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Abstract A QQ̄ bound state represents a balance between
repulsive kinetic and attractive potential energy. In a hot
quark–gluon plasma, the interaction potential experiences
medium effects. Color screening modifies the attractive bind-
ing force between the quarks, while the increase of entropy
with QQ̄ separation gives rise to a growing repulsion. We
study the role of these phenomena for in-medium QQ̄ bind-
ing and dissociation. It is found that the relevant potential
for QQ̄ binding is the free energy F ; with increasing QQ̄
separation, further binding through the internal energy U is
compensated by repulsive entropic effects.

1 Introduction

The concept of entropic forces, emerging as a result of col-
lective many-body phenomena, has in recent times attracted
increasing interest; see e.g. [1–4]. The effect of such forces
arises from the thermodynamic drive of a many-body system
to increase its entropy, rather than from a specific underlying
microscopic force. This can also provide a way of studying
the role of entropy maximization for a specific dynamic sys-
tem immersed in a thermal medium. We here want to use this
approach to address quarkonium binding and dissociation in
a hot deconfined quark–gluon plasma [5].

The simplest approach to study QQ̄ binding in a medium
of temperature T is in terms of the Schrödinger equation[

2mQ − 1

mQ
∇2 + V (r, T )

]
�i (r, T ) = Mi (T )�i (r, T ).

(1)

Its solution gives the resulting quarkonium masses Mi (T ),
with i = 0 for the ground state and i = 1, 2, . . . for the
subsequent excited states. Here mQ denotes the c or b quark
mass, while V (r, T ) describes the in-medium binding poten-
tial. To obtain a feeling for the resulting behavior, it is helpful
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to consider the semi-classical limit of Eq. (1) [6],[
2mQ + c

mQr2 + V (r, T )

]
= E(r, T ), (2)

with c a parameter of order unity, to be determined such as to
give correct quarkonium masses. In vacuum, for T = 0, the
binding potential is generally assumed to have the Cornell
form

V (r, T = 0) = σr − α

r
, (3)

where σ denotes the string tension and α the Coulombic
running coupling. For illustration, we concentrate for the
moment on the strong coupling form and neglect the Coulom-
bic term; later on, we shall include it.

In vacuum, we thus set V (r, T = 0) = σr and minimize
the energy E(r, T = 0) with respect to r . This yields

r0 =
(

2c

mQσ

)1/3

(4)

for the vacuum ground state QQ̄ separation and

M0(QQ̄) = 2mQ + 3

2

(
2cσ 2

mQ

)1/3

(5)

for the corresponding vacuum ground state mass. The behav-
ior of [E(r, 0) − 2mQ] is illustrated in Fig. 1; the minimum
arises from the competition between the kinetic energy term
c/mr2 and the binding potential σr . With σ = 0.2 GeV2,
mc = 1.3 GeV and c = 1.3, this yields r0(cc̄) = 0.43 fm
for the diameter and M0(cc̄) = 3.2 Gev for the mass of
the charmonium ground state. Similarly, the bottomonium
sector gives with mb = 4.6 GeV and c = 1.1 the values
r0(bb̄) = 0.27 fm and M(bb̄) = 9.6 GeV. The bound states
thus arise for parameter values for which the competition
comes to a draw.

We now place the given QQ̄ pair into a deconfined
medium of temperature T . This will have two distinct effects:
the constituents of the medium will modify the interaction
between the static quarks, and they will interact with each of
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Fig. 1 Semi-classical form of quarkonium binding in vacuum
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Fig. 2 QQ̄ pair separation and polarization cloud formation

the static quarks individually. The binding of the pair is medi-
ated by an exchange of virtual gluons, and this exchange is
modified by their interaction with the on-shell constituents of
the medium. As a result, the binding force itself is modified.
On the other hand, the on-shell constituents of the medium
can also interact directly and individually with the Q and
the Q̄. For sufficiently large separation distance, this leads
to the formation of polarization clouds around each heavy
quark. On one hand, this requires an energy input to provide
the increase of their effective mass; on the other hand, the
entropy of the overall system grows. This entropy increases
over a range of r , and the resulting entropic force acts to
pull Q and Q̄ apart. Let us look at these possible modifica-
tions, starting with a static QQ̄ pair: in other words, we first
consider the effect on the potential term only.

In the limit of small r , the two heavy quarks form a color
neutral entity, so the medium does not see them, nor do they
see the medium. The only energy difference between our
medium and one without a QQ̄ pair is thus the mass of
the small QQ̄ system. To further separate Q and Q̄, work
has to be done against the interquark binding force. Increas-
ing the temperature of the medium will modify the binding,
and this of course has to be taken into account. Once the
quarks are sufficiently separated, their color charges begin
to induce polarization effects in the medium, first forming
a cloud around the pair. With further separation, the quarks
interact less strongly with each other, but the medium now
forms clouds around the individual Q and Q̄. The overall
picture is schematically illustrated in Fig. 2.

For a small imagined volume containing the QQ̄ pair, we
thus note two consequences. For a separation increase �r , the

string energy grows by σ�r ; in addition, the effective mass
of each heavy quark begins to increase, due to the onset of
polarization. This means that the overall energy in the volume
increases. On the other hand, the rearrangement of the con-
stituents of the medium to form polarization clouds around
each heavy quark results as well in an increase of the relevant
entropy. In view of this interplay of energetic and entropic
effects, the form of the potential to be used in the Schrödinger
equation (1) has been the subject of considerable discussion.
Proposals range from the free energy, V (T, r) = F(T, r),
to the internal energy, V (T, r) = U (T, r), and include even
arbitrary combinations of the two [7–13]. We want to show
here that a careful study of the underlying forces can resolve
this issue to some extent.

In the next section, we shall first address the behavior of
the system in the strong coupling regime, where the ther-
modynamics can be formulated in terms of a remnant string
tension as binding. Following that, we turn to the weak cou-
pling regime, in which the interquark forces are of Coulombic
nature. In a final section, we shall then address the specific
effects arising in the region dominated by critical behavior.

2 The strong coupling regime

To study this region in more detail, we consider a specific
simple model, based on a remnant string tension σ as bind-
ing force in a deconfined plasma. To begin, we assume the
medium to give rise to a screening mass μ(T ) = const.T ; the
modification of μ(T ) by critical behavior near the deconfine-
ment point Tc will be addressed later on. For the free energy
of the pair in the medium we assume the form [6]

F(r, T ) = σr

[
1 − e−μr

μr

]
= σ

μ
[1 − e−x ], x = μr, (6)

with a screening factor (1 − e−μr )/μr based on one-
dimensional QED [14,15]. We have here neglected short
distance Coulombic effects on the quark binding; we shall
also return to these later. The expression (6) specifies the
free energy difference between a plasma containing a QQ̄
pair and one at the same temperature without such a pair.
All further thermodynamic quantities will also describe the
corresponding differences; we will not explicitly note that in
each case in the following.

The corresponding entropy becomes

T S(T, r) = −T

(
∂F

∂T

)
r

=
(

σ

μ

)
[1 − (1 + x)e−x ], (7)

with the assumed screening mass linear in T , so that
T (dμ/dT ) = μ. We note that in the short distance limit, the
entropy vanishes, as expected. In the large distance limit at
constant temperature, on the other hand, it attains a constant
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Fig. 3 Strong coupling form of thermodynamic QQ̄ potentials

value, corresponding to the entropy of the two polarization
clouds.

From the free energy and the entropy, we obtain the total
(internal) energy difference for the system,

U (T, r) = F(T, r) + T S(T, r) =
(

σ

μ

)
[2 − (2 + x)e−x ],

(8)

consisting of one term accounting for the work done against
the string tension and one for the formation of the polar-
ization clouds. In the present model, each of the terms con-
tributes in the large distance limit an equal amount σ/μ to the
total energy. In Fig. 3 the resulting behavior of free energy,
entropy, and total energy are illustrated. The total energy ini-
tially increases because the free energy does, but for x � 1, it
does so because of the formation of the polarization masses.

The resulting pressure P(T, r) is given by

P(T, r) = −
(

∂F

∂r

)
T

= −σe−x (9)

It is negative, indicating that the QQ̄ binding is attractive. Its
absolute value decreases with increasing μ, indicating that
growing temperature enhances screening and hence weakens
the binding, causing it to vanish in the high temperature limit.
Similarly, at fixed μ, color screening strongly reduces the

binding for separation distances r > rD = 1/μ, when quark
and antiquark can no longer communicate.

The pressure specifies the force acting on the QQ̄ pair. It
consists of two distinct terms; from the relation F = U −T S
between free energy, internal energy, and entropy we have

P(T, r) = −
(

∂U

∂r

)
T

+ T

(
∂S

∂r

)
T

= Ku(T, r) + Ks(T, r). (10)

Here Ku = −(∂U/∂r)T denotes the energetic force and
Ks = (∂S/∂r)T the entropic force. This specific form
of the force is known from the thermodynamics of a gas
retained by a moving piston. The volume there becomes
dV = Adr , with A for the cross-section area of the pis-
ton. Since the force is the pressure per area, K = PA,
the relation P = T (∂S/∂V ) = (T/A)(∂S/∂r), and simi-
larly for U , then leads to the form of the forces employed in
Eq. (10).

Both (∂U/∂r)T and (∂S/∂r)T increase for increasing r .
The former increases first by the energy spent to separate
the pair against the attractive string tension and then by the
energy needed to form the polarization clouds acquired by
the separated quarks. The latter does so because the increase
in the constituent density of the medium around Q and Q̄
increases the overall entropy. The two forces Ku and Ks

thus act in opposite directions, with Ku attractive and Ks

repulsive; hence they largely cancel each other. For the above
model, we obtain

P(T, r) = [−σ(1 + x)e−x ] + [σ xe−x ] = −σe−x , (11)

with the two terms in square brackets denoting energetic and
entropic force, respectively. Their behavior as a function of r
at fixed temperature is illustrated in Fig. 4. At short distances,
the energetic force dominates, while in the large distance
limit, the ratio of the two forces approaches unity.

The overall force acting on the QQ̄ pair is given by the
pressure; since it is obtained from the free energy, F(T, r) is
the relevant binding potential. The steeper potential increase
and hence stronger binding obtained when U (T, r) is used
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Fig. 4 Strong coupling forms of energetic and entropic forces and of pressure, in units of σ
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in the Schrödinger equation [7–9,11] arise only because the
repulsive entropic force is ignored; it in fact compensates the
stronger attraction suggested by U . The overall effect on the
QQ̄ is due to a combination of the two opposing forces, and
this leads to F(T, r). Nevertheless, one may still question the
validity of the two-body Schrödinger approach in regions in
which the repulsive entropic force is significantly larger than
overall pressure, i.e., for x � 1. In this region, the combined
strength of the interaction between the Q and the on-shell
constituents of the medium is stronger than that with the Q̄.

Before turning to the weak coupling regime, we note that
through the Maxwell relation

T

(
∂P

∂T

)
r

= T

(
∂S

∂r

)
T

= Ks(T, r) = σ xe−x (12)

the temperature dependence of the pressure at fixed r is in
fact determined by the entropic force alone.

3 The weak coupling regime

Here the interquark potential is of screened 1/r type, so that
the difference in free energy between a system with and one
without a QQ̄ pair is given by

F(T, r) = −α
e−μr

r
− αμ; (13)

again μ(T ) ∼ T is the color screening length in the medium,
rD = 1/μ the Debye radius. The second term above accounts
for the effect of the polarization clouds at infinite separation,
and α denotes the (running) Coulombic coupling. Defining
x = μr , we rewrite Eq. (13) as

F(T, r) = −αμ

[
1 + e−x

x

]
. (14)

The corresponding entropy difference is given by

T S(T, r) = −T

(
∂F

∂T

)
r

= αμ[1 − e−x ]; (15)

it vanishes for r = 0 and also approaches the individual cloud
contributions in the large distance limit. From free energy and
entropy we obtain the total energy difference

U (T, r)=F(T, r) + T S(T, r)=−αμ

[
1 + 1

x

]
e−x . (16)

It is seen to approach the free energy form for small r , while
vanishing in the large distance limit, where free energy and
entropy cancel each other: the work done in separating Q
and Q̄ is balanced by the increase of entropy. The behavior
of the three thermodynamic potentials is illustrated in Fig. 5.

r
U(T,r)

F(T,r)

T S(T,r)

0

−αμ

αμ

Fig. 5 Weak coupling form of thermodynamic QQ̄ potentials

From the free energy, we obtain for the resulting pressure

P(T, r) = −
(

∂F

∂r

)
T

= −αμ

[
1

μr
+ 1

]
e−μr

r

= −αμ2
[

1

x2 + 1

x

]
e−x . (17)

It is negative, indicating that also here there is a force acting to
contract the pair. Its absolute value decreases with increasing
separation distance r and vanishes in the large distance limit.

The pressure again consists of an entropic and an energetic
force. The former is given by

Ks(T, r) = T

(
∂S

∂r

)
T

= αμ2e−x . (18)

It is positive, enhancing the dissociation of the pair. The cor-
responding energetic force becomes

Ku(T, r) = −
(

∂U

∂r

)
T

= −αμ2
[

1

x2 + 1

x
+ 1

]
e−x . (19)

It dominates in the short distance limit, while for large dis-
tances the entropic and energetic forces become equal and
cancel each other, resulting in a vanishing overall pressure.
Through the Maxwell relation

T

(
∂P

∂T

)
r

= T

(
∂S

∂r

)
T

= Ks(T, r) = αμ2e−x (20)

the entropic force again determines the temperature variation
of the pressure.

4 The critical regime

So far, we had assumed the screening mass to increase lin-
early in T . This assumption evidently becomes incorrect
when the temperature drops to the region just above the
deconfinement point. The behavior of μ(T ) is illustrated
schematically in Fig. 6; approaching Tc, μ(T ) abruptly drops
to a small value determined by string breaking in the confined
phase. This pattern affects in particular the thermodynamic
potentials involving dμ/dT , which increases very sharply
near Tc and in principle could even diverge there.
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Fig. 6 The temperature variation of the screening mass μ(T )
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Fig. 7 Large distance limits of free energy and entropy vs. temperature

For μ(T ) decreasing to very small values, the free energy

F(r, T ) = σ

μ
[1 − e−x ] − αμ

[
1 + e−x

x

]
(21)

essentially falls back to the Cornell potential

F(T, r) � σr − α

r
. (22)

Here and in the following, we shall consider the full thermo-
dynamic potentials, combining the expression for the strong
and weak coupling limits. Corresponding to Eq. (21), the
pressure becomes

P(T, r) = −
[
σ + αμ2

(
1

x
+ 1

x2

)]
e−x (23)

In the small distance limit, it also reduces to the attractive
force in vacuum,

P(T, r) � −
(
σ + α

r2

)
. (24)

In both cases, medium effects become significant only at
large r , where the screening factor exp{−μr} becomes sig-
nificantly less than unity and begins to play a role.

In contrast to free energy and pressure, the entropy, and
the corresponding force contain temperature derivatives of
the screening mass, dμ/dT , which near the critical decon-
finement temperature increase very sharply. The entropy is
given by

S(T, r) = (dμ/dT )

(
σ

μ2 [1 − (1 + x)e−x ] + α[1 − e−x ]
)

,

(25)

and the entropic force becomes

Ks(T, r) = T (dμ/dT )

(
σ

μ
xe−x + αμe−x

)
. (26)

For completeness, we note that

U (T, r) = T (dμ/dT )

(
σ

μ2

)

×
{
[2 − (2 + x)e−x ] − α

μ

[
1 + 1

x

]
e−x

}
(27)

gives the total internal energy of the system. It again contains
the temperature derivative of the screening mass and thus
strongly reflects the critical behavior near Tc.

To obtain a first idea of the role of critical behavior, we
compare in Fig. 7 the large distance forms of free energy
and entropy. It is evident that near the critical point, there
is a sudden increase of the entropy, caused by the increase
or divergence of the correlation length, which now connects
ever larger regions of the medium.

To study the actual behavior of the relevant forces, we
turn to finite temperature lattice studies [16–18]. In Fig. 8
we show results for two different temperatures, T = 190
and T = 270 MeV. The lower temperature is quite close to
the deconfinement value of about 160 MeV. It is seen that

Fig. 8 The pressure P(r, T )

(blue) and the entropic force
Ks(r, T ) (red) as a function of r
for two temperature values
[16–19]; the forces are given in
units of (fm−2)
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here the entropic force becomes strongly enhanced relative
to the pressure, and in range of distances around 0.5 fm it is
in fact much larger. The low pressure values thus reflect the
cancelation of entropic and energetic forces in this region.

The striking and perhaps surprising conclusion thus is that
the divergent critical effects near Tc in fact cancel out for the
QQ̄ binding; the overall potential between Q and Q̄ only
notices a sudden decrease at the critical point. Here the (neg-
ative) pressure is simply reduced considerably, allowing an
easier dissociation than in vacuum. In a potential approach
based on equilibrium thermodynamics and the two-body
Schrödinger equation (1), there is thus no special entropic
critical effect causing stronger quarkonium dissociation.

Nevertheless, it is evident from Figs. 7 and 8 that both
entropy and entropic force show sharp increases near Tc.
This indicates that in the relevant r regions, the interaction
between a heavy quark and the combined constituents of the
medium becomes much stronger than that between Q and
Q̄. This may well be a signal that here a two-body poten-
tial approach is no longer applicable, allowing an enhanced
collective entropic quarkonium dissociation [4].

5 Concluding remarks

In summary, we conclude that if quarkonium binding and
dissociation is to be studied in terms of a potential approach,
the relevant potential is the free energy difference F(T, r)
between a medium with and one without a QQ̄ pair. The
stronger increase of the internal energyU (T, r) with increas-
ing separation distance r is compensated by equally strong
contributions from the repulsive entropic force, opposing
rather than enhancing any binding. Hence U as a poten-
tial only makes sense when these are not present, i.e., when
U � F .

The conclusion that the free energy is the appropriate
potential for Q binding is also in accord with previous work
comparing real and imaginary time QQ̄ correlators in a ther-
mal medium [20]. Very recently, it was obtained as well in a
potential derivation from real-time Wilson loop studies [21].

At first sight, the long-standing question, F or U?, thus
appears to be resolved in favor of F . However, as long as the
role of larger distance repulsive entropic effects is not fully
clarified, it remains conceivable that a potential approach as
such only makes sense in that (T, r) region where F � U .
This is the point of view adopted in [4], where the strong
increase of the entropy and the ensuing entropic force in the
temperature region around Tc are taken to rule out a descrip-
tion in terms of a binding potential when F �= U . Our present
work is not meant to resolve this issue; it only gives the

relevant form to be used in the case such a description is
employed. Finally, we note that we have here addressed only
the real part of the potential. In more formal studies [22],
the important issue of its imaginary part, reflecting Landau
damping and singlet-octet transitions, can be addressed as
well. This aspect is beyond the scope of the present work;
for recent studies and further literature, see [20–24].
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