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perature dependent parameter mp, the Debye screening mass, and confirm the up to now
tentative values of Im[V]. The obtained analytic expression for the complex potential al-
lows us to compute quarkonium spectral functions by solving an appropriate Schrodinger
equation. These spectra exhibit thermal widths, which are free from the resolution artifacts
that plague direct reconstructions from Euclidean correlators using Bayesian methods. In
the present adiabatic setting, we find clear evidence for sequential melting and derive melt-
ing temperatures for the different bound states. Quarkonium is gradually weakened by
both screening (Re[V]) and scattering (Im[V]) effects that in combination lead to a shift
of their in-medium spectral features to smaller frequencies, contrary to the mass gain of
elementary particles at finite temperature.
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1 Introduction

Heavy quarkonium, the bound states of a heavy quark and anti-quark (cé or bb), are a
unique tool to simplify the complexity inherent in the physics of the strong interactions.
Instead of having to deploy the full force of quantum field theory, we may consider a
Schrédinger equation with an effective potential to describe the dynamics of these bound
states in vacuum and in-medium. At zero temperature the two main characteristics of QCD,
asymptotic freedom and confinement manifest themselves clearly in the form of a Coulombic
behavior with a running coupling at small distances and a non-perturbative linear rise at
large distances [1]. I.e. we can learn about key features of the strong interactions by
inspecting this simple potential. Vice versa, from the knowledge of the potential, we can
reproduce even quantitatively a significant part of vacuum quarkonium physics (e.g. the
bound state spectrum below the open heavy quark threshold [2, 3]).

The question of how such a potential arises from the microscopic theory of QCD has
been answered in detail by advances made in the research on the effective field theories
(EFT) NRQCD and pNRQCD. The latter has been introduced at first at 7= 0 in [4] and
investigated in the non-perturbative regime in [5, 6], with both cases being reviewed in de-
tail in [7]. The generalization to finite temperature in a perturbative setting followed in [8].

In the presence of a separation of scales, the combination of NRQCD and pNRQCD
offers a systematic power counting prescription in the heavy quark velocity v, to setup a



simplified description of the bound state evolution at soft energy scales (Egofy ~ mqu) in
terms of singlet and color octet wavefunctions. I.e. we do not have to explicitly describe
the physics at the much higher hard scale (Epaq ~ 2mg).t And indeed the heavy quark
rest mass (in this work we use m, ~ 1.472GeV and m; = 4.882GeV) and the characteristic
scale of quantum fluctuations in QCD, usually denoted by Agcp ~ 200MeV are far enough
apart to warrant a quantitatively reliable potential description in vacuum.

Effective field theory has furthermore reminded us that the potential between two
infinitely heavy quarks is an inherently Minkowski-time quantity. Starting out from funda-
mental QCD, the evolution of a QQ can be described by the thermally averaged unequal-
time point-split meson-meson correlator

D> (x,1) = (M(x,y, )M (x0,¥0,0) ), (1.1)

with the meson operator defined as M (x,y,t) = Q(x, )y U[x,y]Q(y,t). v refers to the
Dirac matrices and U[x,y| denotes a straight Wilson line connecting (x,t) and (y, ). The
relative coordinate enters asr =x — y.

In the limit of infinite quark mass, where the static constituents are truly test parti-
cles, (1.1) can be identified with the medium averaged unequal time correlation function
of quarkonium singlet wavefunctions in the language of the EFT. It is this wavefunction
correlator for which a Schroedinger equation and thus an in-medium potential will be es-
tablished. For static quarks the spatial separation r = |r| becomes an external parameter
of the theory and their evolution traces out a rectangle over time. Formally it has been
shown that eq. (1.1) reduces to the rectangular real-time Wilson loop [7]

Wo(r,t) = <Tr(exp[ — ig/Ddx“AZT“D>. (1.2)

As such, this object still contains the physics of all scales: hard, soft and ultra-soft, i.e. in
general it fulfills an equation of motion [10, 11]

10 W (r,t) = ®(r,t)Wo(r,t) (1.3)

with ®(r,t) being a time- and space dependent complex function.

In case that a potential picture for the static QQ system is applicable, the function
®(r,t) has to asymptote to a time independent function V(7). In turn it will dominate the
evolution of W(r,t) at times much larger than the intrinsic scales of e.g. the gluons and
light quarks in the medium. Formally we may then write

V(r) = lim "2V (ET)

= Jim <77 (1.4)

This limit reflects the fact that in order to replace a retarded, i.e. gluon mediated interaction
with an instantaneous potential, the gluons must have been exchanged between the heavy
quarks multiple times.

!The strength of the EFT approach lies in the fact that any residual influence of the physics of the hard
scale can be systematically included via the matching of Wilson coefficients, which goes beyond the ability
of direct methods, such as e.g. the historic 7' = 0 Wilson loop approach [9].



In the presence of the additional scale T" we need to ascertain how reliable a description
of realistic, i.e. finite-mass, quarkonium is in terms of the static potential alone. Two forms
of so called relativistic corrections can adversely affect the accuracy of the lowest order
approximation. The first kind remains fully within the potential picture, i.e. finite mass
corrections to the static potential can become significant, as they are proportional to the
relative velocity of the heavy quarkonium system. These corrections can be systematically
computed (see e.g. [1, 5, 6]), in vacuum they are found to be small and we expect the
same to be true at finite temperature. Their non-perturbative determination from finite
temperature lattice QCD will be the aim of a future study.

The other contributions are so called non-potential effects, arising from physics that
cannot be recast into the form of a time independent term in the Schrédinger equation.
One way they can enter in the perturbative formulation of effective field theories if the
ultra-soft gluons are still kept as explicit degrees of freedom (see e.g. [7, 12]). In a non-
perturbative setting, if non-potential effects become sizable, the late time evolution of the
Wilson loop cannot be described by a simple time-independent potential V(7). As will be
discussed in the next section we find that at the temperatures and inter-quark distance
investigated here, the size of such contributions remains insignificant.

Interestingly the definition of the potential from the Wilson loop in real-time coincides
with the late 7 limit in Euclidean time in the case of T' = 0. This constitutes the basis for the
successful extraction of the static zero temperature potential from lattice QCD simulations,
which are carried out solely in an imaginary time setting. At finite temperature, the
real-time definition of the potential does not change, however the imaginary time axis
becomes compactified and its finite extend encodes vital physics information, i.e. the inverse
temperature. Hence the straight forward connection between the late Minkowski time limit
and the Euclidean Wilson loop at maximum 7 = 3 is absent.

For more than two decades, the absence of an effective-field theory based definition
for the the in-medium potential has led theorists to embrace model potentials that were
defined directly from Euclidean time observables [13-19], readily calculable in lattice QCD.
In particular two quantities have gained popularity as model potentials, the color singlet
free energies in Coulomb gauge

SFI) = <Tr [Q(T)QT(O)D (1.5)

B
o’ Q(r) = exp [ — zg/o dr Ay (r, )T

defined from the correlator of Polyakov loops ©(7) and a derived quantity the color singlet
internal energies UV = F(1) — T'S. While these quantities exhibit a behavior compatible
with the expectations for e.g. Debye screening of the interaction between the heavy quarks
in the deconfined phase, it could be shown that they do not match the potential for the
quark anti-quark system at finite temperature [22, 23].

And indeed neither one of these fully real quantities by themselves can take the role
of a static in-medium heavy quark potential, as we have learned from a ground breaking
series of works starting with Laine et al. [8, 10, 11] in 2007. In their study the real-time
definition (1.4) was evaluated in a resummed perturbative framework, called the hard-
thermal loop approximation. This approach contains a gauge invariant resummation of an



infinite number of Feynman diagrams and has been shown to capture many key features of
QCD at high temperature reliably. As the Wilson loop in Minkowski time is an in general
complex quantity, the authors observed that the potential too takes on complex values at
finite temperature

—mpr
Vi () = =a. [ + S+ iTo(mar)] + 01 (16)
with - in(2)
z sin(zz
=2 dz———=(1- . 1.
o) =2 [ syt (1- ) (1.7)
Here we absorb a factor Cr in the definition of the coupling constant &z = gigF to connect

to the conventions in the phenomenology literature. It was furthermore shown that the
real-part of this complex potential itself does not coincide with the color-single free energies
in hard-thermal loop resummed perturbation theory in [22, 23], even though the absolute
deviations are comparatively small.

The fact that the in-medium potential is a complex quantity not only reflects a quan-
titative change but necessitates a qualitatively different perspective on the physics it de-
scribes. L.e. besides screening of the force between the heavy quarks (Debye screening)
seen in the real-part, the effects of scattering of light medium degrees [10, 11, 24] with the
heavy quarks (Landau damping) related to Im[V] further weaken the bound state in the
QCD medium. In fact, depending on the hierarchy of scales present, the imaginary part
can be related to different phenomena, such as the breakup of a color singlet to an octet
configuration [8] and in turn to the dissociation of the Q@ system into gluons [25].

Only these effects taken together can give a consistent picture of heavy quark bound
states at finite temperature. I.e. a simple estimate of the dissolution of a heavy quarkonium
state solely on the basis of vanishing binding energy is not sufficient. This in turn has
consequences for heavy quarkonium phenomenology in general, where e.g. the melting
temperatures enter as input into transport model calculations.

We would like to stress that the in-medium potential discussed here does not directly
govern the evolution of the actual wave-function of the heavy quarkonium system. By
construction it instead enters in the Schrodinger equation of the real-time Wilson loop,
which in the EFT language corresponds to the thermally averaged correlator of unequal
time wavefunctions. The imaginary part of the potential hence describes the decay of this
correlator over time, which does not directly imply the annihilation of the heavy-quarks.
In fact, due to the non-relativistic approximation we operate under, @ and Q remain in the
system forever. However, even if the norm of the quarkonium wavefunction is preserved
in unitary time evolution, its correlation with the initial state can still decay with time, a
phenomenon known as decoherence. It is an active area of research to answer the question
how to connect the complex in-medium potential to the evolution of the bound state wave-
function, which has not yet been answered in the effective field theory setting of pNRQCD.
The concept of open-quantum systems (see e.g. [26-29]) has proven insightful in this regard.

One possible way to elucidate the physics encoded in the complex potential is to com-
pute the spectral function p(w) of heavy quarkonium. This quantity is related to the



heavy quark current-current correlator, which can be obtained from (1.1) by carefully tak-
ing the limit of vanishing point splitting. In section 3 we will hence solve an appropriate
Schrodinger equation to compute p(w). Once computed one can observe how the formerly
delta-like bound state peaks present at T" = 0 broaden and shift as screening and scat-
tering modifies the QQ state with increasing temperature. Choosing a popular criterion
of melting temperature [10, 11, 76] at the point where binding energy and spectral width
coincide we can furthermore determine the point of dissolution for different bottomonium
and charmonium states.

Changes in spectral structure are of particular interest as they are directly related
to changes in the dilepton emission from quarkonium decay. The dilepton emission rate
is given by a simple product of the in-medium spectral function with the Bose-Einstein
factor [20]

2.2
T s (po)o(P), (13)

where @, denotes the electric charge of the heavy quark considered in units of e, the four

momentum is P = (pg, p) and the finite mass of the leptons has been neglected (for a more
detailed discussion of the above formula see ref. [21]). T.e. if a bound state or its remnant
appears as well defined peaked feature in an in-medium spectral function, the area under
such a structure informs us about the experimentally accessible dilepton emission of that
state. Note that while the above relation is only applicable to the decay of a quarkonium
state in a thermalized static plasma, it can nevertheless provide us with vital physics insight
as we will see in section 4.1.

This paper is organized as follows. We start section 2 with a review on recent progress
in the extraction of the values of the complex in-medium potential from Euclidean time
lattice QCD simulations. In order to deploy the lattice potential in phenomenological
applications, section 2.2 discusses the generalized Gauss law ansatz developed in ref. [46],
which provides an analytic formula for Re[V] and Im[V] depending on a single temperature
dependent parameter mp the Debye mass. Tuning mp we are able to reproduce the
lattice values of Re[V] and confirm the yet tentative values for Im[V]. These values for
mp are compared to perturbation theory. Section 3 is concerned with using the continuum
corrected potential to investigate the phenomenology of in-medium heavy quarkonium.
We will calculate the spectra for the bottomonium and charmonium S-wave channel and
investigate their modification with increasing temperature. Besides giving the melting
temperatures for different states, we will determine the ¥’ to J/W¥ ratio at the chiral
crossover and give a rough estimate for the suppression of bottomonium in a heavy-ion
collision compared to p + p. We close with a conclusion in section 5.

2 Lattice QCD potential and Debye screening mass

While the perturbative computation of the potential has contributed significantly to our
understanding of the physics involved, it is not sufficient for the description of the experi-
mentally relevant temperature regime around the phase transition. There the quark gluon
plasma can indeed be considered strongly interacting, exemplified, e.g. by the large value



of the trace anomaly [30, 31]. This calls for an evaluation of the potential definition (1.4)
in lattice QCD, which at first seems unfeasible, since direct access to real-time quantities,
such as the Wilson loop (1.2) is not possible. Conceptual and technical advances in the
extraction of real-time information from lattice QCD simulations over the last few years
however have made such an evaluation possible, as we will discuss below.

2.1 The complex in-medium potential from lattice QCD

The real-time Wilson loop cannot be directly accessed in lattice QCD simulations, as they
are performed in Euclidean time. One strategy, proposed in [32] and applied for the first
time in [33] to circumvent this problem is to resort to a spectral decomposition of the
Wilson loop, which simply amounts to a Fourier transform over a positive definite spectral
function p

Wa(r,r) = /dwe_“”pg(w,r) > /dwe_mpg(w,r) = Wo(t,r).

The fact that the time dependence is explicit in the integral kernel tells us that both
the real-time and FEuclidean time Wilson loop are described by the same spectral function.
Hence extracting the values of p from imaginary time simulation data will give access to the
real-time Wilson loop and in turn to the potential. Inserted into the defining equation (1.4)
the spectrum itself can be related to the values of the potential

t—o00

V(r) = lim dwwempg(w,r)//dw e pa(w,r). (2.1)

Unfortunately extracting the spectrum from Euclidean time simulation data is an
inherently ill-defined inverse problem, as one seeks to determine the form of a continuous
function from a finite and noisy set of individual points. Only by using additional prior
information, such as the positive definiteness of the spectrum or smoothness assumptions
is it possible to give meaning to this problem, a strategy usually referred to as Bayesian
inference. Established implementation of this approach, such as the Maximum Entropy
Method [34] or extended MEM [35, 36] have been shown to fail to produce satisfactory
results when deployed in the extraction of spectra from Wilson loops [37, 38], and it needed
the development of a new Bayesian reconstruction prescription [39, 40] before quantitatively
robust results were obtained. Even with this new method the spectrum can be determined
only in a certain range of frequencies, given by the energies resolved on the lattice, which
makes a brute force evaluation of (2.1) impossible. A selection of reconstructed spectra for
the two extreme cases of the lowest and highest investigated temperatures around T¢ are
shown in figure 1.

This further difficulty can also be overcome from a careful inspection of the spectral
structure of the Wilson loop. Just as we did to arrive at eq. (1.4) let us assume that a
potential picture is valid, i.e. the late time evolution of Wr(t,r) is dominated by a time
independent function lim; o, ®(¢,7) = V(r). As was proven in [41], in this case the Wilson
loop spectrum will contain a well defined lowest lying peak of skewed Lorentzian form
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Figure 1. (top) A selection of spectral functions from the Euclidean Wilson Line correlators in

Coulomb gauge, extracted from 48 x 12 HotQCD asqtad lattices using a novel Bayesian recon-
struction prescription [39, 40] at the lowest (left) and highest (right) temperatures. To better
observe their peak and shoulder structures, individual spectra are shifted manually in frequency.
For T/Tc = 0.86 a well defined lowest lying peak is present at any of the shown distances r, while
at T/Tc = 1.66 the reduced physical extend degrades the reconstruction at larger r. (bottom)
Tlustration of the skewed Lorentzian (SL) nature of the individual spectral peaks. Using eq. (2.2)
up to quadratic polynomial order, we fit the points in the dark red region close to the maximum
in each case. The resulting fit functions (dashed orange) reproduce the shape of the spectra (blue
circles) quantitatively far beyond the actual fitting region. Note that this indicates that the peak
is a Lorentzian and not e.g. a Gaussian.

embedded in a polynomial background

. IImV (1) |cos[Reos (1)] — (ReV (r) —
ImV (r)2 + (ReV (r) —
+ co(r) + c1(r)(ReV (r) — w) 4+ ca(r)(ReV (1) —

w)sin[Reos (1)]
w)?

w)?. ...

The position and width of this peak are related to the real- and imaginary part of the
potential respectively. The skewness and background contributions on the other hand are
identified with remnants of the physics at scales above the soft-scale.

We can now turn this relation around and use it as a non-perturbative criterion for the
applicability of a potential description. If the Wilson loop spectrum does contain a well
defined lowest lying peaked feature of skewed Lorentzian type, it will lead to a late-time
evolution governed by a well defined potential. As shown in the examples of reconstructed
spectra in figure 1 we do indeed find such well pronounced peaked features and trough a



B 6.9 | 7.48 6.8 6.9 7 7125 | 7.25 7.3 7.48
TMeV] | ~0] ~0 148 164 | 182 205 232 243 286
T/Tc ~0] ~0 | 0.86 | 0.95 | 1.06 | 1.19 | 1.34 | 1.41 | 1.66
a [fm] 0.1 | 0.057 | 0.111 | 0.1 | 0.09 | 0.08 | 0.071 | 0.068 | 0.057
483 x N, | 48 48 12 12 12 12 12 12 12
Nmeas 350 | 163 | 1295 | 1340 | 1015 | 1270 | 1220 | 1150 | 1130

Table 1. Parameters of the isotropic HotQCD 483 x N, lattices [45] with asqtad action (m; =
ms/20,T, =~ 172.5MeV) used in this study.

2 This leads us to conclude that an

fit establish that they of a skewed Lorentzian form.
in-medium potential description is warranted and the values of V(r) can be extracted via
the application of eq. (2.2).

In practice, we look for the lowest lying peak in the spectra reconstructed from the
lattice QCD observables, fit it around the full width at half maximum with the skewed
Lorentzian form (2.2) and read off the value of Re[V] and Im[V] encoded in it. This
extraction strategy laid out above has been successfully tested using hard-thermal loop
perturbation theory [37, 38], where both the Wilson loop in Euclidean time, its spectrum
and the corresponding potential are known.

In this study we use the values of the heavy quark potential [42-44] extracted® from full
QCD lattices generated by the HotQCD collaboration [45], containing dynamical u,d, and
s quarks. The medium quarks on these lattices with spatial extend N, = 48 are described
by the asqtad action and are tuned to lie on a line of constant physics with a physical
strange quark mass and light u,d quark masses close to their physical values mg/m,, q = 20
(For more details see [45]). In addition to the values of the potential around the phase
transition at T'/T¢ = 0.68 —1.66, which had been extracted in a previous study [42-44], we
add here the values from two additional low temperature ensembles close to T' ~ 0, which
will be used to calibrate the analytic expression for the temperature dependence of the
potential in the next subsection. Table 1 summarizes the relevant simulation parameters
for our ensembles and gives the temperatures in relation to the chiral crossover transition
temperature on these lattices at To = 172.5 MeV.

Since the finite temperature lattices only contain N, = 12 lattice points in FKuclidean
time direction, we expect that while a robust determination of spectral peak positions is
possible, the accuracy for spectral widths will be insufficient to make reliable statements
about Im[V]. The values obtained for the real-part are given by the colored points in the

2If the peaks were instead Gaussian pg(w) = coexp[—(w — m)?/I'?], inserting them into the defining
formula (2.1) would lead to a divergent expression, since [ dwwpc(w)e ™"/ [ dw pe(w)e™ ™" =m — i%t
shows an unphysical linear increase in Im[V] over time [33].

3Note that the observable we use here to extract the potential is not the Wilson loop but the Wilson
line correlator in Coulomb gauge. The reason is that the latter does not contain cusp divergences that
make evaluating the Wilson loop very costly on the lattice. We have checked that the result remains gauge

invariant by relaxing the Coulomb condition and applying random gauge transformations.



left panel of figure 2, the tentative values for Im[V] from the spectral widths are plotted
as lightly colored points in the background of the right panel.

We will postpone the discussion of the temperature dependence of the potential to the
end of the next subsection.

2.2 Gauss law parametrization of the potential

In order to investigate heavy quarkonium spectra by solving a Schrédinger equation with
the proper complex heavy-quark potential, we require an easily evaluable expression for
both Re[V] and Im[V] at a given temperature. To this end we have recently proposed a field
theoretically motivated functional form, that depends on a single temperature dependent
parameter, the Debye screening mass [46].

The idea behind this approach is as follows. The physics of heavy quarkonium at zero
temperature can be described in a potential picture with two distinct characteristics, a
Coulombic part at small distances and a linearly rising part at large distances.* Hence if
we wish to understand the in-medium modification of the inter-quark potential we need to
understand how a test charge associated with either one of these two distinct potentials will
react to the presence of medium charge carriers in its surroundings. To describe the effect
of these charges we will use the hard-thermal loop medium permittivity, in essence making
the ansatz of a test particle with a particular electric field configuration being immersed
in a bath of weakly interacting quarks and gluons.

The basis for the derivation of the analytic expression for the complex potential lies in
the generalized Gauss law derived in [47]

\Y <T¢1E+1> = 47 q 6(7). (2.3)

It is applicable to a point charge with (color) electric field E = qro='#, which covers both
the Coulombic a = —1,q = as, [@s] = 1, as well as string-like potential a = 1,q = o, [0] =
GeV? relevant for heavy quarkonium. In case of a Coulombic potential we can incorporate
the in-medium effects in a straight forward manner by transforming (2.3) into Fourier space
and multiplying the right hand side with a (possibly complex) permittivity, taken here from
hard-thermal loop perturbation theory

2 2
1/ p . pmp
g ,m = - —gnl ——. 24

Transforming back to coordinate space yields

= V2Volr) + mbVe(r) = & (478(7) — iTmbp(mor) ), (2.5)
with ~  sin(pz)
sin(pz) p
=2 2.
o) =2 [T apT L (2.

4Note that by allowing the linear term to contribute down to the shortest distances we partially absorb
the running of the strong coupling.



which constitutes an integro-differential equation with linear-response character for the
in-medium modified Coulomb potential. The strength of the medium effects is clearly
governed by the parameter mp, which we have proposed as a non-perturbative definition
of the Debye mass in ref. [46]. Solving (2.5) with the appropriate boundary conditions
ReVe(r)],_o =0, ImVe(7)|,_y = 0 and 0, ImVi(r)|,_., = 0 reproduces the perturbative
potential of Laine et al. [10, 11] given in eq. (1.6).

In the case of a string-like potential, transforming eq. (2.3) into Fourier space is im-
practical. Instead we rely on the assumption that the in-medium charge distribution found
in the Coulomb case is the same as for the linearly rising potential i.e. a property of the
medium and not of the test charge. As was shown in [46] the strength of the medium
effects in the resulting linear-response type equation is governed not by the Debye mass

alone but instead by the parameter u* = mQDa%

1)
r2  dr?

ptvi(r) = U(4W6(F) — iTmQDgo(mDr)). (2.7)

Solving for the real part of the medium modified string potential leads to an analytic
expression in terms of parabolic cylinder functions D, (x)

o (2.8)

Thloe

21 /7 i
The imaginary part on the other hand can be written in a closed form using the Wronskian
method, which yields

=

ReVy(r) =

r
D (\@,ur) + o

N
EN[SY]

27
) = —IaT ), (29)

ImVi(r) = —i
with
0(e) = D1o(V20) [ dyReD_ (VB plamn )
+ReD_j 5 (iv2x) /;o dy D_y o(v2y)y*e(ymp/p)

—D_15(0) /0 " dy Dy s (V2P ymp ). (2.10)

Note that even though we have used a weak coupling ansatz for the permittivity, which
is only appropriate at high temperatures, its insertion into on the Gauss law has produced
an expression for the potential with linear-response character. In turn it seems to smoothly
connect to zero temperature, as the value of the Debye mass can in principle be set to zero.
In particular the real part of the Gauss law derived in-medium potential reduces to the
T = 0 Cornell-potential at mp = 0. This bodes well for applying the derived expression to
fitting the lattice QCD extracted potential values even at temperatures below the formal
range of applicability of weak-coupling methods.

~10 -
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Figure 2. (left) Real-part of the in-medium heavy quark potential on Ny = 2 + 1 asqtad lattices
(points) with fits that establish the values of the Debye mass (solid line). Errorbands denote changes
from varying the value of mp within its fit uncertainty. (right) prediction of the imaginary part
of the potential (solid curves), together with the tentative values (light points) extracted from the
asqtad lattices with N, = 12.

2.3 Determination of mp from the lattice potential

For a consistent determination of the single temperature dependent parameter mp, we
assume that neither the strong coupling nor the string tension depend on the medium
temperature, i.e. all modification emerges from the surrounding light quarks and gluons.
Thus we will need to fix the values of &g, o, as well as the arbitrary scale dependent
constant shift of Re[V] at T = 0. Since lattice QCD simulations are performed on finite size
lattices at a finite lattice spacing, they necessarily operate at a low but finite temperature.
In our case we will hence use the newly added data from the two ensembles close to
zero temperature at 5, = 6.9 and By = 7.48. We find that the values of the vacuum
parameters vary slightly between the two ensembles. Hence a linear interpolation is used
at intermediate lattice spacings.® As can be seen from the dark and light blue curves at the
top of the right panel of figure 2 the lattice values for Re[V] at low temperature indeed show
a well pronounced Coulombic and linear behavior that is excellently reproduced by the fit
parameters given in table 2. I.e. neither the running of the coupling at small distances nor
logarithmic corrections at large distances are significant for the regime investigated here.

With the vacuum values set and since the explicit expression for both Re[V] and Im[V]
derived above only depends on a single parameter, we continue by determining mp from a
fit to the real part of the lattice QCD extracted values alone. The resulting curves are given
as solid lines in the right panel of figure 2, the corresponding Debye masses are collected
in table 3 and plotted in figure 3.

5Note that the differences between the values of o at different 8 values might be related to an insufficiently
precise setting of the scale for the asqtad lattices in [45].
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£5=6.9 £=7.48
Qg 0.456 + 0.027 | 0.385 %+ 0.006
Vo [GeV] | 0.47040.01 | 0.515 =+ 0.003
¢ [GeV] 1.760 £ 0.034 | 2.648 4+ 0.009
Table 2. Values for the vacuum potential parameters from the low temperature lattice QCD
ensembles.
I} 6.8 6.9 7 7.125 7.25 7.3 7.48
T/Tc 0.86 0.95 1.06 1.19 1.34 1.41 1.66
mT? 0.01(3) 0.25(8) 0.39(8) 0.53(21) 0.96(5) 0.99(13) 1.27(8)
mTD 0.04(10) | 0.72(22) | 1.03(22) 1.28(49) 2.07(11) 2.05(27) 2.29(14)

Table 3. Debye masses extracted from the isotropic HotQCD 483 x 12 lattices with asqtad action.
For use in phenomenology, a continuum corrected mp may be obtained from the ratio mp/+/o(8)
shown here, through a multiplication with the continuum value of o.

1.4 - : : : 7 25
1.2} ] 2.0f
1.0 ;}
\Qo.s- = 1.5¢
< Q
a 0.6} { € 1.0}
& .
0.4} { :
0.2} ] 05
0.0——&—— . . . oLb— . . . . .
08 10 12 14 16 08 10 12 14 16 1.8 2.0
T/T, T/T,

Figure 3. (left, blue points) The normalized Debye mass (mp/+/0) from a generalized Gauss-law
fit to the real-part of the in-medium heavy quark potential on asqtad lattices, which we propose
as input for phenomenological studies. (right), Blue points: temperature dependence of the Debye
mass (mp/T) and in red a NLO HTL based fit of mp.

We find that tuning mp allows us to indeed reproduce both the qualitative and quan-
titative behavior of Re[V] without problem, if the interpolated 7' = 0 constants are used.
The strength of the generalized Gauss law Ansatz is that it now allows us to predict the
values of the imaginary part of the potential, which was deemed unreliable in a previous
study due to the fact that on the finite temperature lattices the Wilson lines were available
at only twelve points in Euclidean direction. We are confident in the predictive capabilities
of the approach, as it has been able to successfully reproduce Im[V] in a similar study in
quenched QCD [46].

When plotting Im[V], as implied by mp(7T') via eq. (2.5) and eq. (2.9) as solid lines in
the right panel of figure 2 the tentative data (light colored points) shows a surprisingly good
agreement with these values at small separation distances r < 0.75fm down to T" = 0.957¢.
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Only at T'= 0.86T¢ we find large differences between the extracted and predicted values,
which is probably due to the impossibility to resolve the tiny width of the spectral peaks at
low temperatures using only N, = 12 data points. Since heavy quarkonium phenomenology
in the quark gluon plasma requires knowledge about the potential only until the freezeout
boundary is reached, i.e. slightly below the deconfinement transition, the apparent range
of applicability of the fit seems to suffice.

2.4 Continuum correction for the potential and mp

Several preparations are still in order, since for a meaningful phenomenological investiga-
tion, we need to use the continuum values for all parameters entering the potential. In the
absence of a true continuum extrapolation of our lattice results we resort to the following
strategy.

We fit the vacuum potential parameters, &, o and the constant term ¢ by comparing
the energy levels of the corresponding Cornell-potential Hamiltonian to the experimentally
measured masses of the bottomonium system, where we expect that finite mass correction
are insignificant. More importantly for bottom quarks there exists a well controlled pro-
cedure to define their physical mass. A mass often deployed in pNRQCD effective theory
calculations is the pole mass [48-50] (for bottom mp®® = 4.93GeV) different from the
usually quoted MS mass (méVTS(mMiS) = 4.18). Its larger value reflects the fact that the
quark mass should be evaluated at the soft scale, relevant for the physics of the bound state
and not at the hard scale. A renormalization group flow towards lower energies is hence
required, leading to the larger mgde. More precisely, because of the so called renormalon
ambiguity in the perturbative evaluation of the Wilson coefficients of the effective theory,
one is lead to use the renormalon subtracted scheme [51]. I.e. one subtracts the renormalon
ambiguity in the pole mass definition and reshuffles it into the constant part of the poten-
tial, which suffers from the same ambiguity. In this way, the ambiguities eventually cancel
and we are lead to a quantitatively robust definition of the potential. In general also here
one obtains larger values than those resulting from the M S scheme, such as the established

miS = 4.882 + 0.041 GeV (2.11)

from ref. [51], which has been deployed e.g. in [7]. The errors are estimated to be as large
as the highest calculated contribution of order O(af).

This choice of mass allows us to reproduce the PDG values for the four S-wave states
T(1S) — Y(49), the averaged massed of the three known P-wave triplets x,(1P) — x5(3P)
as well as the lowest D-wave state T(1D) to at least three significant digits if the remaining
vacuum parameters are set to the following values

c=—0.1767 £0.0210 GeV, &, = 0.5043 +£0.0298, /o =0.415+0.015 GeV. (2.12)

These continuum values are very close to the ones used in conventional quarkonium spec-
troscopy [2, 3] and are also compatible with our lattice data. Note that the effects of string
breaking were introduced by hand, flattening off the potential at rg = 1.25fm [52]. A
naive complex scaling analysis confirms that the four lowest S-wave states of the modified
Cornell potential Hamiltonian indeed lie below the continuum threshold.
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Lattice QCD simulations are carried out in a finite box with a finite lattice spacing,
hence discretization effects have to be taken into account. The former is related to the
fact that the quarks do not take on their physical masses exactly and thus the chiral
crossover temperature on our lattices (7' = 172.5MeV) is higher than the continuum
value of TE™ = 155 + 9MeV. In addition the change in lattice spacing leads to slightly
different values of the vacuum parameters of the potential in our case, as discussed in
section 2.3. Hence both effects should be corrected for. Ultimately, we will use the constants
of eq. (2.12) together with the continuum corrected Debye mass

m%hyS(t _ T/Tghys) _ mlo-)((;)) \/(W (213)

mp

where is given in table 3 and o™ in (2.12).
;18 8 (2.12)

Let us take a closer look at the continuum corrected Debye masses and how they
compare to perturbative estimates. In the work of ref. [53] it has been established that the
Debye mass can be computed perturbatively only up to the leading order together with the
logarithmic correction at next to leading order (NLO). The presence of a magnetic sector
in QCD leads to the appearance of truly non-perturbative contributions to mp at NLO,
parametrized in the following by the two terms containing the constants x1, k2, which need
to be determined from numerical simulations

N, | N
Ne Ny NTgw? Vit e
376 FEE TP

+r1 Tg(p)? + k2 Tg(p)>. (2.14)

mp = Tg(u)

To compare the temperature dependence of the Debye mass, we fix the non-perturbative
constants k1, kg while keeping p = 27T constant. For the running of the coupling g(u) we
utilize the four loop result of ref. [54] setting Agcp = 0.2145GeV, appropriate for starting
the renormalization group flow from a scale where Ny = 5 flavors are active.

In the left panel of figure 3 we show the values of mp /T (blue points) together with
the fit according to eq. (2.14). Even though the perturbative part of the formula for mp
is applicable, if at all, at the highest temperatures investigated here, we find that the fit
manages to pass through all values of mp even around the phase boundary. The non-
perturbative contributions are non-negligible with x; = 0.84 +0.10 and ko = —0.40 +0.03.
Nevertheless the perturbation theory motivated fit (by chance) reproduces mp down to
temperatures, slightly below T, and may hence be used to define a phenomenological,
lattice QCD validated, temperature dependence of the Debye screening mass.

3 Quarkonium spectra

In section 2 we managed to capture the functional form of both the real- and imaginary-
part of the static potential by fitting a single temperature dependent parameter mp, the
Debye mass, to Re[V] extracted on the lattice. We now take the next step and compute
from it the in-medium spectral functions of the vector channel bottomonium and charmo-
nium S-wave states at finite mass by solving an appropriate Schrodinger equation. These
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states Y(18) | T(25) | Y(3S) | T(4S) | xo(1P) | xs(2P) | xs(3P)

m [GeV] 9.4603 | 10.020 | 10.353 | 10.597 | 9.92597 | 10.269 | 10.538
mPP¢ [GeV] | 9.4603 | 10.023 | 10.355 | 10.579 | 9.88814 | 10.252 | 10.534
(r) [GeV~1] | 1.489 | 2.985 | 4.385 | 10.17 | 2435 | 3.808 | 5.586
(r) [fm] 0.2934 | 0.5881 | 0.8639 | 2.004 | 0.4797 | 0.7679 | 1.100
MRS —m[GeV] | 1.1 | 0539 | 0.206 | -0.038 | 0.633 | 0.29 | 0.02

Table 4. The masses, mean radii and distances to the BB threshold for bottomonium S-wave and
P-wave states at T=0.

spectra correspond to resting states with absolute momenta p = 0, similar to those usually
investigated in direct lattice QCD or lattice NRQCD studies.

The static heavy quark potential is a universal quantity, in the sense that it denotes
the lowest order contribution in the non-relativistic expansion for both bottomonium and
charmonium physics. Therefore we expect that the vacuum parameters fitted in the bot-
tomonium case do remain the same for the lighter flavor. An important difference between
the two cases is that the binding energy of the charmonium ground state is close to Aqcp.
This makes it impossible to set up a perturbative renormalization scheme for the charm
mass, similar to the one we used for Bottom. Hence instead of calculating the renor-
malon subtracted mass, we use the charm mass as fit parameter and tune it to reproduce
the masses of the stable S-wave states (J/W¥,¥’) and the averaged two P-wave triplets
Xc(1P), xc(2P). The resulting best fit value reads

mEPEAt — 1 472 GeV. (3.1)

Since finite mass effects, in particular radiative corrections can become relevant for char-
monium, we expect the agreement between the static potential based masses and the
experimental T' = 0 spectrum to be worse than for bottomonium. Indeed for the S-wave
states and the 1P triplet only agreement up to the second digit is found when these higher
order effects are neglected.

The vacuum parameters determined in section 2.4 and (3.1) constitute the basis from
which we embark on the finite temperature study, where all medium effects on the static
potential are summarized in the temperature dependence of the Debye mass parameter
determined in section 2.3. We use the continuum string tension of the bottomonium fit to
convert the values of mp/\/o of table 3, i.e. the right panel of figure 3 for use in the contin-
uum Schrodinger equation. Note that we have set up the potential parametrization in sec-
tion 2 such that changing the Debye mass does not affect the overall constant in Re[V]. Le.
at small enough separation distances, where temperature effects are irrelevant, the values of
Re[V] all agree independently of mp, which is expected of a correctly renormalized poten-
tial and a necessary requirement for a meaningful interpretation of the quarkonium bound
state physics at finite T'. Table 4 and table 5 summarize the vacuum properties of several
bottomonium and charmonium states that arise from the 7" = 0 potential parameters.
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states J/U(1S) v’(29) Xe(1P) | xc(2P)
m [GeV] 3.0969 3.6717 3.5089 | 3.7918
mPP¢ [GeV] 3.0969 3.6861 3.4939 | 3.9228
(r) [GeV~1] 2.861 5.839 4136 | 25.42
(r) [fm] 0.5635 1.150 | 0.814824 | 5.00813
mpPs —m[GeV] 0.639 0.064 0.227 | -0.056

Table 5. The masses, mean radii and distances to the DD threshold for charmonium S-wave and
P-wave states at T=0.

3.1 Spectral functions from the Schrodinger equation

All ingredients have been assembled for computing the vector channel spectral functions
from the time evolution of the corresponding correlation function D~ (¢,r,r’) governed by
the complex in-medium potential.® In the following we deploy the Fourier space method

developed in ref. [55], which solves

[ﬁ - ¢|1mV(r)|}D>(t7r,r’) —i9,D>(t,r,r'), t>0 (3.2)
[ﬁf n i|ImV(r)qD>(t,r,r’) —i9,D>(t,r,r'), t<0 (3.3)

with
H=2mg — ZjQ + Re[V](r) + lfi;;) (3.4)

and the starting condition
D> (0,r,1') = —6N.0G) (r — 7). (3.5)

For the correlator in frequency space we Fourier transform

~ S .
D(w,r,1") :/ dts“'D> (t,r,r'), (3.6)

—00

from which the vector channel spectrum is obtained by taking the limit

pV(w) = lim 1D(w, r,r'). (3.7)
r,r’'—0
Taking the point splitting to zero requires some effort in the practical implementation as
discussed in appendix A of ref. [55].

In figure 4 we give overview plots of the computed in-medium S-wave spectral functions
for bottomonium and charmonium at several temperatures around the transition temper-
ature. Note that the widths seen here are actual physical widths, related to finite temper-
ature effects, i.e. all bound states reduce to delta peak structures in the 7' = 0 limit. By
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Figure 4. (top panel) S-wave bottomonium in-medium spectral function based on a proper com-
plex potential as defined in section 2.4. In this adiabatic scenario we find clear indications for
sequential melting. Y(45) is almost gone already at 0.94T¢, T(3S) disappears rapidly close to
Te and Y(2S) starts to be washed out at 1.19T¢. Only T(1S) remains discernible at our highest
lattice temperature 1.667¢. (bottom panel) The charmonium in-medium spectral function based
on the same complex potential as for bottomonium. In the absence of a well defined renormalon
subtracted charm mass, its value is fitted to reproduce the known charmonium bound states at
T = 0 giving m, = 1.472GeV. Also charmonium shows a sequential melting pattern, as we find
that ¥(2S) disappear around T¢ while J/W close to 1.417¢.

construction, the 7" = 0 peaks coincide with the experimental values for the bottomonium
states up to 3 digits and fit the two charmonium states below threshold up to few percents.”

3.2 Properties of the in-medium spectral functions

As expected from the difference in constituent quark mass, the bottomonium states react
less severely to the medium at a given temperature compared to charmonium. In general
we can observe in this adiabatic setting that the very narrow peaks at low temperature

5Note again that it is not the Schrédinger equation for the quarkonium wavefunction but for the forward

correlator that we are solving here.
"For T = 0, we actually add a small imaginary part in the potential to avoid having exact delta-functions

in the spectrum, that would be impossible to visualize graphically.
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are affected in a hierarchical manner, the highest lying states, which are most loosely
bound, begin to broaden and shift first, followed sequentially by the lower lying states.
The combination of the effects of screening Re[V] and scattering Im[V] encoded in the
potential lead to characteristic common changes for both quark flavors. Not only do the
bound states broaden but also their mass shifts to lower values. This behavior is found not
only for the ground state but for all the higher lying states before they eventually dissolve
and become part of the continuum.

To be more quantitative, if a narrow resonance pole lies close to the real frequency
axis its spectrum can be described by a simple Breit-Wigner (BW). On the other hand
for states that are close to melting, it is necessary to disentangle the remnant bound state
signal from the continuum background. For such broad features a skewed Breit-Wigner
needs to be considered [66], which reads

T (T/2)? (w—E)'/2
plwr FE) = C(F/2)2 G w_ B +20 T/27+ (w— B + O(6%), (3.8)

where I/ denotes the energy of the resonance, I' its width and ¢ the phase shift.

Using the interpolated form for the Debye mass (2.14) we perform a temperature scan
of the spectrum at every o7 = 3MeV and fit the different peaks with the BW of eq. (3.8).
From these fits we obtain the temperature dependence of the bound state width and mass of
different quarkonium states, which are plotted in figure 5 and figure 6 respectively. Another
quantity particularly relevant to phenomenology is the area under each of the peaks, which
we define here as the integrated area of the Breit-Wigner fit function A = % and which is
related to the total dilepton emission rate via eq. (1.8). Its values are given in figure 7. We
find that as temperature increases, the peak area at first remains rather constant, even if the
peak becomes wider but eventually and abruptly begins to decrease rapidly towards zero.

We can put these observations in the context of the in-medium modification of the
potential shown in figure 2. While the small distance part of the correctly renormalized
Re[V] is virtually temperature independent, a significant screening of the linear rise at large
distances occurs with increasing T'. It is a peculiarity of the confinement mechanism that
with the diminishing remnant of the linear rise; also the threshold to the continuum FEqnt
is lowered. This is reflected in a decrease of the value of Econe = Re[V(r — 00)] (see the
gray curve in figure 5). In turn, the binding energy, defined from the difference between
bound state mass and the continuum threshold energy is monotonously lowered. That is
to say, the thermal fluctuations of the medium destabilize the bound state. Interestingly,
once the threshold moves into the vicinity of a formerly firmly bound quarkonium peak it
pushes the spectral feature towards lower frequencies until it eventually disappears.

Let us consider the mass shift observed in figure 5. At first it might seem counterin-
tuitive, as the expectation for an elementary particle in a medium is exactly the opposite,
it will receive a thermal mass. For instance at LO, a single fermion receives a mass correc-
tion [56-58] of
g*T*Cp

3.9
e (3.9)

mqo(T) =mg +6m5 =mqg +
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Figure 5. Mass of the charmonium (left) and bottomonium (right) bound states from the position
of their in-medium spectral peaks. The peak position decreases monotonously with temperature
until the bound state disappears. The continuum threshold energy Econs = Re[V(r — 00)] is shown
as gray line. A hierarchial destabilization of the bound states in accord with the reduction in
binding energy is seen. Note that depending on the skewness of the peak, the mass it encodes does
not have to coincide with it’s apex position. The error bands reflect the uncertainty of the Debye

mass determination.
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Figure 6. Width of the Charmonium (left) and Bottomonium (right) bound states, which in-
creases monotonously with temperature. The error bands reflect the uncertainty of the Debye mass

determination.

and one might wonder if such a contribution should be added to our potential. As can be
seen from (3.9) it is of higher order in the 1/mg expansion and hence does not contribute
to the static potential. At the next order in the 1/mg expansion, the potential V (r) is
corrected by a term of the form Vi(r)/mg [5]. If the two color charges are widely separated
one expects that each of them obtains a thermal mass shift, hence lim, o Vi(r)/mg =
25mg. On the other hand, for » — 0 one can imagine the neutral bound state will not
interact with the plasma so that Vi(r) = 0. The thermal mass shift (3.9) may hence be
considered an upper bound on the thermal mass shift of the bound state. Since it is of higher
order it is negligible in our non-relativistic computation, which can be checked using our
value of &g = g?Cr /471 and considering a temperature of T' ~ 200MeV. One would obtain
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Figure 7. Area under the bound-state peaks in the charmonium (left) and bottomonium (right)
spectrum. Note the characteristic plateau region before a rapid decrease to zero sets in. The error
bands reflect the uncertainty of the Debye mass determination.

5m6 = TMeV for charm and (Smg = 2MeV for bottom, insignificant in comparison to the
thermal shift observed in figure 4, which easily reaches 100 — 300MeV (see also figure 5).

These findings, based on a first principles lattice QCD based complex in-medium po-
tential, are qualitatively similar to what had been observed in potential modeling studies
that solve a Schrodinger equation with a potential with imaginary part inserted by hand
(see e.g. [59]). There only the Coulombic contribution to Im[V] was used, which leads to
more stable behavior than in our case. The presence of the string-like vacuum potential
contributes an additional term to Im[V], which is of comparable size as the Coulombic
contribution to Im[V] at intermediate temperatures. On the other hand our results differ
significantly from the spectra obtained in the T-matrix study of ref. [60]. There the authors
use purely real model potentials which lead to in-medium states that appear to possess a
significantly larger energy than their vacuum counterparts. Updated computations in that
framework [61] are expected in the near future. Similar shifts of the resonance peaks to
lower energies were also observed in a sum-rule based approach [62—-64], but the magnitude
of the shift is somewhat weaker there. A more thorough comparison of our results to direct
studies in lattice QCD is part of ongoing work.

For T ~ 250MeV one can also compare to the perturbative estimates of [65] and
qualitatively good agreement between the spectra is found. The lattice spectra show slightly
narrower peaks than the perturbative ones, due to the linearly rising part of the potential,
which increase the binding energy. This effect is not captured in perturbation theory. On
the other hand, the string effects vanishes quickly at high temperature and in addition the
imaginary part of the lattice potential is larger due to string effects. Combined it seems
to compensate the stronger binding through an increase in the width of the state. One
central benefit of the lattice computation is the possibility to connect the high and low
temperature spectra, which is cannot be realized in perturbation theory.

A qualitative difference between the perturbative results and the lattice ones is the
way the peak positions change as function of the temperature. In perturbation theory,
which contains essentially only the Coulomb term, the bound state peaks move slightly to
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Figure 8. Charmonium (left) and Bottomonium (right) spectrum at 7' = 1.197¢ with manually
changed values for the imaginary part of the potential (0.1ImV (black), ImV (red) and 2ImV
(blue)). While the peak position hardly changes unless the peak is close to melting, the width
significantly depends on the strength of ImV).

higher values of frequency [55] as T increases whereas we see here a clear decreases of the
peak frequencies.

As the determination of the imaginary part of the potential represents a significant
source of uncertainty in this work, we close this section by studying its effect on the
spectrum in more detail. To do so, we vary the strength of the imaginary part multiplying
it by a r-independent factor see figure 8. The main effect of the imaginary part is to
broaden the peak, without changing its position and area, unless the peak is already close
to the continuum, as is e.g. the case with Y(35) in figure 8. That said, it is obvious that
the corresponding states do melt more quickly with a large Im[V], as the width reaches the
binding energy much more quickly.

4 In-medium quarkonium phenomenology

4.1 Charmonium at freezout

At current heavy-ion colliders, such as RHIC and LHC, with collision energies above
V544 > 200GeV, the success of the statistical model of hadronization, to predict the yields
of heavy quarkonium, supports the idea that charmonium completely dissolves in the cre-
ated plasma. In turn essentially all charmonium bound states we observe in experiment
would be generated via recombination that takes place at the freeze-out boundary, usually
located slightly below the crossover temperature. In such a setting the ratio between the
yields for J/¥ and ¥(2S) can be estimated from the difference in area under the corre-
sponding peak structures in the in-medium spectral functions in a straight forward way.
Let us assume that due to the dynamical nature of the expanding fireball the freeze-
out happens close to the chiral crossover temperature 7. When inspecting the spectra at
this temperature, as done in figure 9 we find that there indeed exist two peaked structure
related to the in-medium J/¥ and ¥'. I.e. we can compute the amount of in-medium
dimuons produced by each of the two states via the product of the spectral function and

- 21 —



5 5 . .

al — mp=144 MeV af — mp=144 MeV 1
o — mp=177 MeV ]« — mp=177MeV
33 129 ~111 MeV |
3 — mp=111MeV | 3 — o= ©
e =7

1f r

) N U
O I

L N N O 1 L N
28 3.0 3.2 34 3.6 3.8 4.0 4.2 9.0 9.5 10.0 105 11.0 11.5
w[GeV] w[GeV]

Figure 9. charmonium (left) and bottomonium (right) spectra at T,.. To visualize the uncertainties
of the computation three curves according to the values of mp and mp 4+ dmp are shown.

Bose-Einstein distribution, integrated over the frequency range corresponding to each of
the states via eq. (1.8).

This however is not what is measured in experiment, since the charmonium states do
not decay into leptons within the plasma but given their life-time, instead long after the
plasma is diluted away. We should thus in principle project the states corresponding to
the peaks of the finite T spectra onto the T' = 0 states. As no agreed upon method exists
to do so, we here assume that the states inside the peaked structures will become real .J/¥
or ¥ after freeze out and subsequently decay outside of the plasma. These assumptions
are similar to those made in the statistical model [67] and take into account the in-medium
modification of the particle states.

In order then to calculate the phenomenologically relevant density of charmonium
states at freeze out from the spectral function, we use the following tactic: we estimate
first the contribution from the different states to the in-medium dilepton emission rate.
From it we can compute the ratio of dileptons produced by ¥’ and J/W¥. The ratio of
the number densities of ¥’ and J/¥ follows when we correct for the probability of the
corresponding vacuum states to decay electromagnetically.

In detail, the dilepton emission rate (1.8) reads

p(P
R o /dpodgp ]<32)nB(p0)- (4.1)
Here we use the fact that to leading order p depends only on P? = p% — p? and leave a
more detailed analysis of the momentum dependence for future studies. After performing
the change of variable w = 4/ pg — p2, we obtain

R; /dw d*p IOO(J";)”B(sz +p?)

w
_— 4.2

e (4.2)
In this formula, the contribution from the different bound states will come from the cor-

responding peak area in p(w)/w?, see figure 9. Hence we fit p(w)/w? with a skewed Breit-
Wigner (3.8) to distinguish the contribution from the different states n. From that fit
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Figure 10. Comparison of predicted yields for ¥’ and J/¥ from this work (orange) compared to
predictions from the statistical model (green) and several experimental measurements. The plot
structure and experimental data has been adapted from ref. [67].

we obtain the position and width of the spectral feature, i.e. the thermal mass M, of the
particle and its width.

To calculate the integral (4.2) we checked numerically that it is possible to approximate
the Breit-Wigner peak by a delta peak, keeping the area A under the curve constant.
Performing this, the integral (4.2) becomes

M,
v, 3 2 2 n
R,; ocA/dwd pnp(v/ M2+ p?) Tt (4.3)

The fit of the charmonium spectrum in figure 9 then yields

\III

w

Fig = 0.023 £ 0.004. (4.4)
o

To obtain the number density we divide, as discussed, by the electromagnetic decay rate
of a vacuum state, which is proportional to the square of the wave function ® at r = 0
divided by the square of the mass of the state [68]

Ny Ry MZ,|®;/4(0)[?
v _ ff\l, g' s/ )‘2 = 0.052 = 0.009, (4.5)
Ny lp_r, R MJ/\I,|<I>\1//(O)‘

where we used the value at the origin of the zero temperature wave functions. A comparison
of our result to those of the statistical model is shown in figure 10.

While the experimental determination of the ¥’ to J/W ratio is challenging and cur-
rently limited by statistics, both ALICE [69] and CMS [70] have put forward first measure-
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Figure 11. charmonium (left) bottomonium (right) spectra at T = 3T from an extrapolation
of the HTL fitted values for mp. To visualize the uncertainties of the computation three curves
according to the values of mp and mp 4+ dmp are shown.

N, N, ; i
N\P’ N‘I” . The cancellation of experimental system-
J/¥ |PbPb J/¥ lpp

atic uncertainties makes this quantity the most robust measure of the in-medium relation
between ¥ and J/VU to date. Integrated over centrality CMS found that at the lowest
accessible rapidities the ratio lies at 0.45 +0.13(stat) +0.07(syst) , while at larger rapidity
1.6 < |y| < 2.4 it grows to values larger than one.

ments of the double ratio

Here we give a rough estimate of the double ratio by using experimental data ob-
tained for prompt charmonium at /s = 7TeV by the CMS collaboration. The rapidity
averaged cross-section ratios for ¥’ to J/W¥ denoted by R in [71] are furthermore averaged
over transverse momentum (R),, = 0.0378 = 0.006, as the observed dependence on pr is
rather weak. To extract the number density ratio, the difference in branching fraction into
dimuons must also be corrected, after which we obtain

Ny BR(J/V — pru)
= (R = 0.09 £0.015, 4.6
Ny sermev \Blex BR(V = ppu~) o
This leads to a double ratio of
Ny Ny
v Yl =058+0.14 (4.7)
Nijw PbPb Nijw PP

in which the errors in the individual contributions have been naively propagated under
the assumption of being independent. Compared to the low rapidity measurements by
CMS [70] we find good agreement within our still sizable error bars.

4.2 Bottomonium at maximum LHC temperatures

Given the small amount of bottom quarks produced in heavy-ion collisions, both at RHIC
and LHC, one would naively expect a negligible amount of recombination, a thought which
might however need reconsideration [72, 73]. The bottomonium states seen in lead-lead
collisions are hence expected to be the ones that survive over the whole plasma evolution.
A way to approximate their number is to read off the peak area from the spectrum at the
highest temperature reached by the plasma. At LHC, where most experimental results
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for bottomonium have been obtained, the highest temperature according to ref. [74] corre-
sponds to T ~ 3T¢ from an analysis of harmonic yields. We hence consider the spectrum
at Thax = 3T in figure 11. There, we see that only the ground state survives and is no-
ticeably washed out. Of course not all the bottomonium formed will experience the highest
temperature, one e.g. expects states to be also produced at the edge of the plasma, where
the temperature is lower.

If we assume the fate of the heavy quarkonium is determined at the maximum tem-
perature reached by the plasma, we can estimate the ratio of bottomonium produced in
lead-lead collisions to the amount of Bottom produced in proton-proton collisions, which
is given by the ratio of the spectral weights at Tiax = 37¢ vs T = 0,

L7 O

Rpypi/pp = =0.91 +0.02. (4.8)

I'r—oCr=o

Here I' denotes the width and C the amplitude of the corresponding Breit-Wigner type
spectral feature. Note that the error bars might be underestimated as the Debye mass
had to be extrapolated far above the available temperatures using the HTL fit. The
corresponding experimental results from CMS [75] are lower with Rpypy, /pp = 0.6 £ 0.2.

4.3 Melting temperatures

As we found in figure 4, the bound states disappear progressively with increasing 7" and
we can attempt to define their melting point. In the case of a real potential, the melting
temperature is straightforward to define from the disappearance of the purely real binding
energy. For a complex potential the situation is more subtle, as the bound state broadens
before it disappears. A popular choice is to define the melting of a state the moment its
width equals its binding energy [10, 11, 76].

Here we scan the spectrum at different temperatures, using the HTL based inter- and
extrapolation of the values of the continuum corrected Debye mass mp. The bound state
peak features are determined from a fit based on the skewed Lorentzian of eq. (3.8). The
melting temperatures obtained in this way are given in table 6 and exhibit a hierarchical
pattern, where only the ground states survive well above T.%

Our observations are in qualitative agreement with earlier lattice QCD studies of char-
monium correlators and spectral functions [78-86]. Note that most of these studies were
performed in the quenched approximation or at rather large values of the light quark
masses and so far no continuum extrapolation was performed. Results of spatial corre-
lation functions and the corresponding spatial screening masses from lattice calculations
in the charmoniun sector that include dynamical light quarks further support our find-
ings [87, 88]. Relativistic charmonium and bottomonium correlation functions computed
in quenched QCD [86] have also shown that in the bottomonium channel thermal modifi-
cations set in at larger temperatures, well in the QGP phase, compared to the charmonium
channel. The recent determination of bottomonium spectra in full QCD based on non-
relativistic QCD [89-92] corroborates an Y(1S) ground state survival deep into the QGP.

8For charmonium a similar behavior has been anticipated in the in the sequential melting scenario of
ref. [77].

— 95—



states J/U(1S) | ¥'(2S) | T(1S) T(295) T(3S) | Y(49)
7= Peind T | 1377008 1 < 0.95 | 2.667049 | 1.2570-07 | 1.011993 | < 0.95

melt

Table 6. Melting temperatures Ty, of the different bound states defined by the point, at which
the width of the state equates its binding energy calculated from Re[V] alone. The error on the
determination of Ty, takes into account the possible variation of mp as shown in figure 3. Note
that because of the lack of sufficient number of lattice ensembles below T' = 0.95T¢ and the
breakdown of the generalized Gauss law ansatz, we only give upper limits in this regime.

A thorough quantitative comparison of our lattice potential based spectra to direct lattice
QCD computations will be part of a future study and is work in progress.

A more precise determination of the Y(1.S) melting temperatures will require lattice
simulations at higher temperatures, as for now we can only use an extrapolation of the HTL
fit for mp, which becomes increasingly unreliable at high temperatures beyond T > 1.667¢.

5 Conclusion

Heavy quarkonium is a vital probe to uncover the physics of the quark-gluon plasma created
in heavy-ion collisions. Their non-relativistic nature opens up the possibility to describe
their in-medium behavior by an effective potential entering a Schrédinger equation. We
reported here the first quantitative phenomenological investigation of bottomonium and
charmonium S-wave spectra at finite 7', based on the proper complex in-medium static
potential extracted from Ny = 2 + 1 lattice QCD.

To make possible the use of the lattice potential in a phenomenological application we
deployed the generalized Gauss law ansatz, which provides analytic expressions for Re[V]
and Im[V] that depend on a single temperature dependent parameter mp, the Debye mass.
Tuning mp it was possible to reproduce the lattice values of Re[V] and to validate the up
to now tentative values of Im[V] at all separation distances and temperatures investigated.
After correcting for lattice discretization artifacts in the Debye mass we fitted its temper-
ature dependence successfully with a HTL based expression.

To compute spectral functions for phenomenological inspection, we determined the vac-
uum parameters of the static potential in the continuum from a fit to the experimentally
known S-, P- and D-wave bottomonium states. Finite T effects are incorporated though the
continuum corrected Debye mass, extracted from the real-part of the in-medium lattice po-
tential, leading to correctly renormalized finite temperature expressions for Re[V] and Im[V]

The central findings in our adiabatic setup are a clear pattern of sequential melting of
both bottomonium and charmonium with respect to their vacuum binding energies. The
interplay between Debye screening and scattering with medium partons leads to charac-
teristic shifts of the in-medium bound states to lower masses before they dissolve into the
continuum. This effect is opposite to the relatively small gain in thermal mass.

The availability of in-medium spectra with physical widths allowed us to estimate the
U’ to J/W ratio at the crossover transition temperature, relevant in the context of the pro-
posed statistical hadronization scenario. Our approach to compute the ratio of in-medium
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dimuon emission corrected by the emission rate of the corresponding vacuum states yields a
value slightly larger than that of the statistical model but still much smaller than the experi-
mental data in p+p collisions. A rough estimate of the suppression of the Y (15) state in this
adiabatic scenario on the other hand gave a value 50% larger than experimentally observed.

The static potential is only the starting point for a quantitatively reliable investigation
of heavy quarkonium. In particular for the lighter flavor charmonium the question of
finite mass effects in the potential should be addressed and efforts should be directed at
determining the first correction Vi(r)/mg at finite temperature from the lattice. On the
other hand direct lattice QCD studies, be it in the relativistic formulation or using the
effective field theory NRQCD including velocity correction, will be essential to crosscheck
the validity of the potential description. Comparisons with the data here can be made
both on the level of spectra, as well as the corresponding Euclidean correlators. The
necessity to solve an inherently ill-defined problem in order to extract the spectral functions
from lattice QCD current-current correlators directly remains a significant challenge. In
order to surmount it both methodological progress in Bayesian and non-Bayesian spectral
reconstruction approaches, as well as computational efforts to generate lattices with more
Euclidean time steps will be required.”

The lattice in-medium potential can also be used to setup a description of the real-
time evolution of the heavy quarkonium wave function at finite temperature in the context
of open quantum systems. An approach based on a stochastic potential [26-29] appears
promising, where a purely real potential, given by Re[V] is randomly perturbed at each
time step by noise of strength related to Im[V]. If developed further it promises to provide
vital and phenomenologically relevant information on e.g. the density matrix of states for
the quarkonium system, which goes beyond what is accessible from within the spectral
functions computed here.

Directions for future work include the determination of the complex in-medium po-
tential on lattices at higher temperature in order to avoid the extrapolations beyond
T = 1.66T¢ required e.g. in the determination the Y(1S5) melting temperature in sec-
tion 4.2. Another aspect of interest is the momentum dependence of the spectra which is
also an active area of research in direct lattice QCD studies.
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