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1 Introduction 

The brain is permanently active during lifetime, whether conscious or non-

conscious and is analysing the information by the brain and nervous system. The 

cognition is one of the most important functions of nervous system in human. 

Aspects of human physiological such as physical activity and human life style 

may interrelate with the brain function. Thus, this work tries to show how various 

kinds of exercises affect several brain functions of healthy older adults. 

 

The current study is an interdisciplinary investigation and confluence of 

the physiological psychology and human exercise physiology. Thus, before 

beginning, the theoretical fundamentals related to the study should be explained 

briefly. 

 

In chapter 2 the theoretical backgrounds of physical education and 

exercise sciences as well as physiological psychology about the normal aging 

process and cognitive functions are represented. 

The first section (2.1) introduces the preface of lifestyle and aging process. 

Given a theoretical framework of exercise physiological principles, the sections 

(2.2 and 2.3) provide a brief theoretical background of exercise, physical activity 

and metabolism. 

The section (2.4) introduces the theoretical background to memory including the 

introduction of theories and classifications of memories. 

The section (2.5) introduces a few important facets of learning theories related to 

procedural memory. 

The part (2.6) provides a brief framework of gerontology studies related to 

cognitive functions and exercise. 

Finally, the section (2.7) shows a summary of literature on this domain. 
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Chapter 3 presents questions and hypotheses. A number of questions were 

formulated from the survey of the theoretical background. For example, whether 

there is any relationship between various types of physical exercise and older 

people’s cognitive functions? Or if physical activity can improve cognitive 

functions, whether aerobic or anaerobic conditions would be a better choice to 

preserve it? 

These questions lead to developing four hypotheses that form the basis of this 

study.  

 

The first hypothesis expounds on systematic and regular light to moderate 

physical aerobic activities leading to a measurable improvement in cognitive 

functions of sedentary older adults. 

  

The second hypothesis states that systematic and regular light physical 

anaerobic activity leads to a robust and beneficial influence on cognitive 

functions of sedentary elderly. 

 

The third hypothesis states that learning a new motor skill positively 

influences semantic memory performance in sedentary older adults. 

 

The fourth hypothesis, regarding the effects of motor learning, supposes 

that developing a new procedural skill is accompanied by a significant 

improvement in cognitive functions of the sedentary aged. 

 

In chapter 4 the applied methods, the subjects, and the procedures are 

introduced. This chapter explains the present study (4.1), sampling method (4.2), 

objectives (4.3), participants and groups (4.4), variables of study (4.5), exercise 

protocols of groups (4.6) and neurocognitive tests (4.7). 

 

In chapter 5 the samples and population (5.1), procedure of study (5.2), 

and the statistical analyses (5.3) including descriptive data and data analysis are 
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considered. The results of current study, which are given in chapter 5, are 

obtained regarding the data of the neurocognitive tests. The dates of the study are 

separately presented for each three groups in sections (5.4) till (5.10). 

 

In chapter 6 the discussions of the devised hypotheses are given separately 

by considering terms such as the aerobic (6.1) and anaerobic conditions (6.2) as 

well as new motor skill learning (6.3) (or procedural memory). 

 

Ultimately, in chapter 7 the conclusions of this work are presented. 

Moreover, possible future directions for this study are discussed.  

 

The appendices show raw data of the all participants (Appendix A), a 

map, which shows the Brodmann areas of the human brain (Appendix B), the 

results of one-sample Kolmogorov-Smirnov tests (Appendix C), the 

questionnaire (Appendix D), declaration of consent (Appendix E). 
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2 Theoretical background 
Brain aging probably starts already from adulthood onwards (Blalock et al., 

2003; Jiang, Tsien, Schultz, & Hu, 2001; C.-K. Lee, Weindruch, & Prolla, 2000). 

Along with increasing age some deliberate changes arise in brain structure and 

function, such as decreases of neurogenesis and granule neurons (Altman & Das, 

1965; Cameron & McKay, 1999; Fabel & Kempermann, 2008). Though, the 

determinants of the changes in age-related cognitive decline are not fully 

understood (Deary et al., 2009), anyhow some age-related decline in older adults’ 

cognitive functions occur and the normal aging process does not degrade neural 

areas and cognitive processes similarly (Burke & Barnes, 2006; K. I. Erickson et 

al., 2009; Kramer et al., 1999; Mather & Carstensen, 2005; Small, 2001).  

The normal aging is defined as usual and non-pathological processes of human 

life (Rowe & Kahn, 1997), 

 

Some studies on executive function and brain regions showed large and 

disproportionate changes with age, but sometimes many older people did not 

present cortical atrophy; this, however, didn’t indicate that such changes are 

certain consequence of advancing age (Buckner, 2004; Coffey et al., 1992; 

Persson et al., 2006; Sullivan, Marsh, Mathalon, Lim, & Pfefferbaum, 1995). 

Even though there are some interesting findings on aging and brain volume that 

suggest strong decline in tissue densities as a function of age (Stanley J 

Colcombe et al., 2003), available evidence is still limited and scarce. The 

following is probable for a non-demented aging process, executive function and 

memory performance decline may contribute to structural and functional changes 

of different brain regions including the medial temporal lobe (MTL) and fronto-

striatal circuits (Buckner, 2004).  

 

According to Hedden and Gabrieli, this may contribute to the prefrontal, 

MTL and white matter tracts (Hedden & Gabrieli, 2004); in other literatures, the 

frontal and prefrontal is named as a contributor (Kramer et al., 1999); also, the 
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prefrontal cortex and function of dopamine is mentioned in this context (Braver 

& Barch, 2002); hippocampal volume and the prefrontal cortex (Persson et al., 

2006), even the amygdala is named as a contributor (Grieve, Clark, Williams, 

Peduto, & Gordon, 2005). Many researchers of human cognition and the aging 

process have suggested that typically older adults perform more poorly than 

young adults in terms of memory function (Churchill et al., 2002; Kramer, 

Larish, & Strayer, 1995; Salthouse, 1996; Small, 2001).  

 

The memory system is one of the most vulnerable ones (Head et al., 2004; 

Mather & Carstensen, 2005). Prevention of memory-system damage or attempts 

to decrease the accelerating decline of human memory is plausibly more 

beneficial and easier than treatment. Considering vulnerability and sensitivity of 

cognitive functions and the memory system against factors such as the 

environment, the social, physiological and psychological setting (Teasdale, 

1988), and considering the importance of independent life for elderly, researchers 

are designing and discovering strategies to continue healthy and independent life 

and also to delay the progression of physical and psychological illnesses.  

 

It may be disputed that engaging in physical activity does not play a 

protective role on cognition and cognitive disorders, but there are many findings 

reporting regular physical exercise as an important element in health promotion 

(Larson & Wang, 2004) and as an effective strategy to delay the onset of 

dementia (Pate et al., 1995). For quite some time now effects of athletic exercise 

on cognitive function have received major attention (Blumenthal & Madden, 

1988; Botwinick & Thompson, 1968; Green & Bavelier, 2008; Moul, Goldman, 

& Warren, 1995). By necessity, in this study, we will see a brief description of 

differences in the physiological kind of such exercises. Previous studies have 

shown that a program of aerobic training can improve mood (Berger & Owen, 

1983; PILC, 2010), self-esteem (Hanson & Nedde, 1974a), cognitive function, 

and lessen cognitive decline among older adults (Kirk-Sanchez & McGough, 

2014; Weuve et al., 2004).  
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It has also been reported that improvements in aerobic fitness may be related to 

improvements in performing of executive control processes. 124 subjects, 60 to 

75 years old, previously sedentary, were examined over a period of six months. 

They were randomly assigned to perform either aerobic exercise – for example 

running and walking – or anaerobic exercises such as stretching and toning 

(Kramer et al., 1999). In other researches, strength and flexibility exercises were 

compared with an aerobic exercise program. The aerobically trained subjects 

demonstrated significant improvement in cerebral metabolic activity and 

achieved better results in the neuropsychological test battery than the control 

group (Dustman et al., 1984).  

 

In general, there are studies that have failed to observe the benefits of 

physical exercise in preserving cognitive function (Broe et al., 1998; Madden, 

Blumenthal, Allen, & Emery, 1989). In future, we need to better understand 

effects of exercise on cognition. At the moment results are promising and suggest 

that physical activity, as a preventive strategy and neuroprotective function, may 

reduce declines in cognitive performance associated with the normal aging 

process (Grodstein, 2007; Kirk-Sanchez & McGough, 2014; Kramer, Colcombe, 

McAuley, Scalf, & Erickson, 2005; Pate et al., 1995). Thus, public policy should 

focus on ways of increasing self-initiated, lifestyle activity in older people, as 

well as on increasing the availability and accessibility of senior and community-

center programs promoting physical activity (DiPietro, 2001). 

 

2.1 Lifestyle and aging: Delay or acceleration of the 
aging process 

 

Lifestyle, work, leisure activities and behaviors of individuals and factors 

associated with the environment may influence directly or indirectly the health 

and quality of the elderly life (Elavsky et al., 2005; McAuley et al., 2000; 

McAuley et al., 2006). Participation in physical exercise programs has been 

associated with the reduction of a number of physical and mental disorders (for 
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example, cardiovascular disease, obesity and several cancers, as well as 

depression and anxiety) across the adult lifespan (Hillman, Erickson, & Kramer, 

2008). Unfortunately, the sedentary lifestyle (Booth, Chakravarthy, Gordon, & 

Spangenburg, 2002) and some dementia illnesses (Ewbank, 1999; Larson et al., 

2004) are major causes for death among an increasingly aging society in the 

United States. Increased anti-fatigue ability, muscle weakness, decreased energy 

expenditure at rest and during exercise, increased body fat, decreased endurance 

capacity, and muscle wasting are commonly presented in the aging process, and 

this altogether may lead to decreased physical activity, and then eventually, 

through other pathways, to further diseases (Hunter, McCarthy, & Bamman, 

2004; Stewart, 2005).  

 

Human fitness training studies conducted over the past several decades 

have produced a varied pattern of results. This demonstrates that the loss of the 

brain volume in late adulthood is not inevitable and can be reversed with 

moderate-intensity exercise (K. I. Erickson et al., 2011). Some studies reported a 

positive relationship between fitness training and cognition (Davranche & 

McMorris, 2009; Dustman et al., 1984; Kirk-Sanchez & McGough, 2014; 

Kramer et al., 1999; Weuve et al., 2004) while other studies fail to observe such a 

relationship but encourage future research to focus on physiological and 

psychological variables that may serve to mediate the relationship between 

physical activity and cognitive performance (Etnier, Nowell, Landers, & Sibley, 

2006). A study reviewed the effects of age and activity on the need for 

environmental support in samples of old adults over 75 years old. They found 

that self-reports of active lifestyle and exercise were positively correlated with 

memory performance (Hill, Wahlin, Winblad, & Bäckman, 1995). Also, it has 

been shown that the calorie intake (either the reduced calorie intake in dietary, or 

reduced activity-induce) can increase the resistance of neurons in the brain to 

dysfunction in the age-related mental diseases including Alzheimer, Parkinson 

and Huntington’s disease and stroke (Mattson, 2000). 
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Physical inactivity accelerates the aging process in many people, whereas 

increased physical activity slows it down in others (Abbott et al., 2004; Kramer, 

Erickson, & Colcombe, 2006; Laurin, Verreault, Lindsay, MacPherson, & 

Rockwood, 2001; Podewils et al., 2005). However, the rate of change is not 

equal among individuals. What is clear is that there are several modifiable 

mediating factors on the aging curve. Among modifiable key factors are physical 

activities, nutrition, body fat, muscle mass, and smoking, each of which can 

either delay or accelerate the aging process (Stewart, 2005).  

In comparison with non-active adults, it is reported that active older adults 

succeed in cognitive performance as well in counteracting age-related neural 

decline through a plasticity reformation of neurocognitive networks (Cabeza, 

2002; Cabeza, Anderson, Locantore, & McIntosh, 2002). Also, reviews of brain 

bilateral activity have shown that these activities could improve brain function 

and cognitive performance. Elderly who displayed a bilateral pattern of 

prefrontal cortex activity were faster in the verbal working memory (WM) task 

than those who did not display this pattern (Reuter-Lorenz et al., 2000).  

 

The overactivation as an additional activity serves a beneficial, 

compensatory function. Determining whether levels of overactivation is 

beneficial, detrimental or inconsequential in cognitive function on older adults is 

still the crux of much cognitive and aging research (Reuter-Lorenz & Cappell, 

2008; Reuter-Lorenz & Lustig, 2005). There is some evidence on the relationship 

between low and high fitness, and on cognition performance. A review found 

that high-fitness individuals were able to perform more quickly and accurately on 

a wide variety of perceptual, cognitive and motor tasks compared to low-fitness 

individuals (Etnier et al., 1997).  

 

Some studies have examined the relationship between the amount of 

physical activity and cognition function. One review studied a large sample of 

women older than 65 years who were recruited at four clinical centers and were 

without baseline cognitive impairment or physical limitations. They reported 
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women with higher levels of baseline physical activity were less likely to 

experience cognitive decline during the six to eight years of follow-up, indeed, 

cognitive decline induces more increase when participants were less active 

(Yaffe, Barnes, Nevitt, Lui, & Covinsky, 2001).  

In some perusals physical fitness has been studied, and in others physical 

activity; so it is important to keep these differences in mind when evaluating 

findings to understand the distinction between the terms “physical fitness” and 

“physical activity” and also the relation between “fitness” to “health” and 

“performance” (Stewart, 2005). 

 

2.2 Exercise and metabolism 
 

Exercise is inherently associated with energy metabolism. The human body 

obtains the energy needed for exercise from the breakdown of carbohydrate and 

fatty acids through various biochemical pathways to produce energy in the form 

of adenosine triphosphate (ATP) (R. K. Murray, 1996; Shahbazi & Maleknia, 

2004). The relative amount of energy used by the muscles depends on the type, 

duration and intensity of the exercise and also on the fitness level of the 

individual. Since human muscles can’t store too much ATP, human must 

constantly resynthesize ATP through three metabolic pathways that consist of 

many enzyme-catalyzed chemical reactions including two anaerobic systems, the 

phosphagen and anaerobic glycolysis and also the aerobic system (Karp, 2009; 

Mathews, Fox, & Close, 1976; Morton, 2006; Shahbazi & Maleknia, 1999).  

 

2.2.1 Phosphagen system 
 

In the phosphagen system, throughout short activities – that is, five to six seconds 

– and intense activities, a vast amount of power needs to be produced by the 

muscles creating a high demand for ATP, which, in turn, creates a demand for 

ATP. The system also called the ATP-PC system and this is the most rapid way 
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to regenerate ATP (Glaister, 2005; McCartney et al., 1986). Creatine phosphate 

(CP), which is stored in skeletal muscles, donates a phosphate to adenosine 

diphosphate (ADP) to produce ATP1. No foodstuffs e.g. fat or carbohydrate is 

used in this process; the renewal of ATP comes solely from stored CP. Since this 

process does not need oxygen to resynthesize ATP and is not oxygen-

independent, it is called anaerobic. As the fastest way to regenerate ATP, the 

phosphagen system is the predominant energy system used for maximum 

exercise lasting up to about ten to 30 seconds. Because there is a limited amount 

of stored ATP-PC in skeletal muscles, fatigue occurs in a few seconds (Baker, 

McCormick, & Robergs, 2010; Enoka & Stuart, 1992). Indeed, this is the 

primary system after very short, powerful movements like a powerlifting, 

powerful jumping, and a 100 meters sprint (Mathews et al., 1976). 

 

2.2.2 Anaerobic glycolysis 
 

Anaerobic glycolysis transforms glucose to lactate (lactic acid or C3H6O3) if 

enough amounts of oxygen are not available (R. K. Murray, 1996). Glycolysis2 is 

the main energy system used for an exercise lasting from 30 seconds to about a 

few minutes – however less than four minutes that is the second-fastest way to 

resynthesize ATP (Fox, 1984). During glycolysis, carbohydrate, either in the 

form of blood glucose (C6H12O6) or muscle glycogen3 is broken down into two 

1 ATP- CP is an abbreviation for adenosine triphosphate and Creatine phosphate. During this 
breakdown of ATP, which is a water-requiring process, a proton, energy and heat are 
produced. 

ATP + H2O —ATPase→ ADP + Pi + H+ + E for muscle contraction 
E + ADP + Pi —ATP synthase→ ATP 

PCr —Creatine Phosphokinase→ Cr + Pi + E 
E + Cr + Pi —creatin kinase→ PCr 

PCr + ADP + H+  —Creatine kinase→ ATP + Cr 
 
2 Glycolysis: to break glucose down into two pyruvates, glycolysis produces 4 ATP’s and 2 

NADH, but uses 2 ATP’s in the process for a net of 2 ATP and 2 NADH. Also each 
NADH produces energy worth of 2 ATP. 

 
3 Glucose of muscle, first broken down into glucose-6-P 
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different form of Lactate4 or pyruvate5 through a succession of biochemical 

reactions. When broken down to pyruvate through glycolysis, two/three ATP 

molecules are produced – that is, for each glucose molecule – as well as two 

molecules of nicotinamide adenine dinucleotide (NADH). Mainly glycolysis 

produces four ATP but one or two are used to fuel NADH the process. 

Depending on kind of fuel the cell gains two or three ATP6 (Baker et al., 2010; 

Glaister, 2005; McCartney et al., 1986; R. K. Murray, 1996; Shahbazi & 

Maleknia, 1999, 2004). 

Thus, very little energy is produced through this way, but we get the energy 

nearly fast. Once pyruvate is formed, it has two destinies; in default of oxygen 

(O2) is converted to lactate by Lactate dehydrogenase (LDH)7 and in the presence 

of O2, pyruvate via PDC8 is converted to a metabolic intermediary molecule 

called acetyl coenzyme A (acetyl-CoA) (Bowker-Kinley, Davis, Wu, HARRIS, 

& POPOV, 1998; Linn, Pettit, & Reed, 1969), which then enters the 

mitochondria to produce more ATP (Baker et al., 2010; R. K. Murray, 1996; 

Robergs & Roberts, 1997). Is the oxygen supply lower than the demand, then 

 
4 Lactic acid (C3H6O3) is a chemical compound that doesn’t produce from complete broken 

down of glucose in anaerobic activities and causes an increasing of (+) (lowering of PH) 
and can be decreased (prevention of Ca++ entrance) to ability in muscle contraction. 

 
5 C3H4O3 or Pyruvic acid is an organic acid can be produce from glucose during glycolysis; it is 

a key intersection in several metabolic pathways. Pyruvate via LDH is converted to 
lactate (C3H6O3): (C3H4O3 + NADH + H+ —LDH→ C3H6O3 + NAD+). 

C3H4O3 + NADH + H+ —LDH→ C3H6O3 + NAD+ 
 
6 There are a variety of beginning points – glucose or glycogen – for glycolysis and produce 

glucose-6-phosphate. At the steps one and three, in total two ATP are required:The first 
step: Glucose + ATP —hexokinase→ ADP + Glucose 6-phosphate. The first step is only 
for glucose and not for glycogen. Thus, glucose needs two ATP as fuel (4-2=2ATP) but 
glycogen only one, because glycogen starts after the first step.The third step: Fructose 
6-phosphate + ATP —phosphofructokinase→ ADP + Fructose 1, 6-bisphosphate 

 
7 LDH is an enzyme that transfers a hydride from one molecule to another. LDH catalyzes the 

conversion of pyruvate to lactate and back, as it converts NADH to NAD+ and back. 
(C3H4O3 + NADH + H+ → C3H6O3 + NAD+) 

 
8 Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes included pyruvate 

dehydrogenase, oxidizes hydroxyethyl and dihydrolipoyl dehydrogenase, which provide 
alternative fuels.  
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lactate conversion takes place (i.e., during the 800 and 1,500-metre run). In 

anaerobic glycolysis, when O2 is not supplied fast enough to meet the muscles’ 

needs, there is an increase in hydrogen ions, which leads to concomitant decline 

in the concentration of Ca++ which is very essential muscle contraction process 

(Kowalchuk, Heigenhauser, Lindinger, Sutton, & Jones, 1988; Stackhouse, 

Reisman, & Binder-Macleod, 2001). 

2.2.3 Aerobic system 
 

Since human is adapted for aerobic activities, it’s not surprising that human body 

is dependent on O2 and aerobic system is the most complex of the three energy 

systems (Hochachka, Gunga, & Kirsch, 1998; Kulkarni, Kuppusamy, & 

Parinandi, 2007).  

The system through aerobic respiration – the process by which a cell uses O2 to 

burn molecules – release energy; in the aerobic respiration, the more carbon 

atoms would be in the molecule, they can release more energy but need more O2. 

The chemical composition for carbohydrates e.g. glucose differs from fats such 

as palmitic acid. Those fats contain considerably fewer O2 atoms in proportion to 

atoms of carbon and hydrogen9. 

 

Although, aerobic system produces the most of the cellular energy10, 

aerobic metabolism is the slowest way to resynthesize ATP (Fox et al., 1975; 

Mathews et al., 1976; Romick, Fleming, & McFeeters, 1996). In the presence of 

oxygen, and as another destiny, pyruvate is converted to acetyl-CoA, which 

enters the mitochondria for oxidation and the production of more ATP. Indeed, 

when there is enough O2 available to meet the needs of the muscles (i.e., during 

9 Comparison carbohydrates e.g. glucose and lipids such as palmitic acid (C16H32O2) in the 
aerobic respiration: 

Glucose: C6H12O6 + 6 O2 → 6 CO2 + 6 H2O 
Palmitic acid:  C16H32O2  + 23 O2 → 16 CO2 + 16 H2O 

 
10 Glucose or C6H12O6 + 6 O2 + 38 ADP + 38 Pi→ 6 CO2 + 6 H2O + 38 ATP, this is only for 

plants, which don't spend an ATP to transport NADH into the mitochondria. 
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the 10,000-meter run and marathon), pyruvate moves through the aerobic 

metabolism via acetyl-CoA. The aerobic system includes glycolysis, the Krebs 

cycle and Oxidative Phosphorylation (Mathews et al., 1976). 

2.2.3.1 Glycolysis 
 

In the presence of oxygen, the first stage is known as the aerobic glycolysis. 

Glycolysis occurs in the sarcoplasm of muscle cells and the normal body cells’ 

cytoplasm, and to move onto to the next stage of metabolism, two pyruvate 

molecules, two reduced molecules of NADH and two ATP molecules need to be 

produced. (Shahbazi & Maleknia, 1999). In sum, glycolysis produces four ATP 

and two NADH, but uses two ATP in the process for a net of two ATP and two 

NADH (Baker et al., 2010; R. K. Murray, 1996; Shahbazi & Maleknia, 2004).  

 

2.2.3.2 Krebs cycle11 
 

In the second stage which is called the Krebs cycle, there are two steps, includes 

the conversion of Pyruvate to Acetyl CoA and the complete oxidation of acetyl-

CoA into two molecules of carbon dioxide (CO2). In this cycle, two ATP’s, two 

FADH2’s, eight NADH’s12, and six CO2’s per glucose molecule are also 

produced plus the conversion of pyruvate (R. Murray, Granner, & Rodwell, 

2000; Shahbazi & Maleknia, 2004). This stage takes place in the matrix of the 

cells’ mitochondria. 

 

2.2.3.3 Electron Transport or Respiratory Chain 
 

11 It called also citric acid cycle as well as tricarboxylic acid cycle (TCA cycle), also in this 
cycle produces one ATP per each CO2 molecule: in total, two ATP. 

 
12 The molecules of Nicotinamide adenine dinucleotide (NAD) and Flavin adenine dinucleotide 

(FAD) are coenzymes found in living cells and involved in redox reactions, carrying 
electrons from one reaction to another. 
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Electron Transport chain (ETC) or oxidative phosphorylation is the last stage of 

the aerobic system, that leads to breaking down of NADH and FADH2 as well as 

pumping H+ into the external section of the mitochondria. The majority of the 

energy generated during aerobic reactions occurs near the end of the metabolic 

series of reaction (Baker et al., 2010; M. Brand, 2005; Glaister, 2005; Karp, 

2009). The hydrogen ions are released during glycolysis and also Krebs cycle 

should be removed to prevent the acidification of the cell. In this reaction, the 

ETS creates a gradient which is used to produce ATP (R. K. Murray, 1996; 

Shahbazi & Maleknia, 1999).  

 

In ETC, couple of reactions occur between NADH and FADH2 as an 

electron (e-) donor and an O2 as electron acceptor to transfer H+ ions across a 

membrane, through a set of mediating biochemical reactions that leads to 

oxidation and form a water molecule (Kregel & Zhang, 2007; Kulkarni et al., 

2007; Shahbazi & Maleknia, 2004). The role of oxygen as a final electron 

receptor in cellular respiration is substantial. The system, through transportation 

of electrons, meets up with the oxygen of respiration at the end of the chain 

which is responsible for removing electrons from the system13. Without oxygen, 

the proton pump could not be created, and ATP could not be produced. These H+ 

are used to produce ATP. The ATP generated as H+ moves down its 

concentration gradient through a special enzyme called ATP synthesis14. These 

redox reactions release energy, which is used to form ATP (M. Brand, 2000, 

2005; Stowe & Camara, 2009). 

 

In the chloroplasts of plants, light causes the conversion of water to O2. 

The transfer of H+ in the metabolism of the mitochondria is caused by the 

13 2 H+ + 2 e- + 1/2 O2 →  H2O + E  Notice: 2 hydrogen ions, 2 electrons, and half a mole of 
oxygen react to form as a product water with energy released in an exothermic reaction 

(2 H2O → 4 H+ + 4 e- + O2) 
 
14 ATP synthase is also readily reversible (ADP and Phosphate (Pi) are joined together by ATP 

synthase). Indeed, this is bilateral reaction (see biochemistry references). 
ATP—ATPase→ ADP + Pi + E→← ADP + Pi —ATPsynthase→ ATP 
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conversion of O2 to H2O and NADH to NAD+ (R. K. Murray, 1996; Shahbazi & 

Maleknia, 1999). Hence, the stage is called the electron transport or oxidative 

phosphorylation, whereas oxygen is the final acceptor of the electrons and 

hydrogen ions disappear in the stage of aerobic respiration and also because ADP 

gets phosphorylated to form ATP (Baker et al., 2010; Romick et al., 1996; 

Shahbazi & Maleknia, 2004). Till now, the first two rounds of aerobic system 

(aerobic glycolysis and Krebs cycle) have produced only four ATPs and a 

number of coenzymes.  

 

Complete oxidation of carbohydrates, e.g. a glucose molecule can produce 

34 molecules of ATP. In lieu of transportation of each NADH molecule in 

glycolysis, the conversion of pyruvate to acetyl CoA and Krebs Cycle produce 

three ATP – but in glycolysis, it costs one ATP to transport the NADH into the 

mitochondria – and instead, each FADH2 transportation provide the energy 

needed to resynthesize worth of two ATPs15 (Baker et al., 2010; M. Brand, 2005; 

Shahbazi & Maleknia, 1999). 

 

Oxidative phosphorylation is a key part of the aerobic metabolism, also, it 

facilitates to the propagation of free radicals, leads to the damaging of cells and 

contributes to diseases and, in cases, encourages the aging process (Blalock et al., 

2004; Kregel & Zhang, 2007; Kulkarni et al., 2007; Loerch et al., 2008; Lu et al., 

2004). 

  

15 Since it is against the concentration gradient, using a form of active transport, two ATP 
molecules are used to force the two pyruvate molecules into the mitochondrion. 
Complete oxidation of carbohydrates in ETC can yield 32 ATP: Glycolysis yield energy 
worth of 2 ATP and the Krebs cycle produce also energy worth 2 ATP (2 + 2 = 4). 
Eight NADH are produced energy worth of 24 ATP – Each NADH produced in the 
conversion of pyruvate to acetyl CoA and Krebs Cycle is worth 3 ATP (8 ˟ 3 = 24) – and 
2 FADH2 produce energy worth of 4 ATP – Each FADH2 is worth 2 ATP – ( 2 ˟ 2 = 4), 
thus, theoretically, glycolysis yield in total 32 APT (4 + 24 + 4= 32). 
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2.3 Exercise and physical activity 
 

In this section, the notion of physical activity and related concepts mentioned in 

this study such as physical fitness, intensity and type of exercise are elaborated.  

 

2.3.1 Physical fitness 
 

Physiological processes in human body are affected by conditions of lifestyle 

(Booth et al., 2002; Elavsky et al., 2005; McAuley et al., 2000; McAuley et al., 

2006). Exercise can improve levels of athletic performance via adaptation to new 

conditions (Burgomaster et al., 2008; Holloszy & Coyle, 1984; Mathews et al., 

1976).  

 

In sports context, there are some terms that have a variety of possible 

meanings and are often used interchangeably. Indeed, a human body’s motion 

produced by skeletal muscles in connection with energy expenditure can be 

defined as physical activity, while physical exercise is every planned and 

purposeful physical activity that enhances or maintains physical fitness 

components to create coordination with new conditions (Caspersen, Powell, & 

Christenson, 1985; Corbin, Pangrazi, & Franks, 2000; Shephard & Balady, 

1999). Physical fitness is defined as a general state of health. Among its main 

merits ranks the ability to perform physical activities such as sports. It is correct 

nutrition, training, hygiene, et cetera, leading to this state. Physical fitness 

components can be divided into health-related and skill-related (Caspersen et al., 

1985). 

 

The health-related physical fitness components are defined as 

cardiovascular endurance, muscle strength, muscle endurance, flexibility and 

body composition. Also, there are some other components of physical fitness that 

are more skill-related and include agility, balance, coordination, power, reaction 

time, and speed. These components can be measured and improved using definite 
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training techniques (Caspersen et al., 1985; Corbin et al., 2000). It is important to 

know that all components of physical fitness cannot be storable but can be 

changed, regardless of the stage of life (Caspersen et al., 1985; Fox, 1984; 

Mathews et al., 1976).  

 

Physiological changes of exercise on muscles and bodily functions e.g. 

strengthening muscles, muscle development – through exercise programs that 

often occurs in conjunction with the reduction of body fat – improving 

cardiovascular system, VO2max, blood pressure, improving motor skills, body 

composition – by two mechanisms of exercise. First, through a reduction in the 

percentage of body fat, and second through the increase of lean muscle mass 

developed –, ideal  and healthy weight, physical activity affects on some other 

aspects of human life such as affective and behavioral responses (Berger & 

Owen, 1983; Hanson & Nedde, 1974b; McAuley, Jerome, Marquez, Elavsky, & 

Blissmer, 2003; PILC, 2010; Sebire, Standage, & Vansteenkiste, 2009; 

Tomporowski & Ellis, 1984), mental health (Folkins & Sime, 1981), and 

cognitive function (Dustman et al., 1984; Heyn, Abreu, & Ottenbacher, 2004; 

Kramer et al., 2006; Lowe, Hall, Vincent, & Luu, 2014; Tomporowski, 2003; 

Weuve et al., 2004).  

 

It should be noted that terms such as sport, physical education as well as 

recreational and leisure-time activities are quite different (Kirk & Macdonald, 

1998; Messner & Sabo, 1990; Winnick, 2011) but they are often confused with 

other one. A physical activity can range from a walking in park as an activity at 

leisure-time to running as a competitor in the running match. However, the 

nature and purpose of physical education, sport and leisure-time activities are not 

the same. The purpose of physical education is the educational goals related to 

individual development, while the sport goal is the achievement of motor 

behavior performance as high as required to win over a rival or sometimes for 

self-competition. The learning content in physical education is relatively 
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adaptable to persons’ ability level, while in the content of sports training there 

are targets to be met.  

Learning oriented physical education is centered on persons’ will, while in sport; 

the person is responsible for achieving favorable results in match. This means 

that, in physical education, if the person may not reach the destination in the 

given time, unlimited times to try over again is available, while in sport there 

would be no second chance. Also, leisure-time activities are activities that people 

usually engage in during their free time merely to enjoy, and it encompasses 

various reasons such as relaxation, competition, or growth and may include 

playing for pleasure and participating in sports. Those are not objective oriented 

and don’t involve ordinary life e.g. sleeping or cleaning (Caspersen et al., 1985; 

Chen & Ennis, 2004; Corbin et al., 2000; Haskell et al., 2007; Haskell, Montoye, 

& Orenstein, 1985; Mathews et al., 1976). 

 

2.3.2 Exercise intensity 
 

Although, decline in cognition and memory function are associated with the 

reduction of adult hippocampal neurogenesis, physical activity promotes 

neurogenesis which improves memory function and learning (Cotman & 

Berchtold, 2002; Kempermann et al., 2010). It has been found that variety of 

physical activities intensities creates different effects on adaptation to exercise; 

even excessive exercise can be harmful (Fox, 1984; Mathews et al., 1976; Radak, 

Chung, & Goto, 2008). In human studies on relationships between the effects of 

physical exercise and cognitive abilities, from the viewpoint of sport physiology, 

we should consider several possibilities including: intensity and duration of 

exercises and the distinction between involved energy systems (Fox, 1984; 

Mathews et al., 1976; Tomporowski & Ellis, 1986).  

 

It has been reported that cognitive function was affected differently by 

exercise activity. This means that complex relationships exist between exercise 
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and cognition. Lambourne and Tomporowski (2010) found that the effect of 

exercise on cognitive function can be different depending on time of 

measurement, type of cognitive performance, and type of exercise (Lambourne & 

Tomporowski, 2010). When describing the amount of physical exercise, there is 

a notable relationship between the total dose of activity and the intensity of the 

performed activity (Howley, 2001; Shephard & Balady, 1999).  

 

The terms “dose” or “volume” designate the amount of energy used in 

exercises which require repetitive muscular activity (Mathews et al., 1976; 

Shephard & Balady, 1999). Activity intensity refers to the amount of energy 

expended when exercising. This amount differs depending on whether it’s basal 

energy that is consumed or if it is an exhausting exercise (Fox, 1984).  

Exercise intensity is divided into two forms: relative and absolute. The term 

“relative intensity” is used in the event of a certain percentage of maximal 

oxygen consumption (%VO2 max) or during maximal heart rate (%HR max), while 

“absolute intensity” is used when a particular amount of oxygen is consumed per 

minute (Fox, 1984; Shephard & Balady, 1999). For example, jogging at 4.8 km/h 

has an absolute intensity of approximately 4 METs16. In relative terms, this 

intensity may be considered light for a healthy young student, though, it must be 

considered hard for an elderly pensioner17 (Arriaza Jones et al., 1998; Howley, 

2001; Jette, Sidney, & Blümchen, 1990; Shephard & Balady, 1999). Determining 

whether level of exercise intensity is beneficial, detrimental or inconsequential in 

cognitive function on older adults is still the crux of much cognitive and aging 

research (Reuter-Lorenz & Cappell, 2008). 

 

16 One metabolic equivalent (MET) is defined as the quantity of oxygen consumed while sitting 
at rest and is equal to 3.5 ml oxygen per kg of body weight per min (3.5 ml O2 • kg-

1•min-1) or (3.5 ml O2/kg/min). One MET equals the expenditure of 14.6 kJ • kg−1 • 
min−1; 3.5 kcal • kg−1 • min−1 can be achieved during exercise tests that are graded. 

 
17 Moderate-intensity activity was defined as activity performed at an intensity of three to six 

METs. 
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Since the physical activity intensity may be very different and perceived intensity 

varies for each individual, hence for a better understanding, it is categorized into 

low, moderate, and vigorous intensity levels. Either physical inactivity or 

strenuous exercise leads to increased incidence of a variety of diseases, while 

regular-moderate physical activity provides a wide range of beneficial effects 

including, improved physiological function, decreased incidence of disease and a 

higher quality of life (Radak, Chung, & Goto, 2008; Radak, Chung, Koltai, 

Taylor, & Goto, 2008). 

 

Studies examining the intensity of exercise required to optimize neurotrophins18 

suggest that cognitive function scores improved after all exercise, but the amount 

of increase depends on exercise intensity (Ferris, Williams, & Shen, 2007) and it 

has been reported that continuous increases in neurotrophins levels occur with 

prolonged low to moderate intensity exercise (Ploughman, 2008).  

 

Young et al., (1999) reported that light and moderate aerobic exercises 

may have similar effects on cardiovascular factors e.g. blood pressure in 

previously sedentary older adults. Also, their results revealed that maximal 

aerobic capacity tended to increase in aerobic exercise (D. R. Young, Appel, Jee, 

& Miller 3rd, 1999). Lybrand et al. (1954) measured the effects of an exhausting 

endurance march with about 18 kg packs on the perceptual organization ability of 

college students. They found that perceptual scores on tasks were higher after 

mild physical activity than under non-exercise and sleep-deprivation conditions 

(Lybrand, Andrews, & Ross, 1954).  

 

Tomporowski et al., (1985) have assessed the effects of a strenuous 

aerobic run to exhaustion on memory. 24 college students classified as of average 

cardiovascular fitness (mean VO2 max = 44.7 ml/min/kg) running to exhaustion at 

80 percent of their VO2 max. The average time of subjects spent on the treadmill 

18 Neurotrophins are proteins that induce the survival, development, and function of neurons. 
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was 27.93 minutes immediately after their activity; subjects performed a series of 

twelve free-recall tests of memory over a 60-minutes period. Post-exercise test 

scores were compared with the performance of a non-exercised as control group. 

A slight facilitation in the performance of the exercised subjects was noted 

during the first 30 min. of the test period; however, the change was not 

statistically significant (Tomporowski & Ellis, 1986). 

 

In this study, the conception of physical exercise is a low to moderate 

physical activity without any competition and also risk-free for the study 

participants. Indeed, there was no competitional physical training or activity as 

leisure. 

 

2.3.3 Kinds of exercises 
 

Although, there are several physical activity types such as endurance, strength, 

balance, and flexibility, but since there are only two sources to the energy supply 

system for human physical activity, thus, exercises are divided into two general 

categories including aerobic and anaerobic (Morton, 2006).  

Aerobic exercise is any physical activity that uses large muscle groups for long 

time (e.g. more than ten minutes), and causes body to use more oxygen than it 

would do while resting. The primary goals of aerobic exercises are improvement 

and maintenance of health, lowering the risk of disease, and managing fitness 

and weight (Fox et al., 1975; Mathews et al., 1976). 

 

Aerobic exercises induce faster breathing and take in more oxygen, – 

aerobic conditioning is a key factor in losing or managing weight by lipolysis and 

Beta-oxidation19 – improves cardiovascular fitness, up-regulates the immune 

system, reduces cognitive decline possibly by enhancing concentration of 

19 Lipolysis and Beta-oxidation are the breakdown of lipids and fatty acid in the mitochondria to 
generate acetyl-coA and NADH and FADH2, which are used by ETC, to produce ATP.  
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neurotrophins as well as creating greater emotional equanimity as benefits of 

aerobic conditioning (Haskell et al., 2007; Haskell et al., 1985).  

Examples of aerobic training include cycling, swimming walking, long slow 

runs, rowing, require a great deal of oxygen to generate the energy needed for 

prolonged exercise (Fox, 1984; Mathews et al., 1976).  

 

Anaerobic exercise is also called Strength or Resistance training. There 

are two types of anaerobic energy systems: ATP-PC and Anaerobic glycolysis. 

Anaerobic exercises also include weight training, functional training, eccentric 

training, Interval training, sprinting. High-intensity interval training increases 

short-term muscle strength (Fox et al., 1975; Mathews et al., 1976). In this study 

the term “anaerobic” will be used in the same way as “non-aerobic”. 
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2.4 Memory 
 

In psychology, memory is defined as a process in which information is registered 

and encoded, consolidated and stored, and ultimately recalled and retrieved 

(Jensen & Lisman, 2005; Markowitsch, 2003; Sara, 2000; Tulving & 

Markowitsch, 1997). Memory is not a single entity but it is a complex system of 

separate entities which depend on different brain systems (Squire & Zola, 1996; 

Tulving & Markowitsch, 1998). Functional imaging studies of the human brain 

indicated multiple memory systems with different functions and separate 

anatomical organizations (Andrews-Hanna et al., 2007; Bishop, Lu, & Yankner, 

2010); there is an understanding that cognitive decline in normal aging arises 

from functional disruption in the coordination of brain systems that support 

cognitive function (Andrews-Hanna et al., 2007). 

 

Memory process starts with perception of stimuli through the senses 

(Shiffrin & Atkinson, 1969). The perceived information may be conscious or 

unconscious (Markowitsch, 2013). Then, registered information is transferred 

through a specific code into human memory processing. The role of frontal 

cortex and specifically the dorsal extent of the inferior frontal gyrus (BA 6/44) 

have been explained in this stage (McDermott, Buckner, Petersen, Kelley, & 

Sanders, 1999). A selection of registered information allows continuing the 

memory process via attention. Encoding is maybe the first voluntary stage of a 

new memory. Indeed, encoding is the process of putting information into 

memory for storage. Encoding process can occur deliberately or accidental 

(Kapur et al., 1994). Figure 1 shows the main processes from registration until 

recall and retrieval of information. 

 

Some types of encoding encompass acoustic, visual and semantic 

encodings. The acoustic type is encoding of sounds, words or other auditory 

information for storage and retrieval (Baddeley, 2003). In this kind of encoding, 

the phonological loop allows input within echoic memory to be rehearsed in 
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order to facilitate remembering (A. Baddeley, 2000; Baddeley, Gathercole, & 

Papagno, 1998). 

 

Visual encoding is the process of encoding images and visual sensory 

input. Visual items are temporarily stored within the iconic memory before being 

encoded into long-term storage. The amygdala plays an important role in visual 

encoding (Sperling, 1960). Semantic encoding is a specific process of encoding 

in which the meaning of particular information, for example a word, phrase, 

picture or event. Words with semantic and deep meaning can recall the 

information better than both easy and hard of non-semantic (Craik & Tulving, 

1975). 

 

 

Figure 1: Illustration of the main storage process (modified from Markowitsch, 
2003) 

 

 

Learning process in procedural memory is ongoing and gradual (Ullman, 

2004) and the rules of material apply automatically (Squire & Zola, 1996). So, it 

is acceptable that encoding of motor skill occurs on a constant basis during 

multiple performances of stimuli and responses. 

 

Consolidation process expresses the neural processes of transpiring newly 

encoded information that contribute to the permanent storage of memory 

(Alberini, 2005; Nadel & Moscovitch, 1997). The processes of consolidation 

may last minutes to hours, months and even years (McGaugh, 2000). This stage 

of memory is commonly considered in two specific parts. One of them occurs in 

all memory systems within the first minutes to hours after learning and encoding 
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process and is called synaptic consolidation. Another one is called system 

consolidation and it lasts much longer than synaptic consolidation. Many types of 

memories depend upon hippocampal processing during the first few weeks and 

may become hippocampal-independent (Dudai, 2004). Hippocampal processing 

plays a time-limited role – first few weeks – in the consolidation of some types of 

memory (Anagnostaras, Maren, & Fanselow, 1999; Knowlton & Fanselow, 

1998; Zola-Morgan & Squire, 1990).  

 

In consolidation stage, the stability of the new memory formation is 

enhanced (McGaugh, 2000). During consolidation process, protein synthesis is 

required to transform newly learned information into stable changes (Alberini, 

2005; McGaugh, 2000). Insights into the neurology of the process of new 

memory consolidation utilizes a phenomenon called long-term potentiation 

(LTP) provides an important key to understanding the mechanisms which 

induces memories which are formed and stored (Teyler & DiScenna, 1987). 

Indeed, LTP makes it possible for synapses to grow in strength as advanced 

numbers of signals are passed between the two neurons. 

 

Since, sleep can play an important role in the plastic cerebral changes that 

underlie learning and memory (Maquet, 2001). It has been shown that sleep 

might enhance the consolidation of declarative memories, but do not improve 

procedural memory consolidation of hippocampus-independent (Rasch, Büchel, 

Gais, & Born, 2007). However, there is a misconception that procedural memory 

do not depend on hippocampal function, studies using fMRI have indicated that 

hippocampal activation during declarative memory and  motor skill learning at 

least at initial skill acquisition engages hippocampal function (Schendan, Searl, 

Melrose, & Stern, 2003). Thus, there is currently evidence that sleep promotes 

the consolidation of declarative memory and motor skill learning (Diekelmann, 

Wilhelm, & Born, 2009; Marshall & Born, 2007).  
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Connection between the changes in synaptic function and both declarative 

memory and motor skill learning in the neural system supports the view that 

modifications in synaptic strength may be a symbol of a general mechanism of 

memory storing (Mayford, Siegelbaum, & Kandel, 2012). Memory storage is a 

extensive continuous biological process, which requires new proteins synthesis 

after learning (Kandel, 2001).  In addition, altered protein synthesis, growth of 

new synaptic connections play a role in memory storing stage (Bailey, Bartsch, 

& Kandel, 1996). Via engrams, which are defined as the storage of new memory 

traces in the neuronal network (Markowitsch, Emmans, Irle, Streicher, & 

Preilowski, 1985; Penfield, 1968); it appears that, the new learned materials will 

embed through the neuromorphological changes and protein synthesis in the 

brain and other neural tissues (Markowitsch, 2013).  

 

Certainly, memories are not separately stored in the brain like books on 

library shelves. Also, memories can be a combination of content-different 

information. Since each kinds of memories are stored in different areas of the 

brain. Interestingly, sometimes, retrieval of stored information requires new 

nerve pathways in the brain and not the pathways formed during encoding 

process (P. C. Fletcher et al., 1995).  

 

Retrieval is final presentation of memory process. Because, after 

memories are encoded, consolidated and stored, without recalling the stored 

information, the memory is a meaningless process. The recovery of memory 

which is also called ecphory (Markowitsch, 2013) is the last stage in memory 

process that reactivates memory traces and may come to pass through one 

specific trigger. The retrieval may occur without external help and cueing, like a 

process in which a person is given a list of items to remember and then is asked 

to recall them (Tulving, 1967; Tulving & Colotla, 1970). It is called free 

retrieval. While, in cued recall, to retrieve the items presented previously, the 

person receives a cue as external stimuli. For example when we hear the first 
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letter of a word then we recall the whole complete word that we searched 

(Markowitsch, 2013). 

 

Free retrieval displays evidence of primacy and recency effects. When the 

person can remember items stored at the beginning of the list earlier and more 

often, it indicates that they were already transferred via primacy effect into long-

term memory. while, recency effect occurs when last items of a long list is 

remembered better (Markowitsch, 2013).  

 

Also, contiguity effect shows that persons who more effectively form and 

retrieve relations between items that happen nearby in time encoding perform 

better in episodic retrieval tasks (Sederberg, Miller, Howard, & Kahana, 2010). 

Also, in expressing the effects of environmental context change on memory 

process, it has been stated that memory retrieval of integrated-imagery items is 

better when the environments are similar in both the encoding and recall phases 

(Eich, 1985). Indeed, suggesting that similarities of context cues during recall 

process are important. 

 

In procedural system, unlike declarative memory, it appears that those 

information retrieval are encapsulated (Squire & Zola, 1996). Therefore, 

recalling of motor skill is triggered by the stimulus without conscious control.  

 

2.4.1 Memory taxonomies 
 

Memory is commonly classified into a number of forms. In next section, two of 

them have been explained based on subdividing the memory according to the 

duration or content. 
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2.4.1.1 Duration and time dependent memory 
 

Regarding the duration and relation between memory and time, memory is 

generally classified to short-term (STM) and long-term memory (LTM), 

although, to this classification one may add the sensory store – ultra-short-term 

memory or sensory memory – as well as working memory (WM) which is 

connected with STM. The thought of the division of memory into short- and 

long-term dates back to the last century. However, this division is disputed. Clear 

boundaries between STM and LTM are difficult to pinpoint; researchers 

proposed that, in fact, clear-cut distinctions have not been made (Tarnow, 2008, 

2009). Markowitsch (1999) believed that some information can last for just few 

minutes, while some of them last forever (Markowitsch, 1999). 

 

Broadbent (1984) proposed a model consisting of four different stores 

including a sensory store, a short-term store, a long-term store and a motor output 

store (Cowan, 1997). Sensory memory is the shortest-term part of memory. It 

acts for stimuli received through the human senses e.g. vision; although, 

information are retained accurately, they are very brief (Sperling, 1960). In 

general, the brain has developed to process information which may be needed 

later. Thus, sensory memory is an ultra-short-term memory and decays quickly, 

typically, in about 200-300 milliseconds; indeed, less than a second past 

perception (Loftus, Duncan, & Gehrig, 1992). Because of this short-term nature 

it is often understood as part of the perception process itself. Also, it is an 

important stage for STM storage (Atkinson & Shiffrin, 1968). An example is the 

remembrance and recognition of something after only a split-second of 

observation. When a stimulus is noticed it can either be deliberately ignored or 

enter sensory memory. Sensory memory does not require any conscious attention 

and is often considered to be outside of conscious control (Schmidt, 1990). 

Unlike other types of memory, the sensory memory cannot be extended by 

rehearsal (Cowan, 1997). 
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Atkinson and shiffrin (1968) explained a multi-store model, which assumed that 

all memories pass from a short-term to a long-term store after a short time. 

Figure 2 shows the multi-store model of memory processes. This model assumes 

that information flows through three different stages before it gets stored in 

memory. The information first enters the sensory store, which can hold large 

amounts of data for one or two seconds. Information that gets selected for further 

processing moves on to the STM. The final destination is LTM, which can hold 

apparently unlimited amounts of information for an unlimited amount of time 

(Atkinson & Shiffrin, 1968; Shiffrin & Atkinson, 1969). Information in STM can 

become LTM through the process of consolidation, involving rehearsal and 

meaningful association (Baddeley, 1992).  

 

 

Figure 2: Multi-store model connecting the serial information processing along the 
time (modified from Atkinson & Shiffrin, 1968) 
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STM is the capacity for holding small amounts of information in one’s mind in 

an actively available state for a brief span of time. Indeed, STM temporarily acts 

as a recall ability concerning information that is processed at any point in time. 

The duration of short-term memory is believed to be within the range of up to 30 

seconds and a commonly capacity is estimated about seven, plus or minus two 

elements (G. A. Miller, 1956); if more items are added here, previous items are 

lost.  

 

In Markowitsch opinion (2013) STM lasts seconds to a few minutes, 

which can store digit span of five bits of information. He believes that the first 

and the last perceived terms are remembered better than those in the middle 

(Markowitsch, 2013).  

 

 

 

Figure 3: Schema of the difference between short-term and long-term memory, as 
well as relations between memory durability and duration (modified from 
Markowitsch, 2013) 

 

It has also reported that there is a strict capacity limit in the number of 

objects that human can store in visual short-term memory (VSTM). The storage 

capacity VSTM is interpreted about three or four items (Todd & Marois, 2004, 

2005). According to recency effect, it has been assumed that the words perceived 

first have already been transmitted for LTM, while that information perceived 

last are still in STM storage due to primacy effect (Markowitsch, 2013). 
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As mentioned earlier, the memory is a complex system with different functions 

and separate anatomical organizations. The prefrontal cortex isn’t the only STM-

engaged component of the brain, yet, injury to the prefrontal cortex in primates 

brought about STM deficits (Jacobsen, Wolfe, & Jackson, 1935). It takes only a 

very short amount of time until STM information vanishes irreversibly unless a 

conscious effort is made to remain it. STM is vital for reaching the next stage of 

LTM’s retention (Schmidt, 1990). However, it is possible that STM may be 

extended by repetition, attention and rehearsal. 

 

In Atkinson & Schifrin’s multi-store model, LTM is the final stage of the 

memory, which may hold a huge volume of information for a long time, even 

lifetime. LTM is obviously suitable to store information over a long period of 

time. It may be that LTM decays very little over time. Information is transferred 

from the STM to the LTM within just a few seconds (Atkinson & Shiffrin, 1968; 

Shiffrin & Atkinson, 1969). Physical changes in the structure of neurons in the 

brain are involved in the creation of LTM. Circuits of such nerve cells are altered 

whenever something is learned. These neural circuits are a composition of 

neurons that use synaptic junctions in order to communicate with each other 

(Bailey & Kandel, 1993).  

 

Now, it is generally accepted that learning requires synaptic changes, 

these changes in synaptic strength occur as a consequence of certain forms of 

learning (Martin & Morris, 2002) ; indeed, through an electrochemical transfer of 

transmitters in junctions between neurons and through the formation of new 

proteins in the brain. A stronger communication of certain neural circuits in the 

brain is the result. Long-term memory storage is a wide cell-biological process, 

which requires transcription of synaptic changes. Hence, the process needs new 

protein synthesis immediately after training (Kandel, 2001). With repeated use 

and training, the efficiency of these synapse connections increases.  
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2.4.1.2 Content dependent memory 
 

Over the years, several classifications of memory as content have been 

distinguished. Endel Tulving (1972) first proposed the idea for a distinction 

between kinds of declarative material of memory such as semantic and episodic 

information. Tulving’s “episodic memory” is the active, conscious recall of 

experience, while his “semantic memory” refers to the memorizing of general 

knowledge (Tulving, 1972). Another important division of memory made by 

Tulving is the one of explicit and implicit memory. Tulving proposed that these 

different memory phenomena reflected different brain systems (Tulving, 1985). 

Unlike Squire’s model, it did not define two declarative and non-declarative 

memories. Tulving subdivided human LTM into five organized memory systems 

that involves episodic, semantic, perceptual, priming and procedural memory 

(Tulving, 1972, 1995; Tulving & Markowitsch, 1998). 

 

Episodic-autobiographical memory (EAM), referring to memories of 

specific events, may be a subset of episodic memory or episodic memory itself. 

Like semantic memory, episodic memory is a declarative memory system, and 

also, there is an overlap between the semantic and episodic memory, which has 

been introduced by Tulving in 1994. He pointed the hemispheric 

encoding/retrieval asymmetry model (HERA). He showed that during episodic 

encoding and semantic retrieval the left prefrontal region was activated, while the 

right prefrontal cortex was more different engaged in episodic memory retrieval 

than the left prefrontal region (Nyberg, Cabeza, & Tulving, 1996). For further 

description about the overlap see Endel Tulving 1994 and Tulving and 

Markowitsch 1998. 

The episodic memory (event) system is probably unique to humans (Tulving, 

2002) and is used to retrieve past experiences and also may include all 

information of personal autobiography, for example what happened on one’s last 

birthday. Though, episodic memory is engaged in more personal memories, such 

as the emotions, sensations, and personal associations of a specific memory, it is 
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not limited to a specific place or time. The semantic memory is concerning 

context-free facts (e.g. words, such as knowing who the first astronaut was, or 

what swim styles there are). Semantic memory allows the encoding of abstract 

knowledge about the world, such as the capital of a country.  (Tulving, 1989; 

Tulving & Markowitsch, 1998; Tulving & Thomson, 1973; Vargha-Khadem et 

al., 1997).  

 

The perceptual memory is expressed in developed identification of object 

as a physical-perceptual system and refers to the process of learning developed 

skills of perception because of the similarity of the stimuli. Although, perceptual 

memory is conscious action, it’s still a presemantic level. This means that, the 

identification of the object requires less stimulus information or occurs more 

quickly. This ability can be a simple sensory identification such as distinction 

between two colors or two musical tones (Schacter & Tulving, 1994; Tulving, 

1995).  

 

Priming is a non-conscious form of human memory and describes the 

ability to recognize a stimulus faster because exposure to one stimulus influences 

a response to another stimulus (Tulving & Schacter, 1990); for example, 

“Student” is recognized more quickly following “School” than following “Car”. 

 

The simplest memory system is the procedural memory system (Thöne-

Otto & Markowitsch, 2004). Perhaps, the procedural memory has simply been 

measured because it recalls unconsciously of past memory (Kandel, 2001). The 

procedural memory is often acquired by trial and error method (Mochizuki-

Kawai, 2008). Indeed, this memory system includes the acquisition, storage, and 

retrieval of knowledge expressed through changes of experience-induced in 

performance.  Schacter (1994) has been highlighted the procedural memory as 

the first major memory system (Schacter & Tulving, 1994). Procedural memory 

is a type of long-term memory that in a taxonomy is divided into three types: 

motor skills, perception and cognitive skills (Mochizuki-Kawai, 2008). 
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In procedural memory learning, knowledge and performance are generally 

unconscious; hence, it is also called implicit and non-declarative memory 

(Budson & Price, 2005). Unlike declarative memory, the knowledge applies 

quickly, triggering a response not by conscious control, but by stimulus (Squire 

& Zola, 1996). This memory system is an ability to learn behavioral and 

cognitive skills at an unconscious level (such as learning a sport skill), which are 

separate from declarative memory and it is composed of a network of brain 

structures (Ullman, 2004). It has also shown anatomical regions and their 

structures involved in declarative and procedural memories in the brain’s system 

are distinct (see section 2.4.2 and Table 1, for more information). The five long-

term memory systems have been shown in Figure 4. 

 

 

Figure 4: The five memory systems (modified from Markowitsch, 2013)  
 

The other classification was stated by Larry R. Squire (1987). He has 

focused on the different levels of consciousness in human memory systems. 

Hence, Squire illuminated distinction between declarative and non-declarative 

memory. Thus, Squire stated two main memory systems (Fig. 5) included the 

non-declarative (or implicit) and the declarative (or explicit) memory system 

(Squire, 1987). In this model, declarative memory is one of two types of LTM, 

and refers to memories, which may be consciously recalled including facts and 

general knowledge (semantic memory) as well as storage of the specific and 

personal experiences (episodic memory) (Squire & Zola-Morgan, 1991; Ullman, 
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2004). In Squire’s opinion declarative memory differs from procedural memory, 

which encompasses skills and motor learning such as the use of objects or 

movements of the body that are performed in level of unconscious (Squire, 

2004). 

 

Figure 5:  Squires taxonomy of long-term memory (modified from Squire, 1992) 
 

In other word, Squire’s model highlights a distinction between declarative 

memory, which can be accessed consciously and non-declarative memory, which 

is mainly unconsciously processed memory systems (L. Squire, 1992; Squire & 

Zola, 1996). Non-declarative memory is subdivided into unconsciously memory 

systems, which involves procedural learning (e.g. motor skill learning such as 

e.g. learning to ride a bicycle), associative learning (e.g. classical conditioning), 

non-associative learning (e.g. habituation and sensitization), as well as priming 

and perceptual learning (e.g. understanding an incomplete sketch) (L. Squire, 

1992).  
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2.4.2 Neural correlates 
 

At the moment, the knowledge of memory and the corresponding brain structures 

declared that along with increasing age some changes arise in brain structure and 

function (Altman & Das, 1965; Cameron & McKay, 1999; Fabel & 

Kempermann, 2008).  

 

Some studies on executive function and brain regions showed the normal 

aging process does not degrade neural areas and cognitive processes similarly 

(Burke & Barnes, 2006; K. I. Erickson et al., 2009; Kramer et al., 1999; Mather 

& Carstensen, 2005; Small, 2001). Synapses as the functional units of the brain 

are morphologically and molecularly diverse (Mayford et al., 2012). This variety 

may be served to different functions of synapses in learning and memory. 

Repeatedly, engagement of prefrontal cortex during memory-associated tasks has 

been observed (P. Fletcher & Henson, 2001; Markowitsch, 1995).  

 

Most research regarding short-term memory showed that STM tasks 

including verbal, visual and spatial are supported by transient patterns of 

neuronal communication in the different regions (Jacobsen et al., 1935); while 

LTM is maintained by more permanent and consistent changes in neural 

networks throughout the brain. Indeed, forgetting occurs more in the LTM when 

the formerly fortified connections among the neurons in their network lessen in 

strength (Martin & Morris, 2002), while decay happens more in sensory store 

and STM (A. D. Baddeley, 2000). 

 

To recognise better of the neural areas and cognitive processes, in the next 

section, a brief outline is given of the involvement of brain regions in short- and 

long-term memory processes and also associated areas in the brain. 
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2.4.2.1 Neural regions and short-term memory 
 

As already noted, different STM tasks are supported by neuronal communication 

in the different regions. One of the old works has shown that some STM tasks are 

activated regions of the frontal (BA 4/6/8-11/24/25/32/33/44-47), prefrontal (BA 

9-12/46/47) and parietal lobes  (BA 1-3/5/7/39-43) of the brain (Jacobsen et al., 

1935). It seems that the central executive task cannot be localised only in one 

area but activates a larger network involving the frontal regions (Baddeley, 

2003).  

 

In 1971, a research on monkeys has demonstrated that nerve cells in the 

prefrontal cortex (BA 9-12/46/47) and part of the thalamus, associated with the 

attentive process are involved in short-term memory (Fuster & Alexander, 1971). 

 

Courtney et al., (1996) study the neural correlated on object and spatial 

visual of working memory through the control of increasing cerebral blood flow 

(rCBF). They demonstrated that the neural systems involved in working memory 

for faces and spatial location are functionally segregated. Face working memory, 

is associated on superior and inferior parietal cortex (BA 40), while spatial 

information working memory, is related on parahippocampal, fusiform, inferior 

frontal, and a part of anterior cortices, and in right thalamus and midline 

cerebellum (Courtney, Ungerleider, Keil, & Haxby, 1996). 

 

Nyberg et al., (2002) showed that working memory tasks that is associated 

to STM activated the premotor (BA 6) and parietal of cortex brain regions 

(Nyberg, Forkstam, Petersson, Cabeza, & Ingvar, 2002). It has been reported that 

posterior parietal cortex (PPC) (BA 7)  is related with visual short-term memory 

tasks and is strongly correlated with the limitation amount of scene information 

that is stored in visual short-term memory (VSTM) (Todd & Marois, 2004). They 

also found a correlation between VSTM capacity with activity in the posterior 

parietal and the visual occipital (BA17-19) cortex (Todd & Marois, 2005). A 
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number of investigator like Beeson et al., (1993), Butters et al., (1970) and 

Cermak and Tarlon (1978) reported that left inferior frontal cortex related with 

Broca’s aphasia area (BA 44) and this area can limit auditory and verbal of STM 

and some researchers for example Awh et al., (1996), Cohen et al., (1994), 

Grasby et al., (1993), Rypma et al., (1999), Smith et al., (1996) have confirmed 

that this area is activated by verbal STM and may be modulated by the 

constraints of STM demand (Cooke et al., 2002). Salmon et al., (1996) have also 

confirmed that the left inferior supramarginal gyrus and the premotor (BA 6) are 

the main regions in verbal STM processes, and the superior occipital gyrus (BA 

19) is the key regions of the visual STM processes (Salmon et al., 1996).  

 

Briefly, different STM tasks are supported by distinct areas of brain. For 

instance the frontal and prefrontal regions related to the central executive task. 

Plus a part of prefrontal cortex, part of the thalamus associated with attentive 

process is involved in STM. Working memory is associated on the premotor (BA 

6) and parietal cortex (BA 1-3/5/7/39-43). The posterior parietal cortex (BA 7) 

was found activated for visual STM tasks, while the left temporal-parietal and 

left inferior frontal cortex are related to auditory and verbal of STM tasks. 

 

2.4.2.2 Neural regions and long-term memory 
 

Although, the hippocampal region is dedicated to memory performance (Scoville 

& Milner, 1957) and this region of brain has been identified as fundamental 

capacity of declarative memory (Eichenbaum, 2000). The encoding and 

consolidating of new information of declarative memory including events and 

factual knowledge requires two brain circuits, which are located within the limbic 

lobe and are called the Papez and the basolateral limbic circuits (Markowitsch, 

1997). 

James Papez (1937) introduced this circuit that is proposed to be 

predominantly involved in the transfer of new information into the long-term 
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declarative memory system. The circuit of Papez is one of the main pathways 

responsible for processing of emotion and memory. With length about 350 

millimeters in this circuit, the information processing begins in the hippocampus 

and continues into the fornix to reach the mamillary body, which are connected 

via the mammillothalamic tract (MMT) (or bundle of Vicq d’Azyr) after that 

continues to the anterior nucleus of the thalamus that is connected by means of 

the thalamo-cortical pedunculi with the cingulate gyrus. The cingulum courses 

around the corpus callosum to end in the entorhinal cortex, which then projects to 

the hippocampus and circuit is completed (Shah, Jhawar, & Goel, 2012). 

Although, it has also been illumined that there are connections between the 

hippocampal formation, hypothalamus and septal area via fornix and MMT 

(Rajmohan & Mohandas, 2007). Figure 6 shows the papez circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Illustration of the Papez circuit (modified from Rajmohan & Mohandas, 
2007) 
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In other limbic circuit, the information processing is relayed via the basolateral 

complex of the amygdala (BLA). Since the amygdala is an important area of 

brain for emotional arousal (McGaugh, 2000) this circuit is known to be 

responsible for the processing of emotion and affective functions (Markowitsch, 

2000). Amygdala uses two major pathways in limbic circuit (Rajmohan & 

Mohandas, 2007) and contain: 

 

- Dorsal route or amygdalo-septal pathway 

- Ventral route or ventral amygdalofugal pathway 

 

The basolateral pathway consists in parts of the orbitofrontal, prefrontal 

and temporal cortices, amygdala, medial dorsal thalamus, hypothalamus and 

septal area, anterior temporal cortex. Indeed, basolateral circuits serve to process 

information and emotional reactivity between association cortices including the 

prefrontal and temporal, and the hypothalamus (Markowitsch & Staniloiu, 2011a; 

Rajmohan & Mohandas, 2007). In addition to effects of the amygdala in affective 

and emotion information, the amygdala plays a special role in encoding, 

consolidation and retrieval processing of declarative (events) memory 

(Markowitsch & Staniloiu, 2011a). Also, the findings of animal and human 

studies have shown the role of the amygdala in modulating the consolidation of 

LTM (McGaugh, 2002, 2004). 

 

Those circuits are not only interconnected together, but also connected 

with other regions through some of the structures (Rajmohan & Mohandas, 

2007). In addition, the components of the circuits are known to  have different 

tasks. As already noted, the amygdala plays a special role in encoding of 

emotional information (Markowitsch, 2000; Markowitsch & Staniloiu, 2011a), 

the amygdala with the thalamus and the basal forebrain can allow a better 

encoding of affective memories (Piefke, Weiss, Zilles, Markowitsch, & Fink, 

2003). There is evidence that the amygdala through interconnections with other 
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brain systems plays a special role in modulation of memory as well as regulating 

attention (Gallagher & Chiba, 1996).  

 

Much evidences have supported that the amygdala plays a considerable 

role in storage processes during emotional learning conditions (Kilpatrick & 

Cahill, 2003; McGaugh, Cahill, & Roozendaal, 1996). Anyhow, pleasant or 

aversive events are memorized better than neutral (or non-emotional) events. 

Despite of fact that the visual information is stored in the occipital lobe (BA 17-

21) (in the visual area of the brain cortex) the amygdala feedback during 

emotional situations can influence the processing of visual information (Amaral, 

Behniea, & Kelly, 2003). If the amygdala is activated by affective arousal, it 

modulates memory storage processes in other brain regions such as 

parahippocampal gyrus and parts of prefrontal cortex (Kilpatrick & Cahill, 

2003). 

Even through the amygdala activation via emotionally arousing can improve 

episodic memory through modulation of hippocampal activity (Hamann, Ely, 

Grafton, & Kilts, 1999). Although, the storage process depends on the type of 

memory (Tulving, 1972); it has been suggested that parts of the brain such as 

amygdala may have the role of substantial modulator control (Amaral et al., 

2003). Also, the amygdala contributes not only to the conscious processing with 

a higher degree of cognitive-emotional functions for instance in episodic 

memory, but also to non-conscious forms of memory such as procedural memory 

and priming (Markowitsch & Staniloiu, 2011a). 

 

Some processes of declarative memory depends on the temporofrontal 

junction area, but, in view of, lateral hemisphere predominance, the factual 

knowledge or semantic memory is more correlated with the left cerebral cortex 

and episodic information or personal experiences with the right part 

(Markowitsch, 1997). Also, about hippocampus in human, studies has shown that 

the right hippocampus is associated with encoding processes of spatial memory 

and left hippocampus is related to processing verbal information and declarative 
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memory (Burgess, Maguire, & O'Keefe, 2002). Aside from the specific role of 

hippocampus in autobiographical memory, but not  for the acquisition of factual 

knowledge (Tulving & Markowitsch, 1998; Vargha-Khadem et al., 1997), the 

hippocampal formation that are connected to the frontal lobe can create the basis 

for developing spatial-temporal episodic memories (Burgess et al., 2002). 

 

Milner in 1965 emphasized the importance of the medial temporal lobe 

(MTL) for encoding processes of the declarative memory (Milner, 1965a). In 

1953, the famous patient H.M. who suffered from intractable epilepsy was 

referred to neurosurgeon William Scoville. Scoville diagnosed the patient’s 

epilepsy to both MTLs (left and right) and ordered their surgical resection. The 

hippocampal formation was included in the patient’s MTL; most of the 

entorhinal cortex and the amygdaloid complex needed to be removed. Also, it 

appeared that his hippocampal tissue was entirely nonfunctional; even parts of 

the anterolateral temporal cortex were destroyed. 

After surgery and after a successful bilateral medial temporal lobectomy, he 

suffered from severe anterograde amnesia; the patient’s procedural and working 

memory remained intact. He was able to learn new skills such as mirror drawing; 

although, he was unaware of doing it. Also he could not apply new events to his 

declarative memory (Scoville & Milner, 1957). The structure of MTL including 

the hippocampus, entorhinal, perirhinal, and parahippocampal cortices, may be 

involved in storing of new information (Squire & Zola-Morgan, 1991).  

 

Memory storage for declarative human learning is notably dependent upon 

structures within the temporal lobe, for instance the hippocampus (L. R. Squire, 

1992). Also, the prefrontal and anterolateral temporal cortex which provides a 

connecting link to posterior cortical centers of integration as the major storage 

places (Markowitsch et al., 1985). Hippocampal region plays a key role in the 

storing of new memories, but over time the storage of non-declarative memories 

becomes independent of this area (Graham & Hodges, 1997). Briefly, declarative 

memory depends on the hippocampal region, a set of greatly interrelated medial 
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temporal lobe structures, parts of cortex such as entorhinal and perirhinal, as well 

as parahippocampal cortical regions (Squire & Zola, 1996; Suzuki & 

Eichenbaum, 2000; Tulving & Markowitsch, 1998; Vargha-Khadem et al., 

1997).  

Semantic memory depends primarily on the cerebral cortex (Markowitsch & 

Staniloiu, 2012; Vargha-Khadem et al., 1997) and also the inferolateral temporal 

lobe (Budson & Price, 2005; Markowitsch & Staniloiu, 2011b). The episodic 

memory system is dependent mainly on the hippocampal component system 

(Tulving & Markowitsch, 1998; Vargha-Khadem et al., 1997) as well as on the 

limbic regions, and frontotemporal and cerebral cortex (Markowitsch & 

Staniloiu, 2012).  

 

Retrieval of LTM is strongly related to the parts of the right lateral 

temporo-frontal junction area (Kroll, Markowitsch, Knight, & von Cramon, 

1997). Though, it has been observed that the prefrontal cortex (BA 

9/10/11/12/46/47) acts as a kind of control center for beginning of recall (Jetter, 

Poser, Freeman Jr, & Markowitsch, 1986). Retrieval of declarative memory 

containing semantic and episodic information is triggered by the synchronous 

action of the temporo-frontal junction area (Markowitsch, 1997).  

Brain lateral hemispheres have features in the activation and recovery of stored 

explicit material. The right hemisphere supports episodic information retrieval, 

while left brain hemisphere may support retrieval of stored semantic information 

or factual knowledge (Markowitsch, 1995). 

 

As already noted, Tulving (1994) showed that during semantic retrieval, 

the left prefrontal region was activated (Nyberg et al., 1996). Like the HERA of 

Tulving has shown, there is an overlapping of brain regions during episodic 

encoding and semantic retrieval, and also in the left prefrontal region, as Cabeza 

et al. (2000) explained, by the engagement of encoding of new autobiographical 

information during the retrieval of old semantic memory (Cabeza & Nyberg, 

2000). Also, the encoding of autobiographical information has been related to the 
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activation of retrosplenial (BA 29/30) regions in the cingulate cortex and in the 

left prefrontal cortex (BA 9-12/46/47), whereas recall of autobiographical 

information is furthermore depended on activation of the prefrontal cortex (BA 

9-12/46/47) – this  time, though, on the right hemisphere –, and  also on the 

precuneus bilaterally (BA 7) (P. C. Fletcher et al., 1995).  

It has been found that retrieval of episodic memories is associated with parts of 

the prefrontal cortex (BA 10/11), the temporo-parietal-occipital junction (BA 

19/37/39), and the medial frontal cortex (BA 9). Indeed, the parts of anterior 

frontal (BA 8), orbitofrontal (BA 11), and dorsolateral frontal cortex (BA 46/47) 

of the right are involved in the retrieval of episodic-autobiographical memories 

(EAM) (P. Fletcher & Henson, 2001). The clear functional roles of the fronto-

polar region (BA10) are not well described in human (Strange, Henson, Friston, 

& Dolan, 2001) but, the retrieval process is mainly linked to frontal regions of 

the brain (Wagner, 2002).  

 

In general, the retrieval of episodic memory activates  fronto-polar 

prefrontal cortices (BA 10) (Strange et al., 2001). In page 51, Table 1 presents 

these five memory systems and their relevant regions of the brain. 

 

 

2.4.2.3 Neural regions and procedural memory 
 

Penfield (1968) believed that the procedural memory is developed in both 

hemispheres of the brain (Penfield, 1968). Also, the basal ganglia collects 

information from almost the cerebral hemispheres and in accompany with the 

frontal cortex constitutes an integrated, distributed neuronal structure (Wise, 

Murray, & Gerfen, 1996). Anatomy of the basal ganglia has been shown in 

Figure 7. The basal ganglia are a set of sub-cortical structures, included of the 

striatum, pallidus, subthalamic nucleus (STN), as well as the substantia nigra 
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(SN), which is within brainstem (Kurita, Sasaki, Suzuki, & Kirino, 1998; Miall, 

2013; Parent & Hazrati, 1995; Wise et al., 1996). 

 
 

 

Figure 7: The components and structure of the basal ganglia in sagittal view 
(modified from Alexander et al., 1986) 

 
 

In primates, the striatum (or neostriatum) consists of two segments (Kurita 

et al., 1998; Miall, 2013); one of them is putamen, which plays an important role 

in motor learning. The other one is caudate nucleus that engages in aspects of 

cognition (Alexander, DeLong, & Strick, 1986). It has also been demonstrated 

that both the putman and caudate of the striatum indicate a role in learning and 

memory (Packard & Knowlton, 2002). Although, the striatum is required for the 

formation of long-term procedural memory, the striatum also effectively supports 

a motor skill consolidation in procedural memory (Mochizuki-Kawai et al., 

2004).  

 

Alexander (1986) has suggested a theory that is called segregated circuits 

hypothesis of basal ganglia. This implies that the basal ganglia contains parallel 

and mainly functionally segregated circuits (Alexander, Crutcher, & DeLong, 
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1989; Alexander et al., 1986). Hence, in the basal ganglia via the circuits might 

be performed similar neuronal functions (Ullman, 2004). Some of the circuits 

may mediate in many dysfunctional aspects of human behavior containing 

executive function deficits, imbalances disinhibition, movement disorders, 

depression and obsessive disorders (Cummings, 1993). Figure 8 shows the 

attitude of the basal ganglia-thalamocortical circuit and also the elements of 

circuits include separate, essentially non-overlapping parts of the striatum, globus 

pallidus, substantia nigra, thalamus, and cortex. 

 

 

Figure 8: The attitude of the basal ganglia-thalamocortical circuit and also the 
elements of circuits (modified from Alexander et al., 1986) 

 

 

It has repeatedly been stated that the basal ganglia circuits’ damage 

appears cognitive and motor indications, such as deficits during new learning and 

differences in motor tasks (Alexander et al., 1986; Cummings, 1993; Jenkins, 

Brooks, Nixon, Frackowiak, & Passingham, 1994; Middleton & Strick, 2000). 

Although, a wide range of basal ganglia functions is still unknown, they are 

implicated in the release (or inhibit) and control (or hibit) of  generated 

movements (Miall, 2013). However, this is consistently emphasized that 
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preservation of sensorimotor skill depends upon the basal ganglia (Gabrieli, 

1998; Gabrieli, Corkin, Mickel, & Growdon, 1993; Gabrieli, Stebbins, Singh, 

Willingham, & Goetz, 1997; Milner, 1962, 1965b). 

 

In sum, the basal ganglia can play an important role in a number of 

learning functions, including in stimulus-response learning (Packard & 

Knowlton, 2002), as a strengthening factor in consistent relationship between 

stimuli and responses (White, 1997),  for the gradual learning of habit learning 

via caudate nucleus and putamen (Knowlton, Mangels, & Squire, 1996), real-

time motor-skill learning (Wise et al., 1996), the switching or selection among 

multiple motor-skill performances (Haaland, Harrington, O'Brien, & 

Hermanowicz, 1997), and in general, in procedural learning  (Markowitsch, 

1997; Mishkin, Malamut, & Bachevalier, 1984; Mochizuki-Kawai et al., 2004; 

Schacter & Tulving, 1994; Squire & Knowlton, 2000). Indeed, it has 

unanimously pointed out that the procedural learning system depends on a 

network of the brain regions that involves parts of prefrontal and basal ganglia 

parietal and cerebellar structures (Mochizuki-Kawai, 2008; Nicolson & Fawcett, 

2007).  

 

The neostriatum and other components of the basal ganglia are associated 

with the MTL and the frontal cortex to obtain input projections from many 

cortical regions and in this way are created several circuits such as motor circuit 

(Alexander & Crutcher, 1990). The basal ganglia structures themselves are really 

interlinked. For example, there are two pathways on outputs of the basal ganglia 

to the frontal lobe via the thalamus. The direct and indirect pathways are two of 

them paths, which have contrasting effects. The inhibitory projections is 

inhibited by the direct pathway from the basal ganglia to the thalamus, while the 

inhibitory projections are disinhibited by the indirect pathway on the same path 

between the basal ganglia and the thalamus (Ullman, 2004). In fact, frontal 

cortical regions activity is released by the direct pathway, and reduced by the 

indirect pathway.  
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Dysfunctions of the frontal cortical regions that depend on the basal ganglia can 

be related to imbalances between these pathways (A. B. Young & Penney, 1993). 

For case, Parkinson’s disease is often associated with pathological changes in 

sensorimotor portions of the striatal region (Kish, Shannak, & Hornykiewicz, 

1988; Middleton & Strick, 2000). Also, some of the frontal regions are vital for 

motor learning and procedural memory (Ullman, 2004). Each of these regions 

can play key roles in the motor skill learning.  

 

The encoding, consolidation and retrieval processing of procedural 

memory are related to the basal ganglia (Alexander et al., 1986; Markowitsch, 

1997; Markowitsch & Staniloiu, 2012), portions of the cerebellum (Markowitsch, 

1997; SANES, DIMITROV, & HALLETT, 1990; Willingham, Koroshetz, & 

Peterson, 1996) and the supplementary motor area (BA 6) (Budson & Price, 

2005).  

The premotor regions (BA 6) are related to motor skills learning (Jenkins et al., 

1994), and particularly encoding of procedural memory (Schubotz & von 

Cramon, 2001).  

 

Broca’s area (BA 44) is another important component of the motor skill 

learning. It has been reported that Broca’s area can be associated with rhythm of 

physical performance (Schubotz & von Cramon, 2001; Ullman, 2004). Also, 

evidence suggests that this area of the brain may be involved during mental 

imagery of human movement (Binkofski et al., 2000). 

 

Some areas of parietal cortex (BA 1-3/5/7/39-43) also play a critical role 

in the procedural memory. In human, a lobule of inferior parietal (BA 40) has 

been implicated in several of brain functions, including attention shifts (Perry & 

Zeki, 2000), and the execution and retrieval of motor skills that were previously 

learned (Heilman, Watson, & Rothi, 1997). 
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The cerebellum has traditionally been associated with motor control (Ivry & 

Fiez, 2000; Thach, 1998; Wolf, Rapoport, & Schweizer, 2009), but much 

evidence have shown the cerebellum involvement in non-motor and cognitive 

functions (Cutting, 1977; Doya, 2000; Fiez, Petersen, Cheney, & Raichle, 1992; 

Ramnani, 2006; Schmahmann & Pandyat, 1997; Thach, 1998; Wolf et al., 2009). 

The role of the cerebellum in motor control as well as both cognitive and 

affective functions is not surprising; because, the cerebellum is strongly 

interconnected with non-motor cortical and sub cortical areas associated with 

emotional processing, including the limbic system (Markowitsch, 1997; 

Schmahmann & Pandyat, 1997; Wolf et al., 2009). 

 

The cerebellum also connects with cortical areas of the prefrontal cortex 

(Ramnani, 2006). It has also been shown that the cerebellum and the cerebral 

cortex are specialized for different types of learning and also reinforcement 

learning (Doya, 2000; Thach, 1998). Also, results of an investigation about 

separating the effects of changes in performance from motor skill learning 

suggests that the cerebellum may be engaged primarily in the modification of 

motor performance (Seidler et al., 2002). However, the cerebellum plays vital 

role in the coordination and balance of motor skill as well as in procedural 

motor-skill learning (Ivry & Fiez, 2000; Nicolson et al., 1999).  

 

According to Brindley theory (1964) motor skill learning begins as a 

conscious act mostly under the control of the cerebral cortex, without help from 

the cerebellum (Brindley, 1964; Thach, 1998). When, a new motor learning is 

going to be skilled, there are too many things that should be refined, as well as 

muscles are not yet related jointly in the correct combination, or level of 

activation. The cerebellum would acquire control of the task by recognizing the 

contexts in which each piece of consciously initiated movement occurs (Thach, 

1998). This relationship between motor and sensory cortices has long been 

documented (Ramnani, 2006). During practice and repeat of movement, the 
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cerebellum would relate that context to the movement generators, so that 

reappearance of the context would automatically trigger the movement. 

Finally, the cerebellum would largely take over the process, as a background 

subconscious mental subroutine, with minimal help from the cerebral cortex 

(Thach, 1998). Studies with using functional magnetic resonance imaging (fMRI) 

have shown that memory systems such as declarative and procedural may 

compete with each other. It has been reported that despite the similarity of the 

learned material and the level of performance interaction between the medial 

temporal lobe and basal ganglia occur (Poldrack et al., 2001).  

 

Human and animal studies have clearly shown that the declarative and 

procedural memory systems are largely independent from each other, but they 

interact in several pathways (Mishkin et al., 1984; Schacter & Tulving, 1994; 

Squire & Knowlton, 2000). Interestingly, indeed, there are anatomical and 

functional confluence between the ganglia basal and cerebellum in motor and 

non-motor function; thus, it may interact in a number of functions of the brain. In 

motor skill learning process, the interaction of procedural and declarative 

memory systems has been seen (Willingham, 1998). Also, evidence has 

suggested that the interaction between hippocampus and the part of basal ganglia 

can optimize learning in human (Poldrack & Packard, 2003). Though, when both 

implicit and explicit systems are intact they can help one another, for example the 

brain structures which underlie non-declarative memory can also influence some 

components of declarative memories via brain structures that play roles in both 

systems (Ullman, 2004). 

A good example can be patient H.M (see section 2.4.2.2.), when he could learn 

new motor skills, while cannot remember, how has learned them (Scoville & 

Milner, 1957). However, despite this apparent independence, extensive evidence 

indicates that multiple memory systems in the human brain may interact with 

each other.  

Mochizuki-Kawai et al., (2008) explained that the three types of procedural 

memory (motor skills, perception and cognition) are intertwined; they depend on 
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different brain regions – one of which may be the motor-type procedural memory 

– and are supported by other multiple brain regions including the frontal and 

parietal regions as well as the basal ganglia and cerebellum (Mochizuki-Kawai, 

2008). In Mochizuki-Kawai’s opinion both the perceptual and cognitive types of 

the procedural memory are maintained by multiple brain regions, indeed, the 

related cerebral areas depend on type of memory which is either perceptual or 

cognitive. It has been suggested that the fusiform area (BA 37) may support the 

perceptual type’s acquisition of procedural memory, whereas the frontal and 

parietal cerebellar regions as well as the basal ganglia may maintain acquisition 

of cognitive procedural memory (Mochizuki-Kawai, 2008). Table 1 shows the 

five memory systems and their brain region. 

 

Table 1: Memory systems and the brain regions (modified from Markowitsch,2011)  
 

 Encoding and 
consolidation Storage Retrieval 

PROCEDURAL 
MEMORY 

Basal ganglia, 
cerebellum, 

premotor areas 

Basal ganglia, 
cerebellum, 

premotor areas 

Basal ganglia, 
cerebellum, 

premotor areas 

PRIMING 
Primary association 

cortex 
Primary 

association cortex 
Primary association 

cortex 

PERCEPTUAL 
MEMORY 

Posterior sensory 
cortex 

Posterior sensory 
cortex 

Posterior sensory 
cortex 

SEMANTIC MEMORY 
Cerebral and 

preforotal cortex, 
limbic circuits 

Cerebral cortex 
and limbic circuits 

Frontotemporal 
cortex, left 

EPISODIC-
AUTOBIOGRAPHICAL 

MEMORY 

Preforotal cortex and 
limbic circuits 

limbic circuits and 
cerebral cortex 

limbic circuits and 
the right of 

frontotemporal 
cortex 
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2.5 Learning theories related on procedural memory 
 

Several models are used to describe these learning stages. The most popular are 

the Gentile two-stage model and the Fitts and Posner three-stage model. Unlike 

the Fitts and Posner model, the Gentile model draws on the account of the 

learning environment and distinction between open and closed skills. 

 

2.5.1 Fitts and Posner’s model 
 

Fitts & Posner (1967) proposed one model which is also called Fitts and Posner’s 

three stage models for learning motor skill acquisition. They believed that the 

learning process is continuous and steady. This model suggests the idea that the 

new learning is possible through the completion of three stages including 

cognitive phase, associative phase, and autonomous phase (Fitts & Posner, 

1967).  

Cognitive stage (Verbal-motor stage) 
 

This stage is important for the acquisition of skills. In the present stage, a learner 

acquaints components of the skill, because the learner does not have any 

corrective schema. The learner then forms a mental picture of the skill. Learners 

gather information and performance is still inconsistent. Indeed, this stage 

concerns learning what to do. In this stage, the learner divides the desired motor-

skill into smaller parts for a better understanding of how these parts operate 

together as a unique skill. 

Associative stage (Motor stage) 
 

Hitherto learners have had large gains, but they will have small gains in this 

stage. This stage involves connecting the components into a unit performance 

through repetition and practice and using feedback to the motor skill pattern. In 

simple words, this phase is refining the movement pattern. In this stage an 
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individual’s sensory system acquires the accurate symbolic and spatial data 

which required completing the desired skill. The decreased gross errors by 

developing appropriate error correction strategies and increased attention are 

specifications of this stage.  

Autonomous stage (Automatic stage) 
 

In this final stage, the skill of learner is developing so as to prefect skill 

acquisition. However, any learner may not be able to reach this stage. In the 

autonomous stage less thought process is required and in this phase also the 

decrease in attention occurs, while performing the skill almost remains in good 

level. The learned skill seems unconscious and learner needs time and practice. 

Gradually, performance becomes automatic – involves little or no conscious 

thought or attention whilst performing the skill in this stage create the ability to 

differentiate important from unimportant stimuli. Thus, a skilful athlete can 

easily ignore the negative stimuli, at highest level of proficiency, because the 

skill has become automated. A skilled person makes few errors and can generally 

detect and correct those errors. Figure 9 shows the Fitts and Posner’s three stage 

models of motor learning. 

 

 

 
Figure 9: Three stage of motor learning (modified from Fitts and Posner’s 1967) 
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2.5.2 Gentile’s model 
 

Gentile’s two-stage model of learning is almost similar to Fitts and Posner’s 

model in a way that the initial stage linked cognitive processes.  

In early (or initial) stage, the learner is trying to understand the concept of 

movement. Within this first stage Gentile refers to learners beginning to gain an 

understanding of different factors that can affect the performance of the skill 

(Equivalent to Fitts and Posner cognitive stage). The second stage (or the late 

stage) is about a skill being fixed and the learner to be able to modify the skill, 

like the Associative and Autonomous stages of Fitts and Posner’s. In second 

stage the skill gradually becomes fixated. She believed that for static and 

dynamic performance learning is different; she used the terms open and closed 

skills. Open skills have to do with a changing environment. Learners adapt to 

such changing environments – for example during a game of water polo where 

players need to counter and react to each other’s moves – in order to succeed. 

Concerning close skills, which applies for example during swimming, 

environmental fixations is necessary to achieve success (Gentile, 1972). 

2.5.3 Adams’ closed-loop theory  
 

Adams’ closed-loop theory is based on motor learning that focused on slow and 

graded tasks; detection of errors following corrections allows achievement of 

optimal performance. Adams’ views processing of afferent information as a 

central player in human motor control. He believed, to learn a skill, a motor 

program consisting of two states of memory require to involves the memory trace 

and the perceptual trace (Adams, 1971). The memory trace is a brief motor 

program – less than one second – and occurs before the perceptual trace. The 

memory trace chooses and starts the response preceding feedback and is 

independent of the perceptual trace. A reference mechanism is proposed by 

Adams that is called the perceptual trace. The perceptual trace involves in 

guidance of the limb to the correct position along a presentation and creates the 
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next response different from the last one, with less error (Adams, 1987). 

According to Adams, two stages in motor learning process includes the verbal-

motor stages which is without perceptual trace and the motor stage that the 

subject has a good perceptual trace (Adams, 1971). 

 

2.5.4 Schmidt’s schema theory 
 

Schmidt in 1975, in opposition to closed-loop theory, proposed the open-loop 

theory which is called the schema theory for motor control. In Schmidt’s opinion, 

the motor response schema need four kinds of information that store in memory 

after a motor learning program: 

 

1. The initial conditions of the motor learning skill 

2. The response specifications for the motor skill 

3. The sensory consequences or information about the performance 

4. The knowledge of results as a response outcome of the learned 

information (or feedback) 

 

This information is stored into two forms of the motor response schema 

including: 

 

1. The recall schema that related to intended outcome. 

2. The recognition schema that compares the intended outcome with the 

actual outcome. 

The schema theory introduced motor learning as a continuous process. It 

appears that continuous comparing of the recall schema with the recognition 

schema is performed for each motor skill. 
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2.6 Aging, cognition and exercise 
 

Research on risk factors for reduced cognitive function in aging adults is of a 

necessary public health importance.  

Beneficial effects of physical education may improve quality of life, prolong 

independency and life expectancy, it may also reduce economic cost (Elavsky et 

al., 2005; Larson & Wang, 2004) and is an effective strategy to delay the onset of 

dementia (Larson et al., 2006; Pate et al., 1995). Functional changes of age that 

are increasing in the hippocampus induce cognitive shortage that is associated 

with an excessive decrease in neurogenesis in the hippocampal dentate gyrus (K. 

I. Erickson et al., 2011; Kim et al., 2010). 

Studies on animals have shown benefits of physical activity, that is, aerobic 

exercise can increase the factors which helps learning and brain performance in 

adult animals (Churchill et al., 2002; Neeper, Gómez-Pinilla, Choi, & Cotman, 

1996; Van Praag, Christie, Sejnowski, & Gage, 1999). For example, on the adult 

mouse, voluntary physical activity such as swimming, walking and toning 

yielded an increase in cell proliferation, cell survival, neurogenesis and improved 

learning, and it also enhanced long-term potentiating and synaptic plasticity (Van 

Praag, Christie, et al., 1999; van Praag, Kempermann, & Gage, 1999; Van Praag, 

Shubert, Zhao, & Gage, 2005).  

 

In 1997, the Maastricht Aging Study (MAAS) indicated that aerobic 

fitness is a factor of relative importance in the cognitive aging process. It was 

stressed that all evidence pointing towards a factor capable of 

preventing/postponing age-related decline should be most intensely researched in 

order to uncover any underlying mechanisms (Van Boxtel et al., 1997). Often the 

relation between activity and memory has been reviewed under the hypothesis 

that participation in regular physical activities may help preserve cognitive 

activity and decrease dementia risk, which, in turn should exercise and maintain 

memory (K. I. Erickson et al., 2011; Hess, 2005; Heyn et al., 2004; Podewils et 

al., 2005). Collectively exercise can improve cognitive performance (Intlekofer et 
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al., 2013) and delay the onset of decline brain diseases (Cotman & Engesser-

Cesar, 2002). 

 

The findings derived from the study of fitness training on brain function 

and structure in animal models (Van Praag, Christie, et al., 1999; van Praag, 

Kempermann, et al., 1999; Van Praag et al., 2005) provide a conceptual 

framework for better understanding of the cognitive function-cardiovascular 

fitness relationship in humans and factors that may moderate this relationship (K. 

Erickson & Kramer, 2009; Kramer et al., 1999; McAuley, Kramer, & Colcombe, 

2004). 

 

Researchers who have studied the effects of anaerobic exercise on 

cognitive functions have consistently failed to detect a clear relation between the 

exercise and cognitive processes, thus, there is limited data on the effects of 

resistance training and anaerobic exercise in the cognitive function of older 

adults. For example, an eight weeks investigation of resistance training reported 

some effects in cognitive function, though not significantly; in a follow-up one 

year later, researchers observed a long-term effect on memory performance 

(Peig-Chiello, Perrig, Ehrsam, Staehelin, & Krings, 1998). 

It was reported that resistance exercise programs between moderate and high 

intensity had beneficial effects on cognitive function of older adults (Cassilhas et 

al., 2007). It also was suggested that aerobic training interventions that also 

included a strength training protocol may provide greater overall benefits on 

cognitive performance than those that only have an aerobic training component 

(S. Colcombe & Kramer, 2003; K. I. Erickson et al., 2009; Heyn et al., 2004).  

 

A study on the dose-response correlation between resistance exercise 

intensity and cognition has found a complicated relation between the intensity of 

exercise and cognitive performance for example the high-intensity exercise 

benefits speed of processing but moderate intensity exercise is most beneficial 

for executive function (Chang & Etnier, 2009). 
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Evidently, converging results about the efficiency of exercise and physical fitness 

for the maintenance of cognitive function of elderly is a necessity. There are 

reports on the importance of aerobic activity having specific benefits on such 

things as maintenance or improvement of cognitive skills  (Kramer et al., 1999), 

cell growth in the hippocampus and dopamine receptor density in the brain (S. 

Colcombe & Kramer, 2003), and also there are reports on affected cognition 

through aerobic exercise (Blumenthal & Madden, 1988), stretching exercise (K. 

I. Erickson et al., 2011), toning (Kramer et al., 1999), and on positive effects of 

strength training on neuronal growth (Borst, Vincent, Lowenthal, & Braith, 

2002) and cognitive performance (S. Colcombe & Kramer, 2003). It has also 

explained that engagement in stimulating activities, either mentally or socially 

may decrease the risk of developing dementia via a protective effect due to social 

interaction and intellectual stimulation (Hertzog, Kramer, Wilson, & 

Lindenberger, 2008; Wang, Karp, Winblad, & Fratiglioni, 2002).  

 

In sum, human research suggests that exercise as a simple means could 

have similar benefits for brain health as seen in aging animals; and this may, in 

fact, extend to aging humans for cognitive function, and may improve learning 

(Stanley J Colcombe et al., 2003). It is now clear that voluntary exercise is an 

important factor in improving neuronal growth, creating more stimulation of 

neurogenesis, improving mental performance and increasing resistance to brain 

disorder in the adult brain (Cotman & Berchtold, 2002; K. I. Erickson et al., 

2011; Mattson, Maudsley, & Martin, 2004; PILC, 2010; Rhyu et al., 2010; 

Webster, Weickert, Herman, & Kleinman, 2002). 

 

It has also been shown that aerobic exercise could amount to enhancing 

the Brain Derived Neurotrophic Factor (BDNF) and messenger ribonucleic acid 

(mRNA) in the hippocampus and several brain areas (Gómez-Pinilla, Dao, & So, 

1997; Neeper et al., 1996). In behaviors concerned with activity and metabolism 

such as aerobic exercise, BDNF may have played a critical role relation between 

metabolism and cognitive function (Vaynman & Gomez‐Pinilla, 2006). In fact, a 
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close association must exist between metabolism and proper neuronal function. 

Despite the important role of BDNF protein expression in age-related 

hippocampal atrophy and despite the effects of exercise on hippocampal volume 

and function, it is suggested that long-term and also higher amounts of physical 

activity could be advantageous for brain volume and cognitive performance in 

older adults (K. I. Erickson, Miller, & Roecklein, 2012). 

 

In a study 1993, effects of aerobic and anaerobic training executive and 

non-executive control processes were examined. The main focus rested on the 

question why performance in tasks with components of executive control 

processes improved in the aerobic program, but not in the anaerobic one; it was 

puzzling that non-executive control processes experienced equal trends in both 

programs (R. D. Rogers & Monsell, 1995). Also , it was confirmed that physical 

activity intervention is important for maintenance or even improvement of 

cognitive health and function during a lifetime (Etnier et al., 1997). 

 

It is probable that, alongside the general effects of physical education, 

executive and non-executive cognitive processes benefit from various kinds of 

exercises, physical trainings could intervene specifically on some cognitive 

processes and brain regions (Hillman et al., 2008). A recent study has reviewed 

only a single session of aerobic exercise on executive function of 34 students 

from 18 to 27 years old. They were randomly assigned to one of three aerobic 

exercises which conditions included: mild, moderate and vigorous intensity 

exercise. After the exercise, the participants completed three standardized tasks 

that demanded executive function, including Stroop, Go-No Go and Stop Signal 

measures. The duration of the exercise amounted to 35 minutes and all three 

executive function tasks lasted almost 30 minutes. Thus, it was suggested that 

effects of exercise are not uniform across all measures of cognitive function, 

although they confirmed beneficial effects of moderate aerobic training on some 

measures of cognition (Lowe et al., 2014). 
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Therefore, although exercise is known to create a flow of biological processes 

that support brain plasticity (Cotman & Berchtold, 2002; Knaepen, Goekint, 

Heyman, & Meeusen, 2010), it is possible that different kinds of physical 

exercises establish dissimilar response (Caspersen et al., 1985; Dishman, Sallis, 

& Orenstein, 1985; O'Sullivan, Phyty, Twomey, & Allison, 1997); for this 

reason, to explore our hypothesis, we sought two protocols for this human study. 

 
 

2.6.1 Exercise and brain  
 

Although, research on humans has demonstrated improved cognitive 

performance as a result of physical activity in older adults; however, there are 

clearly limitations on the human brain studies. Non-human animal research can 

directly examine the cellular and molecular changes that are occurred by 

exercise, which in humans can only be indirectly studied.  

In current study, the literature of the human and non-human have been separately 

produced. 

2.6.1.1 Non-human, animal researches  
 

Aging is a biological process described by a progressive decline in physiological 

functions that leads to mortality. These changes in the hippocampus may lead to 

cognitive decline (Van Praag et al., 2005) and can degrade memory performance 

in adult individuals (Buckner, 2004; Hedden & Gabrieli, 2004; Kim et al., 2010).  

Findings on lesions in non-human primates and studies on functional 

neuroimaging with healthy human subjects have led to a de-emphasis of the 

hippocampus’ role in learning and memory, and have pointed to hippocampus 

regions and beyond that in the MTL as well as the neocortex, as to be equally 

important components of memory circuits in the brain (Small, 2001; Tulving & 

Markowitsch, 1997). It has also been observed that some regions of the cortex – 

such as the frontal, prefrontal and parietal cortices – show the greatest age-related 
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declines in humans and it is interesting that these regions are identified to engage 

cognition and executive functions (Stan J Colcombe, Kramer, McAuley, 

Erickson, & Scalf, 2004; Kramer et al., 1999).  

 

Research on animals has demonstrated that aerobic exercise is associated 

with increased neurogenesis (Kim et al., 2010; Kramer et al., 1999; Kronenberg 

et al., 2006) and angiogenesis or, in other words, the increased number of 

capillaries in the brain (Fordyce & Farrar, 1991; Swain et al., 2003). It is even 

reported that exercise previous to brain injury in animals may lower the extensity 

of such injury (Cotman & Engesser-Cesar, 2002).  

It is also reported that physical activities such as voluntary running, increases 

neurogenesis of granule cells in the dentate gyrus of adult mice. It is stated that 

an increase in cell proliferation, cell survival in the dentate gyrus and also in the 

production of granule cells of the hippocampus are the most observed exercise 

effects when adult mice are exposed to voluntary running (Brown et al., 2003; 

Van Praag, Christie, et al., 1999; van Praag, Kempermann, et al., 1999). Those 

results have shown that neurogenesis has only increased in mice with unlimited 

access to running activity. 

 

Moreover, both voluntary physical activity and enrichment induced almost 

double the total number of surviving new-born cells in the dentate gyrus. The 

production of new cells in the brain requires an increased nutrient (Fordyce & 

Farrar, 1991; Van Praag et al., 2005). There is confirmation that consumption of 

dietary supplements in concurrence with exercise can enhance neurogenesis, cell 

survival, synaptic plasticity and vascular function (van Praag, 2009; Van Praag, 

Christie, et al., 1999; van Praag, Kempermann, et al., 1999). A significant 

difference has formed during Bromodeoxyuridine20 (BrdU-positive) between cell 

amounts of young and old mice in the dentate gyrus. It has been confirmed that 

20 Bromodeoxyuridine is a synthetic nucleoside that is an analog of thymidine, and BrdU is used 
in the detection of differentiation, survival, proliferating and cycle cells in vivo and 
vitro. 
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cell genesis declines in aging mice, and that they have fewer new cells than in 

young mice; it is concluded that voluntary exercise ameliorates some of the 

deleterious morphological and behavioral consequences of aging (Van Praag et 

al., 2005).  

 

In 1992, a study compared the morphology of the cerebellar cortex in 

adult rats that were exposed to repetitive exercise with motor learning; it found 

the distance from blood vessels to be of a shorter diffusion under aerobic 

conditions compared to motor-skill learning tasks. Here, the rat’s motor skills 

increased notably. The volume of the molecular layer per Purkinje21 neuron 

increased, as well as the number of blood vessels, which were capable of 

maintaining the diffusion distance. (Isaacs, Anderson, Alcantara, Black, & 

Greenough, 1992). Additionally, it has been suggested that motor skills training 

induce remarkably changes that could create beneficial impact in the aged brain 

(Kleim, Jones, & Schallert, 2003). 

 

Effects of aerobic exercise on the Brain Derived Neurotrophic Factor22 

(BDNF), messenger ribonucleic acid (mRNA) in the hippocampal and in 

amygdala sub regions were also investigated. It had already been established that 

exercise treatments can develop BDNF level (Cotman & Berchtold, 2002). An 

aerobic running program can increase BDNF (Cotman & Engesser-Cesar, 2002), 

it may also increase mRNA in the dentate gyrus and the basolateral amygdala 

(Greenwood, Strong, Foley, & Fleshner, 2009), cell proliferation, cell survival 

and neurogenesis in the hippocampus; indeed, spatial learning is dependent on an 

improved hippocampus (Van Praag, Christie, et al., 1999; van Praag, 

Kempermann, et al., 1999). Research has shown that physical activity can change 

21 Purkinje cells are found inside the Purkinje layer in the cerebellum and degeneration of 
Purkinje cells leads to severe motor disorders such as incoordination and disturbances of 
fine motor skills. It has been reported that loss of cerebellar Purkinje cells, along with 
generalized atrophy of the brain (Vonsattel & DiFiglia 1998). 

 
22 The BDNF protein is known to regulate neurogenesis, synaptic plasticity and survival actions 

in various parts of the central nervous system. 
 

                                                 



Theoretical background  63 

in the hippocampus’ gene expression23 which could improve the memory system 

(Cotman & Engesser-Cesar, 2002), as well as enhance the gene expression of 

BDNF and other growth factors that promote neurogenesis, angiogenesis and 

synaptic plasticity (Intlekofer & Cotman, 2013).  

 

2.6.1.2 Human researches 
 

Recently, the relation between exercise and cognition on seniors has been 

explained. In human studies on the relationship between physical training and 

cognition, some possibilities – that merit further attention – include: cognitive 

processes that were examined, intensity and duration of exercises, the distinction 

between involved energy systems, gender, age range, health and diseases as well 

as the education of participants (Barnes, Yaffe, Satariano, & Tager, 2003; S. 

Colcombe & Kramer, 2003; Hillman et al., 2008; Kramer & Erickson, 2007). 

Effects of aerobic-exercise condition on the cognitive function of older 

individuals have been examined and it has been reported that executive-control 

processes were more affected by the exercise intervention than other cognitive 

processes (Kramer et al., 1999; Kramer et al., 2001).  

 

Another study reported that aerobic programs generally improve cognitive 

function and spatial executive control more than other cognitive functions (S. 

Colcombe & Kramer, 2003). In a six-month perusal, 59 aged sedentary, however 

healthy women, participated in the anaerobic (toning and stretching) and aerobic 

groups. Also 20 young adults served as controls for the magnetic resonance 

imaging. Increases were observed in the brain volume due to the fitness training 

of only the subjects who participated in the aerobic exercise but not for the 

participants of the anaerobic and younger control group. The study’s results have 

suggested that aerobic fitness without sparing any brain tissue has a strong 

23 Gene expression, in short, is the review of information on DNA, genomic sequences and 
genetic codes. 
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biological role in maintaining and enhancing cognitive function and the central 

nervous system’s health in the human aging process (Stanley J Colcombe et al., 

2006). Results of another study with 1324 subjects have demonstrated that any 

rate of moderate exercise performed in midlife or late life is associated with 

reduced chances of having mild cognitive impairment. In that review, researchers 

have compared the frequency of physical exercise of 198 subjects suffering from 

mild cognitive impairment (MCI) with that of 1126 subjects with normal 

cognition (Geda et al., 2010). 

 

In other research, aerobic and stretching exercises with 120 older adults 

did show that exercise intervention is effective at increasing the size of the 

hippocampus. In this study, both aerobic and stretching groups showed 

improvements in the hippocampal volume and in memory performance (K. I. 

Erickson et al., 2011). It is known that strength training increase neurogenesis 

(Vukovic, Colditz, Blackmore, Ruitenberg, & Bartlett, 2012), levels of Insulin-

like Growth Factor 1 (IGF-1) (Borst et al., 2002), which in turn is known to have 

positive effects on neuronal growth, survival, differentiation and performance, 

and perhaps on function of BDNF and mRNA transcription (Mackay et al., 

2003). It has been suggested that at the aging process, BDNF signaling decreases 

in the brain and amounts of BDNF decrease in hippocampal regions, and that 

dentate granule cells decrease during aging in animals (Neeper et al., 1996).  

 

Another study revealed that acute aerobic training increases basal 

peripheral BDNF concentrations which is opposed by findings that don’t support 

those effects for strength exercise (Knaepen et al., 2010). Aerobic physical 

activity can increase levels of nerve growth factors, such as IGF-1 and BDNF 

which serves to enhance synaptic efficiency by supporting the survival and 

growth of a number of neuronal subtypes. As an ability of the brain to activity-

dependent remodeling (Bruel-Jungerman, Davis, & Laroche, 2007), these effects 

may help to accentuate the effects of aerobic training, to support plasticity by 

enhancing the learning and memory system (McAuley et al., 2004). Furthermore, 
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it has been stated about several physiological mechanisms of exercise – like 

decreasing blood pressure, lipid levels and the inhibition of platelet accumulation 

– (R. L. Rogers, Meyer, & Mortel, 1990), enhanced aerobic capacity and cerebral 

metabolic demands (Dustman et al., 1984), that they could serve as prevention 

factors on older adults’ cognitive decline (Laurin et al., 2001). 

Physical exercise can improve adult hippocampal neurogenesis via the ability to 

increase neural precursor cell endogenous microglia (Vukovic et al., 2012). Such 

exercise may improve memory performance and hippocampal-dependent 

learning by induction of BDNF into the hippocampus (Intlekofer & Cotman, 

2013). Thus, transmission of foodstuffs accompanied by the blood during 

exercise can enhance neurogenesis, cell survival, synaptic plasticity and vascular 

function and affects as a useful tool the health promotion and cognitive decline 

prevention in normal aging (Cutuli et al., 2014).  

 

Briefly, non-human examinations clearly suggest an affirmative answer to 

the question if there are positive effects on cognitive performance due to aerobic 

exercise. Although, results of human studies nearly confirm beneficial effects of 

aerobic training on the human brain system, the literature on human non-aerobic 

training appears to be more equivocal; indeed, there is no consensus. 

 

2.6.2 Brain and metabolism 
 

The cardiovascular system encompasses the heart as an efficient pump, arteries 

and veins. This system provides blood, transports of all necessary nutrients – 

such as glucose and O2 – to every cell in the human body (Waldstein, Snow, 

Muldoon, & Katzel, 2001). Naturally, the brain depends on the cardiovascular 

system. Although the human brain uses 20 percent of the oxygen consumed by 

the body (Dustman et al., 1984), the brain is comprised only two percent of the 

body’s weight (Clarke & Sokoloff, 1999; Dringen, Gutterer, & Hirrlinger, 2000). 

Looking at the total amount the cardiac output in blood, approximately one liter 
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is supplied to the brain per minute. This is one fifth of the heart’s total output 

(Waldstein et al., 2001). 

 

Regarding that the level of oxygen is very low inside brain tissue, the 

brain is one of the neediest oxygen consumers in the body (Zhang, Zhu, & Fan, 

2011), consequently, any pause of this blood supply for even a few minutes can 

be detrimental to the brain. Indeed, this amount of oxygen consumption is one of 

the potential major causes of age-related destruction of brain tissue (Reiter, 

1995), because compared with the kidney or the liver, the brain contains only 

little antioxidants, such as catalase, glutathione peroxidase24 (GPx) activity, et 

cetera – these combine to be an important antioxidant defense in nearly all cells 

(Cooper & Meister, 1997; Dringen et al., 2000; Ji, 1999). Moreover, the brain is 

rich in lipids with unsaturated fatty acids (Cassarino & Bennett Jr, 1999; Heales 

et al., 1999).  

 

Also, in comparison with other organs, the brain appears to be especially 

endangered in regard to the generation and detoxification of Reactive Oxygen 

Species (ROS) or Reactive Nitrogen Species (RNS); the mitochondrion, the 

cell’s energy powerhouse, and also low and insufficient in its mitochondrial 

functions, could be considerable and important on this matter (Cassarino & 

Bennett Jr, 1999; Cooper & Meister, 1997; Heales et al., 1999; Paradies, 

Petrosillo, Paradies, & Ruggiero, 2010).  

By adding a single electron to the oxygen molecule, ROS is generated (Fisher-

Wellman & Bloomer, 2009). The electron transport chain (ETC) transfers 

electrons from electron donors such as NADH to molecule acceptors. Indeed, the 

ETC transfers electrons across cell membranes by means of redox reactions and 

by pairing the electrons’ transfer with the protons’ transfer  (for example H+ 

ions), cause to transfer the electrons across a cell membrane (R. K. Murray, 

24 Glutathione (GSH) is a tri-peptide which makes of the amino acids cysteine, glutamic and 
glycine. To see more information, review biochemistry references. 
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1996; Shahbazi & Maleknia, 1999). ETC causes an electrochemical proton 

gradient that works using the energy of ATP or by the generation of chemical 

energy in the form of phosphocreatine25. Since the oxygen molecule is a key 

electron acceptor, the production of free radicals such as ROS is inevitable. 

 

To complete the whole series minor percentages of electrons do not 

suffice. Such small amounts only leak to O2, followed by formations of ROS 

which may contribute to oxidative stress; implications to aging and a number of 

diseases can also be made. 

ROS is required for many normal physiologic functions; most of production of 

ROS coupled with their insufficient scavenging by endogenous antioxidants will 

lead to detrimental oxidative stress. ROS, the most important free radicals in the 

body, are generated continuously as a natural byproduct of oxidative 

phosphorylation in all tissues including muscle fibers and, especially, in the 

mitochondrial respiratory chain – by estimation, 90 percent –, and have important 

roles in cell signaling and homeostasis (Balaban, Nemoto, & Finkel, 2005; 

Devasagayam et al., 2004; Kregel & Zhang, 2007; Kulkarni et al., 2007; Schulz, 

Lindenau, Seyfried, & Dichgans, 2000); nevertheless, all this happens as a 

mitochondrial dysfunction. In this context, mitochondria act like biosensors and 

they enable cells to endure changes in aging and age-related diseases (Stowe & 

Camara, 2009; Wei & Lee, 2002). 

Probably such derangement of the brain indicates that a loss of neurons in adult 

brains cannot be compensated by the generation of new neurons (Dringen et al., 

2000). However, the brain is able to function throughout, which indicates the 

presence of an effective antioxidant system in different brain regions (Cassarino 

& Bennett Jr, 1999; Heales et al., 1999; Schulz et al., 2000). 

 

25 Phosphocreatine or creatine phosphate (or PCr) is a substance that, in its chemical partnership 
with adenosine triphosphate: 

PCr Creatine Phosphokinase Cr + Pi + E 
Cr + Pi creatin kinase Phosphocreatine 
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Recently, gerontological studies from a biological perspective have revealed 

different molecular pathways involved in the aging process and pointed out 

mitochondria as vital regulators of longevity (Bratic & Trifunovic, 2010). The 

roles of mitochondria are known to continuously produce energy (Dringen et al., 

2000) and regulate the cellular metabolism through the aerobic/oxygen system 

(Miquel, Economos, Fleming, & Johnson Jr, 1980; R. K. Murray, 1996; Voet, 

Voet, & Pratt, 2007). The function of the mitochondrion and the aging process 

are considered to be intimately intertwined, and this happens by means of the 

respiratory chain dysfunction and the formation of ROS, which may lead to 

damage of the mitochondrial constituents including mitochondrial proteins, lipids 

and DNA. This DNA damage can change neuronal survival (Miquel et al., 1980; 

Pak et al., 2003).  

 

It isn’t unexpected that very low levels in the generation of ROS occur 

during mitochondrial respiration under normal physiological conditions, but 

progressive oxidative damage to the aged mitochondrial DNA (mtDNA) may 

lead to DNA strand breaking down and to the occurrence of somatic mtDNA 

mutations (Paradies et al., 2010; Richter, 1995; Wei, 1992). Accumulation of 

these mtDNA mutations may lead finally to the progressive decline in cellular 

and tissue function (Judge & Leeuwenburgh, 2007; Linnane, Ozawa, Marzuki, & 

Tanaka, 1989; Wei, 1992), this also points to an association between mtDNA 

mutations and muscle fiber atrophy age-related loss (Pak et al., 2003). There are 

significant examples in animal research which show that reduction of 

mitochondrial function would be expected to impair health and shorten lifespan 

(Rea, Ventura, & Johnson, 2007) and may speed up the brain’s aging (Bishop et 

al., 2010; Sánchez-Blanco, Fridell, & Helfand, 2006).  

 

It has also been demonstrated that older mitochondria alter functionally, 

indeed, they work economically beneficial, producing less ATP and more 

oxidants (Shigenaga, Hagen, & Ames, 1994). In general, it is accepted that age-

associated decline of respiratory function can result in enhanced production of 
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ROS in mitochondria (Wei & Lee, 2002). Conversely, augmentation of 

mitochondrial function has been shown to extend life (Schriner et al., 2005). 

Thus, mitochondrial function seems to have an important modulating influence 

on the aging process with either positive or negative effects on a lifespan 

(Blalock et al., 2004; Loerch et al., 2008; Lu et al., 2004).  

 

DNA damage may change the expression of genes involved in learning, 

memory and neuronal survival (Lu et al., 2004). Even gene expression studies 

provide evidence of an association between mitochondrial function during aging 

and specific changes in gene expression (Blalock et al., 2003; Loerch et al., 2008; 

Yankner, Lu, & Loerch, 2008; Zahn et al., 2007), they also provide evidence of 

reduced expression of genes involved in the mitochondrial metabolism. The latter 

may become more clear in humans with cognitive decrease (Andrews-Hanna et 

al., 2007; J. A. Miller, Oldham, & Geschwind, 2008; Wei & Lee, 2002; Yankner, 

2000).  

 

In some conditions, surprisingly, it has been observed that reduced 

mitochondrial function could cause a lifespan to increase (Bishop et al., 2010; 

Branicky, Bénard, & Hekimi, 2000). Indeed, only a modest reduction of function 

in some genes affecting the electron transport chain can increase a lifespan as a 

remedy function (Dillin et al., 2002; S. S. Lee et al., 2003; Rea et al., 2007).  

 

The term “uncoupling to survive” is a hypothesis pointing to an 

inefficiency in the mitochondrial ATP generation which may be necessary to 

reduce the production of reactive oxygen species (ROS), which in turn could be 

important in helping to reduce oxidative DNA damage and in slowing aging (M. 

Brand, 2000). There are studies demonstrating that animals with higher 

metabolic intensities and oxygen consumption live longer than animals with 

lower metabolic intensities.  
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Indeed, increases of metabolic uncoupling suggest that these animals may 

decrease ROS generation even in the setting of increased oxygen consumption by 

reducing the mitochondrial membrane potential (Balaban et al., 2005; Speakman 

et al., 2004). This theory provides a possible explanation of how ROS in a 

moderately increased concentration may act as a signal to activate a survival 

pathway and enhance longevity (Bishop et al., 2010). Thus, uncoupling has been 

proposed as an important mechanism to reduce ROS levels (M. D. Brand et al., 

2004; Casteilla, Rigoulet, & Pénicaud, 2001).  

 

2.6.3 Metabolism and health 
 

It appears that physical activity may have the potential to increase ROS 

production and subsequent oxidative stress. Oxidative stress is defined as an 

imbalance between the systemic manifestation of reactive oxygen species and a 

biological system’s ability to readily detoxify (Fisher-Wellman & Bloomer, 

2009). In other words, physiological-respiratory modifications and increased 

ATP need during exercise cause the production of ROS (Radak, Chung, & Goto, 

2008) which is depended on the oxygen amount consumption (Ramel, Wagner, 

& Elmadfa, 2004), exercise intensity (Goto et al., 2003) and duration (Bloomer, 

Davis, Consitt, & Wideman, 2007). 

 

Although the initial view as a common assumption was that increased 

mitochondrial oxygen consumption leads to a higher production of ROS which 

may raise the risk of cell damaging (Balaban et al., 2005). Attention to the 

question of optimal levels of physical exercise is important; such an optimal level 

may end where an ROS-related disease risk begins to increase (Knez, Coombes, 

& Jenkins, 2006). Thus, optimal health is dependent on optimal levels of ROS 

generation (Fisher-Wellman & Bloomer, 2009; Ji, GOMEZ‐CABRERA, & Vina, 

2006). 
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It seems optimal levels of exercise inducing ROS are able to stimulate cytokine 

production from skeletal muscles, and that cytokine has an important role in the 

regulation of cell signaling (Fisher-Wellman & Bloomer, 2009; Scheele, Nielsen, 

& Pedersen, 2009). Briefly, it appears that exercise-induced ROS can serve as 

signal to activate a mechanism of adaptive responses to the ROS-leveling process 

at rest, during as well as subsequent to exercise (Ji et al., 2006; Knez, Jenkins, & 

Coombes, 2007).  

 

There are some effects resembling the phenomenon of hormesis26 when 

ROS is generated during exercise (Calabrese & Baldwin, 2002; Ji et al., 2006). 

The similarity lies in the adaptive response to exercise in skeletal muscles, the 

liver and the brain including increased antioxidant enzyme activity as well as 

increased resistance to oxidative stress; beneficial effects of exercise can 

decrease the vulnerability of the body to oxidative stress and to several diseases 

significantly (Gomez-Cabrera, Domenech, & Viña, 2008; Radak, Chung, & 

Goto, 2008). What has been reported is contradicting since the relationship 

between oxidative stress and exercise training is not simple and depends on 

several factors including mode, duration and intensity of exercise, individual 

differences, cardiovascular disease, diabetes, hypercholesterolemia, obesity and 

chronic obstructive pulmonary disease as well as smoking (Fisher-Wellman & 

Bloomer, 2009). Discrepancies in literature are likely related to the diversity and 

sometimes incomparability of those factors mentioned above. 

 

The important roles of oxygen on the brain are not only showed in the 

development, but also illustrated in the brain dysfunctions. Preserving the correct 

ranges of tissue pressure of the Oxygen (po2) can be beneficial to normal brain 

function. Higher or lower levels of tissue  oxygen pressure (pO2) may affect 

26 Hormesis: A repeated low dose stimulation followed by high dose inhibition (Calabrese & 
Baldwin, 2002 & Ji et al., 2006). 
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normal chemical production, possibly leading to pathological disorders and brain 

cell damage (Zhang et al., 2011). 

It would appear that acute exercise can aggravate the state of oxidative stress 

(Sanchez-Quesada et al., 1995), a lower antioxidant status (Ramel et al., 2004) 

and disease risk (Knez et al., 2006). On the other hand, there are reports 

supporting that health benefits of physical exercise are connected to the optimal 

level of exercise-induced ROS including positive effects of regular exercise on 

cognitive diseases such as Alzheimer and Parkinson’s (Scheele et al., 2009). 

 

Furthermore, it has been demonstrated that there is a capacity for an 

increase in muscle resistance against fatigue (Vollaard, Shearman, & Cooper, 

2005). It has also been shown that submaximal resistance exercise increases 

plasma antioxidants which could enhance antioxidant defenses in response to the 

oxidative stress of physical exercise (Ramel et al., 2004). There is research on the 

vulnerability of the body to oxidative stress and diseases being significantly 

enhanced in sedentary individuals (Radak, Chung, & Goto, 2008). 

 

Benefits of mild and light but not vigorous exercise have been reported, 

and it is recommended that individuals should dedicate at least 30 minutes of 

moderate-intensity physical activity each day in order to improve and maintain 

their health (Armstrong, 2006; Fisher-Wellman & Bloomer, 2009; I.-M. Lee, 

Hsieh, & Paffenbarger, 1995). 
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2.7 Summary of literature 
 
To review the study’s literature, a number of previous works are listed: 

 
Table 2: Summary of exercise and cognition studies 

 
Date Author Results and Conclusion Domain 

1964 Altman, Das An increase in the weight and the volume of the 

cortex in the enriched animals 

Animal 

1988 Blumenthal Aerobic exercise can improve some aspects of 

memory-search performance 

Human 

1996 Neeper Exercise changes Brain Derived Neurotrophic Factor 

(BDNF) 

Animal 

1998 Oliff H.S Increase in the brain’s resistance to damage with 

exercise and BDNF mRNA expression 

Animal 

1998 Peig-Chiello, 

Perrig 

No significant effects on cognitive function occurred 

with the training 

Human 

1999 Van Praag Positive effect of running on learning level and 

neurogenesis  

Animal 

1999 Kramer Aerobic exercise improves executive control tasks 

more than anaerobic training 

Human 

2001 Yaffe Women with more physical exercise are less likely 

to develop cognitive decline 

Human 

2001 Laurin Regular exercise could be a potent protective factor 

for cognitive decline and dementia in elderly 

Human 

2002 Cotman Exercise can have effects on gene expression, 

BDNF, neurogenesis 

Animal 

2003 Colcombe, 

Erickson 

Benefits of aerobic exercise on the brain health Human 

2004 Colcombe, 

Kramer 

Aerobic exercise can activate several cortical 

regions 

Human 
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2004 Heyn, Abreu Exercise increases cognitive function and can have  

other positive effects in/on people with dementia  

Human 

2005 Van Prrag In young animals, exercise increases hippocampal 

neurogenesis and improves learning 

Animal 

2006 Kronenberg Physical exercise induces adult hippocampal 

neurogenesis 

Animal 

2006 Colcombe Aerobic exercise can increase brain volume, nervous 

system health, improve cognition 

Human 

2006 Larson Sufficient and regular exercises decrease probability 

of dementia 

Human 

2007 Etnier Association of aerobic fitness and Apo-lipoprotein E 

with memory performance 

Human 

2009 Chang, Etnier Intensity of resistance exercise can create different 

response in cognition 

Human 

2010 Sung Kim Exercise improves short-term memory, enhancing 

neurogenesis in the hippocampus  

Animal 

2010 Geda Yanes Rate of moderate exercise can reduce odds of having 

mild cognitive impairment 

Human 

2010 Creer Running can increase born newly neurons and 

neurons of dentate gyrus  

Animal 

2011 Erickson Aerobic exercise improves hippocampal volume, 

BDNF and memory function 

Human 

2012 Erickson  Long-term and also a higher amount of physical 

activity could better brain volume and cognitive 

performance in elderly 

Human 

2013 Intlekofer Physical activity can improve hippocampal function 

through enhanced neuroplasticity 

Human 

2014 Kirk-Sanches 

 

Exercise can modify metabolic, structural and 

functional dimensions of the brain that preserve 

cognitive performance in older adults 

Human 
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2014 Snigdha Acute and chronic exercise can improve cognitive 

function even with progressing age 

Animal 

2014 Lowe Effects of exercise are not uniform across all 

measures of cognitive function 

Human 

 

 
As noticed in introduction of the study (section 1), the current study is an 

interdisciplinary investigation. 

 

In this section, the terms of physiology and psychology related to aging, 

cognitive function and physical activity are introduced. These terms include 

physiological principles (for example and metabolism of exercise activity, kinds 

of exercises and intensity of physical activity) and some main concepts in 

psychology (for example memory, divisions of memory, neural correlates and 

several learning theories). 

 

In the next section (3), questions and hypotheses concerning the 

previously introduced information about aging, several cognitive performances 

and physical activity are provided. 
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3 Questions and hypotheses 
 

Age-related cognitive decline or normal and non-pathological cognitive aging is 

an essential human experience that differs in level between population. Though, 

the determinants general bodily aging also influence in older adults’ cognitive 

performances, but this factors are not fully known. Progress in the field is taking 

place across many areas of health-related sciences.  

 

The purpose of this investigation is to study different kinds of physical 

exercises to preserve cognitive functions for people of advanced age and to 

provide a new comfortable and practical template for these exercises. Although, 

physical activity can improve brain health and cognitive performance, there are 

still some ambiguities in literature about the kind of exercise on cognition. 

Advanced age can create musculoskeletal disorders and may cause limitations in 

activities such as running, jogging and walking. Thus, there is still this question: 

What kinds of physical exercises are more favorable? 
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3.1 Questions 
 

• At the beginning, we ask whether there is any relationship between 

various kinds of physical activity and older people’s cognitive functions. 

• How aerobic and anaerobic exercises may affect cognitive functions in 

older adults? 

• Can decline of cognitive functions during normal aging process be 

reversed with exercises of light to moderate intensity? 

• Can aerobic and anaerobic exercises affect intellectual functions in older 

adults? 

• Can improvement of motor learning develop procedural memory?  

• Can development of motor learning improve declarative memory?  

• Can development of procedural memory improve declarative memory? 

• Which exercise is more effective on memory performance of older adults? 

• Can different kinds of exercises preserve short-term and long-term 

memories similarly in older people? 

• Can different kinds of exercise preserve declarative and non-declarative 

memories similarly in older people? 

• Does new motor learning of non-aerobic is more effective on memory 

performance or repeated aerobic programs such as running. 

• If physical exercise can improve cognitive functions, may either aerobic or 

anaerobic conditions be better to preserve it? 
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3.2 Hypotheses 
 

In the following, the hypotheses that arise from these questions are introduced. 

 

3.2.1 Hypothesis I 
 

Systematic and regular light to moderate physical aerobic activity leads to a 

measurable improvement in cognitive functions of sedentary older adults. 

 

A robust relationship exists between the circulatory system and the brain. 

If any disturbance occurs by vascular disease, it may affect normal brain 

function. Human’s cognitive functions are of the most important mental abilities 

for independent life. Considering the importance of independent life for elderly, 

researchers are designing and finding strategies to delay the progression of 

physical and psychological illnesses and also to continue healthy and 

independent life. 

Considering vulnerability and sensitivity of cognitive functions against factors 

such as the environment, social, physiological and psychological setting, the fact 

that prevention or attempts to decrease the accelerating decline of cognition is 

plausibly more beneficial and easier than treatment (Teasdale, 1988). 

 

In normal aging process arise some changes in brain structure and function 

that suggest strong decline in tissues density of the brain as a function of aging 

(Altman & Das, 1965; K. I. Erickson et al., 2009). Physical inactivity accelerates 

the aging process in many people, whereas increased physical activity slows it 

down in others (Kramer et al., 2006; Laurin et al., 2001; Podewils et al., 2005).  

 

At present, it appears that all forms of exercise, both aerobic and 

anaerobic, possess the potential to result in decreased cognitive function loss in 

healthy aged individuals. Although, there are studies that have failed to observe 
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the benefits of physical exercise in preserving cognitive function (Broe et al., 

1998; Madden et al., 1989); it may be disputed that engaging in physical activity 

does not play a protective role on cognition and cognitive disorders, but there are 

many findings reporting regular physical exercise as an important element in 

health promotion. At the moment, results are promising and suggest that physical 

aerobic activity, as a preventive strategy and neuroprotective function, may 

reduce declines in cognitive performance among older adults (Kirk-Sanchez & 

McGough, 2014; Kramer et al., 1999; Pate et al., 1995). However, the rate of 

change is not equal among individuals.  

 

In human physiology, the role of physical activity to create exercise-

induced adaptations is elucidated and is based on the extensive body of literature. 

The aerobic exercise may improve aerobic capacity and cerebral nutrient supply 

as well as increase oxygen saturation and angiogenesis in brain areas crucial for 

task cognitive performance (Dustman et al., 1984; Fordyce & Farrar, 1991; 

Kleim, Cooper, & VandenBerg, 2002).  

 

What is clear is that there are several modifiable mediating factors on the 

aging curve. Among modifiable key factors are physical activities, nutrition, 

body fat, and muscle mass, each of which can either delay or accelerate the aging 

process (Stewart, 2005). Furthermore, several other factors appear to play a 

significant role in the exercise-induced effects including duration and intensity of 

exercise. Intense exercise appears to have harmful effects on different aspects of 

human health especially in aging process (Radak, Chung, Koltai, et al., 2008). 

Determining whether or not the level of exercise intensity is beneficial in seniors’ 

cognition has not solved the problem of much cognitive and aging research yet 

(Reuter-Lorenz & Cappell, 2008). 
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3.2.2 Hypothesis II 
 

Systematic and regular light physical anaerobic activity leads to a robust and 

beneficial influence in cognitive functions of sedentary elderly. 

 

Physical exercise has the potential to result in decreased cognitive 

functions loss in healthy aged population. It is now clear that increased voluntary 

physical activity is an important factor to improve neuronal growth, creates more 

stimulate neurogenesis and improves mental performance in the adult brain 

(Cotman & Berchtold, 2002; Knaepen et al., 2010; Mattson et al., 2004; 

O'Sullivan et al., 1997; PILC, 2010). 

 

The ability of physical exercise to impact systems that promote cell 

survival, neurogenesis and plasticity may be applicable for combating the 

deleterious effects of aging on brain health and cognitive function. Though, 

several mechanisms may underlie the potentially protective effects of physical 

activity on cognitive function.  It has been shown that exercise, probably sustain 

the brain’s vascular health by lowering blood pressure, promoting endothelial 

nitric oxide production, and improving lipoprotein profiles (Taddei et al., 2000). 

It also increases non-neural components of brain, for instance vasculature, 

maintains the generating of new neurons in response to exercise and by learning 

selectively increases synaptogenesis in later life (Churchill et al., 2002). Also, 

physical activity likely upregulates neurotrophins such as Nerve growth factor 

(NGF), BDNF and also IGF-1 that support cell proliferation, cell survival, 

neurogenesis and dendritic branching in the adult brain (Cotman & Engesser-

Cesar, 2002; McAuley et al., 2004). 

 

Since that effects of physical exercise enhance older adults’ cognitive 

abilities (Dustman et al., 1984; K. I. Erickson et al., 2011; Kirk-Sanchez & 

McGough, 2014; Kramer et al., 2006; Kramer et al., 1999; Weuve et al., 2004), 
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and considering essential differences of exercise types such as aerobic and 

anaerobic, dynamic and static, concentric and eccentric training, strength and 

endurance, power and speed, balance, coordination, stretch and flexibility (Fox et 

al., 1975; Mathews et al., 1976); as well as different physiological responses in 

the human body to different exercises (Mathews et al., 1976); functions and 

responses different of brain against different exercise types can create also a wide 

range of changes such as increasing the blood and oxygen flow to the brain, 

increasing levels of nerve growth factors that help neurogenesis, support the 

survival and growth of a number of neuronal cells, and enhancement of synaptic 

plasticity (Arida et al., 2007; Cotman & Berchtold, 2002; Kempermann et al., 

2010; Knaepen et al., 2010; Kramer et al., 2005).  

 

Furthermore, physical exercises improve cognitive function via 

improvement of learning process, synaptic plasticity and neurogenesis (Intlekofer 

& Cotman, 2013; McAuley et al., 2004; Van Praag et al., 2005). Thus, physical 

activity, which has been emphasized as a strategy to slow or reverse cognitive 

decline is not limited only to aerobic exercises.  

 

Even, regarding the view that oxidative stress is a causal factor in brain 

senescence (Forster et al., 1996) maybe non aerobic exercises can better reduce 

the risk of developing dementia in older adults. 
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3.2.3 Hypothesis III 
 

Learning a new motor skill positively influences semantic memory 

performance in sedentary older adults. 

 

Although, it has repeatedly been pointed that physical exercise has 

considerable effects on brain morphology and function (e.g. Dustman et al., 

1984; Hill et al., 1995; Kramer et al., 1999;  Laurin et al., 2001; Abbott et al., 

2004; Weuve et al., 2004; Podewils et al., 2005; Kramer et al., 2006; Davranche 

& McMorris, 2009; K. I. Erickson et al., 2011; Kirk-Sanchez & McGough, 

2014), yet current knowledge is not completed about the connection of motor 

skill and semantic memory system.  

 

Anyway, it has been found that the motor skills which previously learned, 

were intact in patients with declarative memory disorders due to amnesia or 

Alzheimer’s disease (Gabrieli et al., 1993; Milner, 1962). Durability and 

protection of motor learning skills in amnesia diseases indicates that motor skill 

learning is not dependent on declarative memory areas-related in the brain 

(Gabrieli, 1998; Milner, 1965b). Although, basal ganglia and cerebellum 

dysfunction can cause deficits in procedural memory (Mochizuki-Kawai, 2008), 

but these diseases don’t have homogeneous effects on motor skill learning (e.g. 

Gabrieli et al., 1997; Sanes et al., 1990; Nicolson & Fawcett, 2007). It has been 

reported that defects in dyslexia (developmental reading disorder) are attributed 

to an impaired procedural learning system, while there was the intact declarative 

learning system (Nicolson & Fawcett, 2007). 

 

Also, patients with Huntington’s disease (HD) that have mildly impaired 

mirror-reading skill – which is a procedural ability – despite the pretty well 

declarative memory for words and the reading experiences (Martone, Butters, 

Payne, Becker, & Sax, 1984). 
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Gabrieli et al., (1997) showed that basal ganglia dysfunctions can usually impair 

motor skill learning and procedural memory system (Gabrieli et al., 1997).   

 

The work of Sanes (1990) showed that Cerebellar injuries can impair 

procedural memory system. These results indicate that the cerebellum and its 

associated input pathways are involved in motor skill learning (SANES et al., 

1990).  

In order to acquire motor sequences, components of basal ganglia are assumed to 

play a critical role. In contrast, to learn mappings between motor responses and 

visual cues, it is the cerebellum that seems to be of importance (Willingham et 

al., 1996). Also, to learn closed-loop skills27 – and, therefore, engaging in 

movement’s ongoing visual, external feedback – it is the cerebellum who’s 

involvement is needed. In comparison, to acquire any open-loop skills – 

including delayed feedback and planning of movements – the basal ganglia is 

crucial (Gabrieli et al., 1997). Studies have also shown that interactive, dynamic 

neural networks are involved in procedural memory (Gabrieli, 1998).  

 

In case of a dysfunction, other regions may support the defective 

functioning; for instance, it has been shown that parts of the forebrain such as the 

striatum which is known as the primary input of the basal ganglia system, is 

required in some processes of motor learning and procedural memory for 

example consolidation; developments in procedural memory are not preserved 

unless the striatum is normal. However when the striatum is defective, other 

regions of the brain may support optimal and necessary function (Mochizuki-

Kawai et al., 2004). 

 

There are also examples where memory on a declarative task is correlated 

to memory on a related non-declarative (such as procedural memory) task 

(Bowers & Schacter, 1990). Aspects of cognitive learning are known to depend 

on the basal ganglia and diencephalon structures that support declarative memory 

27 See Adams’ closed-loop theory in section (2.5.3) 
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(Knowlton, Mangels, et al., 1996; Knowlton, Squire, Paulsen, Swerdlow, & 

Swenson, 1996).  

 

Also, it has been stated that the basal ganglia is vital for developing 

perceptual and cognitive skills in addition to procedural learning (Alexander et 

al., 1986). Thus, it appears that procedural memory system may contribute 

through the functions of basal ganglia and cerebellum in processes of declarative 

memory function. 

 

Also, regarding animal literature, it appears that motor skill training 

induce remarkable changes in the brain that may improve learning and cognitive 

function of elderly (Cotman & Berchtold, 2002; Isaacs et al., 1992; Kleim et al., 

2003; Van Praag et al., 2005). 

 

 

 

3.2.4 Hypothesis IV 
 

Developing a new procedural skill is accompanied by a significant 

improvement of cognitive functions of sedentary aged. 

 

Given a theoretical framework of this work that emphasizes the 

undeniable presence of age-related decline in cognitive functions (Altman & Das, 

1965; Blalock et al., 2003; Burke & Barnes, 2006; Cameron & McKay, 1999; K. 

I. Erickson et al., 2009; Fabel & Kempermann, 2008; Jiang et al., 2001; Kramer 

et al., 1999; C.-K. Lee et al., 2000; Mather & Carstensen, 2005; Small, 2001); 

remembering that since 1962 the neurogenesis in the adult brain has repeatedly 

been evidenced (Altman, 1962; Altman & Das, 1965). 

 

Also, much evidence of a relation between an active lifestyle and 

improved cognitive performances (Blumenthal & Madden, 1988; Botwinick & 
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Thompson, 1968; Dustman et al., 1984; Green & Bavelier, 2008; Kirk-Sanchez 

& McGough, 2014; Kramer et al., 1999; Larson & Wang, 2004; Pate et al., 1995; 

Weuve et al., 2004). Unlike the literature on inactive lifestyle, researches are 

suggesting that physical exercise improves cognitive performances in adult 

population.  

 

Much evidences show that engagement in intellectually stimulating, 

mental and social activities through training can create better cognitive 

functioning and may protect against dementia in future (Hertzog et al., 2008; 

Wang et al., 2002). Accordingly, the changes in structure of a neuron consequent 

motor skill learning has been reported (Kolb & Whishaw, 1998) and bearing in 

mind the role of synaptic strengthening in learning and memory (Bruel-

Jungerman et al., 2007), it can be expected that the motor skill learning is able to 

compensate for inactive lifestyle or disabilities of the elderly such as walking and 

running. It has repeatedly been stated that the brain regions which are related to 

procedural memory such as the basal ganglia and cerebellum (Gabrieli, 1998; 

Gabrieli et al., 1997; Milner, 1962, 1965b; Mochizuki-Kawai, 2008; Mochizuki-

Kawai et al., 2004; SANES et al., 1990; Willingham et al., 1996) according to 

result of some researches, it has been shown that basal ganglia can support 

cognitive performance (Knowlton, Mangels, et al., 1996; Knowlton, Squire, et 

al., 1996). Also, studies suggested that aside from physical exercises, the mental 

activities during learning and specifically during motor skill learning can 

similarly increase neurotrophic factor production and neurogenesis (Isaacs et al., 

1992; Kleim et al., 2003; Mattson, 2000). Thus, there is a considerable preserved 

potential in older adults’ cognitive capacity that may be reached through mental 

and physical training. 

  



Method  86 

4 Method 
The current study is accomplished with the experimental method through the 

pretest and the post-test. There are three groups which encompasses aerobic, non-

aerobic and control conditions. For present study normal, sedentary and healthy 

subjects (aged 65 to 75 years) were tested. In the following section a description 

of the conducted procedure in current study is introduced. Furthermore, a brief 

overview of groups, exercise protocols and neurocognitive tests are included. 

 

4.1 Present study 
 

It has been reported that both aerobic and anaerobic physical exercise can 

improve cognitive functions and memory performance. In an effort to test our 

hypotheses about effects of various types of physical activity on cognition and 

memory function we organized and supervised aerobic or anaerobic programs for 

sedentary older adults aged 65 to 75, none of them suffering from dementia. All 

exercise protocols were led by an experienced exercise leader. The exercise 

programs were conducted three times a week for three months. It should be noted 

that subjects in the control group didn’t have physical tasks and they only took 

part in pre- and post-test.  

 

At the beginning (Pre-test) and at the end (Post-test) of the program every 

subject was tested on two types of memory tests, the Verbal Learning and 

Memory Test (VLMT) (Mueller, Hasse‐Sander, Horn, Helmstaedter, & Elger, 

1997) and the Rey-Osterrieth Complex Figure Test (ROCF) (Fastenau, Denburg, 

& Hufford, 1999).  

Also, several other cognitive functions were tested with a neurocognitive test 

battery including Mirror Reading Task, Trail Making Test, Mehrfachwahl-

Wortschatz-Test (MWT-B), Leistungsprüfsystem (LPS-4). 
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4.2 Sampling method 
 

In the study a voluntary sampling method is used, which is one of the non-

probability sampling methods. In fact, we have found only 89 subjects, which 

have volunteered to participate in our three month experiment. Hence, they were 

assigned non-randomly into three groups of current study. Often, these 

participants have a strong interest to participate in their suitable exercise of the 

survey groups. 

 

4.3 Objectives 
 

Physical activity may improve brain health, cognitive performance and lower the 

risk of cognitive decline. There are some ambiguities in literature about effects of 

exercise on cognition; however, there is no unanimous viewpoint. Increased age 

can create musculoskeletal disorders and may cause limitations in activities such 

as running, jogging and walking. The purpose of this investigation was to study 

different kinds of physical exercise to protect cognitive function for people of 

advanced age and to provide a new comfortable and practical template for these 

exercises. 

 

4.4 Participants and Groups 
 

89 older adults aged 65 to 75 years without dementia took part in our study; 37 

men and 52 women. They were assigned non-randomly – due to individually 

interested subjects – into one control group (CG) and two exercises groups (EG); 

the CG consisted of 12 men and 16 women with an average age of 67.93 years. 

The EG were divided into two sub-groups performing either aerobic (for 

example, walking and jogging) or anaerobic exercises (stretching, toning, 

coordination, Stroop training during movement training, equilibrium, muscle 

activity, etc.). The aerobic sub-group included 15 men and 15 women with an 

average age of 68.52 years. The anaerobic group consisted of ten men and 21 
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women with an average age of 68.20 years. Participants of both EG groups have 

been trained three times a week for three months. Both exercise groups trained 

about 45 minutes each time with an academic supervisor. In contrast, subjects in 

the CG only participated in the pre-test and the post-tests.  

 

4.5 Variables 
 

In current study, the dependent variables are older adults’ cognitive functions that 

encompasses visual and verbal memory performances, visual search, scanning, 

Speed of information processing, mental flexibility, executive functions, Mirror 

reading task and intelligence includes verbal and non-verbal. 

The independent variables are two various physical exercise conditions, which 

are compared to the inactivity condition and also together. 

 

4.6 Groups and exercise protocols 
 

In this medium case and prospective study we showed tested 89 adults aged 65 to 

75 years without dementia took part in the study. They were assigned non-

randomly – due to individually interested subjects – into one control group (CG) 

and into two exercise groups (EG). The EG divided into two sub-groups doing 

either aerobic exercises (for example, walking and jogging) or anaerobic28 

exercises (e.g., stretching, toning, coordination, Stroop training during movement 

training, equilibrium, muscle activity, etc.). The aerobic sub-group (AEG) 

consisted of 30 participants with an average age of 68.52 years. The anaerobic 

group (ANEG) consisted of 31 participants with an average age of 68.20 years. 

The control group (CG) consisted of 28 participants with an average age of 68.03 

years. Participants of both EG groups trained three times a week for three 

28 For more information see sections (2.2 and 4.6.3). 
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months. In contrast, subjects in the CG only took part in the pre-test and the 

posttest. 

4.6.1 Control group (CG) 
 

As mentioned, the control group wasn’t given any physical tasks and they only 

took part in pre- and post-test. They were sedentary, healthy, lived routine lives 

without dementia or other major diseases. 

 

4.6.2 Aerobic exercise group (AEG) 
 

The aerobic exercise condition was designed to influence physical fitness as 

typified by cardiorespiratory endurance (Kramer et al., 2001). The exercise 

program was conducted three times a week for twelve weeks. Basic principles of 

exercise programming were followed, including adequate warm-up – five min. 

more slowly than walking in main program – and five min. of cool-down periods, 

progressive and gradual increments in exercise duration and energy expenditure, 

and instructions regarding avoidance of exercise-related injuries. The exercises 

consisted of aerobic activities such as walking, brisk walking, Nordic walking, 

jogging and running. The duration of exercises remained constant, fixed around 

45 minutes and with a light speed almost each kilometer in nine to 13 minutes. 

Additionally, the aerobic participants were training in each session about 3000 

till 4500 meters. It was very important for the aerobic-group subjects to continue 

the task for 45±5 minutes. In respect to the exercise prescription and subjects’ 

situations, the moderate intensity level began light and gradually increased 

throughout the program. Exercise sessions were initially conducted at Bielefeld 

University on the Finnbahn, which is an uneven running track, and involved 

participants walking outdoors on a premeasured route of almost 500 meters. 
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4.6.3 Anaerobic exercise group (ANEG) 
 

First it should be noted that when the term “anaerobic” exercise is mentioned, 

regarding the section exercise and metabolism (2.2), it does not mean that this 

exercise induces the increasing of lactic acid in bodies’ participants. Because in 

the study, the intensity of anaerobic protocol is farther down than anaerobic 

threshold levels and consequently it doesn’t induce the increasing of lactic acid. 

Thus, it will be used in the same way as “non-aerobic”. 

 

The program of the anaerobic group was conducted three times a week for 

three months each session 45±5 minutes. The participants trained in a small 

gymnasium of Bielefeld University. The focus of this program laid on providing 

an organized program of stretching, toning, coordination, balance, Stroop 

exercise, and equilibrium, muscle activity, calisthenics, and circuit training. Each 

session was preceded and followed by ten minutes of warm-up and cool-down 

exercises. The stretching-exercise battery was constant, controlled and contained 

about 40 exercises and every stretch was done only once and lasted for nearly ten 

seconds. This program emphasized stretches for all large muscle groups of both 

the upper and lower body as well as fine and gross motor skills. Our Stroop 

exercises (Hillman et al., 2008; Lowe et al., 2014; MacLeod, 1992) were 

designed for body movement and displacement, combining Stroop and other 

exercises. For example, for the participants to take a step forward, backward or 

sideways we used train numbers, names of flowers, colors, animals, etc instead 

of actually saying the direction. 

 

Fine motor skills are small movements with hands, wrists, fingers, feet, 

toes, lips and tongue, whereas gross motor skills involve movements of/with 

arms, legs, feet or the whole body. We often accomplished finger movements as 

a fine motor skill, for example finger abductions and adduction for both hands 

and legs. 
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Toning exercises are physical exercises that are used with the aim of developing 

a figure with a large emphasis on musculature. Toning exercises are isotonic and 

isometric (Fox et al., 1975; Mathews et al., 1976). 

 

In an isotonic exercise – exemplary for most exercises – a contracting muscle 

shortens against an increasing load; the resistance – meaning, the weight lifted – 

does not remain the same throughout the exercise (Fox, 1984).  

 

Tension is at the highest level when the body part in question eases off 

and is parallel with the floor, above and below. Following, tension changes with 

muscle length. Concerning isotonic contractions, muscles length changes the, 

while weight remains unchanged. Pushing an object at a constant length of 

muscle is an example for isotonic contractions (Fox et al., 1975; Mathews et al., 

1976). Almost fifteen motions of body muscles were achieved by our groups 

every session. Those exercises were performed with about ten repetitions and 

moderate resistance, along with very short rest periods.  

 

Concerning isometric exercises, they shall be understood as a type of 

strength training. Here, muscle length and the joint’s angle are constant whilst 

contracted; they are realized within static positions. In an isometric contraction 

muscle and joint – while confronted with a resisting object – remain static 

(Mathews et al., 1976). 

 

In our groups, every such motion has been performed for about ten 

seconds and with moderate resistance, allowing short resting periods. 

Approximately thirty particular motions were performed every session. 

These were, for example: 

 

1. Chair-leg extension; aiming to strengthen quadriceps and thighs 

2. Hand press; aiming to strengthen biceps, triceps and the chest 

3. Wall push-off; aiming to strengthen chest, triceps and shoulders 
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4. Overhead press; aiming to strengthen shoulders 

5. Drawing-in Manoeuvre; aiming to strengthen core 

6. Side bend; aiming to stretch the back and sides 

7. Cross arm; aiming to stretch the upper back 

8. Neck stretch; aiming to stretch the neck 

9. Isometric squats; aiming to strengthen the front thighs 

10. Palm press; aiming at biceps, shoulders and chest 

  

When performing an isometric exercise we don’t move or put muscles through 

any range of motion. We simply hold a pose for as long as we can; for example, 

when holding a static push-up position or a dumbbell in one hand with a mid-

bicep curl, or even pushing against an immovable object, such as a wall. 

 

Coordination is an ability related to fitness and performance (Stewart, 

2005) that is required to climb stairs, walk, run, prevent injuries and continue an 

active lifestyle. With advancing age comes a gradual decline in coordination 

(Paquette, Paquet, & Fung, 2006), the latter itself being a product of strength, 

mobility, neuromuscular control and balance. Each of these elements is 

potentially responsive to appropriate exercise training, thus coordination could 

improve in response to exercise. Coordination skills include eye-hand and hand-

leg coordination, simple and complex one-leg balancing – which may be 

controlled movements of hands, legs or the head –, bilateral coordination and 

also smooth, controlled movements of the body and so on, all without falling 

over. 

 

Equilibrium and balance: poor balance affects people of all ages and can 

lead to injuries. The elderly are especially susceptible to injuries related to 

incoordination and poor balance such as dislocated or broken hips. Balance 

improving exercises can decrease the risk of injury and boost a person’s 

confidence. It may be the first element of a complete workout regime that 

includes stretching and strengthening exercises. 
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Neurocognitive tests 
  

Cognitive functions were compared in all three groups with a neuropsychology 

test battery including Rey-Osterrieth Complex Figure Test (ROCF), Verbal 

Learning and Memory Test (VLMT), Mirror Reading Task, Trail Making Test 

Parts A and B (TMT-A&B), Mehrfachwahl-Wortschatz-Test (MWT-B), 

Leistungsprüfsystem (LPS-4). 

 

 

4.6.4 Rey-Osterrieth Complex Figure test  
 

The ROCF is a neuropsychological test extensively used in clinical practice to 

investigate visuospatial constructional functions, visuographic memory and some 

aspects of planning and executive function (Caffarra, Vezzadini, Dieci, Zonato, 

& Venneri, 2002). 

 

Copy: 
In the Copy condition the participant is given a piece of paper and a pencil and 

the stimulus Figure is placed in front of participant (test person or examination 

candidate). The participants reproduce the Figure to the best of their abilities onto 

the paper. The test is not timed, but the length of time needed to copy the Figure 

is observed. Once the copy is completed, the stimulus Figure and the 

participant’s copy are removed from view. Each copy is scored for the accurate 

reproduction and placement of 18 specific design elements. 

 

Immediate recall: 
After a three-minute delay, the participant is asked to reproduce the Figure from 

memory. 
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Delayed recall: 
After a longer delay of almost 30 minutes the participant may again be asked to 

draw the Figure from memory. Participants are not told beforehand that they will 

be asked to draw the Figure again. The immediate and delayed recall conditions 

are therefore tests of incidental memory. 

 

 

4.6.5 Verbal Learning and Memory Test (VLMT) 
  

During VLMT verbal working memory components’ were examined, including 

recall and recognition. Subjects were asked to remember words from different 

lists. In trials 1-5, some participants had to read 15 nouns from list A, while 

others needed to remember and repeat words in a particular order. In trial 6, 

another list of 15 words was introduced. This interference list is read to the 

subjects, after which they are required to recall as many items as possible. In trial 

7 (while no list is read) participants are asked to name words from the A list; as 

many as they are able to recall.  

After a 30-minute break, trial 8 follows: the examinees are again asked to recall 

items from list A.  

With trial 9, recognition is tested: 50 words are read by the examiner; then, 

participants are instructed to identify items from list A by simply stating “Yes” or 

“No” when asked (Mueller et al., 1997).  

 

 

4.6.6 Mirror reading task 
 

To assess procedural memory we used a new version of the German mirror 

reading task (Borsutzky, Fujiwara, Brand, & Markowitsch, 2010). A booklet of 

15 pages with German mirror writing was given to the subjects; 30 words in 

total, two words per page, and eight to ten letters per word. The participants were 
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required to read the words out loud accurately and quickly. Any incorrect reading 

was pointed out to the subject. After a correct reading of one page, the next one 

was given. The time a subject needed to successfully read a page was used as a 

measure. All incorrect responses were counted.  

After a delay of 30 minutes an unannounced second trial was administered. Here, 

30 words on 15 pages were used; ten words of which were identical with the 

one’s used during trial 1. Another ten were used for interference; they were new, 

but still similar (e.g. “Verbrecher” and “Verbrechen” see Table 3). Word 

sequences were kept random throughout trials (Borsutzky et al., 2010).  

Table 3: one example of the mirror reading task items, how to look like the words 
 

 Priming Procedural memory   Interference 

 

Trial 1    

   

 

Trial 2    

   

 
The English translation of the words: 
Priming: trial 1: “result” and “purposes”, in trial 2 similar to trial 1. 
Procedural: trial 1: “obstacle” and “contempt” and in trial 2: “detonation” and “insight”. 
Interference: trial 1: “forest fire” and “crime”, and in trial 2: “forest edge” and “criminal”. 
____________________________ 

 

If the subject’s reading speed changed from trial 1 to trial 2, a priming 

performance was measured. To create an index of skill acquisition (for 

procedural learning), reading-time improvements of new words were used as a 

measure. It was this study’s assumption that our subjects would be disturbed in 

their automatic reading processes by the mentioned interference items by virtue 

of their similarity to trial-1 words; due to priming effects, subjects may have tend 
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to recognize those similar trail-1 words. Then, during reading, they may notice 

differences and proceed to initiate re-analysis of said words. This may cause 

reading times to prolong. Concerning interference words of trial 2, though, the 

number of reading mistakes produced – as compared to items for the priming-

and-procedural memory – may rise when subjects experience shortcomings in 

suppressing activated memory traces. 

 

 

 

 

4.6.7 Trail Making Test (TMT) 
 

Cognitive Functions were compared in all three groups with a neuropsychology 

test battery including Trail Making Test Parts A and B (TMT-A&B). It has been 

shown that increasing age and decreasing levels of education can significantly 

decrease the visual search, scanning, speed of processing, mental flexibility, and 

executive functions. (Corrigan & Hinkeldey, 1987; Gaudino, Geisler, & Squires, 

1995; Reitan, 1958; Tombaugh, 2004).  

 

Guadino et al., (1995) have indicated that part B is more difficult than part 

A not only because it is a more difficult cognitive task, but also because of its 

increased demands in motor speed and visual search (Gaudino et al., 1995). 

The attention, visual search, scanning, Speed of information processing were 

assessed by the TMT-A, and to assess the mental flexibility and executive 

functions we used the TMT-B. In the study, the levels of education intervene 

only in statistical analysis of TMT results. 
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4.6.8 Intellectual functions 
 

To assess verbal intelligence functions we used the German version of the 

“Mehrfachwahl-Wortschatz-Test” (or MWT-B) (Lehrl, 1977). It was used to 

estimate non-verbal intelligence functions from subtest ‘Reasoning’ form the 

“Leistungsprüfsystem” (or LPS-4) (Horn, 1983) in all three groups. 

4.7 Physiological test 
 

We didn’t measure any physiological abilities of both exercise groups. Aerobic 

group participants performed light- to moderate-intensity of walking, Nordic 

walking, jogging and running. These levels of activities were easy to be done for 

all of participants, and it was never been vigorous. At first, they have been 

trained the main program, in almost 35 min., 3000 to 3500 metres, but finally 

they did more than 4000 metres. Anaerobic group participants often have been 

performed a same program of stretching, toning, coordination, balance, Stroop 

exercise, and equilibrium, muscle activity, calisthenics, and circuit training 

without any physiological measurement.  

 

For this study, both exercise groups have trained synchronous for twelve 

weeks. Also, the both protocols have been accomplished in four successive 

times; till we get enough subjects. 

Though, more than 120 individuals were participated for this study. A number of 

them due to individual reasons have cancelled their participation. Ultimately, 89 

of participants have continued the program. Consequently, the results of 89 

subjects were analysed. 
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5 Results 
In the following chapter, first the study data reported the means and standard 

deviations of groups and afterwards the results Pairwise comparisons of groups.  

Our results are based on a medium sample, using a prospective design, avoiding 

biases related to retrospective assessment of regular physical activity and other 

exposures.  

All statistical analyses were performed with the version 22 of IBM Statistical 

Package for the Social Sciences (SPSS) Statistics. 

 

5.1 Samples and population 
 

A group of 89 samples (36 male, 53 female) healthy and sedentary was tested. 

The samples ranged in age from 65 to 75 years (M = 68.26, SD = 2.97).  48 

persons of them had studied less than twelve years and 41 persons more than 

twelve.  

All have lived in Bielefeld, Germany. Thus, statistical universe current study 

encompasses older adults people aged 65 to 75 years from Bielefeld. 

 

5.2 Procedure of study 
 
Samples were assigned non-randomly – due to individually interested subjects – 

into one control group (CG) and into two exercise groups (EG). The EG is 

divided into two sub-groups doing either aerobic exercises (for example, walking 

and jogging) or anaerobic exercises (e.g., stretching, toning, coordination, Stroop 

training during movement training, equilibrium, muscle activity, etc.). At the 

beginning, all of participants in three groups (Aerobic, Anaerobic and Control) 

were measured with a neuropsychological test battery. Participants of both EG 

groups trained three times a week for three months. In contrast, subjects in the 

CG only took part in the pre-test and the posttest. After the experiment, subjects 
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of both EG with the same neuropsychological examination as post test were 

controlled. 

5.3 Statistical analyses 
 

First, to determine whether or not our observations are obtained from a normal 

distribution, we used one-sample Kolmogorov-Smirnov test. The results showed 

that data distribution is Normal (see results of Kolmogorov-Smirnov tests in 

Appendix C). 

 

5.3.1 Descriptive data 
 

Descriptive data of samples involves number of samples, distribution of gender, 

frequency of age, and level of education in groups as well as accumulation of 

samples in the age. Table 4 shows Means (M), Standard Deviations (SD) of age 

in groups. 

Also, the descriptive data encompasses the frequency of participants in groups 

(N), frequency of gender – female (f), male (m) –, as well as education levels 

(Edu. Lvl.), – less than twelve years (< 12), or more than twelve years (> 12) – of 

groups are listed in Table 4. Moreover, Figures ten to 16 show this information. 

To review all the raw data of the study, see Appendix A. 

 

Table 4: Descriptive data of the participants 

 

Groups Mean SD N f m Edu. Lvl. < 12 
f                 m 

Edu. Lvl. > 12 
f               m 

Control 68,0357 2,87366 28 17 11 11 5 6 6 

 Anaerobic 68,2000 2,99885 30 15 15 8 7 7 8 

Aerobic 68,5161 3,11845 31 21 10 13 4 8 6 

sum 68,2584 2,97538 89 53 36 32 16 21 20 
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Figure 10: Means and Standard Deviations of groups aged. 
 

 

 

 

Figure 11: Frequency of participants in groups.  
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Figure 12: Distribution of gender participants in groups. 
 

 

 

 
 

Figure 13: Distribution of education levels of participants in groups. 
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Also, the following Figures show frequency of participants on the basis of age 

(Fig. 14) and distribution of age within the groups (Fig. 15 and Fig. 16) 

 

 

Figure 14: Frequency of participants on the basis of age. 
 

           

Figure 15: Distribution of age in the groups. 
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Figure 16: Distribution of age in the groups. 
 
 

5.3.2 Data analysis  
 

Results of the neurocognitive tests encompass the Means (M) and Standard 

Deviations (SD) of these three groups as listed in Table 5. Also, the Pairwise 

comparisons of groups are presented in Table 6. The effects of various kinds of 

physical activity on cognitive functions were analyzed using a univariate analysis 

of covariance (ANCOVA) and was performed on the data in which the exercise 

group was the between-subjects variable. The separate analyses were performed 

to assess the associations between kinds of physical activities and cognitive 

protection. The Bonferroni test was used to investigate what changes occurred 

among groups.  

The test Bonferroni was used to investigate changes occurs between which groups. 
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Table 5: Means (M) and Standard Deviations (SD) of variables 

 

Test Variable 

Control group 

(N = 28) 

Aerobic group 

(N = 31) 

 Anaerobic group 

(N = 30) 

Pre-test Post-test Pre-test Post-test Pre-test Post-test 

ROCFª immediate recall¹ M 71.71 63.96 63.97 73.52 60.07 76.57 

ROCF immediate recall SD 10.43 11.20 10.60 12.05 12.15 8.90 

ROCF delayed recall¹ M 70.89 64.07 63.13 74.26 60.30 75.97 

ROCF delayed recall SD 11.77 11.61 11.43 10.56 13.49 10.29 

VLMTᵇ immediate recall² M 59.25 50.20 62.98 65.65 61.83 64.42 

VLMT immediate recall SD 31.33 28.99 26.87 23.25 26.42 27.87 

VLMT after learning² M 42.38 35.96 40.45 41.37 33.77 51.22 

VLMT after learning SD 26.21 26.30 22.11 24.69 21.33 26.44 

VLMT after interference² M 46.14 33.32 45.89 41.81 36.50 51.03 

VLMT after interference SD 32.55 29.23 26.16 31.27 24.53 31.88 

VLMT delayed recall² M 41.38 27.95 39.23 42.61 35.55 46.03 

VLMT delayed recall SD 31.62 24.20 25.83 32.40 26.43 31.60 

Mirror reading priming ˢ M 191.85 214.67 207.77 154.45 182.38 103.14 

Mirror reading priming  SD 108.65 130.55 211.59 171.60 138.95 53.89 

Mirror reading procedural ˢ M 198.04 234.15 242.29 152.87 197.52 115.31 

Mirror reading procedural SD 99.99 126.04 264.30 134.90 109.39 45.98 
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ª Rey-Osterrieth Complex Figure Test (ROCF) 

ᵇ Verbal Learning and Memory Test (VLMT) 

ᶜ Trail Making Test (TMT) 

ᵈ Speed of information processing 

ᵉ Executive functions 

ᶠ Mehrfachwahl-Wortschatz-Test (MWT-B) 

ᶢ Leistungsprüfsystem (LPS-4) 

ˢ Second 

¹ Raw score 

² Percentile 

__________________________________________ 

  

Mirror  
reading interference ˢ M 181.59 176.74 188.48 111 158.66 90.41 

Mirror  
reading interference SD 98.56 94.69 149.68 63.49 93.73 36.04 

TMTᶜ-Aᵈ M 52.50 40.00 49.68 60.65 53.00 67.00 

TMT-A SD 29.01 28.02 25.23 53.89 30.53 26.28 

TMT-Bᵉ M 46.43 33.21 49.68 62.58 48.67 66.67 

TMT-B SD 28.05 27.49 31.36 28.75 31.81 30.10 

MWT-Bᶠ  
verbal intelligence M 117.50 114.29 119.84 122.39 121.80 127.63 

MWT-B  
verbal intelligence SD 10.99 10.83 12.55 10.66 11.31 10.88 

LPS-4ᶢ  
non-verbal intelligence M 112.11 110.39 112.23 115.90 112.57 117.93 

LPS-4  
non-verbal intelligence SD 11.28 10.96 10.47 11.60 10.07  11.06 
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Mean difference (MD), Standard error (SE) of between groups are listed in Table 

6. Also as shown in Table 6, statistical analyses showed a significant interaction 

indicating beneficial contributions of training on cognitive performances. 

 

Although number, gender and education of subjects in groups are not equal, but 

one-sample Kolmogorov-Smirnov test showed that data distribution was Normal. 

 

As previously mentioned in section (4.7.4), our study didn’t intervene the 

education levels of subjects in statistical analyses unless in TMT. 
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Table 6: Pairwise Comparisons of Groups 
 

Comparisons 
of Groups 

Dependent 
Variable 

Mean 
Difference 

Std. 
Error 

Signific
ance 

Control & Anaerobic Visual memory, immediate recall -19.968 2.454 p < .001 

Control & Aerobic Visual memory, immediate recall -15.673 2.362  p < .001 

Control & Anaerobic Visual memory, delayed  recall -19.219 2.205 p < .001 

Control & Aerobic Visual memory, delayed recall -16.182 2.151 p < .001 

Control & Anaerobic Verbal short-term memory -13.164 6.462 p = .134 

Control & Aerobic Verbal short-term memory -14.113 6.417 p = .092 

Control & Anaerobic VLMT, recall after learning -22.584 5.036 p < .001 

Control & Aerobic VLMT, recall after learning  -6.860 4.936 p = .505 

Aerobic & Anaerobic VLMT, recall after learning -15.725 4.895 p = .006 

Control & Anaerobic VLMT, recall after interference    -27.363 4.693 p < .001 

Control & Aerobic VLMT, recall after interference    -8.223 4.597 p = .232 

Aerobic & Anaerobic VLMT, recall after interference    -19.140 4.851 P < .001 

Control & Anaerobic Verbal long-term memory -22.556 5.565 p < .001 

Control & Aerobic Verbal long-term memory -15.813 5.503 p = .015 

Control & Anaerobic Mirror reading,  Priming performance 110.97 13.43 p < .001 

Control & Aerobic Mirror reading , Priming performance 73.34 13.21 p < .001 
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Aerobic & Anaerobic Mirror reading , Priming performance 37.62 12.99 p = .015 

Control & Anaerobic Mirror reading , Procedural memory  131.24 14.40 p < .001 

Control & Aerobic Mirror reading , Procedural memory  111.51 14.15 p < .001 

Aerobic & Anaerobic Mirror reading , Procedural memory  19.73 13.87 p = .477 

Control & Anaerobic Mirror reading , Interference   77.54 11.75 p < .001 

Control & Aerobic Mirror reading , Interference   66.63 11.48 p < .001 

Aerobic & Anaerobic Mirror reading , Interference   10.91 11.37 p = 1.00 

Control & Anaerobic Speed of Info. processing TMT-A -26.770 5.420 p < .001  

Control & Aerobic Speed of Info. processing TMT-A -21.897 5.384 p < .001 

Aerobic & Anaerobic Speed of Info. processing TMT-A -4.874 5.290 p = 1.00  

Control & Anaerobic Executive functions TMT-B -31.889 5.453 p < .001  

Control & Aerobic Executive functions TMT-B -27.263 5.413 p < .001  

Aerobic & Anaerobic Executive functions TMT-B -4.626 5.311 p = 1.00 

Control & Anaerobic Verbal intelligence -10.073 1.971 p < .001  

Control & Aerobic Verbal intelligence -6.062 1.941 p < .007  

Aerobic & Anaerobic Verbal intelligence -4.012 1.901 p = .113  

Control & Anaerobic Non-verbal intelligence  -7.113 1.560 p < .001  

Control & Aerobic Non-verbal intelligence -5.411 1.548 p < .002 

Aerobic & Anaerobic Non-verbal intelligence -1.702 1.521 p = .799 
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5.4 Results of visual memory (ROCF) 
 

Aerobic and anaerobic exercises can improve visual memory in older adults. 

This study aims to clarify the effects of physical activity on memory performance 

in older adult participants. Group sizes were for the control, aerobic and 

anaerobic n = 28, n = 31 and n = 30.   

 

Generally, with the exception of two tests between aerobic and anaerobic 

conditions, findings did not significantly differ. Yet, when comparing the 

outcomes of the aerobic and anaerobic groups with the control group’s outcome 

there were some differences. The results of the memory tests of these three 

groups are listed in Table 6.  

 

The comparing results of the Rey-Osterrieth Complex Figure Test (ROCF) 

among all groups showed a significant interaction between the anaerobic 

condition and short-term29 visual memory (MD = -19.968, p < .001) and long-

term30 visual memory (MD = -19.219, p < .001). Also, there was a significant 

difference between the aerobic condition and short-term visual memory (MD = -

15.673, p < .001) as well as long-term visual memory (MD = -16.182, p < .001).  

As illustrated in Figure 17, we found aerobic and anaerobic exercises to be 

improving short-term visual memory in older adults. 

29 In this statistical analysis and in the following discussion “short-term memory” shall be 
synonymous with “immediate recall”. 

 
30 The phrase “long term memory” may be understood synonymously with “delayed recall” 
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Figure 17: Interventions of physical activity on short-term visual memory. 
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in older adults. 

 

The Figure 18 shows that aerobic and anaerobic conditions enhance long-

term visual memory in the elderly, too. As indicated, there is a significant 

relation between both aerobic and anaerobic conditions with short-term and long-

term visual memories in older adult participants. 

 

 
 

Figure 18: Interventions of physical activity on long-term of visual memory.  
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity on older adults. It shows means of long-term memory 
performance or delayed recall in ROCF.  
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5.5 Results of Verbal Memory Test (VLMT) 
 

Aerobic and anaerobic exercises are different in their improvement of 

Verbal Learning and Memory in older adults.  

In VLMT, the outcomes of aerobic and anaerobic conditions for immediate 

recall, recall after learning in the 5th trial, recall after interference and delayed 

recall differed a lot. As shown in Table 6 there were no significant differences 

between all three groups in short-term memory (immediate recall). Apart from 

some increasing appearances in aerobic and anaerobic interaction in short-term 

memory (see Fig. 19) we didn’t find a significant increasing impact of exercise 

conditions on immediate recall for verbal learning memory. 

 

In all events, the influence of exercise conditions lead to better results 

compared to the control group, even though, it was non-significant. 

 

 
 

Figure 19: Interventions of physical activity on short-term verbal memory. 
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in 89 adults. It demonstrates means of short-term 
memory performance or immediate recall in VLMT.  
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As illustrated in Figure 20, interventions of anaerobic effects indicate a 

significant difference at recall after learning (5th trial in VLMT), with both the 

aerobic (MD = -15.725, p = .006) and the control group (MD = -22.584, p < 

.001), whereas there was no significant difference between these two groups, and 

the intervention of aerobic exercise conditions created positive effects for recall 

after learning in the 5th VLMT trial, again with no significant value (MD = 6.860, 

p = .51). 

 

 

 

 
 

Figure 20: Interventions of physical activity on recall after learning in VLMT. 
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in 89 adults.  

 

 

In Table 6 and Figure 21 , we can see that the intervening anaerobic 

condition can produce a significant difference at recall after interference in the 

VLMT with both the aerobic (MD = -19.14, p < .001), and the control group 

(MD = -27.363, p < .001), and this more than in the aerobic and control group; 

the aerobic condition has not only positive effects, but also there is a negative 

effect of a decrease in outcomes in this phase (Pretest M = 45.89, Post-test M = 

41.81, MD = 8.223, p = .23). This is unexpected. 
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Figure 21: Interventions of physical activity on recall after interference in 
VLMT.  
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity on adults’ participants.  

 

In Table 6 and Figure 22, the compared results of long-term verbal 

memory at delayed recall in VLMT are significant for the anaerobic group when 

contrasted to the control group (MD = 22.556, p < .001). Also, there are 

significant results for the aerobic group when contrasted to the control group 

(MD = 15.813, p < .015). 

In short, the aerobic and anaerobic condition groups yielded significant 

differences for the short-term and long-term memory in the ROCF. 

 

 
 

Figure 22: Interventions of physical activity on delayed recall in VLMT.  
It shows effects of twelve weeks aerobic and anaerobic exercises and also 
physical inactivity on older adults.  
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The VLMT for the anaerobic condition was able to reveal significant differences 

in recall after learning within the 5th trial, recall after interference and delayed 

recall for our participants, yet, the aerobic condition could only yield significant 

differences at delayed recall. In terms of the immediate recall in the VLMT, 

neither the aerobic nor the anaerobic condition caused significant differences in 

subjects. Overall, the control group’s results were always inferior to the results of 

the experimental groups. 

 

5.6 Results of mirror reading task 
 

As illustrated in Figure 23, interventions of anaerobic effects indicate a 

significant difference at priming performance (priming, mirror reading), with 

both the control group (MD = 110.97, p < .001) and the aerobic (MD = 37.62, p 

= .015). Also, we can see that the intervening aerobic condition can produce a 

significant difference at priming, mirror reading with the control group (MD = 

73.34, p < .001). 

 

 
 

Figure 23: Interventions of physical activity on priming of mirror task.  
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in older adults. 
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In Table 6 and Figure 24, we can see that the both EG intervening condition can 

produce a significant difference for the ANEG (MD = 131.24, p < .001), and the 

AEG (MD = 111.51, p < .001) on procedural memory performance of mirror 

reading test in older adult participants, whereas there being no significant 

difference between these two EG (MD = 19.73, p = .477). 

 

 

Figure 24: Interventions of physical activity on procedural memory of mirror 
task. 
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in 87 adults.  
 
 

 

 

 

As shown, in Figure 25, we can see that the both EG intervening condition 

can produce a significant difference for the ANEG (MD = 77.54, p < .001), and 

the AEG (MD = 66.63, p < .001) on Interference mirror reading in older adult 

participants, whereas there was no significant difference between these two EG 

(MD = 10.91, p = 1.00). 
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Figure 25: Interventions of physical activity on interference of mirror reading 
task.  
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in 89 adults. 
 
 

 

 

5.7 Results of visual search, scanning and speed of 
information processing  
 

As illustrated in Figure 26, we found aerobic and anaerobic exercises to be 

improving on speed of information processing (TMT-A) in older adults. As 

shown in Table 6 and Figure 26, interventions of both exercises effects the 

ANEG (MD = -26.770, p = .001) and the AEG (MD = -21.897, p < .001) indicate 

a significant difference on speed of information processing, whereas there being 

no significant difference between these two EG (MD = -4.874, p = 1.00). 
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Figure 26: Interventions of physical activity on attention and speed of 
information processing. The Figure shows effects of twelve weeks aerobic and 
anaerobic exercises and also physical inactivity in older adults. 

 

 

 

 

 

 

5.8 Results of visual search, scanning, mental flexibility 
and executive functions 

 

As illustrated in Figure 27, interventions of both exercises effects the ANEG 

(MD = -31.889, p = .001) and the AEG (MD = -27.263, p < .001) indicate a 

significant difference on mental flexibility (TMT-B), whereas there being no 

significant difference between these two EG (MD = -4.626, p = 1.00). 
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Figure 27: Interventions of physical activity on mental flexibility.  
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in 89 adults. 

 

5.9 Results of verbal intelligence 
 

As illustrated in Figure 28 and Table 6, interventions of both exercises effects the 

ANEG (MD = -10.073, p = .001) and the AEG (MD = -6.063, p < .007) indicate 

a significant difference on verbal intelligence, whereas there being no significant 

difference between these two EG (MD = -4.012, p = .113). 

 

 

Figure 28: Interventions of physical activity on verbal intelligence.  
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in 89 adults. 
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5.10 Results of non-verbal intelligence 
 

As illustrated in Figure 29, we found aerobic and anaerobic exercises to be 

improving on non-verbal intelligence in older adults. As shown in Table 6 and 

Figure 28, interventions of both exercises effects the ANEG (MD = -7.113, p = 

.001) and the AEG (MD = -5.411, p < .002) indicate a significant difference on 

non-verbal intelligence (LPS-4), whereas there being no significant difference 

between these two EG (MD = -1.702, p = .799). 

 

 

 
 

Figure 29: Interventions of physical activity on non-verbal intelligence.  
The Figure shows effects of twelve weeks aerobic and anaerobic exercises and 
also physical inactivity in 89 adults. 
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6 Discussion 
In this chapter, the results of present study are discussed in the context of 

previous research carried out on aging, exercise and cognitive functions.  

There is a consensus about the occurrence of a decline in cognitive functions 

during the aging process (Altman & Das, 1965; Burke & Barnes, 2006; Cameron 

& McKay, 1999; K. I. Erickson et al., 2009; Fabel & Kempermann, 2008; 

Kramer et al., 1999; Mather & Carstensen, 2005; Small, 2001). Animal and 

human literature have suggested an affirmative effect of exercise on cognitive 

function and memory performance (Blumenthal & Madden, 1988; K. I. Erickson 

et al., 2011; Larson et al., 2006; Neeper et al., 1996; Pate et al., 1995; Van Praag, 

Christie, et al., 1999) . 

 

In sum, our findings demonstrated: 

1. Aerobic and anaerobic exercises can create a significant change in 

older adults’ cognitive functions. 

2. Although intervention of both aerobic and anaerobic condition 

could improve cognitive abilities of older adults, but it appears that these 

condition are not able to improve at a similar rate. 

3. Anywhere the aerobic exercise could create a noteworthy change, 

the anaerobic exercise could also too, but there are some abilities that the 

anaerobic condition could significantly improve in older adults’ cognitive 

functions that the aerobic condition could not. The first question raised in this 

study asked whether there is any relationship between various kinds of physical 

activity and older people’s cognitive functions; and afterwards, in regard to 

different effects of various physical exercises, the aerobic and non-aerobic 

protocols are arranged. For each of current study parameters like the aerobic, 

anaerobic as well as developing a new procedural skill which is as a condition 

that have been intervened in the study, we have made separate discussion, and 

ours results with previous works are compared and interpreted together. 
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6.1 The aerobic exercise condition and cognitive 
functions of sedentary older adults 

 

The physical activity leads in energy expenditure. In fact, the energy expenditure 

is needy cardiorespiratory activity such as physical fitness, and it also improves 

through the physical exercise. Up to now, many results of studies have indicated 

that exercise-induced physiological increases in aerobic exercises have beneficial 

effects on physical, physiological and psychological outcomes of human 

population. Indeed, the aerobic training creates an improvement in parts of 

physical fitness that relates to the ability of circulation and respiration to supply 

oxygen during sustained physical activity.  

 

The beneficial effects of aerobic exercise may not be merely limited to 

physiological advantages such as increasing oxygen consumption, blood 

circulation, the number of capillaries, and vascular function. Bearing in mind that 

the human brain with about two percent of weight uses almost 20 percent of the 

oxygen consumed by the body, and also despite the low-oxygen level inside 

brain tissue, the brain is one of the neediest oxygen consumers in the body.  

 

In addition of oxygen roles on the brain development, it also has been 

shown in the pathological processes and the brain dysfunctions (Zhang et al., 

2011). Accordingly, the increasing of oxygen transportation may be an important 

factor in improving neuronal growth, cell proliferation, cell survival, and creating 

more stimulation of neurogenesis. All these consequences provide an ideal 

condition for improving mental performance and increasing resistance to brain 

disorder in adults’ brain. However, it is expected that the participation in regular 

aerobic activities should help to preserve the brain cells and their functions 

through the improvement of blood circulation and cardiorespiratory fitness. Thus, 

this is surely established that participants in aerobic activity programs receive 

suitable levels of physical and psychological health.  
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Many studies on animals (e.g. Churchill et al., 2002; Neeper, Gómez-Pinilla, 

Choi, & Cotman, 1996; Van Praag et al., 1999, 2005) have shown that aerobic 

exercises like walking could create a considerable increase in cell survival, 

neurogenesis and improve synaptic plasticity. Also, human cognitive studies 

indicate the influence of exercise on some brain regions (Stanley J Colcombe et 

al., 2006; Cotman & Berchtold, 2002; Hillman et al., 2008; Kramer et al., 1999; 

Weuve et al., 2004).  

 

Currently there are several theories that can explain how exercise may 

affect cognitive function. The first, physical activity and especially the aerobic 

activities improve aerobic capacity. During physical exercise regional cerebral 

blood flow, in major cerebral arteries and also blood flow in the internal carotid 

artery enhance, causing an increase in blood flow to a wide regions of the brain 

(Ide & Secher, 2000). Aerobic exercise increases oxygen saturation (Kramer et 

al., 1999) angiogenesis and improves vascular function (Fordyce & Farrar, 1991; 

Kleim et al., 2002) in brain areas crucial for task cognitive performance. These 

changes are generally associated with aerobic exercise and endurance exercise. 

Additionally, during exercise the regional cerebral uptake of O2  increase (Ide & 

Secher, 2000). 

 

There is confirmation that the transmission of foodstuffs accompanied by 

the blood during exercise can improve neurogenesis and affects as a useful tool 

on the cognitive decline prevention in adults’ population (Cutuli et al., 2014). 

Thus, it could be expected that aerobic exercise increases the rate of oxygen 

consumption in healthy older adults and enhances performance of cognition. 

Additionally, aerobic exercise can increase level of BDNF, an effective element 

for supporting the survival of existing neurons in some areas of the brain 

including hippocampus, medial temporal lobe, amygdala, frontal, prefrontal and 

parietal cortices. These are vital areas related to learning process, cognitive 

function, memory performance, and notably the long-term memory. 
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Results of animal and human research have frequently revealed that aerobic 

exercise can improve cognitive function and brain performance through 

neurogenesis (Cotman & Berchtold, 2002; Kramer et al., 1999; van Praag, 2009; 

Weuve et al., 2004), angiogenesis (Fordyce & Farrar, 1991; Swain et al., 2003), 

synaptic plasticity (van Praag, Kempermann, et al., 1999; Van Praag et al., 2005), 

through changes in gene expression and through the increasing if basal BDNF 

concentrations (Cotman & Engesser-Cesar, 2002; Intlekofer & Cotman, 2013) 

and other several physiological mechanisms (Dustman et al., 1984; Laurin et al., 

2001; R. L. Rogers et al., 1990).  

 

The second theory suggests that physical exercise can directly enhance 

synaptic plasticity through the change of synaptic structure and strength, thus, 

supports neurogenesis (Cotman, Berchtold, & Christie, 2007). One of the key 

mechanisms of exercise and physical activity on the brain is induction of growth 

factors, which plays an important role in structural and functional changes as 

well as neuroprotective effects in aging. The aerobic exercise upregulates 

neurotrophins like BDNF and IGF-1 that support neuronal survival and 

differentiation in the developing brain and dendritic branching in the adult brain 

(Cotman et al., 2007; Cotman & Engesser-Cesar, 2002; McAuley et al., 2004). 

Thus, physical aerobic activity may also influence brain regions engaged with the 

cognitive abilities and memory system.  

As previously mentioned in section (4.5) one of the independent variables was a 

protocol of an aerobic prolonged and sub-maximal activity like walking, brisk 

walking, Nordic walking, jogging and running. It was conducted three times a 

week for twelve weeks. The duration of exercises remained constant, fixed 

around 45 minutes. 

 

However, our findings support that the participation in regular aerobic 

activities can help to preserve cognitive activity and to decrease the risk of 

dementia, and that such exercise should be able to maintain memory 

performance. The results of our study confirmed that aerobic condition was able 
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to significantly improve older adults’ visual memory in both short (MD = -

15.673, p < .001) and long-term (MD = -16.182, p < .001). 

 

As seen in Table 6, there were no significant differences between all three 

groups in short-term verbal memory (immediate recall) in VLMT (Fig. 19). 

These results of both exercise groups have the weakest impact on cognitive 

function, which are documented in the study. Indeed, neither of the both exercise 

conditions can create any significant difference on the immediate recall in 

VLMT. In this task, participant was provided with the number of components of 

verbal working memory including recognition and recall of a list – which were 

only heard once – of ordered stimulus. This task is very near to sensory store. 

Sensory memory is an ultra-short-term memory and decays quickly.  

 

The findings of the visual memory component revealed that both exercises 

condition were able to significantly improve older adults’ short-term. Probably, 

the generalizations of results’ immediate recall in VLMT to short-term memory 

cannot indicate the nature of task in meaning short-term. Thus, in the review of 

sensory store and short-term memory, it appears that measuring of the immediate 

recall in VLMT cannot assess short-term memory.  

 

Thus, it should be concluded that the both exercises condition didn’t 

create significant changes on ultra-short-term memory and sensory store. This is 

not unexpected, because, as it has been reported, the sensory memory cannot be 

extended by rehearsal (Cowan, 1997). 

In fact, both exercises condition did not create significant changes between EG 

and CG. It appears that perhaps the verbal short-term memory depends less on 

physical exercise. Because, no major divergence is witnessed in both exercise 

groups; although, it is also possible that the used light intensity that we had 

accomplished cannot create important differences. 

 



Discussion  125 

As illustrated in Table 6, and Figure 20, intervention of aerobic effects didn’t 

indicate an important difference (MD = -6.860, p = .505) at recall after learning 

(5th trial in VLMT). Also, taking into the Table 6 and Figure 21, we can see that 

the intervening aerobic condition cannot produce a noteworthy difference at 

recall after interference in the VLMT with the control group (MD = -8.223, p = 

.232). 

 

However, this failure does not appear to be the reason of this disability 

and can perhaps be intervention of the low intensity of our aerobic condition. As 

we know, there is confirmation that has shown the beneficial influence of 

physical activity produced through aerobic exercise on cognitive performances 

(Dustman et al., 1984; Hillman et al., 2008; Kramer et al., 2006).   

 

Aside from a few results of aerobic exercise condition on memory 

function – that sometimes were not affective –, the intervention of aerobic 

condition produces a significant difference on other cognitive function aspects, 

which are examined in the study. These remarkable differences were exactly 

similar (p < .001) for the mirror reading tasks encompasses priming performance, 

procedural memory and interference as well as for the Trail Making Test (TMT 

A&B) includes measurements of visual search, scanning, speed of processing, 

mental flexibility, and executive functions.  

While, these significantly changes were able to be observe in (MWT-B test) 

verbal intelligence (MD = -6.063, p < .007) and in (LPS-4 test) non-verbal 

intelligence (MD = -5.411, p < .002). 

Though the results are promising, findings of our aerobic group suggest that 

aerobic exercise is not always as effective as its anaerobic counterpart in 

influencing cognitive abilities and particularly in memory system.  

 

Our results of aerobic condition confirm the level of oxygen consumption 

(Ramel et al., 2004), roles of mitochondria (Blalock et al., 2004; Bratic & 

Trifunovic, 2010; Dringen et al., 2000; Loerch et al., 2008; Lu et al., 2004; 
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Miquel et al., 1980; Pak et al., 2003) and the formation of ROS (Fisher-Wellman 

& Bloomer, 2009; Radak, Chung, & Goto, 2008); exercise may actually make a 

difference in the aging process using the aerobic condition (Bishop et al., 2010; 

Rea et al., 2007; Sánchez-Blanco et al., 2006). It appears that the optimal level of 

aerobic exercise concerning both intensity (Goto et al., 2003) and duration 

(Bloomer et al., 2007), as well as the optimal level of ROS generation may be of 

importance in brain function (Knez et al., 2006; Radak, Chung, & Goto, 2008). 

 

If the modification of the oxygen consumption by physical activity 

induces the neurogenesis in the brain, a novel idea provides to preserve the 

ability of learning processes and memory function because of the involvement of 

neurogenesis in the process of cognitive function. Thus, this study proposes the 

future investigations study effects of aerobic exercises on older adults’ cognitive 

performance with exact measurement of aerobic condition according to VO2 max 

levels of physical aerobic program. 
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6.2 The anaerobic exercise condition and cognitive 
functions of sedentary older adults 

 

Now, we know that inactivity lifestyle is one of the important risk factors for 

many age-related diseases including physical, physiological and psychological 

diseases. Since, neuron is able to survive and serve for a century or more in many 

persons that age successfully (Mattson, 2000). Understanding of the mechanisms 

that permit such cell survival and synaptic plasticity may therefore lead to the 

development of new preventative and therapeutic strategies for age-related 

neurodegenerative dysfunctions. 

 

Though, researchers who have examined the effects of anaerobic exercise 

on cognitive processes have consistently failed to detect a clear relation between 

exhaustive exercise and cognitive abilities (Stanley J Colcombe et al., 2006; 

Knaepen et al., 2010; Tomporowski, 2003). 

 

Contrary to those failed studies of anaerobic exercise on cognition, 

perhaps the most important consequence of our analysis is the implication that 

robust and specific benefits do occur with anaerobic exercise. Results of our 

study can confirm findings of Peig-Chiello, Perrig et al., 1998; Colcombe and 

Kramer 2003; Heyn, Abreu et al., 2004; Cassilhas, Viana et al., 2007; Erickson, 

Prakash et al., 2009; Chang and Etnier 2009.  

 

As previously mentioned in sections (2.2) and (2.3) anaerobic energy 

system is the transformation of glucose to lactic acid, when enough amounts of 

oxygen are not available. The anaerobic system produces the energy nearly fast, 

but very little. It should be described that when it is said the term anaerobic 

exercise, it is not right, if we think this exercise induces the increasing of lactic 

acid in bodies’ participants, because in the study, the intensity of anaerobic 

protocol is farther down than anaerobic threshold levels and consequently it 
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doesn’t induce the increasing of lactic acid. Thus, it will be used in the same way 

as “non-aerobic”. 

 

Indeed, our anaerobic protocol content includes stretching, toning, 

coordination, equilibrium and especially the Stroop training. Through the new 

motor learning, which is required for the synaptic changes and creation of new 

proteins within the brain cells and neurons, the facilitating and acceleration of 

electrochemical transfers and neurotransmitters in synaptic junction contributes 

to reinforcing the communicative capacity of certain circuits of neurons in the 

brain and can lead to improvement of the cognitive functions in older adults. 

 

It is now clear that voluntary exercise is an important factor to improve 

neuronal growth, creates more stimulate neurogenesis, improves mental 

performance and increases resistance to brain disorder in the adult brain 

(Caspersen et al., 1985; Cotman & Berchtold, 2002; Dishman et al., 1985; K. I. 

Erickson et al., 2011; Knaepen et al., 2010; Mattson et al., 2004; O'Sullivan et 

al., 1997; PILC, 2010; Rhyu et al., 2010; van Praag, 2009; Van Praag, Christie, et 

al., 1999; van Praag, Kempermann, et al., 1999; Van Praag et al., 2005; Webster 

et al., 2002). Anaerobic group participants have performed exercises such as new 

motor learning, Stroop, neuromuscular, cross-brain and body equilibrium 

exercises; this caused an increase in brain activity and a strengthening of 

underlying systems that support brain plasticity – including metabolism and 

vascular function, cell proliferation, cell survival, neurogenesis – which may 

have caused in turn increased cognitive function and memory performance 

compared to the aerobic group which have repeated only the same aerobic 

activity.  

 

This investigation suggests that engaging in systematic and regular 

physical activity, among other health benefits, can delay or prevent the beginning 

of cognitive impairment and dementia in the older adults. Although, our results is 

needy confirmation in further intervention studies, these results suggests that 
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regular practice of physical activity could represent an important and potent 

protective factor for cognitive dysfunction and dementia in the adult people. 

Like aerobic condition, the results of the investigation show that the effects of 

anaerobic protocol on short-term (MD = -19.968, p < .001) (Fig. 17) and long-

term of visual memory (MD = -19.219, p < .001) in elderly are significant (Fig. 

18). 

 

As noted in section (6.1) there were no significant differences (it is 

concluded in section 6.1, to another concept) between all three groups in 

immediate recall of the VLMT. Unlike the aerobic group, as seen in Table 6 and 

Figure 20, interventions of anaerobic effects indicate a significant difference at 

recall after learning (5th trial in VLMT), with the control group (MD = -22.584, 

p < .001), interestingly, in this parameter, we can see a significant difference 

between ANEG and AEG too (MD = -15.725, p = .006). 

This implies that engaging in the low intensity anaerobic condition even without 

the need of running can create robust beneficial effects in seniors’ cognition, in 

contrast regular running and other systematic aerobic program.  

 

In VLMT after interference list, in trial 7 when no list is read and subjects 

are asked to recall as many words as possible from the A list (see Table 6 and 

Fig. 21) we can see that the intervening anaerobic condition can produce a 

significant difference at recall after interference in the VLMT with both the 

aerobic (MD = -19.14, p < .001), and the control group (MD = -27.363, p < 

.001), and this more than in the aerobic and control group; the aerobic condition 

has not only positive effects, but also the negative effect of a decrease in 

outcomes of this phase (Pre-test M = 45.89, Post-test M = 41.81, MD = 8.223, p 

= .23). This really is unexpected that in comparison to low intensity exercises of 

both aerobic and anaerobic and regarding our results, it seems that mild 

anaerobic intervention can create better improvements in cognitive functions and 

memory performance of elderly than aerobic.  
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In Table 6, and Figure 22, the compared results of long-term verbal memory at 

delayed recall in VLMT are significant for the anaerobic group when contrasted 

to the control group (MD = 22.556, p < .001). Also, there are significant results 

for the aerobic group when contrasted to the control group (MD = 15.813, p < 

.015).  

 

In comparison to the time and duration of memory function, it appears that 

low and light types of the aerobic and anaerobic intervention can create almost 

similar improvements in memory performance of elderly.  

The intervention of anaerobic condition produces a significant difference on 

other cognitive function aspects, which are examined in the study. These 

remarkable differences were exactly similar (p < .001) for the mirror reading 

tasks encompasses priming performance, procedural memory and interference as 

well as for the Trail Making Test (TMT A&B) including measurements of 

attention, visual search, scanning, speed of processing, mental flexibility, and 

executive functions, verbal intelligence (MWT-B) and in non-verbal intelligence 

(LPS-4). 

 

Our findings diverge from the data of previous studies, some of which 

have failed to observe the benefits of anaerobic exercise on cognitive processes 

(Stanley J Colcombe et al., 2006; Knaepen et al., 2010). Also, findings of the 

current work suggest that the mild to moderate types of anaerobic exercise are 

more capable in improving these brain regions effectively than aerobic programs. 

All this points to the decline of memory function in late adulthood are not 

inevitable and it can be reversed with light intensity type of our anaerobic 

protocol. It seems that for supporting cognitive function in older adults that have 

difficulty with performing aerobic exercise such as walking and running, the 

light intensity of non-aerobic programs may maintain older adults’ cognitive 

abilities. 
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6.3 The new procedural skill learning and cognitive 
functions of sedentary older adults 

 

The beneficial effects of exercise and physical activity may not be merely limited 

to physiological advantages of aerobic and anaerobic activities such as increasing 

aerobic and anaerobic capacities, oxygen consumption, blood circulation, 

development of capillaries network, strength, power, stretching, toning and 

muscle activity. 

 

Though, the increasing of these factors may be an important factor in 

general human health as well as improving neuronal growth, cell proliferation, 

cell survival, and creating more stimulation of neurogenesis, but to obtain an 

ideal condition for improving mental performance in aging process, it is not 

confined only by these factors.  

 

Regarding the problems and disabilities of the elderly such as walking and 

running, which are related to cardiovascular and skeletal muscle disorders due to 

aging; it seems that for supporting cognitive function in older adults that have 

difficulty with performing moderate aerobic exercise, an exercise planning based 

on new motor skill learning can be a useful and preventive strategy for helping 

mental performance, brain cells activity and neuroprotective function. 

 

Our results demonstrate that the loss of cognitive function and memory 

performance in late adulthood is not inevitable. Training protocols such as our 

non-aerobic program could serve as prevention of on older adults’ cognitive 

deterioration and memory decline. In addition, the creation of more activity in 

brain regions related to procedural memory could support brain cells better and 

keep the cognitive function as well as memory performance at higher level, by 

comparison with increased oxygen consumption, blood circulation, and 

angiogenesis brought by repetitious aerobic exercises without new motor skill 

learning.  
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Since moderate to high intensity exercises cannot be endured by some of the 

sedentary elderly, and also regarding the important role of the exercise intensity 

in the creation of physiological changes in human, our results suggest that the 

low intensity non-aerobic exercise – without the need of running – e.g. 

stretching, toning, coordination and the Stroop training (see section 4.6.3) could 

support the cognition and memory performance in aged participants better than 

low intensity aerobic exercise. In other words, these non-aerobic low intensity 

exercises may create more synaptic changes, new proteins in brain cells, and 

facilitate electrochemical transfer of neurotransmitters in synaptic junction 

through the new motor skill learning and intellectual action.  

 

Stimulation of the expression of neurotrophic factors such as the Brain 

Derived Neurotrophic Factor (BDNF), Nerve growth factor (NGF) as well as 

messenger ribonucleic acid (mRNA) is one of the basic mechanisms of beneficial 

effects of physical exercise (Gómez-Pinilla et al., 1997; Neeper et al., 1996).  

 

The increasing of neurotrophic factors induced by physical activity may 

protect neurogenesis through several biochemical processes (Cotman & 

Berchtold, 2002; Mattson, 2000; Van Praag, Christie, et al., 1999). Despite the 

important role of BDNF protein expression in age-related hippocampal atrophy 

and despite effects of exercise on hippocampal volume and function, it is 

suggested that physical activity could be advantageous for brain volume and 

cognitive performance in older adults (K. I. Erickson et al., 2012).  

 

It is repeatedly shown that exercise increases hippocampal neurogenesis 

(Cotman & Berchtold, 2002; van Praag, Kempermann, et al., 1999; Van Praag et 

al., 2005) and it may improves learning and cognitive performances of older 

adults. Inasmuch that has been suggested the motor learning may increase the 

brain’s plasticity and the capacity for self-repair (Mattson, 2000), our converging 

results confirm that new motor skill learning can reverse the cognitive 

performance decline in adults population. Interestingly, like the exercise 
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intervention, motor skill learning condition associated with neurogenesis, may 

increase numbers of newly generated neural cells in the adults’ brain (Mattson, 

2000; Mattson et al., 2004). Hence, it appears, in addition to physical exercise 

activity; new motor skill learning may ameliorate some of the deleterious 

morphological consequences of aging. These results have been considerably 

practical in current study. 

 

It also has been shown that a motor learning condition considerably 

increased the volume of the molecular layer per Purkinje neuron and increased 

blood vessel number (Isaacs et al., 1992). Thus, the result of current study 

supports previous investigations that have suggested that physical exercise and 

intellectual activity can similarly increase neurotrophic factor production and 

neurogenesis.  

Consequently, physical and intellectual activities in turn improve seniors’ 

cognitive performances. 

 

Since, components of the brain, which engage in multiple memory 

systems can interact together and help each other; there was a hope that 

procedural learning contributes to cognition abilities of sedentary seniors in non-

pathological and normal aging process. Indeed, the brain regions such as the 

ganglia basal and cerebellum as well as areas of MTL that engage in non-

declarative memories are activated via the motor skill learning of our anaerobic 

protocol. We observed that motor skills learning can reverse the cognitive 

function decline of older adults’ population. 

 

Our results propose that the elderly can use the similar anaerobic protocol 

(see section 4.6.3) as an effective strategy to delay brain atrophy, reverse the 

brain decay, and maintain the neuroprotective function and cognitive abilities. As 

a result, it slows down the cognitive function decline and the onset of dementia.  
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Generally, our results confirmed that like physical training programs, 

participation in intellectual or mental activities has also been shown to predict 

reduced cognitive decline. Thus, there is a hope that participation in mental 

activities through new motor skill learning is able to compensate the inactivity of 

lifestyle or disabilities of the elderly to accomplish activities such as walking and 

running. 

 

The anaerobic protocol of the study is encompassed various training, 

which anyone can create various impact. Hence, to find exact effects of these 

various exercises on older adults’ cognition, the components of this protocol 

should be examined separately. Now, we can only suggest that this combination 

of non-aerobic protocol reverse the cognitive function decline of adults’ 

population. 
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7 Conclusion 
According to literature of the study the successful aging is defined 

multidimensional (Rowe & Kahn, 1997), hence, involves success in different 

aspects of life. Also, exercise is a proven method to improve general health. In 

this prospective and medium case study has been investigated impact of various 

physical exercises on cognitive functions of healthy and sedentary older adults. 

 

A short-term (three months) of regular physical activity intervention 

includes aerobic and anaerobic programs that were conducted three times a week 

for three months each session 45±5 minutes.  

 

The first condition was a program encompasses an aerobic activity like 

walking, jogging and running. Walking the equivalent of at least 40 min. and 

three times per week at a 9 to 13 min/km pace was often associated with better 

cognitive performance than control group. Other condition organized program of 

stretching, toning, coordination, balance, Stroop exercise, and equilibrium, 

muscle activity, calisthenics, and circuit training. This non-aerobic protocol was 

associated with higher levels of cognitive function and less cognitive decline. 

 

Second, our findings could reflect “speciality of exercises” such that 

various exercise induce different impact on cognition. Though, any kind of 

physical exercise is preferred to inactivity for having better levels of cognitive 

function and less cognition decline 

 

The beneficial effects of exercise is related to physiological advantages of 

aerobic exercise such as increasing oxygen consumption, blood circulation, the 

number of capillaries, and vascular function; such that the aerobic activities 

creates an improvement in aerobic capacity.  Aerobic exercise increases oxygen 

saturation and improves vascular function in brain areas. Hence, during aerobic 
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exercises regional cerebral blood flow improved, causing an increase in blood 

flow to wide regions of the brain.  

 

Consequently, the transmission of foodstuffs accompanied by the blood 

during exercise can improve neurogenesis. Also, aerobic exercise can increase 

level of BDNF that is associated with oxygen metabolism, as an effective 

element for supporting the survival of existing neurons. Thus, it could be 

expected that aerobic activity increases the rate of oxygen consumption in 

healthy older adults and enhances performance of cognition. In addition to 

oxygen roles on the brain development, it has also shown in the pathological 

processes and the brain dysfunctions. Accordingly, the increasing of oxygen 

transportation may be an important factor in improving neuronal growth, cell 

proliferation, cell survival, and creating more stimulation of neurogenesis in 

normal aging process in protecting of cognitive abilities. 

Aside from, oxygen consumption and beneficial impact of aerobic metabolism, 

muscle activity can directly enhance synaptic plasticity through the change of 

synaptic structure and strength, and lead to supporting neurogenesis.  

 

One of the key mechanisms of muscle activity on neural cells is induction 

of growth factors and upregulates neurotrophins like BDNF that support neuronal 

survival and differentiation in the developing brain and dendritic branching in the 

adult brain. 

Hence, even mild intensity of voluntary exercise is an important factor to 

improve neuronal growth, create more stimulate neurogenesis, improve mental 

performance and increase resistance to brain disorder in the adult brain. 

 

Since, a creation of activity in neuromuscular junction is not dependent on 

intensity of physical exercise. There is a hope that low intensity physical exercise 

via movement games and training games can improve older adults’ cognitive 

function. 
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This kind of activity could be a potent protective factor for cognitive dysfunction 

and dementia in the adult people. In fact, disabilities movement of the elderly in 

aerobic activity such as walking and running should not lead to more inactivity. 

Hence, our findings suggested that practising motor skills can help to develop 

older adults’ cognitive abilities. Engaging in new motor skill learning leads 

synaptic changes and creation of new proteins in neurons of the brain. When 

synaptic junction engages in muscle activity, the facilitating and acceleration of 

electrochemical transfers and neurotransmitters occur. It appears that increasing 

of synaptic activity can develop capacity of certain circuits of neurons in the 

brain and can lead to improvement of the cognitive functions in older adults.  

 

Our protocol (like those ones with light intensity and without running 

regular) includes new fine learning motor skill, stretching, toning, coordination 

(for example hand-eye coordination games), equilibrium and also sensory play 

and simple manipulative games that could represent an important and potent 

protective factor for cognitive abilities in the elderly population. 

 

We conclude that the participation in aerobic and anaerobic activity 

programs receive suitable levels of physical and psychological health. 

Our study suggests that engaging in light intensity regular type of physical 

exercise activities that involves the aerobic, non-aerobic and motor skill learning 

among other health benefits, may delay or prevent the onset of cognitive 

impairment and dementia in non-pathological and normative aging. Though, our 

findings need confirmation in further intervention studies. 
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Limitations  
Several limitations to our study should be considered. In this study, results may 

be confounded by unmeasured factors. Also, the present study has other 

limitations; our results might possibly be argued and be criticized by some 

exercise physiological principles, because in current study: 

1. Our inhomogeneous population is one of the limitations. 

2. At baseline and finish, we did not measure physiological factors in 

precision – such as the aerobic and anaerobic capacity of our subjects. 

Physiological measures used to assess changes in aerobic fitness were maximal 

work load, submaximal heart rate at a standard work load, predicted maximum 

oxygen uptake, and resting heart rate. 

3. Participants were assigned non-randomly into control and exercise 

groups.  

4. A number of exercise group subjects had previously been more 

inactive than control group members. 

5. There can be no certainty about our probands’ motivation and if the 

concentration has remained even-leveled throughout each exercise. 

6. Although, it is supposed that major parts of positive effects in 

anaerobic condition depended on engagement to new motor learning, but the 

anaerobic protocol of the current study is a set of various exercises that 

encompasses new motor skills learning, Stroop, neuromuscular, cross-brain and 

body equilibrium exercises, thus to find the answer that, what exercise has the 

ability to create better effects in cognitive functions of sedentary older 

population, in future, these conditions should assay alone and separation. 

7. We suggest that to find exact effects of the components of our non-

aerobic protocol, anyone of stretching, toning, Stroop training during movement 

training, equilibrium, coordination and muscle activity should be examined 

separately. 

  



Summary  139 

Summary  
In this medium case and prospective study we showed how different kinds of 

exercise affect cognitive function of healthy older adults. 89 adults aged 65 to 75 

years without dementia took part in the study; 37 men and 52 women. They were 

assigned voluntary and non-randomly – due to individually interested subjects – 

into one control group (CG) and into two exercise groups (EG); the CG consisted of 

28 participants with an average age of 67.93 years. The EG was divided into two 

sub-groups doing either aerobic exercises (for example, walking and jogging) or 

anaerobic exercises (e.g., stretching, toning, coordination, Stroop training during 

movement training, equilibrium, muscle activity, etc.). The aerobic sub-group 

(AEG) consisted of 30 participants with an average age of 68.52 years. The 

anaerobic group (ANEG) consisted of 31 participants with an average age of 68.20 

years. Participants of both EG groups trained three times a week for three months. 

In contrast, subjects in the CG only took part in the pre-test and the posttest. The 

SPSS-Analysis Covariance (ANCOVA) showed a significant interaction that 

indicated beneficial contributions of anaerobic training on memory function.  

The beneficial effects of aerobic exercise may not be merely limited to 

physiological advantages such as increasing oxygen consumption, blood circulation, 

the number of capillaries, and vascular function. Though, bearing in mind that 

human brain is one of the neediest oxygen consumers in the body. In addition of 

oxygen roles in the brain development, it has also shown in the pathological 

processes and the brain dysfunctions. Accordingly, the increasing of oxygen 

transportation may be an important factor in improving neuronal growth, cell 

proliferation, cell survival, and creating more stimulation of neurogenesis. Thus, 

this is surely established that participants in aerobic activity programs receive 

suitable levels of physical and psychological health. During physical exercise 

regional cerebral blood flow, in major cerebral arteries and also blood flow in the 

internal carotid artery enhances, causing an increase in blood flow to a wide regions 

of the brain. Aerobic exercise increases oxygen saturation angiogenesis and 

improves vascular function in brain areas crucial for task cognitive performance. 
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These changes are generally associated with aerobic exercise and endurance 

exercise. This confirms that the transmission of foodstuffs accompanied by the 

blood during exercise can improve neurogenesis and act as a useful tool for 

preventing the cognitive decline in adults’ population. Thus, it could be expected 

that aerobic exercise increases the rate of oxygen consumption in healthy older 

adults and enhances performance of cognition. Additionally, aerobic exercise can 

increase level of BDNF, an effective element for supporting the survival of existing 

neurons in some areas of the brain including hippocampus, medial temporal lobe, 

amygdala, frontal, prefrontal and parietal cortices. These are vital areas related to 

learning process, cognitive function, memory performance, and notably the long-

term memory. Also, physical exercise can directly enhance synaptic plasticity by 

changing the synaptic structure and strength, thus, supports neurogenesis. One of 

the key mechanisms of exercise and physical activity on the brain is induction of 

growth factors, which plays an important role in structural and functional changes 

as well as neuroprotective effects in aging. However, our findings support that the 

participation in regular aerobic activities can help to preserve cognitive activity and 

decrease the risk of dementia in older adults’ population. 

The results of our study confirmed that both aerobic and anaerobic 

conditions were able to significantly improve older adults’ visual memory in both 

short and long-term. In verbal memory (VLMT), the outcomes of aerobic and 

anaerobic conditions for immediate recall (short-term memory or STM), recall after 

learning in the 5th trial, recall after interference and delayed recall differed a lot. As 

shown in the text and results, there were no significant differences between all three 

groups in immediate recall. It appears that perhaps the verbal short-term memory 

depends less on physical activity and exercise. In fact, both exercises condition did 

not create significant changes between both exercise groups and control group 

(CG). We didn’t find a significant increasing impact of exercise conditions on 

immediate recall for verbal learning memory. 

In all events, the influence of both exercise conditions lead to better results 

compared to the control group, even though, it was non-significant. Unlike the 

aerobic group, interventions of anaerobic effects indicate a significant difference at 
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recall after learning (5th trial in VLMT), with the CG, interestingly, in this 

parameter, we can see a significant difference between ANEG and AEG too. This 

implies that engaging in the low intensity anaerobic condition even without the need 

of running can create robust beneficial effects in seniors’ cognition, in contrast to 

regular running and other systematic aerobic program. Also, taking into the results, 

we can see that the intervening aerobic condition cannot produce a noteworthy 

difference at recall after interference in the VLMT with the control group. In VLMT 

after interference list, in trial 7 when no list is read and subjects are asked to recall 

as many words as possible from the A list, we can see that the intervening anaerobic 

condition can produce a significant difference at recall after interference in the 

VLMT with both the aerobic and control group, and this is more when comparing 

with the aerobic and control group; the aerobic condition has not only positive 

effects, but also the negative effect of decreasing the outcomes in this phase (Pre-

test M = 45.89, Post-test M = 41.81). This is really unexpected in comparison of 

low intensity exercises of both aerobic and anaerobic and regarding our results. It 

seems that mild anaerobic intervention can create better improvements in cognitive 

functions and memory performance of elderly than aerobic. Though the results are 

promising, findings of our aerobic group suggest that aerobic exercise is not always 

as effective as its anaerobic counterpart in influencing cognitive abilities and 

particularly in memory system.  

The results of long-term verbal memory at delayed recall in VLMT are 

significant for both the aerobic and anaerobic groups when contrasted to the CG. 

Our results of aerobic condition confirm the results of studies about relationship 

between older adults’ cognition and level of oxygen consumption (Ramel, Wagner, 

& Elmadfa, 2004), roles of mitochondria (Blalock et al., 2004; Bratic & Trifunovic, 

2010; Dringen, Gutterer, & Hirrlinger, 2000; Loerch et al., 2008; Lu et al., 2004; 

Miquel, Economos, Fleming, & Johnson Jr, 1980; Pak et al., 2003) and the 

formation of ROS (Fisher-Wellman & Bloomer, 2009; Radak, Chung, & Goto, 

2008); exercise may actually make a difference in the aging process using the 

aerobic condition (Bishop et al., 2010; Rea, Ventura, & Johnson, 2007; Sánchez-

Blanco, Fridell, & Helfand, 2006). It appears that the optimal level of aerobic 
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exercise concerning both intensity and duration, as well as the optimal level of ROS 

generation may be of importance in brain function (Knez, Coombes, & Jenkins, 

2006; Radak et al., 2008). If the modification of the oxygen consumption by 

physical activity induces the neurogenesis in the brain, a novel idea provides 

preserving the ability of learning processes and memory function because of the 

involvement of neurogenesis in the process of cognitive function. Thus, this study 

proposes the future investigations study effects of aerobic exercises on older adults’ 

cognitive performance with exact measurement of aerobic condition according to 

the VO2 max levels of physical aerobic program. 

In comparison of the time and duration of memory function, it appears that 

low and light type of the aerobic and anaerobic intervention can create almost 

similar improvements in memory performance of elderly. Also, findings of the 

current work suggest the mild to moderate form of anaerobic exercise is more 

capable than aerobic programs in improving these brain regions effectively. 

Anaerobic group participants have performed exercises such as new motor learning, 

Stroop, neuromuscular, cross-brain and body equilibrium exercises; this caused an 

increase in brain activity and strengthening of the underlying systems that support 

brain plasticity – including metabolism and vascular function, cell proliferation, cell 

survival, neurogenesis – which may have caused in turn the increased cognitive 

function and memory performance compared to the aerobic group which have 

repeated only the same aerobic activity.  

The intervention of anaerobic condition produces a significant difference 

on other cognitive function aspects, which are examined in the study. We saw a 

remarkable differences for both EG in the mirror reading tasks, the Trail Making 

Test (TMT A&B), verbal intelligence (or MWT-B) and in non-verbal intelligence 

(or LPS-4). Though, it was more robust at significant level for anaerobic groups. 

Our findings diverge from the data of previous studies, some of which have failed to 

observe the benefits of anaerobic exercise on cognitive processes. Although, our 

results need confirmation in further intervention studies, these results suggest that 

regular non-aerobic could represent an important and potent protective factor for 

cognitive dysfunction and dementia in the adult people. 
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All these points to the decline of memory function in late adulthood are not 

inevitable, that it can be reversed with light intensity of our anaerobic protocol. It 

seems that for supporting cognitive function in older adults that have difficulty with 

performing aerobic exercise such as walking and running, the light intensity form of 

non-aerobic programs may maintain older adults’ cognitive abilities. Hence, even 

mild intensity form of voluntary exercise is an important factor to improve neuronal 

growth, create more stimulate neurogenesis, improve mental performance and 

increase resistance to brain disorder in the adult brain. 

Since, a creation of activity in neuromuscular junction is not dependent on 

intensity of physical exercise. It is hoped that low intensity physical exercise via 

movement games and training games can improve older adults’ cognitive function. 

This kind of activity could be a potent protective factor for cognitive dysfunction 

and dementia in the adult people. In fact, disability in movement of the elderly in 

aerobic activities such as walking and running should not be lead to more inactivity. 

Hence, our findings suggested that practicing motor skills can help to develop older 

adults’ cognitive abilities. Engaging in new motor skill learning leads synaptic 

changes and creating new proteins in neurons of the brain. When synaptic junction 

engages in muscle activity, the facilitating and acceleration of electrochemical 

transfers and neurotransmitters occur. It appears that increasing of synaptic activity 

can develop capacity of certain circuits of neurons in the brain and can lead to 

improvement of the cognitive functions in older adults.  

We conclude that the participation in aerobic and anaerobic activity 

programs receive suitable levels of physical and psychological health. Our study 

suggests that engaging in light intensity form of regular physical exercise activity 

involves the aerobic, non-aerobic and motor skill learning among other health 

benefits, may delay or prevent the onset of cognitive impairment and dementia in 

non-pathological and normative aging. Though, our findings need confirmation in 

further intervention and brain morphological studies. 
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Appendix A 

 

Raw data of the study 

 

 VP 
Code 

VP Name Groups  Gender Education 
Level 

Age 

1 1 ZM 1,00 2 1 65,00 
2 2 FG 3,00 2 1 68,00 
3 4 DW 2,00 1 1 71,00 
4 5 MR 1,00 1 1 69,00 
5 11 FM 2,00 1 1 64,00 
6 12 GH 2,00 1 1 70,00 
7 17 KL 3,00 2 2 66,00 
8 18 KC 1,00 2 2 65,00 
9 19 KH 1,00 1 1 67,00 

10 20 DL 2,00 2 2 65,00 
11 25 KV 1,00 1 2 67,00 
12 26 KD 1,00 2 1 66,00 
13 27 RR 2,00 1 1 67,00 
14 28 KM 1,00 1 1 67,00 
15 29 SM 1,00 2 1 75,00 
16 30 MR 2,00 1 2 70,00 
17 33 HG 2,00 2 1 64,00 
18 34 MD 2,00 1 2 67,00 
19 35 WJ 2,00 2 2 72,00 
20 36 MM 3,00 2 1 74,00 
21 37 SH 3,00 2 1 67,00 
22 38 BM 3,00 2 1 70,00 
23 39 WA 3,00 2 1 71,00 
24 40 DA 2,00 2 1 69,00 
25 41 LM 1,00 2 2 67,00 

 
Control group 1, Anaerobic 2, Aerobic 3. 
Education level: 1 < 12 years and 2 > 12 years. 
Gender: 1 = male and 2 = female. 
 
  



Appendix A  II 
 

 

 ROCF 
Immediate 

Pre-test 

ROCF 
Delayed 
Pre-test 

ROCF 
Immediate 
Post-test 

ROCF 
Delayed 
Post-test 

MWT-B 
Pre-test 

MWT-B 
Post-test 

LPS-4 
Pre-test 

1 51,00 85,00 79,00 79,00 124,00 118,00 120,00 
2 57,00 60,00 80,00 85,00 112,00 118,00 122,00 
3 80,00 51,00 70,00 62,00 112,00 118,00 110,00 
4 71,00 76,00 74,00 70,00 124,00 118,00 110,00 
5 77,00 60,00 75,00 71,00 136,00 136,00 115,00 
6 60,00 51,00 60,00 63,00 124,00 136,00 118,00 
7 85,00 63,00 85,00 85,00 143,00 130,00 134,00 
8 40,00 78,00 70,00 68,00 104,00 104,00 107,00 
9 75,00 72,00 62,00 66,00 92,00 92,00 94,00 

10 85,00 71,00 85,00 85,00 124,00 124,00 130,00 
11 63,00 40,00 49,00 56,00 112,00 112,00 125,00 
12 51,00 76,00 70,00 71,00 118,00 118,00 122,00 
13 75,00 46,00 80,00 80,00 130,00 130,00 130,00 
14 76,00 66,00 55,00 55,00 130,00 130,00 100,00 
15 69,00 85,00 85,00 85,00 124,00 118,00 110,00 
16 52,00 61,00 71,00 70,00 130,00 130,00 122,00 
17 53,00 51,00 85,00 80,00 112,00 143,00 120,00 
18 51,00 71,00 75,00 78,00 130,00 136,00 115,00 
19 61,00 80,00 85,00 85,00 136,00 136,00 120,00 
20 70,00 60,00 64,00 61,00 97,00 107,00 94,00 
21 53,00 54,00 54,00 55,00 101,00 101,00 125,00 
22 56,00 51,00 70,00 66,00 118,00 130,00 115,00 
23 42,00 51,00 85,00 85,00 124,00 124,00 115,00 
24 63,00 75,00 85,00 85,00 124,00 124,00 102,00 
25 58,00 69,00 60,00 60,00 130,00 130,00 107,00 

 
 
  



Appendix A  III 
 

 

 LPS-4 
Post-test 

TMT-A 
Pre-test 

TMT-A 
Post-Test 

TMT-B 
Pre-test 

TMT-B 
Post-Test 

Mirror reading 
Priming Pre-test 

1 120,00 30,00 30,00 30,00 30,00 110,00 
2 134,00 70,00 80,00 90,00 90,00 76,00 
3 110,00 80,00 90,00 90,00 90,00 247,00 
4 105,00 80,00 70,00 60,00 60,00 248,00 
5 134,00 90,00 90,00 90,00 90,00 56,00 
6 120,00 80,00 70,00 60,00 90,00 92,00 
7 127,00 90,00 90,00 70,00 40,00 62,00 
8 107,00 90,00 30,00 20,00 10,00 357,00 
9 90,00 10,00 10,00 10,00 10,00 436,00 

10 134,00 90,00 90,00 90,00 90,00 101,00 
11 125,00 90,00 70,00 90,00 10,00 180,00 
12 122,00 90,00 80,00 90,00 80,00 79,00 
13 134,00 90,00 80,00 50,00 80,00 108,00 
14 98,00 10,00 10,00 40,00 40,00 101,00 
15 110,00 60,00 60,00 90,00 90,00 147,00 
16 125,00 80,00 90,00 70,00 90,00 118,00 
17 120,00 20,00 60,00 90,00 90,00 84,00 
18 120,00 10,00 10,00 10,00 10,00 165,00 
19 122,00 50,00 60,00 80,00 90,00 155,00 
20 96,00 80,00 90,00 40,00 60,00 183,00 
21 125,00 80,00 80,00 40,00 60,00 118,00 
22 118,00 40,00 80,00 80,00 80,00 170,00 
23 122,00 10,00 70,00 60,00 90,00 129,00 
24 113,00 20,00 80,00 60,00 90,00 75,00 
25 105,00 70,00 70,00 80,00 80,00 91,00 
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 Mirror 
reading 

Procedural 
Pre-test 

Mirror 
reading 

Interference 
Pre-test 

Mirror 
reading 
Priming 

Post-test 

Mirror 
reading 

Procedural 
Post-test 

Mirror 
reading 

Interference 
Post-test 

VLMT 
Immediate 

Pre-test 

1 126,00 100,00 109,00 132,00 95,00 95,00 
2 83,00 90,00 98,00 70,00 82,00 77,50 
3 277,00 145,00 180,00 168,00 100,00 7,50 
4 183,00 202,00 303,00 240,00 162,00 57,50 
5 60,00 62,00 55,00 68,00 57,00 77,50 
6 61,00 71,00 64,00 68,00 77,00 57,50 
7 129,00 84,00 77,00 128,00 72,00 37,50 
8 242,00 272,00 281,00 344,00 339,00 92,50 
9 262,00 283,00 478,00 260,00 164,00 4,00 

10 155,00 95,00 89,00 140,00 73,00 77,50 
11 181,00 144,00 110,00 331,00 119,00 77,50 
12 60,00 57,00 61,00 98,00 69,00 37,50 
13 122,00 95,00 89,00 115,00 80,00 20,00 
14 189,00 105,00 120,00 150,00 105,00 37,50 
15 222,00 318,00 180,00 232,00 159,00 95,00 
16 164,00 125,00 219,00 109,00 146,00 77,50 
17 152,00 73,00 57,00 100,00 37,00 95,00 
18 161,00 124,00 97,00 79,00 109,00 37,50 
19 147,00 143,00 94,00 104,00 95,00 95,00 
20 292,00 309,00 136,00 131,00 146,00 57,50 
21 181,00 212,00 54,00 67,00 59,00 20,00 
22 224,00 171,00 95,00 205,00 125,00 77,50 
23 149,00 191,00 122,00 118,00 99,00 20,00 
24 154,00 72,00 50,00 48,00 50,00 37,50 
25 164,00 107,00 84,00 102,00 92,00 77,50 
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 VLMT 
Immediate 
Post-test 

VLMT 
after 

learning 
Pre-test 

VLMT 
after 

learning 
Post-test 

VLMT 
after 

interference 
Pre-test 

VLMT 
after 

interference 
Post-test 

VLMT 
delayed 
recall 

Pre-test 

VLMT 
delayed 

recall 
Post-test 

1 92,50 70,00 87,50 77,50 97,50 95,00 55,00 
2 57,50 55,00 42,50 67,50 57,50 90,00 55,00 
3 20,00 4,00 4,00 4,00 15,00 4,00 4,00 
4 57,50 55,00 55,00 77,50 57,50 72,50 55,00 
5 97,50 32,50 87,50 77,50 97,50 90,00 95,00 
6 77,50 22,50 55,00 22,50 4,00 7,50 4,00 
7 77,50 32,50 42,50 47,50 22,50 25,00 35,00 
8 57,50 15,00 42,50 7,50 15,00 4,00 17,50 
9 4,00 4,00 4,00 4,00 4,00 4,00 3,00 
10 37,50 70,00 55,00 77,50 67,50 95,00 42,50 
11 92,50 42,50 22,50 35,00 15,00 17,50 5,00 
12 92,50 22,50 42,50 22,50 4,00 17,50 25,00 
13 20,00 42,50 42,50 47,50 57,50 32,50 35,00 
14 37,50 10,00 4,00 5,00 4,00 7,50 3,00 
15 77,50 55,00 72,50 77,50 47,50 90,00 47,50 
16 97,50 15,00 22,50 7,50 4,00 4,00 4,00 
17 97,50 70,00 87,50 67,50 97,50 72,50 97,50 
18 20,00 22,50 55,00 35,00 87,50 42,50 55,00 
19 92,50 55,00 87,50 67,50 97,50 47,50 97,50 
20 57,50 22,50 32,50 22,50 4,00 25,00 5,00 
21 20,00 22,50 10,00 35,00 5,00 25,00 22,50 
22 77,50 87,50 87,50 77,50 97,50 90,00 95,00 
23 77,50 32,50 22,50 4,00 22,50 7,50 5,00 
24 77,50 32,50 87,50 57,50 97,50 47,50 97,50 
25 77,50 15,00 15,00 35,00 47,50 25,00 47,50 
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 VP 
Code 

VP Name Groups  Gender Education 
Level 

Age 

26 42 KM 3,00 2 1 69,00 
27 43 AW 2,00 1 2 70,00 
28 44 PM 3,00 2 1 68,00 
29 45 EH 2,00 1 2 68,00 
30 46 HA 2,00 2 2 70,00 
31 47 JU 2,00 1 2 69,00 
32 48 WA 1,00 2 2 69,00 
33 49 BH 2,00 1 1 64,00 
34 50 BG 1,00 2 2 67,00 
35 51 JU 2,00 2 2 66,00 
36 52 WW 1,00 1 2 69,00 
37 53 UG 1,00 2 2 75,00 
38 55 WK 3,00 1 2 66,00 
39 56 PS 2,00 2 1 67,00 
40 57 ZB 1,00 2 1 69,00 
41 58 FW 1,00 1 1 65,00 
42 59 BH 3,00 1 1 69,00 
43 60 AU 2,00 2 1 65,00 
44 61 PH 3,00 2 2 66,00 
45 62 LD 2,00 1 2 73,00 
46 63 MR 1,00 1 1 67,00 
47 64 WJ 1,00 2 1 69,00 
48 65 SU 1,00 2 1 72,00 
49 66 GH 2,00 1 2 64,00 
50 69 FJ 3,00 1 2 72,00 
51 70 HG 1,00 2 1 65,00 
52 71 FJ 3,00 1 1 69,00 
53 73 HP 2,00 2 1 65,00 
54 74 HW 2,00 1 1 68,00 
55 76 GM 3,00 2 2 69,00 
56 77 UJ 3,00 2 1 70,00 
57 78 SR 3,00 2 2 64,00 

Control group 1, Anaerobic 2, Aerobic 3. 
Education level: 1 < 12 years and 2 > 12 years. 
Gender: 1 = male and 2 = female 
 



Appendix A  VII 
 

 

 ROCF 
Immediate 

Pre-test 

ROCF 
Delayed 
Pre-test 

ROCF 
Immediate 
Post-test 

ROCF 
Delayed 
Post-test 

MWT-B 
Pre-test 

MWT-B 
Post-test 

LPS-4 
Pre-test 

26 55,00 39,00 68,00 71,00 104,00 107,00 110,00 
27 72,00 57,00 85,00 77,00 136,00 136,00 113,00 
28 63,00 44,00 43,00 53,00 136,00 104,00 83,00 
29 85,00 64,00 85,00 85,00 124,00 136,00 117,00 
30 66,00 53,00 76,00 80,00 136,00 136,00 118,00 
31 64,00 48,00 80,00 85,00 118,00 136,00 122,00 
32 64,00 73,00 49,00 55,00 130,00 118,00 134,00 
33 55,00 66,00 85,00 85,00 101,00 136,00 120,00 
34 51,00 85,00 85,00 85,00 112,00 118,00 134,00 
35 57,00 78,00 85,00 85,00 130,00 136,00 130,00 
36 80,00 68,00 61,00 68,00 101,00 101,00 110,00 
37 71,00 65,00 58,00 58,00 112,00 104,00 108,00 
38 55,00 60,00 72,00 69,00 130,00 130,00 125,00 
39 59,00 55,00 63,00 66,00 124,00 130,00 113,00 
40 63,00 59,00 53,00 44,00 107,00 101,00 104,00 
41 80,00 76,00 63,00 66,00 124,00 118,00 107,00 
42 85,00 85,00 85,00 85,00 130,00 118,00 120,00 
43 57,00 62,00 72,00 69,00 107,00 107,00 110,00 
44 60,00 57,00 68,00 69,00 112,00 118,00 110,00 
45 85,00 85,00 85,00 85,00 143,00 145,00 113,00 
46 59,00 60,00 57,00 55,00 112,00 107,00 87,00 
47 63,00 78,00 72,00 69,00 112,00 112,00 110,00 
48 76,00 73,00 51,00 56,00 124,00 118,00 98,00 
49 85,00 85,00 85,00 85,00 118,00 118,00 117,00 
50 62,00 65,00 69,00 70,00 124,00 130,00 122,00 
51 85,00 85,00 70,00 71,00 118,00 112,00 104,00 
52 70,00 73,00 77,00 85,00 118,00 130,00 122,00 
53 55,00 53,00 85,00 85,00 118,00 118,00 102,00 
54 53,00 57,00 60,00 62,00 124,00 124,00 105,00 
55 70,00 62,00 66,00 64,00 143,00 136,00 113,00 
56 62,00 68,00 71,00 75,00 124,00 124,00 120,00 
57 80,00 75,00 85,00 85,00 130,00 143,00 110,00 
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 LPS-4 
Post-test 

TMT-A 
Pre-test 

TMT-A 
Post-Test 

TMT-B 
Pre-test 

TMT-B 
Post-Test 

Mirror reading 
Priming Pre-test 

26 113,00 80,00 80,00 90,00 90,00 255,00 
27 115,00 70,00 60,00 50,00 90,00 222,00 
28 87,00 30,00 30,00 10,00 10,00 1267,00 
29 120,00 90,00 90,00 90,00 90,00 144,00 
30 120,00 90,00 90,00 90,00 90,00 87,00 
31 134,00 90,00 90,00 80,00 90,00 74,00 
32 130,00 10,00 10,00 30,00 10,00 136,00 
33 127,00 90,00 90,00 10,00 20,00 212,00 
34 130,00 80,00 80,00 70,00 60,00 53,00 
35 134,00 20,00 30,00 60,00 90,00 59,00 
36 110,00 90,00 30,00 30,00 10,00 303,00 
37 100,00 60,00 60,00 30,00 30,00 205,00 
38 122,00 30,00 80,00 70,00 90,00 120,00 
39 125,00 30,00 50,00 10,00 80,00 163,00 
40 102,00 60,00 50,00 60,00 50,00 249,00 
41 107,00 80,00 80,00 40,00 30,00 416,00 
42 127,00 10,00 10,00 90,00 80,00 90,00 
43 115,00 80,00 90,00 80,00 80,00 113,00 
44 115,00 40,00 90,00 70,00 70,00 203,00 
45 130,00 40,00 80,00 10,00 20,00 123,00 
46 87,00 30,00 10,00 40,00 40,00 - 
47 110,00 50,00 10,00 40,00 10,00 230,00 
48 98,00 40,00 30,00 10,00 10,00 155,00 
49 120,00 50,00 80,00 50,00 50,00 131,00 
50 118,00 40,00 40,00 10,00 50,00 107,00 
51 120,00 80,00 80,00 70,00 70,00 87,00 
52 122,00 30,00 30,00 60,00 70,00 149,00 
53 110,00 30,00 90,00 40,00 90,00 270,00 
54 115,00 20,00 50,00 50,00 60,00 311,00 
55 134,00 30,00 90,00 80,00 90,00 116,00 
56 127,00 30,00 20,00 60,00 20,00 321,00 
57 113,00 40,00 40,00 20,00 30,00 79,00 
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 Mirror 
reading 

Procedural 
Pre-test 

Mirror 
reading 

Interference 
Pre-test 

Mirror 
reading 
Priming 

Post-test 

Mirror 
reading 

Procedural 
Post-test 

Mirror 
reading 

Interference 
Post-test 

VLMT  
Immediate 

Pre-test 

26 289,00 215,00 124,00 171,00 128,00 77,50 
27 235,00 239,00 95,00 110,00 111,00 57,50 
28 1578,00 901,00 1032,00 826,00 393,00 20,00 
29 328,00 142,00 102,00 152,00 128,00 92,50 
30 114,00 98,00 87,00 99,00 59,00 77,50 
31 240,00 87,00 71,00 87,00 71,00 37,50 
32 105,00 74,00 137,00 121,00 103,00 92,50 
33 191,00 318,00 165,00 158,00 162,00 77,50 
34 57,00 43,00 62,00 57,00 59,00 95,00 
35 69,00 83,00 42,00 37,00 51,00 92,50 
36 344,00 174,00 218,00 392,00 250,00 92,50 
37 331,00 188,00 215,00 472,00 303,00 57,50 
38 105,00 153,00 165,00 142,00 158,00 37,50 
39 219,00 215,00 75,00 111,00 68,00 37,50 
40 263,00 385,00 298,00 337,00 241,00 20,00 
41 426,00 355,00 443,00 450,00 453,00 77,50 
42 123,00 101,00 90,00 95,00 88,00 57,50 
43 196,00 190,00 92,00 199,00 78,00 57,50 
44 182,00 269,00 116,00 99,00 82,00 92,50 
45 132,00 106,00 69,00 100,00 69,00 37,50 
46 - - - - - 37,50 
47 300,00 232,00 396,00 400,00 195,00 92,50 
48 144,00 206,00 247,00 220,00 205,00 37,50 
49 103,00 82,00 51,00 99,00 55,00 77,50 
50 379,00 121,00 96,00 92,00 101,00 57,50 
51 85,00 85,00 93,00 91,00 99,00 20,00 
52 254,00 125,00 110,00 145,00 87,00 37,50 
53 371,00 202,00 116,00 97,00 107,00 57,50 
54 135,00 283,00 151,00 133,00 105,00 57,50 
55 106,00 12,00 91,00 99,00 107,00 95,00 
56 152,00 164,00 260,00 146,00 129,00 92,50 
57 85,00 85,00 58,00 78,00 60,00 92,50 
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 VLMT 
Immediate 
Post-test 

VLMT  
after 

learning 
Pre-test 

VLMT  
after 

learning 
Post-test 

VLMT  
after 

interference 
Pre-test 

VLMT 
after 

interference 
Post-test 

VLMT 
delayed 

recall 
Pre-test 

VLMT 
delayed 
recall 

Post-test 

26 77,50 42,50 55,00 67,50 57,50 42,50 42,50 
27 37,50 10,00 32,50 7,50 15,00 4,00 5,00 
28 57,50 4,00 15,00 4,00 4,00 4,00 4,00 
29 20,00 70,00 87,50 77,50 87,50 47,50 95,00 
30 97,50 70,00 87,50 57,50 77,50 55,00 95,00 
31 97,50 42,50 32,50 35,00 67,50 42,50 55,00 
32 97,50 70,00 87,50 90,00 87,50 72,50 97,50 
33 37,50 42,50 55,00 47,50 57,50 47,50 47,50 
34 37,50 87,50 42,50 90,00 77,50 90,00 55,00 
35 92,50 32,50 42,50 22,50 35,00 32,50 35,00 
36 57,50 32,50 32,50 22,50 5,00 17,50 4,00 
37 20,00 22,50 10,00 47,50 15,00 42,50 4,00 
38 37,50 42,50 22,50 57,50 22,50 42,50 25,00 
39 20,00 42,50 57,50 35,00 67,50 42,50 47,50 
40 20,00 15,00 5,00 15,00 4,00 25,00 7,50 
41 77,50 22,50 22,50 77,50 77,50 42,50 42,50 
42 77,50 10,00 15,00 4,00 22,50 4,00 42,50 
43 92,50 42,50 70,00 35,00 47,50 25,00 32,50 
44 92,50 42,50 70,00 57,50 67,50 47,50 72,50 
45 57,50 4,00 10,00 4,00 22,50 4,00 32,50 
46 37,50 32,50 32,50 7,50 7,50 4,00 4,00 
47 4,00 55,00 42,50 77,50 57,50 90,00 42,50 
48 5,00 32,50 10,00 7,50 15,00 7,50 7,50 
49 77,50 22,50 42,50 35,00 47,50 42,50 32,50 
50 77,50 32,50 55,00 57,50 22,50 55,00 42,50 
51 20,00 70,00 32,50 77,50 57,50 55,00 47,50 
52 37,50 15,00 15,00 4,00 4,00 4,00 4,00 
53 57,50 32,50 55,00 22,50 67,50 25,00 42,50 
54 57,50 10,00 15,00 35,00 35,00 25,00 25,00 
55 97,50 55,00 55,00 77,50 77,50 90,00 90,00 
56 77,50 55,00 42,50 77,50 77,50 47,50 90,00 
57 92,50 42,50 55,00 57,50 77,50 42,50 90,00 
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 VP Code VP Name Groups Gender Education 
Level 

Age 

58 79 SE 2,00 2 1 66,00 
59 80 PB 3,00 2 1 69,00 
60 81 NH 2,00 2 1 72,00 
61 82 SH 1,00 1 2 68,00 
62 83 VF 1,00 2 1 64,00 
63 85 SA 3,00 2 2 64,00 
64 86 AH 2,00 2 2 65,00 
65 87 LK 2,00 2 2 73,00 
66 88 MH 3,00 2 2 70,00 
67 89 PL 1,00 1 2 70,00 
68 90 MU 3,00 2 2 74,00 
69 91 RH 3,00 2 1 71,00 
70 93 BB 3,00 1 2 65,00 
71 94 BD 3,00 2 1 67,00 
72 95 MF 2,00 2 2 68,00 
73 96 MI 2,00 1 1 69,00 
74 97 MU 2,00 2 1 72,00 
75 98 HT 1,00 2 1 67,00 
76 99 LH 1,00 1 2 64,00 
77 100 MH 2,00 1 2 73,00 
78 101 AU 1,00 2 1 68,00 
79 102 KW 1,00 1 2 67,00 
80 105 OK 3,00 1 1 74,00 
81 106 HK 3,00 1 2 74,00 
82 107 WB 3,00 2 1 65,00 
83 108 SM 1,00 2 2 72,00 
84 109 WG 3,00 1 1 64,00 
85 111 BS 3,00 2 2 64,00 
86 112 SU 1,00 2 1 70,00 
87 113 BM 3,00 1 2 66,00 
88 114 BH 3,00 2 1 69,00 
89 115 BH 3,00 1 2 70,00 

 
Control group 1, Anaerobic 2, Aerobic 3. 
Education level: 1 < 12 years and 2 > 12 years. 
Gender: 1 = male and 2 = female 
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 ROCF 
Immediate 

Pre-test 

ROCF 
Delayed 
Pre-test 

ROCF 
Immediate 
Post-test 

ROCF 
Delayed 
Post-test 

MWT-B 
Pre-test 

MWT-B 
Post-test 

LPS-4 
Pre-test 

58 63,00 62,00 77,00 85,00 124,00 124,00 110,00 
59 70,00 78,00 85,00 85,00 112,00 124,00 107,00 
60 54,00 54,00 74,00 73,00 112,00 118,00 110,00 
61 57,00 57,00 55,00 53,00 104,00 104,00 120,00 
62 68,00 75,00 63,00 62,00 107,00 104,00 110,00 
63 51,00 53,00 63,00 60,00 118,00 124,00 102,00 
64 53,00 48,00 66,00 62,00 107,00 107,00 92,00 
65 49,00 39,00 71,00 70,00 118,00 136,00 92,00 
66 62,00 70,00 79,00 80,00 107,00 118,00 106,00 
67 85,00 85,00 79,00 75,00 107,00 107,00 115,00 
68 69,00 77,00 85,00 70,00 136,00 136,00 122,00 
69 74,00 70,00 85,00 80,00 112,00 118,00 98,00 
70 59,00 57,00 61,00 62,00 107,00 112,00 117,00 
71 75,00 66,00 75,00 78,00 130,00 130,00 110,00 
72 28,00 26,00 57,00 48,00 104,00 107,00 104,00 
73 55,00 57,00 70,00 63,00 112,00 112,00 98,00 
74 71,00 70,00 80,00 85,00 136,00 136,00 106,00 
75 66,00 69,00 66,00 64,00 124,00 104,00 122,00 
76 85,00 85,00 77,00 85,00 118,00 118,00 130,00 
77 69,00 73,00 85,00 85,00 104,00 118,00 103,00 
78 49,00 43,00 47,00 41,00 124,00 124,00 120,00 
79 63,00 62,00 47,00 47,00 136,00 136,00 115,00 
80 76,00 85,00 85,00 85,00 107,00 118,00 120,00 
81 73,00 70,00 85,00 85,00 112,00 130,00 108,00 
82 80,00 80,00 85,00 85,00 107,00 107,00 115,00 
83 67,00 70,00 67,00 63,00 136,00 136,00 110,00 
84 63,00 58,00 65,00 71,00 107,00 107,00 110,00 
85 61,00 60,00 85,00 85,00 124,00 130,00 104,00 
86 69,00 70,00 67,00 67,00 124,00 118,00 106,00 
87 77,00 62,00 85,00 85,00 136,00 130,00 105,00 
88 49,00 48,00 46,00 60,00 124,00 130,00 115,00 
89 64,00 56,00 68,00 68,00 130,00 130,00 100,00 
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 LPS-4 

Post-test 
TMT-A 

Pre-test 
TMT-A 

Post-Test 
TMT-B 

Pre-test 
TMT-B 

Post-Test 
Mirror reading 

Priming Pre-test 

58 110,00 50,00 60,00 10,00 20,00 120,00 
59 115,00 20,00 30,00 40,00 80,00 300,00 
60 113,00 20,00 70,00 20,00 80,00 462,00 
61 110,00 10,00 10,00 10,00 10,00 153,00 
62 113,00 50,00 50,00 80,00 70,00 301,00 
63 104,00 80,00 80,00 10,00 90,00 323,00 
64 94,00 10,00 10,00 10,00 10,00 330,00 
65 94,00 40,00 40,00 60,00 60,00 177,00 
66 106,00 80,00 30,00 40,00 30,00 214,00 
67 115,00 50,00 40,00 10,00 10,00 271,00 
68 127,00 40,00 50,00 10,00 50,00 242,00 
69 103,00 70,00 70,00 10,00 80,00 248,00 
70 134,00 10,00 80,00 40,00 70,00 246,00 
71 127,00 80,00 90,00 90,00 90,00 119,00 
72 107,00 10,00 10,00 10,00 10,00 - 
73 104,00 20,00 40,00 20,00 70,00 327,00 
74 113,00 80,00 80,00 10,00 30,00 70,00 
75 122,00 80,00 80,00 70,00 60,00 77,00 
76 122,00 50,00 10,00 60,00 10,00 84,00 
77 106,00 50,00 90,00 10,00 60,00 693,00 
78 102,00 70,00 30,00 80,00 10,00 129,00 
79 115,00 10,00 10,00 40,00 10,00 102,00 
80 115,00 70,00 40,00 90,00 90,00 195,00 
81 108,00 50,00 80,00 10,00 10,00 285,00 
82 120,00 60,00 10,00 70,00 70,00 233,00 
83 110,00 10,00 10,00 10,00 10,00 322,00 
84 102,00 80,00 70,00 10,00 10,00 163,00 
85 104,00 50,00 60,00 90,00 90,00 182,00 
86 106,00 30,00 10,00 10,00 10,00 158,00 
87 110,00 10,00 70,00 10,00 60,00 75,00 
88 105,00 60,00 40,00 10,00 10,00 79,00 
89 113,00 50,00 80,00 70,00 90,00 92,00 
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 Mirror 

reading 
Procedural 

Pre-test 

Mirror 
reading 

Interference 
Pre-test 

Mirror 
reading 
Priming 

Post-test 

Mirror 
reading 

Procedural 
Post-test 

Mirror 
reading 

Interference 
Post-test 

VLMT 
Immediate 

Pre-test 

58 130,00 90,00 57,00 52,00 65,00 77,50 
59 151,00 191,00 108,00 116,00 94,00 37,50 
60 385,00 179,00 105,00 160,00 88,00 57,50 
61 134,00 144,00 193,00 187,00 206,00 5,00 
62 344,00 285,00 477,00 261,00 192,00 57,50 
63 384,00 166,00 235,00 218,00 132,00 95,00 
64 491,00 295,00 175,00 161,00 167,00 57,50 
65 221,00 176,00 91,00 132,00 106,00 92,50 
66 350,00 242,00 205,00 126,00 114,00 77,50 
67 316,00 222,00 319,00 473,00 313,00 77,50 
68 169,00 123,00 57,00 101,00 48,00 57,50 
69 243,00 154,00 99,00 147,00 98,00 37,50 
70 414,00 248,00 180,00 156,00 126,00 92,50 
71 114,00 175,00 142,00 92,00 62,00 92,50 
72 - - - - - 92,50 
73 400,00 338,00 194,00 211,00 139,00 5,00 
74 78,00 66,00 31,00 57,00 36,00 37,50 
75 97,00 69,00 101,00 111,00 82,00 57,50 
76 134,00 139,00 111,00 159,00 99,00 92,50 
77 237,00 407,00 228,00 190,00 133,00 92,50 
78 108,00 96,00 113,00 176,00 135,00 95,00 
79 82,00 117,00 166,00 142,00 159,00 37,50 
80 159,00 122,00 123,00 127,00 99,00 95,00 
81 264,00 309,00 243,00 215,00 220,00 57,50 
82 185,00 234,00 180,00 295,00 135,00 92,50 
83 202,00 340,00 370,00 263,00 246,00 20,00 
84 175,00 167,00 121,00 174,00 80,00 20,00 
85 219,00 222,00 129,00 112,00 118,00 95,00 
86 246,00 161,00 111,00 121,00 128,00 20,00 
87 120,00 89,00 96,00 72,00 69,00 57,50 
88 130,00 88,00 66,00 90,00 74,00 37,50 
89 123,00 110,00 80,00 86,00 56,00 57,50 
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 VLMT 
Immediate 
Post-test 

VLMT 
after 

learning 
Pre-test 

VLMT 
after 

learning 
Post-test 

VLMT 
after 

interference 
Pre-test 

VLMT 
after 

interference 
Post-test 

VLMT 
delayed 

recall 
Pre-test 

VLMT 
delayed 
recall 

Post-test 

58 77,50 22,50 55,00 57,50 57,50 32,50 47,50 
59 77,50 42,50 55,00 67,50 67,50 42,50 25,00 
60 57,50 5,00 10,00 4,00 4,00 4,00 4,00 
61 20,00 42,50 4,00 4,00 4,00 17,50 4,00 
62 37,50 87,50 55,00 77,50 47,50 47,50 42,50 
63 77,50 70,00 32,50 57,50 67,50 72,50 25,00 
64 57,50 32,50 32,50 35,00 57,50 32,50 47,50 
65 57,50 70,00 87,50 67,50 77,50 90,00 90,00 
66 37,50 22,50 32,50 67,50 22,50 42,50 7,50 
67 57,50 42,50 32,50 47,50 35,00 32,50 32,50 
68 77,50 22,50 70,00 35,00 67,50 22,50 72,50 
69 97,50 22,50 22,50 57,50 47,50 47,50 47,50 
70 57,50 32,50 42,50 35,00 7,50 32,50 25,00 
71 77,50 70,00 22,50 77,50 67,50 47,50 55,00 
72 92,50 32,50 32,50 4,00 4,00 17,50 17,50 
73 57,50 10,00 22,50 4,00 7,50 4,00 25,00 
74 57,50 10,00 55,00 22,50 22,50 7,50 25,00 
75 37,50 70,00 22,50 77,50 35,00 55,00 17,50 
76 57,50 70,00 70,00 77,50 57,50 90,00 42,50 
77 92,50 42,50 70,00 22,50 47,50 42,50 47,50 
78 37,50 87,50 87,50 77,50 35,00 72,50 47,50 
79 77,50 10,00 15,00 4,00 4,00 17,50 4,00 
80 20,00 70,00 32,50 57,50 22,50 55,00 25,00 
81 37,50 32,50 22,50 22,50 22,50 7,50 25,00 
82 95,00 87,50 87,50 77,50 90,00 72,50 97,50 
83 37,50 32,50 42,50 57,50 15,00 42,50 17,50 
84 57,50 10,00 5,00 7,50 4,00 4,00 4,00 
85 97,50 70,00 87,50 67,50 97,50 47,50 97,50 
86 77,50 15,00 15,00 15,00 4,00 4,00 4,00 
87 57,50 22,50 22,50 22,50 15,00 25,00 17,50 
88 37,50 42,50 22,50 4,00 7,50 7,50 4,00 
89 37,50 42,50 87,50 47,50 47,50 47,50 72,50 
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Appendix B 

 

Brodmann Areas 

Sagittal lateral view 

 
 

Sagittal midial view 

 
  



Appendix C  XVII 
 
Appendix C 

 
One-sample Kolmogorov-Smirnov tests 

Groups 

N 89 

Normal Parametersa,b Mean 2,0337 

Std. Deviation ,81811 

Most Extreme Differences Absolute ,230 

Positive ,211 

Negative -,230 

Test Statistic ,230 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. b. Calculated from data Lilliefors Significance Correction. 

Age of participants 

N 89 

Normal Parametersa,b Mean 68,2584 

Std. Deviation 2,97538 

Most Extreme Differences Absolute ,113 

Positive ,113 

Negative -,076 

Test Statistic ,113 

Asymp. Sig. (2-tailed) ,007c 

a. Test distribution is Normal. b. Lilliefors Significance Correction. 

Pretest of Rey-Osterrieth Figure  immediate recall 

N 89 

Normal Parametersa,b Mean 65,0899 

Std. Deviation 11,95222 

Most Extreme Differences Absolute ,087 

Positive ,087 

Negative -,064 

Test Statistic ,087 

Asymp. Sig. (2-tailed) ,094c 

a. Test distribution is Normal. b. Lilliefors Significance Correction. 
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Pretest of Rey-Osterrieth Figure delayed recall 

N 89 

Normal Parametersa,b Mean 64,6180 

Std. Deviation 12,91186 

Most Extreme Differences Absolute ,066 

Positive ,057 

Negative -,066 

Test Statistic ,066 

Asymp. Sig. (2-tailed) ,200c,d 

a. Test distribution is Normal..Lilliefors Significance correction. 

Posttest of Rey-Osterrieth Figure immediate recall 

N 89 

Normal Parametersa,b Mean 71,5393 

Std. Deviation 11,93358 

Most Extreme Differences Absolute ,162 

Positive ,130 

Negative -,162 

Test Statistic ,162 

Asymp. Sig. (2-tailed) ,000c 

a.Test distribution is Normal. b.. Lilliefors Significance Correction. 

Post-test of Rey-Osterrieth Figure delayed recall 

N 89 

Normal Parametersa,b Mean 71,6292 

Std. Deviation 11,88905 

Most Extreme Differences Absolute ,184 

Positive ,130 

Negative -,184 

Test Statistic ,184 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Lilliefors Significance Correction. 

Pre-test MWT-B verbal intelligence 

N 89 

Normal Parametersa,b Mean 119,7640 

Std. Deviation 11,65998 

Most Extreme Differences Absolute ,147 

Positive ,129 

Negative -,147 

Test Statistic ,147 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b.. Lilliefors Significance Correction.  
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Post-test MWT-B verbal intelligence 

N 89 

Normal Parametersa,b Mean 121,6067 

Std. Deviation 11,97594 

Most Extreme Differences Absolute ,152 

Positive ,124 

Negative -,152 

Test Statistic ,152 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

 

Pre-test LPS-4 Non-verbal intelligence 

N 89 

Normal Parametersa,b Mean 112,3034 

Std. Deviation 10,48311 

Most Extreme Differences Absolute ,093 

Positive ,093 

Negative -,076 

Test Statistic ,093 

Asymp. Sig. (2-tailed) ,057c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

Post-test LPS-4 Non-verbal intelligence 

N 89 

Normal Parametersa,b Mean 114,8539 

Std. Deviation 11,53113 

Most Extreme Differences Absolute ,088 

Positive ,057 

Negative -,088 

Test Statistic ,088 

Asymp. Sig. (2-tailed) ,085c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

Pre-test TMT-A 

N 89 

Normal Parametersa,b Mean 51,6854 

Std. Deviation 28,01120 

Most Extreme Differences Absolute ,170 

Positive ,118 

Negative -,170 

Test Statistic ,170 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 
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Post-test TMT-A  

N 89 

Normal Parametersa,b Mean 56,2921 

Std. Deviation 28,81690 

Most Extreme Differences Absolute ,188 

Positive ,121 

Negative -,188 

Test Statistic ,188 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

Pre-test TMT-B 

N 89 

Normal Parametersa,b Mean 48,3146 

Std. Deviation 30,19768 

Most Extreme Differences Absolute ,167 

Positive ,167 

Negative -,123 

Test Statistic ,167 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

Post-test TMT-B 

N 89 

Normal Parametersa,b Mean 54,7191 

Std. Deviation 32,08971 

Most Extreme Differences Absolute ,178 

Positive ,154 

Negative -,178 

Test Statistic ,178 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction 

Mirror reading priming pre-test 

N 87 

Normal Parametersa,b Mean 194,3678 

Std. Deviation 159,96279 

Most Extreme Differences Absolute ,188 

Positive ,149 

Negative -,188 

Test Statistic ,188 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction 
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Mirror reading procedural pre-test  

N 87 

Normal Parametersa,b Mean 213,6322 

Std. Deviation 178,17571 

Most Extreme Differences Absolute ,190 

Positive ,170 

Negative -,190 

Test Statistic ,190 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

Mirror reading interference pre-test 

N 87 

Normal Parametersa,b Mean 176,4023 

Std. Deviation 117,38799 

Most Extreme Differences Absolute ,132 

Positive ,117 

Negative -,132 

Test Statistic ,132 

Asymp. Sig. (2-tailed) ,001c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

 

Mirror reading priming post-test 

N 87 

Normal Parametersa,b Mean 156,0345 

Std. Deviation 135,62563 

Most Extreme Differences Absolute ,203 

Positive ,203 

Negative -,194 

Test Statistic ,203 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 
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Mirror reading procedural post-test  

N 87 

Normal Parametersa,b Mean 165,5747 

Std. Deviation 119,27198 

Most Extreme Differences Absolute ,205 

Positive ,205 

Negative -,151 

Test Statistic ,205 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

Mirror reading interference post-test 

N 87 

Normal Parametersa,b Mean 124,5402 

Std. Deviation 76,51004 

Most Extreme Differences Absolute ,181 

Positive ,181 

Negative -,136 

Test Statistic ,181 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

VLMT pretest short-term (Immediate recall) 

N 89 

Normal Parametersa,b Mean 61,4213 

Std. Deviation 27,92542 

Most Extreme Differences Absolute ,178 

Positive ,141 

Negative -,178 

Test Statistic ,178 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 
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VLMT post-test short-term (Immediate recall) 

N 89 

Normal Parametersa,b Mean 60,3708 

Std. Deviation 27,31805 

Most Extreme Differences Absolute ,184 

Positive ,136 

Negative -,184 

Test Statistic ,184 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

 

VLMT pre-test after learning 

N 89 

Normal Parametersa,b Mean 38,8034 

Std. Deviation 23,26058 

Most Extreme Differences Absolute ,145 

Positive ,145 

Negative -,124 

Test Statistic ,145 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 
VLMT post-test after learning 

N 89 

Normal Parametersa,b Mean 42,9888 

Std. Deviation 26,27196 

Most Extreme Differences Absolute ,127 

Positive ,127 

Negative -,112 

Test Statistic ,127 

Asymp. Sig. (2-tailed) ,001c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

b.  

VLMT pretest after interference 

N 89 

Normal Parametersa,b Mean 42,8034 

Std. Deviation 27,87804 

Most Extreme Differences Absolute ,139 

Positive ,126 

Negative -,139 

Test Statistic ,139 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 
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VLMT post-test after interference 

N 89 

Normal Parametersa,b Mean 42,2472 

Std. Deviation 31,33907 

Most Extreme Differences Absolute ,174 

Positive ,174 

Negative -,111 

Test Statistic ,174 

Asymp. Sig. (2-tailed) ,000c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 

VLMT pretest delayed recall 

N 89 

Normal Parametersa,b Mean 38,6629 

Std. Deviation 27,75653 

Most Extreme Differences Absolute ,128 

Positive ,128 

Negative -,106 

Test Statistic ,128 

Asymp. Sig. (2-tailed) ,001c 

a. Test distribution is Normal.  b. Calculated from data. c. Lilliefors Significance Correction. 

 

VLMT post-test delayed recall 

N 89 

Normal Parametersa,b Mean 39,1517 

Std. Deviation 30,44634 

Most Extreme Differences Absolute ,122 

Positive ,122 

Negative -,118 

Test Statistic ,122 

Asymp. Sig. (2-tailed) ,002c 

a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. 
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Appendix D 

   Questionnaire                                                     
 
 
 

                                                              Fragebogen 
 
                                                               VP- CODE:  -  -  -  -  -  -  -  -  -  
 
 
_________________________________________________________________ 
 
A) Name:                          
1. Geschlecht:                      Weiblich: O                         Männlich: O 
2. Händigkeit:                      Rechts:     O                         Links:        O 
 
3. Geburtsdatum: 
 
4. Familienstand: ledig: O              verheiratet/ mit festen Partner:  O  
                   Geschieden: O                                              verwitwet:  O 
 
5. Gewicht:            kg                 6. Körpergröße:                cm           
 
BMI: 
 
 
 
 
B) Schulbildung: 
Hauptschule: O      Realschule: O         Gymnasium: O       Andere Schulart :   

Schulabschluss:   

 
Berufsausbildung: 
 
Berufsschule:              Lehre:                      Studium:  
 
Derzeitige Berufstätigkeit:                         frühere Berufstätigkeit:   
 
  
C)  
Rauchen:      Ja: O           Nein: O                 wie viele Zigaretten am Tag:  
 
seit wann: 
 
Alkohol:      nie: O          selten: O                regelmäßig: O            
 
 seit wann: 
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D) Aktivitäten: 

Machen Sie regelmäßig Sport:               Ja:  O         Nein: O 

wie  oft in der Woche: . . . .  

 
1. Weniger als      1       Stunde   leicht: O       mittel: O    schwer: O 

2.                          1-3   Stunden   leicht: O       mittel: O    schwer: O 

3.                          3-5   Stunden   leicht: O       mittel: O    schwer: O 

4.  Mehr  als         5      Stunden   leicht: O       mittel: O    schwer: O 

 
 
 
 
   Betreiben Sie einen Individualsport:             O   (wie Schwimmen, Laufen, . . .) 
 
   Betreiben Sie einen Zwei-Personensport:      O   (wie Badminton, Tennis, . . .) 
   
   Betreiben Sie einen Kampfsport:                  O   (wie Ringen, Karate, . . .)  
 
 
 
 
   Betreiben Sie einen Mannschaftssport:         O   (wie Fußball, Volleyball, usw.) 
 
 
 
-Haben Sie Sportarten selbstständig (autodidaktisch) gelernt oder haben Sie bei einem 
Lehrer/ Trainer gelernt?  
 
                              selbst : O          bei Trainer: O 
 
-Wenn autodidaktisch, schätzen Sie sich selber als: 
 
schlecht: O             mäßig: O                      gut: O                 sehr gut: O 
 
In dieser Sport ein? 
 
Möchten Sie neue Sportarten lernen?           Ja: O                      Nein: O 
 
Möchten  Sie geistige Fertigkeiten (z. B Schach) und/oder Feinmotorische lernen (z.B. 

das Kugellabyrint und der Münzentrick)?       Ja: O                     Nein: O     
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Appendix E 

 Declaration of consent                   
 
 
           

Prof. Dr. Hans J. Markowitsch 
                                                                                                      Gholam Reza Tazkari M.A. 

 
            Bielefeld,  September 2011 
 
 

EINVERSTÄNDNISERKLÄRUNG 
zur Teilnahme an der Studie 

Körperliche Aktivierung und Gedächtnis 
 
 
Hiermit erkläre ich, Frau/Herr . . . . . . . . . . . , mich bereit, an den neuropsychologischen 
Untersuchungen sowie einem Training von Hirnfunktionen in der Virtuellen Realität im 
Rahmen der Studie 

„Körperliche Aktivierung und Gedächtnis“ 
 
an der Fakultät für Psychologie und Sportwissenschaft  der Universität Bielefeld teilzunehmen. 

Ich bin mündlich und schriftlich umfassend über Inhalt, Zweck und Umfang der Untersuchung 

informiert worden und habe keine weiteren Fragen zu den Untersuchungen. Die Teilnahme an 

der Studie ist freiwillig, und ich kann die Untersuchungen jederzeit ohne Angabe von Gründen 

abbrechen, ohne dass mir dadurch irgendwelche Nachteile entstehen.  

Die Studienleiter und Projektmitarbeiter verpflichten sich, die eingesehenen und erhobenen 

Daten anonym und streng vertraulich zu behandeln und unterliegen diesbezüglich der 

Schweigepflicht. Ich bin einverstanden, dass die Ergebnisse meiner Untersuchung von der 

Fakultät für Psychologie und Sportwissenschaft der Universität Bielefeld sowie von den an der 

Studie beteiligten Kliniken in anonymisierter Form für wissenschaftliche Zwecke verwendet 

werden.  

___________________________     ___________________________ 

Ort, Datum       Unterschrift (Studienteilnehmer/in) 

___________________________     ___________________________ 

Unterschrift zuständiger Projektmitarbeiter    Unterschrift Studienleiter 

 
 



 
 

 
 
 

Academic Thesis: 
 

Declaration of Authorship 
 

 

Hereby, I declare that the dissertation presented in this thesis entitled 

 

Physical Activity, Aging and Cognition 
 

 
A Study of Effects of Physical Exercise on Cognitive 

Functions of Older Adults 
 

is my own work. None but the cited methods and materials were used. This work 

has not been submitted in this or another form at any other university or faculty. 

 

 

 

Signature:              Gholam Reza Tazkari 

  

Date:                    Germany, Bielefeld, February 2015 
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