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Abstract

Making information understandable and literally graspable is the main goal of tangible in-

teraction research. By giving digital data physical representations (Tangible User Interface

Objects, or TUIOs), they can be used and manipulated like everyday objects with the users’

natural manipulation skills. Such physical interaction is basically of uni-directional kind, di-

rected from the user to the system, limiting the possible interaction patterns. In other words,

the system has no means to actively support the physical interaction. Within the frame of

tabletop tangible user interfaces, this problem was addressed by the introduction of actuated

TUIOs, that are controllable by the system. Within the frame of this thesis, we present

the development of our own actuated TUIOs and address multiple interaction concepts we

identified as research gaps in literature on actuated Tangible User Interfaces (TUIs).

Gestural interaction is a natural means for humans to non-verbally communicate using their

hands. TUIs should be able to support gestural interaction, since our hands are already

heavily involved in the interaction. This has rarely been investigated in literature. For a

tangible social network client application, we investigate two methods for collecting user-

defined gestures that our system should be able to interpret for triggering actions. Versatile

systems often understand a wide palette of commands. Another approach for triggering

actions is the use of menus. We explore the design space of menu metaphors used in TUIs

and present our own actuated dial-based approach. Rich interaction modalities may support

the understandability of the represented data and make the interaction with them more

appealing, but also mean high demands on real-time precessing. We highlight new research

directions for integrated feature rich and multi-modal interaction, such as graphical display,

sound output, tactile feedback, our actuated menu and automatically maintained relations

between actuated TUIOs within a remote collaboration application. We also tackle the

introduction of further sophisticated measures for the evaluation of TUIs to provide further

evidence to the theories on tangible interaction. We tested our enhanced measures within a

comparative study. Since one of the key factors in effective manual interaction is speed, we

benchmarked both the human hand’s manipulation speed and compare it with the capabilities

of our own implementation of actuated TUIOs and the systems described in literature.

After briefly discussing applications that lie beyond the scope of this thesis, we conclude

with a collection of design guidelines gathered in the course of this work and integrate them

together with our findings into a larger frame.
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1Introductionand Motivation

The most exciting phrase to hear in science, the one that

heralds new discoveries, is not “Eureka!” but “That’s

funny.”

Isaac Asimov, as quoted in [106, p. 236]

Humans have always been using tools and things. From the Stone Age until today, from the

biface to the smartphone – we humans turned out to be masters with our hands in handling

artifacts. Until the late 20th century, things in culture and technology were graspable,

manipulable and shapeable. Then, with the introduction of computers and the Internet,

things started to change, slowly. Nowadays, in the information age, we move away from a

pure physical everyday life to a world becoming more and more digital, which in turn becomes

literally harder to grasp.

Since the very first beginnings of Human Computer Interaction (HCI)1, its major aim is the The Vision: The

Perfect Universal

User Interface
development of computational tools and system enabling users to accomplish all kinds of

tasks. The perfect user interface understands the users, their needs and their natural interac-

tion styles and supports them to eliminate the bottleneck of current interaction approaches

(the bottleneck is the interface [76]). Humans are extremely good at manipulating objects

and interacting with their environment and other humans. They are social beings and vastly

profit from the collaborative interaction. Consequently, data should be represented and be

acting similarly.

In other words, (given the needed technology) the Holodeck, described in science fiction,

could assemble such a universal user interface. This fictional technology can instantaneously

create sophisticated physical objects and materials as holograms. Even avatars that are

interactive and creative with extreme knowledge, technical, medical and social skills etc. are

possible here. These capabilities assemble the perfect user interface where information can

be modeled as objects and material and even persons. Information can be manipulated

naturally and changed in all ways when needed. Such an interface would completely emerge

information into the natural environment of the users.

Unfortunately, this is fiction is still a distant prospect. The computational power needed

for modeling the physical objects and the artificial intelligence are not yet available. Also

1Here the term interaction refers to interaction between humans and machines and not only to social

inter-person interaction, as in sociology.
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holographic projection technology is still in its infancy, far away from instantly creating rigid

objects from thin air, though there are approaches for creating haptic sensation, such as

by Hoshi et al. [78]. Virtual reality technologies, such as the CAVE [31], allow to project

three-dimensional environments around the user. Unfortunately, there is still the problem of

creating persuasive haptic sensations. Otherwise, virtual and augmented reality can include

support for three-dimensional gestural interaction, as demonstrated recently in the SpaceTop

[120].

Not as hard as creating rigid objects from thin air is implementing shape-changing interaction

devices. Rasmussen et al. provide an overview of this research direction [165]. A recent

example are the Smart Material Interfaces by Vyas et al. [205].

We follow another research direction towards user interfaces that enable the users to naturally

manipulate data. Tabletop actuated Tangible User Interfaces are one possibility towards de-

veloping interfaces that support physical manipulation of information and blend into everyday

environments and tasks.

In the research field Tangible Interaction, digital information is made available to our dexterityTangible Interaction

again, by introducing physical objects as representations for data [47, 82]. Objects, such as

cubes, similar to building bricks, or things from everyday life, a bunch of keys, a mug or a

business card – depending on the applications, can be used as such representations. Tracked

by a computer nearly all types of data can be assigned to objects and emerged into the users’

environment, enabling new ways of interaction. Data and functionality become graspable

again which fosters a deeper understanding.

Systems allowing for such interactions are called Tangible User Interfaces (TUIs). We call theTUIs and TUIOs

objects representing data and functionality Tangible User Interface Objects (TUIOs). The

physical properties of these objects determine the ways of usages. Such properties can be the

(relative) position, orientation or proximity to other objects etc. and determine the internal

state of the underlying computer model of the represented data. For instance music titles in

a playlist could be re-sorted by re-stacking a tower of building bricks or a pile of paper. The

proximity of the pile to a playback device could represent the volume of the playback (near

= loud, further away = quiet). This can be easily understood or learned during interaction

by one or more users collaboratively. Such objects may get a new meaning as needed, such

as pictures of a slide show. In contrast to touch screens, objects and their handling is not

limited to a flat surface and they are really touchable and distinguishable with our tactile

sensation. Every human already brings the skills to work with objects by nature which is a

large benefit for Tangible Interaction.

In the examples above, the TUIOs are passive and only allow a one-directional interactionActuation

going from the user to the system. The system itself is not able to manipulate the the

TUIOs and represent changes in the data. Unfortunately, information is not necessarily

static. Especially in the age of the Internet, information is in constant flux, such as news

feeds (in social networks), weather and stock data, sensor readings from distributed devices

or even game pieces and avatars in computer games. Thus, there is a need for (active)

bi-directional interaction [175]. In order to enable systems to represent dynamic changes

of such information, the TUIOs need to be actuated. This allows to autonomously control
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(a) Electromagnetic control in the Madgets [208]. (b) Small mobile robotic platforms used in the

PMD [175].

Figure 1.1: Ex-

amples of the two

major TUIO actua-

tion technologies, cur-

rently found in litera-

ture.

and reflect these dynamics in the same manner as the users would do. Different actuation

approaches enable different actuation qualities and characteristics and have all their very own

benefits and disadvantages. Figure 1.1 shows the two major actuation approaches found in

literature: a) electromagnetic control of magnetic objects and b) small-sized mobile robotic

platforms.

In an earlier work we created the first basic prototype of the Tangible Active Objects (TAOs) The TAOs

implementing the robotic approach (as discussed in Section 3.3) [167]. In this thesis, we build

upon this rather limited prototype of the TAOs and vastly extend it to a full fledged multi-

modal actuated TUI. By adding graphical projection and further input and output means,

we developed a complex system from several hardware and software components. It allows

evaluating existing interaction patterns and exploring completely new interaction approaches.

Since the field of actuated TUIs is still in development, it is common in literature to describe

technical implementations along with an evaluation of a special-purpose application. The

effects on the users and the users’ perception of actuated TUIs and the potential for further

developments is still not completely explored.

As we can imagine, a well designed user interface has to fulfill certain user requirements. In The Gaps and our

Approaches for

Tabletop Actuated

TUIs

this thesis we focus on concepts and modalities that go beyond and extend those found in

literature. We identified multiple concepts and interaction modalities that enrich the feature

set of current TUIs. These are non-exclusive and add new interaction possibilities for certain

tasks. A good interface addresses multiple interaction modalities of the human. As depicted

in Figure 1.2, we explore two different concepts for triggering actions, focus on a highly

integrated multi-modal interface for remote collaboration, address evaluation methods for

co-located collaboration and benchmark the human hand manipulation speed as a baseline

for TUI actuation. These modalities and concepts are presented in the course of this thesis:

Gestural Interaction for Action Triggering A very human interaction modality is gestural

interaction. Using gestures for non-verbal communication is natural for humans. Though

there are already commercial products on the market supporting gestural interaction, this is

rarely investigated in the frame of tabletop TUIs. For our TAOs we explore how to gather

fitting gestures with them for triggering actions and how to apply them in a communication
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Remote Collaborative 

Multi-modal Interaction

Gestural 
Interaction

Triggering Actions

Object-bound
Menu Metaphor

Co-located
Collaboration

Fundamental Benchmark:
Hand vs. Actuated Object

Figure 1.2: Study

overview: The main

course of this work

is composed of five

key studies. The

first user study in-

vestigates gestural

interaction and a

proof-of-concept

study presents an

object-bound menu,

both of them with

action triggering in

mind. A feasibility

study considers re-

mote collaboration

while another user

study examines co-

located collaboration.

The last case study

sets a manual interac-

tion speed benchmark

for actuated TUIOs.

application for social networking.

Object-bound Menus for Action Triggering Furthermore, we present our concept of pa-

rameter selection as a tangible actuated menu metaphor for our TAOs. Along with these

interaction modalities and concepts, we include the (audio-)visual domain that is already

addressed in literature.

Remote Collaborative Multi-modal Interaction As a stress test for our TAO architecture

we created an application for remote collaboration also serving as a concept study for a highly

integrated multi-modal interface. Hence, we additionally integrated vibro-tactile feedback

and a concept for interdependencies of data represented by the TAOs.

Evaluating Co-located Collaboration To earn additional means for evaluating TUIs, we

adapt and discuss interaction measures from experimental psychology that were already

applied in neighboring research fields within a comparative evaluation to introduce them to

tangible interaction.

Manipulation Speed Benchmark In manual interaction with actuated tabletop TUIs it is

important to know the fundamental manipulation speed of the human hand. Vice versa,

actuated TUIOs should ideally be able to reproduce this interaction speed to serve as an

equal interaction partner in terms of velocity. In literature, this was rarely addressed, so

we conducted a pre-study to benchmark both the human hand manipulating a TUIO and

our TAOs and compare these findings with interaction data gathered in the other studies

conducted during this project.



1.1. Objectives, Contributions and Scope 5

Finally, we re-integrate our findings and results into tangible interaction research by elabo-

rating design guidelines that help designers of (actuated) tabletop TUIs to develop successful

systems.

1.1 Objectives, Contributions and Scope

We address the aforementioned aspects by developing concepts and studies that evaluate

the TAOs’ general performance and their effects on the users. This challenge demands an

interdisciplinary approach which results in different objectives that flow into design guidelines

and contributions for future developments:

1. The TAOs serve as a starting base for the work described in this thesis, but for some

concepts and studies several technical extensions need to be developed.

2. We provide additional interaction concepts that extend and enrich the established

concepts in TUIs.

3. The results of the studies and evaluations of these concepts are given, either qualitative

or quantitative.

4. Also design guidelines derived from observations during development of applications

for our concepts, during the conducted studies and during literature review on actuated

and passive TUIs are meant as a major contribution to the research on actuated TUIs.

5. Furthermore, within the studies conducted during this thesis, we transferred and

adapted further measures for evaluating tabletop TUIs incorporating actuated TUIOs.

Our research is very much driven by exploration. It is broken down to the following general Research Questions

research questions according to the conceptual gaps identified earlier (see Fig. 1.2):

RQ1: Does gestural interaction work with (actuated) TUIOs? How to collect and implement

them? (→ Chapter 4)

RQ2: What types of menu metaphors are applicable to actuated TUIs and what is their design

space? How can a generic tangible actuated menu metaphor look like? (→ Chapter 5)

RQ3: Can multi-modal feedback and rich interaction capabilities be combined into a so-

phisticated system for remote collaboration (serving as a stress-test) with TAOs?

(→ Chapter 6)

RQ4: How do actuated TUIs compare against a passive TUI, multi-touch interaction and

Mouse interaction within the same task? (→ Chapter 7)

RQ5: How can novel interaction measures help to find evidence for theories on tangible

interaction? (→ Chapter 7)

RQ6: How quickly does the human hand move manipulating a TUIO? What consequences

does this have for actuated TUIs, in terms of actuation velocity, size and structure of

the interactive area with regard to social aspects?

(→ Chapters 8 and 7)

We aim to answer these questions within the scope of tabletop tangible interaction with Scope

actuated TUIOs. In particular, we conducted our research with our TAO architecture. On

the basis of our TAOs, we elaborate our interaction concepts. Here we focus on the impact

of actuated TUIOs on the users and evaluate our approaches. For this, we also transfer and
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adapt means for evaluation. Beside the conducted studies, we present the concept of our

tangible menu metaphor and combine our approach with multi-modal output facilities and

advanced features. Beyond the scope of this thesis, we address an application auditory data

exploration, one for Ambient Assisted Living (AAL), we touch the field of social robotics

and give future directions for hybrid user interfaces. These combine multi-touch interaction,

passive TUIOs and the TAOs into one multi-user system.

We organized this thesis in three parts: The first part is assembled by this general motivationStructure of this

Thesis in which we introduce the background of tabletop TUIs and explain the contributions of

the field. In the background chapter, we review the theory described in literature. After

introducing the state of the art in actuated tabletop TUIs, we introduce the base system of

our TAOs, that is used in our studies and applications.

In the second part, every chapter deals with a concept or study, developed or conducted in

the course of this research project. With each of these concepts and studies we highlight

the different aspects of the topic identified as gaps and view them from various perspectives.

Basically, each of these chapters starts with a short introduction to the concept, followed

by a brief literature review of the previous work published on the particular topic. After

describing additional extensions made to our system, we present a study and / or conceptual

interaction design. From the discussion of the results, we derive design guidelines.

The last part of this work discusses our findings within a larger frame. We take some steps

back to have a look at the big picture, drawn throughout the thesis. The results from

the different studies are brought together and the derived design guidelines are fused and

discussed. Furthermore, the final state of the TAO system is presented with all its capabilities.

We use this overview to highlight perspectives for future development of actuated TUIs

and application possibilities. Finally, we conclude by giving a short summary, pointing out

benefits and limitations of the current implementation of our TAOs and giving further general

directions for future research and development.

1.2 Remarks

Chronological Course

As this PhD project was mainly driven by exploratory research, we give an overview of the

chronological course of developments, as depicted in Figure 1.3. For transparency, this allows

to chronologically relate our work with developments in literature, as some foreign papers

were published closely to our studies. Furthermore, it gives a more detailed insight into the

efforts each work package of this project demanded. This work was supported by a research

grant of the DFG with a run-time of 3 1/2 years.

Student projects that dealt with the TAOs are included as well, as they are covered in Chapter

9 and partially contributed to the TAO architecture, too. The topic of these projects were

given by the author and were partially co-supervised by colleagues (student projects not

dealing with the TAOs are omitted here). Also covered in Chapter 9 is the Interactive

Auditory Scatter Plot (IAS). The Embodied Social Networking client (ESN) work package
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resembles the gestural interaction study described in Chapter 4. Chapter 5 describes the

saving and restoring mechanisms (SRM) and the development of our tangible actuated dial-

based menu. We report on our developments on remote collaboration in Chapter 6. To

have a robust and more versatile framework, we switched the middleware including massive

testing, before we could start our comparative study for co-located collaboration as covered

in Chapter 7.

Resulting Publications

In most instances, our applications, studies and results presented in this thesis have already

been published in the following peer-reviewed papers:

[168] Riedenklau, E, Hermann, T., and Ritter, H. “Tangible Active Objects and interactive

sonification as a scatter plot alternative for the visually impaired”. In: Proceedings of

the 16th International Conference on Auditory Display. June 2010. isbn: 0-9670904-

3-1

[173] Riedenklau, E., Hermann, T., Ritter, H., and Jacko, J. “Saving and restoring mech-

anisms for tangible user interfaces through tangible active objects”. In: Human-

Computer Interaction. Interaction Techniques and Environments. Ed. by Jacko, J.

A. Vol. 6762. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin

Heidelberg, July 2011, pp. 110–118. isbn: 978-3-642-21604-6. doi: 10.1007/978-

3-642-21605-3

[172] Riedenklau, E., Petker, D., Hermann, T., and Ritter, H. “Embodied Social Networking

with Gesture-enabled Tangible Active Objects”. In: Proceedings of 6th International

Symposium on Autonomous Minirobots for Research and Edutainment (AMIRE). ed.

by Rückert, U., Sitte, J., and Werner, F. May 2011. doi: 10.1007/978-3-642-

27482-4]

[170] Riedenklau, E., Hermann, T., and Ritter, H. “An integrated multi-modal actuated

http://dx.doi.org/10.1007/978-3-642-21605-3
http://dx.doi.org/10.1007/978-3-642-21605-3
http://dx.doi.org/10.1007/978-3-642-27482-4
http://dx.doi.org/10.1007/978-3-642-27482-4
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tangible user interface for distributed collaborative planning”. In: Proceedings of

the Sixth International Conference on Tangible, Embedded and Embodied Interac-

tion - TEI ’12. New York, New York, USA: ACM Press, Feb. 2012, p. 169. isbn:

9781450311748. doi: 10.1145/2148131.2148167

[171] Riedenklau, E., Hermann, T., and Ritter, H. “Begreifbare sich bewegende Objekte in

Tisch-basierten Interaktionsszenarien Actuated tangible objects in table-top interac-

tions”. In: i-com (Aug. 2012). Ed. by Hornecker, E., Habakuk Israel, J., Brade, M.,

and Kammer, D. doi: 10.1524/icom.2012.0021

Copyright of Figures

The photos, images and illustrations used in this thesis are copyright by Eckard Riedenklau.

Exceptions are: Figure 1.1a is reprinted from [208]. Figures 1.1b and 5.1c are reprinted from

[175]. Figure 3.4a is reprinted from [89]. Figure 8.1 is reprinted from [24]. Figure 8.2a

is a courtesy from my colleague Jonathan Maycock [136]. Figures 5.1b, 5.2c and 5.3 are

reprinted from [155]. Figure 5.2a is reprinted from [157]. Figure 5.2b is reprinted from [89].

Supplementary Material

This work is accompanied by demonstration videos. These videos are stored on the Bielefeld

University’s publication server, accessible via DOI links. Where demonstration videos are

available, hyper-referenced QR coded links are given in the caption of respective image stills

and storyboards for quick access from both digital and printed copies of this document. All

videos are viewable with most common video player applications2.

Source Code Access and Future Developments

In order to enable other researchers to reproduce our work, we intend to successively publish

the source code and schematics of this work after it has been made camera-ready and was

enriched with developer documentation and user guides. Furthermore, we would like to re-

port on possible future developments on the TAOs. For these purposes, we created a website

that is accessible via http://www.tangibleactiveobjects.de.

2such as the VLC media player : http://www.videolan.org/vlc/

http://dx.doi.org/10.1145/2148131.2148167
http://dx.doi.org/10.1524/icom.2012.0021
http://www.tangibleactiveobjects.de
http://www.tangibleactiveobjects.de
http://www.videolan.org/vlc/


2Background:

Non-actuated Tabletop TUIs

For humans, touch can connect you to an object in a very

personal way making it seem more real.

From the movie “Star Trek: First Contact”, 1996; spoken

by the character Captain Jean-Luc Picard

In this chapter, we briefly lay out the background and theoretical thoughts that build the foun-

dations for tabletop TUIs. We base this chapter on the substantial and extensive overview

of the research on TUIs, provided by Shaer and Hornecker [185]. Since we cannot resemble

their complete monograph within the frame of this chapter, we only pick up the most impor-

tant aspects that apply to our particular research and interweave them with our own subset

of background literature. Thus, we highly recommend their monograph for further reference

on tangible interaction in its entirety.

From the theory background, there are plenty of publications providing material on the theory

behind tangible interaction in general. Some of these review input devices for spatial input

[70], introduce situated interaction in combination with activity theory [118], sensing-based

interaction [12, 174], tangible interaction especially targeting education [5, 222] and new

frameworks for reassessing HCI [85]. We concentrate on background literature that is of

particular relevance to tabletop TUIs.

2.1 Characteristics and Terminology of Tabletop TUIs

In the following paragraphs we briefly introduce the common characteristics and terminology

for tabletop TUIs in this work. Figure 2.1 gives an overview over these characteristics,

whereas details concerning these different aspects are described later in the course of this

chapter.

One of the first important publications directly dealing with aspects of tabletop TUIs is the Representation

Bricks paper by Fitzmaurice et al. [47]. By introducing physical handles for virtual objects,

they described the most important aspect of a tangible interface – the embodiment of data

and function. This embodiment is referenced to as the representation and can have various

forms and characteristics. In advance, TUI representations must have a physical tangible

component (e.g. arbitrary objects) and may also have a digital non-tangible component,

such as a graphical display [194].
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Figure 2.1: Common

characteristics of clas-

sical tabletop TUIs,

including different

reference frames for

interaction. (Not de-

picted is the personal

interaction space

[161].)

It is debated in literature what the representations should be called (e.g. phicon in [195], pyfoTUIO, phicon, pyfo,

token, puck. . . in [187], token in [73] or puck in [155, 156, 157], to name a few alternatives). There are

different characteristics of the representations that lead to different nomenclatures, such as

the term phicon already implies that it has some sort of iconic aspect, which is not the general

case. In this thesis, we reference to the physical aspect of the representation, generally the

actually graspable object used in a TUI, as the Tangible User Interface Object (TUIO).

All tabletop TUIs have in common that they all posses a tabletop surface on which theReference frame:

The interactive

surface
interaction with the system takes place. The reference frame of tabletop TUI is the surface

where the interaction with the system takes place. In this thesis, we generally refer to this

surface as the interactive surface. Sometimes the interaction with the system is not limited to

the interactive surface. For instance devices installed in the room together with the system,

can be controlled with the system. In such cases, the reference frame is extensible. Some

tabletop TUIs offer a visual display (e.g. a display is built in into the interactive surface,

or the surface is (back-)projected). By this visual display the system often visualizes (parts

of) the digital representation. According to Ullmer and Ishii, this visualization is not part of

the (physical) TUIO by definition, but it is part of the representation in general (including

the digital aspect) [194]. In the same way auditory displays can be part of the digital

representation, but not the physical one (although the loudspeakers could be embedded into

the TUIO itself).

Basically, these characteristics and the software implementing the interface behavior buildTUI:

The Interface in its

Entirety
the tabletop Tangible User Interface (TUI) in general. From now on, we use the term TUI

as synonym for tabletop TUI, since we focus on tabletop systems.
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2.2 Application Domains

In their survey, Shaer and Hornecker identify several application domains for TUIs. These

domains definitely cover most systems, but they are neither meant to be mutually exclusive,

nor inevitably complete due to the vast and still growing variety of creative ideas and their

implementations. “Dominant application areas for TUIs seem to be learning, support of

planning and problem solving, programming and simulation tools, support of information

visualization and exploration, entertainment, play, performance and music, and also social

communication.” [185]

TUIs for Learning Because of the use of embodiment, TUIs are a great means for education

and learning. As Shaer and Hornecker point out, “research and theory on learning stresses

the role of embodiment, physical movement, and multimodal interaction (cf. [5, 150]).

Furthermore, studies on gesture have shown how gesturing supports thinking and learning

[56].” [185] From this perspective, learning is an obvious application domain for TUIs.

Problem Solving and Planning Another obvious and well established application domain

is problem solving and planning. Tasks, such as urban planning, that benefit from the use

of models acting as tangible representations can profit from TUIs in which these models are

augmented with a virtual simulation of the particular problem. These tangible representations

can be constrained with other physical objects and epistemic actions [103] can be used to

structure and better understand the problem.

Information Visualization Plenty of TUIOs provide means for visualization and interactive

exploration of information. Here, the tangible representations act as physical handles for the

information and are augmented with non-tangible representations (mostly visual). Often, the

visualization of the information results in a multi-modal interactive interface. Furthermore,

this application domain intersects with other application domains that benefit from multi-

modal information representation.

Tangible Programming The application domain of tangible programming often intersects

with other domains, too, such as learning and edutainment. According to Shaer and Hor-

necker, they enable the users to freely play and explore the functions of the system being

programmed through interaction.

Entertainment, Play and Edutainment This application domain covers computer-based

and electronic games and toys. There is the trend of console gaming incorporating full-body

interaction (with special controllers and without), such as the Nintendo Wii, the Microsoft

Kinect or the Sony PlayStation Move. Magerkurth et al. provide a good starting point for

diving into pervasive games [130]. Often further technologies, such as Augmented Reality are

used in this domain in combination with TUIs to enhance tangible playing cards or avatars

with non-tangible representations and information. This makes the game experience more

interesting and vivid.

Music and Performance A major application domain of TUIs is music creation and live

performance. Jordá highlights three important aspects of tabletop TUIs making them a

good interface for musical performance: “ a) Collaboration and control sharing, real-time,

multi-dimensional, continuous interaction and interaction bandwidth; and b) complex, skilled,
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expressive and explorative interaction.” [88]

Social Communication TUIs also can serve as means for communication between distant

users and distributed work groups. Here TUIOs act as representations of users in social

networks or messages being transmitted between them. The possibilities range from creating

remote awareness to remote intimacy and shared reality, incorporating further remote sensory

modalities.

Tangible Reminders and Tags Physical artifacts can serve as representations for informa-

tion of all kinds. Technologies, such as Radio Frequency Identification (RFID) tagging, make

this possible in various applications. Martinussen and Arnall give a good overview of the

applications for the use of RFID tags [135]. This application domain greatly intersects with

the others, since the idea is a core concept of tangible interaction.

2.3 Frameworks and Toolkits for TUIs

With their approach to map the space of existing frameworks for tangible interaction, Mazalek

et al. provided a meta-framework for ordering and relating frameworks [137]. We used this

framework and adapted it, resulting in the map depicted in Fig. 2.2. The map is meant

as a means for designers of TUIs to broaden the view for design aspects and to navigate

the large amount of TUI design considerations found in literature. Each entry in this map

represents a publication dealing with major design relevant aspects of TUI development and

classification. The entries printed in light blue represent the original map by Mazalek et al.

In favor of clarity and relevance we left out publications that are too general. Instead, we

extended it with complementing publications (printed in light green). Furthermore, we added

publications that provide foundations for actuated tabletop TUIs (light yellow). The map

is divided into sections. The horizontal division represents the types of frameworks, ranging

from Abstracting over Designing to Building. On these types, Mazalek et al. built the

facets the discussed frameworks deal with: a) Technologies, b) Interactions, c) Physicality,

d) Domains and e) Experiences. We discuss the filled areas of the map in the following

paragraphs facet by facet and type by type.

Theory, Frameworks and Trend-setting Related Work

The building technologies area of the map contains toolkits and technologies for buildingBuilding Technologies

TUIs. Since there is a variety of toolkits, we discuss further toolkits for non-actuated ap-

proaches in this area later in the toolkits section of this chapter. We discuss the actuated

approaches for tabletop TUIs in Section 3.1. In the map we only mention the original

toolkits, as proposed by Mazalek et al. (2009). We added the first implementation of the

actuated tabletop TUI PSyBench by Brave et al. (1998) [21]. Furthermore, we included

the papers, originally presenting the two major actuation approaches for tabletop TUIs:

electromagnetic by Pangaro et al. (2002) [152] and robotic by Rosenfeld et al. (2004) [175].

This area deals with interaction related design aspects of TUIs. Koleva et al. (2003) discussedAbstracting

Interactions the linking between physical and digital objects and their level of coherence [110]. They
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contemplate this linking from different perspectives, such as the quality of the link (or

coupling) or the lifetime. This also interplays with the container concept by Holmquist

et al. (1999) and Ullmer and Ishii [73, 197] and the time- vs. space-multiplexing concept

by Fitzmaurice et al. (1995) [47].

Ullmer and Ishii (2001) transfer the Model View Controller (MVC) concept known from

Graphical User Interfaces (GUIs) to TUIs, here called Model Controller Representation

(physical and digital) (MCRpd) [194]. The MCRpd gives designers of TUIs means for

comparing and addressing important aspects of tangible interaction, mainly both tangible

and non-tangible aspects of data representations. Furthermore, they provide a nomenclature

for TUI classification.

Bellotti et al. (2002) spotlight the interaction with sensing systems by sensitizing designers Designing

Interactionsof such systems from the social point of view. They rise five aspects regarding a) addressing

the system, b) gaining its attention, c) interacting an action, d) monitoring the response and

e) recovering from errors [10]. This only applies to reactive systems, while actuated proactive

systems are not covered here. Nonetheless, being aware of this point of view already helps

keeping this aspect in mind.
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Related to Holmquist et al. and Ullmer and Ishii, Shaer et al. (2004) provide a high-level

language to identify and describe the relationship between “pyfos” (physical objects),

“tokens”, “constraints” and the represented data. They evaluated their sophisticated

paradigm with various examples of TUIs found in literature [187]. Shortly after this, Ullmer

et al. came up with a similar approach dealing with “Token+Constraint Systems” [198].

Hornecker and Buur (2006) broaden the view of tangible interaction towards user experience

and social aspects. With their framework, they introduced an interdisciplinary research

approach that addressed four themes: a) Tangible Manipulation, b) Spatial Interaction,

c) Embodied Facilitation and d) Expressive Representation [76].

Patten and Ishii (2007) picked up the concept of constrained tangible interaction as de-

scribed above and extended this idea to constrained actuated TUIs [154]. They provide

various implementations of constraints and demonstrate them in their Physical Interven-

tion in Computational Optimization (PICO) system, using electromagnetic actuation for the

TUIOs.

Though Hartmann et al. (2006) do not explicitly target tabletop TUIs, their d.tools approachBuilding Interactions

for building and evaluating sensor-based interactive devices is of particular interest due to their

evaluation methods. This method, incorporating alignment of video and sensor recording,

partially inspired the design of our comparative study, described in Chap. 7.

Hoven and Eggen (2004) identified situations in which the nomenclature by Ullmer and IshiiAbstracting

Physicality is not successful. They extended the nomenclature to cover personal objects as well. Users

already have mental models for personal objects, so they can relate better to the represented

data [79].

Presenting multiple TUIs, including the often cited Urp, Illuminating Clay and Illuminating

Light systems, Underkoffler and Ishii (1999) also proposed a continuum of object meanings

[199]. This continuum ranges from pure object over object as attribute, object as noun and

object as verb to object as reconfigurable tool.

Fishkin (2004) partly picked up this continuum and interweaved it with Holmquist et al.’s

categorization of TUIOs as tool, token and containers. In their resulting taxonomy, embod-

iment and metaphor are the two major axes [43].

Wensveen et al. (2004) elaborated on the idea of not just coupling physical objects withDesigning and

Building Physicality data, but also action and function. Here, they consider six aspects of natural coupling

on action and reaction: a) Time, b) Location, c) Direction, d) Dynamics and e) Modality

[210]. Building upon these characteristics, they provide a practical framework for coupling

action and information. By this, the framework covers the designing physicality and the

building physicality area of the map.

Sharlin et al. (2004) approach TUIs from the perspective of spatiality. They define the

term spatial TUI as a subset of interfaces that facilitate the users’ spatial skills and discuss

three aspects of spatial interaction: a) Spatial mapping, b) I/O unification and c) Support

of “trial-and-error” activity [188]. In this frame, they review seven systems known from

literature.

Zuckerman et al. (2005) and Antle (2007) cover this facet by targeting TUIs for childrenDomains

and education. Shaer and Hornecker (2009) give a much broader and quite exhaustive view
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on the application domains, as we already discussed in Sec. 2.2. They cover the following

application domains: a) Learning, b) problem solving and planning, c) information visuliza-

tion, d) programming, e) entertainment, play and edutainment, f) music and performance,

g) social communication and h) reminders and tags [185].

The user experience facet was initially targeted by Hornecker and Buur (2006). Their inter- Experiences

disciplinary research approach covering tangible manipulation, spatial interaction, embodied

facilitation and expressive representation started a vivid research line.

Toolkits and Technologies for Tabletop TUIs

The variety of toolkits for building TUIs is vast. Naturally, there are toolkits for hardware

and for software development, some of them address even both sides. In these paragraphs,

we concentrate on those that are of interest for tabletop TUIs, particularly for actuated

interfaces.

Hardware Toolkits and Implementations

The TUImod by Bovermann et al. acts as general building blocks for TUIOs [20]. Here, a Building Blocks for

TUIOsTUIO is assembled from elements divided into three layers: a) Computer Interface elements

(CI), b) Physical Functionality elements (PF) and c) User Interface elements (UI). The

CI elements have fiducial markers for tracking the TUIOs with computer vision software.

Optional PF elements between the CI and UI elements incorporate magnets, saw shaped

edges, clip-in mechanisms etc. These optional elements allow to build TUIOs that can be

connected and constrained to combined meta-objects. Finally, the UI elements address the

user by customizing the TUIOs in color and adding distinguishable shapes on the top of

the TUIOs. All elements were produced from acrylonitrile-butadiene-styrene (ABS) material

using a rapid-prototype 3D-printer. We used the TUImod as basis for creating the TAOs’

housings.

RFID is a widely established industry standard for wireless tagging and identification of RFID and RF-Sensing

objects. There are many TUIs, using this technology to electronically identify TUIOs at

certain locations. Martinussen and Arnall provide a detailed introduction to the design

and implementation of systems making use of the RFID technology. They discuss typical

application domains, such as payment, transport, access control and toys, implementation

design, the shape of objects incorporating RFID tags etc. [135].

Though the RFID standard is used for identifying objects placed on a special tag reader, a

similar technique is used for example in the Sensetable [157] and the Musical Navigatrics

and Atmosphere [153] to not only identify the objects, but also localize them on a tabletop

surface or in three-dimensional space.

Another rather unorthodox way of localizing TUIOs on interactive surfaces is capacitive Capacitive Sensing

sensing. This technology is meant to be used for tracking finger touch points on smartphones,

tablet PCs and displays. The TUIC [218] by Yu et al. use this technology by simulating

finger tips to localize TUIOs on such displays. They presented three different tag designs

with application examples: a) spatial, b) frequency-based and c) hybrid tags. The first
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application was a demonstration using the TUIC tags for representing famous painters and

multi-touch interaction to manipulate the artists’ paintings on the interactive surface. The

second application was an adaption of the SLAP Widgets keyboard [209] by Weiss et al. The

SLAP Widgets are thin passive widgets made of silicone to be used on multi-touch surfaces

using the Frustrated Total Internal Reflection (FTIR) technology for, an optical approach for

touch tracking [62]. Yu et al. transferred the SLAP Widgets idea to capacitive surfaces using

their TUIC tags. In the last application example, they proposed their tags as authentication

keys for mobile devices. The tags are not easy to copy and replace authentication methods,

such as PINs that bystanders could easily spy out [218].

There is an increasing tendency to equip TUIOs with electronic devices to augment theElectronics

interaction with additional input and output channels. Beside completely custom built elec-

tronics, multiple toolkits for the rapid-prototyping of electronics find one’s way into tangible

interaction. The works by O’Sullivan and Igoe [151] and Igoe [81] give a comprehensive

introduction into the field of physical computing. The number of available platforms for

physical computing is vast. The most popular example is the Arduino Platform1 [8]. An-

other sophisticated platform with a wide palette of extensions is Tinkerforge2. For wireless

communication with such microcontrollers, standards, such as infrared, Bluetooth, WiFi and

XBee, etc. are used. Within the TAOs we made use of Arduino microcontrollers and XBee

radio communication.

Related to actuated tabletop TUIOs are sensor-based TUIs using electronics, as describedSensor-based TUIOs

above. TUIs of this kind also incorporate electronics and wireless communication to make use

of sensor readings within the interaction between the users and the system. Transferring the

concept of widgets from GUIs to TUIs, the Phidgets by Greenberg and Fitchett represents

a complete architecture of physical widgets, including electronics, software and Application

Programming Interface (API) [57]. The Phidgets were evaluated with a set of example

applications. Further examples for sensor-based interfaces are the iStuff framework [7] by

Ballagas et al., the Calder Toolkit [121] by Lee et al., CookieFlavors [99] by Kimura et al.

Atlas [100] by King et al., VoodooIO [203] by Villar and Gellersen.

Software Toolkits

The increasing complexity of TUIs demand certain effort of implementation. Often their com-General Middleware

ponents are organized in reusable software modules that require (networked) Inter-Process

Communication (IPC). A very popular and established network protocol for tabletop TUIs

is the TUIO Protocol [91], which is based on Open Sound Control (OSC) [217]. Other

more sophisticated middleware and network protocol examples are the XML enabled Com-

munication Framework (XCF) [51] and its successor Robotic Service Bus (RSB) [211], which

we used for the TAOs. In literature, we also found systems using the Extensible Messag-

ing and Presence Protocol (XMPP) (such as the RemoteBunnies [58]), which we in turn

used for coupling distant TAO systems. Also Robot Operating System (ROS)3 [163] is a

1http://www.arduino.cc/
2http://www.tinkerforge.com/
3http://www.ros.org/wiki/

http://www.arduino.cc/
http://www.tinkerforge.com/
http://www.ros.org/wiki/
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promising middleware candidate that provides a variety of additional software components

for developing interactive systems.

There are multiple approaches for visually tracking TUIOs. The simplest way is tracking Computer Vision for

Tracking TUIOson a plane with two degrees of freedom using (color) blob tracking. Grain-based systems

[16, p. 62], such as AudioDB [18] and Turtledove [140] use this approach for detecting

the positions of small rotation-invariant TUIOs using the Image Component Library (ICL)4.

The ICL is a generic computer vision library with a variety of image processing methods.

It also implements the Hungarian Algorithm [116] for assigning IDs tracking the identi-

fied blobs. OpenCV 5 is another very popular multi-purpose image processing library. The

Community Core Vision (CCV)6 directly addresses development of tabletop interactive sys-

tems and supports blob tracking for multi-touch applications, supporting multiple commu-

nication protocols, including the TUIO Protocol. This makes CCV also usable for tracking

small rotation-invariant TUIOs.

There are various approaches for tracking TUIOs on a plane with orientation (three degrees

of freedom). Here, the reacTIVision [90] by Kaltenbrunner and Bencina is one of the most

popular approaches. In their paper describing their reacTIVision [11] Bencina et al. presented

their Amoeba markers and their tracking in detail. These topological markers are generated

according to graphs defining “Left Heavy Depth Sequences” which make the markers unique

and distinguishable. In the first prototypes of the TAOs, we used smaller markers that were

trackable with the libfidtrack [11] (cf. Chapter 3). Other approaches, such as TRIPcode

[124] and TrackMate [117] use markers with circular patterns.

Approaches for three-dimensional Tracking of TUIOs with six degrees of freedom are for

instance ARToolKit [92], ARTag [42], ARToolKit Plus [206]. These approaches’ ability of

tracking structured visual markers with position and orientation in three-dimensional space

makes them widely used in Augmented Reality (AR) systems. Nevertheless, they can basically

be used in tabletop TUIs as well.

Another recent approach is dSensingNI [108] by Klompmaker et al. It aims to support multi-

touch and tangible interactions with arbitrary objects on ordinary surfaces by using only

depth information from a Kinect sensor.

Multiple systems described in literature provide integrated hardware and software components Integrated Toolkits

for developing TUIs. Papier-Mâché [104] by Klemmer et al. integrates multiple computer

vision approaches, such as color-based tracking of ordinary objects and barcodes. Further-

more, it integrates support for RFID. Those components are integrated by a higher-level

programming API, enabling developers to quickly and easily produce working TUIs. ToyVi-

sion by Marco et al. is a more recent but similar approach, aiming at development of tabletop

tangible games in particular [132].

With their d.tools [63], Hartmann et al. presented a sophisticated integrated toolkit for

developing sensor-based tangible interfaces. The d.tools incorporate a large range of elec-

tronics for quick-and-easy building of sensor devices, already pre-programmed with a generic

4http://www.iclcv.org/
5http://opencv.org/
6http://ccv.nuigroup.com/

http://www.iclcv.org/
http://opencv.org/
http://ccv.nuigroup.com/
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firmware that transmits the sensor values to the host computer. The sensor readings are

gathered by the authoring environment that supports the developer in generating programs

for the system. An outstanding feature of the authoring environment is the possibility to align

the continuous sensor readings with multiple video recordings for analysis and evaluation of

the system’s performance for iterative improvement of the system design. A generic approach

for creative coding provide the openFrameworks7. They encapsulate and integrate multiple

open source frameworks, including OpenCV to provide a simple but versatile development

environment for interactive systems, including TUIs.

These integrated approaches finally lead to standardization of TUI development. TheUp-coming Standards

Tangible User Interface Modeling Language (TUIML) by Shaer and Jacob is a description lan-

guage for specifying and developing TUIs, based on the Extensible Markup Language (XML)

and the User Interface Description Language (UIDL). It even allows to describe the behavior

of the system using state graphs and petri-nets. With the Tangible User Interface Manage-

ment System (TUIMS) it is possible to semi-automatically translate these TUI specifications

into working systems [186].

2.4 Strengths and Limitations of TUIs

When it comes to the design of a TUI one must know what is possible to implement and

what not, since a tangible interaction approach may be beneficial for some applications while

for other problems other interaction approaches might be more suitable. In their survey,

reviewing the existing body of work on TUIs [185], Shaer and Hornecker describe multiple

strengths and limitations of TUIs.

Strengths of TUIs

Shaer and Hornecker highlight several beneficial aspects of TUIs, which we briefly describe

in the following paragraphs: a) Collaboration, b) Situatedness, c) Tangible Thinking,

d) Gesture, e) Epistemic Actions and Thinking Props, f) Tangible Representation, g) Space-

Multiplexing and Directness of Interaction and h) Strong-Specificness Enables Iconicity and

Affordance [185].

Usually, current desktop computing interfaces (using Mouse, keyboard and display) are quiteCollaboration

exclusive and only usable by a single user. In contrast, data represented in TUIs is mutually

accessible by multiple users due to the physicality and embeddedness in our realm – in other

words, here the data simply shares the same space. Based on this, Klemmer et al. elaborate

on the observability of manual interaction with physical objects. This embodiment facilitates

group awareness and interaction coordination in collaborative tasks [105].

The physicality is a well-discussed aspect of TUIs. As they are part of the real world, the TUIs’Situatedness

situatedness is a great benefit for designing meaningful and understandable interfaces that

are embedded into the actual interaction context [33, 40, 76]. Furthermore, the situatedness

of TUIs lays the foundation for social interaction between multiple users. It goes hand in

7http://www.openframeworks.cc/

http://www.openframeworks.cc/
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hand with tangible thinking and gesticulation providing means for deixis [71], as pointed out

in our design guidelines in Chapter 10.

Our own embodiment plays a major role in how we interact with and understand our envi- Tangible Thinking

ronment and the objects within. Under the theme thinking through doing Klemmer et al.

highlighted perspectives of tangible interaction for learning, gestural interaction and epis-

temic actions [105].

Gestures are important for producing and understanding speech and for social interaction Gesture

between multiple users of a system [56]. Physical objects provide anchors for gesticulation

and support the kinesthetic memory of the users [183].

In contrast to pragmatic actions, epistemic actions are not goal-oriented actions, but help Epistemic Actions

and Thinking Propsthe users of a TUI to better understand the problem being worked on and to explore different

solutions [103]. TUIOs and other objects introduced by the users serve as thinking props.

Slight alterations in position or orientation that have no effect on the result help the users to

structure the problem, for instance ordering and sorting the TUIOs or slightly turning them

to make them distinguishable more easily from objects that are not of particular interest for

the current problem.

Zhang indicated the benefit of external representations, of physical objects, supporting the Tangible

Representationcomprehension of a problem [220, 221]. Zhang “found that an increase in the amount of

externally represented information yielded improvement in solution times, solution rates, and

error rates.” [185]

Being in a world defined by space and time, it is obvious that the use of tools can be tied to Space-Multiplexing

and Directness of

Interaction
a certain position or to a certain point in time. This also applies to technical devices, as well

as to TUIs. Fitzmaurice and Buxton [46] found that input devices can be space-multiplexed

or time-multiplexed. While a Mouse is a time-multiplexing input device, since it controls

different functions such as menus or buttons in the GUI at different points in time, TUIOs

are dedicated to a particular function (assuming a static mapping) and can be manipulated

simultaneously at different positions on the interactive surface [45, 47].

Static mappings between function and tangible representation allow the use of specific shapes Strong-Specificness

Enables Iconicity and

Affordance
instead of generic objects. Task-specific objects can foster the users’ performance creating

affordance by meaningful properties that generic objects barely have. The way how users

might handle different object designs may lead to meaningful and understandable TUIO [41,

189]. Nevertheless, there is no complete design space for TUIOs due to the vast number of

different possible design properties and combinations.

Limitations of TUIs

Along to the strengths of TUIs, Shaer and Hornecker highlight several limitations: a) Scal-

ability and the Risk of Loosing Physical Objects, b) Versatility and Malleability and c) User

Fatigue [185]. Having physical objects that are not firmly attached to the system has some Scalability and the

Risk of Loosing

Physical Objects
risks and drawbacks. First of all, the number of TUIOs to be used effectively is limited by

the task and the size of the tabletop surface, which in turn is limited in size by ergonomic

constraints [185, p. 106]. Too many TUIOs resulting in physical clutter may cognitively
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overwhelm the users’ comprehension with regard to performance and effectiveness, as de-

scribed by Fitzmaurice [45, p. 135]. They might lose the particular TUIO they are looking

for. Furthermore, such objects may literally get mislaid and lost, destroyed [102] or even

stolen, e.g. in public spaces, such as museums or fairs. Another aspect regarding scalability

is the bulkiness of TUIOs [35]. Normally, TUIOs are rigid objects that cannot be scaled in

three dimensions, but this would be required for example if a map with TUIOs representing

buildings was scaled [185]. The TUIOs do not scale accordingly, demanding the creation of

scaled objects. Multiple TUIOs cannot occupy the same space, causing physical displace-

ment [16, p. 54]. This intrinsic benefit of TUIOs can also be a disadvantage when different

solutions of a problem need to be compared, since physical juxtaposability (overlay of the

solutions) of them is not possible [35]. Shaer and Hornecker also rise the problem of muta-

bility [185]. Here, an arrangement of TUIOs cannot be easily shifted when more space is

needed at a certain side. In contrast to GUIs where the content of the screen can be scrolled,

the users of a TUI need to be carefully moved one TUIO by another into a particular direc-

tion to gain more space to add TUIOs at the opposite side. This also relates to Edge and

Blackwell’s concept of premature commitment [35] and the inability to “adequately support

manipulations of several objects.” [185]

“TUI tokens are constantly lifted and moved about as their primary modality of interac-User Fatigue

tion.” [196, p. 154] Especially long-term use of tabletop TUIs can tire the users, as they

need to reach far to manipulate objects and look constantly down to a horizontal surface.

From the perspective of ergonomics, this is a major disadvantage [185, p. 106].

GUIs are extremely versatile and malleable. They serve as general-purpose tools, being usedVersatility and

Malleability to accomplish a vast bandwidth of tasks due to their flexibility and adaptability. Unfortu-

nately, TUIs are special-purpose tools, each of them designed for a particular task. They are

not flexible because of the rigid and special design of the TUIOs.

They are not as adaptable as GUIs, since the system can neither manipulate the TUIOs’

position, orientation, color, shape nor size. Also, TUIs suffer from the “difficulty of sup-

porting an automatic undo, a history function, or a replay of actions (cf. [102])” [185]

or even means for saving and restoring the state of the current task. Furthermore, the

rigid TUIOs are unable to reflect dynamic scenarios and enforce spatial relations be-

tween them, though they support the users’ spatial memory, this may lead to inconsistencies

in the tangible representation [185].

The latter limitations printed in bold can be addressed by introducing actuated TUIOs. Our

TAOs are our implementation of actuated TUIOs, which we will present and discuss in the

following chapters according to the gaps identified above in the introduction chapter.
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Motion however will not help unless we have things moving.

Simon Blackburn

Think (1999), Chapter Seven, The World, p. 244

In literature one mostly finds two approaches to actuate table-top TUIs. In the first ap-

proach the tabletop surface applies magnetic forces to the objects to move them, while

the other generally introduces small-sized mobile platforms with a differential drive to the

objects themselves to make them move. For this we distinguish between electromagnetic

manipulation and the differentially driven robotic approaches in the following sections.

After discussing the approaches and the respective systems described in literature, we present

a comparison of the technologies including a discussion of their advantages and disadvan-

tages. Finally, we present an overview of the TAOs’ hardware and software design and the

interplay of components within their architecture.

3.1 Actuation Technologies in Related Work

The First Major Approach: Electromagnetic Actuation

This approach can be principally divided into two sub-approaches. One where a single elec-

tromagnet is moved inside the interactive surface and one where the whole surface consists

of a massive array of electromagnets that move magnetic objects.

PsyBench Because traditional interfaces, such as keyboard and Mouse, limit physical inter-

actions with digital content, Brave et al. introduced the concept of Synchronized Distributed

Physical Objects for Computer Supported Cooperative Work (CSCW) [21]. The first pro-

totype was built with two synchronized Excalibur chessboards, incorporating a two-axis po-

sitioning mechanism with an electromagnet for actuation and a grid of 10 × 8 membrane

switches for position sensing. This technology enables the system to sense and move mag-

netic objects. The discrete sensing with its low resolution and the ability to only move one

object at the same time without orientation control are drawbacks of this system. Because of

the disadvantage that this sub-approach (moving a single electromagnet within the surface)

can only move one object at a time, this approach has been abandoned and replaced by the

introduction of an array of electromagnets in later systems.
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Actuated Workbench The Actuated Workbench, developed by Pangaro et al. [152] ensem-

bles a highly sophisticated system for actuated tangible interaction. Instead of using a single

movable electromagnet, the surface consists of tileable arrays of 64 electromagnets (8×8),

each. This technology allows to almost silently move multiple objects equipped with a per-

manent magnet and an infrared LED for visual tracking simultaneously across the surface.

An special control approach also allows for interpolation between electromagnets, resulting

in smooth motion. Beside the technical details the authors describe a number of possible

high-level applications, such as remote collaboration in a planning scenario (extending Urp

[199]), simulation and entertainment. Still there are drawbacks: The system is quite complex

and presumably expensive and the orientation of the objects is not controllable and thereby

unusable as an interaction parameter.

PICO Patten and Ishii demonstrated the technology of the Actuated Workbench combined

with RF tracking of the TUIOs in a compelling application they call PICO [154]. Here, they

used this approach to simulate and optimize the distribution of radio towers represented by

the tangible objects in a projected landscape. To influence this optimization process, the

users can utilize arbitrary objects for example to limit the space for the moving objects, to tie

them together or make them stationary. The authors proposed rubber bands, ring spacers,

an artist’s curve (flexible drawing aid) and weights as probable objects for this task. They call

these objects mechanical constraints; in parallel they also demonstrated virtual constraints

that offer similar dependencies between the tangible objects, but without the need of physical

objects (actually the optimization algorithm is such a dynamic high-level constraint). Both

types of constraints can again be mixed, which creates a versatile user experience.

Madgets The technology of the Actuated Workbench was picked up by Weiss et al., creating

their Madgets [208] to solve issues and enhance the concept. They built their own surface

and modified the hardware to get rid of possible occlusion problems when tracking the

objects with a camera from above the surface by adding a dense grid of fiber-optic cables

along the electromagnets to track the objects through the array. To overcome problems

that occur with projection from above the surface, the authors also integrated a large TFT

panel into the surface along with electroluminescent foil and infrared illumination for tracking

(also fingertips) and illumination of the TFT panel. To make the orientation of the objects

controllable, they combined about four permanent magnets into one object. With these four

anchor points, the system is able to control all three degrees of freedom of object movement

on a flat surface. The last addition to the system was the introduction of magnetically

controllable widgets (this is where the system’s name comes from). They added a magnetic

dial or a button to their objects, which is also controllable by the magnetic field of the

surface. Also a gear, a bell and even an LED (using induction on the magnetic surface)

was implemented. The abilities of this system are impressive, but one can imagine, that the

complexity of the presented hardware is also extremely high.

Approaches based on magnetic forces have the advantage that even if the user has picked

up the tangible object a little from the interactive surface, the system can still influence

the objects to a certain amount because the magnetic forces still apply. The movement of

the objects using this technology is almost silent, since there are no moving parts (only the
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TUIOs themselves). Furthermore, the objects can move in a holonomic way and are relatively

cheap. Otherwise, the interactive surfaces explained here are quite expensive and complex.

The Second Major Approach: Differentially Driven Mobile Robots

The systems discussed in the following paragraphs use small-sized robotic mobile platforms

in every tangible object to make them move and controllable through the system. For this

a differential design is the most simple (due to the size) and easy-to-implement mechanical

design. Here two independently driven wheels are assembled on one axle, enabling the

robots to move forwards, backwards, on curves and to rotate in-place. Compared to the

electromagnetic approach, the technical effort is moved from the interactive surface to the

TUIOs. The surface often is assembled of a (back-)projectable glass plate that is much

cheaper and less complex to establish than in the electromagnetic approach. Otherwise, the

actuated TUIOs are more complex and more expensive.

Planar Manipulator Display Rosenfeld et al. built the PMD [175]. To enable their tangible

objects to act in a bi-directional manner, the used small mobile platforms with a footprint of

6.8 cm × 6.3 cm and put miniature models of pieces of furnitures on top. They used these

objects in a sophisticated approach for placing pieces of furniture in a projected plan of an

apartment. To make use of the actuation of the tangible objects, they added a projected

menu at one side of the interactive surface of their table that enables the user to save and

restore arrangements of the objects for later use. With their system, Rosenfeld et al. made

an important contribution to the field of table-top tangible interaction. In our opinion, such

saving and restoring mechanisms are one essential feature towards general-purpose TUIs.

Otherwise, the design of this system can still be improved. The menu that controls those

saving and restoring mechanisms is fixed at one side of the interactive surface. Thus, in a

multi-user scenario with users standing around the table, this menu is not equally accessible

by every user standing at the table.

Augmented Coliseum and RATI The Augmented Coliseum by Kojima et al. [109] uses

small-sized mobile robots to physically represent entities of a virtual game environment in

a projected tabletop surface. To track and control the robots, they developed their display-

based measurement system. It utilized the projection to control the robots by displaying

fiducial markers at the robots’ positions. These markers have a particular gradient pattern

the robots can sense with light sensors. The robots automatically adjust to match the fiducial

markers when the markers are moved or rotated. Richter et al. picked up this approach

in their Remote Active Tangible Interactions (RATI) system [166], a TUI for distributed

planning. Specifically, it is intended to enable distant users to collaboratively place pieces of

furniture on a virtual plan of an apartment. The first iteration of the system only used one

robotized tangible object, a projected bird-eye view of the plan on the interactive surface

and an additional 3D view presenting a perspective front view of the scene. Two of these

setups were coupled over a network with a custom XML protocol. Later publications claim

extensions of this system with multiple (up to six) redesigned robots, synchronizing the

arrangement of pieces of furniture on both sides involved.
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Tangible Bots Pedersen and Hornbæk developed the Tangible Bots [158]. These actuated

tangible objects are based on Pololu’s commercially available 3pi mobile robot1. These robots

have a diameter of 9.5 cm and are quite sophisticated according to their specifications. The

authors conducted two studies, investigating the combination of the Tangible Bots with

multi-touch input and their usefulness. In a nutshell, it turned out “that Tangible Bots are

usable for fine-grained manipulation (e.g., rotating tangibles to a particular orientation); for

coarse movements, Tangible Bots become useful only when several tangibles are controlled

simultaneously. Participants prefer Tangible Bots and find them less taxing than passive,

non-motorized tangibles. A second study focuses on usefulness by studying how electronic

musicians use Tangible Bots to create music with a tangible tabletop application.” [158]

Pedersen and Hornbæk state that they see their ideas as generalization to the concepts de-

scribed by Patten and Ishii [154]. But working with motorized TUIOs, Pedersen and Hornbæk

ignore the difference between those and electromagnetically actuated TUIOs, which may turn

out as drawbacks: Considering attraction and repulsion between TUIOs for interaction guid-

ance and assistance, electromagnetic TUIOs are superior to motorized TUIOs, since magnetic

forces even work when a TUIO has been (slightly) lifted off the surface. Motorized TUIOs

cannot simulate attraction or repulsion when lifted. Furthermore, electromagnetic TUIOs

support holonomic movement, while motorized TUIOs (using a differential drive) may need

to rotate in order to move in a particular direction. This might violate user-defined values

of representations.

Exotic Approaches: Legged Robots and Ultrasound-based Air Propulsion

Another rather new and exotic approach for TUIOs actuation is the use of legged robots. So

far, only one application using a legged robot has been presented, but the idea of graspable

robots with legs may find further support in the future. Also, ultrasound-based air propulsion

for moving lightweight objects on an interactive surface is a recent exotic approach, which

we briefly discuss here.

Spidey The first legged robot in a tabletop tangible environment is Spidey [191], introduced

by Somanath et al. It is a small six-legged robot, working on a multi-touch enabled tabletop

interface. In an interactive reservoir engineering application, it is intended as a so called

‘butler’, assisting the users of the system.

Kilobots Another related approach that could be also useful for actuating tangible objects

is the use vibrating legs. Rubenstein et al. describe this technology as an extremely low-cost

technology to actuate their small-sized swarm robots Kilobot [176]. From different video

demonstrations it is obvious that this technology is relatively slow and imprecise, but for

special-purpose applications where speed and precision are of low priority, this could be an

interesting alternative to other technologies.

Ultra-Tangibles The Ultra-Tangibles [134] by Marshall et al. use focused waves of air con-

trolled by an array of ultrasonic transducers placed around the system’s display. The 7-inch

display is surrounded by three rows of 144 ultrasonic transducers. The TUIOs are tracked

1http://www.pololu.com/catalog/product/975

http://www.pololu.com/catalog/product/975
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Approach Advantages Disadvantages
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• The TUIOs are quite simple and

inexpensive.

• It is possible to apply forces to

the TUIOs even when they are

lifted off the surface.

• The TUIOs can be rather small.

• No batteries are needed.

• The surface is not easily scalable.

• The surface is rather complex and

expensive.

• The minimum distance of the

TUIOs is limited by the magnetic

fields.
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• The surface is easily scalable.

• The surface is rather simple and

inexpensive (depending on the

display technology used).

• The TUIOs are more easy to

equip with further circuitry, such

as sensors.

• The TUIOs are more complex and

expensive.

• When lifted off the surface, the

actuation has no effect on the

TUIOs.

• The TUIOs require a certain

minimum size for the internals.

• The TUIOs need batteries.

Table 3.1: The ben-

efits and disadvan-

tages of the two major

TUIO actuation ap-

proaches.

with a camera working at 100 fps using the CCV tracking software. This innovative approach

allows to move multiple TUIOs simultaneously as presented in a demonstration video. Here,

up to two TUIOs are moved at surprising speed, though no hard numbers are given. Un-

fortunately, this implementation has visible drawbacks: The large number of transducers

demand a rather high controlling effort with complex hardware. Furthermore, it requires

even more effort to scale the system (more and / or stronger transducers). Also, the frame

of transducers around the display may hinder users to effectively manipulate the TUIOs and

the lightness of them might be an issue, too.

3.2 Summary: Benefits, Disadvantages and General

Comparison

Both major actuation approaches for TUIOs certainly have different benefits and disadvan-

tages. We discuss the differences regarding the interactive surface and the actuated TUIOs,

as summarized in Table 3.1.

The technical surface design differs significantly between the two actuation approaches. The Interactive Surface

key factor for the differences in advantages and disadvantages between the two approaches is

the location of the mechanism responsible for the TUIOs’ actuation. In the electromagnetic

approach, the actuation mechanism is located in the interactive surface. First of all, this

makes it rather complex and expensive. The array(s) of coils determines the size of the

interactive surface and also limits the effort needed to add graphical display and tracking of

the TUIOs. The easier possibility is using top-projection and -tracking, as demonstrated in
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System Actuation Speed

[cm/s]

Footprint Size

[cm]

Actuated Workbench [152] 15− 25 �2.54

Madgets [208] 5− 8 ≈ palm size

Planar Manipulator Display [175] 12.7− 14.3 6.8× 6.3

Tangible Bots [158] < 24.5 �9.5

Tangible Active Objects 5− 18 5× 5

Table 3.2: Com-

parison of the actu-

ated TUIOs’ proper-

ties, as found in liter-

ature. We added the

numbers of the TAOs

for comparability.

the Actuated Workbench [152]. The problem of the hands of the users disturbing the tracking

by occlusion was solved in the PICO system by introducing RF tag-based sensing as shown

in the AudioPad [155]. Weiss et al. demonstrated a far more complex (and presumingly

more costly), but completely integrated approach. They incorporated a display and fiber

optic cables allowing to integrate visual display and visual tracking of the TUIOs from below

(through the interactive surface).

For robotic TUIOs, the technical design of the interactive surface can be rather simple. Ba-

sically, it only requires a transparent tabletop surface, as in the early stages of the TAOs,

allowing visual tracking of the TUIOs from below. Adding visual display can also be accom-

plished by using top- or back-projection or adding a modified LCD monitor to the interactive

surface, as demonstrated in the Tangible Bots [158].

The shift of the actuation mechanism from the interactive surface to the TUIOs themselvesActuated TUIOs

has different benefits and disadvantages for the TUIOs. In contrast to the electromagnetically

actuated TUIOs, the robotic ones are more complex and expensive, as they include electronics

and mechanics, but this makes them much more extensible, allowing to incorporate further

circuity, such as sensors. The way of actuation has a slight but distinct effect on user

experience. Electromagnetic actuation allows to apply force to the TUIOs even when they

are slightly lifted from the surface by the users. This is not possible in robotic actuation.

Furthermore, the differential drive does not allow to perform holonomic motion, unlike the

electromagnetic approach. Otherwise, it easily allows to control the TUIOs orientation, which

was only demonstrated in the Madgets by adding multiple anchor points to the TUIOs [208].

The electromagnetic approach also requires a certain minimum distance between the TUIOs

to prevent the controlling force fields to merge unintentionally. Another major drawback with

robotic TUIOs is the dependence to batteries required to power the actuation mechanism.

This strongly limits the operation time. Finally, robotic TUIOs integrate all the needed

electronics and mechanics which results in a certain minimum size and weight.

Actuation speed and size of the TUIOs found in literature also differs. Table 3.2 gives an

overview of the numbers given in the respective publications. We elaborate on the TUIOs’

actuation velocity in Chapter 8.

Though its hard to tell from literature whether one actuation approach is superior to the

other, this definitely depends on the target application(s) and the will or need to make

trade-offs.

In our opinion, the robotic actuation approach has benefits that make it more flexible and
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extensible from the scientific point of view. Having TUIOs already incorporating electronics

and mechanics massively reduces the effort needed to include further circuitry and compo-

nents, such as sensors and actuators. Though the limited operation time constrained by the

batteries definitely has practical drawbacks, this extensibility enabled us to easily explore new

interaction approaches which was the key argument to decide for robotic actuation. In the

following sections of this chapter, we describe the major design and implementation aspects

of the TAOs.

3.3 The TAO system

In this section we briefly describe the TAOs’ fundamental hardware and software design.

Beginning with a short description of the Tangible Desk (tDesk) that resembles the major

reference frame of the TAOs, we continue with the description of the TAOs’ hardware and

software design.

The TAOs’ Stage: The tDesk

The setting for the TAOs and thereby the first part of the hardware to mention is the

Tangible Desk (tDesk). The current implementation of the tDesk is designed as a cubical

table with an edge length of 70 cm custom made from aluminum profiles. As depicted in

Figure 3.1, it is equipped with an acrylic glass surface with projection foil, a Hitachi ED-A101

projector mounted for back-projection and a Point Grey Flea2 FL2G-13S2C-C camera with

an IEEE-1394b interface and an additional infrared notch filter for tracking the TAOs’ active

infrared markers. The camera runs at a frame rate of 30 fps and has a maximum resolution

of 1288 × 964 pixel. This allows the interactive surface to cover an area of about 56 ×

42 cm. The projector and the camera are connected to the host computer along with an

XBee transmitter for wireless control of the TAOs.

The TAOs’ Hardware Design

The first prototypical hardware and software of the TAOs were initially developed during the

author’s Master’s thesis [167]. Before this, the author already worked with passive table-top

TUIs in the course of a student’s assistant position. Motivated and inspired by the need

of bi-directional interaction (cf. [175]), the TAOs were designed based on the small-sized

swarm robots Jasmin [111] and later Wanda [95]. The Jasmin platform was very inspiring,

whereas the PMD was the first tabletop TUI using a robotic approach for actuating TUIOs.

To be open for later extensions, we decided on the differentially driven robotic approach,

since it allows to incorporate electronics and mechanics within the housings what makes the

design easier to extend, as discussed above.

Because we aimed at making the TAOs usable in multiple applications, we decided in favor

of an abstract cubical shape. To reduce the TAOs’ abstractness, we made used of graphical,
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(a) Drawing of the general tDesk setup. (b) Picture of the tDesk along with some TAOs and

the experimenter desk next to it.

Figure 3.1: The prin-

cipal tDesk design.

Our tDesk is equipped

with a glass surface

with projection foil

on which the projec-

tor mounted behind

the table can project

from underneath. A

Firewire camera un-

derneath the table al-

lows visual tracking of

the TAOs.

auditory and vibro-tactile feedback. The TAOs’ housings were designed using SolidEdge2,

a Computer Aided Design (CAD) program. With the construction data a rapid prototyping

printer produced the housings and all mechanical parts of the TAOs. The design of the

housings was based upon the TUImod building blocks for easily reconfigurable TUIOs by

Bovermann et al. [20]. As a result, the TAOs are modular cubes with an edge length of 5 cm

with rounded edges which makes them easily graspable.

Built within the housings are modular custom designed Printed Circuit Boards (PCBs),

horizontally connected via pin headers. Figure 3.3 depicts the most essential assembly parts

the were developed for the TAOs. As depicted in Figure 3.3a, the main PCB holds an

Arduino pro mini3, an open source microcontroller board using an ATmega138 for rapid

prototyping of electronic devices. Powered by 200mAh lithium-polymer batteries, it runs

the SerialControl firmware4, specially designed for remote controlling the TAOs. To have

wireless communication between the TAOs and the host computer, another PCB holds an

XBee wireless serial module5 (see Fig. 3.3c). The XBee modules are configured to operate

in a star-network between the host computer and the TAOs, in which every TAO has its

own ID. The firmware only reacts on commands starting with the TAO’s own ID. With

the SerialControl firmware it is possible to control each interaction relevant component of

the TAOs, such as the differential drive, driven by another driver PCB basically carrying an

L293D H-Bridge and a 7404N inverter IC. The small DC motors, individually controlled by

this board drive two small wheels, arranged on a single axle (see Figures 3.3e and 3.3f).

This compact design allows to smoothly switch between driving forward, turning in-place,

driving on a curve or driving backwards. For tracking the TAOs, a unique marker was placed

2http://www.plm.automation.siemens.com/en_us/products/velocity/solidedge/index.shtml
3http://www.arduino.cc/en/Main/ArduinoBoardProMini
4http://www.arduino.cc/playground/Code/SerialControl
5http://www.digi.com/products/wireless/point-multipoint/xbee-series1-module.jsp

http://www.plm.automation.siemens.com/en_us/products/velocity/solidedge/index.shtml
http://www.arduino.cc/en/Main/ArduinoBoardProMini
http://www.arduino.cc/playground/Code/SerialControl
http://www.digi.com/products/wireless/point-multipoint/xbee-series1-module.jsp
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(a) Explosion drawing of the basic

TAO design.

(b) Different assembly states.

Figure 3.2: Hard-

ware design of the

TAOs.

underneath each TAO. At first, these markers were especially designed fiducial markers, that

were later replaced by active infrared markers (see Fig. 3.4b, 3.4c and 3.2b on the lower

right). The batteries allow these components to operate for about 30 minutes, depending

on the amount of movement and wireless communication. This design makes the TAOs

easily extensible for further hardware extensions. All mentioned PCBs were designed using

the EagleCAD circuit design and layout program6.

Hardware Extensions

For certain applications and studies, the basic design of the TAOs needed to be extended

or modified. Some of these extensions were used in more than one application after they

were introduced, such as the active marker tracking or the actuated dial. We describe these

general modifications in the following paragraphs, along with prototypes of modifications,

that were rarely used or never passed the design stage. Other extensions, such as the vibration

feedback (see Chapter 6) and touch sensing (see Chapter 7), are described in the respective

chapters describing the study or application in which they were used.

Until the TAO project, blob tracking and the Amoeba marker set along with the software From Passive to

Active Marker

Tracking
library of the reacTable [11, 89] was used for tracking non-actuated TUIOs at Bielefeld

University. An example of these markers is shown in Figure 3.4a.

Since the usable bottom area of the TAOs was smaller due to the space that is taken by the

wheels, we developed a new marker set. The new marker set which we call Alien Faces, is

much more simple than the Amoeba set. Its markers are basically divided into two halves.

The upper half is white with black dots (resembling the face’s eyes) and the lower half is

6http://www.cadsoftusa.com/

http://www.cadsoftusa.com/
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(a) Main PCB with the Arduino. (b) Bottom side of the main PCB. (c) PCB with the XBee module for

wireless communication.

(d) The actuated dial PCB for the

mTAOs.

(e) Mechanics and electronics of

the differential drive.

(f) Bottom side of the assembled

differential drive with the wheels

and the active marker.

Figure 3.3: Essential

assembly parts of the

TAOs.

a black rectangle with white dots (the face’s mouth). The different numbers of black and

white dots within the halves make the markers unique and distinguishable. The two halves

are surrounded by a white rectangle which itself is embedded into the black housing of the

TAOs. By this, it is possible to make them smaller to fit between the TAOs’ wheels. An

example of the set of smaller markers is depicted in Figure 3.4b. The case study for collecting

gestures performed with TUIOs for the ESN (see Chapter 4) used this tracking approach.

The TAOs were robustly trackable and there was no need for projection on the tabletop

surface of the tDesk.

A completely new marker tracking was developed to allow back-projection on the tDesk’s

surface combined with robust tracking. Because even with improved local thresholding of

the input image for the fiducial tracking, this was not robust anymore when combined with

projection because the projection massively changed the local illumination of the camera

image. So we decided to switch from a passive marker tracking to actively illuminated

markers working with infrared Light-emitting Diodes (LEDs) (see Fig. 3.4c). With these

LEDs, the visible light of the projector can easily be filtered with an infrared notch filter

mounted in front of the camera’s lens and a clear image of the LEDs remains in the camera

image for tracking.
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(a) An example marker of the

Amoeba set used in the reacTable

[89].

(b) An Alien Faces marker designed

for the use with the TAOs. The design

uses the reacTable’s tracking system

[167].

(c) One of the TAOs’ ac-

tive LED markers [172].

Figure 3.4: Differ-

ent marker styles used

in TUIs and in the

TAOs, in particular.

The markers’ LEDs have a special arrangement. Each marker has a corner illuminated by

seven LEDs for marker detection and further six LEDs for encoding the marker’s ID, as

depicted in Figure 3.4c and 3.2b in the lower right. The PCBs’ LEDs are controlled by an

NXP PCF8574T/3 8bit I/O Expander IC that is interfaced with the Arduino over an I2C

link. The formerly used Alien Faces markers were removed by this marker PCB.

Because we developed these markers from scratch, also the tracking software was redeveloped

using the ICL7 and its implementation of the corner detection algorithm by He et al. [65].

With the corner detection, we track the triangular LED corner of the illuminated PCB.

Additionally, the LED lying opposite of the corner was used to stabilize the position and

orientation of each marker. The remaining five LEDs are used to encode 32 individual IDs

for the TAOs which can be changed instantly in the running system.

Both the development of the PCB and the tracking software was accomplished by a group

of students under the author’s supervision according to his requirements.

For two applications, one for saving and restoring mechanisms for TUIs (see Chapter 5), the The Tangible

Actuated Dial

Extension
other one for remote collaborative placing of furniture (see Chapter 6), we needed a tangible

actuated menu metaphor. We did not want it to be complex like the menu structures of

the AudioPad [155] and we also did not want it to be tied to one side at the table-top

surface like in the PMD [175]. So we decided to create a new type of TAO with an actuated

menu dial, the mTAO. These new mTAOs were an enhancement of the basic TAO design

as described before, including the active marker tracking. To this design we added a new

PCB which we put on top of the basic design. This PCB holds an ALPS RK25T11M

motorized potentiometer that can be used to sense the orientation of its dial, but can also

be actively controlled by the system. By this, the dial acts as input and output modality at

the same time so that it can indicate internal states of the system and it enables the users

to change the states instantly. The saving and restoring application heavily utilized these

7http://www.iclcv.org

http://www.iclcv.org
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capabilities, accompanied by a projected circular menu and speech output for selecting menu

items without the need to look at the mTAO. The latter property was useful in the furniture

placing application where a second display was used to render a three-dimensional view of

the scene, so that the user can inspect this view while changing the state of the mTAO.

For our remote collaborative furniture placing application, we added vibro-tactile feedbackVibro-tactile

Feedback and Touch

Sensing
to our TAOs. This was achieved by simply incorporating a coin-sized pager motor, driven

by a transistor which is controlled by a single pin of the Arduino. It is possible to drive the

pager motor at different speeds which results in the TAOs to vibrate in varying intensities.

In the furniture placing application (see Chapter 6) we used the vibro-tactile feedback to

inform the users of inconsistent states in the simulated model.

Touch sensing was used in the comparative study, described in Chapter 7. By adding a high-

value resistor and an antenna, we were able to implement basic capacitive touch sensing. We

used it to detect whenever TAOs are touched by a user and used this information to create and

alter constraints between multiple touched TAOs. When only one TAO was touched, existing

constraints were maintained between the TAOs by moving them autonomously according to

the TAO moved by the user.

Depending on the use of the TAOs’ motion and communication, the batteries last for aboutBattery Monitoring

and Charging half an hour. Within an experiment, it can be a big problem if a TAO suddenly stops moving

or is not responding to requests for sensor values, not knowing if there occured an error or if

the batteries ran out of power. For this convenience, we added simple circuitry to the main

PCB and some additional lines of code for the firmware to enable monitoring of the TAOs’

batteries and to replace them before the TAOs stop working. As a proof-of-concept, we also

added a tiny PCB for charging and prevention of deep discharge of the battery. Due to the

very limited space inside the TAO, it was not possible to charge it while it’s running without

a complete redesign of the main PCB. So we did not extend the other TAOs with these

features.

The System’s Software Architecture

The control of the TAOs’ actuation along with synchronized graphical display, sound out-

put, additional sensors and actuators etc. is a complex task. Thus, we decided to use a

distributed approach for the software design even in the earliest stage of the development.

This also allowed us to encapsulate the different control and interaction aspects in generic

stand-alone software components that can be easily extended and re-combined. To enable

communication between the components we utilized XCF8 [51], an XML-based middleware,

developed at Bielefeld University. Later, we switched to the RSB9 [211], the successor of

XCF, which is more lightweight but still flexible and versatile. Both middlewares feature

the Publisher-Subscriber paradigm which allowed us to loosely connect the software compo-

nents by transmitting all relevant data over the network and registering on the different data

streams relevant to the particular components. Adding further components to the system

8https://code.ai.techfak.uni-bielefeld.de/trac/xcf
9https://code.cor-lab.de/projects/rsb

https://code.ai.techfak.uni-bielefeld.de/trac/xcf
https://code.cor-lab.de/projects/rsb
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Figure 3.5: The

software components

of the TAO system

architecture and its

main control loop.

The essential com-

ponents are printed

in red, optional

generic components

are printed in green.

Special-purpose

components, such

as the sonification,

the three-dimensional

view or the remote

synchronization are

not included here,

but are covered in the

respective sections.

is simple with this architecture. Each new component can simply pick up the needed data

streams that are relevant to the component without interfering others and provide its own

information to the middleware from where other components can use them.

Through the course of this project many different software components were developed.

There are some essential components almost every application or study design needed to run

properly, such as the tracking component and the path-planning component, while others

are optional. We briefly describe one iteration of the control loop, the involved fundamental

components and their interplay in the following paragraphs; Figure 3.5 gives a graphical

overview of this control loop along with an overview of further available components.

The iterative control loop starts with the TAOs standing on the tabletop surface of the The Basic Control

LooptDesk. In each iteration of the loop, the camera underneath the surface takes an image of

the TAOs’ markers and the tracking component extracts their position, orientation and ID.

These information are distributed to each component listening to this data stream via the

middleware.

The path-planning component listens for the position and orientation information from Path-Planning and

the Serial Gatewaythe tracking component. Its plugin-based design implements different replaceable path-

planning approaches, including a potential field plugin, implemented after Latombe [119]

and a physics-based planning approach using the Box2D physics engine10 offers its path-

planning capabilities with obstacle avoidance to the system. A third very simple planning

plugin implements a rather naive approach for applications where obstacle avoidance is not

explicitly needed. By requesting a TAO to be navigated to a new target position and ori-

entation, this component plans a trajectory according to the current planning approach and

10http://box2d.org/

http://box2d.org/


34 Actuated Tabletop TUIs and the Implementation of the TAOs

calculates control commands that are again spread over the middleware to the serial gate-

way. This gateway component transmits the motor commands over the serial port of the

host computer to the XBee module which provides wireless communication with the TAOs.

These motor commands make the TAOs move, which results in a slightly changed cameraClosing the Loop and

Adding Further

Components
image and the basic loop for controlling the TAOs’ movement is closed. Further components

hook into this loop to control additional aspects of the TAOs. They provide interfaces to the

visual display and optional interaction aspects of the TAOs, such as the gesture recognition,

the actuated dial, vibro-tactile feedback or touch sensing.

The visual display component is another essential component. In its basic configuration, itVisual Display

just visualizes the position of each TAO, but it offers further custom visual augmentations on

request. It provides additional TAO visualizations, such as menus and drawing capabilities

ranging from basic geometrical shapes, such as rectangles, ellipses, lines, text, to drawing

images, additional labels and a full featured web view which is able to show Flash videos.

There are optional software components for controlling further interaction aspects of theAdditional Interaction

Aspects TAOs. Each of these components encapsulates the respective feature’s capabilities and

properties at different levels. For instance, the menu and dial control component simply

allows to automatically rotate a TAO’s dial to a certain position. As higher-level functionality,

it is able to receive a complete menu structure over the middleware and to manage the users’

interaction with the dial accordingly, emitting events when a menu item has been selected

or should be selected by the system. The software components interfacing with the vibro-

tactile feedback, the touch sensing or the speech output work similarly. An additional software

component provides scripting possibilities for rapid prototyping of basic applications using

the Python programming language.

Also, abstract interaction control mechanisms can be easily incorporated. When started,

the constraints component enables the users to define spatial relations between TAOs by

simply touching them simultaneously. When only one TAO is moved by the user, the other

constrained TAOs move along autonomously. This interaction behavior of the system can

be easily added or removed by starting or stopping this software component.

LibTAOs: A closer Look

This software architecture provides sophisticated means for designing rich interactions for the

TAOs. To conveniently encapsulate the communication between the components and to en-

able application developers to easily create integrated applications for the TAO architecture,

a programming library was written along to the software components. This object-oriented

programming library was implemented in C++ and the Qt11 toolkit and provides convenience

classes for interfacing with the architecture’s components.

These classes provided by LibTAOs through the factory method pattern mainly deal with

communication between the different software components by wrapping the middleware to

Qt’s signal/slot mechanism and vice versa. For each software component there are two

classes, a master singleton class used in the component itself and a slave class which can

11http://qt-project.org/

http://qt-project.org/
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Figure 3.6: A typical

simplified case of ap-

plication development

with the four core

components using

the LibTAOs. The

core components are

printed in red. The

application (printed
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core functionalities

through the slave

classes provided by

LibTAOs (all printed
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note that for each

component there is
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slave classes can have

multiple instances

across the software

architecture.

have multiple instances in other components. The master class is used in the software

components providing certain features, serializing the components’ data stream through slots

and publish these data on the middleware. On the other side the slave classes receives these

data streams, parses the data and emits signals that can be processed on the application

side conveniently. This mechanism makes the middleware transparent from the application

developer’s perspective and provides versatile and convenient management of data streams

within the TAOs’ software architecture making them easily accessible across components.

Figure 3.6 depicts a typical case of application development with the four core components

and explains how LibTAOs’ communication classes work together providing the ‘glue’ between

the software components and the application.





4Triggering Actions:

Gestural Interaction with the TAOs

When we speak, in gestures or signs, we fashion a real

object in the world; the gesture is seen, the words and the

song are heard.

Émile Chartier

The Gods (1934), Introduction

One important step towards versatile TUIs is the ability of the user to trigger different

commands and to react interactively on certain events represented by the systems TUIOs.

Though often used in multi-touch applications to manipulate the data being displayed (zoom,

rotate etc.), gestural interaction is rarely used in tabletop TUIs, as already indicated in the

research gaps (see Chapter 1).

In this chapter we investigate if and how users would accept performing gestures with our

TAOs to trigger actions and describe the process of collecting fitting gestures for and example

application. Though this approach does not explicitly add to actuated TUIs in particular,

it contributes to the field of Tangible Interaction in general. Without the need to build

actuated TUIOs, system designers can make use of gestural interaction to provide a means

to select from a larger range of actions. We also describe our Embodied Social Networking

client (ESN) [172] as an example application. It provides a TUI for accessing a social network

and features 11 base functions for this interaction style. From the process of building this

system, we also derive first design guidelines for gestural interaction with the TAOs.

4.1 Related Work

Gesture-based interaction is a well established technique for enabling the users to trigger

commands, either through Mouse, multi-touch or whole body interaction, using a depth

camera such as the Kinect sensor. Gesture control can be found in consumer products,

such as smartphones and tablet-PCs, web browsers and even television sets. Using gestures

is a much more natural way of interaction compared to using Mouse and keyboard, but at

the same time much more complex in terms of computational perception and processing on

the computer side. Nonetheless, there is a large community working on gestural interaction

paradigms. These paradigms include whole-body gestures, gestures with objects (such as

dolls [87, 202] or a baton [133]) or surface-based (multi-) touch gestures. There are systems
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combining surface-based touch gestures with a table-top TUI. But until the conduction

of this study, there was no publication investigating gestural interaction with TUIOs on a

table-top TUI.

Buxton gave an overview of existing devices supporting multi-touch interaction (until 2008)Surface-based

Gestural Interaction and elaborates characteristics of multi-touch interaction [25]. Due to the problem’s com-

plexity, the community offers a vast variety of different gesture recognition approaches with

different qualities and application fields. Examples for these approaches are: [1, 4, 113, 114,

122, 125, 214].

The collection of a suitable set of gestures for a particular application is not trivial, as

Wobbrock et al. described [216]. They also introduced a taxonomy for surface gestures,

involving aspects such as a) form dealing with hand pose and path, b) nature which could

be symbolic, physical, metaphoric or abstract, c) binding referring to object or world relations,

comparable to our definition of the interaction frame (see Sec. 2.1) and d) flow meaning

whether the system’s response occurs during (continuous) or after (discrete) the users’ act.

Using this taxonomy, they collected and classified a set of user-defined gestures. Comparing

this user-defined set with a set defined by researchers, Morris et al. [144] made the interesting

observation, that users prefer the user-defined set over the researcher-authored set. Another

problem with such gestures is their guessability – no one wants to browse a handbook for

finding the right gesture currently needed. As a consequence, Wobbrock et al. described a

method for maximizing the guessability of symbolic input [215]. Gesture Works is working

on a standardized set of gesture definitions which is collected in the Open Source Gesture

Library1. It is based on GestureML, a markup language for gestures. Another domain-

specific language for defining gestures is the Gesture Definition Language (GDL), introduced

by Khandkar and Maurer [96] which is now part of the GestureToolkit2.

As one of the first TUI, RoboTable by Krzywinski et al. [115] combined the use of surface-Table-top TUIs and

Gestural Interaction based touch gestures with a TUI. Within a mixed-reality game scenario, it enabled the users

to remotely control mobile robots with passive TUIOs. Unfortunately the authors did not

clearly explain if and how gestural input is actually used in their approach.

Another approach combining multi-touch interactions with actuated TUIOs was the Tangible

Bots system [158]. Here Pedersen and Hornbæk elaborately described their ideas of com-

bining actuated TUIOs and multi-touch interactions: In the first combined approach they

proposed indirect interaction commands. By drawing a path with a finger on the surface,

the users could command the TUIOs to move along this path. As another possibility, users

could tap near a TUIO to command it to rotate into this particular direction. To apply inter-

actions to a group of TUIOs, Pedersen and Hornbæk implemented three ways for grouping

TUIOs according to recommendations by Micire et al. a) “A user can group two tangibles

by placing a finger below one tangible and double tap below another”, b) “users can group

multiple tangibles by lassoing them with a finger or” c) “by forming a bounding box around

the tangibles with two fingers.” [141]

1http://gestureworks.com/features/open-source-gestures/
2http://gesturetoolkit.codeplex.com/

http://gestureworks.com/features/open-source-gestures/
http://gesturetoolkit.codeplex.com/
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4.2 Motivation

Striving to extend TUIs with means for triggering a wider variety of actions making them

feature rich, we considered gestural interaction for the TAOs. For a first application, this

already wide-spread interaction style required no hardware modifications to the TAOs. This

allowed us to use components already at hand that only needed few additions to the software

to work for our purposes. Central piece of software here is the LibStroke3, a rather simple

gesture recognition library for the X11-Desktop system.

In the literature mentioned above, the term gesture refers to (multi-)touch or finger gestures, Gesture Definition

performed on a planar surface incorporating a graphical display. Within the frame of the fol-

lowing study, we refer to motions which participants perform with one single pointing device

/ item (Mouse, digital pen, finger, or other object) in order to trigger certain commands.

For instance, when using a web browser, such a gesture might be like drawing a straight line

from the right to the left in order to go one page back in the browsing history.

Now, the aim of this study is not to collect a generally applicable task independent set of

gestures as described in literature. On the contrary, we wanted to investigate which different

qualities user-defined gestures can have and how they differ. To study the use of gestures

with TUIOs, we chose simple communication within a social network as a straightforward

toy setting. We developed our ESN with a manageable number of 11 commands of varying

complexity, some of them with different meaning, some semantically related, according to

the participatory design study approach proposed by Wobbrock et al. [216]. Such similar

commands are accept contact request and remove contact. Of course, there could be more

commands to be used within the interaction with a social network, such as share, but we

chose not to add more commands to not overwhelm the participants. Table 4.1 explains the

commands used in these studies.

In our study described in this chapter, we ask participants to elicit gestures or choose gestures

from a given set which they find fits best to given commands. The more often a combination

of gesture and command is given as an answer, we can suppose that this combination is easy

to guess and remember for potential users of our system.

4.3 Collecting User-defined Gestures with the TAOs

Technical Extensions

For gesture recognition we modified the already mentioned LibStroke to be able to process Gesture Recognition

trajectories the users performed with the TAOs and wrapped it into a software component

for the TAO system. Applications and programs supporting LibStroke allow to define num-

ber sequences representing gestures according to Figure 4.1 that trigger commands after

performing such gestures with a Mouse. The gesture recognition component feeds recorded

trajectories performed with the TAOs into the library and retrieves the resulting sequence of

3http://etla.net/libstroke/

http://etla.net/libstroke/
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# Command Description

1 read sender Triggering the read sender command lets the system dis-

play the sender of a particular message beside the mes-

sage’s TAO and lets it read the name of the sender out

using a TTS engine.

2 read message The read message reacts similarly to the read sender com-

mand, but displays and reads out the message instead of

the sender’s name.

3 open link If there is a link included in the message assigned with the

current TAO, this command opens the link and displays

the website on the interactive surface.

4 close link If a user opened a link included in a message, it can be

closed again by triggering the close link command.

5 compose answer In order to get a graphical input widget for composing a

textual answer with the keyboard, the user has to trigger

the compose answer command.

6 add contact The add contact command allows the user for entering a

contact’s name to be added to the contact list.

7 remove contact Removing a contact from the contact list can be achieved

by triggering the remove contact command.

8 accept contact request The user can accept received contact requests by perform-

ing the gesture assigned to the accept contact command.

9 decline contact request Likewise, the user can decline a request with the decline

contact request command.

10 search To get an input widget for entering a specific topic to

search the social network for, the user can trigger the search

command.

11 compose new message To give the users the possibility to not only react to events

on the social network, they can also compose new messages

by triggering this command.

Table 4.1: Overview

of the commands used

in the gesture experi-

ments.
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1 2 3

4 5 6

7 8 9
(a) Grid numbering used by Lib-

Stroke to generate numbering se-

quences for gesture trajectories.

(b) Example gesture trajectory

starting at the blue dot and end-

ing at the red x.

Figure 4.1: Specifi-

cation of gesture tra-

jectory sequences in

LibStroke; the ex-

ample trajectory re-

sults in the sequence

“1478963” [172].

numbers which can be easily processed using string comparison. Gesture recognition can be

turned on and off individually for single TAOs or all at once.

In the final application, we used a finite state machine approach to manage the different Gesture Management

using Finite State

Machines
gestures and actions to be triggered. The Qt framework offers a convenient way to define

such state machines. In applications signals can be automatically triggered on certain events,

such as the occurrence of different gesture trajectory sequences. This allows for flexible

definition of gesture action connections and even multiple gestures per action.

We used state machines in the automated experiment procedure as well, to developed a Experimentation

Softwarecontrol component which eases the execution of the processes and also helps to detect and

prevent errors. For this, we implemented a state machine in our study control software that

randomizes the sequence of commands, organizes the trials, triggers speech playback, records

the performed gestures, transmits navigation requests to the TAOs’ path-planning and starts

and stops the audio recording during the whole experiment.

Speech output was used to supported the requirement to have consistent instructions for the

participants without the risk of unintentional priming. This speech output component was

also used for the implementation of the actual system when it came to reading messages to

the user.

Experimental Design and Procedure

For our study we used the tDesk and the TAOs as described in Section 3.3. We were not able Setting

to use the active marker tracking and back-projection during the study, because they were

still in development at this time. On first sight this could be a disadvantage, however, there

was less risk of distracting or somehow priming the participants with eventually misleading

graphics. This allowed us to develop the active marker tracking while conducting the study so

it would be ready when implementing the actual system with a projected graphical interface.

Furthermore, having a clear glass surface allows to perform gestures where the TAO was

lifted during gesture performance. Also depending on the outcome of the study, a suitable

design can be implemented. Consequently, each participant of the case study was asked to
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stand at the tDesk with its clear glass surface under which the camera was mounted to track

the TAOs. We marked the border of the interactive surface with tape.

Each single participant was sequentially faced with the eleven commands from Table 4.1 inProcedure

random order. Each command was presented using computer generated speech output. At

the same time an audio recording was started. For every command, the participant had to

elicit a gesture which he or she thought it would fit, thinking aloud. When a fitting gesture

was found, the participant was asked to perform it three times with the TAO standing in

the middle of the interaction area of the tDesk. During gesture performance, the performed

trajectory was recorded in a log file. Additionally, every trial’s sequence of TAO coordinates

was fed into the gesture recognition module utilizing the LibStroke. After every gesture

performance, the TAO automatically moved back to the middle of the interactive area to

have the same initial situation for every trial.

After performing the just elicited gestures three times for each of the eleven commands, theQuestionnaire

participants were asked to complete a digital questionnaire. Here we asked for demographic

information, such as age, sex, handedness etc. Like in the paper questionnaire, we also

wanted to know whether the participants were familiar with gestural interaction and social

networks and if they use them. Additionally, we asked if the participant could imagine to use

a system with TAOs supporting gestures and if they would prefer a pre-defined set of gestures

or if they would like to be able to alter the gestures supported by the system. Appendix A.1

gives a detailed overview of the questions asked.

Participants

For our case study we randomly recruited N = 15 colleagues and students from the institute’s

area. As illustrated in Figure 4.2, all of them were right-handed and were on average 32.33

years old from which 20% are female. About 60% knew about technical systems supporting

gestural interaction, including multi-touch interfaces such as smartphones and tablet-PCs,

but only 20% of these participants knowingly used gestural interaction. In contrast, the

participants were quite familiar with social networks (about 87%) and eleven participants

(73%) actually used one or more social networks.

Quantitative and Qualitative Study Results

To avoid the influence of eventual bad recognition results of the LibStroke, we coded andTranscribing the

Gestures transcribed the collected data based on the recorded trajectories, audio recordings and gesture

recognition. Figure 4.3 depicts the results for the transcribed gestures the same way as for

the paper questionnaire. Here we can observe a relative ambivalent situation, due to two

classes of performed gestures in terms of their recognizability with LibStroke.

The first class is the group of rather simple which are easily recognizable by the LibStroke,Two Classes of

Gestures as intended. According to taxonomy defined by Wobbrock et al., the gestures can be char-

acterized by the following attributes: They are mostly performed with a static pose and path

(Form) and originate from a symbolic Fature. As the gestures have to be performed with a

TAO in hand, they have an object-centric binding. By design, the flow is discrete, as the
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Figure 4.2: Overview

of the demographic

information and an-

swers given in the dig-

ital questionnaire the

participants filled out

at the end of the ex-

periments.

action is triggered after the gesture is successfully recognized [216]. The gestures include

single-stroke trajectories, such as “down” (258 ), “left” (456 ), “right” (654 ), “up”

(852 ) “up left” (951 ) and “up right” (753 ). Also gestures with shifts in drawing

direction can be observed, such as “down, right” (14789), “left, right” (45654 ) and “left,

up” (98741 ). We were surprised to find a second class during the conduction of the

study, which we unluckily expected LibStroke to be unable to recognize robustly. This class

includes more complex gestures, such as “check”, “circle clockwise” and “X”. Though the

“check” gesture is basically recognizable by LibStroke, its recognized number sequence may

vary due to slightly different ways to perform this gesture. For the other gestures of the

second class this applies even more. Figure 4.5 depicts recorded trajectories of transcribed

gestures, gathered during the experiments.

Having a look at the gestures recognized by LibStroke, we can easily find most of the Recognized Gestures

gestures of the first class, as described above in Figure 4.6. Here we find comparable

frequency distributions for the gestures for the first class. Unfortunately, we can also observe

a rather large number of low frequencies spread over the diagram. These are artifacts of false

recognitions for the gestures of the second class. For instance the recognized sequence 47863

is an artifact that very likely refers to the “check” gesture, while most other recognized

sequences cannot be referenced at all. Otherwise, we observed complex gestures that were

recognized as rather simple gesture sequences. For instance, the very rare “wave” gesture

depicted in Figure 4.7f was mapped to the 456 gesture. So far we can say that at least for
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Figure 4.3: Compact overview of the high frequency gesture-command combinations observed in

the case study after coding and transcribing the collected data.

Figure 4.4: Com-

pact overview of

the high frequency

gesture-command

combinations ob-

served in the case

study after coding

and transcribing the

collected data.

the second class of gestures, our recognition approach using LibStroke is mostly unsuitable.

The overview given by Table 4.2 helps us understanding the situation. Remarkable is the rel-Differences between

Recognized and

Transcribed Gestures
atively high number of used recognized gestures. This applies for each command, the mean

(28.7) and the general number of gestures (189). In contrast, the number of transcribed

gestures is surprisingly low. Altogether, the participants only performed 59 gestures and on

average only 14 different gestures per command. This also reflects the average frequency of

the performed gestures (3rd major column of the table). With respect to the high number of

different recognized gestures, the relatively high average here indicates a broad distribution

of frequencies, which is supported by the ranked bar plots in the appendix (see Sec. A.1).

Otherwise, with the low numbers of transcribed gestures in mind, the surprisingly high aver-

age frequencies here point to well-fitting gesture-command combinations. Also interesting is

the second major column of the table with the maximum frequencies. Here we can easily dis-

tinguish between the two gesture classes we identified earlier. Those commands with similar

maximum frequencies indicate gestures of the first class, while commands with rather differ-

ent maximal frequencies (lower for the recognized gestures) denote candidates of the second

class of gestures. We can easily see that the gestures accept contact request, add contact,

close link and decline friend request definitely belong to the second class of gestures. There
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(a) “check” gesture (b) “circle cw” gesture (c) “down” gesture (d) “down, right” gesture

(e) “left” gesture (f) “left, right” gesture (g) “left, up” gesture (h) “up” gesture

(i) “up left” gesture (j) “up right” gesture (k) “X” gesture

Figure 4.5: Visual-

izations of the final

gestures used in our

implementation of the

ESN. An X symbol

marks the start of the

gesture movement, a

circle symbol marks

the end. The tran-

sition from start to

end is represented by

a color gradient from

blue to red [172].

is only one exception: The remove contact command has two corresponding gestures with

20 % each. Gesture “left” (654 ) belongs to the first class and gesture “X” belongs to

the second. As a consequence, we unfortunately have to admit that our approach using the

LibStroke is not applicable for gestures of the second class of gestures. We can observe, that

both a high maximum frequency and a high average frequency for the transcribed gestures

at the same time already hint to very good fitting gesture-command combinations.

At the end of each experiment we asked the participants to fill out a digital questionnaire. User Reactions

Beside the general demographic data we already described earlier, we also asked if the partic-

ipants could imagine to use an actual system with the TAOs supporting gestural interaction

and if they would prefer a pre-defined set of gestures or if they would like to define their

own set of gestures. The results from these two questions support the other results from

the questionnaire and the study. While about 26% of the N = 15 participants can imagine

using a system with TAOs supporting gestural interaction and 20% cannot, and over 50%

are unsure. On the contrary, we can observe a trend regarding the wish for user-defined

gestures. Nine of the N = 15 participants (60%) would prefer user-defined gestures. Only

12% were unsure, while 23% would accept a pre-defined or standardized set of gestures.

During the experiments and the evaluation of the audio recordings, we made further obser- Further Observations

vations. We asked the participants to think aloud during the experiment and we asked for

explanations of their decisions. From these qualitative evaluations we observed that some

of our participants tried to perform gestures which we had not expected. Because we only
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Figure 4.6: Compact

overview of the most

frequent recognized

gesture-command

combinations ob-

served in the case

study.

focused on trajectories of translational 2D positions, our gesture recognition was not able

to cope with intended rotation (in-place rotation, to be specific). Furthermore, some par-

ticipants tried to shake or lift the TAO as part of their gesture performance. Due to the

technical limitation of 2D tracking of the TAOs, this is currently not possible. As a con-

sequence, for TAOs supporting gestural interaction, full 6 degree-of-freedom interaction is

desirable in future implementations.

Applying the surface gesture definition by Wobbrock et al. [216] to our case study, we can

observe that the hand pose is rather static while the hand moves during gesture performance

with the TAOs, very much like in Chapter 8. Furthermore, the observed nature of the gestures

is mainly abstract and symbolic. Many participants argued for moving the TAO in a particular

direction to reflect abstract actions, such as “down” for reading a text or “up” for pushing

something away. In the case study we also observed a number of participants, arguing for

the interactive surface as reference frame for gesture performance, such as corners or sides

of the area which was rather surprising to us. Due to the command-like characteristic of

our approach, all gestures show a discrete action flow. Some participants also oriented their

performance on trajectories shaping one or two letters, such as “L” for open link, “X” for

remove contact, “OK” or an “arrow” gesture for accept contact request or “?” for search.

While the first two gestures were already presented in Figure 4.5, the latter three trajectories

are printed in Figures 4.7a and 4.7b. On rare occasions, participants also elicited gestures
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Command rec. trans. rec. trans. rec. trans.

read sender 30 14 13 13 6.23 7.50

read message 26 13 26 27 6.77 7.54

open link 24 14 13 13 6.58 7.00

close link 21 9 20 33 7.67 12.11

compose answer 26 15 13 13 6.81 6.93

add contact 24 11 13 20 6.88 9.81

remove contact 30 12 20 20 6.47 8.33

accept contact request 31 14 13 27 6.45 9.93

decline contact request 27 11 13 33 6.52 9.09

search 28 14 13 13 6.52 8.00

compose new message 20 13 13 13 7.05 8.15

mean 28.7 14 17 22.5 7.10 10.53

over all commands 189 59 24 33 0.94 1.82

Table 4.2: Basic pa-

rameters of the col-

lected study data.

that are rather complex and metaphoric. Figure 4.7 depicts some examples. One participant

worked with a lassoing metaphor which resulted in complex gestures incorporating a circle

which got checked or crossed out, as depicted in the Figures 4.7d and 4.7e. Also another

participant came up with a “wave” gesture representing sound waves and a “mouth” for the

“read message” command. These rare but diverse gesture occurrences reflect the complexity

of the experiment task.

4.4 Implementation of the Embodied Social Networking

Client

To generally allow to implement the ESN client, we extended the tDesk to be back-projected, Hardware Extensions

as described in Section 3.3. For this we applied semi-translucent foil that allows projection

with a wide-range projector from underneath the tabletop surface without occlusions by the

users’ hands. Since the projector works only with visible light, we equipped the TAOs with

special markers using infrared LEDs. By applying an infrared notch filter to the Firewire

camera that captures the images for tracking the TAOs we get a clean image of the markers

without any interferences by the projection. A specially developed tracking software tracked

the new markers while offering the same interfaces as the formerly used tracking component.

Figure 4.8a gives an overview of the software component collaboration of the final ESN Graphical Display

implementation. We added a software component for creating the visual display that is
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projected at the interactive surface of the tDesk. This component provides drawing and

interactive management of graphical primitives widget support covering labels, text entry

and web content rendering, which even includes full-screen flash videos. While the name

of the sender and the actual message is read out by the speech synthesis component, label

support was also needed. The text entry widget enables the user to compose answers and

new messages. The web content view allows to display web pages, even including embedded

videos.

We chose Twitter as a social network to interface with, due to its openness and the relativelyTwitter Gateway

simple API. For interfacing with the social network we made use of our Python scripting

module of the TAO system and wrapped the Tweepy for our purposes and made the relevant

action call accessible to our TAO system. This enabled the system to receive messages and

posts, search the timeline and manage contact requests.

To stick with the gesture recognition component we already developed, we also decided toGesture Recognition

only use first class gestures for our first proof-of-concept. As the tangible metaphor, the TAOs

should represent messages in the social network and events, such as contact requests. Based

on the results of the recognized gestures (see Fig. 4.6), we chose the gestures-command

mapping listed in Table 4.3.

Because of the string comparison-based approach, we used a state machine implementationMain Component

Design for the application component to model the interaction with the system. Fortunately, Qt

already offers a versatile state machine API which we could not just incorporate in the

study, but also in our application implementation. This implementation also allows context-

sensitive gesture-command assignment, which was helpful as gesture 258 is ambiguous for

the commands read message and accept contact request. If the TAO currently used by the

user is a message, the state machine assigns gesture 258 with the read message command

and with accept contact request if the used TAO is a contact request. Figure 4.8b depicts

(a) “OK” gesture (b) “questionmark” ges-

ture

(c) “arrow” gesture (d) “checked circle” ges-

ture

(e) “striked out circle”

gesture

(f) “wave” gesture (g) “mouth” gesture

Figure 4.7: Visual-

izations of rare but all

the more interesting

gestures that partici-

pants performed dur-

ing the study.
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Figure 4.8: Gen-

eral software com-

ponent overview and

state machine design

of our ESN implemen-

tation [172].

the behavior of the TAOs. For each TAO there is an instance of this state machine. As

the interface is meant to provide access to one Twitter account at a time, we decided on a

single-user interface design. That allowed the design of the graphical interface to be oriented

to one side of the tDesk. Having the TAOs waiting at the furthest border of the interactive

area of the tDesk and message queues at the sides, left enough space for gestural interaction

with the TAOs.

4.5 Interaction Design

Our interaction design approach allows for versatile interaction possibilities. The storyboard

depicted in Figure 4.9 and the demonstration video give an insight into the interaction

possibilities that covers three examples (read sender, read message and answer) of the

implemented 11 actions and how they can fit into the general work-flow. This work-flow

follows the same interaction scheme for all commands. In the following, we describe the

scheme for the reactive commands:

• On startup all available TAOs are in the unassigned state. They automatically switch over

read sender 951 compose message 753

read message 258 add contact 25852

compose answer 456 remove contact 654

open link 14789 accept contact request 258

close link 32147 decline contract request 85258

search 98741

Table 4.3: Promis-

ing candidates for

well-fitting command-

gesture combinations

based on the recog-

nition results of the

case study.
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to the waiting state when placed in the waiting area (see Fig. 4.9a).

• Whenever a message is received from the Twitter interfacing component (see Fig. 4.9b),

it emits dmMsg or tlMsg events, which trigger an unassigned TAO to autonomously

enqueue into the “direct message” or “timeline message” queue and switch into that

particular unread state (Fig. 4.9c).

This behavior inherently reflects the temporal order of the messages within the two queues.

• When the users takes an enqueued TAO to the interaction area, the gesture recognition

for this particular TAO is automatically activated and transmits every recognized gesture

to the application component. Here the gestures make the state machine switch to the

corresponding states which triggers the respective actions (see Figures 4.9d, 4.9f and 4.9h).

• When the TAO’s state machine reaches the end transitions close link or answer from the

message branch or the end transitions of the interaction branch, a timer for an interac-

tion timeout is activated. After that timeout, the TAO’s state machine switches to the

unassigned state which deactivates the TAO’s gesture recognition and lets it move back

to the waiting area again (Figure 4.9j).

If messages arrive when all available TAOs are in queues, the messages are stored.

• When a TAO becomes unassigned again and has returned to the waiting area, it directly

gets assigned to the next stored message until all stored messages are processed.

Likewise, the interaction works for the action initiating commands when an unassigned TAO

is taken from the waiting area to the interaction area: The TAO’s state machine activates the

gesture recognition, but reacts to other gesture sequences and triggers their corresponding

actions.

4.6 Discussion

With this study, we only searched for gestures that are applicable in a single-user and task-

specific application. In other words, we cannot directly transfer the findings to other ap-

plications. This especially applies to multi-user scenarios when the users stand around the

tDesk. The system has to respect the users’ directions towards the table to correctly rotate

the gesture trajectories for recognition, since most of the observed gestures are rotation de-

pendent. Additionally, users wish to be able to alter the gestures as long as there are no

standardized gestures. This supports the findings of Wobbrock et al. [216]. Users should

also get assistance by the system on what gestures are available, when needed. Finally, one

has to keep in mind that conflicts between commands may occur when the same gesture is

a well-fitting candidate for different commands.

The described implementation is meant solely as a proof-of-concept and to demonstrate theImplementation

Critiques basic ideas. An optimal implementation should feature a larger interaction area embedded

into the everyday life environment of potential users. To enable the development of mean-

ingful applicability beyond concept demonstration, the system should also be equipped with

more TAOs. Obviously, the gesture recognition has to be replaced in favor of a more versatile

and robust recognition approach. To support the recognition component, it is worthwhile

to review the necessary commands, since some could be unified and assigned to the same
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(a) In the initial state of the system,

the TAOs stand in the waiting area

until new messages are received.

(b) A message has been sent to the

social network from a mobile device.

(c) Received by the system, the

message gets represented by a TAO

which automatically moves to the

direct message (DM) queue.

(d) The user takes the TAO from

the message queue and performs the

read sender gesture with it in the

interaction area.

(e) The sender is displayed next to

the TAO and read out loud by the

system.

(f) The user performs the read mes-

sage gesture with the TAO.

(g) The message content is dis-

played next to the TAO and read

out loud.

(h) The user performs the answer

gesture with the TAO.

(i) A text entry widget is displayed

next to the TAO and the user enters

the answer via keyboard.

(j) After transmitting the answer,

the TAO automatically moves back

to the waiting area.

(k) The transmitted answer is in-

stantly received on the mobile de-

vice.

Figure 4.9: Sto-

ryboard of an

interaction including

triggering of three

different actions and

performing the asso-

ciated gestures with

a TAO representing a

message (stills from

the demonstration

video).

http://doi.org/10.4119/unibi/2696631
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gestures. An unobtrusive and more appealing graphical design that supports the embed-

dedness into the working environment of potential users is desirable, as well. Furthermore,

the addition of more graphical information without gestural interaction, such as sender, date

and time, can ease the workflow with the system. All these proposed improvements can

enable long-term studies for investigating the suitability of the system in the user’s normal

environment.

In related publications that appeared after our study was conducted, we found further in-Younger Related

Work teresting approaches that definitely show that gestural interaction for (active) TUIs is a

promising trend in the field. Just after we finished our work on the ESN, Milosevic et al.

published their work on sophisticated smart devices using Inertial Measurement Units (IMUs)

and Hidden Markov Models (HMMs) for gesture recognition [142]. Though HMMs require

off-line training, we see this approach as a good example for technical improvements. Hoven

and Mazalek published a comprehensive survey on gestural interaction including implications

for TUIs [80] shortly after our study. Mazalek et al. “considered conceptual, cognitive, and

technical dimensions for gestural interaction with tangible active tokens” [138], such as the

Sifteo cubes [139]. Valdes et al. conducted a study using these active tokens in a participa-

tory design study [201] and elaborated on design space implications. Recently, Angelini et al.

even presented a comprehensive “Framework for Tangible Gesture Interactive Systems” [2].

Derived Design Implications

In this section we described how to cope with these issues and what designers of tabletop

interfaces with TUIOs supporting gestural interaction should keep in mind.

To support multi-user gestural interactions with TUIOs, we basically see two possible solu-Multi-user Support

tions. The first and most desirable solution is to technically enable the system to detect

which user performed a certain gesture and their orientation to the tabletop surface and

then feed it correctly rotated into the gesture recognition. An orientation sensitive gesture

recognizer approach was presented by Li [122]. The second approach only supports rotation

invariant gestures which look the same regardless of the direction of the performing user

towards the tabletop surface. This greatly restricts the number of gestures and does not

leave many simple symbols and mnemonics users can easily remember.

Another helpful aspect is a clever interaction design which may allow for using multipleMulti-gesture

Support gestures for one command. Users then would have a variety of gestures from which they

can decide which gesture they personally prefer without disturbing other users. Furthermore,

we observed different uni-stroke permutations of the “X” gesture (cf. Fig. 4.10), that also

supports the findings by Anthony and Wobbrock [4]. We can easily see that execution of

gestures based on more complex symbols or metaphors can vary enormously – not only in

the number of geometrically possible permutations, but also in terms of number of shifts in

direction, area used for performance, accuracy etc.

This leads to the next problem of gestural interaction: How do users know which gesturesLearning Gestures

are available and what effect they have? For the case of deployment of the ESN, we propose

context sensitive projection of the available commands and their corresponding gestures
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Figure 4.10: Visu-

alizations of examples

of “X” gestures that

different participants

performed during the

case study.

behind the interactive area of the tDesk. This would be possible because the area covered by

the projector is larger than the interactive area covered by the tDesk’s Firewire camera. For

systems where the whole tabletop area is interactive, such as the Samsung SUR40 device, or

in multi-user scenarios, one does not want to waste a certain amount of the interactive area

just for permanently displaying available commands and their gestures. In this case some

kind of tool-tip could be displayed, as they are known from GUIs when hovering the Mouse

pointer over a widget which makes the tool-tip pop up with information about the widget.

Freeman and Benko [50] presented a similar approach for multi-touch gestural interaction.

Such a tool-tip can be displayed on the interactive surface near by a TUIO when it has

been touched for a few seconds without further interaction (as a kind of help or explain

gestures gesture). When there is no touch sensing, tool-tips can be displayed for the TUIOs

when there is no interaction for a certain amount of time (maybe for all TUIOs at once or

sequentially for a few seconds) depending on the application. Also speech output can be

utilized as an alternative to visual tool-tips.

Especially for gestural interaction the state machine approach has proven to be very versatile Interaction Modeling

and useful. It allows easy interaction modeling and adaption. Depending on the interaction

design, it may even enable the use of the same gesture for different commands and multiple

gestures for one command. Our gesture recognition approach utilizing the LibStroke is very

simple, but obviously not powerful enough to cover all gestures that users perform. Another

more versatile recognition approach should be incorporated, supporting full 6 degrees-of-

freedom trajectories. This might need further extensions to the TAOs and the system,

incorporating a new gesture recognition approach, such as Protractor3D by Kratz and Rohs

[114].

4.7 Summary and Conclusion

In this chapter we presented a study for collected user-defined gestures for our ESN client

with the TAOs by adapting the approach by Wobbrock et al. [216]. Here, we identified

candidates for fitting gesture-command combinations after coding and transcribing the col-

lected data and got valuable feedback from the participants that helped us to develop first

design guidelines. These were already applied in the first prototype of the ESN client with

which we successfully demonstrated the concept of gestural interaction with TAOs. Finally,

we could show that the use of gestural interaction with the TAOs is possible and that a

reasonable fitting set of gestures was found during the two studies for interaction with a
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social network. Based on the current results it is hard to say whether users could adapt to

such a system embedded into their working environment. Only a long-term study can help

to find an exhaustive answer.



5The Menu Metaphor:

An Inner Degree of Freedom for the TAOs

The difficulty in life is the choice.

George Moore, Bending of the Bough, Act IV.

In the last chapter we focused on gestures for triggering actions. The introducing of gestural

interaction to TUIs added a valuable interaction mean to the field of Tangible Interaction,

in general. But with our findings and design implications of the last chapter in mind, we

wanted to strive for a different interaction mean that does not require the user to learn

special gestures and also adds value to actuated TUIs. We consider menus in this chapter

as an alternative interaction mean for triggering actions.

Menus are a widespread interaction pattern; they are well-known by the users and offer rich

interaction possibilities for altering values and internal states of digital information. They

allow to organize a large number of items that can be used for triggering actions, making

systems feature rich. In this chapter we examine different implementations of menu styles,

already implemented in table-top TUIs. We identify problems and derive requirements to

motivate the development of our own tangible actuated menu metaphor as another possibility

for the user to trigger actions. We wanted our approach to be easily understandable and able

to represent changing internal states of TUIOs at its best. For this, it has to be actuated

and should be incorporated into the TAOs to be embedded into the object of interaction.

As a demonstrator for our approach, we developed saving and restoring mechanisms as a

generic extension to existing TUIs, since many TUIs lack the possibility to save the interac-

tion result so that it can be restored later. Through actuated TUIOs these concepts become

transferable to TUIs. With another application for furniture placing, we describe further

improvements of our implementation. We investigate a menu metaphor for a hybrid applica-

tion supporting tangible and multi-touch interactions in the frame of a third application for

interfacing home entertainment devices. Finally, we address design guidelines with regard to

menu design for TUIs.

5.1 Menu Related Interaction Styles in Table-top TUIs

In this section, we review menu related interaction techniques for table-top TUIs, found in

literature. By menu related, we mean interaction techniques that are applicable as a menu

metaphor, even though that may not always have been the developer’s original intention.
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(a) Tool and dataset selection

menus behind the interaction sur-

face of the TRecS TUI [32].

(b) Track assignment in the

AudioPad system [155].

(c) Arrangement selection infront of the

actuated TUIOs of the PMD [175].

Figure 5.1: Ex-

amples for space-

multiplexed menus in

TUIs.

Space-multiplexed Menus

The first implementations of menus for table-top TUIs were developed in conjunction with the

container concept [197], as described in Section 2.3. With the container concept, information

and media can be dynamically assigned and unassigned to physical objects. Often, this

concept is applied by using space-multiplexed menus, as described by Fitzmaurice et al. [47].

The TRecS TUI [32] is an example application which allows to dynamically assign datasets

and tools to TUIOs for exploring the datasets, as shown in Figure 5.1a. In this example the

users can assign different datasets to particular tangible objects by placing objects in the

datasets assignment areas (red) on right, behind the interaction area. In the same way the

users can assign data exploration tools to TUIOs. This enables the users to freely decide

which of the datasets to explore with which tools (and combinations of tools and datasets

at the same time). AudioPad by Patten et al. [155] works in the same way. Here different

audio tracks can be assigned to TUIOs, as shown in Figure 5.1b.

Dealing with saving and restoring mechanisms as well, the PMD by Rosenfeld et al. [175]

allows saving object arrangements in space-multiplexed saving slots from which the arrange-

ments can be restored (see Fig. 5.1c).

Though space-multiplexed menus are used by quite a number of systems, they also have some

drawbacks. Space-multiplexed menus always require a certain part of the interactive surface

to be available for menu item display. Since the menu area is always spatially limited, the

number of selectable menu items is limited, too. Often space-multiplexed menus are located

at one side of the interactive surface which is not equally reachable by all attendant users in

multi-user scenarios.

Dial-based Menus

Expanding the definition of menus to the possibility to choose an item or value from a

(continuous) list of possible items, the Sensetable by Patten et al. [157] is one of the first

table-top TUIs that incorporated physical (non-actuated) dials and modifiers. With these

dials the users are able to tangibly alter the state or value of the digital information being
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(a) Sensetable incorporates pucks

with physical dials to enable the

users to physically change the val-

ues of the underlying simulation

[157].

(b) Parameter assignment with

rotation and finger touch inter-

actions [89].

(c) The AudioPad being used

[155].

Figure 5.2: Ex-

amples for dial-based

menus in TUIs.

worked with. The Sensetable and its described applications (“Chemistry” and “System

Dynamics Simulation”) lets users assign TUIOs with a physical dial to properties of the

underlying simulation, such as atoms, molecules or populations of predators and prey, as

shown in Figure 5.2a. Another example for non-actuated dial-based device which can be

used as TUIOs was presented by Bianchi et al. [13].

Though Patten et al. are not really using the dials as a menu, they describe important

findings which are helpful for designing tangible menus [157]: Though “users liked the idea

of being able to physically manipulate simulation parameters in this manner, they wanted

the information about the changes caused by manipulating the dials to be displayed on

the sensing surface in addition to being displayed on a screen behind the surface.” Since

this critique is applicable to TUIs equipped with one or more additional vertical rear displays

behind the interactive surface, the second finding is even more important, as it also addresses

systems without such additional displays: “Users want graphical feedback near the dials

themselves to provide a better sense of what the dial setting was at a particular point in

time.” Both findings were user criticisms and emphasize the importance of the users’ need

to get direct feedback upon their actions. After integrating these findings, the users could

completely concentrate on interacting with the TUIOs, since the whole interaction frame

(input and output) is combined and localized at the TUIO being interacted with. Based on

the Sensetable’s technology, Patten et al. developed the AudioPad [155] to explore tangible

interaction techniques (see Fig. 5.2c). Further improvements are described in their follow-

up publication Interaction Techniques for Musical Performance [156]. Though AudioPad

addresses music performance, the explored interaction techniques are applicable in other

contexts, as well. In the first iteration of AudioPad, the volume level for each track was

controllable by rotating the track’s TUIO, just like a dial.

Evaluating this approach, Patten et al. observed an effect, Buxton describes as the “nulling Nulling Problem

problem” [27]. Here, the interface designer has to balance between speed of adjustment and

precision (cf. Fitts’ Law, Sec. 8.1). In other words, to allow for very precise adjustments of

e.g. volume, several revolutions of the TUIO are needed, which is time consuming. Allowing

for quicker adjustment by using one revolution for the whole parameter continuum, however,
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Figure 5.3: One

of AudioPad’s float-

ing menus [155].

results in less precision.

The reacTable by Jordà et al. also supports a dial-based parameter control using touch

interaction. “All reacTable objects can always be spun, which allows controlling one of

their internal parameters; a second parameter is controlled by dragging the finger around the

objects’ perimeter [..]. Although the exact effect varies from one type of object to the other,

rotation tends to be related with frequency or speed and finger dragging with amplitude.” [89]

Hierarchical Item Browsing and Selection

As already mentioned, AudioPad [155] uses space-multiplexed menus to assign audio tracks

with TUIOs, as described above. Beyond this, users can control parameters of the assigned

track in different ways.

“Once a track has been associated with a puck, the performer can select from a tree of

samples using the [additional] selector puck”. The users “can then browse the tree by

moving one or both of the pucks”. Patten et al. emphasize this effect by arguing with the

Kinematic Chain Model, described by Guiard [59]. In such “asymmetric two-handed tasks,

one’s dominant hand acts in the frame of reference provided by the non-dominant hand. For

example, when writing with a pen on a piece of paper, right-handed people often orient the

paper with their left hand, and this improves their performance in the writing task.” [155]

Floating Menus

As a more convenient addition to the space-multiplexed menus described above, Patten et al.

introduce the floating menus [156] that enable the users to directly select items related to

the current interaction context. This allows for quicker item selection instead of tediously

navigating through the available items.

Floating means that the menu moves along with its TUIO. “The important design issue

in this interaction is when the menu should move, and when it should be stationary” for

selecting an item with the TUIO, as shown in Figure 5.3. “To determine when the menu

should move and when it should be still, we define an area surrounding the icons called the

selection area[..]. When the puck is inside of this area, the menu stays still to make selection

easier. If the puck moves outside of this area for more than 3 seconds, the menu recenters
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around the puck, such that the currently selected choice from the menu is underneath the

puck.” [156, Sec. 5.2]

Changing Continuous Parameters

The next two interaction technologies for parameter adjustments are not directly connected

to menus, since they are intended for continuous parameter control. Nonetheless, they are

partly transferable when the parameter space is quantized (like a volume slider using steps

of ten units for increasing or decreasing the volume).

As already described above, the first iteration of AudioPad included dial-like volume control

by rotating the TUIOs, which turned out to be problematic. In the second iteration [156],

a new so-called microphone TUIO was introduced. Now the distance between each track

TUIO and the microphone TUIO is mapped to the tracks’ volume, much like in AmbiD [17]

or TI-Son [66]. With carefully chosen parameters for the mapping function, this approach

turned out to be very fitting and natural for continuous volume control.

Setting Two-dimensional Parameters

Patten et al. experimented with absolute and relative displacement mapping for altering

item settings within the AudioPad system and realized that the latter is much more natural

than absolute mapping. Users naturally verbalize adjustments in relative terms, which the

system should support [156]. Furthermore, absolute mapping would interfere with the kine-

matic chain model and the two-handed tree navigation for sample selection, because only

the selection TUIO, not the track’s TUIO may be moved when altering a sample without

accidentally changing effect settings. As a third effect they also observed that “the effect

and volume settings of a track are two conceptually different types of parameters. [But]

if absolute puck positioning were used to control effect settings, users might inadvertantly

change effect settings while changing volume”, which “would suggest a causal link between

volume and effects where there is none” intended [155, p. 4]. According to this aspect,

Patten et al. argue for the approach by Jacob and Sibert of modeling multidimensional

physical interaction related to the perceived structure of the manipulated parameters [83].

Additionally, we identified another benefit of relative mapping: It allows spatial organization

and grouping of TUIOs by user given criteria. This supports the users’ spatial memory for

organizing the interface according to their needs.

5.2 Evaluation of Benefits and Disadvantages of Current

Menu Metaphors in TUIs

Viewed from different perspectives all these discussed menu approaches for table-top TUIs

showed benefits and disadvantages, as summarized in Table 5.1.

From our point of view, in the discussed TUIs Space-Multiplexed and Floating Menus are Space-Multiplexed

and Floating Menusthe simplest approach to implement menus for TUIs. They are relatively easy to implement
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due to their low complexity and by this they are also quite easy to understand by the users.

Unfortunately, space-multiplexed menus are fixed in one particular area of the interactive

surface, except for the Floating Menus. Being fixed has four drawbacks: (1) they are space

consuming even when not needed, (2) they are spatially limited in the number of items, (3)

they are aligned in one direction, e.g. text may be aligned vertically or upside down for some

users in multi-user scenarios and (4) they are not equally accessible by all attendant users

standing around the table-top TUI.

Like space-multiplexed menus, Dial-based Menus are not complex and easy to implement. InDial-based Menus

comparison, a tangible dial has the advantage of a persistent physical representation, which

is widespread and easy to understand. As a drawback, representing a continuous range of

values or a big number of menu items, dial-based menus may become imprecise and hard to

handle. One solution may be the use of multiple revolutions to widen the dial’s range, which

in consequence leads to a slower interaction. As long as the number of items is manageable

the nulling problem, as discussed above, is not an issue.

Hierarchical Menus allow very complex menu structures while the needed interaction timeHierarchical Menus

increases with the menu’s complexity. As a result repeated browsing of the menu gets

tedious for the users, especially when time matters. Furthermore, due to the hierarchical item

management, the implementation of such menus is more complex than the implementations

of the menu metaphors described above.

Generally, we observe that the physical dial-based menu metaphor stands out for its persis-General Problems

tent tangible representation compared to the other menu styles. Of course, the interaction

artifacts are graspable, but the selected menu item or state is not physically represented and

recognizable without looking at the visual representation. In other words, using the menu

metaphors that require visual monitoring block the visual sense, while the dial’s state can be

completely estimated with the tactile senses.

Furthermore, it is obvious that the discussed menu metaphors are not actuated in terms of

a moving physical object. A system induced selection adaption cannot not be represented

and may lead to inconsistency of the physical representations.

5.3 Reference Frames of Menus in TUIs

The activity of choosing an item from a menu is an abstract process. As we have seen, thisInteraction Reference

Frame process can be implemented in various ways with different characteristics. One important

aspect to identify in terms of tangible interaction is the menu specific Interaction Reference

Frame, as defined in Section 2.1. This frame denotes the area or place of the reference frame

in which the menu interaction takes place. For each menu metaphor we can identify three

different interaction frames:

Fixed Reference Frame The interaction frame of space-multiplexed menus often requires

a certain amount of space, is locally fixed in position to the interactive surface and relies on

a graphical representation.

Graphical TUIO-bound Reference Frame The floating menus and the hierarchical menus

offer a still pure graphical, but TUIO-bound interaction frame. This type of interaction
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Metaphor Advantages Disadvantages

Space-

multiplexed

(and Floating)

Menus

• quick and easy to use

• relatively simple imple-

mentation

• space consuming

• number of items is limited by space

• aligned in one direction

• interaction frame is locally bound and not

equally reachable in multi-user scenario

(unless the menu items are arranged in a

circle in the center)

• necessity of visual monitoring while inter-

acting

Dial-based

Menus

• quick and easy to use

• persistent physical rep-

resentation

• interaction frame is

bound to object

• nulling problem [27]

• trade off between speed and accuracy

Hierarchical

Item Browsing

and Selection

• allows for complex

menu structures

• interaction activated

and relocatable

• requires longer interaction time which is

tedious

Table 5.1: An

overview of the bene-

fits and disadvantages

of the discussed menu

metaphors.

frame is more dynamic since it is relocatable with its TUIO, but still completely part of the

interaction surface because of the graphical representation.

Physical TUIO-bound Reference Frame Physical dial-based menus are always localized

at the TUIO and through its tangible physicality it is not necessarily dependent from a

graphical representation.

These observed forms of reference frames (and their benefits and disadvantages, as discussed

below) are worth to be kept in mind when designing menu metaphors.

5.4 Design and Implementation of our Tangible Actuated

Menu Metaphor

Based on the discussed criteria, problems and observations, we can define the desirable

characteristics of a menu metaphor that is generically suitable for most TUI use-cases.

First of all, such a menu metaphor should not be bound to a particular area on the inter-

action surface to make it relocatable and accessible to all attendant users. With potential

multi-user scenarios in mind, the menu metaphor should be rotation invariant. This implies

abandoning text items which is not always possible. In these cases, the text’s rotation must
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Figure 5.4: Am as-

sembled mTAO and

the assembly parts of

the actuated tangible

dial.

be interactively adjustable to make it easily readable for all users. Preferably, it should not

consume too much space when the menu is not used in order to leave sufficient space for

other interactions. A persistent physical representation which is stable over time during inter-

action is preferable to obtain correctness of the data representation. Obviously, the physical

interaction reference frame is most desirable for tangible menu metaphors. It follows the

basic tenor of tangible interaction and allows pure tactile interaction while looking at other

aspects of the system or naturally speaking to another user with eye contact. We call our

implementation Menu TAO (mTAO).

Hardware Extension and Implementation

In order to meet as many of the above stated requirements as possible, we decided on a dial-

based approach. A motor-potentiometer can be used to implement an actuated and tangible

menu metaphor with a physical TUIO-bound reference frame for the menu interaction.

We decided on an ALPS RK25T11M, a linear high-speed motor potentiometer with a re-

sistance of 10kΩ and 300◦/s maximal rotational speed. Furthermore, this potentiometer

features touch sensing, which we disregarded at this stage. Beside the PCB with the mo-

torized potentiometer, we also designed an additional housing part and a dial knob with a

tactile pointer, that was manufactured with a rapid-prototyping printer.

The firmware was extended to transmit angle changes of the dial after a given threshold has

been exceeded. This limits communication between host computer and the mTAOs to a min-

imum. The motor of the potentiometer is controlled by a Proportional–Integral–Derivative

(PID) controller, solely implemented on the Arduino. Again, this approach significantly

reduces the traffic between host computer and mTAO.
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Since the motorized potentiometer has given limits for the possible angle and is not com-

pletely revolvable, there is no need to avoid the nulling problem. As a drawback, these

revolution limits also limit the number of easily and precisely selectable menu items (es-

timated to 10 to 15 items). To allow more items than possible with one revolution, a

hierarchical approach can be incorporated to solve this problem with the actuated dial.

Software Extensions for Menu Control

To manage and control the menu functions and to provide the other software components

of the TAO architecture with high-level control, a special component for menu control has

been developed. The component encapsulates all low-level control, such as item selection

management, hardware control and monitoring (including touch) and optional speech output

as an additional interaction modality. The high-level menu control provides interfaces for

a) reading pre-configured menu files in XML format and b) setting a particular menu item.

It emits events to the middleware when a) a menu item has been selected, or b) a TAO’s

dial has been touched.

According to the basic design of the display component of the TAO architecture, an mTAO’s

non-tangible representation can easily be extended with visual feedback for the dial. We

derived a new base class from the basic TAO visualization, that already comes with all

attributes and methods to visualize menus. This visualization class provides proper display

of the menu items (text or image), a visual extension of the dial’s pointer as an additional

anchor between physical and visual representation and highlights selected menu items – all

correctly positioned and oriented at the mTAOs’ positions.

5.5 Applications and their Interaction Designs

As a proof-of-concept, we tested the dial in two applications, one generic for extending

existing TUIs with saving and restoring mechanisms and a second one for collaborative

remote interior design. In a third application acting as a hybrid interface combining passive

TUIOs with TAOs on a multi-touch table, we reviewed a touch-based dial menu.

Saving and Restoring TAO Arrangements

We already pointed out in Section 2.4 that many TUIs lack saving and restoring mechanisms

to preserve the current state of work for later continuation – or more precisely: the arrange-

ments of TUIOs on the tabletop surface. Only the PMD by Rosenfeld et al. [175] implements

a solution for this problem, whereas systems implementing actuated TUIs as described in

Section 3.1 at least offer the necessary technology for a solution. In our solution, we utilized

our tangible and actuated dial-based menu metaphor to extend existing TUIs supporting the

TUIO Protocol with such mechanisms, as touched earlier [173]. Here, we used the actuated

dial as a fully integrated tangible menu metaphor that does not depend on an additional

graphical user interface and thereby is included in the tangible interaction. Figure 5.5 shows
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(a) The mTAOs’s menu in the empty state have two

menu items: empty and save.

(b) The mTAOs’s menu in the charged state have

three menu items: delete, reconstruct and charged.

Figure 5.5: Menu

layouts for the empty

and the charged

states [173].

the menu item distribution for the two states, we introduced for the dial TAOs according to

the container-concept by Ullmer and Ishii [197].

In Figure 5.6 we depict the typical interaction with the saving and restoring mechanism usingInteraction Sketch

a single mTAO. After initial start-up, the mTAOs are in the empty state. It indicates that

there is no TAO arrangement assigned to the mTAOs, as depicted in Figure 5.6a. The dial

represents this state by turning its pointer to the empty state on the left half. To save the

current TAO arrangement, the user has to turn the mTAO’s dial to the save menu item on

the right (see Fig. 5.6b). The arrangement is stored in a file with the mTAO’s internal system

ID as the file name for persistence. Beside visual feedback, speech output also reflects this

aurally as an additional feedback modality, since there might be other applications, where

there is the need for monitoring other things or processes visually. When an arrangement

of TAOs is assigned (saved) to an mTAO, its context sensitive menu changes according to

this new state, as shown in Figure 5.6c): Starting on the most right menu item and going

counterclockwise, there is the charged item as the first item, where the save menu item was

before (see Fig. 5.6d). The next menu item is the reconstruct item. Choosing this item

starts the reconstruction of the TAO arrangement, saved earlier and triggers the TAOs to

automatically move back to their saved positions. After choosing the reconstruct item, the

dial automatically turns back to the charged item to represent the mTAO’s state, as depicted

in the Figures 5.6d to 5.6f. The third and most left item in the menu of the charged state

is the delete item. Rotating the dial to select this item deletes the associated arrangement

and the menu layout changes back to the empty menu. As a result, the dial has not to be

automatically re-adjusted by the system, since it now points to the empty menu item, as

shown in the Figures 5.6g and 5.6h. When a user deletes a stored arrangement, the dial

is moved to the most left position. By this, the dial is already released at the menu item

reflecting the empty state in the menu layout of an unassigned mTAO.

In this generic approach, the positions and orientation of all TAOs (including the mTAO)

is saved and associated with the mTAOs. To save multiple arrangements, multiple mTAOs

must be used, since one mTAO saves a single arrangement. As a result, each mTAO serves
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(a) An empty mTAO on the interactive surface. (b) The user saves the arrangement by selecting the

mTAO’s save item.

(c) The mTAO’s menu has changed to reflect the new

charged state.

(d) The user has altered the arrangement and orders

the mTAO to load the old one.

(e) The TAO automatically moves back to its stored

position and orientation.

(f) It has reached the stored state. Furthermore, the

dial automatically turns back to the charged menu

item.

(g) The user deletes the stored arrangement. (h) The mTAO’s menu changes back to the empty

state.

Figure 5.6: A

demonstration se-

quence of the basic

interaction pattern

of the save and

restore mechanism.

For better under-

standability, only

one mTAO is shown.

The interaction also

works with multiple

TAOs (stills from the

demonstration video).

http://doi.org/10.4119/unibi/2696637
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as a graspable representation for one particular arrangement. A sequence of pictures demon-

strating this interaction pattern is given in Figure 5.6. With this rather simple interaction

design we were able to demonstrate a generic working prototype with which we could easily

extend existing TUIs with saving and restoring mechanisms. As long as the whole interaction

state of the TUI is represented solely by the TAOs’ arrangement and the represented data is

statically bound to the TAOs without using the container concept (cf. Sec. 2.3), the state

is directly savable to mTAOs. Otherwise, when the TAOs’ digital representations can be

altered by the users, the system’s internal state changes. As a consequence these alterations

need to be recorded and replayed, as well, or otherwise taken care of when it comes to saving

and restoring such dynamic system states.

Figure 5.7 shows another storyboard with an actual demonstrator application where an ex-

istign (passive) TUI, the AudioDome Soundblox engine [19] was extended with our generic

save and restore approach using the mTAOs. The storyboard shows how our interaction

pattern works for multiple TAOs simultaneously.

Using the mTAO for Altering the State of Non-tangible Representations

In a furniture placing application in a remote collaborative scenario (described in Chapter 6)

we use the menu to alter the TAOs’ represented information. The interaction surface shows

a plan of an apartment (or rooms of such) and each mTAO equipped with a dial represents

a piece of furniture. The system features a special function TAO without a dial that acts

as an ‘avatar’ representation of the user and thereby allows to virtually walk through the

apartment and changing the perspective of an additional rendering of a three-dimensional

scene on a vertical display behind the interaction surface. Virtual models of pieces of furniture

represented by the mTAOs can be changed by selecting a new model from the mTAO’s dial

menu. The menu approach described in the previous section has some minor drawbacks,

which we want to address within the frame of this application.

Since this application features a rich graphic display, as depicted in Figure 5.8, the menuTemporal Availability

would unnecessarily hide parts of the rendered graphics in the proximity of the mTAOs and

thereby important information including parts of the apartment’s plan and the renderings

of the mTAOs pieces of furniture. To overcome this issue, we made the rendering of the

mTAOs’ menu disappear after a few seconds of disuse and reappear after the dial has been

turned for a certain amount (so the menu does not appear by slight accidental rotation

during placing the mTAOs).

Obviously, the textual renderings of the menu items in the saving and restoring applicationRotation Invariant

Rendering of Menu

Items
are sometimes hard to read, because for some users the text may be rendered upside down.

Of course, the particular mTAO can easily be turned to have better readability of the menu

items, but then other users again might have problems reading them. Furthermore, the

orientation of the mTAOs is important for the represented data in this application, such as

having a chair unintentionally facing a wall instead of a table. Here is a need for a different

solution. As a consequence, it is desirable to use a rendering for the menu items that is

understandable from all viewing angles wherever this is possible. A first approach can be
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(a) Running system with four TAOs (one mTAO). (b) The user saves the current state for later usage.

(c) The mTAO’s menu reflects the saved state with

a changed menu.

(d) The user has changed the arrangement.

(e) The user choses the reconstruct menu item. (f) The two displaced TAOs move back to their

saved positions.

(g) The user deletes the formerly saved state. (h) The mTAO has deleted saved state.

Figure 5.7: A sec-

ond demonstration

sequence of the basic

interaction pattern of

the save and restore

mechanism with an

actual application.

Now three normal

TAOs and one mTAO

are involved (stills

from the demonstra-

tion video).

http://doi.org/10.4119/unibi/2696637
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Figure 5.8: Menu

with pictures as menu

items in the remote

collaborative furniture

placing application.

the use of icons as they are used in conventional GUI applications. Icons may be easier to

recognize as text, even if they are rendered upside down, but it is worthwhile to find an even

better graphical representation for the menu items which is recognizable independently of

its orientation. For the interior design application this was quite easy (see Fig. 5.8). Since

the plan of the apartment is rendered as a top view, it is natural to render the menu items’

models of the pieces of furniture from a bird’s eye view. Because it is natural to rotate a piece

of furniture when rearranging it in the map, the rendered menu items remain recognizable,

much like a map that remains readable even if it is held upside down.

Actuated Space-multiplexed Menus for TUIs

Beside our actuated dial-based approach for tangible menus, actuation can also be used

in conventional space-multiplexed menus like those described in Section 5.1. Within the

Active Home EntertAinment Desk (AHEAD), as described in Section 9.4, we implemented

an interaction pattern that utilizes the TAOs’s actuation to reflect the progress of a media file

played back by the system (see Fig. 5.9a). By re-placing the playback TAO on its progress

bar, the users can change the playback position or even jump to chapter marks (if available)

of a movie being played back by the system. Like for space-multiplexed or floating menus,

this menu interaction pattern can have different reference frames. This can be fixed to the

interactive surface and aligned to one of the two main axes or, in case of our AHEAD system,

it can be fixed to the respective TUIO and can be moved with it.

Beyond Actuation: Menu Metaphors for Hybrid User Interfaces

With the AHEAD, we adapted three further menu-like interaction patterns with hybrid user

interaction in mind, combining multi-touch with passive TUIOs and our active TAOs. In the

recent development iteration of AHEAD we used a full featured multi-touch table, which

features visually tracking of fingertips, whole hands and objects at the same time.

We decided to use the TAOs in their standard configuration without the actuated dial andTouch-based Dial

Menus implemented the dial approach using touch, very much like the reacTable [89]. We im-
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(a) Detail view of the actuated space-multiplexed menu. The

green playback TAO moves along the light blue diagonal bar to

reflect the playback position of the currently played media file

represented by the red TAO.

(b) The AHEAD system connected to a

smart TV.

Figure 5.9: Pictures

of the actuated

space-multiplexed

menu implemented in

the AHEAD system.

plemented it as an interactive rendering on the interaction surface for volume control, as

depicted in Figure 5.10a. The volume control menu is based on the well-known dial ap-

proach, where the volume control dial is turned clockwise to increase the volume and vice

versa. Its menu items’ graphical design supports this metaphor by rendering circles fading

from blue to red with slightly increasing diameter; the higher the volume, the bigger the

menu item’s circle. In this way, the user who wants to change the volume can grab the vol-

ume control TUIO, orient it appropriately to his or her needs and easily adjusts the volume

by touching the particular menu item.

In the middle of the second part of the AHEAD project, Catalá et al. published a very similar,

though not actuated, approach implementing a touch-based dial menu [29].

AHEAD enables the users to create and manage playlists associated with TUIOs. The system Personal Menus and

Personal Interaction

Space
is designed to provide each user with one or more playlists and their representing TUIO. A

playlist is rendered on the right of a TUIO and lists the contained titles. With simple

touch-based swipe gestures, items can be browsed, transferred between playlist TUIOs, or

deleted, as shown in Figure 5.10b. Since the rendered list menu addresses a single user at the

(a) The multi-touch implementa-

tion of the volume control menu.

(b) Two playlist TAOs with their touch-

enabled list menus.

(c) The dynamic space-

multiplexed menu for as-

signing devices.

Figure 5.10: The

three adapted menu

stiles in the AHEAD

system.
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same time and the interaction with the menu itself takes place solely in the user’s personal

interaction space (cf. Sections 2.1 and 7.4), there is no need for rotation invariant display.

This allows the use of text for the menu items.

As we have already seen, space-multiplexed menus are an easy-to-use menu metaphor forDynamic

Space-multiplexed

Menus
dynamically assigning information to TUIOs according to the container concept [194]. Since

one of the biggest observed drawbacks is the space consumption, we explored an extension to

this kind of menu to save as much space as possible. In AHEAD, we use this menu metaphor

to assign representations for media sources, but the number of menu items automatically

adapts to the number of available unassigned media sources.

So far, the three presented adaptations of menu metaphors for hybrid user interfaces serve

as a working proof-of-concept starting point for future research directions.

5.6 Design Guidelines

Interaction designers have to decide on the menu style according to the application or taskDrawbacks

and the number of menu items to represent. Our actuated dial-based menu metaphor, we

described in this chapter, is an appropriate solution for menus with up to approximately ten

menu items. For a larger number of items, it gets harder for the users (and the actuation

feature of the dial) to quickly and correctly select the desired menu item. Here, other

approaches, such as a dial that allows for multiple revolutions may help. But also this

approach has its drawbacks: the nulling-problem. If the technical (design) frame allows for

this different approach, a scrollable list might be helpful. A definite generic solution still

needs to be found and investigated.

When it comes to multiple revolutions, because of too many menu items, dial-based menusNulling

suffer from the nulling problem [27]. To be able to precisely select the desired menu item, the

users have to revolve the dial multiple times in the worst case. This is time-consuming and

tedious and often disliked by users. Furthermore, a dial allowing multiple revolutions has no

natural start and stop marker. Consequently, the users may get lost in the multitude of menu

items. Often, such as for volume, the data represented by the dial is not a (mathematical)

ring. This may cause huge jumps in the manipulated parameter when the end is reached and

continued at the start of the continuous parameter interval. If the menu does not allow for

such jumps, this may cause confusion when the system stops to respond to the manipulation

when a border of the interval is met without providing a tactile start or stop position.

We have seen that the representation of a menu is important for the users. For the graphicalDisplay and

Perception of the

Menu
representation text should be avoided in multi-user scenarios or when the orientation of the

mTAO is important for the task. In such cases pictures instead of text ease the reading of the

menu items even if they are displayed upside-down. According to the observed interaction

frame, all menu-relevant information should be displayed at the menu itself to allow the

users to concentrate on their interaction with the menu. If there is a need for eyes-free

manipulation, the tactile representation also plays a huge role when the menu has a physical

representation. Orientation markers at the dial and start and stop markers at the housing

help the users to precisely manipulate the menu – even without the need to visually monitor
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their interaction. Speech feedback also supports the users in eyes-free interaction. It makes

menu items with pictures easier to understand when they are not self-explanatory. In other

words, speech output can serve as textual representation without the need to read text that

may be displayed upside-down.

Depending on the task and user scenario, the designer may consider the use of personal menus Multi-user Design

in the users’ personal interaction space. An interaction reference frame that only affects the

direct vicinity of the menu (without dependence on other views or other users), allows the

users to pay attention to the menu manipulation without any restrictions. Furthermore,

when multiple users are involved in the interaction with a menu, such a design enables the

users to focus on the menu and their conversation without any distraction. We discuss this

shared personal interaction space concept in detail in Chapter 7.

When the interaction with the menu is not the core aspect of the general task of the Context Sensitivity

and Availabilityapplication, it should behave as conservatively, as possible. For instance, by displaying

the available menu items, only when a user interacts with the menu leaves more space for

displaying task-relevant information. Furthermore, dynamic and context sensitive adaption

of the menu regardless of its style, is desirable. In the generic application for saving and

restoring arrangements with the actuated dial-based menu and in the AHEAD application

using space-multiplexed menus, this adaptability reduced the number of needed menu items

and saved interaction space. The floating menus of the Sensetable has similar features.

Consequently, this may enable the users to quickly grasp the relevant information, to easily

make decisions.

5.7 Conclusion

In this chapter we considered the concept of menus for use with the TAOs and passive

TUIOs, as well. We reviewed the menu interaction styles and metaphors for TUIs found in

literature and qualitatively evaluated them. Beside identifying benefits and disadvantages of

the different approaches, we found several reference frames for the different implementations

of menu interactions. Based on these findings, we described our approach for a dial-based

object-bound actuated menu metaphor that was implementation with the mTAOs. Within

two different applications (the save and restore mechanism and the interior design applica-

tion), we successfully tested our implementation and qualitatively observed first indications

of our implications. For our media control application we also implemented an actuated

space-multiplexed menu interaction pattern. As the latter AHEAD system is a hybrid system

also incorporating multi-touch interaction, we transferred our menu approaches to touch-

based interaction and observed potential opportunities for menu design and dynamic space-

multiplexed menus.

The decision for a particular menu interaction style and for the combinations of possible

ways of implementations strongly depends on the number of users (single-user or multi-user

oriented menu interactions) and the need for collaboration support, the application and of

course the available technologies. Here, actuated tangible menu interaction patterns offer

great opportunities for remote collaboration which is covered in the following chapter. The
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highlighted benefits and disadvantages of the reviewed menu metaphors and the derived

design implications are meant to sensitize the interface designers to consider the criteria of

the various interaction styles.

Possible adaption and recombination of the discussed interaction styles makes our actuated

dial-based menu metaphor even applicable beyond the use of menus. For instance, it can be

used within an implementation of the family system test (FAST) after Gehring and Wyler

[53], where each mTAO could represent a member of a family. With its inner degree of

freedom offered by the dial, mTAOs offer the possibility to represent spatial relations, such

as distance, orientation, view, between persons, by characterizing them with their head

orientation. With this metaphor, each member of the family can easily describe his or her

view of the relationships within the family, as sketched in an earlier publication [173].

Furthermore, the possibility for hybrid systems demands systematic evaluation of the re-

cently described new implementations of the different menu metaphors against established

techniques within a comparative study similar to our study described in Chapter 7. As a

new research direction, the AHEAD system is suitable both for trial-based studies, as well

as for long-term investigations. However, our actuated menu interaction patterns greatly

contribute to the field of actuated TUIs.



6Remote Collaboration

and Multi-modal Interaction

Making interaction rich and interesting to the user is one major aim for table-top TUIs.

An important milestone towards general-purpose TUIs is a variety of interaction modalities

that allow the presentation of information that is both easy to understand and appealing.

Within this chapter we describe the development of a sophisticated mixture of multi-modal

feedback, such as visual, auditory and tactile feedback. Furthermore, we add advanced

features to our TAO architecture, as described earlier [170]. As an example application

for demonstrating and discussing these extensions, we chose a furniture placing task. In

this approach we combine into one system ideas from related works together with additional

features. We strongly believe that a rich set of modalities and features widens the applicability

of tangible interaction. We believe that sophisticated and integrated combinations of multiple

approaches and interaction possibilities actuated TUIs can to pull TUIs out of the niche of

special-purpose applications. Thus this application serves as a feasibility study for reasonable

possibilities of integrating different modalities into one system. Additionally, this proof-of-

concept implementation serves as a stress test for our TAO architecture, as it means high

demand for the communication structure between the involved software components.

6.1 Related Work

One of the first actuated TUIs described in literature that deals with distributed collaboration Distributed

Collaboration with

TUIs
is the PSyBench by Brave et al. [21] (see Sec. 3.1). Two electronic chessboards extended with

sensing technology allow the synchronization of positions of magnetic TUIOs over distance.

Brave et al. built the PSyBench as a “generic shared physical workspace across distance” for

“Tangible Interface applications, such as Illuminating Light.” [21] In their paper discussing

the actuated workbench [152], a system using magnetic forces to actuate tangible objects,

Pangaro et al. state that their system could be used in remote collaboration tasks. Mostly

dealing with technical details about the system, they only briefly argue for “synchronizing

multiple physically separated workbench stations.” [152] Later in 2007, Richter et al. pre-

sented the RATI [166]. Also dealing with a furniture placement task, they describe the RATI

as an enhancement of the Augmented Coliseum by Kojima et al. [109] (see Sec. 3.1). By

adding a custom XML messaging protocol they were able “to allow multiple instances of the

application to communicate with each other over a network.” [166] The development of the

RATI described by Richter et al. only incorporated two sides (tables) with one robot, each.

A new version of RATI by Furuhira et al. [52] allows interaction between three tables with
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six robots, each [145, 160]. They also describe enhancements made to the robots, such as

using Bluetooth instead of WiFi communication and DC motors instead of stepper motors.

This allowed them to reduce the robots’ size and change to a cylindrical shape which makes

them easy to grasp and manipulate.

Rosenfeld et al. also deal with furniture placement in their PMD which is able to save andInteriour Design

restore different furniture arrangements [175]. It projects a minimalistic map of an apartment

on the system’s interactive surface and has physical models of furniture assembled on top

of their robots. This setup serves as a proof-of-concept application for interior design with

an actuated tabletop TUI. The first actuated and networked TUI dealing with furniture

placement featuring an additional 3D view of the manipulated scene is the already mentioned

RATI by Richter et al. [166]. Later Furuhira et al. extended the system in the frame of a

game application. The system’s 3D view “provided users with a simple front-on perspective

of the room.” Furthermore, the authors describe the costume concept which is comparable

to the container concept by Ullmer and Ishii [197] (see Sec. 2.3). The costume concept

allows the system’s robot to be switched between the pieces of furniture by simply putting

it on the particular graphical representation. An association between the robot and the

graphical representation is then established which allows physical interaction with the virtual

model. We refer to this concept as soft coupling. This interaction is synchronized to the

other networked TUI via a custom XML network protocol. The KOMMErZ project used

both the Mixed-Reality Interface (MRI) and the tangible workbench, an extended version of

the MRI with changeable markers [97, 200]. Both systems are tabletop TUIs with passive

TUIOs. They feature a sophisticated perspective view which can be adjusted through the

addition of a user-controlled camera TUIO. Uray et al. and Kienzl et al. name architectural

visualization as one application for the MRI and the tangible workbench.

Physical constraints in TUIs in general have been framed in a paradigm almost simultaneouslyConstraints and

Relations between

TUIOs
by Shaer et al. [187] and Ullmer et al. [198] (cf. Sec. 2.3). Here the term is used to describe

physical constraints that limit the interaction space of TUIOs. The same idea has been

picked up in the frame of actuated TUIs by Patten and Ishii in their PICO system [154].

Mechanical constraints limit the interaction space of the actuated TUIOs that represent

entities in a computational optimization process. The users can interactively influence and

control this process by manipulating and constraining the TUIOs. The definition of virtual

constraints of relations between TUIOs has been described by Pedersen and Hornbæk in

their Tangible Bots project [158]. Here the users can interactively define groups of actuated

TUIOs through multi-touch interaction and manipulate them simultaneously by interacting

with a single member of the group.

Vibro-tactile feedback in active interaction device was already presented [13], though theyVibro-tactile

Feedback did not present any elaborate TUIs application.

6.2 Extensions

To create a sophisticated system that integrates multiple interaction modalities and features

from approaches found in literature, the TAOs’ architecture was massively enhanced. The
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ed overview of software modules and their interdependencies.

g:
f these systems being connected over the internet.

Internet

Visual
Tracking

Camera

Figure 6.1: Soft-

ware collaboration di-

agram. The core

modules are printed

in dark gray, the ad-

ditional modules are

printed in light gray

[170].

most important enhancements are described in this section. Figure 6.1 gives an overview of

the interaction between the involved components. We included an additional 3D view of the

two-dimensional view projected on the tDesk’s interactive surface, that is adjustable through

a camera TAO. The distributed collaboration component synchronizes two tDesks over the

Internet. We also incorporated relations between furniture models as virtual constraints. To

contribute to the ideas already introduced in prior works, we add vibro-tactile feedback which

conveys eyes-free feedback to the users.

The first component needed to keep pace with other state-of-the-art systems is the additional Additional 3D View

perspective display of the simulated scene across the interactive surface of the tDesk (see

Fig. 6.1). We utilized Ogre3D1, a versatile open source 3D engine, often used in computer

games. In our component we add the models of the apartment and the pieces of furniture

to be used in the furniture placing task. Furthermore, we added facilities to synchronize

the perspective view according to the setting on the interactive surface in real-time. This

includes all furniture instances, their position and orientation in the map and the camera

TAO’s position and orientation.

We implemented the distributed collaboration component as a generic interface between two Distributed

CollaborationtDesks, synchronizing the interaction using the XMPP protocol for instant messaging. Our

XMPP gateway monitors the physical state of the TAOs including their dial’s orientation and

whenever they change and transmits this information to the other tDesk and vice versa. By

this, both tDesks are only coupled using the XMPP protocol which allows simple and easy

point-to-point communication. No other information or other communication channels are

needed to successfully synchronize physical interaction between the tDesks which makes this

approach generic and easily transferable to other systems. Our current implementation only

allow to connect two tDesks, but this can be easily extended by incorporating the multi-user

chat extension of the XMPP protocol. Our constraints component manages the relationship Relations and

Constraints between

TAOs
between pieces of furniture represented by mTAOs. It is possible to maintain constraints

between them in terms of relative distance and/or orientation. Figure 6.2 shows how a

triangular formation of three TAOs adjusts according to user interaction. The automatic

1http://www.ogre3d.org/

http://www.ogre3d.org/
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(a) Three TAOs aligned in a triangle

formation.

(b) One TAO gets pulled out of the

formation by the user.

(c) The other two TAOs automati-

cally realign to re-match the triangle

formation.

Figure 6.2: Se-

quence of pictures

showing the con-

straints component

at work with three

TAOs in a predefined

triangle formation

[170].

realignment process is triggered whenever the user changes the orientation or position of a

TAO. The reference point for this process is always the last TAO moved by the user. In our

furniture placing application the constraints component automatically re-aligns the sofa and

television set to face each other across the coffee table, as depicted in Figure 6.4c. In this

application these constraints are hard-coded into the system as a proof-of-concept. Later in

the comparative study (see Chapter 7), we allow the users to interactively create and alter

such constraints. We also projected a “red glare” around autonomously moving TAOs to

visually inform the users about the movement state. The implementation of the constraint

component used a graph-based approach and supported three different types of constraints:

“ a) The system can maintain distances and orientation of TAOs as graph-leaves relative to

another TAO (root of the graph), b) it can keep certain distances between TAOs without

respect to direction or orientation and c) relative relations, such as to keep TAOs ‘left of’

another one disregarding the distance.” [170]

As another sophisticated feature, we incorporated vibro-tactile feedback into the TAOs. ThisVibro-tactile

Feedback and Virtual

Collision Detection
allowed users to have eyes-free feedback when focusing the perspective view. This kind of

feedback is often used to gain user attention (e.g. a ringing mobile phone when in quiet

mode). We decided to use this feedback when the users might accidentally move models of

furnitures into walls or each other. This is possible, because the mTAOs are often smaller

than the display of the virtual models. To inform the user about this situation, the mTAOs

involved will vibrate until the issue is fixed. Figure 6.4 depicts such a situation with a collision

between a bed, a sofa and a wall. To implement this feature, we included small pager motors

into the TAOs and added a software component that controls these motors on the request of

other components. In our case we extended the display component with collision detection

for the graphical representations coupled to the TAOs which controls the respective pager

motors on collision with walls or other models of pieces of furniture. Due to the alarming

characteristic of the vibro-tactile feedback, the users’ attention can be easily directed to the

interactive surface.
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Figure 6.3: This

photo shows the com-

plete running system

in our laboratory,

including two back-

projected tDesks with

four TAOs each and

the two HUDs in the

back. Both tables are

synchronized only via

an XMPP connection

[170].

6.3 Basic Interaction Design

As shown in Figure 6.3 and demonstrated in the video, on startup the system shows a bird’s Single-side

Interactioneye view of the empty room or apartment on the interactive surface. The camera TAO

uses a directional marker to visualize its viewing direction. This allows a user to virtually

walk through the room and inspect it from all perspectives – even from the outside through

doors and windows. The camera TAO’s real-time view across the tDesk’s interactive surface

presents a perspective view of the scene. By adding mTAOs, it is possible to add pieces of

furniture. Each added mTAO is initialized as a chair. Rotating the mTAO’s dial makes the

rotary menu to appear which allows the user to change the piece of furniture represented by

the mTAO (see Fig. 6.4a). In this application, the menu offers a choice of six different models

of furniture: a) chair, b) table, c) bed, d) book shelf, e) sofa and f) arm chair. In contrast

to the rotary menus used for demonstrating the saving and restoring mechanisms described

in Chapter 5, we used pictures for the menu items instead of text. This is necessary, because

the orientation of the mTAOs and the pieces of furniture they represent are important in the

furniture placing scenario. It can easily happen that the menu is upside-down from the user’s

perspective which makes text harder to read than to interpret images. These images of the

furniture are shown from the bird’s eye view, just like they are shown in the apartment’s map.

Like in the saving and restoring application, the menu items are also read out to the user by

the speech-synthesis component as auditory feedback. Turning the dial to the desired menu

item makes the represented model switch to the new model which is updated both in the

projected map and in the perspective view. After selecting a model, the menu disappears
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(a) Detail picture of menu presented

around the dial.

(b) Colliding pieces of furniture

which triggers the vibro-tactile feed-

back for each involved TAO.

(c) Detail picture of our virtual con-

straints.

Figure 6.4: Photos

showing different

details of the system

[170].

to leave more space for the visualization of the map and the pieces of furniture, until it is

activated again by using the dial. With these tools at hand, users can easily equip the map

with pieces of furniture as long as there are enough mTAOs available. The users can freely

decide which pieces of furniture they want to use and how many instances of each model

should be placed. It can happen that a piece of furniture is accidentally moved into a wall or

another model, because the graphical representations have a larger footprint than the TAOs

(see Fig. 6.4b). Since such situations are not possible in the real world, the user needs to

be informed that there is a problem with the arrangement of the items. Whenever such

an incident happens, the mTAOs representing the models that collide start to vibrate using

the vibro-tactile feedback enhancement. The display component rendering the apartment’s

map supports basic collision detection and requests the software component controlling the

TAOs pager motors to vibrate until the problem is fixed. To support the user in the furniture

placing task the constraints component helps by re-arranging mTAOs that are assigned to

pieces of furniture that depend on each other. We implemented constraints between the

sofa, coffee table and television set, as shown in Figure 6.4c. They automatically re-arrange

each other to make the sofa and the television set face each other across the coffee table.

Whenever one of these three models’ mTAO is moved by the user, the other two rearrange

accordingly.

All these interactions with the TAOs on the interactive surface are automatically synchronizedDistributed

Collaboration between the two tDesks using the XMPP gateway. This is done by simply transmitting

changed positions and orientations of TAOs and changed dial orientations to the other tDesk.

The complete state of the system can be determined by the TAO’s positions, orientations

and dial orientations. There is no need to transmit additional higher-level information.

When the users of the other tDesk move a TAO during the synchronization process, the

automatic movement process is terminated. The new position of the other tDesk’s TAO

is the new common ground for the synchronization. In other words, the TAO moved last

a user determines the position and orientation of the synchronized TAO. To visualize the

synchronization process, TAOs being moved by the system have a red glare around their

footprint until the have reached their new target position. As the information transmitted

http://doi.org/10.4119/unibi/2695603
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via the XMPP gateway uses a low band-width, it is possible to have an audio or even video

conferencing link running simultaneously. These could also be integrated into the XMPP

connection by using the protocol’s Jingle extension in future iterations of the system.

6.4 Discussion

With this application scenario we demonstrated a sophisticated TUI offering a rich set of

interaction modalities and features. The modalities cover three different cues. There is the

visual cue, including the projected map of the apartment and the interactive perspective

view of the scene. The auditory cue (speech output) allows eyes-free menu navigation and

monitoring the result in the perspective view. The vibro-tactile feedback supports reporting

physically impossible situations, also enabling eyes-free manipulation of the pieces of furniture

while the users focus the perspective view of the scene. Furthermore, the possibility of

having automatic constraints between the pieces of furniture also supports the users in the

placing task. The distributed collaboration approach allows long-distance physical interaction

between two users or groups of users.

Though not tested in a formal user study, colleagues who were informally confronted with the

system had the opportunity to try it and found the interaction design reasonable. They even

proposed further possibilities for improvement and extensions (see Outlook Section blow).

Also the system performance was rated acceptable, though in the design process we realized

potential for performance improvements. Here the used middleware XCF [51] turned out as

a bottleneck. Hence we opted for its successor RSB [211] and re-wrote large amounts of the

TAOs’ core architecture and library.

Limitations

The hard coupling between the mTAOs and their represented pieces of furniture limits their

number to the number of available TAOs. Using soft coupling between the models and the

mTAOs would allow a theoretically unlimited number of pieces of furniture (only limited by

the size of the interactive surface). With a soft coupling approach it would be possible to lift

and uncouple an mTAO from its represented model to create a new model or to manipulate

other models. To regain physical access to an uncoupled model, the user just puts an mTAO

back on its non-tangible representation. We decided against this soft coupling approach in

the first stage because it weakens the benefit of the vibro-tactile feedback. When there is no

mTAO coupled to a model, the system cannot provide the users with eyes-free vibro-tactile

feedback on this model anymore. Though this feedback is only needed and perceived when

a mTAO is actively manipulated, other visual cues might serve as a sufficient workaround.

Hence we consider our interaction design to be more concise with hard coupling in the frame

of this particular application.

Another limiting aspect of the system is the limited size of the interaction area on the tDesk.

Testing the system revealed that an apartment can only be dealt with room by room. In

a map of a complete apartment with three or four rooms, there is not enough space left
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to effectively work with the mTAOs. Furthermore, dealing with only one room at a time is

absolutely natural at least in a single-user scenario. This leaves more TAOs for interaction

within a single room because of the hard coupling with the pieces of furniture.

Outlook

Beyond the stress test for the TAO architecture, this application also serves as a proof-of-

concept for a multi-modal system and there is even more potential for more sophisticated

features and extensions which came up when informally presenting the system to colleagues.

The first extension proposed is a personal camera view for each of the connected tDesks. In

other words, the camera TAOs are not synchronized across the tDesks. Only when one user

wants to present a particular perspective of the scene or to give a guided walk-through to

the distant users, the camera TAOs can be synchronized temporarily. The switching between

synchronized and not synchronized mode could be implemented using mTAOs instead of the

standard TAOs for the camera TAOs or via soft coupling.

Another interesting extension prospect is a room switching feature. Two possible ways of

implementation have been discussed. The first incorporates an additional mTAO that allows

room selection through its menu. Another more natural interaction possibility would be using

the camera TAO that basically represents the user. By moving it through a door or up or

down stairs the room is switched, just like one would do moving from one room to another.

This does not demand any additional TAO or hardware extension and perfectly fits into the

interaction design of the system. Such an interaction pattern was already demonstrated with

the MRI by Uray et al. [200].

Design Guidelines

As stated by Patten et al. the use of additional views has to be considered carefully [157].Additional Views

In their Sensetable, they offered an additional view displaying the values of the dials on

their TUIOs on the interactive surface. The users of their system reported that they would

prefer the values to be displayed directly at the dials so that they do not have to share

attention between the projected surface and the additional view. The implementation of this

feature made the additional view unnecessary. In other words, additional views should only

be introduced if the data displayed cannot be added to the display of the interactive surface.

Only if the view provides other qualities that are worth sharing attention with justifies the

introduction of an additional view. In our opinion both are applicable in our furniture placing

application. The perspective view of our additional perspective view cannot be applied to

the interactive surface due to its bird’s eye view. But it warrants a more natural view of the

scene being manipulated.

Vibro-tactile and auditory feedback enable the users to manipulate the TAOs. The users canSharing and Guiding

Attention with

Multi-modal

Feedback

monitor the changes on the perspective view while switching the TAOs’ models supported

by the auditory feedback. Vibro-tactile feedback alarms the users if they accidentally push

pieces of furniture into a wall or other models. Then they have to direct their attention

to the interactive surface to solve the problem. This allows the users to share attention
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between the tDesk’s interactive surface and the additional perspective view. Furthermore,

the feedback helps to guide the users’ attention when needed.

The distributed collaboration component described in this chapter is a working proof-of- Distributed

Collaborationconcept. Due to its generic nature it can be easily transferred to other applications using

hard coupling. It only uses the TAOs’ positions and orientation and their dials’ orientation for

synchronization. For applications using soft coupling, the binding information between non-

tangible representations and the TAOs needs to be added to the data stream synchronizing

the tDesks. The XMPP protocol used for synchronization can also be used to synchronize

more than two tDesks by introducing the multi-user chat extension. Furthermore, the Jingle

extension can add audio and video conferencing while using the TAOs in future iterations of

the system.

6.5 Conclusion

The integrated system we presented in this chapter serves as a proof-of-concept for feature

rich multi-modal tangible interaction and seems desirable. More recently, Erp et al. pre-

sented their Sensators. These are active TUIOs providing multi-modal interaction channels,

including vibro-tactile feedback, colored light (RGB LED), audio playback and touch input

[36, 37, 38].

By combining multiple state-of-the-art approaches from prior works and adding further feed-

back, we created a sophisticated system using the example application of placing pieces

of furniture. The multi-modality enriches the interaction and may encourage, support and

guide users in their interaction with the system. Beside the applicability of multi-modality,

we also examined the use of automatically obtained relationships and constraints between

TAOs and included distributed collaboration abilities. Furthermore, we discussed the multi-

modal aspects and their interaction with each other, with the constraints and distributed

collaboration features. Additionally, we highlighted the possible use of soft coupling between

the TAOs and their non-tangible representations and discussed its impact on the interaction

design. We pointed out limitations and potential for improvements of the current implemen-

tation and derived certain design guidelines that assist interaction designers to reproduce

and recombine such aspects effectively.
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Comparative Interaction Measures

The nice thing about teamwork is that you always have

others on your side.

Margaret Carty

The development of most actuated TUIs is still driven by applications. This is because

the possibilities of actuated TUIs still need to be explored as this field of research is still

in the state of basic research. Nonetheless, there are concept driven approaches, such as

the PICO system [154] and those by Ishii and Ullmer [82, 194]. They proposed fundamental

concepts for (actuated) TUIs. However, in general-purpose or everyday life applications there

is currently no clear evidence that tabletop TUIs are equal or even superior to GUI-based

systems. The community builds most of their research upon theories (see Sec. 2.3) and can

show this mostly in user studies dealing with special-purpose applications.

The scope of evaluations of TUIs is quite diverse. Ranging from very small system specific

case studies to empirical evaluations, the contributions to the research field differ consid-

erably. Even though, small or non-experimental studies with a within-subjects design are

important and may reveal major insights. In this chapter we describe and adapt evaluation

measures from neighboring fields that were not yet used for (actuated) TUIs. As these mea-

sures are additionally intended to evaluate collaboration, we conducted an exploratory user

study comparing four different interface types.

7.1 Related Work on Comparative Studies and Collaborative

Interaction

In this section we briefly describe important studies dealing with the comparison of table-top

TUIs with mainly Mouse or multi-touch interaction. As most of them deal with single-

user scenarios, we also highlight studies investigating collaborative scenarios. For a better

overview, both kinds of studies are summarized in Table 7.1.

One of the first comparative evaluations on TUIs was conducted by Fitzmaurice and Bux- Comparative Studies

on different Interface

Styles
ton [46]. Focusing on time- vs. space-multiplexed interface designs, they compared three

conditions with the same task in a within-participants experimental design. The participants

were asked to align graphical representations of objects (stretchable square, ruler, brick and

rotor) into target positions determined by the system using the respective condition’s de-
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vices. Those conditions are: “a) space-multiplex with 4 specialized devices using 4 tablets

(SpaceS), b) space-multiplex with 4 puck and brick pairs of generic devices using 4 tablets

(SpaceG) and c) time-multiplex with one puck and brick device operating on a large tablet

(Time).” [46] In a nutshell, the results collected with N = 12 participants, revealed a superi-

ority of the first over the second over the third condition (SpaceS > SpaceG > Time). This

finding is based on the conditions’ Root Mean Square (RMS) error of the displacement of

target and actual position of the graphical representation and the active usage time of the

devices.

In another study Jacob et al. [84] evaluated different interface designs of a system for orga-

nizing information within a grid. The interface consists of a whiteboard sensitive to objects

equipped with RFID tags (Senseboard) and a projector. Within four conditions, the partici-

pants’ task was to create a work schedule according to given resources and constraints. The

conditions covered a) Paper (no system support), b) Reduced-Senseboard, c) Pen-based

projected GUI and d) full Senseboard support [84]. In this study N = 13 participants took

part. Evaluating the participants’ performance (time to task completion) did not reveal any

significant difference between the conditions. But the results from the questionnaire showed

a significant effect. Here the Senseboard condition was preferred over each of the other

conditions, while the paper condition was disliked by the participants.

The RATI system by Richter et al. [166] is a networked actuated TUI, featuring two instances

that are coupled over a network for remote collaboration. In a furniture placing task, they

evaluated their system according to two measures for social presence (Semantic Differential

[64] and Networked Minds [14]). The system was evaluated in a study and was compared to

a GUI implementation of the task. The participants remotely collaborated in pairs using the

distant systems. In the evaluation of their approach, the Semantic Differential measure did

not yield any significant interaction. But the Networked Minds measure’s analysis revealed

a higher level of social presence for the RATI compared to the GUI implementation.

The PICO system was also evaluated within a comparative study. Patten and Ishii compared

actuated with non-actuated PICO TUIOs and with a screen-and-mouse condition. The task

was a radio tower placing task, partially supported by the system’s actuation feature. The

results indicate a superiority of the actuated PICO TUIOs over the other conditions within

this special task [154].

Couture et al. built the GeoTUI system to compare the GUI and a TUI design for the

Jerry On tHe Net (JOHN) system, a geographical data analysis tool for the manipulation

of the three-dimensional volumetric geographical subsoil models [30]. In the comparative

experiment, the task was to create a cutting line through the model by specifying two points

to get a cutting plane. Twelve experts participated in this study and evaluated four different

conditions: a) Mouse (M), b) one-puck prop (1P), c) two-puck prop (2P) and d) ruler prop

(R). Arguing with Fitzmaurice et al. [47], Couture et al. found support for the superiority of

the specialized space-multiplexed conditions over the generic space-multiplexed conditions.

Pedersen and Hornbæk evaluated the audience’s perception of a live performance of elec-

tronic music. They compared the performance with a traditional setup for electronic music

performance (laptop with music software) and their own mixiTUI system [159]. Though they
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have carefully designed the mixiTUI in collaboration with electronic musicians, Pedersen and

Hornbæk focus on the perception of the audience (N = 117) and conducted a questionnaire

study after a concert given with both interface types. As expected, the audience found the

use of mixiTUI much more observable, understandable and more visually appealing compared

to the traditional performance setup.

In a comparative study involving planning tasks, Lucchi et al. demonstrated superiority of

their TUI approach over a multi-touch interface [126]. With N = 40 participants, they

were able to show that the TUI allowed for faster manipulation and that its persistence and

haptic feedback is beneficial for fulfilling the planning tasks. To provide similar manipulation

possibilities, the multi-touch interface incorporated gestures, such as lassoing multiple items

for parallel manipulation, which the participants disliked.

Comparing multi-touch, tangible and Mouse with puck manipulations in the style of [46],

Tuddenham et al. were able to prove significantly short manipulation times for N = 12

participants in an artificial placing task. Furthermore, the participants reported to prefer

the tangible interface followed by the multi-touch interface in therms of ease of use. Also

accuracy in a second tracking task was measures best for the tangible interface using a

root-mean-square (RMS) measure [193].

In 2011 Pedersen and Hornbæk conducted another comparative study with their actuated

TUIOs Tangible Bots. They compared them to non-actuated TUIOs within an artificial

task where the TUIOs had to be aligned to particular target positions and orientations.

The actuation feature of the Tangible Bots was used to synchronize multiple TUIOs so

that only one had to be manipulated, affecting the other TUIOs, as well. With N = 16

participants, they found “that Tangible Bots are usable for fine-grained manipulation (e.g.

rotating tangibles to a particular orientation); for coarse movements, Tangible Bots become

useful only when several tangibles are controlled simultaneously. Participants prefer Tangible

Bots and find them less taxing than passive, non-motorized” TUIOs [158].

A very comprehensive overview on comparative studies investigating co-located collaboration Co-located

Collaboration Studieswith GUIs and TUIs was given by Kim and Maher. In an experiment incorporating a planning

task comparing a TUI and a GUI, they deeply analyzed the interaction with three pairs of

participants from an linguistic point of view. They indicated superiority of the TUI according

to action-, perceptual-, process- and collaboration levels [98].

Though not directly addressing tangible interaction, Hornecker et al. contributed to the

neighboring field of CSCW by comparing interaction with single mouse, multiple mice, signle

touch and multi-touch in a co-located collaborative study setting. In their study investigating

a planning task, they focused on higher-level awareness indicators and found benefits for

touch interaction [77].

Another comparative study dealing with graphical and tangible programming languages in

an educational context, is the Robot Park exhibit by Horn et al. [75]. They created a simple

graphical and tangible programming language offering features like the Logo programming

language for programming a mobile robot. The participants could create programs with

a graphical or a tangible interface, both using the jigsaw puzzle metaphor for the instruc-

tion blocks. Connecting the instruction blocks to sequences results in a program a robot
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could execute. The results of the evaluation with a large number of participants (N = 260)

showed “that the tangible interface was more inviting, more supportive of active collabora-

tion, and more child-focused than the Mouse-based interface.” Furthermore, “the tangible

and graphical interfaces were equivalently apprehendable and engaging, and the resulting

visitor programs were not significantly different.” [75]

A similar comparative study with children programming robot was described recently by Sa-

pounidis and Demetriadis. They compared the tangible T ProRob cubes with their graphical

V ProRob interface (parts of the PROTEAS kit) for programming a Lego NXT robot. The

results indicated that younger children, especially girls, liked the tangible interface more than

the graphical implementation. On the contrary, older children preferred the graphical inter-

face. Sapounidis and Demetriadis explain this effect with the older children’s familiarity with

computers [178].

Limitations of the Previous Work

As we can easily see from Table 7.1, none of the studies found in literature deals with all

four major interface styles at once. Most of them compare Mouse-based interaction against

one other interface while only Tuddenham et al. compare Mouse (and puck) with touch

interaction and (passive) TUIOs.

Some studies (e.g. [30, 159, 166]) show slight problems in procedure and design, as their

within-subjects design was not counterbalanced [9, pp. 165] at all. Such as in the study

by Richter et al., all subjects started with the Mouse-based condition which may likely

lead to biased results. Hence, practicing in the first condition may result in better user

performance in the second condition. Further carryover or novelty effects might influence

the results of unbalanced studies with a within-subjects design, as well. New things are often

more interesting than familiar ones. The curiosity for the new technology may generally

bias the participants to give more positive responses when completing questionnaires after

an experiment, especially when comparing to familiar conditions. The evaluated systems

are mostly special-purpose applications, it is likely that a specially designed interface may

outperform a general-purpose interface (like the ordinary, but well-known desktop computer).

Furthermore, long-term effects, such as learning and adaption may not be observable to

their full extend in trial studies, as Shaer and Hornecker point out [185, p. 95]. Such issues

can be overcome by conducting long-term studies outside of the laboratory in the everyday

environment of the participants. There are first long-term evaluations, such as those by Edge

and Blackwell [34], but full comparative field studies with a larger number of participants

have not yet been carried out.

While some of the discussed studies had a quite large number of participants, some had

only few (N < 15). When dealing with special-purpose tasks carried out by experts, it is

rather hard to find a large number of participants. But such results may only provide limited

support for the respective research hypotheses.
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[46] 3 Single,

Multi

X 36 (12) 3.03 artificial Accuracy and manipulation time

[84] 4 Pen-GUI Red., X Paper 52 (13) 2.64 organization Time

[154] 3 Single X X 45 (15) 3.03 planning TUIO switching, questionnaire

[30] 4 Single 1 Puck,

2 Pucks

Button

Box

48 (12) 2.64 exploration Questionnaire

[159] 2 Single X 117

(117)

3.89 observation Questionnaire

[126] 2 Multi X 80 (40) 3.89 planning Time and accuracy

[193] 3 Single +

Puck

Multi X 36 (12) 3.03 artificial Time and accuracy

[158] 2 X X 32 (16) 3.89 artificial Time, error rate and questionnaire

Collaborative Studies:

[166] 2 Single X 40 (20) 3.89 remote

planning

Semantic Differential and

Networked Minds

[98] 2 Single X 14 (7) 3.89 planning Protocol analysis

[77] 4 Single,

Multi

Single,

Multi

52

(13×3)

2.64 planning Coded awareness indicators

[178] 2 Single X 62 (61 in

dyads+1)

2.64 programming Questionnaire, interview and

observations

Table 7.1: Overview of the comparative and collaborative studies in literature. The first column holds the sources for each study. The next six columns

summarize the supported conditions. The 8th column gives the number of participants (as for all studies use a within-subjects design the actual number

of individual participants is given in brackets) followed by the corresponding critical F (estimated using G*Power [39]), the basic task and the significant

measures.



88 Co-located Collaboration: Comparative Interaction Measures

7.2 Motivation and Design Ideas

In the course of this project, we realized that there is an increasing need for empirical

studies that allow us to transfer and find support the community’s theories to actuated

TUIs. To follow on from the empirical studies found in literature, we propose a comparative

experimental design that adapt psychological and social measures from neighboring research

fields or introduce new measures for analyzing co-located collaboration.

Though we strongly believed in the benefits of tangible interaction, we were also a little

skeptical. This is why we came up with the idea to design a comparative study with all four

major interaction styles at once. Because we had no practical experience in designing and

running comparative or collaborative studies of such dimensions, we consulted colleagues

from psychology and asked for hints and advice. This resulted in the following study design.

For this study, we concentrate on the quality of interaction between pairs of participants inSingle-blind

between-subjects

design
a co-located collaborative task. To investigate interaction quality of each single interface

style, we decided on a single-blind study design that explicitly lets the participants uncertain

if they are rating the interface devices. This inherently leads to a between-subjects design.

Although this has certain disadvantages (a within-subjects design requires less participants1

and allows for “greater control over participant differences and thus greater ability to detect

an effect of the independent variable” [9] when counterbalanced), we wanted to put focus

on the task while the interface type only plays a subordinate role (from the participants’

point of view). Though the interface type is inherently part of the task, the participants are

told that focus is explicitly put on the intellectual and collaborative challenge throughout

the whole study.

Furthermore, we knew from our own experience, that sitting in front of a back-projected

table-top surface for a longer time can be very tiering and may even cause headache. For

reconsidering a within-subjects design, we roughly estimated the time for one trial with all

four conditions. Each condition was estimated with half an hour which would result in over

two hours per trial (including modification and preparation for each condition). Thus, we did

not expect our participants to bear staring on a projected surface with only glass and a sheet

of projection foil between their eyes and the projector’s lens for over two hours at a stretch.

This is another argument against a within-subjects design while dealing with this aspect by

spreading the four condition trials for each dyad over several days would have required a

tremendous overhead of additional organizational work.

The Task

To put the intellectual and collaborative challenge of the task upfront for our participants,

we defined requirements, the task had to meet:

• be applicable in all four conditions and still comparable across the conditions,

1However, a complete set of all correctly counterbalanced condition orders would result in 4! = 24 dyads

(48 individual participants) producing 4 · 24 = 96 trials. The amount of time for experimentation, post-

processing and analysis would have exceeded our resources. Thus we stick to our exploratory study design

dealing with all four major interface types at once which only allows for detecting large effects.
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• offer a possibility to make use of the actuation feature of the TAOs,

• allow a feature similar to the TAOs’ actuation for the other conditions,

• be performable collaboratively (by two participants, working together),

• demand or even support interaction between the two participants,

• be with modest difficulty,

• “only” demand basic education (or creativity) and

• it should be from office live, such as meetings, etc.

A task that fits these requirements is mind-mapping. Mind-mapping is a creativity technique Mind-mapping

where groups or single persons visualize different aspects of a certain topic with their asso-

ciations. In our case, the topic was intrinsically given by seven predefined mind-map items

(“Stars,” “Earth,” “Sun,” “Galaxy,” “Space travel,” “Asteroids” and “Moon,” as depicted

in Fig. 7.1). These terms from the general topic of astronomy should be commonly known

to the public so that the participants are able to draw somehow meaningful associations.

These items are generally known and even if their scientifically correct definition may be

unknown, most people have at least a vague idea of their concepts. We expected most

participants to have a rather good concept of items, such as Earth, Sun and Moon. Other

items, such as Asteroids or Galaxy are conceptually not so well-known. This was intended to

provoke discussion between the participants and ideally invoked basic teaching and learning

processes.

General Study Design

We propose an exploratory user study comparing interaction with Mouse, multi-touch, passive

TUIOs and our TAOs. All conditions should be as similar as possible, except for the actual

interface. This affects the setup including the hardware and software design, the experimental

procedure and the task. Both, the hardware and the software should provide the same basic

features and only change when the interaction style of the particular interface demands

adaption.

Beyond using questionnaires, we considered audio and video recording the trials and collect-

ing and analyzing detailed system logs containing as much relevant interaction information

as possible. These are used for (semi-)automatic annotation and analysis to adapt additional

measures for (actuated) tangible interaction. To be able to investigate co-located collabora-

tion, we invited participants pair-wise. Given restricted resources, we decided on at least ten

trials each which resulted in (N = 80) participants which is just acceptable for an exploratory

user study compared to the studies mentioned above.2

Interaction Possibilities

In each condition, associations can be drawn between mind-map items by moving them Associations

item into each other (they have to overlap) and moving them apart, again; a line is drawn

between the items to visualize the association. An existing association can be erased by

2with respect to our between-subjects design and the number of conditions.
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Figure 7.1: Initial

task situation (screen

shot) in the TAOs

condition.

moving associated items far apart from each other. This was possible to implement for all

four conditions and metaphorically can be explained as tearing apart some kind of rubber

band connecting the items, as depicted in Figure 7.2.

To investigate if and how participants might use the actuation features of the TAOs , weSimultaneous Item

Manipulation extended our constraint concept described in [170] and recapitulated in Chapter 6. For

this we enabled the participants to interactively define constraints between TAOs. Such

constrained TAOs move along each other automatically when one of them is moved by a

participant. We implemented simultaneous movement possibilities for mind-map items for all

four conditions. This means that it is possible to select mind-map items, such as a branch or

a group of items, belonging to a subtopic. The selected items then move along with another

item being moved by the users and maintain their relative position to the item being moved.

Even though the situation could be found in every condition, this feature was implemented

slightly different for each condition due to technical differences.

Given a system with these features, the participants were instructed to create a mind-mapGoal

from the given items within five minutes of using the system. Both participants of the dyad

should agree on the solution and should be as equally happy with the resulting mind-map as

possible. To achieve this goal, they had to talk to each other and argue which items should

be connected in which way. There was no intended standard solution for the task.

Design and Implementation of the four Conditions

The four conditions we address in this study, range from the most common interface device,

the Mouse, over multi-touch interaction to passive TUIOs and TAOs. All these conditions

were based on the same hardware design around the tDesk (as already described in Chapter

3.3) and technically only differ in few details. This was necessary to quickly adjust for the

condition that was randomly chosen directly before each trial and to keep the conditions

as comparable as possible. The whole setup and the differences between the conditions are

depicted in Figure 7.3 and described in the following paragraphs:

Condition 1: Mouse In the first condition, the two participants of a dyad working together

had to negotiate who uses the Mouse and if the other participant takes over the Mouse.

The Mouse rests on an additional small table placed in front of the tDesk, as depicted in
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(a) Creating an association. (b) A mind-map item is moved into

another one.

(c) A line visualizes the created as-

sociation.

(d) Removing an association. (e) Two associated mind-map items

apart are pulled apart.

(f) The association is deleted.

Figure 7.2: Creating

and removing associ-

ations between mind-

map items (stills from

the introductory video

for the TAOs condi-

tion).

Fig. 7.3a. Though it is technically possible to have multiple Mice, the common way is to

use one Mouse and one Mouse pointer per display. In real live, multiple users face the same

problem when they want to use a computer collaboratively. Another conceptually similar

condition would have been pen-based interaction, as found in literature [84]. But due to

the sparse spread of graphic tables in ordinary offices, we decided not to test this special

condition. Moving mind-map items is done via Drag&Drop, while selections to move them

simultaneously is possible by just clicking the desired items one after another. They light up

to visually represent their selection state. Selected items can be deselected by simply clicking

them again.

Condition 2: Multi-touch Because of the technical constraint of not having a touch sen-

sitive back-projectable interaction surface, touch sensing was implemented using a Kinect

depth camera and the dSensingNI software presented by Klompmaker et al. [108]. We used

this software to analyze the depth information from the Kinect sensor and to track the

finger touch points in the interactive surface. Furthermore, this software features distance-

to-surface measuring, which allows tracking of objects not touching the surface, such as

hands, fingers and even stacked objects and touch points on them. Compared to capacitive

touch sensing methods, this solution has drawbacks, such as (self-)occlusions of the users’

hands and fingers. But regarding implementation effort and expense, this solution worked

sufficiently. To minimize the possibility of occlusions, we placed the Kinect sensor across the

interactive surface pointing directly at the surface’s center, as shown in Fig. 7.3b. Direct

simultaneous movement of multiple mind-map items is possible in this condition, but the

selection possibilities as implemented in the Mouse condition are still usable and introduced

to the participants.

Condition 3: Passive TUIOs For the participants this condition conceptually is similar to

the multi-touch condition, except that one object grasped with the whole hand serves as
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(a) Setup of the Mouse condition. (b) Setup of the multi-touch con-

dition. For finger tracking we used

the Kinect sensor behind the tDesk.

(c) Setup of the passive TUIOs and

TAOs condition.

Figure 7.3: The

setup designs for

the four different

conditions. Though

the Kinect sensor is

visible in all three

pictures it was only

used in the multi-

touch condition. The

camera for video

recording the trials

was placed slightly

below the Kinect

sensor.

handle a for the mind-map items instead of the participants’ fingertips. For maximum

comparability in this condition, the TAOs already serve as the TUIOs even though they do

not move (see Fig. 7.3c). Using the TAOs in this condition also enables having a robust

object tracking together with back-projection. In this condition, the participants have three

TUIOs available to accomplish the task – one for each participant and one additional spare

TUIO. Again, selecting items for simultaneous movement works similar to the first two

conditions. By touching an item with a TUIO the item is selected. Tapping the TUIO on a

selected item again deselects it.

Condition 4: TAOs This condition is exactly the same as in condition 3, except for the

fact that the participants can make use of the TAOs’ actuation feature, which can be used

to move multiple mind-map items simultaneously by only manipulating one TAOs. It is

no longer necessary (but still possible) to select mind-map items. The participants can put

TAOs on all the mind-map items that should move simultaneously. The selection-by-touching

feature is still available as a fall back when the participants want to move more than three

mind-map items simultaneously with the TAOs at hand. Both methods are explained in the

introduction video. Additionally, we added visual feedback to the display to inform the users

about the autonomous movement of the TAOs. This was accomplished by simply drawing a

line from each moving TAO to its target position.

Expectations and Planned Difficulties

Based on results of prior studies found in literature, we believed in the superiority of the two

tangible conditions, we expected rather large effects which also influenced our study design.

The Mouse as in our setup is a single-user interface. Thus, we can expect this condition to be

obviously least effective, e.g. only one participant makes use of the device for the whole trial

which results in low or even none shared interaction space between the dyads’ participants.

In common tabletop multi-touch applications and demonstrations it is possible to rotate and

scale items. Such features do not help in this particular task and thus were not implemented.
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Figure 7.4: The

touch sensing enabled

TAO. A band of

copper was wrapped

around the upper part

of the TAOs’ hous-

ings, acting as the an-

tenna.

However, the lack of these interaction patterns might confuse the participants.

As a planned difficulty, it is also not possible to pick items up and release them somewhere

else. Thus, the users have to plan ahead if they want to move items across the interactive

surface with other items blocking the path. To successfully execute such a movement, the

items blocking the way have to be moved aside beforehand. By this, we hoped to stimulate

the interaction between the participants and induce collaborative use of the system. Also

the size of the mind-map items demands such practices. They have a quadratic shape with

an edge length of 8.4 cm. The interactive surface on the tDesk measures 56 × 42 cm.

7.3 Extensions: Touch Sensing and Dynamic Constraints

In the fourth condition, the TAOs are able to move along another TAO being moved by a

user. For this ability, the system maintains constraints that define if and how TAOs move

along. Whenever a TAO is assigned to a mind-map item, the system automatically creates

a constraint model between this TAO and all other TAOs standing on top of mind-map

items. At the moment of assignment, the constraint is initialized with the current relation

(relative position) between the TAOs. The relation between the TAOs can be adjusted by

touching TAOs while repositioning them. Whenever a single TAO is touched and moved by

a participant, all other TAOs that are constrained to this TAO (all TAOs assigned to a mind-

map item) move along autonomously. To detect whether a single TAO or multiple TAOs

are touched, we added simple touch sensing to the TAOs. When a single TAO is moved by

a user, the constraints software component continuously updates the target positions of the

other assigned TAOs in the path planning module. This module navigates the TAOs to the

new positions relatively to the TAO being moved.

To properly manage constraints, the system needs to be able to sense if and how many

TAOs are touched. For this, a very simple capacitive touch sensor was added to the TAOs,

as depicted in Fig. 7.4. To keep the amount of necessary hardware modification as low as

possible, fast Pulse Width Modulation (PWM) of the Arduino was used instead of an addi-

tional touch sensing Integrated Circuit (IC). This solution is not as sensitive and reliable as

special-purpose ICs, but it was very low cost and simple to build. Due to the low sensitivity,
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the antenna was placed outside of the TAOs, because the participants had to directly touch

the TAOs to reliably sense touch. Our touch sensing implementation is similar to the ap-

proach of the more recently presented Smart Tangibles by Gelineck et al. [54], introducing

touch sensing for passive TUIOs using Grove I2C touch sensors.

7.4 Data Collection and Dependent Measures

In our study we collected a data corpus with a time length of over 3 hours trials (plus learning

phases) including the detailed interaction data logs produced by the system. The collected

raw data, their post-processing and the derived measures are described in the following

sections.

Raw Data

We audio and video recorded every trial with a video camera positioned behind the interactive

surface (below the Kinect sensor; cf. Fig. 7.3). In the video data we hoped to observe two-

handed interaction, as described by Buxton and Myers [26]. When observing two-handed

input, we hoped it supported the kinematic chain model for (asymmetric) division of labor,

as described by Guiard [59]. We also annotated the audio and video data as described in the

post-processing subsection below for later analysis. Furthermore, we recorded system logs

for condition specific interaction data:

Mouse: Pointer coordinates, Mouse button press and release events and items being dragged.

Multi-touch: Touch point coordinates.

Passive TUIOs: The TUIOs’ positions and orientation, touch and release events – all with

the TUIOs’ IDs.

Active TAOs: The TAOs’ positions and orientation, touch and release events and navigation

events – all with the TAOs’ IDs.

For all conditions, we additionally recorded the mind-map items’ positions, their selection

states and events of connection creation and deletion. All recorded information were equipped

with time-stamps in milliseconds. The coordinates are relative to the interaction area and

unified to the range [0, 1] = {x , y ∈ R | 0 ≤ x , y ≤ 1}. The collected system logs are

extensive enough to render detailed interaction videos.

The recording of the raw data is managed and synchronized by our study control software. At

the end of each trial we automatically took a screen shot of the final state of the mind-map.

Subjective Ratings

Along with the raw interaction data, we also asked our participants to complete a digital ques-

tionnaire after attending the trial. All gathered information were treated in an anonymized

way. The first questions items regard general aspects, such as age, sex, handedness, oc-

cupation, education and if the two participants of the dyad knew each other before the

experiment.

The questionnaire’s items are listed in Appendix A.2, including which item was recoded forOwn Questions



7.4. Data Collection and Dependent Measures 95

analysis. The participants rated these items on a 7-point Likert scale without the possibility

for marking a “does not apply” field. We used the items to form indexes of the following

dependent dimensions: a) system usability, b) collaboration, c) task, d) user type, e) design

and f) task. Using Cronbach’s α to evaluate the indexes’ reliability, we had to break some

scales apart because of too low α-value. The following indexes remained for the later analysis:

System usability This index covers aspects, such as if the participants had fun working

with the system, if they liked to use the system for a longer period or more frequently and

if it was motivating, interesting and inspiring.

(7 items: 1, 2, 4, 5, 6, 11 and 12; α = 0.90).

Collaboration The items that build this index deal with the interaction between the trial

partners. Here they rated the productivity, communication, if the system facilitates collabo-

ration or if the system hindered the trial partners from effective collaboration.

(5 items: 3, 17, 19, 20 and 21; α = 0.80).

Task The task index is build from items relating to the task complexity. Furthermore, the

participants rated if the system was suitable for the task or distracting.

(4 items: 7, 8, 9 and 10; α = 0.68).

User type The items about the user type were asked to allow the participants to self-asses

their computer skills and how they use computers.

(4 items: 23, 24, 25 and 26; α = 0.70).

The following dimensions were assessed with only a single item, because their indexes’ α was

too low (α < 0.70 is already questionable):

Other tasks In this item the participant is asked to rate if he or she found the system

transferable to other tasks (item 13).

System design This item asked if the system design was appealing (item 14).

Expected system behavior Here the participant was rated whether the system worked as

expected (item 15).

Redesign The redesign item asked whether the participant would like to change the system’s

design if he or she could (item 16).

Task familiarity This item asked if the participant dealt with a similar task before (item

18).

Result Here, the participants were asked to rate whether they were satisfied with their result

or not (item 22).

Along with our own items, we added the items from the System Usability Scale (SUS) System Usability

Scalequestionnaire by Brooke, a widely used method for determining usability of a system. The

SUS items scored by the participants with a 5-point Likert scale were automatically computed

[23]. We included the SUS questionnaire for curiosity, because it provides a single value score

and to have a fall-back measure in case our own questionnaire items would fail. The SUS

result lies in the interval [0, 100]; 0 for worst 100 for the best result. For the SUS there is

no reliability check intended.

These indexes are the measures we used for scoring the conditions along with the measures,

we gathered from the post-processing of the interaction data, as described in the following

paragraphs.
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Post-processing of Interaction Data and their Measures

Of course we did not want to solely rely on measures gathered from questionnaires, we also

processed the interaction data for later analysis. Figure 7.5 gives an overview of the whole

post-processing procedure. After the raw data acquisition (step a), the first step towards

measuring the interaction data demanded semi-automatic annotation of the audio and video

data.

We automatically detected the participants’ utterances. For this we used the AudacityUtterances

program3 on the videos’ audio streams. After removing noise from the recording, we applied

the Sound Finder analysis tool for automatic detection of utterances. Beside the standard

parameters default values, we used the following two parameters with slight adjustments

according to the participants’ voice: a) silence level threshold: 15 [-dB] and b) minimum

duration of silence between sounds: 0.5 [s]. This results in labeled continuous sentences,

single words and utterances. We exported the time-stamps and durations to files which we

could use along with the video data in the annotation software ELAN4.

In the second stage (step b), we used ELAN to assign the utterance labels to the twoUtterance

Classification participants for each trial. We classify them according to whether it is produced by the

left or the right participant (in the video) and if it relates to the task or the system (e.g.

in case of a problem). This results in three tiers for each participant: a) all utterances,

b) utterances regarding the task and c) utterances regarding problems with the system. The

summed utterance duration of these tiers serve as measures we can directly use for analysis.

Of course, these annotation labels (participant left or right and task or system) are relatively

vague as they only cover the time duration the participants talked to each other. They do

not include information about the spoken words or any further context. Linguistic methods,

such as Protocol Analysis (cf. [98]) can help increasing the value of the recorded audio data

with a much higher annotation effort.

From the system logs we collected during the trials we also extracted the time stamps ofInteraction

Classification all mind-map item interactions. This is comparable to the interaction time approach by

Fitzmaurice and Buxton [46], but only respects interaction with mind-map items instead of

interaction with the actual interface device. This information, visible from the video, was

imported to ELAN as tiers, which we assigned to the participants’ interaction. Again, we

directly used the summed interaction length as a measure for evaluation. Furthermore, we

considered the average interaction length as a valuable measure.

ELAN allowed to calculate the time overlap between tiers. We used this as additionalTime-overlap

measures for the calculation of the overlap between the utterance and interaction tiers for

each participant. Furthermore, we calculate the overlap between the participants’ interaction

tiers as a measure for parallel interaction with the system. All interaction measures in the

time-domain are measured in seconds [s].

We did not only cover temporal measures, but also investigate the spatial interaction aspectsParticipants’

Interaction Area between the collaborating participants. For this, the interaction classification enabled the

3http://audacity.sourceforge.net/
4http://tla.mpi.nl/tools/tla-tools/elan/

http://audacity.sourceforge.net/
http://tla.mpi.nl/tools/tla-tools/elan/
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a)

c)

b)

Figure 7.5: Dia-

gram of the data

processing pipeline:

a) Acquisition: Col-

lection of raw data,

including audio,

video and system

log. b) Annotation:

Here the raw data is

semi-automatically

segmented and as-

signed to the two

participants (left is

blue, right is red).

This results in tiers

containing time in-

formation about the

utterances regarding

the task and the sys-

tem and interaction

with the mind-map

items by participant.

c) Assignment: The

classification of the

utterances and item

interaction allows for

assigning collected

trajectories to the

participants and the

calculation of the

used interaction areas

and their overlap.
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Figure 7.6: Example

visualization of one

trial’s trajectories, in-

teraction spaces and

their intersection.

automatic assigning of the participants’ trajectories recorded in the log files. By this, we are

able to identify which trajectory was performed by whom (step c). To measure the area of

the interactive surface the participants actually use for interaction, we calculated the convex

hull of the participants’ trajectories. The convex hull is calculated from the participants’

trajectories and the corner of the interaction surface at which the respective participant sits

during the trial. The area of the convex hull is defined by the points that lie on the outer

border of the trajectory points, (as defined in Equation 7.1):






|S |
∑

i=1

αixi

∣

∣

∣

∣

∣

(∀i : αi ≥ 0) ∧

|S |
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





(7.1)

Here, S is the set of trajectory points and xi determines the point i . For all points, a

coefficient αi is calculated, that are all positive and sum up to 1. Algorithms, such as the

Gift wrapping or Jarvis march algorithm [86], can be used to easily compute the convex hull

of a finite set of points.

The area span by the points defining the convex hull is directly used as a measure for the

later analysis. Furthermore, we calculated the intersection between the interaction areas

to determine whether the interface has an influence on how far the participants spatially

share more or less space for interaction. Figure 7.6 depicts an example visualization of the

trajectories performed in one trial, the participants’ used interaction space and the inter-

section. Especially in the Mouse condition we expect a certain difference, because of its

exclusive character. It does not support parallel access of the participants which can cause

one participant to use the interface alone during the whole trial.

After post-processing and annotation, the ELAN tiers were video recorded with a screen

capturing program. This allowed us to merge the recorded videos of the participants, the
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rendered interaction videos of the interactive surface and the annotations into one video for

each trial for later detailed analysis.

Motivation Background for new Measures

Of course, these measures are not completely new and may even be successfully used in

other research fields, such as CSCW that even shares some overlap with tangible interaction

research. But the described measures were not yet used in a study on (actuated) TUIs in

comparison with other established interaction paradigms. As inspiration for our studies, the

following concepts played a major role:

The idea for measuring the participants’ interaction area for later analysis was inspired by Peripersonal Space

the work by Nguyen and Wachsmuth [147]. They present the concepts peripersonal space

and interpersonal space for the virtual agent Max. From the neuro-physiological view, the

motivation for this argument is the work by Holmes and Spence [72], Previc [162] and others.

The peripersonal space is an egocentric three-dimensional space model defined by the reach

of the human hands for direct visual grasping and manipulation [162].

Nguyen and Wachsmuth also integrate the social view and its neural mechanisms by reviewing Interpersonal Space

the work by Hall [60], Lloyd [123], Kendon [93] and others. Especially Kendon [93, p. 209]

introduces the formations patterns for spatial orientation and grouping of humans in space.

For our study the side-by-side arrangement is of particular interest, because the participants

sit side-by-side at the tDesk to accomplish the task. Each participant has an “activity

space” which Kendon calls transitional segment. Kendon calls the intersection of transitional

segments o-space. We do not stick to Kendon’s nomenclature, because our definition of the

participants’ interaction area is calculated from our collected data. Our interaction area

definition is a sub-space located in the space defined by Kendon.

Additionally, we analyzed the annotated speech and interaction tiers with regard to turn Turn Taking

taking, as described by Sacks et al. [177]. This is a conversation analysis approach for

modeling and describing the process of turn taking in conversations. In this study we measure

the number of turns that occurred between the participants during the trials. We not only

focus on speech, but also on the interaction with the mind-map items. Except for the Mouse

condition, all interfaces evaluated allowed parallel use of the system. Nevertheless, the turn

taking model still works for interaction and we hoped to find interesting effects within this

measure between the conditions.

7.5 Experimental Procedure

The dyads of participants were randomly allocated to one of the four conditions. At first, Introductory Video

the participants were introduced to the experiment procedure, starting with an introductory

video for the particular condition presenting the features of the system. The basic sequence

of the videos and their explanation are the same for all conditions and were only adapted

where it was demanded by the condition’s interface. Stills of the introductory video for the

TAOs condition can be found in Figure 7.2.
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After this, a learning phase follows, where the participants were allowed to play with theLearning and

Exploration Phase system to get used to the interface and its features. At this stage there are five mind-map

items without any meaning. The participants could try the system in the learning phase as

long as they liked and decided by themselves if they are ready for the actual task. This is

assured by a little test task where they had to align the items in a circle. Furthermore, this

phase hopefully helps to reduce the novelty effect.

Following the learning and exploration phase, is the trial phase with the actual task. HereTrial Phase

the participants get seven mind-map items from the field of astronomy and five minutes to

accomplish the task. Both during the learning phase and the actual task, the participants’

interaction with the system was audio and video recorded and system logs were collected, as

well.

Finally after the actual task, the participants were asked to complete the digital questionnaire.Questionnaire

The whole experiment could be conduced in German or English.

7.6 Participants

We drew our participants from the students and administrative staff of the Bielefeld University

using a printed call for participants in the university’s cafeteria and the staff mailing list. As

we designed our study as a single-blind study, the call explicitly did not mention the fact

that we intend to compare different user interfaces. All participants had no detailed prior

knowledge of the TAOs and were instructed that we are interested in how they collaborate

in creating a mind-map with our “interactive table”. So the participants did not know that

we are actually interested in how they interact with the system. or how they interact with

each other using the system.

For this exploratory study, we were able to recruit 80 participants that made up N = 40 dyads

which results in 10 dyads per condition. There were 40% female (N = 32) and 60% male

(N = 48). 90% of the participants were right-handed (N = 72), 8.75% were left-handed

(N = 7) and 1.25% (N = 1) was ambidextrous. The mean age of the participants was 32.21

years, ranging from 11 years to 70 years (SD = 11.21). Within the dyads, 57.5% (N = 46)

of the participants stated knowing the other trial partner, 17.5% (N = 14) stated knowing

the other one only a little, while 25% (N = 20) did not know the other partner at all. Figure

7.7 graphically summarizes these numbers.

7.7 Results

We conducted one-factorial Analysis of variances (ANOVAs) to analyze the effects of our

experimental manipulations and for the post-hoc analysis we used multiple comparison tests

with Tukey’s Honestly Significant Difference (HSD) criterion (an alternative to the Bonfer-

roni method) from Matlab’s Statistics and Machine Learning Toolbox that already deal with

alpha-inflation compensation. The first dependent dimensions are the subjective ratings of

the participants on a) system usability, b) collaboration, c) task, d) user type, e) other tasks,

f) system design, g) expected system behavior, h) redesign, i) task familiarity, j) result and
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Figure 7.7: The de-

scriptive statistics of

the participants.

the k) SUS according to Brooke [23]. After this, we present the results of the ANOVAs con-

ducted on the interaction measures a) utterances, b) interaction, c) time-overlap between

utterances and interaction, d) time-overlap between the participant’s interaction, e) interac-

tion space, f) interaction space interaction, g) turn taking in speech and h) turn taking in

interaction. The ANOVA results are printed in Table 7.2.

Subjective Ratings

In the following paragraphs we elaborate on the significant results as summarized in Table

7.2 and present the post-hoc test results.

The ANOVA showed a significant effect for our system usability scale. The post-hoc analysis System Usability

indicates a significant difference between the multi-touch (M = 4.69, SD = 1.23) and the

TAOs condition (M = 5.74, SD = 0.89). The TAOs condition was rated best, while the

multi-touch condition was rated worst (p = 0.002). The other two conditions showed no

significant difference compared to the others.

The ANOVA yields a main effect of experimental condition on the task index.The post-hoc Task

tests revealed a significant difference (p = 0.005) between the Mouse (M = 6.12, SD = 0.78)

and the passive TUIOs condition (M = 5.25, SD = 1.39). The passive TUIOs condition was

rated less suitable for the task, while the Mouse condition was rated best.

In the task familiarity index the results yield significant differences between the multi-touch Task Familiarity

condition (M = 2.00, SD = 1.52) and all other conditions (M ≥ 3.60, SD ≈ 2, 27). Our

data do not provide any clue for this effect as the participants were randomly assigned to the

conditions. This could have happened by chance or there could have been some participants

that misunderstood the question.
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Index / Measure F -value p-value η2p-value

Questionnaire Results

System usability 3.07 0.03 0.06

Collaboration 1.74 0.17 0.03

Task 2.97 0.04 0.06

User type 1.62 0.19 0.03

Other tasks 0.11 0.95 < 0.01

System design 1.45 0.23 0.03

Expected system behavior 1.74 0.17 0.03

Redesign 2.07 0.11 0.04

Task familiarity 3.00 0.04 0.06

Result 0.62 0.60 0.01

SUS 0.66 0.58 0.01

Interaction Measures

Utterances sum 1.78 0.16 0.04

Interaction mean 10.23 < 0.01 0.17

Interaction sum 1.99 0.12 0.04

Overlap mean (task+interaction) 6.79 < 0.01 0.12

Overlap sum (task+interaction) 1.68 0.18 0.03

Overlap mean (interaction+interaction) 2.30 0.10 0.15

Interaction space 5.51 < 0.01 0.05

Interaction space Intersection 2.97 0.05 0.01

Turn taking (speech) 1.13 0.35 0.03

Turn taking (interaction) 8.30 < 0.01 0.03

Table 7.2: Overview

of the ANOVA re-

sults. Printed bold

are results that met

the critical F ≥ 2.64

and yield significant

effects (p ≤ 0.05).

Though the ANOVA

yielded significant ef-

fects in the interac-

tion space intersec-

tion, the post-hoc

tests did not.

All other results from our own questions (Collaboration, User type, Other tasks, SystemInsignificant Results

design, Expected system behavior, Redesign and Result) did not show any significance.

These insignificant results can be found in Section A.2 in the appendix.

Interaction Measures

The interaction measures are mainly based on the annotated video recordings.5 Figure

7.8 gives an overview of three trials (Mouse, multi-touch and TAOs6) to make the results

gathered from the interaction measures more graspable. In the stills, we can observe the

two participants’ in each trial interaction spaces and the overlap between utterance and

interaction tiers.

We can observe significant effects analyzing the average interaction duration: Post-hocInteraction

tests revealed that the average interaction duration in the Mouse condition (M1 = 0.80,

5Unfortunately, one video of the Mouse condition was not completely recorded and therefor not usable

for analysis. We left it out and continued our analysis on the remaining 39 videos.
6As there was no difference between the TUIOs and the TAOs condition in any way, we omit giving

examples for the TUIOs condition at this point.
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Figure 7.8: Stills from three merged trial videos at three different time indexes (1st row: Mouse; 2nd row: Multi-touch; 3rd row: TAOs). We can

observe the participant using the Mouse to take control rather quickly. In the multi-touch and TAOs trials, there is an agreement phase. There is active

collaboration in the latter two trials. The shared interaction space in the multi-touch trial is larger than in the TAOs trial.
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SD1 = 0.49) is significantly shorter (p1,2 < 0.01, p1,3 < 0.01 and p1,4 < 0.01) than in

all other conditions (M2 = 2.17, SD2 = 1.16; M3 = 2.05, SD3 = 0.83; M4 = 1.78,

SD4 = 0.71).

The average time-overlap between utterances regarding the task and mind-map item interac-Average

Time-overlap

between Taks

discussion and

Interaction

tions drops significantly in the Mouse condition (M1 = 0.35, SD1 = 0.26) in comparison with

the other conditions (M2 = 0.69, SD2 = 0.38;M3 = 0.83, SD3 = 0.46;M4 = 0.78, SD4 =

0.35). This was expected as the Mouse is a single-user interface. Often the participant not

interacting with the Mouse successively told the other participant what to do.

As described above, we calculated the interaction space of the dyad’s participants of eachInteraction Space

trial. The measure used in this evaluation is the average of these two values for each trial.

The post-hoc tests revealed a significant difference (p1,2 = 0.003) between the Mouse (M1 =

0.33, SD1 = 0.13) and the multi-touch condition (M2 = 0.50, SD2 = 0.10). Furthermore,

there was a significant effect (p1,3 = 0.048) between the Mouse and the passive TUIOs

condition (M3 = 0.45, SD3 = 0.07). In other words, the interaction space used by the

participants in the Mouse condition is significantly smaller than in the multi-touch and

the passive TUIOs condition. This effect was expectable and can be explained with the

exclusiveness (single-user implementation) of the Mouse.

The last measure we analyzed in this study is the turn taking in interaction with mind-mapTurn Taking in

Interaction items. The test for homogeneity of variance was significant for this dimension (p = 0.045).

Thus, the Games-Howell post-hoc tests revealed a significant difference (p1,2 = 0.005, p1,3 <

0.001, p1,4 = 0.004) between the Mouse condition (M1 = 1.78, SD1 = 0.83) and all three

other conditions (M2 = 7.9, SD2 = 4.15; M3 = 6.40, SD3 = 2.07; M4 = 6.10, SD4 = 2.85).

Obviously, the Mouse condition has significantly less turns which again can be explained with

the exclusive character of the single-user device. Between the other conditions there is no

significant interaction.

Appendix A.2 contains all results calculated in the ANOVAs and post-hoc test, including

all non-significant values and provides graphical overview figures of the discussed dependent

variables.

Further Observations

When screening the audio and video material we gathered throughout the trials, we made

further interesting observations.

First of all, we counted the successful trials. In result, 82.05% of all 40 trials were successful.Successful Trials

In the Mouse condition 88.89% (N = 8) of the trials were successfully accomplished by the

participants. 70% (N = 7) of the participants in both the multi-touch and passive TUIOs

condition successfully finished the trials and 30% (N = 3) did not. In the TAOs condition,

the participants were successful in 90% (N = 9) of the trials and did not succeed in 10%

(N = 1). The selection-feature for moving multiple items simultaneously was used seldomly;Use of Simultaneous

Movement Feature on average in 17.95% (N = 7) of all trials. In the Mouse condition, this feature was used

only in one trial (11.11%). The participants in the multi-touch condition made use of the

feature in 20% (N = 2) of the trials. The simultaneous movement feature was used in 10%
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(N = 1) of the trials in the passive TUIOs condition. In the TAOs condition, the feature

was used at most (30%, N = 3), but without using the TAOs actuation feature.

Though supported by all conditions, except the Mouse condition, we did not observe two- Two-handed Input

and Kinematic

Chaining
handed input [26] and kinematic chaining [59]. Both would have been possible to perform

by using both hands in the multi-touch condition or by using two TUIOs or TAOs in the

respective conditions. Instead, we were occasionally asked by the participants why there are

three TUIOs or TAOs for only two users. Intentionally there was one for each user and we

hoped, the third would be used for two-handed input.

The size of the interactive surface was problematic in two different ways, as participants Unexpected Problems

reported. First of all, the surface was too small to support collaborative work between two

users. Participants reported that they did not want to disturb their trial partner due to the

lack of space, especially in the conditions with TUIOs. On the other hand the TUIOs or their

non-tangible representation may be too big in relation to the interactive surface. But since

the size of the TUIOs is good in terms of graspability, it is more likely that the interactive

surface is too small.

7.8 Discussion and Interpretation

We were surprised to find no larger effects between the multi-touch and tangible conditions

on the adapted interaction measures. At least with our sample of participants we were

not able to find evidence for larger effects. However, we found significant effects in the

questionnaire and expectable results for the Mouse condition.

With an average rating of M = 5.74 and a SD = 0.89, the numbers say it clearly: The System Usability

participants of our study rated the TAOs as best interface according to its usability. The

next best condition was the passive TUIOs, followed by the Mouse condition. That the

multi-touch condition was rated the worst may be connected with technical problems. The

sensing approach which takes advantage of a Kinect sensor for tracking fingers touching

the interactive surface performed not as well as expected. It suffered from fingers or hands

occluding the finger touching the projected mind-map item which disturbs the interaction.

Capacitive or optical sensing from below the surface might have yielded better results for

the multi-touch condition.

The task index’s results are surprising. The index was basically intended to reflect the Task

system’s suitability for the mind-mapping task. Here, the participants rated the Mouse

condition best, followed by the multi-touch and the TAOs condition, while the passive TUIOs

condition was rated worst. A significant effect was only observed between the Mouse and

the multi-touch condition. Furthermore, the questionnaire items regarding the task are more

abstract and not that easy to answer (all of them were recoded). So one might regard the

effect in the task index with suspicion.

The multi-touch condition had the longest durations. Furthermore, the significant effect Interaction

between the Mouse condition and all other conditions regarding the average interaction du-

ration is obvious. Since the interaction with the Mouse happens in a much smaller physical

space, the participants are able to interact with the mind-map items much quicker. Inter-



106 Co-located Collaboration: Comparative Interaction Measures

action with the Mouse is quicker because of the shorter distances that are needed to move

the Mouse. This slight drop of interaction duration in the passive TUIOs and TAOs condi-

tions was not significant. Furthermore, the longer interaction durations in the multi-touch

condition may also be related with the mentioned technical problems.

Considering the findings regarding the utterance and interaction duration, it is not surprisingTime-overlap

between Utterances

and Interaction
that the overlap between these two measures yield significant effects. The utterances and the

interaction in the Mouse condition are both shorter than in the other conditions. The overlap

between both measures turns out to be significantly shorter compared to the overlap duration

in the other conditions. The longer overlap durations for the passive TUIOs and the TAOs

condition may indicate a better balanced cognitive load in these conditions. Nonetheless,

this hypothesis definitely needs more investigation from the psychological point of view.

The results of the analysis of the used interaction space are not surprising. The used interac-Interaction Space

tion space in the Mouse condition is significantly smaller than in the multi-touch and passive

TUIOs. Also the used interaction space in the TAOs condition tended to be larger than in

the Mouse condition. This can be explained with the exclusiveness of the Mouse interface

and the fact that in four trials only one participant interacted with the Mouse (this also

happened once in the multi-touch condition). On average, this reduced the used interaction

space of the two participants.

The turn taking in interaction is another measure for parallel interaction. The highly sig-Turn Taking in

Interaction nificant effect in the Mouse condition can be explained with the interface’s exclusiveness,

because turn taking in the Mouse condition means a switch between the users. Furthermore,

there is a significant effect that multi-touch may facilitate parallel interaction between the

participants, other than in the passive TUIOs and TAOs conditions.

It is interesting that in the TAOs condition the simultaneous movement feature for theUse of Simultaneous

Movement Feature mind-map items was used most often, though the TAOs’ actuation was not used in favor

of the alternative implementation (by selecting and de-selecting the items to be moved

simultaneously). This can be explained with the participants’ familiarity with the GUIs

paradigm. Asking the participants after the trial, they stated that they did not consider

using the TAOs’ actuation due to the availability of the alternative implementation they are

more used to. We think the rather short introduction to the system including the learning

phase was not enough to make the participants aware of the additional actuation feature. In

a long-term study this effect might change.

The videos of the learning phase were no central aspect in this analysis. The learning phasesDuration of Learning

Phase in the Mouse condition were the shortest. This can be explained with the participants’

familiarity with the computer Mouse and its usage. We were surprised to find the learning

phases in the multi-touch condition about twice as long as in the Mouse condition. Though

the participants may be familiar with touch interaction from smartphones or tablet PCs, we

suspect they never used a large touch interface like the tDesk before. Furthermore, this

effect can be explained with the technical problems, mentioned earlier.

Because the participants always used only one finger or TUIO or TAO, we were disappointedTwo-handed Input

and Kinematic

Chaining
not to observe two-handed input and kinematic chaining. This might be connected with

the task; it does not require such interaction patterns. Sometimes when one participant
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had problems breaking a connection between two mind-map items, we observe the other

participant helping out. Here the other participant moved the other mind-map item further

away to help to break the connection, collaboratively.

7.9 Conclusion

Our study showed that users seem to be well trained in using the Mouse as the results of the

mean interaction duration revealed. The average item manipulation duration with the Mouse

took only half of the time as in all other conditions. The other significant findings are mostly

related to the fact that the Mouse was used as a single-user device in this study. However,

these results fit into major findings reported in literature comparing Mouse interaction with

one or two other interaction styles.

Differences between the other multi-user interface conditions seem to be smaller than we

expected. So far, we can emphasize the conclusion stated by Fitzmaurice and Buxton: “The

Mouse is a general all-purpose weak device; it can be used for many diverse tasks but may not

do any one fairly well. In contrast, strong specific devices can be used which perform a task

very well but are only suited for a limited task domain. The ultimate benefit may be to have

a collection of strong specific devices creating a strong general system.” [46] Nonetheless,

the desire for comparative studies in the fashion of our own seems to be reasonable and

needed, as recently published studies show [28, 37].

Our study was pure exploratory and far from complete. We were able to cover effects with Limitations of this

Studya statistical effect size of f = 0.69 (N = 40; 10 dyads per condition) which is a very large

effect size. To significantly discover large effects (f = 0.40) we would have needed N = 112

dyads; a medium effect size of f = 0.25 would have required N = 280 dyads, a small effect

size of f = 0.10 would have required N = 1724 dyads.7 Changing the between-subjects

to a within-subjects design would have required only N = 24 dyads for a complete set of

counterbalanced trials, but would have resulted in a corpus over twice as large as our current

corpus size covering effect sizes of f = 0.43. The next larger complete set of counterbalanced

trials would have required N = 48 dyads with a corpus size of 192 trials covering an effect

size of f = 0.30. With such an increased number of trials also comes an increased effort for

post-processing and analysis. We can easily see that a comprehensive comparative study with

four conditions quickly goes beyond the scope of a subproject like ours and would demand a

PhD project of its own.

However, we adapted and introduced generic measures from other research fields to evalua- Adapted Measures for

Tangible Interactiontion of (actuated) TUIs that were derived from (semi-)automatically collected and annotated

interaction data. These measures can be transferred to other tasks and study designs and

may help to find further evidence for the theories of the research community regarding the

benefits of tangible interaction.

7Estimated using G*Power [39]
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Beside the study results, we also contributed technical improvements to the TAO by im-Touch Support for

TUIOs and Study

Control
plementing hardware and software extensions supporting touch interaction with the TAOs,

comparable to the more recent approach by Gelineck et al. [54].

Our extensions for study execution and (semi-)automatic annotation and post-processing of

collected interaction data decreased the amount of necessary analysis effort. After hand-

assigning annotations to the participants’ tiers, it highly reduces efforts for data fusion,

allowing for deriving information for the adapted measures.

Future Work

The corpus we gathered during our study offers the option for extensive linguistic analysis

which would have gone far beyond the scope of this thesis. New hypotheses can be investi-

gated, such as if the different interface configurations foster teaching and learning differently.

Such high-level measures can be determined by counting the occurrences of one participant

explaining one or more of the mind-map items to the other participant. Furthermore, the

presented hypotheses can be evaluated in field- and long-term studies to investigate learning

effects in general, like presented by Kirk et al. [101] and Wigdor et al. [212]. Aspects like co-

orientation [94] are also a promising cross-modal interaction measure that could be analyzed

through deeper annotation work. In future studies this could be supported by integrat-

ing eye-tracking methods and (marker-based computer vision supported) (semi-) automatic

annotation.

Of particular interest within the frame of this chapter are systems that address multiple usersMulti-user Interaction

with regard to personal interaction spaces or territories [181]. To even more improve the

automatic annotation and data fusion capabilities of our system, identification and tracking

of multiple users is needed. One of the first approaches to detect users around a tabletop

multi-touch display was presented by Walther-Franks et al. They presented a self-contained

integrated approach that used arrays of proximity sensors placed around the frame of the

multi-touch table. With the sensor readings, they propose several application ideas that

benefit from user detection at the table, user-orientated display and user-assigned touch

events [207].

Klinkhammer et al. picked up this approach to implement their museum information multi-

touch table. The system addresses multiple users and demonstrates “territories” for the

users. On the one hand, these clearly separate the users’ working areas, on the other hand,

these areas support collaboration and information charing between users [107].

With theirMedusa system, Annett and Grossman extended the idea of using proximity sensors

by adding two further rings of sensors pointing upwards around the interactive surface. This

allowed them to more robustly assign touch events to users and even to detect the users’

arms without touching the surface [3].



8The Human Hand’s Manipulation Speed:

Implications for Actuated TUIOs

Man is the most intelligent of animals

because he has hands.

Anaxagoras, overdelivery by Aristotle,

De partibus animalium, IV, 10; 687 a 7

Our hands are the critical part of our bodies when it comes to manipulation of physical

objects. The exploration and investigation of the human hand’s properties and skills is

an interdisciplinary field of research. To define the boundary conditions and requirements

for manual interaction of TUIOs, we briefly touch on this topic within this chapter. One

basic but fundamental property of manual interaction is the hand’s speed in manipulating

an object. In this chapter we review speed specifications of other actuated TUIOs found

in literature and compare them to findings from a small pre-study investigating the human

hand’s manipulation speed as an upper bound for the TAOs’ actuation speed. Furthermore,

we relate these findings with the TAOs’ velocity and review the interaction data gathered

throughout this thesis.

8.1 Related Work

The skills of the human hand and its universal applicability in object manipulation and Grasps and Grasp

Classificationgrasping has always inspired researchers. One key feature for manual interaction is grasping.

Taylor and Schwarz give a detailed overview of the anatomy of the human hand and describe

various hand movements, including grasps [192]. One of the first classification of different

grasp types has been proposed earlier by Schlesinger [180]. Mainly dealing with prosthetics

and artificial limbs, this approach is driven by grasping different object shapes, resulting in six

prehension types: a) cylindrical, b) tip, c) hook or snap, d) palmar, e) spherical and f) lateral

grasp. Napier criticizes this shape-driven classification and introduces his first task-oriented

approach which categorizes grasps into two classes: a) power grasp and b) precision grasp

[146]. Though this approach is widely accepted in literature, it is still debated. Multiple

different taxonomies were developed with different purposes in mind, such as for robotic

grasping [179]. Bullock and Dollar proposed another hierarchical taxonomy with regard to

aspects such as contact, motion, whether a grasp is prehensile or if it is within the hand [24]

(see Fig. 8.1).
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Figure 8.1: Hier-

archical taxonomy of

grasps by Bullock and

Dollar [24].

With regard to (tabletop) TUIs, we find this taxonomy very useful. Trying to apply thisGrasping TUIOs

taxonomy to TUIO handling in tabletop TUIs, we mostly find one class of human manipu-

lation task: C-NP-M-W-A (cf. Fig. 8.1). In other words, TUIO handling in tabletop TUIs

obviously involves contact with the TUIO (C), it is non-prehensile (NP), involves motion

(M) within the hand (W) and involves motion on the tabletop surface (A). According to

Napier, this classification path primarily resembles the power grasp. Of course, there are

other grasp types that apply to TUIO handling. For instance, if the TUIOs are smaller like in

the Turtledove system [140], we have a different handling: C-NP-M-NW. Another example

for TUIO handling applies to the Chopstix system [16, p. 104–115]: C-P-M-W-NA. “Dif-

ferent object sizes further result in a different type of grip [127]. As a rule of thumb, square

blocks with a width of 5 × 10 cm are easy to hold, a width of 5 cm supports a precision

grip (pinching with thumb and one or two fingers) and a width of more than 10 cm requires

a power grip with the entire hand. A token’s weight can furthermore add meaning to the

interaction-heaviness might indicate a more important and valuable object. A central affor-

dance of physical objects is that they provide tactile feedback, supporting eyes-free control
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when performing fine-grained operations such as rotating the object, or moving two objects

in relation to each other [102]. Moreover, an object’s design can invite users to interact”

[185].

Beside grasping, the manipulation of objects plays a major role, especially in tangible in- The Speed-Accuracy

Trade-offteraction. Fitts’ Law [44] found favor with the communities in HCI and Ergonomics. This

theorem is used to describe the speed-accuracy trade-off which occurs in interaction.

MT = a+ b · log2

(

2A

W

)

(8.1)

In formula 8.1 [128], MT is the predicted movement time, measured in seconds [s], W is

the target width to be selected, A is the distance to the target. The constants a and b are

determined through linear regression. In a nutshell, this model describes the relation between

target size and distance and the difficulty in correctly selecting it with a pointing device (in

a one-dimensional case). The smaller a target is and the further it is away from the current

pointer position, the harder it is and the longer it takes to accurately select it.

In TUIs, many studies have been conducted, investigating interaction speed and result ac- Related Studies with

Actuated TUIOscuracy, such as [46]. With regard to actuated TUIs, Pedersen and Hornbæk described a

comparative usability study in which they investigated differences in interaction speed and

accuracy between non-actuated and their actuated TUIOs, the Tangible Bots [158]. The par-

ticipants of their study preferred the active TUIOs over the passive ones. Furthermore, they

found that the active TUIOs required less workload and that their participants reported that

they have had more fun. The fine-grained rotation task benefited from actuation, whereas

coarse planar movements were accomplished more effectively with the passive TUIOs.

In Chapter 3, we already compared actuation specification of other actuated TUIOs found Actuation Speeds of

TUIOs in Literaturein literature, as given in Table 3.2. Additionally, Figure 8.6d visualizes these findings and

compares these with the TAOs’ current actuation capabilities. Though the TangibleBots by

Pedersen and Hornbæk seem to base on the 3pi Robot1 capable of driving at 100 cm/s, the

visual tracking might of the TangibleBots might be the limiting factor. More recently, Acto

was published by Vonach et al. which claims to drive at up to 39 cm/s [204].

8.2 Basic Motion Properties of the Hand and the TAOs

Speed is a very important key factor for effective manipulation of objects. In this section

we describe our small pre-study to measure the speed of the human hand manipulating an

object as an upper bound for actuated TUIOs. Furthermore, we measure the TAOs’ velocity

and compare the two measurements. As the TAOs should ideally be able to reproduce the

human hand’s speed, the human hand’s manipulation speed serves as an upper boundary

condition. Though we improved the TAOs’ performance compared to earlier measurements

[167, p. 70], we expect that they still cannot compete with the human hand.
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(a) The MILab setup [136]. (b) Hand and TUIO equipped with Vicon markers.

Figure 8.2: Set-

ting and preparation

for the manipulation

speed recording ex-

periment.

Figure 8.3: The mo-

tion pattern for mea-

suring the manipula-

tion speed. The

corners are labeled

with upper case let-

ters and the linear

sub-trajectories of the

pattern are labeled in

their sequence of exe-

cution, starting in the

upper right corner:

A
1
→ B , B

2
→ C ,

C
3
→ D, D

4
→ A,

A
5
→ C , C

6
→ B ,

B
7
→ A, A

8
→ D,

D
9
→ C , C

10
→ D,

D
11
→ B .

Benchmarking the Human Hand

For the measurement of the human hand’s manipulation speed, we used the Vicon motionApparatus

capturing system installed in the institute’s Manual Interaction Laboratory (MILab) (see

Fig. 8.2a). The MILab [136] setup consists of a cage (length 2.1 m, width 1.3 m, height 2.1

m) that was equipped with fourteen MX3+ cameras capturing at 200 frames per second.

The glass table on which the experiment was carried out had a height of 1.0 m (a more

detailed description can be found in [136]).

For our experiment, the hands of the participant and the object were equipped with reflective

markers, as depicted in Fig. 8.2b. Three markers were fixed to each hand and the object in

1https://www.pololu.com/product/975

https://www.pololu.com/product/975
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distinctive triangles (an isosceles and right-angled triangle on the object and scalene right-

angled triangles on the hands; the right hand’s triangle is mirrored on the left hand). In the

recording software, all three triangles were defined as rigid bodies and labeled accordingly.

We decided on a pick-and-place task to measure the manipulation speed of the human hand Procedure and Task

manipulating an object. For this, we defined a special pattern, as depicted in Figure 8.3,

that consists of multiple linear trajectories assembling a rectangle with its diagonals. This

quadratical pattern was practiced multiple times before the actual experiment started. The

four target positions (A, B, C and D) of the rectangular pattern were marked with reflective

markers from underneath the MILab’s tabletop glass surface. The experiment consists of

three sessions in which the size of the rectangle is altered in terms of edge length ( a) 50 cm,

b) 25 cm and c) 5 cm). In each session the pattern is performed in three different ways:

a) relaxed, b) fast and c) as precise as possible. All three modes are performed with the left

and the right hand, resulting in six trials in each session. With this procedure, we hoped to

get reliable results when combining the three performance modes for comparison with the

TAOs.

Since this experiment is meant to be a pre-study to get a baseline for evaluating the TAOs, Participant

we had one participant, 28 years old and ambidextrous with preference for the left hand.

We analyzed the trajectories with regard to the planar speed (without the z-axis; with Z = 0, Results

respectively) for better comparability with the TAOs. The calculated instantaneous speed is

summarized in Figure 8.4d. Within the three rectangle sizes, we found decreasing average

speed with decreasing edge length of the pattern’s rectangle. In the trials with the rectangle

with 50 cm edge length, the average speed was M = 73.86 cm/s (SD = 63.63 cm/s, max

= 307.82 cm/s). The trials where the rectangle had an edge length of 25 cm revealed an

average speed of M = 51.66 cm/s (SD = 40.06 cm/s, max = 182.33cm/s). Finally, the

average speed in the trials with a rectangle’s edge length of 5 cm was M = 18.29 cm/s

(SD = 10.15 cm/s, max = 68.33 cm/s). After combining all results, we got an average

speed of M = 55.51 cm/s (SD = 53.80 cm/s).

Applying linear regression on these data according to Fitts’ Law results in a ≈ 8.27 and

b ≈ 0.25 (R2 ≈ 0.96).

Figures 8.4a to 8.4c depict an example trajectory (25 cm edge length, left hand, relaxed). In

Figure 8.4a the planar trajectory is plotted, while Figure 8.4b depicts the x and y components

of the trajectory against time. The speed profile of the example trajectory is plotted in Figure

8.4c. Here we can easily identify the eleven linear trajectories and the turn points of the

rectangular pattern.

The results basically reflect the general manipulation speed also found in literature, such as Discussion

in the experiments by Maoz et al. [131]. The recorded trajectories exhibit the typical bell-

shaped speed profile, as described by Flash and Hogan [48]. Furthermore, the decreasing

speed with decreasing rectangle edge length basically correspond with Fitts’ law. Though

there was no explicit constraint for precision, the smaller rectangle size may be reinterpreted

as a smaller target size which results in reduced speed. Also the distance to target is reduced,

as well, which left the participant less room for acceleration. This can also be explained with

the bell-shaped speed profile. The recorded data are not empirical, but they suffice for a
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(c) The speed profile of the example trajectory (instan-
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combined over all trials.

Figure 8.4: Three

different visualiza-

tions of an example

trajectory recorded

during the experiment

(25 cm rectangle

edge length, left

hand, relaxed). Also

an overview with box

plots of the speed in

all three conditions

of the experiment is

given.

first baseline for comparison with the TAOs’ velocity.

Benchmarking the TAOs

We created a similar procedure for evaluating the TAOs’ velocity. We evaluated three TAOsApparatus and

Procedure on the tDesk, one after another. A special evaluation program requests the path-planning

component to make the TAO move according to the same pattern as described above (see

Fig. 8.3). When the TAO reaches a target position, the next target is requested instanta-

neously until the pattern is complete. A major difference here are the dimensions of the

rectangular pattern. Due to the size of the interactive surface (56 cm × 42 cm), we decided

on a different size and form factor. The upper left corner of the rectangular pattern was

located at 14 cm, 10.5 cm and the lower right corner was located at 42 cm, 31.cm. This

results in a width of 28 cm and a height of 21 cm for the pattern, while the pattern for

evaluation of the human hand was quadratical. Figure 8.5 depicts a photo of a TAO being
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Figure 8.5: Picture

taken during the eval-

uation of the TAOs.

The rectangular pat-

tern had a width of

28 cm and a height of

21 cm.

evaluated. Each of the three TAOs performed the pattern within three trials which results

in nine trials for the whole evaluation. To obtain reliable results, the tracking component

captured the TAOs’ positions with a frame rate of 30 Hz. The evaluation component wrote

log files with the positions of the TAOs at a fixed frame rate of 10 Hz with the time stamp for

each position. Furthermore, the TAOs moved at maximum speed. In the other experiments

described in this thesis, the TAOs were tracked at a frame rate of 15 Hz and a reduced speed

of approximately three quarter of maximum speed.

The Figures 8.6a to 8.6c depict an example trajectory a TAO performed during evaluation. Results

As we can see, the TAOs performed not as accurately and smoothly as the human hand.

The plotted trajectory and the x and y components plotted against time are more bumpy.

Especially the speed profile is very noisy, but we can still distinguish the turn points at

the target positions of the rectangular pattern (velocity of nearly zero in steps of about

5 seconds). The noisiness can be explained with drift caused by slight imprecision of the

hand-assembled housings and mechanics. This could be overcome by implementing a control

approach within the TAOs which is currently not possible due to technical limitations, such

as the limited memory of the used Arduino platform. Figure 8.6d summarizes the results

of the calculated velocities. We calculated the instantaneous velocities (frame-to-frame) to

get an as accurate impression of the TAOs’ velocity as possible. The average velocity of the

TAOs was M = 6.47 cm/s (SD = 3.69 cm/s, max = 18.70 cm/s). For comparison, we

repeated the evaluation driving the TAOs at normal speed. Here, they showed an average

velocity of M = 5.28 cm/s (SD = 2.30 cm/s, max = 12.22).

Applying linear regression on these data according to Fitts’ Law results in a ≈ 0.34 and b ≈

3.30 (R2 ≈ 0.99). The rather large b value may be caused by some fishtailing movements,

as visible in Figure 8.6a.

An early prototype of the TAOs (using passive tracking with 10 Hz frame rate and old Discussion

path-planning algorithm) had an average velocity of 1.56 cm/s and a maximum velocity of

3.44 cm/s [167, p. 70]. Against this background, we substantially improved the TAOs’

performance – now they are over four times faster. Nonetheless, the TAOs are still not very

precise along a longer trajectory (partially solved by introducing sub-targets). Furthermore,
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Figure 8.6: Three

different visualiza-

tions of a TAO’s

example trajectory

recorded during the

benchmarking. Also

an overview with

box plots of the

velocities in all trials

is given compared to

velocities found in

literature.

a still missing control approach, such as PI(D) control, requires the TAOs to re-adjust their

heading direction frequently which results in slightly nonuniform motion and noisy speed

profiles.

Comparison

In comparison with the human hand, the performance of the TAOs leaves much room for

improvement. Their maximum velocity roughly reaches the average speed of the human hand

measured in the trials with 5 cm edge length of the rectangular pattern. On average, the

human hand was about thrice as fast as the TAOs in this condition. In the 25 cm condition

the hand was almost eight times faster and in the condition where the rectangular pattern

had an edge length of 50 cm it was over ten times faster. Compared to the complete average

of the combined results, the human hand is over eight times faster than the TAOs (Mhand
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Figure 8.7: The

analysis results of

the interaction data

recorded in the stud-

ies conducted in the

course of this project
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in the box plots for

better readability).
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tasks.

= 55.51 cm/s, MTAO = 6.47 cm/s). Furthermore, the TAOs do not exhibit the typical

bell-shaped speed profile of the human hand (to have more realistic measures).

The described evaluation of the human hand and the TAOs revealed a wide gap in terms of

speed and motion smoothness. In the experiment evaluating the hand’s speed, the participant

only had to move the object to predefined positions without any further challenge. This

made the task rather artificial. Thus, we analyzed the interaction data from actual hands-on

experiments with the TAOs conducted during this thesis with respect to human manipulation

speed, as described in the next section.

8.3 The Human Hand Manipulating TUIOs

In each study we conducted in the course of this thesis, we recorded interaction data of the

manipulated TAOs. In this section we evaluate these data to provide a better baseline for

estimating the users’ requirements for the TAOs in terms of manipulation speed. First, we

smoothed the raw data to eliminate major jitter and noise caused by tracking inaccuracy.

However, there remained jumps causing unrealistically high instantaneous speed. For this

reason, we omit outliers in the plots and calculation of the maximum speed, as the box plots

provide a reasonable impression of the velocity information. For better comparability, we

calculated the instantaneous speed for each performed trajectory, as we did in the hand’s

and the TAOs’ benchmarks above.
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Scanning

In the Blind Herder study in which we evaluated the Interactive Auditory Scatter Plot (IAS),

blindfolded participants used the TAOs and interactive Sonification to audio-haptically ex-

plore scatter plots without visual feedback (see [168] and Section 9.3 for more details). Here,

the participants showed rather slow scanning behaviors manipulating the TAOs while listening

to the resulting audio feedback in the closed-loop interaction. From the recorded interaction

data, we extracted N = 93 trajectories that we used for the calculations. On average, the

performed trajectories showed a manipulation speed of M = 2.26 cm/s (SD = 2.58 cm/s),

as depicted in Figure 8.7 (first box plot). The TAOs are basically able to reproduce such

scanning behavior.

Gestures

From the interaction data collected in the study for gathering user-defined gestures for our

Embodied Social Networking client (ESN) client (see Chapter 4), N = 474 recorded gestures

were used for speed analysis. Here, the participants were explicitly asked to perform their

gestures with the TAOs rather slowly for better tracking results. As depicted in Figure 8.7

(second box plot), the analysis shows that the average speed of the performed gestures was

M = 13.551 cm/s (SD = 20.17 cm/s). The TAOs should be able to reproduce most of the

motions in real-time, but may have difficulties for speed of over 18 cm/s.

Data Manipulation

The last data set we analyzed was gathered in our comparative study in which N = 80 partic-

ipants were asked to create a mind-map from given items with four different interface types

(see Chapter 7). They manipulated the mind-map items either with the Mouse, through

multi-touch, passive TUIOs or the TAOs, similar to the drag-and-drop paradigm. We ana-

lyzed the instantaneous manipulation speed of the performed trajectories in each condition,

as described above.

In the condition where the participants used the passive TUIOs for data manipulation, wePassive TUIOs

extracted N = 103 trajectories usable for speed analysis. Here, the average instantaneous

speed was M = 20.18 cm/s (SD = 33.25 cm/s).

From the interaction data of the condition with the TAOs, we extracted N = 82 tra-TAOs

jectories. Their analysis revealed an average instantaneous speed of M = 18.85 cm/s

(SD = 22.98 cm/s). The TAOs were manipulated slightly slower than in the passive TUIOs

condition.

Though the other two conditions (Mouse and multi-touch) do not directly relate to manip-Mouse and

Multi-touch ulation of TUIOs, we analyzed the data gathered in these conditions, as well. In the Mouse

condition, we had N = 66 trajectories for analysis. The average instantaneous speed (of the

Mouse pointer on the interactive surface) was M = 12.91 cm/s (SD = 9.80 cm/s). In the

interaction data of the multi-touch condition, we found N = 111 usable trajectories. Their

analysis revealed an average instantaneous speed of M = 9.72 cm/s (SD = 7.99 cm/s).
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8.4 Discussion

In the first evaluation between the human hand’s manipulation speed and the TAOs’ velocity,

we have seen that the TAOs are in an inferior position. They are not as fast as the human

hand and their performance lacks smoothness. Nevertheless, also in literature there currently

seems to be no actuated TUIO implementation that is able to fully reproduce the human

hand’s performance at all.

Compared to the actuated TUIOs described in literature, the TAOs can compete with most Comparison with

Literatureof them (except the Actuated Workbench and the Tangible Bots), as depicted in Figure

8.6d. The electromagnetic Actuated Workbench produces slightly faster motion when the

Manhattan motion algorithm is used instead of the smoother jet-based anti-aliasing motion

control approach. In contrast to the electromagnetic Actuated Workbench, the Tangible

Bots use the robotic approach for actuation. With a diameter of � = 9.5 cm they have

more room to feature more powerful motors for faster actuation.

From the analysis of the interaction data we recorded throughout multiple studies, there are Reproducibility

applications where fast movement is not needed at all. The scanning motions performed

by participants in the Blind Herder study would be easily reproducible by the TAOs. We

explain the slower scanning motions with the demand of listening to the auditory feedback.

This takes some time for interpretation which results in slower interaction. The trajectories

performed by the participants in the gesture gathering study for the ESN client exhibit quicker

motion, but they are still mostly reproducible, too (the participants were told not to move

too quickly).

In the comparative study where the participants manipulated mind-map items, the situation

is different. Here only the trajectories in the multi-touch and Mouse conditions are mostly

reproducible while the trajectories recorded in the passive TUIOs and the TAOs conditions

are not. Here the TAOs move too slowly. The difference between the conditions with

TUIOs and the Mouse and multi-touch conditions is interesting. In case of the multi-touch

interaction, this might be influenced by technical problems, some participants experienced

during the trials. Another explanation for the slight drop in speed in the Mouse and multi-

touch conditions can be the lack of a tangible representation. Here the participants could

only rely on the graphical representation which may have had a slight lag. This lag requires

the users to slow down their interaction to not make mistakes. In reverse, the tangible

representation serves as a more natural means of interaction that has no lag and enables the

users to perform faster than with pure non-tangible representations. This effect indicates

that TUIOs in general might be more suitable for data manipulation than Mouse and multi-

touch interaction. Nevertheless, this provocative hypothesis requires further investigation in

future research.

Design Guidelines

The hierarchical taxonomy of grasps by Bullock and Dollar [24] provides means for the Graspability and

Shape of TUIOsclassification of grasps. This taxonomy is flexible, extensible and provides all features that
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apply to the grasping and manipulation of TUIOs, too. Furthermore, it gives hints to the

precision and dexterity of particular grasps.

The shape of the TUIOs depends on the particular application. For special purpose ap-

plications, it can be beneficial to have specially designed shapes to make the TUIOs more

distinguishable. Furthermore, a special shape can support the non-tangible representation so

that the users can better relate to them. In contrast to abstract shapes, more concrete shapes

allow the users to better address them in a multi-user scenario, where the task demands dis-

cussion. Otherwise, abstract shapes can be specialized by the non-tangible representation,

such as graphics. Abstract shapes can be used in different tasks, making the system applica-

ble in more general-purpose tasks. Here, the cubical shape of the TAOs turned out to be a

good compromise. Through the compatibility with the TUImod building blocks for TUIOs,

they are modularly adjustable to the particular task, such as adding colored caps. These

caps also feature distinguishable geometrical forms, such as circles and triangles. The latter

provides the TAOs a direction used, for example, to represent the view of the camera TAO

in the furniture placing application, described in Chapter 6. When no particular orientation

of the TUIOs is needed, a round shape can also be useful.

Depending on the particular application, there is a demand for actuation technology thatVelocity

Requirements:

Upper and Lower

Limits

is able to produce motion comparable to the human hand, such as in remote collaboration

applications (see Chap. 6) or replay of actions. Yet, there is no such actuation technology

that can move TUIOs at an average velocity of about 55 cm/s, as we estimated in our

evaluation of the human hand manipulation speed.

Fortunately, there are many applications for actuated TUIOs where velocities of ≈ 10 to

15 cm/s are absolutely sufficient. This is the case in applications where there is no need to

reproduce human movement in real-time or when the interaction allows slight delays, such

as when an arrangement of TUIOs is being restored (see Chap. 5).

For a complete coverage of all velocity requirements derived from applications, actuated

TUIOs should be able to robustly produce motion velocities from 1 cm/s (as found for

Data Scanning) up to 25 cm/s (as found for Data Manipulation). To be able to reproduce

fast manipulation velocities as found in our pre-study in real-time, 300 cm/s might be a

good target velocity for future development. However, such requirements demand great

engineering skills and it might take some time for actuated TUIs to be developed with such

capabilities.

Though not implemented in this thesis, nor in literature, we find a human-like bell-shapedMotion Dynamics

speed profile very useful for actuated TUIOs. It gives the users natural means for estimating

a TUIO’s trajectory and target. As an alternative for conveying this information to the users,

we introduced a projected line from the TAO’s current position and its target position during

autonomous movement in our comparative study as a graphical workaround. Furthermore,

the bell-shaped speed profile can be used for motion prediction in future research. Depend-

ing on the TUIOs’ positions, such prediction can help overcome the lag of non-tangible

representations.
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8.5 Conclusion

In this chapter, we benchmarked both the human hand manipulating an object in a pick-and-

place task and the TAOs in terms of instantaneous speed. Here, we identified the average

speed of approximately 55 cm/s as the average speed, actuated TUIOs ideally should be

able to move at. We found that neither the TAOs nor other actuated TUIOs documented in

literature match the manipulation speed of the human hand. The argument that actuated

TUIOs should ideally be equivalent to the human hand in their performance to provide

full bi-directional interaction means is thereby not fulfilled, yet. Furthermore, we analyzed

the interaction data gathered in studies conducted in the course of this thesis to derive

speed requirements for actuated TUIOs. The results indicated that such high-performance

requirements are only needed in rare cases, such as in reproduction of human motion. We

also found indication for the benefits of TUIOs to facilitate the natural manipulation skills

of the users. Finally we derived first design guidelines regarding the fundamental movement

properties for actuated TUIOs.





9What Else?

A View Beyond the Scope

Give the pupils something to do, not something to learn;

and the doing is of such a nature as to demand thinking;

learning naturally results.

John Dewey,

Democracy and Education, 1916

Much more has happened in the course of this project – partly beyond the scope of this

thesis. However, worth to mention because they demonstrate the flexibility and extensibility

of the TAO architecture and broaden the view on the topic. Student groups supervised by

the author and the author himself contributed to the TAOs system beyond this thesis’ scope.

The students’ projects were part of a practical course, as a part of the Intelligent Systems

Master’s studies at Bielefeld University. These projects are briefly described in this chapter.

9.1 Assisting Furniture: The Interactive Mobile Seat

The first students’ project to be presented here is the Interactive Mobile Seat (IMS). It is

intended to assist disabled people in their living environment and to give them more freedom

and independence. Technically inspired by the Gotthard project [61]1 and the RobotStool

[148], the students designed and built the seat and its interface completely from scratch with

the use of the TAO architecture.

Hardware Setup

The hardware setup basically consists of the tDesk and the custom built seat, shown in Figure

9.1d. The area of the room in which the seat operates was monitored by a ceiling mounted

camera looking downwards (see Fig. 9.1a). The seat was equipped with a fiducial marker

on top. It was the same marker type as it was used in the first prototypes of the TAOs (see

Fig. 3.4a in Sec. 3.3). The tDesk was equipped with a map of the seat’s operation area and

another camera mounted above the tDesk observed the tDesk’s interaction surface. The

markers may be occluded by the users’ hands, but in the interaction this did not turn out to

be a problem in this particular application. A TUIO represents the seat in the map on the

1Unfortunately, the original website describing this project in detail is not available any more.
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(a) Overview sketch of the whole system. (b) The Pioneer-based instance of the seat used

during construction of the custom built seat.

(c) The IMS’s tabletop interface. (d) The seat, built by the students (shown with-

out the housings’ sides).

Figure 9.1: The In-

teractive Mobile Seat

(IMS): System sketch

and stills from the

students’ presentation

movie showing the

seat in action.

tDesk. By relocating this representation, a (disabled) user can easily make the seat move,

according to the position of the seat TUIO on the map. To reduce the dependencies between

the construction of the seat and the interface design, a wired Pioneer robot platform was

used as a placeholder during the design and building of the actual IMS (see Fig. 9.1b). The

Pioneer platform should not be used to sit on, of course, so it was laid with tablecloth to

make it serve as a coffee table for light objects.

Software Design

The students extended the basic TAO architecture, described in Section 3.3 without the

display component, which was not yet existing during the IMS project. They added a

component that interpreted the drive commands produced by the path-planning module

to control the Pioneer platform. When the TUIO’s position is changed by the user, an

additional component processing the image of the overhead camera of the tDesk queries

new navigational requests to the path-planning component controlling the seat.
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Discussion and Outlook

The students presented a working prototype of the system that serves as a proof-of-concept.

The system demonstrates another use-case of the TAO architecture in an application assisting

disabled users.

A possible and obvious extension is the use of a TAO as a tangible representation of the

seat on the tDesk. This TAO automatically moves if the actual seat is moved by a user to

maintain the correct position of the seat’s TUIO on the apartment’s map, very much like in

the remote collaborative application, presented in Chapter 6.

9.2 TAOgotchis: Embodied Tangible Agents

In the follow-up ISy project to the IMS, the same group of students contributed to the

development of the active marker sensing for the TAOs allowing back-projection on the

tDesk. A toy application was developed, during laying the foundations for the marker’s PCB

design and the tracking component, able to robustly recognize and track the new markers

(see Sec. 3.3). This toy application deals with the embodiment of virtual agents, similar to

the Tamagotchi toy. A Tamagotchi is a virtual pet that needs to be taken care of by the

user by feeding it playing with it, just like a real pet. This idea was transferred to the TAOs,

each of them embodying a Tamagotchi. As a result, the user (or player) has a little herd of

so called TAOgotchis living on the tDesk, that needs to be taken care of.

Interaction Design and Implementation

Being a toy application, the TAOgotchi agents were implemented using a simple state ma-

chine approach with four states: a) happy, b) hungry, c) bored and d) dead (see Fig. 9.2).

The states’ transitions depend on two values representing the health of the TAOgotchis.

When the hunger value exceeds a certain threshold, the TAOgotchi’s state changes to the

hungry state. Analogically, when the bored value exceeds its threshold, the TAOgotchi’s

state changes to bored. When both values have exceed their thresholds, the TAOgotchi dies

and changes to the dead state. In the happy state, the TAOgotchis’ TAOs perform a rather

active random walk within their living area on the interaction surface of the tDesk. While

in the hungry or bored state, they still perform a random walk behavior, but begin to stop

more and more often and finally stop completely when in the dead state. It is the user’s task

to feed the TAOgothis and entertain them by placing them in a feeding area or playground

area as part of the interactive surface and prevent them from dying. Here the hungry and

bored values are reset to zero and the TAOgotchis change to the happy state, again. In

the happy state, these values slowly increase by random amounts during the random walk

behavior until they exceed their thresholds. The new markers and tracking was used in this

project to graphically project the TAOgotchis’ living, feeding and playground areas on the

tDesk’s surface.
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Figure 9.2: State

graph of the TAO-

gotchi state machine.

Discussion

While this toy application simply serves as a demonstration of the new active markers and

their tracking, the idea of embodied tangible agents is still quite interesting. This rather

simple simulation was not yet systematically evaluated in a study, but first users tended to

ascribe the TAOgotchis a simple personality the users could easily relate to. They described

these personalities with attributes, such as lazy, hyper-active or greedy. These personalities

increase the users’ affection to the TAOgotchis and facilitate interaction – at least until

the users see through the simulation and it gets uninteresting. But the simulation can

be extended in any order, e.g. by introducing more states and interaction possibilities or

interaction between the TAOgotchis to demonstrate swarm behavior.

With the idea of the TAOs embodying agents, this project touches the field of Social Robotics.

Fong et al. provide a good overview to this field [49]. According to Breazeal [22], the TAO-

gotchis fulfill the criterion of being socially evocative. This class of social robots described

by this criterion are “designed to encourage people to anthropomorphize the technology in

order to interact with it, but goes no further. This is quite common in toys, where a nurture

model is leveraged to yield an entertaining interaction.” [22] In some more serious applica-

tions, such as Spidey [190], the idea of embodied agents that demonstrate some amount

of personality can be useful to facilitate interaction, such in more complex games or artistic

applications.
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9.3 Audio-haptic Data Exploration: The Interactive Auditory

Scatter-plot

Beyond vision, touch and hearing are natural means (not only for visually impaired users)

to explore the environment that is in direct reach. In consequence, we used the TAOs to

interactively provide a tactile display of the (rough) data distribution. Because they are

not able to represent a detailed impression of the data due to their fixed size and shape,

we utilized functional sound to convey further details. To allow the users of our system to

gain a more detailed feeling about the data points in the scatter plot, we use a two-staged

Sonification approach. Sonification basically denotes the process of making data audible –

in contrast to visualization making data visually perceivable through diagrams and plots etc.

An exhaustive textbook about Sonification is presented by Hermann et al. [69]. In our work

we utilize the Parameter Mapping Sonification (PMSon) [69, p. 363] and the Model-based

Sonification (MBS) [69, p. 408] techniques.

Interaction Design

The interaction design is divided into three interaction stages.After the TAOs have reached Haptic Exploration

the centroids’ positions, the user manually scans the tDesk’s interactive surface through

touching to get a rough overview of the clusters’ distribution. In this haptic exploration

phase, the tactile borders of the interactive surface help the user to reference the TAOs’

positions and their relative spatial formation.

In the second stage of the interaction, the user already has a rough understanding of Cluster Level

Sonificationwhere major accumulations of data points are located. The Parameter Mapping Sonifi-

cation (PMSon) now allows the user to inspect the clusters by scanning them one after

another. This interaction allows to determine cluster borders and to estimate data point

density.

The second Sonification enables users to explore on the data point level. Since every data Data Point Level

Sonificationpoint has a virtual damped spring mass model attached in this Model-based Sonification

(MBS) approach, each of them is directly audible. This local Data Sonogram is triggered by

releasing a TAO at a particular position that the user finds interesting. The ability to listen to

each data point allows the user to gain a detailed insight into the data distribution. Though

it is hard (if not impossible) to remember single data points and their exact positions, this

exploratory data analysis approach helps the users to gain a feeling for the data distribution.

Extensions: Clustering and Interactive Sonification

In our system we use a combined audio-haptic approach for exploring a scatter plot that is

non-visually spread across the tDesk’s interactive surface. For a rough overview the TAOs

can be used and for detailed interactive exploration we incorporate a two-staged Sonification

approach. The tangibility of the TAOs is naturally given by design. The interesting regions

in a scatter plot are those with a high data point density.

To enable the TAOs to represent an overview of the data, we chose the K-Means cluster- Clustering
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for more detailed data

exploration [168].

ing algorithm [143] (following [15, p. 187-189]) to find such regions and their prototype

vectors (centroids). As a convenient implementation, we utilize the Open Source Clustering

Software2 by Hoon et al. [74]. The output of this approach depends on the initialization

of the centroids and may return a suboptimal result. To overcome this problem, the library

provided by Hoon et al. repeats the described algorithm with multiple random initializations.

It returns the result with the smallest J (within-cluster sum of distances between centroids

and data points). Our clustering component uses this cluster library to analyze the data set

according to the number of available TAOs (K ). The clustering result is used to request

the path-planning component to move the TAOs to the centroid positions. After the user

stopped interacting with a particular TAO, this component also requests the path-planning

component to make the TAO move back to its centroid. This behavior maintains the cor-

rectness of the haptic representation of the data.

Our interactive Sonification techniques are implemented using the SuperCollider program-Interactive

Sonifications ming language3 for sound synthesis and interface with the rest of the system using the OSC

network protocol.

We use the PMSon for interactive auditory exploration of the data set. PMSon denotes anParameter Mapping

Sonification approach that maps properties of a data set, such as data value, to the auditory properties

of the Sonification. In our application the local data density is mapped to pitch. Inspired

by the Sonic Scatter Plot by Madhyastha [129] and the localized “aura” idea independently

proposed by Ó Maidin and Fernström and Hermann et al. [68, 149], we implement a Sonic

Brushing approach [69, p. 290]. Each TAO has a neighborhood limited by the radius r . The

number of data points in a TAO’s neighborhood is mapped to the pitch of a sawtooth wave

2http://bonsai.hgc.jp/~mdehoon/software/cluster/
3http://supercollider.sourceforge.net/

http://bonsai.hgc.jp/~mdehoon/software/cluster/
http://supercollider.sourceforge.net/
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oscillator. Figure 9.3a graphically describes this interaction pattern.

Hermann describes Data Sonograms as a MBS [67]. As depicted in Figure 9.3b, a Data Local Data

SonogramsSonogram is a Sonification technique that simulates a damped spring mass at each data

point. A virtual shock wave that is emitted at a particular position slowly propagates through

the data space and excites each hit data point to oscillate at a certain time. This oscillation

is audible and makes spatial properties of the data points perceivable. In our approach this

Data Sonogram is locally restricted to the TAO’s neighborhood that also applies for the

PMSon described above. This Sonification is triggered whenever the user releases a TAO at

a particular position after scanning the data space with the PMSon.

9.4 Future Directions: AHEAD, a Hybrid Multi-user Interface

The motivation behind our Active Home EntertAinment Desk (AHEAD) system was to

investigate the combination possibilities of multi-touch interaction, passive TUIOs and the

actuated TAOs in a hybrid multi-user interface. Co-supervised with René Tünnermann,

AHEAD was a two-phase project comprehended by a student group within two semesters.

Hence, the outcome was quite advanced and yields interesting future directions.

A multi-user interface was chosen as the application, interfacing with common home enter-

tainment systems. AHEAD was intended to replace the large number of remote controls

found in current living rooms and making the interaction with media data concise and con-

sistent. It aims to support a group of users for example to organize their media files or decide

which movies to watch on a movie night.

Related Work on Hybrid Interfaces and Tangible Media Control

Kirk et al. investigated the design space of hybrid interactive surfaces, featuring both (non- Hybrid Interfaces

actuated) tangible and multi-touch interaction within one system. In their design considera-

tions derived from two case studies, they highlight two general aspects of the design space:

a) Choice of objects and b) emulation of the physical world. Within these two general as-

pects, they provide valuable considerations regarding the use of physical or digital objects,

affordances and three-dimensional interaction [102].

The Tangible Bots by Pedersen and Hornbæk can be classified as a hybrid interface, as well.

Here, multi-touch interaction is used to group the actuated TUIOs to control them more

effectively [158].

The Physical Shortcuts for Media Remote Controls by Ferscha et al. are motivated from the Tangible Media

Controlperspective of the requirements for in-hand manual interaction. Ferscha et al. analyze the

requirements including aspects, such as grip-kinematics, and motivate their design and its

affordances. Based on these implications they described the development of their cube-based

tangible gesture-enabled system for remote media control [41].

CRISTAL by Seifried et al. follows the multi-touch approach by using a large touch-enabled

screen as a coffee table. They motivate their approach with the social aspects of the common

living room and the need for collaborative control. Their video image-based interface is
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gesture-enabled and supports a variety of digital devices, including a television set, a digital

picture frame, lights and even a vacuum cleaner robot [182].

System Design

In our AHEAD approach, we picked up the new idea of hybrid interfaces by Kirk et al. and

added our TAOs as a third actuated means for hybrid interaction. To support the social use

of digital media in the living room, such as digital pictures, videos and music, we followed

the table-based approach, proposed by Seifried et al.

To generically support a large number of home entertainment devices, we utilized theInterfacing with

Home Entertainment

Devices
Universal Plug and Play (UPnP) industrial standard. networked devices implementing this

standard can be media storage or playback devices, such as network hard drives, media PCs,

television sets or even smartphones and tablet PCs. UPnP allows simple and transparent

interfacing with such devices in the same network.

The students developed a new display component that interfaces with the UPnP stack andDisplay

supports rotary GUI widgets with multi-touch interaction. The new display component

queries the UPnP stack for available devices serving as media storage or media playback

devices. These are graphically visualized on the interactive surface and can be assigned to

TUIOs and TAOs as a tangible representation. Furthermore, TUIOs can serve as repre-

sentations for playlists, which can be used to organize media files for later playback. The

display component also allows starting and controlling the playback of media files by placing

a playlist TUIO in close proximity to a TAO that represents a playback device. The playback

is started by touching the graphical play button drawn near to the TAO. The TAO will then

move slowly on a graphical bar to display the playback progress.

The project was divided into two stages of development corresponding to the two semesters.Interactive Table

Hardware The major difference between these two development iterations is the use of multi-touch

hardware. In the first stage, a 22” multi-touch display by 3M was used. This display

provides multi-touch interaction by capacitive sensing of the users’ fingertips. Because visual

tracking of the TUIOs and TAOs from underneath was not possible using this display, an

overhead tracking approach with Bose/Chaudhuri/Hocquenghem (BCH) markers was used.

Unfortunately, this tracking approach suffered from occlusions caused by the users’ hands

which disturbed the interaction with the system. Furthermore, the size of the screen hardly

sufficed for multiple users. To solve these issues in the second stage, the AHEAD system was

ported to the SUR40 device by Samsung, featuring Microsoft’s PixelSense technology. It

uses optical sensing technology to track fingertips as they touch the display and provides an

image of the interaction in the infrared band in which the TAOs’ active markers operate. This

allowed the use of the same technology – with minor adaptation – for sensing and tracking

fingertips and the TUIOs and TAOs. The fingertip information was directly provided by the

hardware and is transmitted to the display component via the TUIO Protocol as introduced

by Kaltenbrunner et al. [91]. The tracking of the TAOs was only adapted not to recognize

image artifacts of fingertips as false-positives.
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(a) The overview of the software components

and their relations.

(b) The AHEAD system being used.

Figure 9.4: The

AHEAD system:

Architecture overview

and the running

system.

To enable the TAOs to perform smooth and slow driving motions to represent the playback PI-Control for the

TAOsprogress, Proportional–Integral (PI) control was introduced in the AHEAD project and in-

cluded in the path-planning component. In a nutshell, a PI controller consists for two parts,

a proportional and an integral part:

vmotor(t) = P(t) + I (t) (9.1)

The proportional control part is simply a linear error function e(t) = vdes(t)− vact(t) that

determines the difference between the desired and the actual speed:

P(t) = Kp · e(t) (9.2)

The integral part of the controller reduces the steady-state error of the proportional part:

I (t) =
1

TI

·

∫ t

0
e(t)dt (9.3)

This control approach is a special case of PID control, with an additional derivative term for

calculating the error of the process. We decided not to use the derivative term, because it

did not turn out to improve the TAOs’ motion notably in terms of smoothness. According

to the basic software architecture described in Section 3.3, Figure 9.4a gives an overview of

the additions made in this project and the components’ relations and data flow.

Interaction Example

One natural setting for AHEAD is the living room. A group of users comes over for a movie

night and everyone brings some movies he or she might like to watch with the group. Some

bring them on a thumb drive or hard disk, others on their smartphone. The thumb drive or



132 What Else? A View Beyond the Scope

hard disk can be plugged in the host’s media PC supporting the UPnP standard to make

them available to the network. The users who brought their movies on their smartphone

or tablet PC simply join the local WiFi network and start up a UPnP server application to

make their media files available. The AHEAD system automatically queries the network for

devices supporting the UPnP standard and visualizes them on the interactive surface. By

putting TUIOs on top of the visualizations the users can then gain physical access to the

data sources and playback devices. Every user also grabs an unassigned TUIO which serves

as a representation for the user’s playlist. These playlists can be filled with data by browsing

the files graphically listed beside the data source TUIOs and dragging single files or selections

with the fingertip from the source to the playlist TAO. The files may belong to a different

user – mixing of media files from different sources is possible. When each user has finished

building their personal playlist(s), the group can compare, see overlaps an jointly decide on

a common playlist of movies to watch that night. At this stage, the collaborative decision

making process can highly benefit from the possibility of using epistemic actions for rating

and sorting the users’ playlists (cf. [103, 105] and Sec. 2.4). The joint playlist then can

be assigned to the TAO representing the television set by putting the playlist TUIO in the

proximity of the TAO. By touching the play button graphically drawn near the TAO, the

playback of the playlist starts immediately. Furthermore, volume control was included in

the implementation. This feature is often offered by UPnP devices, such as the television

set in our example. Volume control is bound to another TUIO that has a circular volume

scale graphically drawn around its footprint. When there are multiple playback devices, the

device’s TAO standing closest to the volume control TUIO is affected by volume changes.

By touching a certain volume level, the volume of the playback device can be adjusted. An

additional graphical pointer shows the current volume of the next playback device. Figure

9.4b shows a snapshot of a small group of users interacting with the system.

Interaction Structure

In the described use-case, the interaction with our AHEAD system is designed to be struc-

tured into two stages, a single-user and a multi-user stage:

Hence the organization of each user’s playlist is a single-user use-case, mainly based on localSingle-user Tasks

multi-touch interactions. Browsing a media device’s file list, media selection and assignment

of media to a playlist is simply done by touching and dragging items with the finger.

When it comes to inter-group interaction the tangible features of the passive TUIOs andMulti-user Interaction

TAOs come in handy. It is easy for users to hand media sources over to other users, because

the graspable nature support such physical interaction between the users. This would be not

as easy as if there were only pure (graphical) non-tangible representations of the objects.

Discussion

Through the interaction approach provided by our system, the interaction with the media

files and playback devices is uncoupled from the actual devices and becomes consistent across

device borders. Furthermore, it offers the possibility to work collaboratively as each user has
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equal access to the system. There is no need to pass remote controls around or to have one

user control all devices and moderate the group discussion. Both of which can be annoying.

The AHEAD system is very flexible and allows for even more different use cases. Beyond the

presented use case, it can be used in almost every setting where groups of users interact with

media data. For example, presenting holiday pictures along to music, distributing pictures to

digital picture frames or, making slide presentations to a large audience, such as in meetings

or class rooms. Even music and playlist organization of visitors of a party is possible.

As future work, a user study would be beneficial to measure the usability of the AHEAD

system.4

9.5 Conclusion

These projects demonstrate the vast applicability of the TAOs and their architecture both

within and beyond the borders of Tangible Interaction. Beside the IMS, a system rooted in

the field of AAL, there are the TAOgothis, also touching the field of Social Robotics and

finally AHEAD, merging Tangible Interaction (passive and actuated TUIOs) with Multi-touch

Interaction. Here we also demonstrated three adapted menu metaphors for hybrid interfaces,

as covered in Section 5.5. The use of functional sounds for Exploratory Data Analysis (EDA)

in (actuated) TUIs was successfully demonstrated with the IAS. This shows the potential of

our TAOs and their interoperability and extensibility.

In the end, the students working on these projects profited very much from working with

the TAOs. They acquired new skills and learned to know new technology and tools they

newer worked with before, such as CAD, PCB design, soldering and rapid-prototyping. They

also learned how to use new high-end technology, such as the Pioneer robot platform or the

SUR40 multi-touch table. Last but not least it was great fun working with the students,

guiding them and supporting them to bring in their own ideas in the frame of the given

project topics.

4The lack of a user study unfortunately prevented the paper on the AHEAD system [169] from publication

at the EICS symposium in 2012.





10Lessons Learned:

Summarizing the Guidelines

Good design is also an act of communication between the

designer and the user, except that all the communication

has to come about by the appearance of the device itself.

The device must explain itself.

Donald Norman (2002), The Design of Everyday Things,

Introduction to the 2002 Edition

In the course of this thesis we tackled various design aspects of our TAOs and tabletop

TUIs in general. Within the chapters dealing with these aspects, we derived multiple design

guidelines. In this chapter, we summarize our findings and put them in a larger frame.

Though these guidelines were introduced within the frame of our TAOs, we give directions

for transferring them to TUIs in general.

10.1 Initial Set of Design Guidelines for tabletop actuated

TUIs

In this section we summarize and interweave the design guidelines we identified in the con-

ceptual chapters. Developing our new interaction concepts, we also discussed design aspects,

that are already dealt with in literature. We integrate these aspects, and mention further

observations we made during the development. Figure 10.1 gives an overview for this section

and guides with color codes through the covered aspects. When another aspect is referenced

in the text, this color code is usedas well.

Interaction Structure

A general and understandable interaction structure is important to allow users to get the most

out of the interaction with interactive systems without addistional explanation. Especially

TUIs allow for free use and combination of the features provided by an interactive system.

Good interaction design guides the users through the interaction without restraining them to

few fixed interaction patterns. They should be allowed to develop their own patterns using

the features they can easily understand and use [33]. The challenge is to design the features

freely combinable, but independent from each other resulting in a lose interaction structure.

This does not solely apply to the TAOs, but to TUIs and HCI in general.
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Figure 10.1:

Overview of the

collected design

guidelines. The

different aspects are

color coded. The

serven subsections in

this chapter are color

coded the same way

for better orientation.

If a more structured interaction is needed for a certain task, a state machine approach has

turned out to be a proper paradigm for modeling interaction. To guide the users through the

interaction stages, the system should always give clues on the available interaction possibil-

ities. Here different Feedback Modalities can be helpful to reflect these clues in different

or even complementing ways.

Interactive Surface

The size of the interactive surface is often determined by technical constraints. A more

user-centered approach to determine the size can be derived from the peripersonal [162]

and interpersonal space [93, p. 209], as reviewed in Chapter 7. According to Previc, the

peripersonal space is defined as the volume around the user, that is used for reaching and

manipulating within the visual field of view. Kendon introduced the formation patterns for

describing the orientation and grouping of humans in space. The transitional segment defined

by Kendon is comparable to Previc’s peripersonal space. The intersection of transitional

segments of multiple users, Kendon calls o-space. The size of the these spaces depends on

anthropometric parameters, such as the average length of the human arm (approximately

58 cm for adults), which also influences ergonomics. For the interactive surface, this means

that its size is determined by the number of potential users and resulting o-space.
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Embodyment

Our TAOs turned out to have a well-fitting size and shape . Their cubical form with and TUIOs

edge length of 5 cm was easily graspable by all our participants – even for the youngest

with an age of 12 years. In literature similar sizes can be found – sometimes slightly larger,

sometimes smaller (cf. [185, p. 104]; touched in Chapter 8).

One important factor here, is the number of available TUIOs and how they should be ma-

nipulated. For a rather large number of TUIOs one could consider to use smaller forms,

especially when properties, such as orientation and identification may play a minor role. Of

course, when it comes to actuation and further enhancements, size is often determined

by technical constraints again, as discussed in Chapter 3.

The shape of the TUIOs depends on the particular application. For general-purpose appli- Shape of TUIOs

cations, abstract shapes provide tangible representations for many kinds of tasks. Cubical

or round shapes work out well, depending on the size of the TUIOs and whether there is a

need for representing orientation. The addition of non-tangible representations using addi-

tional Feedback Modalities , such as graphics can help making the TUIOs distinguishable

and better addressable. For special-purpose applications, more concrete shapes should be

favored over abstract shapes. Having additional tangible features that support the physical

representation helps the users to better relate to the represented data. Such representations

are even better distinguishable and addressable in multi-user tasks that demand discussion

between the users. When favoring multi-purpose applications, the TUIOs should have a more

abstract shape to be able to represent all kinds of data.

For some tasks it can be beneficial to have TUIOs with inner degrees of freedom. We used Inner Degrees of

Freedomthis idea in our menu metaphor for altering and selecting parameters of the represented

data. In the case of the mTAOs we added an actuated dial for implementing our menu,

as presented in Chapter 5. Other systems, such as the Madgets [208] or the tangible

workbench [97] implement inner degrees, as well. Weiss et al. added controllable widgets

to their magnetic actuated TUIOs, allowing bi-directional inner degrees, similar to our dial.

Kienzl et al. added inner degrees to their completely passive TUIOs, as well. They cleverly

implemented the monitoring of these inner degrees through the fiducial markers of their

TUIOs that change when the users manipulate them.

Behaviors, such as the automatic homing of the TAOs, described in Section 9.3, help to Persistence and

Deixispreserve the consistency and correctness of the spatial representation of the data. This is

important, especially for non-visual exploration and manipulation of data. Non-visual not

only refers to visually impaired users, but also applies to eyes-free interaction when users

pay attention to other aspects of the system, such as additional views , as described in

Chapter 6. A persistent and thereby consistent physical data representation helps the users

and provides robust anchor points for deictic gesticulation fostering collaboration.

Our constraints concept allows to interactively define and preserve these relations during Contraints

interaction. Persistent data representation even during interaction allows for spatial deixis .

Especially in multi-user scenarios, such as the mind-mapping task in our comparative study,

this is important and serves as a common ground for discussion. In Chapter 7, we coped
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with relations and constraints between manipulated data represented by the TAOs.

Connected with embodiment is the coupling between the TUIOs and the represented data.Hard and Soft

Coupling between

TUIOs and Data
It can be implemented in two ways, as discussed in Chapters 6 and 7. Either the represented

data is permanently tied to the TUIOs, or the users are able to break the coupling and recouple

data and TUIOs like they want to, similar to the container concept [197], as described in

Section 2.3. The choice for soft coupling seems inevitable when there are more data items

than TUIOs available. Otherwise, the strong bounds of hard coupling between data and

TUIOs supports the natural perception of the embodiment and thereby the persistence of

the represented data.

Actuation

Actuation is a key feature for enabling TUIs to support bi-directional interaction [175]. The

two major actuation technologies found in literature are electromagnetic actuation and small-

sized mobile robotic platforms.

Electromagnetic actuation requires a sophisticated hardware design. A large grid of elec-Electromagnetic

tromagnets built into the interactive surface and an advanced controlling approach (re-

garding hardware and software) is needed to actuate magnetic objects. This technology

allows actuation and applying perceivable forces to the TUIOs even if a user has slightly

lifted them from the surface. The Actuated Workbench by Pangaro et al. [152] and the

PICO system by Patten and Ishii [154] only use one magnetic anchor point for moving the

TUIOs on the interactive surface. This makes the control of the orientation of the TUIOs

impossible for the systems. This problem is solved by Weiss et al. in their Madgets project

[208]. Using multiple anchor points for actuation, they are able to control planar and ro-

tational movement simultaneously, resulting in a holonomic movement. Furthermore, they

added inner degrees of freedom to their TUIOs that assemble actuated general-purpose

widgets, such as buttons, dials and sliders. The electromagnetic control approach even al-

lowed them to implement further feedback modalities , such as force feedback, including

resistance, vibration and dynamic notches, such as steps in a scale. Beyond this, they pre-

sented an induction driven LED, audio feedback with a mechanic bell and a simple motor

Madget.

The robotic approach is completely different. The interactive surface basically con-Robotic

sists of a (projectable) glass surface or display and (visual) tracking. The robotic TUIOs can

have a rather simple design in terms of hardware and firmware. The tracking and control of

them is often implemented in software running completely on the controlling host computer.

However, this approach has some disadvantages compared to electromagnetic actuation. As

soon as a user lifts a TUIO from the interactive surface, there can be no force applied

through the actuation mechanism. A differential drive is the common choice allowing to

move and rotate the TUIOs. Unfortunately, a holonomic movement like in the electromag-

netic approach is not possible. This would demand a special holonomic drive design which

greatly increases the complexity of the mechanics and control. Additional features, such as

inner degrees of freedom or sensors , can easily be implemented.
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Ideally, actuated TUIOs should be able to reproduce human hand motions manipulating a Velocity of Actuated

TUIOsTUIO in real-time to provide the same means for manipulation input and actuation output.

As we have seen in Chapter 8, there is no actuation technology with such capabilities,

yet. Nonetheless, the motion velocity of most actuation technologies (approx. 10 cm/s) is

sufficient for most applications, as long as there is no demand for high-speed actuation where

human manipulation should to be reproduced in real-time.

Input Modalities

Due to the lack of well-known dynamic GUI widgets, such as buttons and drop-down menus Gestural Interaction

and so forth in TUIs, the ability to trigger actions demands adaption of such interaction

patterns. From multi-touch applications, gestural interaction is already wide-spread to di-

rectly manipulate, move, scroll or zoom displayed information. Gestural interaction can also

be used for triggering actions, like it has been used in few GUI applications. In Chapter

4, we discussed gathering of user-defined gestures for triggering actions for our ESN client.

Implementing gesture recognition in the final system yields new problems. The already men-

tioned state machine approach helps to implement context sensitive activation of multiple

gestures for different actions. System and interaction designers need to consider how to in-

form the users of the available gestures and their effects. Here, a graphical projection of

the available gestures and actions can support the users, as well as verbal presentation of

these informations. Especially for systems aiming at visually impaired users this can be bene-

ficial. Yuan et al. [219] investigated the preferences of visually impaired users of touch-based

interfaces and provides worthy directions here.

In Chapter 5 we reviewed the use of menus and their application in TUIs. This differs quite Menus

a lot from the menus known from GUIs. We highlighted strengths and limitations of the

different approaches and proposed our tangible actuated menu metaphor. We demonstrated

this approach in a generic application for enhancing existing TUIs with a saving and restoring

mechanism. In Chapter 6, we extended our menu approach by improving the design of the

graphical presentation of the menu in a remote collaboration application. The choice

for a particular menu implementation highly depends on the number of needed menu items.

For up to ten menu items, all reviewed menu styles are applicable.

We identified three general menu styles: a) space-multiplexed menus, b) dial-based menus

and c) hierarchical item browsing and selection.

Space-multiplexed (floating) menus have a rather simple implementation using a graphical Space-multiplexed

and Floating Menusrepresentation and are easy to use. However, they are often space consuming and the number

of items is limited by the available space. They are often aligned in one direction and their

interaction frame is locally bound to the interactive surface , which often results in unequal

reachability in multi-user scenarios. Furthermore, they require visual monitoring, since there is

no physical feedback on the menu items in this approach. Floating menus are an improvement

towards dynamic and adaptable space-multiplexed menus that are relocatable because they

are bound to the TUIOs.

Dial-based menus often have a persistent physical representation (except for hybrid multi- Dial-based Menus
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touch implementations) and their interaction frame is bound to the object of interaction.

With increasing number of menu items, there is a trade off between interaction speed and

accuracy (especially for actuated menus). Furthermore, depending on the implementation

this menu style can suffers from the nulling problem, described by Buxton [27]. When the

menu allows multiple revolutions, there is no perceivable start or endpoint which the users

could use for orientation.

Finally, the hierarchical item browsing and selection style allows complex and large menuHierarchical Item

Browsing structures, but this on the contrary can require longer interaction time which is tedious when

the menu is often needed to fulfill a certain task.

Tangible menu implementations should support multiple feedback modalities to enableGeneral Menu Design

rich interaction. First of all, a persistent physical embodiment which physically repre-

sents the state of the menu is very supportive for the users. It allows eyes-free navigation

of the menu, while monitoring the result of the selection on a secondary view . Here

speech output can be beneficial, as spoken menu items help the users to understand them

when their meaning is not directly self-explanatory from the graphical presentation . This

is especially the case when text is used to reflect the menu items’ meaning. A well designed

graphical representation of the menu items is understandable even if rendered upside-down.

Since menus may be required only sometimes during interaction, the graphical representation

can be faded out when the menu is not used, freeing projection space for the rendering of

the actual task. Especially for space-multiplexed menus, unused menu items can be removed

according to the context of the task, which simplifies the menu navigation for the users and

decrease their space consumption.

The use of touch sensing at the TUIOs, as described in Chapter 7, opens up further possi-Touch Sensing

bilities for interaction design. In our comparative study, we used this feature to enable the

participants to interactively define constraints between TAOs, but the field of applications is

wider: Knowing when a user touches a TUIO can be a valuable information. For instance,

when a user touches a TUIO without manipulating it, this may indicate uncertainty about

the available interaction possibilities. The system could display available gestures and

functions to support the users. Multiple touch sensors can be used to sense multiple touch

points on the TUIOs. Beyond this, touch sensing in TUIOs is rather new and rarely used. It

requires further investigation and exploration for new interaction patterns.

Feedback Modalities

The use of multiple feedback modalities has been presented in previous work. Graphical

display is already a standard feedback method and the large number of musical application

obviously incorporate the production of sound.

Regarding the visual display on the interactive surface of a tabletop TUI, there are fewVisual Display

rather obvious things to keep in mind. Depending on the number of simultaneous users,

the display should be rotation invariant, allowing users to stand around the tabletop surface,

instead of at one side. In single-user scenarios (which we mainly focused on during this

thesis), the display can be oriented to one side of the table. In Chapter 5 we discussed
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user-oriented design considerations for orientable and rotation invariant display of menus .

Textual menu items are only suitable for single-user scenarios where the orientation of the

menu does not affect the state of the data. Graphical menu items with pictures or icons may

help to overcome the orientation problem in multi-user scenarios or when the orientation of

menu TAO affects the represented data. The same problem affects gestural interaction , as

discussed in Chapter 4. Furthermore, we have seen that the size of the projected interactive

area and the size of the projected media also play an important role for the users.

Depending on the task it can be useful to have additional views accompanying the view of the Secondary Views

interactive surface. As pointed out by Patten et al. [157], this has to be considered carefully.

In many cases, it is possible to have additional information about the represented data directly

rendered at the TUIOs’ position. Only when this is impossible, additional views are an option.

For instance, this was the case for our furniture placing application. Since the view of the

interactive surface gives a bird-eye view of the map of the apartment to be arranged with

pieces of furniture, the interactive perspective view of the room was implemented using an

additional display. Another example would be a video conferencing link, as proposed for this

application. Adding a further display for the video conferencing would suffice on the first

sight. A more creative and perhaps more supportive implementation would be possible when

both the local and the distant users have their own TUIO representation. Then the distant

user’s video could be rendered in the perspective view at the position of the TUIO’s position

in the room. There is the problem that the remote video in the perspective view cannot be

seen when the local user’s TUIO is not facing the position of the remote user’s TUIO. It

can be overcome by rendering the video on the interactive surface beside the remote users’

TUIOs or by embedding a display into the TUIOs themselves.

Complementary to touch sensing is vibro-tactile feedback. Also this feedback modality Vibro-tactile

Feedbackis rather new in TUIOs and not yet exhaustively investigated in this context. Nonetheless,

it is useful to eyes-free inform the users about certain states of the represented data, as

described in Chapter 6. In our case, we used vibro-tactile feedback to alert the users,

which even supports the deixis of the system, as discussed earlier. In contrast to this

alerting characteristic, this feedback modality can be used to convey information about the

represented data. For instance, the IAS could be extended with vibro-tactile feedback to

reflect the mapped data density to the vibration intensity. Addressing multiple senses can

be beneficial for the users, since they can concentrate on the modality that they find most

useful.

Due to their alarming characteristic, vibro-tactile and audio feedback are very useful to guide Attention Guidance

the users’ (visual) attention, as discussed in Chapter 6. This is useful in scenarios where

the users have to share attention between multiple views or manipulate the TUIOs eyes-free.

This aspect informs the users at hand where something important is happening.

The use of sound beyond musical applications is rather rare in TUIs. Nonetheless, we have Sound and Speech

seen that sonification used with tangible interaction may help visually impaired (blindfolded

users in our study scenario) to better understand data, covered in Section 9.3. Generally

functional sound and speech output enable users to eyes-free manipulate data while paying

attention to other aspects of the system, as discussed in Chapter 6. Here, users can navigate
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the speech-augmented menu while monitoring the effect on the simulated data on an

additional view.

Remote Collaboration

Remote collaboration is one major application for actuated TUIs and heavily relies on the

actuation capabilities of the system. Already in 1998 Brave et al. presented the first actu-

ated tabletop TUI PSyBench and proposed remote collaboration as a major application. In

Chapter 6 we discussed the minimal amount of information needed to synchronize two tDesks

over the Internet. We also highlighted the influence of soft coupling between the TAOs

and their represented data, which we utilized in Chapter 7. This demands more information

to be exchanged between the systems to support the coupling capabilities. Furthermore,

additional communication channels, such as audio and video conferencing greatly supports

the remote collaborative task accomplishment.

Since the TAOs are not as quick as the users manipulating them, the distant side benefits

from a visualization of the navigation process. For instance, this helps not to unintention-

ally intercept a moving TAO. For this we added a projected red glare around a moving TAO

to reflect the state of being moved on the distant side (see Chapter 6). An additional line

running from the TAO’s current position to its target position also helps the users to better

understand the movement process. The users already have an idea of the final position of

the moving TAOs and can work on these informations more effectively (see Chapter 7).



11Reviewing Systems and Concepts

Towards Future Perspectives

There’s a way to do it better–find it.

Thomas Edison

Throughout the course of this thesis, we mainly viewed the systems demonstrators from

a conceptual point of view. This often lead the actual applications and their technical

improvements and potentials to somehow take a back seat. In this chapter we want to

briefly summarize the system demonstrators and their central concepts to put them into

a larger context. In this context we want to present prospects for future developments of

actuated TUIs and use this opportunity to integrate further ideas we had for the TAOs.

On the quest towards applications widening the use of the TAOs, some of these ideas were

picked up in student projects that served as a playground for these ideas.

11.1 System Demonstrator Summary

This section briefly summarizes the system demonstrators that were developed throughout

the course of this thesis in chronological order.

Embodied Social Networking

The ESN client (cf. Section 4.4 and [172]) is a good example for a fully integrated actuated

application for social networking. For this application we added the graphical display compo-

nent with graphical widgets for text output and input (via keyboard). The TAOs represent

the messages and postings within the social network. Their actuation is used to reflect the

messages’ states. New messages and postings enqueue into respective queues to the left and

the right and thus naturally represent their chronological sequence. Between the queues, the

user has space for interacting with the messages by triggering different actions via gestures.

The interaction structure was modeled using a state machine approach where gestural input

triggered the different actions.

Saving and Restoring Mechanism

As a generic approach for augmenting existing (passive) TUIs with a saving and restoring

mechanism (cf. Section 5.5 and [173]). As many existing tabletop TUIs rely on the TUIO
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Protocol [91], the TAO system was extended to produce suitable output to provide an

interface for the TUI to be augmented. Thus, the TUI does not need to be altered while

the TAO system takes care of the TUIO arrangement and interaction management. As a

demonstrator for this generic application, we utilized the Soundblox engine [19].

Remote Collaborative Interior Design

Though our remote collaborative interior design application covered in Section 6.3 and [170]

was mainly intended as a stress test for our TAO architecture as a highly integrated multi-

modal interface, it clearly contributed on remote collaboration design for actuated TUIs.

We integrated multiple additional features simultaneously, such as the actuated dial with

speech output, constraints, vibro-tactile feedback indicating collisions of virtual models and

secondary views. All these features relied on the arrangement of the TAOs and their dial

states. This resulted in a feature-rich distributed application that only used the synchronized

physical states of the TAOs to reproduce all user-relevant interaction information. To syn-

chronize two instances of this application over the Internet, we created an XMPP interface

that transmits only the TAOs’ states in real-time.

Mind-mapping

The mind-mapping application presented in Section 7.2 only served the purpose of our

comparative study where seven given mind-map items were used.

Nonetheless, it provides already great potential for a fully featured application for the TAOs.

By incorporating the graphical widgets for text input and output introduced in the ESN

it would enable the users to create their own mind-map items as they put TAOs on the

interactive surface. These new mind-map items can then be connected to meaningful mind-

maps as already implemented. Furthermore, the actuated dial could be used to allow for

altering the items and to save and restore the mind-maps.

System Demonstrators Beyond the Scope

Interactive Auditory Scatter-plot The Interactive Auditory Scatter-plot (cf. Section 9.3

and [168]) was developed and improved during the definition phase of this thesis. The lack of

graphical display inspired us to investigate the use of functional sounds with the TAOs in an

EDA application, targeting visually impaired users. We created a system that interfaces with

two Sonifications [112] implemented in SuperCollider [213]. Both Sonifications render the

data density of 2-dimensional scatter-plots to an auditory data stream. Beyond artistic music

creation, the use of functional sound is a useful addition to feedback modalities that supports

data exploration. The TAOs also keep the haptic data display consistent as they home back

into the cluster centers of highest data density, providing a coarse tangible overview of the

data distribution.

Interactive Mobile Seat To explore the possibilities in integrating other robot platforms

into the TAO platform, the IMS was created (as covered in Section 9.1). A Pioneer robot
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platform controlled by the Player/Stage software environment [55] was integrated into our

TAO architecture including path planning and control. It served as an intermediate solution

for the creation of a robotic mobile seat that was built from scratch by the students partici-

pating in this project. Finally, both platforms were controllable by a (passive) tabletop TUI

that allowed the user to re-position the seat within a living environment.

TAOgotchis The same student group that worked in the IMS also worked within the TAO-

gotchis project (see Section 9.2). This was a good example for a game like application for

the TAOs and by the way introduced the idea of embodied agents to actuated TUIs. During

this project the concept of state machines for interaction modeling was considered and used

to implement the basic functionalities of the TAOgotchis.

Active Home Entertainment Desk The AHEAD system (cf. Section 9.4) was a two staged

student project. Inspired by the work of Seifried et al. [182], we wanted to create a media

control and organization system for the TAOs that seamlessly integrates into established

standards, such as UPnP AV or Digital Living Network Alliance (DLNA). Furthermore, it

was an attempt towards hybrid user interfaces integrating passive and active TUIOs with

multi-touch interaction. For this, in the first stage a multi-touch display was utilized and a

marker-based over-head tracking approach was established and the UPnP AV /DLNA inter-

face was integrated into the TAO architecture. In the second stage of the project, the code

base was ported to a Samsung SUR40 device featuring Microsoft’s PixelSense technology.

This allowed us to move back from over-head tracking of the TUIOs to tracking from be-

low using the active markers of the TAOs without any occlusions. From the beginning, the

AHEAD system demonstrator was intended as a multi-user interface that supports groups of

users to collaboratively organize and run a movie night.

11.2 Concept Overview

Within the field of applications as proposed by Shaer and Hornecker [185] we systematically

review the main concepts covered and used in our system demonstrators and highlight further

possible application fields for the concepts. In Table 11.1 we created an application-concept

matrix that helps us to systematically examine each combination and its potentials. In

this overview we mark combinations already addressed with the TAOs (marked with letter

X) and indicate where we see potential for future developments (marked with letter P).

Of course, this matrix is not necessarily complete as new fields of applications or possible

concepts may emerge (we already added the categories ‘Assisting Systems’ and ‘Monitoring

and Control’ which we examine in Section 11.3 in more detail). Also combinations that

were not considered with high potential may inspire others with new ideas we did not yet

imagined. Furthermore, the categories are not exclusive as systems may fall into multiple

fields of applications.

The concept of functional sounds was addressed in our IAS application which mainly falls Functional Sounds

into the application fields information visualization and assisting systems. It renders 2-

dimensional information in an auditory way, assisting visually-impaired users in EDA tasks.

The application field reminders and tags might benefit from this concept, as it provides
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Functional Sounds P X P X P

Persistence P X X P P P X X P

Gestural Interaction H H H X H X H H

Actuated Dial X P P P P P

Save and Restore X X P P P P P

Remote Collaboration P X P P X P P

Vibro-tactile Feedback X P X P P P

Touch Sensing X P P

Constraints P X P P P P X P P

Table 11.1: Our

application-concept

matrix according

to the application

fields [185]. We

added the fields

‘Assisting Systems’

and ‘Monitoring’ and

marked combinations

we addressed with

the TAOs with the

letter X and those

where we see greater

potential for future

developments with

the letter P. Gestural

interaction plays a

special role as it is

one major aspect

in hybrid systems

which resemble an

additional concept

for potential future

development (marked

with letter H).

auditory alarming qualities and could be used in calendar applications, search, and monitoring

tasks. As already contemplated in our IAS application, functional sounds can be used to

convey information which can support educational systems and learning.

Persistence is a central concept in TUIs and greatly benefits from actuated TUIOs. ThisPersistence

makes it applicable in many application categories, as we did with our remote collaborative

interior design application falling into the problem solving and planning category. Also the IAS

benefits from persistence, as the TAOs home back to their cluster centers keeping the haptic

display consistent. Additionally, our ESN profited from persistence. As the TAOs enqueue

into message queues, they provide an overview of incoming messages and postings on the

first glance. Persistence can contribute to almost all other application fields and increase

support for collaboration in multi-user scenarios. Persistent TUIs foster collaboration as

they provide physical anchors for discussions and gesticulation. Also in programming and

monitoring tasks actuation contributes persistence.

In the ESNs (falling into the communication category) gestural interaction was the centralGestural Interaction

interaction concept for triggering actions. Also in the hybrid AHEAD system multi-touch

gestures were used. In our opinion, hybrid systems themselves provide high potential for

future developments and may fall in almost all application categories. We mark this special

case with letter H in Table 11.1.
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Our actuated dial was used in the mTAOs for the remote collaborative interior design appli- Actuated Dial

cation which falls into the problem solving and planning category. Furthermore, the mTAOs

were used in the generic saving and restoring mechanism which resembles a concept of its

own. This actuated inner degree of freedom can find potential application in many categories

as it provides an additional mean of instant parameter control. Beside the already addressed

category for problem solving and planning, the most promising categories for future potentials

are programming, entertainment and play, music and performance and assisting systems. In

monitoring applications the mTAOs can serve as indicators for orientation related states, e.g.

wind direction in a wind park monitoring application.

The already mentioned saving and restoring mechanism was introduced as a generic applica- Saving and Restoring

tion for enhancing existing TUIs with these features. Our demonstrator using the Soundblox

engine [19] might fall into the problem solving and planning and information visualization

categories. This concept can find potential application where data is created and / or orga-

nized by the users, such as programming, entertainment and play, music and performance,

reminders and tags, and assisting systems.

The concept remote collaboration is already an established concept in actuated TUIs. Our Remote Collaboration

interior design demonstrator made heavy use of this concept and extended it to synchronizing

the mTAOs’ actuated dials. This demonstrator falls into the problem solving and planning

category and mutually belongs to the communication applications. Thus, all applications

supporting collaboration between multiple users can make use of this concept to allow for

distributed collaboration applications, such as in learning, programming, entertainment and

play, assisting systems, and monitoring categories.

As we have seen, vibro-tactile feedback provides an additional output channel for the TAOs Vibro-tactile

Feedbackand was used in our remote collaborative interior design application falling into the categories

problem solving and planning and communication. Beyond the use as alarming attention

guidance, this concept can be used in information visualization applications, for reminders

and tags and assisting systems. In (contact-based) monitoring tasks, vibro-tactile feedback

provides an additional information channel for continuous and discrete information.

Touch sensing was used with the TAOs in the mind-mapping application (problem solving Touch Sensing

and planning category) to interactively alter constraints and relations between multiple TAOs

to move them simultaneously while manipulating only one TAO. Touch sensing can provide

and instant mean for direct input which can be beneficial in application categories, such as

entertainment and play and music and performance.

The constraints and relations concept was used in the two collaborative applications interior Constraints

design and mind-mapping. This concept improves the persistence of TUIOs and can thereby

contribute in many application fields, such as learning, information visualization, program-

ming, entertainment and play, music and performance, assisting systems, and monitoring

tasks.
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11.3 Future Perspectives for TUIs and their Design

Before we pioneer future perspectives for TUIs and their design in more concrete directions,

let us reconsider the initial vision for this thesis (see Section 1). We had (actuated) TUIs

in mind that seamlessly blend into everyday environments and tasks. Of course, this goal

was too far for one single PhD project, thus we focused on concepts that contribute to this

vision, such as implementing mechanisms for triggering a wider pallet of actions.

In this section we identify still missing concepts that help making this vision reachable. We

highlight further possible extensions and improvements for the TAOs, followed by further

application possibilities and use cases.

Further Extensions and Conceptual Improvements

The first potential improvement is the already addressed gestural interaction concept. ThisGestural Interaction

can be vastly improved by incorporating IMUs into the TAOs and using more capable gesture

recognition methods. The use of IMUs – mostly incorporating gyroscopes and magnetometers

– would allow for 3-dimensional gestures with all 6 degrees of freedom. Not just a new

gesture recognition algorithm is challenging, but also the increased amount of real-time

data streams of position and orientation data in high temporal resolution. Switching to a

different communication standard that is more capable thant the used XBee modules seems

inevitable. Overcoming these challenges, such improved gestural interaction possibilities can

greatly improve TUIs in general.

To foster multiple-user scenarios, user detection and tracking means can contribute in futureUser Detection and

Tracking developments. First approaches have already been demonstrated in multiple publications

[3, 107, 181, 207]. Such extensions allow the systems to orient towards the users and help

organizing each user’s particular tasks.

The integration of further graphical widgets provide known interaction means to the usersGrahpical Widgets

and widen the possible use-cases towards general-purpose applications. Especially in hybrid

systems graphical widgets virtually attached to the TAOs instantly add further interaction

degrees. For instance, a color chooser widget can contribute in ‘smart home’ applications (see

below) with an interface similar to our interior design application where the TAOs represent

lights.

Beyond widgets, many tabletop games and Geographic Information Systems (GISs) dealingMap Rendering and

Tiling Engine with monitoring and planning tasks heavily rely on large graphical maps. Here, map rendering

and tiling engines in particular can widen this field of applications as they provide a general-

purpose framework for managing this kind of information.

In addition to graphical widgets for hybrid interfaces, more physical widgets, such as buttonsPhysical Widgets

and sliders, etc. contribute further physical inner degrees of freedom for data manipulation,

as proposed by Weiss et al. [208]. Here, the robotic actuation approach for active TUIOs

may ease the implementation of such widgets; imagine a TAO with four sliders (one at each

sides).

Similarly to the mentioned physical widgets or vibro-tactile feedback, the incorporation ofEmbedded Display

and Audio visual and auditory displays into the TAOs provide additional feedback channels and reduce
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the abstractness of the cubical TAOs. Such implementations were already demonstrated

[139, 204]. An additional display could contribute to monitoring applications or remote

collaborative applications and games where (interaction) parties are represented by TAOs.

A small-sized picture or even live video could be show on the representative TAO.

One major disadvantage of TUIs in general is the necessity of a keyboard when it comes Speech Recognition

to text processing which largely limits the applicability of TUIs in many general-purpose

applications. As speech recognition is greatly emerging in consumer products lately, the

barrier of using this input modality is low both in terms of user acceptance and integration

effort as there are sophisticated APIs and services. Thus, communication applications like

our ESN client can benefit from such extensions. Recognition results improve as well, as

recent developments in machine learning techniques may even allow for dictation of longer

text passages without training.

A building block contributing to hybrid interfaces in the means of integrating passive and Active Manipulation

of passive TUIOsactive TUIOs is the concept of active manipulation of passive TUIOs by the TAOs. By

incorporating a swarm concept for the active TAOs they can be enabled to autonomously

manipulate passive objects and TUIOs to integrate both object types into one active TUI.

This allows to use passive TUIOs for tasks where the system rarely needs to adjust their

position and spare the TAOs for active tasks. In blended everyday working scenarios, the

TAOs could be of assistance beyond the TUI, by cleaning up and organizing the desk.

Though definitely leaving the field of applications for TUIs, the field of social robotics that Actuated Physical

Avatarslately emerges into consumer products, such as Jibo [164] provides inspiration for the TAOs.

Such robots embody assistance agents like Apple’s Siri or Amazon’s Alexa and mark the next

level in consumer robotics. Adapting this concept to the TAOs would allow them to act as

robotic companions. A simple but expressive actuated character like the one presented with

the Cero robot [184] could be addressed with speech commands via speech recognition and

assist in everyday tasks. In (remote) communication scenarios such companion robots could

increase the awareness for interaction partners by providing a more physical anchor than a

photo on an embedded display could.

Further Applications

Beyond these additional extensions with their already mentioned potential applications, we

would like to use the opportunity to present further fields of applications we had in mind.

As mentioned above, we have monitoring and control, and assisting systems in mind. Fur-

thermore, we will add an additional interaction possibility within the frame of collabora-

tive applications and conclude this chapter with picturing our idea of an integrated hybrid

multi-purpose user interface incorporating conventional, multi-touch and (active) tangible

interaction.

Monitoring, Assistance and Therapy Systems

As an example for monitoring applications, we have smart home control in mind. Smart

home applications deal with a large amount of real-time data, including lighting, heating,
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appliance control and a manifold of sensors, such as smoke detectors or power consumption,

controlled by predefined rules. We can also think of incorporating active furniture as we

addressed with the IMS project and media control as proposed with the AHEAD system.

TUIs can provide a suitable way to monitor, control and manage all these data and the

respective appliances by representing the current state of the whole living environment at a

glance. Also communication and remote presence functionalities could be integrated in such

scenarios, connecting multiple homes of family members and friends.

By this, an integrated and versatile application is scripted that increases comfort for their

residents, including support for disabled and elderly users, as proposed by the field of AAL.

Apart from such monitoring and control tasks, TUIs can be supportive in therapy applications.

As already proposed in [173], the mTAOs can form a system for assisting in therapy sessions

using the Family-System-Test (FAST) for measuring family relations [53]. Here, the saving

and restoring mechanism and the actuated dial are the key concepts for the implementation.

In rehabilitation, the TAOs can provide a playful mean for occupational therapy. Within

a game scenario the TAOs could train the dexterity of stroke patients and automatically

measure the therapy progress under supervision of a therapist.

Vertical Actuated TUIs

Another idea we had in mind for the TAOs, but was neglected as we focused on horizontal

tabletop applications for actuated TUIs, were vertical actuated TUIs, as illustrated in Figure

11.1. Inspired by the Senseboard by Jacob et al. we dreamt of applications for organization

tasks, and teaching and learning.

Very recently, Bader et al. presented their Self-Actuated Displays for Vertical Surfaces [6]

that comes quite close to our vision: They attached magnets to a 3pi robot platform to

(a) Mock-up of TAO at a

horizontal white board. It

uses permanent magnets to

hold to the surface (Photo

taken in 2010).

(b) Illustration of a horizontal TUI for co-

located collaboration and teaching.

Figure 11.1: Two

pictures proposing

the use of the TAOs

in horizontal actuated

TUIs.
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make it hold on a whiteboard. Furthermore they added housing components for a pen, an

eraser, additional batteries and a small tablet PC for display. Bader et al. proposed four

scenarios, covering assistance in a kitchen environment, teaching and self-learning applica-

tions in classroom and museum scenarios and an office situation for automatically adjusting

displays for remote communication.

Tangible Hybrid Desktop Environment

Through our own experience, we find the direction for applications of TUIs as stated by

Fitzmaurice and Buxton still valid: “The ultimate benefit may be to have a collection of

strong specific devices creating a strong general system” [46]. This statement absolutely

supports our own vision, as we imagine a general-purpose tangible (or even hybrid) desktop

environment that seamlessly blends into everyday environments and tasks.

Passive and active TUIs and multi-touch interaction provide such strong specific interfaces

but there are still applications where Mouse and keyboard work best, such as text process-

ing or creating graphics. The demonstrated and proposed extensions and concepts already

contribute many useful means to push and integrate these towards a more general hybrid

interface. But there are still building blocks missing to create the ultimate general system

with strong specific devices.

A desktop environment that features all the addressed application fields should thus support

Mouse and keyboard and hybrid passive and active TUIOs with multi-touch facilities, as

illustrated in Figure 11.2. To seamlessly blend all interfaces, support for parallel application

execution and live task switching between different applications is necessary. These task

switching capabilities should be equally supported by all interface types. Where possible,

the system should also support device switching within a certain task to make the interface

completely task-transparent. In conclusion, the user can naturally decide which interface

suits best for each specific task.

Figure 11.2: Illustra-

tion of a tangilbe hy-

brid desktop environ-

ment.
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In times of increasing connectedness and virtualization of information, the TAOs provide

new means for making information graspable again. We believe that the use of TUIs may

not only be appealing for the user, but also generally more inspiring than GUIs, because

of their embodiment and the possibility to embed these interfaces into the user’s everyday

environment using the same properties and modalities. The more direct way of interaction

can decrease the cognitive load so that users can better concentrate on the actual task and

perhaps the embodiment of such systems may cognitively stimulate users to contemplate

ideas that they may not have using ordinary GUI-based systems.

Our work copes with various aspects of actuated tabletop TUIs. Though it is a more technical

and evaluation driven work, we gave a general overview of TUIs and introduces the theoretical

background of the field. We motivated and described our TAOs architecture which lay the

foundations for our research.

With our applications for the TAOs we addressed multiple of the application domains for Addressed

Application DomainsTUIs, as identified by Shaer and Hornecker.

The ESN client, presented in Chapter 4, addresses the social communication domain as it

provides a tangible actuated interface to social networks.

Multiple application domains are addressed by our remote collaborative furniture placing ap-

plication, discussed in Chapter 6. First of all, it obviously falls into the social communication

domain, as it allows distant users to work together. The second addressed domain is the

problem solving and planning domain. The distant users can collaboratively work on the

same task, planning the interior design of an apartment.

Though the mind-mapping application was used in the comparative study (see Chap. 7) to

evaluate different kinds of interfaces, it is a useful application that falls into the learning

domain. It allows groups of users to collaboratively elaborate on a particular topic and to

learn from each other. Furthermore, the task of creating mind-maps, this application partially

touches the problem solving and planning domain.

Being meant as a toy application, the TAOgotchis, as discussed in Chapter 9, are covered

by the entertainment, play and edutainment domain.

Another example for this application domain is our AHEAD application, discussed in the

same chapter. It interfaces with home entertainment devices and allows groups of users to

collaboratively organize a movie night. This organization task also addresses the problem

solving and planning domain.

Our IAS, described in Chapter 9.3, falls into the learning and the information visualization
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domain. It provides means for exploratory data analysis and aims to help visually impaired

users to learn about data usually visualized using scatter plots. Interactive sonification and

haptic exploration are non-visual displays of data and thereby visualization techniques in a

broader view. Consequently, this application falls into the information visualization domain.

Applications that do not fall into any of the domains identified by Shaer and Hornecker areNew Application

Domains the IMS, described in Chapter 9. The IMS is half assisting system, half TUI. Its mobile robot

resembling an autonomous seating, whereas its TUI enables handicapped users to control

the seating and move it without external help. The IAS is another example that would fit

into this domain, since it enables visually-impaired users to non-visually explore data usually

presented graphically. We propose the application domain of Assistive TUIs.

Furthermore, with the presented AHEAD system and the perspective highlighted in Chapter

11, we also propose the application field of ‘Monitoring and Control’.

Our studies and evaluations allowed us to answer our research questions, stated in theAnswering the

Research Questions

and Filling the Gaps
introduction chapter.

In our gestural interaction study we identified two classes of gestures in terms of complexity.

One simple class with abstract single- and two-stroke gestures and more symbolic gestures

inspired by letters and symbols. We found out that a questionnaire-based study design only

produces first directions for gestures, but a real-life study with the actual system is more

effective for gathering well-fitting gestures.

We identified three different types of menu styles in TUIs. After reviewing their strengths

and limitations, we proposed our tangible menu metaphor based on an actuated dial, that is

applicable in most use cases with up to approximately ten menu items.

Beside the embodied interaction and the visual domain, mostly covered in literature, we

combined our additional concepts into a system with rich interaction possibilities. In our

remote collaboration application we demonstrated the benefits, such a combined approach

has and how they complement each other.

Our comparative study showed a preference of the participants towards the TAOs and the

TUIOs. In the study design we also compared Mouse and multi-touch interaction within the

same system design and task setting. We transferred and adapted interaction measures to

investigate interaction qualities that extend the methods used in literature.

We identified boundary conditions and requirements for actuated TUIs in terms of speed

or velocity. Comparing our results from the benchmarks of the human hand’s manipulation

speed and the TAOs’ velocity, we found that the TAOs are partially unable to reproduce

movements of a TUIO manipulated by a human. The TAOs but also most actuated TUIs

described in literature are roughly ten times slower as the human hand, depending on the

task and the needed precision.

The design guidelines we derived in the core chapters integrate the aspects and their interplayDesign Guidelines

with common design approaches for TUIs, observed and developed throughout this project.

These guidelines serves as a foundation for further design investigations and are applicable

for a large range of tabletop TUIs.

With our comparative collaboration study, we presented adapted interaction measures thatTowards Systematical

Evaluation of TUIs were transferred to the field of (actuated) TUIs. These measures may help comparing
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different interface styles with regard to social interaction beyond performance measures and

questionnaires. At that time, this was the fist attempt to compare four different interaction

styles at once. However, the hoped-for large differences were not found, thus future studies

are needed. Nonetheless, the measures may serve as foundations and precursors for such

systematical evaluation of TUIs that allow empirical proving of the theories on tangible

interaction.

We hope that both the new interaction measures for evaluation and the design framework

become more and more important regarding the increasing sophistication of TUIs.

With regard to the map of frameworks, proposed by Mazalek et al., our work can be inte- Into the Frameworks

grated into different areas of their map. In general, our work definitely contributes to the

building technologies area as it provides an implementation of a sophisticated actuated TUI.

Our review of available actuation technologies and the identification of boundary conditions

and requirements for actuation adds to the abstracting technology area. The building inter-

actions area is addresses by nearly all our applications because they include new interaction

concepts for actuated TUIs, identified as gaps in the introduction chapter. Through our

design guidelines, many facets of the designing column of the frameworks map are covered,

such as the technologies, interactions, physicality and even the domains facets. Since our

design guidelines are user-centric oriented they also touch the experiences facet.

12.1 Outlook and Future Work

In a course of three and a half years, many results and insights have been collected and further

questions and issues have been raised. The adapted evaluation measures we described extend

the evaluation methods for tabletop TUIs and disclose new research possibilities with more

detailed and accurate measures.

With the current design of the TAOs we reached the bounds of possibility at some points.

Over the years, the technicals requirements for the TAOs vastly increased so that a redesign

of them is needed to feature all our described interaction concepts at the same time. In-

corporating a more sophisticated and versatile microcontroller platform, within the TAOs

may even more increase the pallet of possible applications and evaluations. Nevertheless,

our combinatory and integrative approach leads to rich interactions for actuated TUIs. We

strongly believe that this approach will help to pull TUIs out of the niche of special-purpose

applications. Also the design and development of TUIs needs to become more simple to

quickly create sophisticated applications. Here, the TuiML approach [186] can point out a

reasonable implementation style. One day actuated TUIs will be embedded into our every-

day live. Whether at work or at home, this approach will be applicable in many situations

combining aspects of actuated TUIs, GUIs and multi-touch interaction and even full-body

interaction. This possibility of choosing and combining different interaction approaches will

enable users to find their personal way of interaction.
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A.1 Hands-on Gesture Study

Frequencies of Recognized Gestures
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Recognized: read sender (30 gestures)

(a) read sender
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Recognized: read message (26 gestures)

(b) read message

0

2

4

6

8

10

12

14

1
4
7
8
9

8
5
2

1
2
3
6
9

2
3
6
9
8
7
4
1
2

2
5
8

3
2
1
4
4
7

3
2
4
7
5
6
8

3
4
7
8
6
3
6
8
9

3
5
7

3
6
8
7
8
9
6
3

4
5
6
3
2
3
6
9

4
5
6
3
5
7
5
3

4
5
6
5
4

5
2
1
4
7
8
6
3
2

5
4
5
6
5

5
4
5
6
5
4
5
6
5

5
5
4
5
6
5

5
6
5
4
5

6
3
2
4
7
8
6
3
2

6
5
4

7
5
3
5
7

7
8
9
6
3

8
7
4
5
6
3
3
6
9
8

9
8
7
4
5
6
3
3
6
8

%

Recognized: open link (24 gestures)

(c) open link
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(d) close link

Figure A.1: Recog-

nized gesture frequen-

cies (part 1/3)
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Recognized: compose answer (26 gestures)

(a) compose answer
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Recognized: add contact (24 gestures)

(b) add contact
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Recognized: remove contact (30 gestures)

(c) remove contact
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Recognized: accept contact request (31 gestures)

(d) accept contact request
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Recognized: decline contact request (27 gestures)

(e) decline contact request
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(f) search

Figure A.2: Recog-

nized gesture frequen-

cies (part 2/3)
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Figure A.3: Recog-

nized gesture frequen-

cies (part 3/3)
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Frequencies of Transcribed Gestures
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Transcribed: read sender (14 gestures)

(a) read sender
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Transcribed: read message (13 gestures)

(b) read message
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Transcribed: open link (14 gestures)

(c) open link

0

5

10

15

20

25

30

x

le
ft

le
ft
, 
d
o
w

n

le
ft
, 
ri
g
h
t

u
p ?

d
o
w

n
, 
ri
g
h
t,
 l
e
ft

ri
g
h
t

u
p
 r

ig
h
t,
 d

o
w

n
 l
e
ft

%

Transcribed: close link (9 gestures)
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(b) accept contact request
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Transcribed: decline contact request (11 gestures)
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Figure A.5: Tran-

scribed gesture fre-

quencies (part 2)
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Questionnaire Items

1. Age

2. Sex

3. Handedness [ right / left / both/different ]

4. Occupation

5. Highest educational degree

6. Major subject (as student)

7. Have you heard of this project before?

8. Have you participated in an earlier study (of this project)?

9. Which one(s)?

10. Do you know mouse or finger gestures? [ yes / no / unsure ]

11. Do you use them? [ yes / no ]

12. With what programs or devices do you use them?

13. Do you know social networks? [ yes / no ]

14. Do you use them? [ yes / no ]

15. Why do you use social networks?

16. Why don’t you use social networks?

17. Can you imagine to use such a system on your desk? [ yes / no / unsure ]

18. Would you prefer a standardized or a personalized gesture set? [ personalized / stan-

dardized / unsure ]

Comments
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A.2 Comparative Study

Questionnaire

1. Age Pre-questions

2. Sex

3. Handedness [ right / left / both ]

4. Did you know your trial partner before? [ good / a little / not at all ]

5. Occupation

6. Highest educational degree

7. Major subject (as student)

8. Have you heard of this project before? [ yes / no ]

9. Have you attended in an earlier study (of this project)? [ yes / no ]

10. Which one(s)?

1. Working with the system was fun. Own Items

2. I would like to work longer with the system.

3. Working with my trial partner was productive.

4. Working with the system was motivating.

5. The use of the system was interesting.

6. The use of the system was inspiring.

7. The system has distracted me from the actual task. (recoded)

8. The task was too hard. (recoded)

9. The usage of the system was difficult to learn. (recoded)

10. The system is unsuitable for the task. (recoded)

11. I would like to use the system more frequently.

12. I would like to have such a system at my office / home.

13. I can imagine to use this system for other tasks.

14. The design of the system (presentation, shapes, colors, etc.) was appealing.

15. The system worked the way I expected.

16. I would like to redesign the system, if I could. (recoded)

17. The system has facilitated the collaboration with my trial partner.

18. I had to deal with similar tasks before.

19. The system hindered me from effectively working with my trial partner. (recoded)

20. I think working with my partner was very cooperative.

21. I think the communication between my partner and me was very good.

22. I like our result of the task very much.

23. I work with computers almost every day.

24. In my occupation I am used to work with computers.

25. I can write computer programs.

26. In private live I enjoy using computers.

1. I think that I would like to use this system frequently SUS Items

2. I found the system unnecessarily complex

3. I thought the system was easy to use
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4. I think that I would need the support of a technical person to be able to use this system

5. I found the various functions in this system were well integrated

6. I thought there was too much inconsistency in this system

7. I would imagine that most people would learn to use this system very quickly

8. I found the system very cumbersome to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this system

Comments
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Results

Questionnaire

Index Mean M Standard deviation SD

Condition 1 2 3 4 1 2 3 4

System usability 4.89 4.69 5.01 5.74 1.05 1.23 1.40 0.89

Collaboration 5.57 4.84 5.49 5.46 0.99 1.37 1.18 0.98

Task 6.21 5.76 5.25 5.58 0.78 1.00 1.39 0.90

User type 5.79 5.90 5.05 5.79 1.15 0.96 1.99 1.18

Other tasks 5.10 5.35 5.10 5.15 1.33 1.76 1.80 1.50

System design 4.25 4.35 4.50 5.25 1.59 1.63 2.04 1.41

Expected system

behavior

5.25 4.35 5.15 5.10 1.71 1.57 1.14 1.07

Redesign 3.60 4.95 4.20 4.20 2.14 1.43 1.67 1.54

Task familiarity 3.65 3.60 2.00 3.65 2.30 2.21 1.52 2.30

Result 5.50 5.05 5.70 5.40 1.32 1.93 1.08 1.70

SUS 77.13 78.25 72.63 77.38 16.69 12.93 15.72 9.30

Table A.1: Descrip-

tive statistics for the

questionnaire indexes.

Index F (3, 76)-value p-value η2p-value

System usability 3.07 0.03 0.06

Collaboration 1.74 0.17 0.03

Task 2.97 0.04 0.06

User type 1.62 0.19 0.03

Other tasks 0.11 0.95 < 0.01

System design 1.45 0.23 0.03

Expected system behavior 1.74 0.17 0.03

Redesign 2.07 0.11 0.04

Task familiarity 3.00 0.04 0.06

Result 0.62 0.60 0.01

SUS 0.66 0.58 0.01

Table A.2: Com-

plete ANOVA results

for the questionnaire

indexes.
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Index
Compared

conditions
p-value

System

usability

1 – 2 0.560

1 – 3 0.697

1 – 4 0.012

2 – 3 0.332

2 – 4 0.002

3 – 4 0.032

Collaboration

1 – 2 0.033

1 – 3 0.811

1 – 4 0.744

2 – 3 0.056

2 – 4 0.069

3 – 4 0.929

Task

1 – 2 0.179

1 – 3 0.005

1 – 4 0.059

2 – 3 0.127

2 – 4 0.573

3 – 4 0.330

User type

1 – 2 0.765

1 – 3 0.053

1 – 4 1.000

2 – 3 0.027

2 – 4 0.765

3 – 4 0.053

Signle-item

index

Compared

conditions
p-value

Other tasks

1 – 2 0.608

1 – 3 1.000

1 – 4 0.918

2 – 3 0.608

2 – 4 0.682

3 – 4 0.918

System

design

1 – 2 0.855

1 – 3 0.647

1 – 4 0.071

2 – 3 0.784

2 – 4 0.103

3 – 4 0.173

Expected

system

behavior

1 – 2 0.046

1 – 3 0.822

1 – 4 0.735

2 – 3 0.075

2 – 4 0.095

3 – 4 0.910

Redesign

1 – 2 0.018

1 – 3 0.283

1 – 4 0.283

2 – 3 0.181

2 – 4 0.181

3 – 4 1.000

Task

familiarity

1 – 2 0.939

1 – 3 0.013

1 – 4 1.000

2 – 3 0.016

2 – 4 0.939

3 – 4 0.013

Result

1 – 2 0.347

1 – 3 0.675

1 – 4 0.834

2 – 3 0.176

2 – 4 0.464

3 – 4 0.530

SUS

1 – 2 0.809

1 – 3 0.335

1 – 4 0.957

2 – 3 0.229

2 – 4 0.850

3 – 4 0.309

Table A.3: Complete

results for the post-

hoc analysis of the

questionnaire indexes.



A.2. Comparative Study 167

1 2 3 4

1

2

3

4

5

6

7

(a) System usability.

1 2 3 4

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

(b) Collaboration.

1 2 3 4

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

(c) Task.

1 2 3 4

1

2

3

4

5

6

7

(d) User type.

1 2 3 4

1

2

3

4

5

6

7

(e) Other tasks.

1 2 3 4

1

2

3

4

5

6

7

(f) System design.

Figure A.6: Visual-

ized descriptive statis-

tics of the indexes

(part 1).
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ized descriptive statis-

tics of the indexes

(part 2).
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Interaction Measures

Interaction measure Mean M

Condition 1 2 3 4

Utterances sum 57.01 42.92 57.47 63.67

Interaction mean 0.80 2.17 2.05 1.78

Interaction sum 32.61 47.62 49.13 40.90

Overlap mean (task+interaction) 0.35 0.69 0.83 0.78

Overlap sum (task+interaction) 4.82 5.65 8.51 8.20

Overlap mean (interaction+interaction) 0.00 3.32 4.01 2.57

Interaction space 0.33 0.50 0.45 0.39

Intersection 0.14 0.30 0.24 0.18

Turn taking (speech) 41.00 31.00 36.40 39.50

Turn taking (interaction) 1.78 7.90 6.40 6.10

Standard deviation SD

Utterances sum 35.65 20.03 27.40 32.77

Interaction mean 0.49 1.16 0.83 0.71

Interaction sum 27.98 23.85 20.94 19.61

Overlap mean (task+interaction) 0.26 0.38 0.43 0.35

Overlap sum (task+interaction) 7.49 4.60 6.64 5.88

Overlap mean (interaction+interaction) 0.00 5.14 2.96 3.62

Interaction space 0.13 0.10 0.07 0.74

Intersection 0.18 0.15 0.07 0.10

Turn taking (speech) 15.84 10.21 14.80 10.28

Turn taking (interaction) 0.83 4.15 2.07 2.85

Table A.4: Descrip-

tive statistics for the

interaction measures.

Interaction Measure F (3, 74)-value p-value η2p-value

Utterances sum 1.78 0.158 0.035

Interaction mean 10.23 < 0.01 0.171

Interaction sum 1.99 0.123 0.039

Overlap mean (task+interaction) 6.79 < 0.01 0.12

Overlap sum (task+interaction) 1.68 0.178 0.033

Overlap mean (interaction+interaction) 2.30 0.095 0.152

Interaction space 5.51 0.003 0.047

Intersection 2.97 0.045 0.014

Turn taking (speech) 1.13 0.349 0.034

Turn taking (interaction) 8.30 < 0.01 0.032

Table A.5: Complete

ANOVA results for

the interaction mea-

sures.
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Measure
Compared

conditions
p-value

Utterances

sum

1 – 2 0.457

1 – 3 1.000

1 – 4 0.897

2 – 3 0.404

2 – 4 0.124

3 – 4 0.909

Interaction

mean

1 – 2 < 0.001

1 – 3 < 0.001

1 – 4 0.003

2 – 3 0.967

2 – 4 0.465

3 – 4 0.749

Interaction

sum

1 – 2 0.200

1 – 3 0.134

1 – 4 0.690

2 – 3 0.997

2 – 4 0.796

3 – 4 0.677

Overlap

mean (task

+ inter.)

1 – 2 0.022

1 – 3 0.001

1 – 4 0.002

2 – 3 0.626

2 – 4 0.864

3 – 4 0.974

Overlap

sum (task

+ inter.)

1 – 2 0.976

1 – 3 0.268

1 – 4 0.344

2 – 3 0.469

2 – 4 0.567

3 – 4 0.999

Measure
Compared

conditions
p-value

Overlap

mean

(inter. +

inter.)

1 – 2 0.243

1 – 3 0.009

1 – 4 0.184

2 – 3 0.982

2 – 4 0.981

3 – 4 0.765

Interaction

space

1 – 2 0.033

1 – 3 0.125

1 – 4 0.632

2 – 3 0.594

2 – 4 0.060

3 – 4 0.280

Intersection

1 – 2 0.171

1 – 3 0.425

1 – 4 0.918

2 – 3 0.615

2 – 4 0.178

3 – 4 0.445

Turn taking

(speech)

1 – 2 0.349

1 – 3 0.866

1 – 4 0.994

2 – 3 0.788

2 – 4 0.467

3 – 4 0.950

Turn taking

(interaction)

1 – 2 0.005

1 – 3 < 0.001

1 – 4 0.004

2 – 3 0.739

2 – 4 0.467

3 – 4 0.950

Table A.6: Complete

results for the post-

hoc analysis of the in-

teraction measures.
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Further Observations

Index Mean M

Condition 1 2 3 4

Learning phase duration 149.00 314.11 266.89 346.60

Standard deviation SD

Learning phase duration 52.609 216.116 246.799 118.130

Table A.7: Descrip-

tive statistics for the

learning phase dura-

tion.

Measure F (3, 33)-value p-value η2p-value

Learning phase duration 2.27 0.099 0.093

Table A.8: ANOVA

results for the learning

phase duration.

Measure
Compared

conditions
p-value

Learning

phase

duration

1 – 2 0.207

1 – 3 0.490

1 – 4 0.085

2 – 3 0.939

2 – 4 0.977

3 – 4 0.755

Table A.9: Post-hoc

analysis results of the

learning phase dura-

tion.
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[12] Benford, S., Schnädelbach, H., Koleva, B., Anastasi, R., Greenhalgh, C., Rodden, T.,

Green, J., Ghali, A., Pridmore, T., Gaver, B., Boucher, A., Walker, B., Pennington,

S., Schmidt, A., Gellersen, H., and Steed, A. “Expected, Sensed, and Desired: A

Framework for Designing Sensing-based Interaction”. In: ACM Trans. Comput.-Hum.

Interact. 12.1 (Mar. 2005), pp. 3–30. issn: 1073-0516. doi: 10.1145/1057237.

1057239.

[13] Bianchi, A., Oakley, I., Lee, J. K., Kwon, D. S., and Kostakos, V. “Haptics for Tangible

Interaction: A Vibro-tactile Prototype”. In: Proceedings of the Fifth International

Conference on Tangible, Embedded, and Embodied Interaction. TEI ’11. Funchal,

Portugal: ACM, Jan. 2011, pp. 283–284. isbn: 978-1-4503-0478-8. doi: 10.1145/

1935701.1935764.

[14] Biocca, F, Harms, C, and Gregg, J. “The Networked Minds Measure of Social Pres-

ence: Pilot Test of the Factor Structure and Concurrent Validity”. In: 4th annual

International Workshop on Presence. Philadelphia, PA, May 2001.

[15] Bishop, C. M. Neural networks for pattern recognition. Oxford, UK: Clarendon Press,

1995. isbn: 0 19 853864 2.

[16] Bovermann, T. “Tangible Auditory Interfaces”. PhD thesis. Bielefeld University, Dec.

2009, p. 214.

[17] Bovermann, T. and Hermann, T. “A Tangible Environment for Ambient Data Repre-

sentation”. In: First International Workshop on Haptic and Audio Interaction Design.

Glasgow, U.K., Aug. 2006, pp. 26–30.

[18] Bovermann, T., Hermann, T., and Ritter, H. “AudioDB: Get in Touch with Sounds”.

In: Proceedings of the 14th International Conference on Auditory Display. Ed. by

Katz, B. June 2008.
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