

1 Introduction
Time series prediction constitutes a classic topic in machine learning with wide-
ranging and successful applications in physics, sociology and medicine [18]. In
recent years, time series of structured data (sequences, trees or graphs) have
become more and more important, describing for example the development of
social networks [17] or learner solutions in intelligent tutoring systems over time
[8]. Classic time series prediction models such as ARIMA, NARX, Kalman
filters, recurrent networks or reservoir models focus on vectorial data represen-
tations, and they are not equipped to handle time series of structured data
[18]. In this contribution, we propose an extension of Gaussian process (GP)
regression, which is capable of predicting time series of structured data.

GP regression has been successfully applied on time series of vectorial data
before [16, 19], but not yet for structured data. To extend GP regression to
structured data, we rely on two observations: First, GPs are based on kernel
values for the given data as input. Hence we can build upon the vast literature of
distance measures and kernels for structured data, such as alignment distances,
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tree and graph kernels, to access structured data instead of vectors as time series
entries [13, 1, 2]. Second, as we will show in this contribution, a special choice
of the prior allows us to express the predictions provided by GPs as an affine
combination of given data. Hence we can rely on established embeddings of the
space of structured objects, which is a discrete data space in itself, in a smooth
kernel or pseudo-Euclidean space, and we can access such outputs of a GP for
structured data e.g. via efficient distance computations [6, 7]. An additional
challenge is posed by the high computational complexity of GPs as regards the
number of data points, and the structure kernel computation. For speed-up, we
apply state-of-the-art approximation methods for the Gaussian Processes [3] as
well as the dissimilarity and kernel data [5].

Now we will first extend time series prediction to structured data via the
interface of dissimilarity measures and kernels. Second, we speed up the pre-
diction to a linear time technique by applying state-of-the-art approximation
methods. Finally, we evaluate our approach on two datasets from the domain
of intelligent tutoring systems.

2 Gaussian processes regression for time series
prediction

A Gaussian process (GP) is uniquely characterized by multivariate random vari-
ables which follow a Gaussian distribution, where the covariance matrix is given
by a kernel matrix. Given examples {(xi, yi)}i=1,...,N , where xi is element of
some space X and yi is a real value or vector, and a new point x∗ with (unknown)
y∗ ∈ R. The conditional density function p(y1, . . . , yN , y∗|x1, . . . , xN , x∗) is the
Gaussian

N
(
θ1, . . . , θN , θ

∗,

(
K + σ̃2IN ~kT

~k k(x∗, x∗)

))
(1)

where θi is the prior mean for yi, k a kernel on X , K is the matrix
(
k(xi, xi′)

)
,

~k :=
(
k(x∗, x1), . . . , k(x∗, xN )

)
, IN is the N -dimensional identity matrix and

σ̃2 is the variance of the input noise. Set Y = (y1, . . . , yN )
T . Marginalisation

enables the inference of y∗ via its density [15, p. 27]:

p
(
y∗
∣∣∣x∗, x1, . . . , xN , y1, . . . , yN) = N

(
µ, σ2

)
where (2)

µ = θ∗ + ~k · (K + σ̃2 · IN )−1 · (Y −Θ) (3)

σ2 = k(x∗, x∗)− ~k · (K + σ̃2 · IN )−1 · ~kT (4)

To apply GP regression to time series prediction, we reframe time series pre-
diction as follows: Assume that example time series x̄1, . . . , x̄M are given, where
x̄j = (xj1, . . . , x

j
Tj

) with xjt ∈ X . Then the task is to infer the successor xjt+1 from
its history (xj1, . . . , x

j
t ) for all j and t. Following the Markov assumption, all but

the last history entry become irrelevant. This leads to the regression problem
with input-output pairs {(xjt , x

j
t+1)}j=1,...,M

t=1,...,Tj−1, which can be modelled by GP
regression, provided real vectors xjt . For time series models, a natural prior is
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to stay where you are, that is θjt := xjt . This leads to the predictive mean µ =

x∗T + ~k · (K+ σ̃2 ·IN )−1 ·(Y−X) with X = (x11, . . . , x
1
T1−1, . . . , x

M
1 , . . . , x

M
TM−1)

T

and Y = (x12, . . . , x
1
T1
, . . . , xM2 , . . . , x

M
TM

)
T and predictive variance (4).

3 Predicting structured data
Classic GP regression has been phrased for vectorial data. It is straightforward
to extend GPs to structured input data by means of structure kernels k. Time
series prediction for structures, however, deals with structured input and output
pairs. Here we build upon previous results regarding kernel and dissimilarity
spaces. We note that numerous powerful dissimilarity measures and kernels for
structured data exist, for example [13, 1, 2].

Any symmetric dissimilarity measure d or kernel k on X corresponds to a
vectorial embedding φ of the data in a pseudo-Euclidean or Krein space X ′,
such that d(x, x′) =

√
〈φ(x)− φ(x′), φ(x)− φ(x′)〉 and k(x, x′) = 〈φ(x), φ(x′)〉

[14]. The core insight is that time series prediction via GP regression can be
used in this implicit space X ′ with neither having to refer to φ nor X ′ explicitly.
This is obvious for inputs provided a valid kernel is present. For outputs, we
represent the predicted point in X ′ as an affine combination of known points in
X ′, whereby only the coefficients of this affine combination are computed but
not the embedded point nor the underlying structure. This enables us to further
process data by any method which refers to kernels or dissimilarities between
structures only, such as kernel- or dissimilarity-based classification, clustering, or
visualization [6, 7]. For such postprocessing, it is required that the GP prediction
is provided by a linear (for kernels) or affine (for dissimilarities) combination of
data [6], which is fulfilled due to our prior:

Theorem 1. The mean of the GP prediction as defined above is an affine
combination of the points φ(x∗T ), φ(x11), . . . , φ(xMTM

).

Proof. We define ~γ = (γ11 , . . . , γ
1
T1−1, . . . γ

M
1 , . . . , γMTM−1) := ~k · (K + σ̃2 · IN )−1.

The predictive mean is given as µ = φ(x∗T ) + ~γ · (Y −X) which yields

µ = φ(x∗T ) +

M∑
j=1

Tj−1∑
t=1

γjt ·
(
φ(xjt+1)− φ(xjt )

)
(5)

= φ(x∗T ) +

M∑
j=1

−γj1 · φ(xj1) +

( Tj−1∑
t=2

(γjt−1 − γ
j
t ) · φ(xjt )

)
+ γjTj−1 · φ(xjTj

) (6)

φ(x∗T ) is weighted with coefficient 1 and all other coefficients add up to zero.
Thus, an affine combination results.

We denote the affine combination µ = ~α ·Φ with coefficients ~α. Kernel values
between a point x ∈ X and µ can be obtained via

k(x, µ) = 〈φ(x), ~α · Φ〉 = ~α · ~kT (7)
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where ~k =
(
k(x, x1), . . . , k(x, xN )

)
. Dissimilarities are given by

d(x, µ)2 = 〈φ(x)− ~α · Φ, φ(x)− ~α · Φ〉 = ~α · ~dT − 1

2
~α ·D · ~αT (8)

where ~d =
(
d(x, x1)2, . . . , d(x, xN )2

)
and D is the matrix of pairwise squared

distances for all data points [6, pp. 9-10]. Both these equations form the basis
for the application of further dissimilarity-based or kernel-based methods.

4 Fast Gaussian process regression
GP regression involves the inversion of the matrix (K + σ̃2 · IN ), resulting in
O(N3) complexity. A variety of efficient approximation schemes exist [15]. Re-
cently, the robust Bayesian Committee Machine (rBCM) has been introduced
as particularly fast and accurate approximation [3]. The rBCM approach is to
distribute the examples into C disjoint sets, based e.g. on clustering in the input
data space. For each of these sets, a separate GP regression is used, yielding
the predictive distribution N (µc, σ

2
c ). These distributions are combined to the

final predictive distribution N (µrBCM, σ
2
rBCM) with

σ−2rBCM =

C∑
c=1

βc
σ∗2c

+

(
1−

C∑
c=1

βc

)
· 1

σ2
prior

(9)

µrBCM = σ2
rBCM ·

(
C∑

c=1

βc
σ∗2c
· µ∗c +

(
1−

C∑
c=1

βc

)
· 1

σ2
prior

· θ∗
)

(10)

Here, σ2
prior is the variance of the prior for the prediction, which is a new meta-

parameter introduced in the model. The weights βc are supposed to be a mea-
sure for the predictive power of the single GP experts. As suggested by [3], we
use the differential entropy, given as βc = 1

2 ·
(

log(σ2
prior) − log(σ2

c )
)
. Also for

rBCM, the predictive mean is an affine combination, because each GP expert
returns an affine combination and the rBCM combines those predictions in an
affine way.

Provided sufficiently many clusters, the size of one cluster can be regarded
as a constant, such that an overall linear time prediction results. For the initial
clustering, linear time approximations for dissimilarity data can be used [4, 6].
In this contribution, we rely on subsampling of a constant-size subset, which
is clustered by relational neural gas and extended to the whole set afterwards
[6]. Thereby we avoid the quadratic runtime of relational neural gas on the full
dataset.

5 Experiments
We evaluate the predictive performance of our approach on two datasets1, sim-
ulating the behaviour of a student in an intelligent tutoring system. Our mo-

1Both datasets are available online at http://doi.org/10.4119/unibi/2900666 and http:
//doi.org/10.4119/unibi/2900684 respectively.

http://doi.org/10.4119/unibi/2900666
http://doi.org/10.4119/unibi/2900684
http://doi.org/10.4119/unibi/2900684
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tivation is to guide a fictional student towards a correct solution by predicting
a likely extension of her current program based on the development of other
students. We simulate such a development by starting with a real, finished
program, representing it via its abstract syntax tree and iteratively removing
the last semantically important node (class declarations, variable declarations,
loops, etc.) and its children until the program is empty. By reversing the order
of the resulting programs, we obtain the desired simulation.

MiniPalindrome: This dataset consists of 48 Java programs recognizing palin-
dromic inputs created by a Java expert. The programs come in six different
variations described in [9]. Our simulation results in 834 data points.

Sorting: This is a benchmark dataset of 64 Java sorting programs taken from
the web, previously described in [10]. Each program implements one of two
sorting algorithms (BubbleSort or InsertionSort). Here, our simulation results
in 800 data points overall.

Methods: As a dissimilarity measure on computer programs, we applied an
affine sequence alignment with parameters obtained via metric learning, as de-
scribed in [13]. We transformed the dissimilarities to a kernel via a radial basis
function (RBF) and clip eigenvalue correction. To prevent an excessive number
of costly alignment calculations we applied the Nyström technique to approxi-
mate the distance matrix via a subset of 16 time series, considering only every
fourth program [5]. We applied relational neural gas to distribute the dataset
into 4 clusters as preprocessing for the rBCM. The meta-parameters for the
prediction methods were set using a simple data-based heuristic: Let d̄ be the
average dissimilarity in the data set, then we set σ̃ = d̄, σprior = 2 · d̄ and the
RBF bandwidth to 0.1 · d̄ for KR and to 0.5 · d̄ for GP and rBCM.

We evaluated the root mean square error (RMSE) for unseen data points in
a crossvalidation (6 folds for the first dataset and 8 for the second). To obtain
the squared distances between the correct next step and the predictive mean we
used Equation 8. We compared the prediction RMSE of the rBCM and GP with
the trivial prediction of just staying in the same place (x∗T+1 = x∗T , baseline)
and with a simple Nadaraya-Watson estimator [11] (KR), which is defined as:

x∗T+1 =

∑M
j=1

∑Tj−1
t=1 k(x∗T , x

j
t ) · x

j
t+1∑M

j=1

∑Tj−1
t=1 k(x∗T , x

j
t )

(11)

We also evaluated the runtime for all prediction methods.

Results: The results are shown in Table 1. In both experiments, the rBCM
outperforms the baseline measures notably and does not perform worse than a
full Gaussian process. As expected, the rBCM is also much faster than full GP
regression (including the time needed for clustering).
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MiniPalindrome Sorting
method RMSE std. dev. runtime RMSE std. dev. runtime

rBCM 0.089 0.0129 0.12s 0.069 0.0058 0.11s
GP 0.090 0.0129 3.08s 0.069 0.0063 2.36s
KR 0.300 0.0165 0.14s 0.299 0.0062 0.14s
baseline 0.287 0.0452 0.00s 0.337 0.0243 0.00s

Table 1: The resulting prediction error (RMSE) and its standard deviation (std.
dev.) for all three experimental datasets. For the first experiment the overall
runtime in seconds is provided as well.

6 Conclusion
Gaussian processes seem promising to predict time series of structured data,
and relational data in general. By returning an affine combination, they enable
further processing, such as classification and clustering. Using state-of-the-art
approximation methods it is possible to obtain good-quality predictions in linear
time. However, there is work that remains to be done: First, usual hyperparam-
eter optimization techniques depend on a vectorial data representation [3] and
one has to adapt them for a relational case. Second, an affine combination might
not be a sufficient data representation of the predicted point for some applica-
tions, for example for feedback provision in intelligent tutoring systems. For
such cases, an inverse problem has to be solved: Finding the original point that
maps to the affine combination in the pseudo-Euclidean space. Both problems
pose interesting challenges for further research in the field.
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