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Abstract
We investigate American options in a multiple prior setting of con-

tinuous time and determine optimal exercise strategies form the per-
spective of an ambiguity averse buyer. The multiple prior setting
relaxes the presumption of a known distribution of the stock price
process and captures the idea of incomplete information of the mar-
ket data leading to model uncertainty. Using the theory of (reflected)
backward stochastic differential equations we are able to solve the opti-
mal stopping problem under multiple priors and identify the particular
worst-case scenario in terms of the worst-case prior. By means of the
analysis of exotic American options we highlight the main difference
to classical single prior models. This is characterized by a resulting
endogenous dynamic structure of the worst-case scenario generated
by model adjustments of the agent due to particular occurring events
that change the agent’s beliefs.
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1 Introduction

This paper builds on a previous analysis of optimal stopping problems for
American exotic options under ambiguity, Chudjakow and Vorbrink [5]. The
motivations and the economic relevance of this study are similar to before,
although we move from discrete to continuous time.

In finance it is more appropriate to use continuous time models. Closed-
form solutions have the advantage of being easier to interpret, and as such,
tend to predominate. They allow for comparative statics that would be
otherwise difficult to interpret. In our analysis continuous time also provides
a direct relationship to the famous Black-Scholes model, Black and Scholes
[1].

We analyze American options from the perspective of an ambiguity averse
buyer in the sense of Ellsberg’s paradox. The task of the buyer holding the
option is to exercise it optimally realizing the highest possible utility. The
valuation reflects the agent’s personal utility as it depends on investment
horizon, objective, and on risk, as well as ambiguity attitude. Generally this
valuation is not related to the market value directly.

Given a classical stochastic model in continuous time such as the Black-
Scholes model, one can solve the optimal stopping problem of the buyer
using classical theory on optimal stopping, or the relation to free-boundary
problems. Despite the abundance of literature on the issue, e.g. Peskir and
Shiryaev [20] or El Karoui [9], these settings impose the assumption of a
unique probability measure that drives stock price processes. This assump-
tion might be too strong in many cases since it requires perfect understanding
of the market and complete agreement on one particular model. To incorpo-
rate uncertainty we drop this assumption. We consider a Black-Scholes-like
market whose stock price X = (Xt) evolves according to

dXt = µXtdt+ σXtdWt (1)

where W = (Wt) represents standard Brownian motion under some reference
measure P .1 The various beliefs of the agent are reflected by a set of multiple
priors (probability measures) P . Thus she considers the dynamics in (1)
under each prior Q of the set P which provides a family of models that come
into question to evaluate the claims.

1Later we change this point of view slightly, cf. page 11.
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As an example we have in mind a bank which holds an American claim
in its trading book. The trading strategy of the bank depends on the under-
lying model used by the bank. If the model specification is error-prone the
bank faces model uncertainty. Being unable to completely specify the model,
traders rather use multiple priors model instead of choosing one particular
model. If the uncertainty cannot be resolved and the accurate model speci-
fication is impossible, traders prefer more robust strategies as they perform
well even if the model is specified slightly incorrect.

Also, a risk controlling unit assigning the portfolio value and riskiness
uses rather a multiple priors model in order to test for model robustness and
to measure model risk. Taking several models into account, while performing
portfolio distress tests, allows to check the sensitivity of the portfolio to model
misspecification. Again in a situation of model uncertainty more robust
riskiness assignment is desirable as it minimizes model risks.

Similar reasoning can be applied to accounting issues. An investment
funds manager making his annual valuation is interested in the value of op-
tions in the book that are not settled yet. In case the company applies
coherent risk measures as standard risk evaluation tool for future cash flows
on the short side, it is plausible to use a multiple priors model evaluating
long positions. Finally, a private investor holding American claims in his
depot might exhibit ambiguity aversion in the sense of Ellsberg paradox or
Knightian uncertainty. Such behavior may arise from lack of expertise or
bad quality of information that is available to the decision maker.

Although for different reasons, all the market participants described above
face problems that should not be analyzed in a single prior model and need
to be formulated as multiple priors problems.

As to the ambiguity model, we use κ-ignorance, see Chen and Epstein [2].
It models uncertainty in the drift rate of the stock price. Under each prior,
the stock price in (1) obtains an additional drift rate term varying within
the interval [−κ, κ], where κ measures the degree of ambiguity/uncertainty.
As noted in Cheng and Riedel [4], it is essential that the additional terms
be allowed to be stochastic and time-varying as this guarantees dynamic
consistency.2

Dynamic consistency allows the agent to adapt the model according to
changing beliefs induced by occurring events. In this setting, the agent hold-

2See Cheng and Riedel [4] and Delbaen [6] for a discussion of the concept of dynamic
consistency in dynamic models.
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ing an American option who is uncertain about the correct drift of the un-
derlying stock price faces the optimization problem

Vt := ess sup
τ≥t

ess inf
Q∈P

EQ
(
Hτγ

−1
τ−t|Ft

)
. (2)

To clarify, at the current time t, the agent aims to optimize her expected
discounted payoff Hτγ

−1
τ−t in a worst-case scenario by exercising the claim

prior to maturity.
In our analysis the optimization problem is solved by using the relation-

ship to reflected backward stochastic differential equations (RBSDEs).3 To
obtain this relation, the generator of the (reflected) BSDE should be chosen
as f(t, y, z) = −ry − κ|z| where −κ|z| describes the ambiguity aversion and
−ry the discounting. This was first established by Chen and Epstein [2] who
used the generator f(z) = −κ|z| for a BSDE to derive a generalized stochas-
tic differential utility. A similar BSDE framework to is used in El Karoui
and Quenez [12] in the context of pricing and hedging under constraints.

BSDEs provide a powerful method for analyzing problems in mathemati-
cal finance, (El Karoui, Peng, and Quenez [11] and Duffie and Epstein [8]), or
in stochastic control and differential games (Hamadene and Lepeltier [13] &
Pham [21]). BSDEs, in conjunction with g-expectations, play an important
role in the theory of dynamic risk measures, (Peng [18]) and dynamic convex
risk measures, respectively, (Delbaen, Peng, and Gianin [7]). By means of
“reflection”, the solution is maintained above a given stochastic process, in
our case, the payoff process of the respective American claim.

We analyze the problem in (2) for several American options exemplifying
the effect of ambiguity. As described in Chudjakow and Vorbrink [5] the effect
of ambiguity depends highly on the payoff structure of the claim. If the payoff
satisfies certain monotonicity behavior as is the case for the American call and
put option, the situation resembles the classical one without the emergence of
ambiguity. The agent’s worst-case scenario is specified by the least favorable
drift rate of the stock price process that affects the performance of the agent’s
option. This scenario is identified by the worst-case prior. In the above
described monotone case, the worst-case prior leads to the lowest possible
drift rate for the stock price process in case of a call, and the highest possible
drift rate in the case of a put option.

3Another approach is the characterization of the value function (Vt) by Cheng and
Riedel [4] as the smallest right-continuous g-supermartingale that dominates the payoff
from exercising the claim.
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For options with more complex payoffs, the worst-case prior generates a
stochastic drift rate in (1) which is path-dependent and produces endogenous
dynamics in the model. These are induced by the ambiguity averse agent and
her reaction to the latest information by adjusting the model from time to
time as necessary depending on her changing beliefs, or fears, respectively.
As such, in the multiple prior setting, changing fears due to transpired events
are taken into account when American claims are evaluated and early exercise
strategies are determined.

This central difference to classical models is exemplified with the help of
barrier options and shout options. In the latter case, the agent will change
her beliefs directly after taking action, when she fixes the strike price. In
the case of barrier options, here exemplified by means of an up-and-in put
option, she adapts the model as a consequence of the trigger event when the
underlying stock price reaches the barrier specified in the claim’s contractual
terms.

From decision theoretical point of view, our examples expose that optimal
stopping under ambiguity aversion is behaviorally distinguishable from opti-
mal stopping under subjective expected utility. For example, the holder of
an American up-and-in put behaves as two readily distinguishable expected
utility maximizers.

The paper is structured as follows. The following section introduces the
ambiguity setup in continuous time and relates the resulting multiple prior
framework to the financial market. Section 3 presents the decision problem
of an ambiguity averse agent who holds an American option. It contains
a short detour to reflected BSDEs and explains their relationship to the
decision problem of the ambiguity averse agent. This section also provides
the solution to the optimal stopping problem for American options featuring
some monotone payoff structure (see Section 3.2). This section builds the
base for the subsequent analysis in Section 4 concerning American claims
with more complex payoffs such as up-and-in put options or shout options.
Extensive proofs are given in the appendix, Section 5 concludes.

2 The setting

We introduce the ambiguity framework in continuous time. We focus on κ-
ignorance, a particular ambiguity setting, as described by Chen and Epstein
[2] who introduced various ambiguity models. Throughout this paper we
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consider an ambiguity framework for a fixed finite time horizon T > 0.
First, we depict the ambiguity model κ-ignorance as in Chen and Ep-

stein [2]. Second we introduce the financial market within this ambiguity
framework.

Remark 2.1 Given an infinite time horizon, one faces additional technical
difficulties according to the underlying filtration arising from Girsanov’s the-
orem and a Brownian motion environment.4 This leads to weaker assump-
tions on filtration. In particular, the usual conditions on filtration should
be relaxed.5 This sometimes causes technical problems since the theory of
stochastic calculus and backward stochastic differential equations is usually
developed under these conditions.6

2.1 The ambiguity model κ-ignorance

Let W = (Wt) be a standard Brownian motion on the probability space
(Ω,F , P ) where F is the completed Borel σ-algebra on Ω. We denote by
(Ft)0≤t≤T the filtration generated by the process W and augmented with re-
spect to P . We have FT = F and the filtration satisfies the usual conditions.
P serves as a reference measure in the ambiguity model. As we shall see,
under κ-ignorance all occurring probability measures Q ∈ P are equivalent.
So, P has the role of fixing the events of measure zero. Hence, there will be
no uncertainty about the events of measure zero.

Remark 2.2 Throughout the analysis, unless stated otherwise, all equalities
and inequalities will hold almost surely. The “almost-sure-statements” are to
be understood with respect to the reference measure P . Due to the equivalence
of all priors Q ∈ P the statements will also hold almost surely with respect
to any prior Q ∈ P. If we write E without any measure we will mean the
expectation with respect to the reference measure P .

Let us depict the construction of the ambiguity model κ-ignorance, Chen
and Epstein [2], Delbaen [6]. It relies heavily on Girsanov’s theorem. We

4See Remark 2.4 as an illustration.
5Usually the filtration is assumed to satisfy the usual conditions. This means that the

filtration is right-continuous and augmented, cf. Karatzas and Shreve [14].
6The interested reader is referred to von Weizsäcker and Winkler [23] who develop

stochastic calculus in particular Itô calculus without assuming the usual conditions.
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only focus on the one-dimensional case. The d-dimensional case works in a
straightforward way.

First consider R-valued measurable, (Ft)-adapted, and square-integrable
processes θ = (θt) such that the process zθ = (zθ

t ) defined by

dzθ
t = −θtz

θ
t dWt, zθ

0 = 1,

that is,

zθ
t = exp

{
− 1

2

t∫
0

θ2
sds−

t∫
0

θsdWs

}
∀t ∈ [0, T ] (3)

is a P -martingale. Given κ > 0 we define the set of density generators Θ by

Θ = {θ| θ progressively measurable and |θt| ≤ κ, t ∈ [0, T ]}.7 (4)

κ is called the degree of ambiguity (uncertainty). Obviously, for each θ ∈

Θ the Novikov condition E
(
exp{1

2

T∫
0

θ2
sds}

)
< ∞ is satisfied. Therefore,

E(zθ
T ) = zθ

0 = 1 and zθ
T is a P -density on F , Karatzas and Shreve [14].

Consequently, each θ ∈ Θ induces a probability measure Qθ on (Ω,F) that
is equivalent to P where Qθ is defined by

Qθ(A) := E(1Az
θ
T ) ∀A ∈ F . (5)

In other words,

dQθ

dP

∣∣∣∣
Ft

= zθ
t ∀t ∈ [0, T ].

According to Girsanov’s theorem (cf. Karatzas and Shreve [14]) we define
the set of probability measures P := PΘ on (Ω,F) generated by Θ by

PΘ := {Qθ | θ ∈ Θ and Qθ is defined by (5)}. (6)

7Since we work in a Brownian motion environment we do not need to require pre-
dictability in (4) as in Delbaen [6], cf. Theorem 6.3.1 in von Weizsäcker and Winkler
[23].
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Note that we allow for stochastic and time-varying Girsanov kernels θ. This
is important to ensure the dynamic consistency. We otherwise lose this im-
portant property.8

Additionally, by Girsanov’s theorem, the process W θ = (W θ
t ) defined by

W θ
t := Wt +

t∫
0

θsds ∀t ∈ [0, T ] (7)

is a standard Brownian motion on (Ω,F) with respect to the measure Qθ.

Remark 2.3 κ-ignorance as an ambiguity model has important properties.
It allows for explicit results when evaluating financial claims since the range
of values of the density processes θ does not change over time as is the case for
other models like IID-ambiguity in Chen and Epstein [2]. Consequently we
shall see that the worst-case densities become very simple in some examples,
meaning without any formal difficulties. Furthermore, under κ-ignorance,
the set of priors P possesses important properties like m-stability or time-
consistency, Delbaen [6], and the existence of worst-case priors, Chen and
Epstein [2].9

Regarding Remark 2.1 the following remark illustrates the importance of
relaxing the usual conditions for filtration when κ-ignorance is constructed
on an infinite time horizon.

Remark 2.4 (cf. Karatzas and Shreve [14]) Let P be Wiener measure on
(Ω,F) := (C ([0,∞),R) ,B (C([0,∞),R))) such that the canonical process
W = (Wt),Wt(ω) := ω(t), 0 ≤ t <∞, ω ∈ Ω is a standard Brownian motion.
Denote by (FW

t ) the (not augmented) filtration generated by W such that
FW
∞ = F . Let θ = (θt) be a progressively measurable process with correspond-

ing filtration (FW
t ), and square-integrable for each T ∈ [0,∞). Assume that

the process zθ = (zθ
t ) defined as in (3) is a P -martingale. Then Girsanov’s

theorem for an infinite time horizon10 states that there exists a probability
measure Qθ satisfying

Qθ(A) = E(zθ
T 1A), A ∈ FW

T , T ∈ [0,∞) (8)

8See Chen and Epstein [2] for details. Also the examples in Section 4 illustrate this
fact.

9See also Chudjakow and Vorbrink [5].
10See Corollary 5.2 in Karatzas and Shreve [14].
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and the process W θ = (W θ
t ) defined as in Equation (7) with corresponding

filtration (FW
t ) is a Brownian motion on (Ω,F , Qθ).

It is essential that (FW
t ) be raw, unaugmented filtration. Therefore, κ-

ignorance can only be constructed with respect to a filtration that does not
fulfill the usual conditions.

The difference to the finite time horizon is that now P and Qθ are only
mutually locally absolutely continuous, i.e., equivalent on each FW

T , T ∈
[0,∞). Viewed as probability measures on F , P and Qθ are equivalent if and
only if zθ is uniformly integrable. To understand why (8) is only required to
hold for A ∈ FW

T , T ∈ [0,∞), consider the following example.

Example 2.5 Let µ > 0 and fix a process θ with θt := −µ ∀t ∈ [0,∞). For
this θ consider the P -martingale zθ defined by

zθ
t = exp{−1

2
µ2t+ µWt} ∀t ∈ [0,∞).

zθ is not uniformly integrable. By Girsanov’s theorem and the law of large
numbers for Brownian motion, Karatzas and Shreve [14] we obtain for A :=
{ lim

t→∞
Wt

t
= µ} ∈ F

Qθ(A) = 1 and P (A) = 0.

Clearly, the P -null event A is in the augmented σ-field FT for every T ∈
[0,∞). This is the reason why (8) is only required to hold for all A ∈ FW

T , T <
∞. Otherwise P and Qθ were mutually singular on FT for every T ≥ 0.

Therefore, κ-ignorance in a Brownian motion environment with infinite time
horizon must be set up on a filtration that is not augmented by the P -null
sets of F .

2.2 The financial market under κ-ignorance

Throughout this paper we consider a Black-Scholes-like market consisting
of two assets, a riskless bond γ and a risky stock X. Their prices evolve
according to

dγt = rγtdt, γ0 = 1,

dXt = µXtdt+ σXtdWt, X0 = x > 0 (9)
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where r is a constant interest rate, µ a constant drift rate, and σ > 0 a con-
stant volatility rate for the stock price.11 The dynamics in (9) are obviously
free of ambiguity. To incorporate ambiguity, the decision maker considers
Equation (9) under multiple priors. She uses the set of priors P as defined in
(6). As we shall see, by utilizing the set P she tries to capture her uncertainty
about the true drift rate of the stock.

Let Q ∈ P , if Q is equal to Qθ for θ ∈ Θ then the stock price dynamics
under Q become

dXt = µXtdt− σXtθtdt+ σXtdW
θ
t .

This illustrates that κ-ignorance just models uncertainty about the true drift
rate of the stock price.

At this point it is worthwhile mentioning that by changing the prior under
consideration, the stock price’s volatility rate remains completely unchanged.
Based on the equivalence of all priors and Girsanov’s theorem, κ-ignorance
cannot be used to model volatility uncertainty. This requires a set of mutually
singular priors. For a detailed study of this issue see Peng [19] or Vorbrink
[24].

In the next section, we consider American contingent claims from the
perspective of an ambiguity averse decision maker who holds a long position
in the claims. The decision maker, a private investor or financial institution,
for example, may seek to evaluate or liquidate their position. Both may
happen with respect to their subjective probability distribution. They may
use their subjective probability distribution to evaluate the claim and to
figure out an optimal exercise strategy due to the claim’s American feature.
In addition, in real option investment decisions, the subjective probability
law appears naturally when coming to a decision.12

All decision problems are considered under Knightian uncertainty. We
focus on a decision maker who is uncertain about market data. As a conse-
quence she does not believe completely in the dynamics proposed in (9). For
instance she is uncertain about the stock’s drift rate which in turn affects
the market price of risk.

Contingent claims in finance are typically evaluated with respect to risk-
neutral probability measures. Therefore, we assume that the agent will con-

11As it is often possible we may also consider a price process with non-constant and
stochastic coefficients. To avoid later distinctions of cases and missing the point we assume
constant coefficients.

12See McDonald and Siegel [17], for example.
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sider the stock’s dynamics in (9) under the risk-neutral probability measure.
Since she does not completely trust in the market, nor all the data, she allows
for various market prices of risk.13 She takes into account prices surfacing
around µ−r

σ
currently observed at the market. Expanding on this idea, if

Q = Qθ for some θ defined by θt = µ−r
σ

+ ψt,∀t ∈ [0, T ], with ψ = (ψt) ∈ Θ
then the dynamics in (9) become

dXt = µXtdt− σXtθtdt+ σXtdW
θ
t = rXtdt− σXtψtdt+ σXtdW

θ
t .

To stay in the framework of κ-ignorance, as introduced above, we need to
change the reference measure. To avoid this step, we prefer to model the
stock price dynamics directly under the risk-neutral probability measure,
i.e., the agent starts with the reference dynamics

dXt = rXtdt+ σXtdWt. (10)

Now, if she considers (10) under Q = Qθ for some θ ∈ Θ the dynamics
become

dXt = rXtdt− σXtθtdt+ σXtdW
θ
t . (11)

Throughout the paper, Equation (11) for varying θ ∈ Θ represents the dy-
namics our decision maker will take into account when studying optimal
stopping problems under the ambiguity aversion modeled by κ-ignorance.

3 American options under ambiguity aver-

sion

We focus on American contingent claims under ambiguity aversion.14 For this
issue, we analyze optimal stopping problems under multiple priors. Formally,
the optimal stopping problem under ambiguity aversion is defined as

Vt := ess sup
τ≥t

ess inf
Q∈P

EQ
(
Hτγ

−1
τ−t|Ft

)
, t ∈ [0, T ] (12)

13As mentioned above the subjective evaluation appears natural. By the variety of con-
sidered models subjective beliefs are nevertheless contained. If one prefers the subjective
in place of the risk-neutral probability measure as a reference one may also use the model
in (9) with drift rate µ as a reference.

14A detailed economic motivation is given in Chudjakow and Vorbrink [5].
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where γ−1
τ−t is the discounting from current time t up to stopping time τ when

the claim is exercised. H = (Ht) represents the payoff process.
We only consider claims with maturity T . The “ess inf” accords with

ambiguity aversion which leads to worst-case pricing. The “ess sup” imposes
the goal of the agent to optimize the claim’s payoff by finding an optimal
exercise strategy in the worst-case scenario. All stopping times τ that will
come into question in (12) are naturally bounded by the time horizon and
claim’s maturity T . Without ambiguity, Vt represents the unique price for
the claim at time t, see Peskir and Shiryaev [20] for example.

We analyze American options written on X. In general, the claim’s pay-
off from exercising depends on the whole history of the price process. To
ensure that the value Vt, t ∈ [0, T ] is well-defined, we impose the following
assumption on the claim’s payoff process.

Assumption 3.1 Given an American contingent claim H, the payoff from
exercising H = (Ht) is an adapted, measurable, nonnegative process with
continuous sample paths15 satisfying E

(
sup0≤t≤T H

2
t

)
<∞.

To solve the optimal stopping problem under multiple priors in (12) we uti-
lize the methodology of reflected backward stochastic differential equations
(RBSDEs).

3.1 A detour: reflected backward stochastic differen-
tial equations

At this point we briefly introduce the notion of RBSDEs and point out its
relationship to the optimal stopping problem under ambiguity aversion. The
proof can be found in Appendix A. The Markovian framework contains a very
useful connection to partial differential equations (PDEs), a generalization of
the Feynman-Kac formula. As a reference for the particular case of backward
stochastic differential equations (BSDEs) see El Karoui, Peng, and Quenez
[11]. In Section 3.2 we employ the results of Chen, Kulperger, and Wei [3]
which strongly exploit the relationship to PDEs.

In this detour we use the same stochastic foundation introduced above.
The introduction is taken from El Karoui, Kapoudjian, Pardoux, Peng, and

15It is possible to relax the assumption, see Cheng and Riedel [4].
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Quenez [10].16 We also introduce the following notation, cf. Pham [21]:

L2 :={ξ | ξ is an F -measurable random variable with E(|ξ|2) <∞},

H2 :=

{
(ϕt)|(ϕt) is a progressively mb. process s.t. E

∫ T

0

|ϕt|2dt <∞
}
,

S2 :=

{
(ϕt)|(ϕt) is a progressively mb. process s.t. E

(
sup

0≤t≤T
|ϕt|2

)
<∞

}
.

Given a progressively measurable process S = (St), interpreted as an ob-
stacle, the aim is to control a process Y = (Yt) such that it remains above
the obstacle and satisfies equality at terminal time, i.e., YT = ST . This is
achieved by a RBSDE. We briefly state the definition.

Let S = (St) be a real-valued process in S2, and a generator f : Ω ×
[0, T ]× R× R → R such that f(·, y, z) ∈ H2 ∀(y, z) ∈ R× R, and

|f(t, y, z)− f(t, y′, z′)| ≤ C(|y − y′|+ |z − z′|) ∀t ∈ [0, T ]

for some constant C > 0 and all y, y′ ∈ R, z, z′ ∈ R.

Definition 3.2 The solution of the RBSDE with parameters (f, S) is a triple
(Y, Z,K) = (Yt, Zt, Kt) of (Ft)-progressively measurable processes taking val-
ues in R,R, and R+, respectively, and satisfying:

(i) Yt = ST +
∫ T

t
f(s, Ys, Zs)ds+KT −Kt −

∫ T

t
ZsdWs, t ∈ [0, T ]

(ii) Yt ≥ St, t ∈ [0, T ]

(iii) K = (Kt) is continuous, increasing, K0 = 0, and
∫ T

0
(Yt − St)dKt = 0

(iv) Z = (Zt) ∈ H2, Y = (Yt) ∈ S2, and KT ∈ L2

The dynamics in (i) are often expressed in differential form. That is

−dYt = f(t, Yt, Zt)dt+ dKt − ZtdWt, YT = ST . (13)

Intuitively, the process K “pushes Y upwards” such that the constraint (ii)
is satisfied, but minimally in the sense of condition (iii). From (i) and (iii)

16The framework is based on predictable processes. But the arguments rely only on pro-
gressive measurability, cf. Pham [21]. Therefore we require the measurability conditions
as in Pham [21].
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it follows that (Yt) is continuous. El Karoui, Kapoudjian, Pardoux, Peng,
and Quenez [10] proved the existence and uniqueness of a solution to the
RBSDE as defined here.

Let us consider equation (12) for a fixed probability measure Q omitting
the operator “ess inf”. If Q = Qθ ∈ P then the process Y θ defined as the
unique solution of the reflected BSDE with obstacle S = H17

Y θ
t = HT +

∫ T

t

(−rY θ
s − θsZ

θ
s )dt+Kθ

T −Kθ
t −

∫ T

t

Zθ
sdWs, t ∈ [0, T ]

also solves Equation (12) without ambiguity under the single prior Q = Qθ.
Hence Y θ

t = V Q
t with

V Q
t := ess sup

τ≥t
EQ
(
Hτγ

−1
τ−t|Ft

)
, t ∈ [0, T ].

This follows by Proposition 7.1 in El Karoui, Kapoudjian, Pardoux, Peng,
and Quenez [10] together with Girsanov’s theorem. It illustrates that for
each θ ∈ Θ the decision maker faces a RBSDE induced by the parameters
(f θ, H) with f θ(t, y, z) = −ry − θtz ∀t ∈ [0, T ].

The following theorem establishes the link to the optimal stopping prob-
lem defined in (12). It presents the key to solving the optimal stopping
problem under ambiguity aversion.

Theorem 3.3 (Duality) Given a payoff process H, define f θ(t, y, z) :=
−ry − θtz for each t ∈ [0, T ] and consider the unique solution (Y θ

t , Z
θ
t , K

θ
t )

to the RBSDE associated with (f θ, H) for each θ ∈ Θ.
Let (Yt, Zt, Kt) denote the solution of the RBSDE with parameters (f,H)
where f(t, y, z) := ess infθ∈Θ f

θ(t, y, z) ∀t ∈ [0, T ],∀ y, z ∈ R. Then there
exists θ? ∈ Θ such that

f(t, Yt, Zt) := ess inf
θ∈Θ

f θ(t, Yt, Zt) = f θ?

(t, Yt, Zt)

=− rYt −max
θ∈Θ

θtZt = −rYt − κ|Zt| dt⊗ P a.e.

Hence,

(Yt, Zt, Kt) = (Y θ?

t , Zθ?

t , K
θ?

t ) ∀t ∈ [0, T ] a.s. and

Yt = ess inf
θ∈Θ

Y θ
t = ess inf

Q∈P
V Q

t ∀t ∈ [0, T ] a.s.

17Since we assumed H = (Ht) to be adapted, measurable, and continuous it is progres-
sively measurable, cf. Proposition 1.13 in Karatzas and Shreve [14].
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Furthermore,

Yt = ess inf
Q∈P

ess sup
τ≥t

EQ(Hτγ
−1
τ−t|Ft) = ess sup

τ≥t
ess inf

Q∈P
EQ(Hτγ

−1
τ−t|Ft) = Vt a.s.

Hence, Y also solves the optimal stopping problem of the ambiguity averse
decision maker in (12). In particular we have

max
τ≥0

min
Q∈P

EQ(Hτγ
−1
τ ) = min

Q∈P
max
τ≥0

EQ(Hτγ
−1
τ ).

An optimal stopping rule is given by

τ ?
t := inf{s ≥ t|Vs = Hs} ∀t ∈ [0, T ].

The subscript t indicates that τ ?
t is an optimal stopping time when we begin

at time t.

Proof: The proof is mostly given in El Karoui, Kapoudjian, Pardoux,
Peng, and Quenez [10], Theorem 7.2. Since it is not directly related to
multiple priors under κ-ignorance, we present the main ideas in Appendix A.

2

Remark 3.4 The infimum above is an infimum of random variables. There-
fore it must be seen as an essential infimum. For time zero there is no am-
biguity in the definitions since the σ-algebra F0 is trivial.

By interpreting the theorem, the ambiguity averse agent solves the optimal
stopping problem under a worst-case prior Q? := Qθ? ∈ P . That is, she
first determines the worst-case scenario and then solves a classical optimal
stopping problem with respect to this scenario.

The theorem states the relevance of RBSDEs for solving the optimal
stopping problem under ambiguity aversion. As indicated in Theorem 3.3,
from this point on, the payoff process of the claim H will represent the
obstacle for the associated RBSDEs. We are interested in the solution of
the RBSDE associated with the parameters (f,H). In particular, we target
understanding the process θ? that induces the worst-case measure.

3.2 Options with monotone payoffs

We focus on American claims whose current payoff can be expressed by a
function only depending on the current stock price of the claim’s underlying.

15



We assume Ht = Φt(Xt) for each t ∈ [0, T ].18 In this case the RBSDE with
parameters (f,H) becomes a reflected forward backward stochastic differen-
tial equation (RFBSDE), cf. El Karoui, Kapoudjian, Pardoux, Peng, and
Quenez [10]. The solution for (12) is given by the process Y determined as
the solution for

dXt = rXtdt+ σXtdWt, X0 = x

−dYt = min
θ∈Θ

(−rYt − θtZt)︸ ︷︷ ︸
=−rYt−κ|Zt|=f(t,Yt,Zt)

dt+ dKt − ZtdWt, YT = ΦT (XT ) (14)

with obstacle Ht = Φt(Xt) ∀t ∈ [0, T ].
From this point forward, the mapping (t, x) 7→ Φt(x) is assumed to be

jointly continuous for all (t, x) ∈ [0, T ]×R+, and Φt(Xt) ∈ L2(Ω,Ft, P ) ∀t ∈
[0, T ]. The latter is for instance true if each Φt is of polynomial growth (see
for example Malliavin [15], p. 6).

Remark 3.5 If the payoff is zero for each t ∈ [0, T ), i.e., the obstacle only
consists of the terminal condition YT = Φ(XT ) the process K is set equal to
zero and (14) just becomes a forward BSDE without reflection. In this case,
the solution Y of (14) solves the “optimal stopping problem” under ambiguity
aversion for a European contingent claim.

In order to solve the optimal stopping problem in (12) we focus on the RFB-
SDE in (14). The characteristic of this setting is that the generator and the
obstacle are deterministic. The only randomness of the parameters (f,H)
comes from the state of the forward SDE X, a Markov process. We will
make use of this observation in the next results. First we derive a result
which characterizes the process Z of the solution to (14).

Lemma 3.6 Consider the RFBSDE in (14) with obstacle Ht = Φt(Xt) ∀t ∈
[0, T ]. Let (Yt, Zt, Kt) be the unique solution.

(i) If Φt is increasing for all t ∈ [0, T ], we have

Z ≥ 0 dt⊗ P a.e.

18Since it is assumed that H = (Ht) has continuous sample paths the mapping (t, x) 7→
Φt(x) has to be jointly continuous for all (t, x) ∈ [0, T ]× R+.
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(ii) If Φt is decreasing for all t ∈ [0, T ], we have

Z ≤ 0 dt⊗ P a.e.

Proof: We only prove (i); (ii) follows analogously.
Without the obstacle requirement in (14), and just the terminal condition

YT = ΦT (XT ), it follows from a result in Chen, Kulperger, and Wei [3]19 that
Z ≥ 0 dt ⊗ P a.e. To achieve the passage to reflected BSDEs we employ a
penalization method.20

Let n ∈ N, and (Y
(n)
t , Z

(n)
t ) be the unique solution of the penalized BSDE

with dynamics

Y
(n)
t = ΦT (XT ) +

∫ T

t

[f(s, Y (n)
s , Z(n)

s ) + n(Y (n)
s − Φs(Xs))

−︸ ︷︷ ︸
=:f̃(s,Xs,Ys,Zs)

]ds−
∫ T

t

Z(n)
s dWs,

t ∈ [0, T ], (x)− := max{−x, 0}, and f(t, y, z) = −ry − κ|z| as above.
f̃ satisfies the assumptions of a generator for a BSDE as stated in the

detour for (reflected) BSDEs.21 In Chen, Kulperger, and Wei [3] the gen-
erator of the BSDE considered does not depend on X·. Fortunately, the
map x 7→ f̃(t, x, y, z) is increasing for all t ∈ [0, T ], y, z ∈ R if and only if
x 7→ Φt(x) is increasing for all t ∈ [0, T ]. Thus, a larger x leads to larger
generator f̃ and larger terminal payoff. This monotonicity behavior is com-
patible with the application of the comparison theorem for BSDEs which is
necessary to derive the result in Chen, Kulperger, and Wei [3]. Thus, the
result in Chen, Kulperger, and Wei [3] can also be derived for this penalized
BSDE. Hence,

Z(n) ≥ 0 dt⊗ P a.e.

Now we let n go to infinity. Then Z(n) converges to Z in L2(dt ⊗ P ), cf.
Section 6 in El Karoui, Kapoudjian, Pardoux, Peng, and Quenez [10]. By

19See Theorem 2 in Chen, Kulperger, and Wei [3]. It is proved by a generalization of the
Feynman-Kac formula for BSDEs in connection with the comparison theorem for BSDEs,
cf. Peng [18].

20Approximation via penalization is a standard method to transfer results on BSDEs to
RBSDEs, see El Karoui, Kapoudjian, Pardoux, Peng, and Quenez [10].

21The additional dependence on X· in terms of the function Φ· does not exhibit any
further difficulty here, cf. El Karoui, Peng, and Quenez [11].

17



standard subsequence argument we also obtain Z ≥ 0 dt⊗ P a.e. 2

Using the lemma we can prove the following theorem.

Theorem 3.7 (Claims with monotone payoffs) Consider an American
claim H with payoff at current time t given by Ht = Φt(Xt) ∀t ∈ [0, T ]. The
value of the optimal stopping problem under ambiguity aversion in (12) is
given by

Vt = ess sup
τ≥t

EQ? (
Φτ (Xτ ) γ

−1
τ−t|Ft

)
, t ∈ [0, T ].

The worst-case prior Q? can be specified by its Girsanov density zθ?

T .

(i) If Φt is increasing for all t ∈ [0, T ], we have Q? = Qκ, zθ?

T = zκ
T with

zκ
T = exp{−1

2
κ2T − κWT}.

(ii) If Φt is decreasing for all t ∈ [0, T ], we have Q? = Q−κ, zθ?

T = z−κ
T with

z−κ
T = exp{−1

2
κ2T + κWT}.

In both cases, an optimal stopping time is given by

τ ?
t := inf{s ∈ [t, T ]|Vs = Φs(Xs)}.

Proof: Let (Yt, Zt, Kt) be the unique solution of (14). For t ∈ [0, T ]
we have Vt = Yt = Y θ?

t = ess supτ≥t EQ? (
Φτ (Xτ ) γ

−1
τ−t|Ft

)
by duality, see

Theorem 3.3. This also verifies the statement about an optimal stopping
time.

In case (i), by Lemma 3.6 we know that Z ≥ 0 dt⊗ P a.e. Hence,

f(t, Yt, Zt) = −rYt − κZt dt⊗ P a.e.

which implies

f(t, Yt, Zt) = f θ?

(t, Yt, Zt) dt⊗ P a.e.
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for θ? = (κ) ∈ Θ. So, the worst-case prior is given by Q? = Qκ where Qκ is
identified by its Girsanov density

zκ
T = exp{−1

2
κ2T − κWT}.

In case (ii), f(t, Yt, Zt) = −rYt + κZt dt ⊗ P a.e. Therefore we identify
Q? = Q−κ as the worst-case prior. 2

The preceding theorem’s proof relies heavily on the close relationship
between optimal stopping problems and RBSDEs, the comparison theorem
for (reflected) BSDEs, and the Markovian framework which is essential for
Lemma 3.6. In discrete time, the corresponding theorem has been proven
by a generalized backward induction and first-order stochastic dominance,
Riedel [22]. As a direct application, we quickly collect the conclusions for
the American call and put option.

Corollary 3.8 (American call) Given L > 0, let the payoff from exercis-
ing the claim be Ht := (Xt−L)+ for all t ∈ [0, T ]. Then Qκ is the worst-case
measure. Thus, a risk-neutral buyer of an American call option determines
an optimal stopping rule under the prior Qκ.

Corollary 3.9 (American put) Given L > 0, let Ht := (L−Xt)
+ for all

t ∈ [0, T ]. Then Q−κ is the worst-case measure and a risk-neutral buyer of
an American put option utilizes an optimal stopping rule for the prior Q−κ.

The interpretation of these results is as follows. Exactly as in the correspond-
ing discrete time setting, the ambiguity averse buyer uses for her valuation
of a call option for example the prior under which the underlying stock price
possesses the lowest possible drift rate among all priors of the set. That is,
under the worst-case prior Qκ, the stock evolves according to the dynamics
of

dXt = (r − σκ)Xtdt+ σXtdW
κ
t .

In the case of an American put option she assumes the highest possible drift
rate corresponding to the following stochastic evolution of the stock with
respect to Q−κ

dXt = (r + σκ)Xtdt+ σXtdW
−κ
t .
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Since X is a Markov process, we write X t,x
s , s ≥ t to indicate the price of

the stock at time s under the presumption that it is equal to x at time t, i.e.,
X t,x

t = x. As discussed above, by the Markovian structure of (14) and X as
the only randomness, we also write (Y t,x

s , Zt,x
s , Kt,x

s )s∈[t,T ] for the solution of
(14) to indicate the Markovian framework. That is, the solution Y· can be
written as a function of time and state X·, (see Section 4 in El Karoui, Peng,
and Quenez [11] or Section 8 in El Karoui, Kapoudjian, Pardoux, Peng, and
Quenez [10]).

Using the Markovian structure, the value function Vt, t ∈ [0, T ] in The-
orem 3.7 simplifies to a function depending solely on the present time and
present stock price. That is, under the assumption of Xt = x at time t
the value of the optimal stopping problem under ambiguity aversion in (12)
reduces to

Vt = Y t,x
t = ess sup

τ≥t
ess inf

Q∈P
EQ
(
Φτ (Xτ ) γ

−1
τ−t|Xt = x

)
= sup

τ≥t
EQ? (

Φτ (X
t,x
τ ) γ−1

τ−t

)
=: u(t, x).

Remark 3.10 The value in (12) is strictly a function in the above setting,
i.e. u of the present time t and the present stock price Xt. Note that we
did not assume this to determine the worst-case prior. In particular we did
not assume that the value function u(t, x) is differential with respect to x and
increasing in x, decreasing, respectively, an assumption often made. The
proofs of Lemma 3.6 and Theorem 3.7 do not require these assumptions, see
also Chen, Kulperger, and Wei [3].

Besides, the monotonicity of x 7→ u(t, x) follows directly by comparison
theorem. In case (i) of Theorem 3.7 for instance, the mapping x 7→ Φs(X

t,x
s )

increases because x 7→ X t,x
s increases22 for each s ∈ [t, T ]. Then, by compar-

ison theorem for RBSDEs, we obtain that u(t, x) is monotone increasing in
x.

The usual characterization of Markovian processes yields the following result
concerning the remaining maturity of an American put option. The option’s
American style as well as the fact that the payoff from exercising is just a
function depending on the current stock price is essential for this result.

22See the comparison result for forward SDEs in for example Karatzas and Shreve [14].
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Lemma 3.11 Consider an American put option with strike price L. Given
t ∈ [0, T ], the solution of the optimal stopping problem under ambiguity aver-
sion at time t Vt decreases in t.

Proof: Let (t, x) ∈ [0, T ]×R+ and (Y t,x
s , Zt,x

s , Kt,x
s ) be the unique solution

of the RFBSDE in (14) with obstacle Hs = (L − X t,x
s )+ ∀s ∈ [t, T ]. The

Markov property of X and Y , Corollary 3.9, and Theorem 3.3 yield

Y t,x
t = sup

0≤τ≤T−t
EQ−κ (

(L−X0,x
τ )+γ−1

τ

)
.

Now let ε > 0 with t+ ε ≤ T . Again,

Y t+ε,x
t+ε = sup

0≤τ≤T−t−ε
EQ−κ (

(L−X0,x
τ )+γ−1

τ

)
.

Hence, Y t+ε,x
t+ε ≤ Y t,x

t and the claim follows by duality, cf. Theorem 3.3. 2

For later use let us denote for t ∈ [0, T ] the value in (12) for an American
put option with strike price L under the assumption of Xt = x by

Yt,x
t = sup

τ≥t
EQ−κ (

(L−X t,x
τ )+γ−1

τ−t

)
. (15)

4 Exotic options

In this section we leave the world of Markovian claims with monotone payoffs
in the current stock price. We move on to consider the problem in (12)
for exotic American claims. With the help of two particular examples, we
analyze the effect of ambiguity aversion on the optimal stopping behavior in
this more involved situation. Examples are a shout option and an American
barrier option in terms of an up-and-in put.

Similar to the discrete time setting in Chudjakow and Vorbrink [5], the
analysis of these examples demonstrates one of the main differences to the
classical situation without ambiguity. Even though multiple priors lead to a
more complex evaluation, the approach is more appropriate in the sense of
investment evaluation for accounting and risk measurement.

We will see that dynamical model adjustments occur. With these ad-
justments the agent takes into account changing beliefs based on realized
events within the evaluation period. As such, the multiple priors setting
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induces particular endogenous dynamics. The agent evaluates her stopping
behavior under the worst-case scenario, the worst-case prior. This prior will
depend crucially on the payoff process as well as on events occurring during
the lifetime of the claim under consideration.

4.1 American up-and-in put option

An American up-and-in put presents its owner the right to sell a specified
underlying stock at a predetermined strike price under the condition that the
underlying stock first has to rise above a given barrier level.

Formally, the payoff from exercising the option at time t ∈ [0, T ] is defined
as

Ht := (L−Xt)
+1{τH≤t} (16)

where τH := inf{0 ≤ s ≤ T |Xs ≥ H} ∧ T denotes the knock-in time at
which the option becomes valuable. This is the first time that the underlying
reaches the barrier. L defines the strike price and H the barrier. We assume
H > L to focus on the most interesting case. We hope not to confuse the
reader by the ambiguous use of the letter H denoting the barrier and the
claim’s payoff process at the same time.

Using previous results and first-order stochastic dominance, we obtain
the following evaluation scheme for the American up-and-in put option.

Theorem 4.1 (Up-and-in put) Consider an American up-and-in put with
payoff as defined in (16). The function

Vt = ess sup
τ≥t

EQ? (
Hτγ

−1
τ−t|Ft

)
solves the optimal stopping problem under ambiguity aversion in (12) whereas
the worst-case prior Q? = Qθ?

is specified by the Girsanov density

z θ?

T := exp

{
−1

2

∫ T

0

(θ?
s)

2ds−
∫ T

0

θ?
sdWs

}
with θ? defined as

θ?
t :=

{
κ, if t < τH

−κ, if τH ≤ t ≤ T
.
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An optimal stopping time is given by

τ ?
t := inf

{
t ∨ τH ≤ s ≤ T |Vs = (L−Xs)

+
}
.

The theorem states that the agent considers the stopping problem under
the measure Qθ?

. It is the pasting of the measures Qκ and Q−κ at the
time of knock-in. Thus, she assumes the stock to evolve according to the
least favorable drift rate r − σκ at the beginning of the contract. During
the contract’s lifetime, she changes her beliefs and assumes the highest
possible drift rate r + σκ for the underlying. That is, she adapts her
beliefs based on transpired events corresponding to her pessimistic point of
view. So at τH , the point in time when the option knocks in the agent’s
beliefs or fears change abruptly. From a decision theoretical point of view,
this result illustrates that optimal stopping under ambiguity aversion is
behaviorally distinguishable from optimal stopping under expected utility.
The buyer of an American up-and-in put for example behaves as two
readily distinguishable expected utility maximizers. This is so because the
worst-case measure P̂ depends on the payoff process.

Proof: In this section we provide an overview of the main ideas. More
details can be found in Appendix B.

Given the event {τH ≤ t} the claim equals the usual American put option.
Hence, Vt = ess supτ≥t EQ−κ (

(L−Xτ )
+γ−1

τ−t|Ft

)
.

On {τH > t} we have Vt = ess infQ∈P EQ
(
VτH

γ−1
τH−t|Ft

)
, (see the appendix

for more details). VτH
represents the value of the optimal stopping problem

under ambiguity aversion at the specific time of knock-in.
Let us write g(s) := Y s,H

s where Y s,H
s is the value of the American put

option under ambiguity aversion, see (15). By Lemma 3.11 the function
s 7→ g(s) decreases, as is s 7→ γ−1

s−t. In the appendix we show that τH is
stochastically largest under Qκ in the set of all priors P . That is, for all t, s
with t < s ≤ T , we have on {τH > t} and for all θ ∈ Θ

Qκ (τH ≤ s|Ft) ≤ Qθ (τH ≤ s|Ft) .

Then the usual characterization of first-order stochastic dominance, Mas-
Colell, Whinston, and Green [16], yields on {τH > t}

EQκ (
g(τH)γ−1

τH−t|Ft

)
≤ EQθ (

g(τH)γ−1
τH−t|Ft

)
.
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Thus the worst-case prior Q? is equal to Qκ on {τH > t}. Setting both
together, Q? is given by Qθ?

with θ? as defined in the theorem. Since θ?

is right-continuous, it is progressively measurable, per Proposition 1.13 in
Karatzas and Shreve [14]. Hence θ? ∈ Θ, which finishes the proof. 2

An analogous result holds for the American down-and-in call option. In
that case, the agent solves the stopping problem under the worst-case scenario
Q? = Qθ?

where θ? is now defined as

θ?
t :=

{
−κ, if t < τH

κ, if τH ≤ t ≤ T
.

Here, τH denotes the initial time when the underlying stock price breaks from
above through the barrier H.

4.2 Shout option

A shout option gives its owner the right to determine the strike price of
a corresponding call or put option. We focus on the European put option
version. That is, we consider a shout option that gives its buyer the right to
freeze the asset price at any time τS before maturity to insure herself against
later losses. At maturity the buyer obtains the payoff

HT =

{
XτS −XT , if XT < XτS

0, else
. (17)

The value of the optimal stopping problem under ambiguity aversion for a
shout option at time t ≤ τS ≤ T is defined as

Vt = ess sup
τS≥t

ess inf
Q∈P

EQ
(
(XτS −XT )+γ−1

T−t|Ft

)
. (18)

We only consider the problem for times t ≤ τS. This is the most interesting
case since the owner has not fixed the strike price yet. She still faces the
optimal stopping decision which is the decision of shouting.

To evaluate this contract under ambiguity aversion, we first mention the
following observation already made in the discrete time setting, Chudjakow
and Vorbrink [5]. This option is equivalent to the following: upon shouting
the owner receives a European put option (at the money) with strike XτS
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and remaining time to maturity T − τS. We obtain the following evaluation
scheme.

Theorem 4.2 (Shout option) Consider a shout option at its starting time
zero with a payoff as defined in (17). The solution of (18) at time zero
simplifies to

V0 = sup
τS≥0

EQ? (
(XτS −XT )+γ−1

T

)
where the worst-case prior Q? = Qθ?

is specified by the Girsanov density zθ?

with θ? defined by

θ?
t :=

{
κ, if t < τS

−κ, if τS ≤ t ≤ T
.

An optimal shouting time is given by

τS := inf
{

0 ≤ t ≤ T |Vt = EQ−κ (
(Xt −XT )+γ−1

T−t|Ft

)}
.

So in this case the ambiguity averse agent changes her beliefs after taking
action. Before shouting she assumes the lowest drift rate (r − σκ), and the
highest rate (r + σκ) afterwards. Both rates correspond to the respective
least favorable rate, see also Chudjakow and Vorbrink [5]. Similarly to
the up-and-in put, her pessimistic perspective leads to fearing the lowest
possible returns of the risky asset before shouting and the highest possible
returns hence.

Proof: As noted above, at the time of shouting, the value of the contract
in (18) is

ess inf
Q∈P

EQ
(
(XτS −XT )+γ−1

T−τS |FτS

)
.

This is a European type of monotone problem. The payoff at maturity T is
ΦT (x) := (XτS − x)+ which is monotone decreasing in x. As a special case
of Theorem 3.7 we derive the value at the time of action as

ess inf
Q∈P

EQ
(
(XτS −XT )+γ−1

T−τS |FτS

)
= g(τS, XτS)
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where g(t, x) := EQ−κ (
(x−X t,x

T )+γ−1
T−t|Ft

)
.

To determine the value before shouting, consider the following reflected
FBSDE with obstacle (g(t,Xt))t∈[0,T ]{

dXt = rXtdt+ σXtdWt, X0 = x

−dYt = −rYt − κ|Zt|dt+ dKt − ZtdWt, YT = g(T,XT )
. (19)

At this point it is important to note that the function g(t,Xt) satisfies the
assumptions for presenting an obstacle for a reflected BSDE. The joint con-
tinuity in (t, x) follows by the properties of solutions to (reflected) BSDEs.23

Since g can be rewritten in the following form

g(t, x) = xEQ−κ

((
1− exp{(r − σ2

2
)(T − t) + σ(WT −Wt)}

)+

γ−1
T−t

∣∣Ft

)

we deduce that the function x 7→ g(t, x) is increasing for all t ∈ [0, T ]. Using
Theorem 3.7 we conclude

V0 = Y0 = sup
τ≥0

EQκ (
g (τ,Xτ ) γ

−1
τ

)
= sup

τ≥0
EQ? (

(Xτ −XT )+γ−1
T

)
.

The last equality follows from the law of iterated expectation. Additionally
we obtain an optimal shouting time τS. It is determined as the first time that
value V· is equal to g(·, X·), the value of the European put under ambiguity
aversion. This proves the theorem. θ? ∈ Θ since it is right-continuous, again
implying progressive measurability. 2

5 Conclusion

The paper studies the optimal stopping problem of the buyer of various
American options in a framework of model uncertainty in continuous time.
Model uncertainty induced by imprecise information is mirrored in a set of
multiple probability measures.

Each measure corresponds to a specific drift rate for the stock price
process in the respective market model. The agent then is allowed to adapt

23The value for the European put option is obtained as the solution of a BSDE. Due to
the European version of the put option g even belongs to C1,2([0, T ]×R+), cf. El Karoui,
Peng, and Quenez [11].
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the model she uses to assign a value to the claim according to the worst
possible model due to her ambiguity averse attitude. We characterize the
worst possible model by determining a worst-case measure that drives the
processes within this model. We established a link to the calculus of reflected
BSDEs to solve the optimal stopping problem from arising given the options’
American style under multiple priors.

While the solution for plain vanilla options is straightforward, the situ-
ation differs if the payoff of the option is more complex. The buyer of such
option adapts her beliefs to the state of the world, and to the overall effect of
Knightian uncertainty. This leads to dynamical structure of the worst-case
measure highlighting the structural differences between standard models in
finance and the multiple priors models.

The characteristics are exemplified by solving the problem explicitly for
an American barrier option and a shout option. Particularly with regard
to risk management objectives, these models are more appropriate since the
valuation becomes less sensitive in terms of varying model data and provides
more robust exercise strategies.

A Proof of Theorem 3.3.3

This proof is a slight modification of the proof of Theorem 7.2 in El Karoui,
Kapoudjian, Pardoux, Peng, and Quenez [10]. Since their formulation of the
theorem is not directly related to multiple priors, we present the main ideas
here.

Let (Ht) define the obstacle and HT the terminal payoff of all regarded
RBSDEs.

Consider the unique solution (Y 0
t , Z

0
t , K

0
t ) of the RBSDE with dynamics

−dY 0
t = −rY 0

t︸ ︷︷ ︸
=f0(t,Y 0

t ,Z0
t )

dt+ dK0
t − Z0

t dWt.

Then for each t ∈ [0, T ]

Y 0
t = ess sup

τ≥t
E
(∫ τ

t

−rY 0
s ds+Hτ |Ft

)
,

see Proposition 2.3 in El Karoui, Kapoudjian, Pardoux, Peng, and Quenez
[10]. Analogously for any θ ∈ Θ, the solution (Y θ

t , Z
θ
t , K

θ
t ) of the RBSDE
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with dynamics

−dY θ
t = (−rY θ

t − θtZ
θ
t )︸ ︷︷ ︸

=fθ(t,Y θ
t ,Zθ

t )

dt+ dKθ
t − Zθ

t dWt

satisfies for t ∈ [0, T ]

Y θ
t = ess sup

τ≥t
E
(∫ τ

t

(−rY θ
s − θsZ

θ
s )ds+Hτ |Ft

)
. (20)

Now consider for t ∈ [0, T ] and any probability measure Q the equation

Y Q
t = ess sup

τ≥t
EQ

(∫ τ

t

−rY Q
s ds+Hτ |Ft

)
. (21)

If Q = Qθ for some θ ∈ Θ then the solution (Y Q
t , Z

Q
t , K

Q
t ) of the RBSDE

with dynamics

−dY Q
t = −rY Q

t dt+ dKQ
t − ZQ

t dW
θ
t

satisfies Equation (21). Using Girsanov’s theorem, W θ = W +
∫ ·

0
θsds, we

can rewrite the dynamics as

−dY Q
t = (−rY Q

t − θtZ
Q
t )dt+ dKQ

t − ZQ
t dWt.

Thus, by uniqueness, we obtain Y Q = Y θ, and as a consequence

ess inf
Q∈P

Y Q
t = ess inf

θ∈Θ
Y θ

t .

Since f(t, y, z) ≤ f θ(t, y, z) ∀y, z ∈ R,∀θ ∈ Θ, we obtain by comparison
for RBSDEs, Theorem 4.1 in El Karoui, Kapoudjian, Pardoux, Peng, and
Quenez [10] that

Yt ≤ Y θ
t ∀θ ∈ Θ.

Since Θ is weakly compact in L1([0, T ] × Ω),24 for any real-valued mea-
surable process Z there exists θ? ∈ Θ such that θ?

tZt = maxθ∈Θ θtZt =

24See Chen and Epstein [2]. This again induces the weak compactness of P which is
that induced by the set of bounded measurable functions.
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κ|Zt| ∀t ∈ [0, T ], by Lemma B.1 in Chen and Epstein [2]. Hence f(t, y, z) =
f θ?

(t, y, z) dt⊗ P a.e. ∀y, z ∈ R and

Yt = Y θ?

t ≥ ess inf
θ∈Θ

Y θ
t , t ∈ [0, T ].

In brief,

Yt = ess inf
Q∈P

ess sup
τ≥t

EQ

(∫ τ

t

−rYsds+Hτ |Ft

)
= ess inf

θ∈Θ
ess sup

τ≥t
E
(∫ τ

t

−rYs − θsZsds+Hτ |Ft

)
= ess inf

θ∈Θ
Y θ

t .

Using Proposition 7.1 in El Karoui, Kapoudjian, Pardoux, Peng, and Quenez
[10] and Bayes’ rule (Lemma 5.3 in Karatzas and Shreve [14]) we obtain for
each θ ∈ Θ

Y θ
t = ess sup

τ≥t
E
(
Hτγ

−1
τ−t exp{−

∫ τ

t

θsdWs −
1

2

∫ τ

t

θ2
sds}|Ft

)
= ess sup

τ≥t
E
(
Hτγ

−1
τ−t

zθ
τ

zθ
t

∣∣Ft

)
= ess sup

τ≥t
EQθ (

Hτγ
−1
τ−t|Ft

)
.

Hence,

Yt = ess inf
θ∈Θ

ess sup
τ≥t

E
(
Hτγ

−1
τ−t

zθ
τ

zθ
t

∣∣Ft

)
= ess inf

Q∈P
ess sup

τ≥t
EQ
(
Hτγ

−1
τ−t|Ft

)
.

We clearly have

Yt ≥ ess sup
τ≥t

ess inf
θ∈Θ

E
(
Hτγ

−1
τ−t

zθ
τ

zθ
t

∣∣Ft

)
.

To obtain the other inequality, we use the stopping time Dθ
t := inf{s ∈

[t, T ]|Y θ
s = Hs} which is optimal in Equation (20) for each fixed θ ∈ Θ, see
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El Karoui, Kapoudjian, Pardoux, Peng, and Quenez [10], Theorem 7.2. Then

Yt = EQθ?
(
HDθ?

t
γ−1

Dθ?
t −t

|Ft

)
= ess inf

θ∈Θ
E

(
HDθ

t
γ−1

Dθ
t−t

exp{−
∫ Dθ

t

t

θsdBs −
1

2

∫ Dθ
t

t

θ2
sds}|Ft

)

≤ ess sup
τ≥t

ess inf
θ∈Θ

E
(
Hτγ

−1
τ−t

zθ
τ

zθ
t

∣∣Ft

)
= ess sup

τ≥t
ess inf

Q∈P
EQ
(
Hτγ

−1
τ−t|Ft

)
.

This proves for t ∈ [0, T ]

Yt = ess sup
τ≥t

ess inf
Q∈P

EQ
(
Hτγ

−1
τ−t|Ft

)
= Vt.

By a continuity argument Yt = Vt ∀t ∈ [0, T ] a.s.,25 and τ ?
t is optimal for Vt.

Since the minimum for f is attained we conclude the claim for t = 0.

B Proof of Theorem 3.4.1

We start with a lemma yielding that τH is stochastically largest under Qκ in
the set of priors P in the following sense.

Lemma B.1 On {τH > t} we have for all t, s with t < s ≤ T and all θ ∈ Θ

Qκ (τH ≤ s|Ft) ≤ Qθ (τH ≤ s|Ft) .

Proof: Throughout this proof, all results are conditioned on the event
{τH > t}. Consider for any u ∈ (t, s] the set {Xu ≥ H} and define Mu :=
1
σ
[ln H

Xt
− (r − σ2

2
)(u − t)]. Let θ ∈ Θ. By definition and construction of Qθ

and W θ by means of Girsanov’s theorem we have

Xu = Xt exp{(r − σ2

2
)(u− t) + σ(Wu −Wt)}

= Xt exp{(r − σ2

2
)(u− t) + σ(W θ

u −W θ
t )− σ

∫ u

t

θsds}

25Cheng and Riedel [4] showed that there exists a version of (Vt) that is right-continuous.
Using this version we can deduce the claim.
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for any θ ∈ Θ. Furthermore,

Qθ
(
{Xu ≥ H}|Ft

)
= Qθ

(
{Wu −Wt ≥Mu}|Ft

)
= Qθ

(
{W θ

u −W θ
t −

∫ u

t

θsds ≥Mu}|Ft

)
≥ Qθ

(
{W θ

u −W θ
t − κ(u− t) ≥Mu}|Ft

)
= Qκ

(
{W κ

u −W κ
t − κ(u− t) ≥Mu}|Ft

)
= Qκ

(
{Wu −Wt ≥Mu}|Ft

)
= Qκ

(
{Xu ≥ H}|Ft

)
.

The inequality holds since for any θ ∈ Θ

{W θ
u −W θ

t −
∫ u

t

θsds ≥Mu} ⊇ {W θ
u −W θ

t − κ(u− t) ≥Mu}, (22)

the subsequent equality holds since both W θ under Qθ and W κ under Qκ are
standard Brownian motions and Mu is deterministic on Ft. Due to⋃

u∈(t,s]

{Xu ≥ H} = {τH ≤ s} ∈ Fs

and since the inclusion in (22) also holds for the union we conclude the
result. 2

Cheng and Riedel [4] verified that the optimal stopped value process is
a P-multiple priors martingale in the sense that it, say (Mt) satisfies Mt =
ess infQ∈P EQ (Ms|Ft) ∀s, t ∈ [0, T ] with s ≥ t.26

To avoid any confusion, let us denote their value process by (V̄t∧τ?)t∈[0,T ],
where τ ? is an optimal stopping time. In their setting, V̄t denotes the value
of the optimal stopping problem after time t at time zero.27 In our setting,
Vt denotes the value of the optimal stopping problem after time t at time t.

That is, (Vt∧τ?γ−1
t∧τ?) = (V̄t∧τ?) is a P-multiple priors martingale. By

optional sampling for P-multiple priors martingales, Cheng and Riedel [4] or
Peng [18] for any stopping time σ with σ ≥ t a.s.

V̄t∧τ? = ess inf
Q∈P

EQ
(
V̄σ∧τ?|Ft∧τ?

)
26Cheng and Riedel [4] called this a g-martingale. See also Peng [18].
27To fit into our setting the payoff for (V̄t) has to be the discounted payoff which is

Htγ
−1
t for each t ∈ [0, T ].
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which yields

Vt∧τ? = ess inf
Q∈P

EQ
(
Vσ∧τ?γ−1

σ∧τ?−t∧τ?|Ft∧τ?

)
. (23)

Using (23) we can rewrite the optimal stopped value process as follows.

Lemma B.2 Given t ∈ [0, T ]. We have

Vt∧τ? = Vτ?1{τ?≤t} + Vt1{τH≤t}1{τ?>t} + ess inf
Q∈P

EQ
(
VτH

γ−1
τH−t|Ft

)
1{τH>t}.

Proof: First note that exercising the option before knock-in yields payoff
zero and therefore cannot be optimal. Hence τ ? ≥ τH a.s. While keeping
this in mind, consider the equality in (23) for the stopping time σ := τH ∨ t
yielding

Vt∧τ? = ess inf
Q∈P

EQ
(
Vτ?1{τ?≤t} + VτH∨t γ

−1
τH∨t−t1{τ?>t}|Ft∧τ?

)
= Vτ?1{τ?≤t} + ess inf

Q∈P
EQ
(
VτH∨t γ

−1
τH∨t−t|Ft

)
1{τ?>t}

= Vτ?1{τ?≤t} + ess inf
Q∈P

EQ
(
Vt1{τH≤t} + VτH

γ−1
τH−t1{τH>t}|Ft

)
1{τ?>t}

= Vτ?1{τ?≤t} + Vt1{τH≤t}1{τ?>t} + ess inf
Q∈P

EQ
(
VτH

γ−1
τH−t|Ft

)
1{τH>t}

which proves the claim. Besides optional sampling, which heavily requires
time-consistency of P , we used that τH and τ ? are stopping times, and
ess infQ∈P EQ (S + η|Ft) = η + ess infQ∈P EQ (S|Ft) for any Ft-measurable
random variable η and square-integrable F -measurable S. 2

The expectation occurring in Lemma B.2 remains to be evaluated. VτH

corresponds to the value of the American put option under ambiguity aver-
sion. At knock-in when s = τH , we know the value is given by

g(s) := Vs = Ys,H
s = ess sup

τ≥s
EQ−κ (

(L−Xs,H
τ )+γ−1

τ−s

)
.

γ−1
s−t and g(s) are decreasing in s, per Lemma 3.11. Therefore, by Lemma

B.1 and the usual characterization of first-order stochastic dominance, Mas-
Colell, Whinston, and Green [16] we deduce on {τH > t} for any θ ∈ Θ

Vt = EQκ (
g(τH)γ−1

τH−t|Ft

)
≤ EQθ (

g(τH)γ−1
τH−t|Ft

)
.
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On the complementary event {τH ≤ t} the claim equals the usual Ameri-
can put option. Hence, it is evaluated with respect to Q−κ. Setting both
together, θ? is as claimed in the theorem. By right-continuity it is progres-
sively measurable. Therefore, θ? ∈ Θ and Qθ?

is the worst-case prior for the
American up-and-in put problem. This finishes the proof.
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[7] Delbaen, F., S. Peng, and E. R. Gianin (2010): “Representation of
the penalty term of dynamic concave utilities,” Finance and Stochastics,
14, 449–472.

[8] Duffie, D., and L. Epstein (1992): “Stochastic differential utility,”
Econometrica, 60, 353–394.

[9] El Karoui, N. (1979): “Les aspects probabilistes du controle stochas-
tique,” in Ecole dEte de Probabilites de Saint-Flour, ed. by C. Dellacherie,
and P. Meyer, pp. 74–238.

33



[10] El Karoui, N., C. Kapoudjian, E. Pardoux, S. Peng, and

M. C. Quenez (1997): “Reflected solutions of backward SDE’S, and
related obstacle problems for PDE’S,” The Annals of Probability, 25, No.
2, 702–737.

[11] El Karoui, N., S. Peng, and M. C. Quenez (1997): “Backward
Stochastic Differential Equations in Finance,” Mathematical Finance, 7,
No. 1, 1–71.

[12] El Karoui, N., and M. C. Quenez (1996): “Non-Linear Pricing The-
ory and Backward Stochastic Differential Equations,” in Financial Math-
ematics: Lecture Notes in Mathematics, ed. by W. J. Runggaldier, pp.
191–246. Springer.

[13] Hamadene, S., and J. P. Lepeltier (1995): “Zero-sum stochastic
differential games and backward equations,” Systems and Control Letters,
24, 259–263.

[14] Karatzas, I., and S. E. Shreve (1991): Brownian Motion and Sto-
chastic Calculus. Springer, 2 edn.

[15] Malliavin, P. (1997): Stochastic Analysis, vol. 313 of Grundlehren der
Mathematischen Wissenschaften. Springer-Verlag.

[16] Mas-Colell, A., M. D. Whinston, and J. Green (1995): Micro-
economic Theory. Oxford University Press.

[17] McDonald, R., and D. Siegel (1986): “The Value of Waiting to
Invest,” The Quarterly Journal of Economics, 101, 707–727.

[18] Peng, S. (1997): “BSDE and Related g-Expectation,” in Backward
Stochastic Differential Equations, Pitman Research Notes in Mathematics
364, ed. by N. El Karoui, and L. Mazliak, pp. 141–159. Addison Wesley
Longman Ltd.

[19] (2007): “G-Brownian Motion and Dynamic Risk Measure un-
der Volatility Uncertainty,” arXiv: 0711.2834.

[20] Peskir, G., and A. Shiryaev (2006): Optimal Stopping and Free-
Boundary Problems. Birkhäuser.
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