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exists an economy that has this asymmetric Nash bargaining solution as its unique
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1 Introduction

The inner core and asymmetric Nash bargaining solutions represent solution concepts for

cooperative games. The inner core is defined for cooperative games whereas asymmetric

Nash bargaining solutions are usually only applied to a subclass of cooperative games,

namely bargaining games. A recent contribution of Compte and Jehiel (2010) generalizes

the symmetric Nash bargaining solution to other cooperative games (with transferable

utility). In this paper we consider the relationship between the inner core and asymmetric

Nash bargaining solutions for bargaining games. Moreover, as an application of these

results we show how asymmetric Nash bargaining solutions can be justified in a general

equilibrium framework as a competitive payoff vector of a certain economy.

In the first section we give a literature overview to motivate our ideas. In the second

section we recall the definitions of the inner core, a bargaining game and asymmetric Nash

bargaining solutions. Afterwards, we investigate for bargaining games the relationship

between the inner core and the set of asymmetric Nash bargaining solutions. Finally, we

apply these results to market games and obtain by this a market foundation of asymmetric

Nash bargaining solutions.

2 Motivation and Background

The inner core is a refinement of the core for cooperative games with non-transferable

utility (NTU). For cooperative games with transferable utility (TU) the inner core co-

incides with the core. A point is in the inner core if there exists a transfer rate vector,

such that - given this transfer rate vector - no coalition can improve even if utility can

be transferred within a coalition according to this vector. So, an inner core point is in

the core of an associated hyperplane game where the utility can be transferred according

to the transfer rate vector. Qin (1993) shows, verifying a conjecture of Shapley and Shu-

bik (1975), that the inner core of a market game coincides with the set of competitive

payoff vectors of the induced market of that game. Moreover, he shows that for every

NTU market game and for any given point in its inner core there exists a market that

represents the game and further has this given inner core point as its unique competitive

payoff vector.

The Nash bargaining solution for bargaining games, a special class of cooperative

games, where just the singleton and the grand coalition are allowed to form, goes back

to Nash (1950, 1953). The (symmetric) Nash bargaining solution is defined as the maxi-

mizer of the product of the utilities over the individual rational bargaining set or as the

unique solution that satisfies the following axioms: Invariance to affine linear Transfor-

mations, Pareto Optimality, Symmetry and Independence of Irrelevant Alternatives. If
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the bargaining power of the players is different an asymmetric Nash bargaining solution

can be defined as the maximizer of an accordingly weighted Nash product. Concerning

the axiomatization this means that the Symmetry axiom is replaced by an appropriate

Asymmetry axiom, see Roth (1979). In addition to the axiomatic approach the literature

studies non-cooperative foundations to justify cooperative solutions like the (asymmetric)

Nash bargaining solution. The idea is to find an appropriate non-cooperative game whose

equilibrium outcomes coincide with a given cooperative solution (see for example Bergin

and Duggan (1999), Trockel (2000)). Here we study the foundation of the asymmet-

ric Nash bargaining solution by having this solution as a payoff vector of a competitive

equilibrium in a certain economy.

There are different approaches to consider the relationship between cooperative games

and economies or markets. On the one hand for example Shapley (1955), Shubik (1959)

Debreu and Scarf (1963) and Aumann (1964) consider economies as games. On the other

hand there is the approach to start with a cooperative game and to consider related

economies as it was introduced by Shapley and Shubik (1969, 1975).

Starting with a market Shapley (1955) considers markets as cooperative games with

two kinds of players, seller and buyer. He introduces in this context the general notion

of an ‘abstract market game’. This is a cooperative game with certain conditions on the

characteristic function. Shubik (1959) extends the ideas of Edgeworth (from 1881) and

studies ‘Edgeworth market games’. In particular he shows that if the number of players

of both sides in an Edgeworth market game is the same, then the set of imputations

coincides with the contract curve of Edgeworth. Furthermore, he considers non-emptiness

conditions for the core of this class of games. Debreu and Scarf (1963) show that under

certain assumptions a competitive allocation is in the core. Aumann (1964) investigates,

based among others on the oceanic games from Milnor and Shapley (1978)1, economies

with a continuum of traders and obtains that in this case the core equals the set of

equilibrium allocations.

Starting with a cooperative game Shapley and Shubik (1969) look at these problems

from a different viewpoint and study which class of cooperative games can be represented

by a market. A market represents a game if the set of utility allocations a coalition

can reach in the market coincides with the set of utility allocations a coalition obtains

according to the coalitional function of the game. Shapley and Shubik (1969) call any

game that can be represented by a market a ‘market game’. In the TU-case it turns

out that every totally balanced TU game is a market game. Furthermore, Shapley and

Shubik (1975) start with a TU game and show that every payoff vector in the core of

that game is competitive in a certain market, the direct market. The direct market has a

1The reference Milnor and Shapley (1978) is based on the Rand research memoranda from the early
1960’s.
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nice structure: Besides a numeraire commodity there are as many goods as players and

initially every player owns one unit of ‘his personal commodity’. Moreover, Shapley and

Shubik (1975) show that for a given point in the core there exists at least one market

that has this payoff vector as its unique competitive payoff vector.

The idea of market games was applied to NTU games by Billera and Bixby (1974).

Analogously to the result of Shapley and Shubik (1969) they show that every totally

balanced game, that is compactly convexly generated, is an NTU market game. Qin

(1993) compares the inner core of NTU market games with the competitive payoff vectors

of markets that represent this game. He shows that for a given NTU market game there

exists a market such that the set of equilibrium payoff vectors coincides with the inner

core of the game. In a second result, he shows that given an inner core point there exists

a market, which represents the game and has this given inner core point as its unique

competitive equilibrium payoff. Brangewitz and Gamp (2011) extend the results of Qin

(1993) to a large class of closed subsets of the inner core.

Apart from this literature Trockel (1996, 2005) considers bargaining games directly

as Arrow-Debreu or coalition production economies. One difference to other literature is

that he allows to obtain output in the production without requiring input. In contrast

to Shapley and Shubik (1969, 1975), Trockel (1996, 2005) considers NTU games rather

than TU games. Motivated by the approach of Sun et al. (2008) and the approach

of Billera and Bixby (1974), Inoue (2010) uses coalition production economies instead

of markets. Inoue (2010) shows that every compactly generated NTU game can be

represented by a coalition production economy. Moreover, he proves that there exists

a coalition production economy such that its set of competitive payoff vectors coincides

with the inner core of the balanced cover of the original NTU game.

Here we show that we can apply the main results of Qin (1993) to a special class

of NTU games, namely bargaining games. By that we obtain a market foundation of

the asymmetric Nash bargaining solution. In contrast to Trockel (1996, 2005) we do not

use Arrow-Debreu or coalition production economies directly but we consider bargaining

games as market games by using the economies of Qin (1993). By this we relate the

approach of Trockel (1996, 2005) on the one hand with the ideas of Qin (1993) on the

other hand. Our result, similar to Trockel (1996), can be seen as a market foundation

of asymmetric Nash bargaining solutions in analogy to the results on non-cooperative

foundations of cooperative games (see Trockel (2000), Bergin and Duggan (1999)).
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3 Inner Core and Asymmetric Nash Bargaining Solu-

tion

3.1 NTU Games and the Inner Core

Let N = {1, ..., n} with n ∈ N and n ≥ 2 be the set of players. Let N = {S ⊆ N |S 6= ∅}

be the set of non-empty coalitions and P(Rn) = {A|A ⊆ Rn} be the set of all subsets of

Rn. Define RS
+ =

{

x ∈ Rn
+|xi = 0, ∀i /∈ S

}

.

Definition (NTU game). An NTU game is a pair (N,V ), where the coalitional function

is defined as

V : N → P(Rn)

such that for all non-empty coalitions S ⊆ N we have V (S) ⊆ RS , V (S) 6= ∅ and V (S)

is S-comprehensive.

Definition (compactly (convexly) generated). An NTU game (N,V ) is compactly (con-

vexly) generated if for all S ∈ N there exists a compact (convex) CS ⊆ RS such that the

coalitional function can be written as V (S) = CS − RS
+.

In order to define the inner core we first consider a game that is related to a compactly

generated NTU game. Given a compactly generated NTU game we define for a given

transfer rate vector λ ∈ RN
+ the λ-transfer game.

Definition (λ-transfer game). Let (N,V ) be a compactly generated NTU game and let

λ ∈ RN
+ . Define the λ-transfer game of (N,V ) by (N,Vλ) with

Vλ(S) = {u ∈ RS |λ · u ≤ vλ(S)}

where vλ(S) = max{λ · u|u ∈ V (S)}.

Qin (1994, p.433) gives the following interpretation of the λ-transfer game: “The idea

of the λ-transfer game may be captured by thinking of each player as representing a

different country. The utilities are measured in different currencies, and the ratios λi/λj

are the exchange rates between the currencies of i and j.” As for the λ-transfer game

only proportions matter we can assume without loss of generality that λ is normalized,

i.e. λ ∈ ∆n =
{

λ ∈ Rn
+|
∑n

i=1 λi = 1
}

. Define the positive unit simplex by ∆n
++ =

{

λ ∈ Rn
++

∣

∣

∣

∣

∑n
i=1 λi = 1

}

.

The inner core is a refinement of the core. The core C(V ) of an NTU game (N,V )

is defined as those utility allocations that are achievable by the grand coalition N such
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that no coalition S can improve upon this allocation. Thus,

C(V ) = {u ∈ V (N)| ∀S ⊆ N ∀u′ ∈ V (S) ∃ i ∈ S such that u′
i ≤ ui}.

Definition (inner core, Shubik (1984)). The inner core IC(V ) of a compactly generated

NTU game (N,V ) is

IC(V ) = {u ∈ V (N)|∃λ ∈ ∆ such that u ∈ C(Vλ)}

where C(Vλ) denotes the core of the λ-transfer game of (N,V ).

This means a vector u is in the inner core if and only if u is affordable by the grand

coalition N and if u is in the core of the λ-transfer game. If a utility allocation u is in

the inner core, then u is as well in the core.

For compactly convexly generated NTU games we have the following remark:

Remark (Qin (1993), Remark 1, p. 337). The vectors of supporting weights for a utility

vector in the inner core must all be strictly positive.

3.2 NTU Bargaining Games and Asymmetric Nash Bargaining

Solutions

We consider a special class of NTU games, where only the singleton or the grand coalition

can form, namely NTU bargaining games. Two-person bargaining games with complete

information and the (symmetric) Nash bargaining solution were originally defined by

Nash (1950).

Alternatively to the notion based on Nash (1950)2 we adapt the notation and interpret

bargaining games here as a special class of NTU games where only the grand coalition

can profit from cooperation. Smaller coalitions are theoretically possible but there are

no incentives to form them as everybody obtains the same utility as being in a singleton

coalition. Starting from the definition of a bargaining game based on Nash (1950) we

define an NTU bargaining game. Let B ⊆ Rn be a compact, convex set and assume that

there exists at least one b ∈ B with b � 0. For normalization purposes we assume here

2Following the idea of Nash (1950) a n-person bargaining game with complete information is defined as
a pair (B, d) with the following properties:

1. B ⊆ Rn,

2. B is convex and compact,

3. d ∈ B and there exists at least one element b ∈ B such that d � a.

(d � b if and only if di < bi for all i = 1, ..., n. This means that there is a utility allocation in B that
gives every player a strictly higher utility than the disagreement point.)
B is called the feasible or decision set and d is called the status quo, conflict or disagreement point.
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that the disagreement outcome is 0 and that B ⊆ Rn
+. Nevertheless the results presented

here can easily be generalized to the case that the disagreement point is not equal to 0.

Definition (NTU bargaining game). Define an NTU bargaining game3 (N,V ) with the

generating set B using the player set N and the coalitional function

V : N −→ P (Rn)

defined by

V ({i}) : = {b ∈ Rn|bi ≤ 0, bj = 0, ∀j 6= i} = {0} − R
{i}
+ ,

V (S) : = {0} − RS
+ for all S with 1 < |S| < n,

V (N) : = {b ∈ Rn|∃ b′ ∈ B : b ≤ b′} = B − Rn
+.

The definition of an NTU bargaining game reflects the idea that smaller coalitions

than the grand coalition do not gain from cooperation. They cannot reach higher utility

levels as the singleton coalitions for all its members simultaneously. Only in the grand

coalition every individual can be made better off. In the further analysis we use the above

comprehensive version of an n-person NTU bargaining game.

One solution concept for bargaining games with complete information is that of an

asymmetric Nash bargaining solution. To define this solution we take as the set of possible

vectors of weights or bargaining powers the strictly positive n-dimensional unit simplex

∆n
++.

Definition (asymmetric Nash bargaining solution). The asymmetric Nash bargaining

solution with a vector of weights θ = (θ1, ..., θn) ∈ ∆n
++, for short θ-asymmetric, for

a n-person NTU bargaining game (N,V ) with disagreement point 0 is defined as the

maximizer of the θ-asymmetric Nash product given by
∏n

i=1 u
θi
i over the set V (N).4

Hereby, we consider the symmetric Nash bargaining solution as one particular asym-

metric Nash bargaining solution, namely the one with the vector of weights θ =
(

1
n
, ..., 1

n

)

.

Hence, the correct interpretation of “asymmetric” in this sense is “not necessarily sym-

metric”.

As the NTU bargaining game (N,V ) is compactly convexly generated, the set V (N)

is closed and convex and hence the maximizer above exists. Note that the assumption

3Billera and Bixby (1973, Section 4) modeled bargaining games in the same way.
4For bargaining games with a general threat point d ∈ Rn the θ-asymmetric Nash product is given by∏

n

i=1
(ui − di)

θi .
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that the vectors of weights are from ∆n
++ instead of Rn

++ can be made without loss of

generality.

The asymmetric Nash bargaining solution is a well-known solution concept for bar-

gaining games. Similarly to the symmetric Nash bargaining solution the asymmetric

Nash bargaining solution satisfies the axioms Invariance to affine linear Transformations,

Pareto Optimality and Independence of Irrelevant Alternatives. As for example shown in

Roth (1979, p.20), these axioms together with an appropriate asymmetry assumption fix-

ing the vector of weights characterize an asymmetric Nash bargaining solution. Dropping

only the Symmetry axiom without making an appropriate asymmetry assumption is not

sufficient to characterize the set of asymmetric Nash bargaining solutions. Peters (1992,

p.17–25) shows that one needs to consider so called “bargaining solutions corresponding

to weighted hierarchies” which include as a special case the asymmetric Nash bargaining

solutions.

3.3 Relationship between the Inner Core and Asymmetric Nash

Bargaining Solutions

Having introduced the concept of the inner core and the asymmetric Nash bargaining

solution, we investigate the relationship of these concepts for NTU bargaining games. As

in NTU bargaining games only the grand coalition can profit from cooperation, looking

at the inner core only transfer possibilities within the grand coalition need to be consid-

ered. Hereby, it turns out that there is a close connection between the inner core and

asymmetric Nash bargaining solutions:

Proposition 1. Let (N,V ) be a n-person NTU bargaining game with disagreement point

0 and generating set B ⊆ Rn
++.

• Suppose we have given a vector of weights θ = (θ1, .., θn) ∈ ∆n
++. Then the θ-

asymmetric Nash bargaining solution, aθ, is in the inner core of (N,V ).

• For any given inner core point aθ we can find an appropriate vector of weights

θ = (θ1, .., θn) ∈ ∆n
++ such that aθ is the maximizer of the θ-asymmetric Nash

product
∏n

i=1 u
θi
i .

Proof.

“⇒” Suppose aθ is the θ-asymmetric Nash bargaining solution. To prove that aθ is in the

inner core of (N,V ), we need to show that aθ is in the core of the NTU bargaining

game (N,V ) and that there exists a transfer rate vector λθ ∈ ∆n
+ such that aθ is

in the core of the λθ-transfer game (N,Vλθ ).
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aθ is the maximizer of the θ-asymmetric Nash product

n
∏

i=1

uθi
i

over V (N). Since there exists at least one u � 0 in V (N) the θ-asymmetric Nash

product is strictly positive and thus aθ is as well the maximizer of the logarithm of

the θ-asymmetric Nash product

g(u) =

n
∑

i=1

θilog(ui).

Since aθ is the maximizer of the θ-asymmetric Nash product, aθ is Pareto optimal.

Thus, there is no coalition S that can improve upon aθ. Remember that we are

considering bargaining games. Thus in particular no singleton coalition can improve

upon aθ. We conclude that aθ has to be in the core of the bargaining game (N,V ).

Next, we show that aθ is as well in the core of an appropriately chosen λ-transfer

game. The gradient of the function g(u) at aθ is given by ∂g
∂x

(aθ) =
(

θ1
aθ
1
, ..., θn

aθ
n

)

.

We show now, that we have

∂g

∂x
(aθ) · x ≤

∂g

∂x
(aθ) · aθ

for all x ∈ V (N).5 To see this, let x ∈ V (N) and t ∈ [0, 1] and define xt =

tx + (1 − t)aθ. Observe that xt ∈ V (N) since V (N) is convex. Now we get using

the maximality of aθ and by applying Taylor’s Theorem that

0 ≥ g(xt)− g(aθ) = (xt−aθ) ·
∂g

∂x
(aθ)+O

(

|xt − aθ|2
)

= t(x−aθ) ·
∂g

∂x
(aθ)+O(t2).

This means that we have
∂g

∂x
(aθ)(x− aθ) ≤ 0

and hence
∂g

∂x
(aθ) · x ≤

∂g

∂x
(aθ) · aθ.

Taking the normalized gradient, defining

λθ =

( θ1
aθ
1

∑n
i=1

θi
aθ
i

, ...,

θn
aθ
n

∑n
i=1

θi
aθ
i

)

5Compare for the idea of this argument Rosenmüller (2000, p. 549).
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and observing that λθ � 0 we obtain that aθ is in the core of the λθ-transfer game

(N,Vλθ ).

“⇐” If a ∈ Rn
+ is some given vector in the inner core of (N,V ), then a is in the core

of (N,V ) and there exists a transfer rate vector λ ∈ ∆n
+ such that a is in the core

of the λ-transfer game (N,Vλ). Since a is in the core of the λ-transfer game and

the NTU bargaining game (N,V ) is compactly generated, we know that λ needs to

be strictly positive in all coordinates. Otherwise at least one coalition could still

improve upon a. We have a � 0, because a is in the inner core. If we now take the

vector of weights of the asymmetric Nash bargaining solution equal to

θ = (θ1, .., θn) =

(

λ1a1
∑n

i=1 λiai
, ...,

λnan
∑n

i=1 λiai

)

then a is the maximizer of the asymmetric Nash product
∏n

i=1 u
θi
i over V (N).

Hereby, similar arguments as in the first step can be used to show that this is the

appropriate choice of θ. Hence a is the asymmetric Nash bargaining solution with

weights θ of the bargaining game (N,V ).

One direction of Proposition 1 can be generalized to the case where the generating

set is a subset of Rn
+ but not a subset of Rn

++. The set of asymmetric Nash bargaining

solutions is always contained in the inner core, but the inner core might be strictly larger

then the set of asymmetric Nash bargaining solutions. This can be seen in the following

two-player example with disagreement point (0, 0):

�

�

V ({1, 2})

u2

u1

0

Figure 1: Example.
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The two points on the axis are in this example in the inner core, as there exits a

strictly positive transfer rate vector λ, such that they are in the core of the λ-transfer

game. But they cannot result from an asymmetric Nash bargaining solution as any of

these solutions chooses only points that are strictly larger than the disagreement point

in all coordinates. Thus, the inner core is in this example strictly larger than the set of

asymmetric Nash bargaining solutions.

Hence, in general for underlying bargaining sets from Rn
+ and not necessarily from

Rn
++ Proposition 1 reduces to the following statement:

Proposition 2. Let (N,V ) be a n-person NTU bargaining game with disagreement point

0 and underlying bargaining set from Rn
+.

• Suppose we have given a vector of weights θ = (θ1, .., θn) ∈ ∆n
++. Then the asym-

metric Nash bargaining solution u∗ for θ is in the inner core of (N,V ).

4 Application to Market Games

4.1 Market Games

In this section we use the result from the preceding section to investigate the relationship

between asymmetric Nash bargaining solutions and competitive payoffs of a market that

represents the n-person NTU bargaining game. We start by showing that every NTU

bargaining game is a market game. Afterwards, we apply the results of Qin (1993) and

Brangewitz and Gamp (2011) to our results from the previous section.

Definition (market). A market is given by E =
(

Xi, Y i, ωi, ui
)

i∈N
where for every

individual i ∈ N

- Xi ⊆ R`
+ is a non-empty, closed and convex set, the consumption set, where ` ≥ 1

is the number of commodities,

- Y i ⊆ R` is a non-empty, closed and convex set, the production set, such that

Y i ∩ R`
+ = {0},

- ωi ∈ Xi − Y i, the initial endowment vector,

- and ui : Xi → R is a continuous and concave function, the utility function.

Note that in a market the number of consumers coincides with the number of pro-

ducers. Each consumer has his own private production set. This assumption is not as

restrictive as it appears to be. A given private ownership economy can be transformed

into an economy with the same number of consumers and producers without changing
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the set of competitive equilibria or possible utility allocations, see for example Qin and

Shubik (2009, section 4). Differently from the usual notion of an economy a market is

assumed to have concave and not just quasi-concave utility functions.

Let S ∈ N be a coalition. The feasible S-allocations are those allocations that

the coalition S can achieve by redistributing their initial endowments and by using the

production possibilities within the coalition.

Definition (feasible S-allocation). The set of feasible S-allocations is given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

xi ∈ Xi for all i ∈ S,
∑

i∈S

(xi − ωi) ∈
∑

i∈S

Y i

}

.

Hence, an S-allocation is feasible if there exist for all i ∈ S production plans yi ∈ Y i

such that
∑

i∈S(x
i − ωi) =

∑

i∈S yi.

In the definition of feasibility it is implicitly assumed that by forming a coalition the

available production plans are the sum of the individually available production plans.

This approach is different from the idea to use coalition production economies, where

every coalition has already in the definition of the economy its own production possibility

set. Nevertheless, a market can be transformed into a coalition production economy

by defining the production possibility set of a coalition as the sum of the individual

production possibility sets.

Definition (NTU market game). An NTU game that is representable by a market is a

NTU market game, this means there exists a market E = (Xi, Y i, ωi, ui)i∈N such that

(N,VE) = (N,V ) with

VE(S) = {u ∈ RS | ∃ (xi)i∈S ∈ F (S), ui ≤ ui(xi), ∀ i ∈ S}.

For an NTU market game there exists a market such that the set of utility allocations

a coalition can reach according to the coalitional function coincides with the set of utility

allocations that are generated by feasible S-allocations in the market or that give less

utility than some feasible S-allocation.

In order to show that every NTU bargaining game is a market game we use the

following result from Billera and Bixby (1974):

Theorem (2.1, Billera and Bixby (1974)). An NTU game is an NTU market game if

and only if it is totally balanced and compactly convexly generated.

Proposition 3. Every bargaining game (N,V ) is a market game.6

6This result was already observed by Billera and Bixby (1973, Theorem 4.1). In their proof they define
a market representation of a bargaining game with m ≤ n2 commodities and nondecreasing utility
functions.
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Proof. We show that every bargaining game is totally balanced. Suppose we have an n-

person NTU bargaining game. For totally balancedness we need to check that for every

coalition T ⊆ N and for all balancing weights

γ ∈ Γ(eT ) =







(γS)S⊆T ∈ R+|
∑

S⊆T

γSe
S = eT







we have
∑

S⊆T

γSV (S) ⊆ V (T ).

Since the worth each coalition S ( N can achieve is V (S) = {0} − R+ and since the

grand coalition N can achieve V (N) = B − Rn
+ with at least one element b ∈ B with

b � 0, we have for all S ⊆ N that V (S) ⊆ V (N) holds. Since for all S ⊆ N we have for

the balancing weights 0 ≤ γS ≤ 1 and
∑

S⊆T γSe
S = eT the balancedness condition is

satisfied. Thus, the bargaining game is totally balanced and hence a market game.

We now define a competitive equilibrium for a market E .

Definition (competitive equilibrium). A competitive equilibrium for a market E is a

tuple
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

∈ R`n
+ × R`n

+ × R`
+

such that

(i)
∑

i∈N x̂i =
∑

i∈N (ŷi + ωi) (market clearing),

(ii) for all i ∈ N , ŷi solves maxyi∈Y i p̂ · yi (profit maximization),

(iii) and for all i ∈ N , x̂i is maximal with respect to the utility function ui in the budget

set {xi ∈ Xi|p̂ · xi ≤ p̂ · (ωi + ŷi)} (utility maximization).

Given a competitive equilibrium
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

its competitive payoff vector is

defined as
(

ui
(

x̂i
))

i∈N
.

Qin (1993) investigates the relationship between the inner core of an NTU market

game and the set of competitive payoff vectors of a market that represents this game.

He establishes, following a conjecture of Shapley and Shubik (1975), the two theorems

below analogously to the TU-case of Shapley and Shubik (1975).

Theorem (3, Qin (1993)). For every NTU market game and for any given point in its

inner core, there is a market that represents the game and further has the given inner

core point as its unique competitive payoff vector.
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Theorem (1, Qin (1993)). For every NTU market game, there is a market that represents

the game and further has the whole inner core as its competitive payoff vectors.7

4.2 Results

Now we apply Theorem 3 of Qin (1993) to prove the existence of an economy correspond-

ing to some vector of weights θ ∈ ∆n
++, such that the unique competitive payoff vector of

this economy coincides with the θ-asymmetric Nash bargaining solution of the n-person

NTU bargaining game.

Proposition 4. Given a n-person NTU bargaining game (N,V ) (with disagreement point

0 and generating set from Rn
+) and a vector of weights θ ∈ ∆n

++, there is market that rep-

resents (N,V ) and where additionally the unique competitive payoff vector of this market

coincides with the θ-asymmetric Nash bargaining solution aθ of the NTU bargaining game

(N,V ).

Proof. (N,V ) is a market game by Proposition 3. Moreover, Proposition 1 (or Propo-

sition 2 respectively) shows, that the θ-asymmetric Nash bargaining solution aθ is an

element of the inner core. Thus, we can apply Theorem 3 from Qin (1993).

The market behind Proposition 4 can be taken from Qin (1993) or Brangewitz and

Gamp (2011) taking necessary monotone transformations of the original game as done

in Qin (1993) into consideration. A version of these markets for NTU bargaining games

can be found in Appendix A.1 and A.3.

An Alternative Market for Proposition 4

The two markets from Qin (1993) or Brangewitz and Gamp (2011) have a quite com-

plicated structure. In the following we give a simpler version a market, where strictly

positive prices are required. This market is a modification from Brangewitz and Gamp

(2011).

Given a n-person NTU bargaining game (N,V ) and a vector of weights θ ∈ ∆++.

Let aθ be the θ-asymmetric bargaining solution. From Proposition 1 (or Proposition 2

respectively) we know that the corresponding λθ-transfer game is (N,Vλθ )

λθ =

( θ1
aθ
1

∑n
i=1

θi
aθ
i

, ...,

θn
aθ
n

∑n
i=1

θi
aθ
i

)

.

7A market that satisfies this property is the so called “induced market” introduced by Billera and Bixby
(1974). Its definition can be found in Qin (1993).

14



Figure 2 illustrates as an example for N = {1, 2} the sets V ({1, 2}) and Vλθ ({1, 2})

for an NTU bargaining game with disagreement point (0, 0).

Vλθ({1, 2})

V ({1, 2})

aθ

u2

u1

0

�

Figure 2: Illustration of the sets V ({1, 2}) and Vλθ ({1, 2}).

Let z ∈ Vλθ (N) and t̄z = min
{

t ∈ R+|z − teN ∈ V (N)
}

. Define the mapping Pθ by

Pθ : Vλθ (N) −→ V (N) via Pθ (z) = z − t̄zeN . Figure 3 illustrates for the same example

as in Figure 2 the mapping Pθ.

aθ

u1

�

�

�

�

�

�

	

Figure 3: Illustration of the mapping Pθ.

The market for the NTU bargaining game (N,V ) and vector of weights θ, denoted

by EV,θ, is defined as follows: Let for every individual i ∈ N be

- the consumption set Xi = Rn
+ × Rn

+ × {0} ⊆ R3n,
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- the production set

Y i = convexcone









⋃

S∈N\{N}

{(

0, 0,−eS
)}





⋃







⋃

c∈(Vλθ (N)∩R
n
+)

{(

Pθ(c), c,−eN
)}












⊆ R3n,

- the initial endowment vector ωi =
(

0, 0, e{i}
)

,

- and the utility function ui : Xi → R with ui
(

xi
)

= min
(

x
(1)i
i , x

(2)i
i

)

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth coordinate;

similarly x(2)i and x
(2)i
j .

It can be shown using the arguments of Brangewitz and Gamp (2011) that the market

EV,θ represents the NTU bargaining game (N,V ) and has as its unique competitive

equilibrium payoff vector (assuming strictly positive equilibrium price vectors) the θ-

asymmetric Nash bargaining solution aθ. For the method of proof and the details we

refer to Brangewitz and Gamp (2011). Here we only state how the competitive equilibria

of the market EV,θ look like:

The consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

,
(

aθ
){i}

, 0
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ, aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ, 2 λθ ◦ aθ
)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute a competitive equilibrium in the

market EV,θ.

Considering NTU bargaining games as NTU market games there is a market such that

the same sets of utility allocations are reachable in the game and the market. Propo-

sition 4 shows that in the class of markets representing a given NTU bargaining game

there is a market that has a given asymmetric Nash bargaining solution (with a fixed
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vector of weights) as its unique competitive payoff vector. We establish a link between

utility allocations coming from asymmetric Nash bargaining in NTU bargaining games

and payoffs arising from competitive equilibria in certain markets. Our result, similar to

Trockel (1996), can be seen as a market foundation of asymmetric Nash bargaining so-

lutions. Instead of considering non-cooperative games to give foundations of cooperative

solutions, we link cooperative behavior described by asymmetric Nash bargaining with

competitive behavior in markets.

In addition a similar interpretation holds true for the whole inner core and certain of

its subsets. Combining Proposition 1 with Theorem 1 of Qin (1993) we obtain:

Proposition 5. Let (N,V ) be a n-person NTU bargaining game with disagreement point

0 and generating set from Rn
++. Then there is market that represents (N,V ) and where

additionally the set of asymmetric Nash solutions of (N,V ) coincides with the set of

competitive payoff vectors of the market.

Proof. (N,V ) is a market game by Proposition 3 and the set of asymmetric Nash bar-

gaining solutions for different strictly positive vectors of weights coincides with the inner

core of (N,V ) by Proposition 1. Thus, we can apply Theorem 1 of Qin (1993).

The two results of Qin (1993) we use above represent two extreme cases. On the one

hand he uses the whole inner core and on the other hand he uses only one single point

from the inner core. Brangewitz and Gamp (2011) show how the results of Qin (1993)

can be extended to a large class of closed subsets of the inner core. Using their results

we obtain:

Proposition 6. Given a n-person NTU bargaining game (N,V ) (with disagreement point

0 and generating set from Rn
+) and a closed set Θ ⊂ ∆n

++ of strictly positive vectors of

weights. Moreover, assume that every θ-asymmetric Nash bargaining solution aθ with

vector of weights θ ∈ Θ can be strictly separated from the set V (N)\{aθ}.8 Then there is

market that represents the NTU bargaining game (N,V ) and the set of competitive payoff

vectors of this market coincides with the set of θ-asymmetric Nash bargaining solutions

with vectors of weights θ ∈ Θ, {aθ|θ ∈ Θ}, of the NTU bargaining game (N,V ).

Proof. (N,V ) is a market game by Proposition 3. Moreover, Proposition 1 (or Proposi-

tion 2 respectively) shows, that the θ-asymmetric Nash bargaining solution with a vector

of weights θ ∈ ∆n
++ is an element of the inner core. Furthermore, note that the set of

vectors of weights Θ is assumed to be closed. If we take now as a parameter the vectors of

bargaining weights θ and consider the function that associates to every vector of weights

8More details concerning this assumptions and how they might be weakened can be found in Brangewitz
and Gamp (2011).
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θ the θ-asymmetric Nash bargaining solution aθ, we observe that this function is contin-

uous in θ.9 Moreover, as continuous functions map compact sets into compact sets, we

know that if we take a closed set of vectors of weights Θ that the set of θ-asymmetric Nash

bargaining solutions {aθ|θ ∈ Θ} is closed. Therefore, the assumptions in Brangewitz and

Gamp (2011) are satisfied and their result can be applied.

Proposition 5 can be regarded as the other extreme case in contrast to the result

in Proposition 4. Knowing that competitive payoff vectors are under weak assumptions

always in the inner core (compare de Clippel and Minelli (2005), Brangewitz and Gamp

(2011)), in the class of markets representing a game the market behind Proposition 5 is

the market with the largest set of possible competitive payoff vectors.

Proposition 6 has the following interpretation: If the vector of weights or interpreted

differently the bargaining power is not exactly known, then as an approximation using

Proposition 6 we obtain the coincidence of the set of asymmetric Nash bargaining solu-

tions with a closed subset of weight vectors and the set of competitive payoff vectors of

a certain market.

5 Concluding Remarks

The results above show that asymmetric Nash bargaining solutions as solution concepts

for bargaining games are linked via the inner core to competitive payoff vectors of certain

markets. Thus, our result can be seen as a market foundation of the asymmetric Nash

bargaining solutions. This result holds for bargaining games in general as any asymmetric

Nash bargaining solution is always in the inner core (Proposition 2). The idea of a market

foundation parallels the one that is used in implementation theory. Here, rather than

giving a non-cooperative foundation for solutions of cooperative games, we provide a

market foundation. Our result may be seen as an existence result.

Another interesting related line of research, that we do not follow here, is to consider

the recent definition of Compte and Jehiel (2010) of the coalitional Nash bargaining

solution. They consider cooperative games with transferable utility (TU) and define the

coalitional Nash bargaining solution as the point in the core that maximizes the Nash

product (with equal weights). Thus, using Theorem 2 of Shapley and Shubik (1975) for

TU market games, where they define for any given core point a market that has this

point as its unique competitive payoff vector, gives a market foundation as well for the

symmetric coalitional Nash bargaining solution by choosing the symmetric coalitional

Nash bargaining solution as this given core point. It seems interesting to study how

9To see this we use Theorem 2.4 of Fiacco and Ishizuka (1990) applied to maximization problems.
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this idea can be generalized for asymmetric coalitional Nash bargaining solutions or for

(asymmetric) coalitional Nash bargaining solutions for NTU games.

Our approach parallels the one in Trockel (1996, 2005). Trockel (1996) is based

on a direct interpretation of a n-person bargaining game as an Arrow-Debreu economy

with production and private ownership, a so called bargaining economy. He shows that,

given a bargaining economy, the consumption vector of the unique stable Walrasian

equilibrium coincides with the asymmetric Nash bargaining solution with the vector of

weights corresponding to the shares in the production of the bargaining economy. The

main difference between our result and his is that Trockel (1996) did not consider markets

in the sense of Billera and Bixby (1974) or Qin (1993) and thus his bargaining economies

do not constitute the kind of market representation as defined in Billera and Bixby (1974)

or Qin (1993). Similarly Trockel (2005) uses coalition production economies to establish

a core equivalence of the Nash bargaining solution. By using the markets of Qin (1993)

we obtained a market foundation of the asymmetric Nash bargaining solution. This can

be seen as a link between the literature on market games (as in Billera and Bixby (1974),

Qin (1993)) and the ideas of Trockel (1996, 2005).

19



References

Aumann, R. J. (1964). Markets with a continuum of traders. Econometrica, 32(1/2):39–

50.

Bergin, J. and Duggan, J. (1999). An implementation-theoretic approach to non-

cooperative foundation. Journal of Economic Theory, 86:50–76.

Billera, L. J. and Bixby, R. E. (1973). A characterization of Pareto surfaces. Proceedings

of the American Mathematical Society, 41(1):261–267.

Billera, L. J. and Bixby, R. E. (1974). Market representations of n-person games. Bulletin

of the American Mathematical Society, 80(3):522–526.

Brangewitz, S. and Gamp, J.-P. (2011). Competitive outcomes and the inner core of

NTU market games. IMW Working Paper 449, Institute of Mathematical Economics,

Bielefeld University.

Compte, O. and Jehiel, P. (2010). The coalitional Nash bargaining solution. Economet-

rica, 78(5):1593–1623.

de Clippel, G. and Minelli, E. (2005). Two remarks on the inner core. Games and

Economic Behavior, 50(2):143 – 154.

Debreu, G. and Scarf, H. (1963). A limit theorem on the core of an economy. International

Economic Review, 4(3):235–246.

Fiacco, A. V. and Ishizuka, Y. (1990). Sensitivity and stability analysis for nonlinear

programming. Annals of Operations Research, 27:215–235.

Inoue, T. (2010). Representation of NTU games by coalition production economies.

Unpublished.

Milnor, J. W. and Shapley, L. S. (1978). Values of large games II: Oceanic games.

Mathematics of Operations Research, 3(4):290–307.

Nash, J. F. (1950). The bargaining problem. Econometrica, 18:155–163.

Nash, J. F. (1953). Two-person cooperative games. Econometrica, 21:128–140.

Peters, H. (1992). Axiomatic bargaining game theory. Theory and decision library. Kluwer

Acad. Publ., Dordrecht [u.a.].

Qin, C.-Z. (1993). A conjecture of Shapley and Shubik on competitive outcomes in the

cores of NTU market games. International Journal of Game Theory, 22:335–344.

20



Qin, C.-Z. (1994). The inner core of an n-person game. Games and Economic Behavior,

6(3):431–444.

Qin, C.-Z. and Shubik, M. (2009). Selecting a unique competitive equilibrium with default

penalties. Cowles Foundation Discussion Papers 1712, Cowles Foundation for Research

in Economics, Yale University.

Rosenmüller, J. (2000). Game theory: Stochastics, information, strategies and coop-

eration. In Theory and Decision Library (Series C), volume 25. Kluwer Academic

Publishers.

Roth, A. E. (1979). Axiomatic Models of Bargaining. Lecture Notes in Economics and

Mathematical Systems 170, Springer Verlag.

Shapley, L. S. (1955). Markets as cooperative games. The Rand Corporation, 4(3):629.

Shapley, L. S. and Shubik, M. (1969). On market games. Journal of Economic Theory,

1:9–25.

Shapley, L. S. and Shubik, M. (1975). Competitive outcomes in the cores of market

games. International Journal of Game Theory, 4(4):229–237.

Shubik, M. (1959). Game theory: Stochastics, information, strategies and cooperation.

In Contributions to the Theory of Games IV. A. W. Tucker and R. D. Luce, Priceton

University Press.

Shubik, M. (1984). A Game-Theoretic Approach to Political Economy. The MIT Press.

Sun, N., Trockel, W., and Yang, Z. (2008). Competitive outcomes and endogenous

coalition formation in an n-person game. Journal of Mathematical Economics, 44(7-

8):853–860.

Trockel, W. (1996). A Walrasian approach to bargaining games. Economics Letters,

51(3):295–301.

Trockel, W. (2000). Implementations of the Nash solution based on its Walrasian char-

acterization. Economic Theory, 16:277–294.

Trockel, W. (2005). Core-equivalence for the Nash bargaining solution. Economic Theory,

25(1):255–263.

21



A Appendix

A.1 The Market behind Proposition 4 from Qin (1993)

Qin (1993) considers NTU games in general and does not restrict his attention to NTU

bargaining games. The market behind Proposition 4 from Qin (1993) has a simpler

structure if we restrict our attention to NTU bargaining games. The difference lies in the

description of the private production sets.

To show his result Qin (1993) modifies the given NTU game by applying a strictly

monotonic transformation to the utility functions. This allows him to assume that the

given inner core point can be strictly separated in the modified NTU game. Qin (1993)

shows that this market represents the modified game and that the given inner core point

is the unique competitive payoff vector of this economy. By applying the inverse strictly

monotonic transformation to the utility functions he obtains his result. As we do not

want to restrict our attention to bargaining games with strictly convex generating sets, a

similar transformation need to be applied to the NTU bargaining game to use the market

defined below.

The transformed bargaining game is denoted by (N, V̄ ) with generating set C̄N . De-

fine for the grand coalition N the following sets

A1
N =

{(

uN ,−eN ,−eN ,−eN , 0
)

|uN ∈ C̄N
}

⊆ R5n,

A2
N =

{(

uN , 0,−eN , 0,−eN
)

|uN ∈ C̄N
}

⊆ R5n,

A3
N =

{(

uN , 0, 0,−eN ,−eN
)

|uN ∈ C̄N
}

⊆ R5n,

and for the remaining coalitions

A1
S =

{(

0,−eS ,−eS ,−eS , 0
)}

⊆ R5n,

A2
S =

{(

0, 0,−eS , 0,−eS
)}

⊆ R5n,

A3
S =

{(

0, 0, 0,−eS ,−eS
)}

⊆ R5n,

Let θ ∈ Θ be a given vector of weights and aθ the θ-asymmetric Nash bargaining

solution. Define

λθ =

( θ1
aθ
1

∑n
i=1

θi
aθ
i

, ...,

θn
aθ
n

∑n
i=1

θi
aθ
i

)

.

Let EV̄ ,θ =
(

Xi, Y i, ωi, ui
)

i∈N
be the market with for every individual i ∈ N

- the consumption set Xi = Rn
+ × {(0, 0, 0)} × Rn

+ ⊆ R5n
+ ,

- the production set Y i = convexcone
[

⋃

S⊆N

(

A1
S ∪A2

S ∪A3
S

)

]

⊆ R5n,
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- the initial endowment vector ωi =
(

0, e{i}, e{i}, e{i}, e{i}
)

∈ R5n
+ ,

- the utility function ui(xi) = min

{

x
(1)i
i ,

∑n
j=1 λθ

j aθ
j x

(5)i
j

λi

}

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth coordinate;

similarly x(5)i and x
(5)i
j .

Qin (1993) shows that the market EV̄ ,θ represents the modified NTU bargaining game

(N, V̄ ) and has as its unique competitive payoff vector aθ, a given inner core point. For

the method of proof and the details we refer to Qin (1993). Here we only state for the

case of NTU bargaining games how the competitive equilibria of the market EV̄ ,θ look

like:

The consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

, 0, 0, 0, e{i}
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN ,−eN ,−eN , 0
)

))

i∈N

together with the price system

p̂ =

(

λθ,
1

3

(

λθ ◦ aθ
)

,
1

3

(

λθ ◦ aθ
)

,
1

3

(

λθ ◦ aθ
)

, λθ ◦ aθ
)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute the unique competitive equilibrium

in the market EV̄ ,θ.
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A.2 The Market behind Proposition 5 from Qin (1993)

Similarly to Proposition 4 the market behind Proposition 5 from Qin (1993), called the

induced market of an NTU market game, simplifies for NTU bargaining games to:

Definition (induced market). Let (N,V ) be NTU bargaining game. The induced market

of the game (N,V ) is defined by EV = (Xi, Y i, ui, ωi)i∈N with for each individual i ∈ N

- the consumption set Xi = Rn
+ × {0} ⊆ R2n,

- the production set

Y i = convexcone





⋃

S∈N\N

{

(0,−eS)
}

∪
(

CN × {−eN}
)



 ⊆ R2n,

- the initial endowment vector ωi =
(

0, e{i}
)

,

- and the utility function ui : Xi → R with ui(xi) = x
(1)i
i

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth coordinate.

Qin (1993) shows that the market EV represents the NTU bargaining game (N,V )

and has as its set of competitive payoff vectors the whole inner core. For the method of

proof and the details we refer to Qin (1993). Here we only state for the case of NTU

bargaining games how the competitive equilibria of the market EV look like:

Let θ ∈ Θ be a given vector of weights and aθ the θ-asymmetric Nash bargaining

solution. Define

λθ =

( θ1
aθ
1

∑n
i=1

θi
aθ
i

, ...,

θn
aθ
n

∑n
i=1

θi
aθ
i

)

.

The consumption plans
(

x̂i
)

i∈N
=
((

(

aθ
){i}

, 0
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ ◦ aθ
)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute a competitive equilibrium in the

market EV .

24



A.3 The Market behind Proposition 6 from Brangewitz and Gamp

(2011)

Similarly to Proposition 4 and Proposition 5 the market behind Proposition 6 from

Brangewitz and Gamp (2011), called the induced A-market of an NTU market game,

can be simplified for NTU bargaining games (under the assumptions of Proposition 6).

For θ ∈ Θ define

λθ =

( θ1
aθ
1

∑n
i=1

θi
aθ
i

, ...,

θn
aθ
n

∑n
i=1

θi
aθ
i

)

.

Let (N, Ṽ ) be the NTU-game defined by

Ṽ (S) =







V (S) if S ⊂ N
⋂

θ∈Θ

{

u ∈ Rn|λθ · u ≤ λθ · aθ
}

if S = N

where aθ denotes the θ-asymmetric Nash bargaining solution.

Define the mapping PΘ : Ṽ (N) −→ V (N) via

PΘ (x) = x− t̄xeN .

Define

C̃N =
{

z ∈ Ṽ (N)
∣

∣∃t ∈ R+ such that z − teN ∈ CN
}

.

Then we also have C̃N =
{

z ∈ Ṽ (N)
∣

∣z − t̄zeN ∈ CN
}

.

For the definition of the production sets define for all coalitions S ∈ N \ {N}

A1
S =

{(

0,−eS , 0,−eS ,−eS
)}

,

A2
S =

{(

0, 0, 0,−eS , 0
)}

,

A3
S =

{(

0, 0, 0, 0,−eS
)}

and for the grand coalition N define

A1
N =

{

(

PΘ

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

|c̃N ∈ C̃N
}

,

A2
N =

{

(

PΘ

(

c̃N
)

, 0, c̃N ,−eN , 0
)

|c̃N ∈ C̃N
}

,

A3
N =

{

(

PΘ

(

c̃N
)

, 0, c̃N , 0,−eN
)

|c̃N ∈ C̃N
}

.

The market EV,Θ using the closed set of weights Θ of the NTU bargaining game is
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defined by

EV,Θ = (Xi, Y i, ui, ωi)i∈N

with for every individual i ∈ N

- the consumption set Xi = Rn
+ × {0} × Rn

+ × {0} × {0} ⊆ R5n,

- the production set Y i = convexcone
[
⋃

S∈N

(

A1
S ∪A2

S ∪A3
S

)]

⊆ R5n

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}, e{i}
)

,

- and the utility function ui : Xi → R with

ui
(

xi
)

= min



x
(1)i
i , x

(3)i
i + ε

∑

j 6=i

x
(3)i
j





where ε is chosen such that ε < λθ
i =

λθ
i

1 ≤ λθ
i

λθ
j

for all θ ∈ Θ and x(1)i denotes the

first group of n goods of xi and x
(1)i
j its jth coordinate; similarly x(3)i and x

(3)i
j .

Using Brangewitz and Gamp (2011) it can be shown that the market EV,Θ represents

the NTU bargaining game (N,V ) and its set of competitive equilibrium payoff vectors

coincides with the set {aθ|θ ∈ Θ}. For the method of proof and the details we refer to

Brangewitz and Gamp (2011).

The competitive equilibria of the market EV,Θ are of the following form: Let θ ∈

Θ be the vector of weights and aθ the θ-asymmetric Nash bargaining solution. The

consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

, 0,
(

aθ
){i}

, 0, 0
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN , aθ,−eN ,−eN
)

))

i∈N

together with the price system

p̂ =

(

λθ,
2

3

(

λθ ◦ aθ
)

, λθ,
2

3

(

λθ ◦ aθ
)

,
2

3

(

λθ ◦ aθ
)

)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute a competitive equilibrium in the

market EV,Θ.
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In addition to the market EV,Θ Brangewitz and Gamp (2011) define a market where

the set of payoff vectors of competitive equilibria with a strictly positive equilibrium price

vectors coincides with the set {aθ|θ ∈ Θ}. This market, denoted by E0
V,Θ, is defined as

follows: Let for every individual i ∈ N be

- the consumption set Xi = Rn
+ × {0} × Rn

+ × {0} ⊆ R4n,

- the production set

Y i = convexcone









⋃

S∈N\{N}

{(

0,−eS , 0,−eS
)}





∪





⋃

c̃N∈C̃N

(

PΘ

(

c̃N
)

,−eN , c̃N ,−eN
)







 ⊆ R4n,

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}
)

,

- and the utility function ui : Xi → R with ui
(

xi
)

= min
(

x
(1)i
i , x

(3)i
i

)

.

Similarly as for the market presented before, it can be shown using Brangewitz and

Gamp (2011) that the market E0
V,Θ represents the NTU bargaining game (N,V ) and its

set of competitive equilibrium payoff vectors with strictly positive prices coincides with

the set {aθ|θ ∈ Θ}. For the method of proof and the details we refer to Brangewitz and

Gamp (2011). Here we only state how the competitive equilibria of the market E0
V,θ look

like:

Let θ ∈ Θ be the vector of weights and aθ the θ-asymmetric Nash bargaining solution.

The consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

, 0,
(

aθ
){i}

, 0
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN , aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ ◦ aθ, λθ, λθ ◦ aθ
)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute a competitive equilibrium in the

market E0
V,Θ.

27


	deckbl453
	Inner_Core_Asymmetric_Nash-1

