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1 Introduction

The starting point of this thesis is the following situation: consider n indepen-
dent random variables X1, . . . , Xn and a bounded measurable function f : Rn → R.
Then, we want to deduce concentration inequalities of second order for the statistic
f(X1, . . . , Xn).

In doing so, we lean on the work by S.G. Bobkov, G.P. Chistyakov and F.
Götze [B-C-G] which is about second order concentration inequalities for the n-
dimensional unit sphere equipped with the uniform distribution. In fact, in our
situation as presented above the special case of all random variables having Bernoulli
distribution µ = 1

2
δ+1 + 1

2
δ−1 provides an analogue of the results in [B-C-G] for the

discrete hypercube. Actually, it was this situation which served as a first motivation
for this work.

We will give a more comprehensive overview about the background of this work
in Section 2. In particular, we will discuss several related results at that point.

The meaning of “second order concentration” is developed similarly to [B-C-G].
Instead of using derivatives, we will introduce suitable difference operators. More-
over, we will work with the Hoeffding decomposition of f(X1, . . . , Xn). All this will
be discussed in Section 3. Second order concentration then means that the inequal-
ities we derive will make use of and depend on difference operators of second order.
Furthermore, they will usually require functions whose Hoeffding decompositions
only begin with terms of second order.

In the situation on the unit sphere as discussed in [B-C-G], concentration in-
equalities are derived by making use of the fact that the uniform distribution on
the sphere satisfies a logarithmic Sobolev inequality. This is mirrored in our work
by working with modified logarithmic Sobolev inequalities which make use of the
difference operators introduced in Section 3. This will be done in Section 4.

We now formulate our central results:

Theorem 1.1. Let µ1, . . . , µn be probability measures on (R,B), and denote by µ =
⊗ni=1µi their product measure. Moreover, let f : Rn → R be a measurable function
which is bounded on the support of µ so that its Hoeffding decomposition with respect
to µ is given by

f =
n∑
k=d

fk

for some d ≥ 2. Denote by D and ∇ the difference operators as introduced in
Example 3.2. Assume that the condition

|∇|∇f || ≤ 1

is satisfied on the support of µ and that we have∫
‖f ′̂′‖2HSdµ ≤ b2
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for some b ≥ 0. Here, f ′̂′ is the “dediagonalized” Hessian of f with respect to the
difference operator D, and ‖f ′̂′‖HS denotes its Hilbert Schmidt norm.

Then, we have ∫
exp

(
1

2(3 + b2/(d− 1))
|f |
)
dµ ≤ 2.

If all the measures µi in Theorem 1.1 are Bernoulli measures, we can sharpen
the bound given above a little. More precisely, we have:

Theorem 1.2. In the situation of Theorem 1.1, let all the µi be of the form µi =
piδ+1 + (1− pi)δ−1 with δx denoting the Dirac measure at x ∈ R and pi ∈ (0, 1) for
all i. Then, with the conditions given in Theorem 1.1, we have∫

exp

(
1

3 + 2b2/(d− 1)
|f |
)
dµ ≤ 2.

The choice of {±1}n as the underlying space in Theorem 1.2 is motivated by
the discrete hypercube. In general, we can take any two-point measures on (R,B)
possibly even varying from one component to the other.

Using Chebychev’s inequality, Theorems 1.1 and 1.2 for instance imply the esti-
mate

µ(|f | ≥ t) ≤ 2e−ct

for all t > 0 and some constant c = c(b2, d). The value of the latter constant as
given by the bounds in Theorems 1.1 and 1.2 is not optimal, but optimizing it seems
hard. It is possible to obtain a slightly better but still non-optimal constant from
the proof of Theorems 1.1 and 1.2.

It is possible to generalize Theorem 1.1 by considering probability measures µi on
arbitrary measurable spaces (Xi,Xi) for all i = 1, . . . , n. The theorem and its proof
can easily be adapted to this situation. By contrast, it is not possible to remove
the boundedness condition on f by our methods. Indeed, in the appendix we will
prove that requiring |∇|∇f || ≤ 1 as in Theorem 1.1 already implies that f must
be bounded. Still, we might try to obtain inequalities for unbounded functions as
a sort of “limit” from those for bounded functions. However, we cannot expect to
arrive at any useful results (consider the case of τ → ∞ in the following Remark
1.3).

In some applications, it is convenient not to consider “normalized” functions f
in the sense of requiring |∇|∇f || ≤ 1 on the support of µ but to allow a general
upper bound τ ≥ 0. Theorems 1.1 and 1.2 are easily adapted to this situation. For
convenience, we state this explicitly:
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Remark 1.3. In the situation of Theorem 1.1 or Theorem 1.2, replace the condition
|∇|∇f || ≤ 1 by |∇|∇f || ≤ τ on the support of µ for some τ ≥ 0. Then, we can
rewrite our results as∫

exp

(
1

2(3τ + τ−1b2/(d− 1))
|f |
)
dµ ≤ 2

or, in the Bernoulli case,∫
exp

(
1

3τ + 2τ−1b2/(d− 1)
|f |
)
dµ ≤ 2.

In particular, if we have b = τ and d = 2, we get∫
e|f |/(8τ)dµ ≤ 2 or

∫
e|f |/(5τ)dµ ≤ 2,

respectively.

The proof of Theorem 1.1 once again leans on [B-C-G] and will be given in
Sections 5 and 6. This bisection is a consequence of the proof mainly consisting
of two steps. First, we will derive exponential inequalities involving the difference
operator ∇ by making use of modified logarithmic Sobolev inequalities. After that,
we will relate ∇ to second order difference operators Dij in form of a “Hessian”.
Here, one tool is an appropriately defined Laplacian. Having established all this,
the proof of Theorem 1.1 and 1.2 is easily obtained by combining both streams.

So far, we have considered functions whose Hoeffding decomposition with respect
to the underlying measures starts with (at least) second order terms. In Section 7,
we will formulate a slightly generalized version of Theorem 1.1 in which we also
allow Hoeffding terms of first order if certain extra conditions are satisfied. This
will however entail some inconveniences.

Finally, we present some applications of Theorem 1.1. In Section 8, we begin
with the easiest case, namely functions in independent symmetric Bernoulli random
variables, in order to check how our results work in a simple situation. In particular,
we demonstrate how the condition |∇|∇f || ≤ 1 can be transferred into a condition
on the Hilbert-Schmidt norm of f ′̂′ .

In Section 9, we will then generalize these results to multilinear polynomials in
independent random variables (given some restrictions like boundedness). This is
partly inspired by E. Mossel, R. O’Donnell and K. Oleszkiewicz [M-O-O], even if
our point of view is a different one and in particular our work does not aim at an
invariance principle as in the latter article. We will see that we can transfer our
results from the symmetric Bernoulli case to the more general situation, but the
fact that we do not have X2

i ≡ 1 anymore will cause some additional work, which
in particular results in a further condition.

In Section 10, we continue with second order concentration of empirical distri-
bution functions. Here, we lean on [B-G3] and transport some of their results to the
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situation of Theorem 1.1. This includes the behavior of the Kolmogorov distance of
the empirical distribution function and the mean empirical distribution function.

A partial application of the results from Section 10 is given in Section 11. We will
consider empirical distribution functions which are based on a set of independent
symmetric Bernoulli variables. This will enable us to use the methods from Section
8. We will obtain some simple results about second order concentration of such
distributions as, for instance, typical situations in which we can well apply our
results.

In Section 12, we finally present another type of application which is more ad-
vanced than some of the previous examples. We consider Erdős-Rényi random
graphs G(n, p), i. e. roughly speaking graphs that consist of n vertices such that
there is an edge between any two of them with probability p and the edges are cho-
sen independently. In this setting, an interesting problem is to count the number of
subgraphs which are contained in G(n, p), and the subgraphs we will focus on are
triangles. In particular, we compare our results to those stated in Adamczak and
Wolff [A-W]. In fact, this part of the thesis is primarily inspired by the latter article
though there is much other literature related to this topic.

Acknowledgements. I am very grateful to my advisor Professor Dr. Friedrich
Götze for suggesting such an interesting and challenging project. This thesis could
not have been written without his guidance and support. Moreover, I would like to
thank Dr. Holger Kösters for many fruitful discussions. Finally, I want to thank
Professor Dr. Sergey Bobkov for some inspiring ideas which helped to make this
thesis round.

2 Related Work

This work is related to two big fields in probability theory. One of them is the
concentration of measure phenomenon with a special focus on logarithmic Sobolev
inequalities, the other one is the limit behavior of U -statistics.

The concentration of measure phenomenon dates back to the 1970s, where it was
particularly highlighted in the work of V.N. Sudakov and V.D. Milman. A typical
example is the Gaussian concentration property, which states that for any Borel set
A ⊂ Rn with standard Gaussian measure γ(A) ≥ 1/2, we have

γ(Ar) ≤ 1− e−r2/2

for any r ≥ 0 and Ar := {x ∈ Rn : d(x,A) < r}, where d is the Euclidean distance.
This can be reformulated in terms of Lipschitz functions. In detail, we get that for
any Lipschitz function f : Rn → R with Lipschitz constant at most 1, we have

γ(f −
∫
fdγ ≥ r) ≤ e−r

2/2
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for any r ≥ 0.

These results imply a number of further questions as for instance which other
measures may satisfy similar concentration properties. One powerful tool for study-
ing problems of such type are logarithmic Sobolev inequalities, which were intro-
duced at about the same time as the concentration of measure phenomenon. In
particular, logarithmic Sobolev inequalities for the symmetric Bernoulli measure as
well as for Gaussian measures were introduced and proved by L. Gross [G] in 1975.

Since then, much research has been done in this area, and a variety of methods
and applications has been developed. We do not give a detailed account but only
focus on those which are particularly important for our own work. For a compre-
hensive survey which summarizes the central results up to the end of the 1990s see
the monographs by M. Ledoux [L2], [L3].

One of the basic tools we use are techniques which make it possible to deduce
concentration inequalities from logarithmic Sobolev inequalities with the help of
Laplace transforms. This was first seen by I. Herbst and developed further by S.
Aida, T. Masuda and I. Shikegawa [A-M-S].

The discussion of the concentration of measure phenomenon for the case of prod-
uct measures was particularly put forward by M. Talagrand in the 1990s, resulting
in papers like [T1] and [T2]. It was subsequently taken up by others like S. Bobkov
and M. Ledoux. For our own work, the results of S.G. Bobkov and F. Götze [B-
G1] are of particular importance, since our way of introducing modified logarithmic
Sobolev inequalities and some of the exponential concentration results are based on
this article.

The second block of results which are used in this work is about U -statistics,
that is, statistics of the form

Un(h) =
1(
n
m

) ∑
i1<...<im

h(Xi1 , . . . , Xim)

for a sequence of i.i.d. random variables (Xi)i∈N, a measurable (kernel) function
h on Rm and natural numbers n,m such that n ≥ m. Such statistics allow a
decomposition which was introduced by W. Hoeffding [H] in 1948 and which is called
the Hoeffding decomposition. This decomposition is orthogonal if h(X1, . . . , Xm) is
square-integrable.

From the late 1940s on, much research has been done in this area, and the Hoeff-
ding decomposition is now a classical tool for analyzing the distributional properties
of U -statistics. An overview about the main results is partly given in the monograph
by V. de la Peña and E. Giné [D-G].

In the context of this thesis, we especially refer to the many inequalities which
study the tail behavior of U -statistics. This goes back to Hoeffding’s inequalities
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as stated in Theorem 4.1.8 in [D-G], which in particular yields that for Un(h) as
defined above, we have

P(Un(h) > t) ≤ exp

(
− [n/m]t2

2M2

)
if the function h : Rm → R is bounded by some universal constant M and satisfies
Eh(X1, . . . , Xm) = 0. Note that this inequality can be regarded a first order analogue
of our own work.

Later authors have studied exponential inequalities for U -statistics which are
completely degenerate (or canonical), which means their Hoeffding decomposition
consists of a single term only. An overview can once again be found in de la Peña
and Giné [D-G], Chapter 4.1.3. In particular, we mention M.A. Arcones and E.
Giné [A-G] and M.A. Arcones again [A] as well as the results by P. Major [M] (e. g.
Theorem 8.3 in [M]). In [A-G] and [M], tail inequalities for completely degenerate
U -statistics are given such that the estimates only depend on the order m of the
kernel h, its second moment σ2 and some bound M on h.

In [A], a bounded, centered but not necessarily degenerated kernel h is consi-
dered, for which improved tail estimates are deduced by replacing the variance of
h by the variance of the first order Hoeffding term of Un(h). The basic idea of the
proof is separating the first order Hoeffding term from the remaining ones, which
resembles one of the key ideas of our own work. However, the goals and techniques
used in [A] are quite different from our own ones.

In particular, a central difference is that while the results in [A] require statis-
tics with Hoeffding decompositions which stop at some order m (which should be
independent of n to get useful results), the statistics we consider in Theorem 1.1
can have terms from order 2 up to n. We will continue this discussion in Sections 8
and 9.

To conclude this section, there are at least two results which we highlight explic-
itly because there is a closer relation to our work.

First, a first order analogue of our work which is even more immediate than
Hoeffding’s tail estimates can be found in [B-G2], for instance. In principle, similar
results were already known at an earlier point as e. g. in [L1], but in [B-G2] a
systematic account is provided on which we lean in our own work. For completeness,
we now give a slightly reformulated version of Proposition 2.1 from there:

Proposition 2.1. Let µ1, . . . , µn be probability measures on (R,B), and denote by
µ = ⊗ni=1µi their product measure. Moreover, let f : Rn → R be a measurable
function which is bounded on the support of µ. Denote by ∇ the difference operator
as introduced in Example 3.2.2. Assume that the condition |∇f | ≤ 1 is satisfied on
the support of µ.
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Then, for any t ≥ 0 we have

µ

(
|f −

∫
fdµ| ≥ t

)
≤ 2e−t

2/4.

As compared to the original result in [B-G2], we have added the assumption
that f is bounded, which does not change anything since as we have shown in the
appendix, the condition |∇f | ≤ 1 implies the boundedness of f anyway. The slight
differences on the right hand side are due to the fact that we have restricted ourselves
to real-valued functions (while in [B-G2] complex-valued function are considered as
well).

It is not yet necessary to introduce the notion of Hoeffding decomposition or
a second type of difference operator in Proposition 2.1. On the other hand, sub-
tracting the expectation

∫
fdµ means removing the Hoeffding term of order zero

(cf. Theorem 3.4), so that we can recognize the basic structure of Theorem 1.1 in
Proposition 2.1 as well.

As for applications of Proposition 2.1, we refer to [L1], where such results (even
if formulated in a slightly different way) are used to study concentration in prod-
uct spaces which are equipped with Hamming metrics (i. e. d(x, y) := card{k =
1, . . . , n : xk 6= yk}). In the same paper, they are also applied in the context of
“penalties” (which were introduced in [T1] and can be regarded as generalizations
of the Hamming metric).

Moreover, in [B-G2], a generalized version of Proposition 2.1 (i. e. for complex-
valued functions) is used as a tool for deducing concentration inequalities for ran-
domized sums. Here the complex-valued case is needed because the concentration
inequalities are applied to characteristic functions.

A second important collection of results which are related to our work are those
by R. Adamczak and P. Wolff [A-W]. For our work, Theorems 1.2 and 1.4 from
[A-W] are particularly interesting. In Theorem 1.2, the underlying measure must
fulfill a certain Sobolev-type inequality, i. e.

‖f(X)− Ef(X)‖p ≤ L
√
p‖|∇f(X)|‖p (∗)

for any p ≥ 2, any smooth integrable function f : Rn → R and some constant L which
does not depend on p and f . Here, X is a random vector with the distribution in
question, and | · | is the standard Euclidean norm.

In particular, Theorem 1.2 in [A-W] then states that for any random vector X in
Rn satisfying (∗) and any function f : Rn → R in Ck such that Dkf(x) is uniformly
bounded on Rn, we have

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp

(
− 1

Ck
ηf (t)

)
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for any t > 0, where Ck is some constant, and

ηf (t) = min

(
min
J∈Pk

(
t

Lk supx∈Rn‖Dkf(x)‖J

) 2
#J

, min
1≤d≤k−1

min
J∈Pd

(
t

Ld‖EDdf(x)‖J

) 2
#J
)
.

Here, the derivatives Dkf(x) are regarded as multi-indexed matrices, L is the con-
stant from (∗), Pd denotes the group of the partitions of {1, . . . , d}, and ‖·‖J ,J ∈ Pd,
is some family of tensor-product matrix norms.

However, requiring (∗) excludes the case of discrete measures we are especially
interested in. In this context, Theorem 1.4 from [A-W] seems a more immediate
comparison to our work since here, products of measures which have subgaussian tail
decay are considered. In particular, Theorem 1.4 from [A-W] states the following:
Let X = (X1, . . . , Xn) be a random vector with independent components such that
for all i ≤ n we have

‖Xi‖ψ2 := inf{t > 0: E exp

(
X2
i

t2

)
≤ 2} ≤ L

for some L ≥ 0. Then, for every polynomial f : Rn → R of degree k and any t > 0,
we have

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp

(
− 1

Ck
ηf (t)

)
,

where

ηf (t) = min
1≤d≤k

min
J∈Pd

(
t

Ld‖EDdf(x)‖J

) 2
#J

.

However, this theorem only allows polynomial functions, while our results hold
for arbitrary but bounded functions. Moreover, the notion of Hoeffding decomposi-
tion which is a central aspect in our work does not appear in [A-W]. Altogether, we
place a stronger emphasis on the discrete situation than [A-W] do.

Finally, as we already did in Section 1, we should once again mention the work of
S.G. Bobkov, G.P. Chistyakov and F. Götze [B-C-G], which was the prime source of
inspiration for this thesis. Theorem 1.1 and its proof are in principle an adaption of
the results for functions on the unit sphere as discussed in [B-C-G]. In this context,
a central task of the present work was finding the definitions which are best suitable
for working in a similar way as [B-C-G].

3 Difference Operators

Our first step in the course of deducing Theorem 1.1 is introducing several types
of difference operators. They serve as an analogue of the spherical derivatives in
[B-C-G].
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The most important type of difference operators used in our work are operators
Γ on the space of the bounded measurable real-valued functions on (Rn,Bn) such
that the following two conditions hold:

Conditions 3.1. (i) For any bounded measurable function f : Rn → R, Γf =
(Γ1f, . . .Γnf) : Rn → Rn is a measurable function with values in Rn. We often
call Γ a gradient operator or simply gradient.

(ii) For all i = 1, . . . , n, all a > 0, b ∈ R and any bounded measurable real-valued
function f , we have |Γi(af + b)| = a|Γif |.

These conditions are basically due to Bobkov and Götze [B-G1]. In particular,
we do not suppose Γ to satisfy any sort of “Leibniz rule”. Note that we require the
functions f to be bounded just in order to avoid too many extra assumptions.

It is easily possible to rewrite Conditions 3.1 such that they hold for arbitrary
measurable spaces (X,X ) (corresponding to the case n = 1) or finite products of
measurable spaces (Xi,Xi). In Sections 4 and 5 we will mostly work in such a general
situation.

We now give three examples of difference operators which we will need in our fur-
ther discussion. Each of them is based on the assumption that (Rn,Bn) is endorsed
with some product probability measure.

Example 3.2. 1. Let µi, i = 1, . . . , n, be probability measures on (R,B), µ =
⊗ni=1µi their product measure and f : Rn → R a µ-integrable function. Then,
we define

Dif(x) := f(x)−
∫
R
f(x1, . . . , xi−1, yi, xi+1, . . . , xn)µi(dyi), (1)

i. e. we subtract the integral with respect to the i-th component. We then define
the respective gradient operator by Df := (D1f, . . . , Dnf). We will sometimes
call this type of difference operator “Hoeffding difference”.

Based on the first order differences Dif , we define higher order differences by
iteration, i. e. for instance Dijf := Di(Djf) for 1 ≤ i, j ≤ n.

2. In the situation of Part 1 but for f being an L2(µ)-function, we set

∇if(x) :=
(1

2

∫
R
(f(x)− f(x1, . . . , xi−1, yi, xi+1, . . . , xn))2µi(dyi)

)1/2
(2)

and as in Part 1 ∇f := (∇1f, . . . ,∇nf).

3. In the same situation as in Part 2, we define

∇+
i f(x) :=

(1

2

∫
R
(f(x)− f(x1, . . . , xi−1, yi, xi+1, . . . , xn))2+µi(dyi)

)1/2
, (3)

where for any real-valued function g we set g+ := max(g, 0) for its positive
part.
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In all cases, Conditions 3.1 are clearly satisfied. Note again that we can easily
adapt the definitions of the three operators given above to the situation of arbitrary
measurable (product) spaces. For instance, such a general definition of the operator
∇ is given in [B-G2].

The choice of the factor 1/2 in the definitions of ∇ and ∇+ is arbitrary in
principle, and we could choose any other positive real number instead. However, if
we choose 1/2, we can relate all three types of difference operators from Example
3.2 if the underlying measure is the uniform distribution on a two-point space:

Remark 3.3. 1. Consider the case where µi = 1
2
δ+1 + 1

2
δ−1 for all i = 1, . . . , n,

i. e. the uniform distribution on {±1}n. Then, we have

Dif(x) =
1

2
(f(x)− f(σix))

with σix := (x1, . . . ,−xi, . . . , xn) for any x ∈ {±1}n. Moreover, we have the
relations ∇if = |Dif | as well as ∇+

i f = (Dif)+.

2. Let (Ω,A,P) be a probability space and X1, . . . , Xn independent random vari-
ables on it with distributions µi, i = 1, . . . , n. Then, we can rewrite (1) as

Dif(x) = f(x)− Eif(x)

or (in short) Di = Id − Ei. Here, Id denotes the identity and Ei taking
the expectation with respect to Xi. (Strictly spoken, we interpret Eif(x) as
replacing the entry xi in the i-th component of x by the random variable Xi

and then taking the expectation.)

3. Similarly to the description of Di given above, we can also rewrite ∇i in
terms of expectations of certain random variables. For that, consider the sit-
uation as described above and add a set of independent copies X̄1, . . . , X̄n of
the random variables X1, . . . , Xn. For a function f(X1, . . . , Xn) set Tif :=
f(X1, . . . , Xi−1, X̄i, Xi+1, . . . , Xn), i. e. the random variable Xi is replaced by
its independent copy X̄i. Then, we have

∇if(x) =
(1

2
Ēi(f(x)− Tif(x))2

)1/2
.

Here, Ēi means taking the expectation with respect to X̄i.

4. In the same vein as in Part 3, we can write

∇+
i f(x) =

(1

2
Ēi(f(x)− Tif(x))2+

)1/2
as well as

Dif(x) = Ēi(f(x)− Tif(x)).
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We will not worry much about making notation as precise as possible in this
work. For instance, we will sometimes write Tif(X1, . . . , Xn) though being aware of
the i-th component having actually been replaced by an independent copy. Partially
we may even drop the arguments completely (as we did above). Also, we will switch
from integrals with respect to the distributions µi to expected values with random
variables involved whenever this seems convenient.

Furthermore, in the sequel we will occasionally make use of the fact that the
composition of Ti and a function g : R→ R is commutative, i. e. we have identities
of the form Tif

2 = (Tif)2 (with g(x) := x2 in this case) and similar relations.

For our work, we also need an analogue of the Laplacian for difference operators.
Here we use the operator D from Example 3.2.1 since it can easily be iterated. Note
that according to Example 3.2.1, we have Dii = Di for all i. Therefore, we do not
adapt the definition of the “ordinary” Laplacian but consider second order differences
in two different directions instead. That is, we set

∆ :=
∑
i 6=j

Dij. (4)

Calling (4) a Laplacian is justified for several reasons. First, if we compare our
work to [B-C-G] once again we see that (4) plays the same role in our arguments as
the spherical Laplacian does in [B-C-G].

Moreover, it is well-known that the usual Laplacian on Rn is invariant under
rotations. In discrete situations, we can regard invariance under permutations as an
analogue of this property. Indeed, if we assume µi ≡ µ1 for all i in Example 3.2, i. e.
the u.i.v. case if we consider random variables, the Laplacian (4) indeed satisfies
the relation

∆f(x) = ∆f(π(x)),

where f is any µ-integrable function on Rn and π is any permutation of {1, 2, . . . , n}.
As usual, here we set f(π(x)) = f(xπ−1(1), . . . , xπ−1(n)).

On the other hand, some caution is necessary, for it seems (4) is not a Laplacian
in the stochastic sense. That is, we have not been able to find a homogeneous
Markov chain such that (4) is the corresponding Laplacian, and it seems this is not
possible in fact. Nevertheless, for the reasons sketched above we believe that calling
(4) a Laplacian makes sense in our context.

Next we introduce the notion of Hoeffding decomposition. This can be done as
follows:
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Theorem 3.4. Let X1, . . . , Xn be independent random variables on some probabil-
ity space (Ω,A,P), and let f : Rn → R be a function such that f(X1, . . . , Xn) is
integrable. Then, there is a unique decomposition

f(X1, . . . , Xn) = Ef +
n∑
i=1

hi(Xi) +
∑
i<j

hij(Xi, Xj) + . . .

= f0 + f1 + f2 + . . .+ fn

such that Eijhi1...ik(Xi1 , . . . , Xik) = 0 for all k = 1, . . . , n, 1 ≤ i1 < . . . < ik ≤ n
and j ∈ {1, . . . , k}. Here, as above, Ei means integration with respect to Xi. This
decomposition is called the Hoeffding decomposition, and the sum fd is called the
Hoeffding term of degree d or simply d-th Hoeffding term of f .

Proof. As this is a well-known result, we only give a brief sketch of the proof. Let
Di, i = 1, . . . n, be the difference operators we defined in (1). Then, {Ei, i =
1, . . . , n} ∪ {Di, i = 1, . . . , n} is a family of commutative operators with respect
to composition, and we clearly have Ei + Di = Id. Hence, for a function f with
properties as in the theorem, we get (notating composition as multiplication)

f(X1, . . . , Xn) =
n∏
i=1

(Ei +Di)f(X1, . . . , Xn).

Expanding the product then gives the desired decomposition with

hi1...ik(Xi1 , . . . , Xik) =
( ∏
j /∈{i1,...ik}

Ej
∏

l∈{i1,...ik}

Dl

)
f(X1, . . . , Xn).

The uniqueness of this decomposition is easily seen.

As a consequence, if f(X1, . . . , Xn) ∈ L2, then the fk are pairwise uncorrelated,
i. e. orthogonal in L2. If we now relate the Hoeffding decomposition to the Laplacian
(4), we observe that the Hoeffding terms are eigenfunctions of the Laplace operator.
Thus, as an analogue of the situation on the sphere as discussed in [B-C-G], in our
case we also have an orthogonal decomposition on which ∆ operates diagonally.

Theorem 3.5. Let X1, . . . , Xn be independent random variables on some probability
space (Ω,A,P), and let f : Rn → R be a function such that f(X1, . . . , Xn) is inte-
grable. Moreover, let f =

∑n
d=0 fd be the Hoeffding decomposition of f . Then, we

have
∆fd = (d)2fd.

Here, ∆ is the Laplacian as introduced in (4), and we write (d)2 = d(d− 1). Thus,
the d-th Hoeffding term is an eigenfunction of ∆ with eigenvalue (d)2.

Proof. Let fd(X1, . . . , Xn) =
∑

i1<...<id
hi1...id(Xi1 , . . . , Xid). Fix i1 < . . . < id. Then,

we get

Eihi1...id(Xi1 . . . , Xid) =

{
0, i ∈ {i1, . . . , id},
hi1...id(Xi1 , . . . , Xid), i /∈ {i1, . . . , id},
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due to the properties of the Hoeffding decomposition as stated in Theorem 3.4.
Keeping in mind that Di = Id − Ei (cf. Remark 3.3.2), we therefore immediately
obtain

Difd(X1, . . . , Xn) =
∑

i1<...<id
i∈{i1,...,id}

hi1...id(Xi1 , . . . , Xid) (5)

and consequently

Dijfd(X1, . . . , Xn) =
∑

i1<...<id
i,j∈{i1,...,id}

hi1...id(Xi1 , . . . , Xid). (6)

So it remains to check how often each term hi1...id(Xi1 , . . . , Xid) appears in ∆fd =∑
i 6=j Dijfd. As we just saw, each pair i 6= j such that i, j ∈ {i1, . . . , id} replicates

the summand hi1...id(Xi1 , . . . , Xid) precisely once. As there are d(d− 1) = (d)2 such
pairs, we arrive at the result.

In fact, there are at least two larger families of difference operators which satisfy
similar “invariance properties” with respect to the Hoeffding decomposition.

One family of this type can be defined via

d1 :=
∑
i

Di, d2 := d21 and more generally dk := dk1

for any k ∈ {1, 2, . . . , n}. Another one is given by

d∗k :=
∑

i1 6=i2 6=... 6=ik

Di1 . . . Dik

for any k ∈ {1, 2, . . . , n}. It is possible to relate these two families to each other by
representing the d∗k as polynomials in d1, e. g. we have d∗2 = d21 − d1.

As in the proof of Theorem 3.5, simple combinatorial arguments show that all
the dk and d∗k operate diagonally on the Hoeffding decomposition. In case of the d∗k,
the eigenvalues of the Hoeffding terms of order up to k − 1 are 0.

In particular, with ∆ as in (4), we see that we have ∆ = d∗2. In other words, ∆ is
just the second order difference operator from the family of those which annihilate
the lower order Hoeffding terms. This corresponds well to our basic concept of second
order concentration. Moreover, it parallels the case of the ordinary Laplacian which
in particular annihilates linear and affine functions, thus another justification for
calling ∆ a Laplacian.

An obvious idea is to study concentration of higher order for functions of inde-
pendent random variables with the help of the operators d∗k. It seems that this will
get more involved than in the second order case, and we intend to study it more in
detail in future research.
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4 Modified Logarithmic Sobolev Inequalities

A crucial tool in our work is a modified version of the logarithmic Sobolev inequality
(LSI) adapted to the difference operators we introduced in the previous section.

For that, we first recall the notion of entropy. Let µ be a probability measure
on some measurable space (X,X ) and g : X → [0,∞) a measurable function. Then,
we define the entropy of g with respect to µ by

Ent(g) := Entµ(g) :=

∫
g log gdµ−

∫
gdµ log

∫
gdµ.

Here, we set Ent(g) :=∞ if any of the integrals involved does not exist. A common
condition for this is whether the integral of g log(1 + g) is finite or not. It is well-
known that Ent(g) ∈ [0,∞], which can be shown by applying Jensen’s inequality to
the function x 7→ x log(x). Now we are ready to define

Definition 4.1. Let µ be a probability measure on some measurable space (X,X ),
and let Γ be a difference operator on this space satisfying Conditions 3.1. Then, µ
satisfies a modified logarithmic Sobolev inequality with constant σ2 > 0 with respect
to Γ if for any measurable function f : X → R such that the following integrals are
finite we have

Ent(ef ) ≤ σ2

2

∫
|Γf |2efdµ. (7)

Here, |Γf | denotes the Euclidean norm of the gradient Γf (which we extend to
probability measures on an arbitrary measurable space in this context).

This definition goes back to [B-G1], where it is called LSIσ2 . The term “modified
logarithmic Sobolev inequality” is due to Ledoux [L3], Chapter 5.3, where other
modifications of logarithmic Sobolev inequalities are discussed as well. The differ-
ence between the usual form of the LSI and modified one in (7) is motivated by the
fact that the difference operators from Example 3.2 do not satify any sort of chain
rule.

The number σ2 > 0 is also called Sobolev constant. If we occasionally do not
consider the Sobolev constant σ2 itself but its root σ, we will always assume it to
be positive as well.

Now we want to relate Definition 4.1 to the gradient operators we introduced in
Example 3.2. Unlike in the previous section, using D in this context would cause
inconveniences. In this case, only discrete probability measures with a finite number
of atoms would have a chance to fulfill a modified LSI of type (7), and the Sobolev
constant σ2 would soon turn pretty bad (depending on the smallest non-zero value
among the probabilities of the various atoms). The background is that already in
case of two-point measures with atom probabilities p and 1− p, the constant σ2 will
tend to ∞ if p → 0 or p → 1, and we can “embed” such two-point spaces in any
space with a larger amount of atoms or with a continuous distribution, for instance.
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This is different in case of ∇. Here, we have the following:

Proposition 4.2. Let µ be any probability measure on some measurable space
(X,X ). Then, µ satisfies the modified LSI (7) with Sobolev constant σ2 = 2 with
respect to ∇. Here, ∇ is the gradient operator from Example 3.2.2 (which we extend
to probability measures on an arbitrary measurable space in this context).

Proof. This is due to [B-G2], whose arguments we briefly recall. Noting that we only
need (2) in dimension one in the present situation, we apply Jensen’s inequality to
get

Entµ(eg) ≤ Covµ(g, eg) =
1

2

∫∫
(g(x)− g(y))(eg(x) − eg(y))µ(dx)µ(dy)

≤ 1

4

∫∫
(g(x)− g(y))2(eg(x) + eg(y))µ(dx)µ(dy)

=

∫
|∇g|2egdµ.

Here g is any real-valued measurable function on X such that the integrals involved
are finite, and the next-to-last step uses the elementary estimate (a− b)(ea − eb) ≤
1
2
(a− b)2(ea + eb) for all a, b ∈ R. However, this means that µ satisfies the modified

LSI (7) with Sobolev constant σ2 = 2.

If we especially consider two-point measures, the Sobolev constant can still be
improved a little as we see next:

Proposition 4.3. Let µ = pδ+1 + (1− p)δ−1 for some p ∈ (0, 1), where δx denotes
the Dirac measure in x ∈ R. Then, µ satisfies the modified LSI (7) with Sobolev
constant σ2 = 1 with respect to ∇ as in Example 3.2.2.

This is again due to [B-G2], and we omit the proof here. It is easy to verify that
for instance in case of the symmetric Bernoulli measure (i. e. p = 1

2
in the situation

we described above), this constant is optimal.

We now go on to product spaces. As it is well-known, if we consider n probability
spaces each satisfying a logarithmic Sobolev inequality in the usual sense, then the
product space will also do so. The same holds for the modified LSI (7). This is a
consequence of the following lemma:

Lemma 4.4. For all i = 1, . . . , n, let (Xi,Xi) be measurable spaces equipped with
probability measures µi each satisfying the modified LSI (7) with Sobolev constants
σ2
i > 0 with respect to ∇ as in Example 3.2.2. Then, the product measure µ1⊗. . .⊗µn

on (X1 × . . . × Xn,X1 ⊗ . . . ⊗ Xn) also satisfies the modified LSI (7) with Sobolev
constant σ2 = maxi=1,...,n σ

2
i with respect to ∇.
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Proof. We make use of the fact that in the present situation, the relation

Entµ1⊗...⊗µn(g) ≤
n∑
i=1

∫
Entµi(gi)dµ1 ⊗ . . .⊗ µn

holds. Here, g is an arbitrary non-negative function on X1× . . .×Xn and gi its i-th
intersection gi(xi) := g(x1, . . . , xi, . . . , xn) (with x1, . . . , xi−1, xi+1, . . . xn fixed) (cf.
[L3], Proposition 5.6).

We can assume that n = 2 (the rest follows by induction). So let f be a mea-
surable function on X1 ×X2. Kept in mind that the intersections fulfill (ef )1 = ef1

and (ef )2 = ef2 , respectively, and also that we have ∇f1 = ∇1f , we obtain by using
Fubini that

Entµ1⊗µ2(e
f ) ≤

∫
Entµ1(e

f1)dµ1 ⊗ µ2 +

∫
Entµ2(e

f2)dµ1 ⊗ µ2

≤
∫∫

σ2
1

2
|∇f1|2ef1dµ1dµ2 +

∫∫
σ2
2

2
|∇f2|2ef2dµ2dµ1

≤
∫∫

max(σ2
1, σ

2
2)

2
(|∇1f |2 + |∇2f |2)efdµ1dµ2

=
max(σ2

1, σ
2
2)

2

∫
|∇f |2efdµ1 ⊗ µ2,

which completes the proof.

Therefore, Propositions 4.2 and 4.3 naturally extend to product measures, and
we get that any product of such measures satisfies the modified LSI (7) with Sobolev
constants 2 and 1, respectively.

In the next section, we will see that for technical reasons we also need modified
LSI results for ∇+. The following lemma enables us to adapt the properties we
already proved for ∇. Again, for the sake of generality we extend the definition
of ∇+ from Example 3.2.3 to arbitrary measurable spaces (X,X ) and products of
them.

Lemma 4.5. For all i = 1, . . . , n, let (Xi,Xi) be measurable spaces equipped with
probability measures µi such that the product measure µ1 ⊗ . . .⊗ µn on (X1 × . . .×
Xn,X1 ⊗ . . .⊗ Xn) satisfies the modified LSI (7) with Sobolev constant σ2 > 0 with
respect to ∇ as in Example 3.2.2. Then, µ1⊗ . . .⊗µn also satisfies the modified LSI
(7) with respect to ∇+ as in Example 3.2.3, and the Sobolev constant can be chosen
2σ2.

Proof. We only need to prove this in one dimension. So let g be any real-valued
measurable function such that the following integrals are finite. Then, we have∫

|∇g|2egdµ =
1

2

∫∫
(g(x)− g(y))2eg(x)µ(dx)µ(dy)
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=
1

2

∫∫ (
(g(x)− g(y))2+e

g(x) + (g(y)− g(x))2+e
g(x)
)
µ(dx)µ(dy)

≤ 1

2

∫∫ (
(g(x)− g(y))2+e

g(x) + (g(y)− g(x))2+e
g(y)
)
µ(dx)µ(dy)

=
1

2

(
2

∫∫
(g(x)− g(y))2+e

g(x)µ(dx)µ(dy)
)

= 2

∫
|∇+g|2egdµ,

where we only used the monotonicity of the exponential function and Fubini’s the-
orem. This completes the proof.

As a result, we can transport Propositions 4.2 and 4.3 and Lemma 4.4 to the
∇+ situation. For facilitating references, we explicitly state this in the following
proposition:

Proposition 4.6. For all i = 1, . . . , n, let (Xi,Xi) be measurable spaces equipped
with probability measures µi. Then, the product measure µ1⊗ . . .⊗µn on (X1× . . .×
Xn,X1 ⊗ . . .⊗ Xn) satisfies the modified LSI (7) with Sobolev constant σ2 = 4 with
respect to ∇+ as in Example 3.2.3. If all the Xi are two-point spaces we can take
σ2 = 2.

5 Exponential Inequalities

In this section, we derive an inequality for exponential moments similar to [B-
C-G], Proposition 2.1. The latter result is as follows: Let (M,d) be a metric
space, equipped with some Borel probability measure µ which satisfies a logarith-
mic Sobolev inequality with constant σ2. Then, for any locally Lipschitz function
f on M such that

∫
fdµ = 0, |∇|∇f || ≤ 1 on the support of µ and |∇f | is locally

Lipschitz, we have ∫
exp

(
1

2σ2
f

)
dµ ≤ exp

(
1

2σ2

∫
|∇f |2dµ

)
. (8)

In this context, |∇f | and similar expressions always refer to the generalized modulus
of the gradient (see [B-C-G]).

This result is based on the iteration of two further inequalities, which are as
follows: In the situation sketched above, let u : M → R is a µ-integrable locally
Lipschitz function. Then, we have∫

eu−
∫
udµdµ ≤

∫
eσ

2|∇u|2dµ. (9)

Moreover, if we additionally require |∇u| ≤ 1, we have∫
etu

2

dµ ≤ exp

(
t

1− 2σ2t

∫
u2dµ

)
(10)
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for any 0 ≤ t < 1
2σ2 . Inequality (8) then follows by first applying (9) to u and then

(10) with u replaced by |∇u|.

In the sequel, we derive analogous results for functions of independent random
variables. Note that anything we do in this section holds for an arbitrary difference
operator satisfying Conditions 3.1. Due to the results from the previous section we
will always take either ∇ or ∇+ from Example 3.2, however.

So now consider any probability measure on some measurable space (X,X ) which
satisfies the modified LSI (7) with Sobolev constant σ2 > 0 with respect to the
gradient operator∇. In Bobkov and Götze [B-G1], it was proved that for all bounded
measurable functions f : X → R such that

∫
fdµ = 0, we have∫

efdµ ≤
∫
eσ

2|∇f |2dµ. (11)

This is an exact analogue of (9). Its proof is similar to the proof of inequality (14)
which will be sketched in the proof of Lemma 5.1.

Note that we did not make a difference between the one-dimensional case and the
multi-dimensional one (so, product or non-product spaces) above as in fact, it does
not matter in which situation we are. The same holds for the rest of this section,
and in most cases we will not explicitly stress this in the sequel.

The adaption of (10) requires more effort. The main problem is that as we
already noted, all types of gradient operators we introduced in Example 3.2 do not
satisfy any sort of “chain rule”.

To illustrate the situation, let for a moment ∇ denote the usual gradient (as
opposed to the difference operator from Example 3.2.2) and |∇f | its Euclidean
norm. Then, if we assume that |∇f | ≤ 1, we immediately get

|∇f 2| = 2|f ||∇f | ≤ 2|f |

by chain rule. However, if we now take ∇ as in (2) instead, such an inequality
cannot be true anymore. To see this, consider the space {±1}2 equipped with the
product of two symmetric Bernoulli distributions. Remembering Remark 3.3.1, the
analogue of the above inequality would then be

|∇f(x)2|2 =
1

4
((f(x)2 − f(σ1x)2)2 + (f(x)2 − f(σ2x)2)2) ≤ α|f(x)|2

for some α > 0. However, it is immediately clear that we can easily construct
examples in which this inequality is obviously wrong (by considering the zeros of f).
The same holds if we choose D instead of ∇ again due to Remark 3.3.1.

There are several possibilities of addressing this problem. One solution is to
introduce an additional summand as a sort of “compensation”. We would then
consider functions satisfying an inequality of the form |∇f 2|2 ≤ af 2 + b on the
support of µ for some constants a, b ≥ 0. Note that in case of the usual gradient
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and the situation described above, this holds with a = 4 and b = 0. Indeed, the
following arguments remain valid assuming this inequality.

However, it turns out that if we use the gradient ∇+ from Example 3.2.3 we can
proceed in a more elegant way and circumvent most of the additional work. This is
due to the fact that unlike in case of ∇, the zeros of f do not play such a significant
role in case of ∇+ anymore because of taking the positive part in the definition of
(3).

The principal argument is as follows: let f : X → R be any measurable function
on some probability space (X,X , µ). Then, for any x, y ∈ X we get

(f(x)2 − f(y)2)2+ = (|f(x)|+ |f(y)|)2(|f(x)| − |f(y)|)2+
≤ 4|f(x)|2(|f(x)| − |f(y)|)2+

as we have |f(x)| ≥ |f(y)| for any values x and y such that the two sides of this
inequality do not vanish. Taking integrals and roots, we thus get that for any
function f : X → R in L2(µ) such that |∇+|f || ≤ 1 on the support of µ, we have

|∇+f 2| ≤ 2|f |. (12)

Note that this also holds for product measures (i. e. the multivariate case), where
deriving it works by applying everything we just did componentwise.

However, now we have arrived at the same basic inequality as in case of the
usual gradient on (Rn,Bn), or at a more general level the deviation case in [B-G1].
We can therefore proceed the same way as in these cases, and using an argument
which is basically due to S. Aida, T. Masuda and I. Shikegawa [A-M-S] we get a full
analogue of (10) which is as follows:

Lemma 5.1. Let µ be a probability measure on some measurable space (X,X ) which
satifies the modified LSI (7) with Sobolev constant σ̃2 > 0 with respect to the gradient
operator ∇+ from Example 3.2.3. Moreover, let f : X → R be a bounded measurable
function such that |∇|f || ≤ 1 on the support of µ. Then we have∫

etf
2

dµ ≤ exp

(
t

1− 2σ̃2t

∫
f 2dµ

)
(13)

for all t ∈ [0, 1
2σ̃2 ).

At first sight, the fact that we have to use the absolute value of f in the condition
|∇|f || ≤ 1 might not seem optimal. However, we will finally apply this inequality
to non-negative functions only anyway.

Proof. First, note that by the very definitions of ∇ and ∇+ as given in Example
3.2, we have 0 ≤ ∇+

i f(x) ≤ ∇if(x) for any function f ∈ L2(µ), all x ∈ Rn and
all i = 1, . . . , n. In particular, it follows that |∇+f(x)| ≤ |∇f(x)|. Therefore, the
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condition |∇|f || ≤ 1 implies |∇+|f || ≤ 1, which is the condition we actually make
use of in the sequel.

From now on, we just adapt the arguments from [B-G1], p. 6 f. Their starting
point is the inequality∫

efdµ ≤
(∫

eλf+(1−λ)σ̃2|∇+f |2/2dµ

)1/λ

(14)

for all bounded measurable f : X → R and all λ ∈ (0, 1]. Here we have already
plugged in ∇+ as our choice of the difference operator.

To deduce (14), we use that

Ent(g) = sup
{∫

gh dµ : h : X → R measurable s. th.
∫
ehdµ ≤ 1

}
.

If we set g := ef und h := λf+(1−λ)σ̃2|∇+f |2/2−β with β = log
∫
eλf+(1−λ)σ̃2|∇+f |2/2dµ

in this context, we have
∫
ehdµ = 1 and thus∫

(λf + (1− λ)σ̃2|∇+f |2/2− β)efdµ ≤ Ent(ef ).

Since f satisfies the modified LSI (7) with constant σ̃2, it follows that

λ

∫
fefdµ+ (1− λ)Ent(ef )− β

∫
efdµ ≤ Ent(ef ).

This is equivalent with

λ

∫
efdµ log

∫
efdµ− β

∫
efdµ ≤ 0,

from which we directly get (14).

We now apply (14) to the function sf 2/(2σ̃2) with 0 < s < 1 and λ = (p −
s)/(1− s) for any p ∈ (s, 1]. Together with (12), this gives us∫

esf
2/(2σ̃2)dµ ≤

(∫
exp

(
psf 2

2σ̃2

)
dµ

)(1−s)/(p−s)

.

For p = 1 both sides are equal, and as for p < 1 the upper inequality holds, we
get that the logarithm of the left hand side (considered as a function of p) must
increase more rapidly at p = 1 than that of the right hand side. We thus consider
the derivatives of the logarithms of both sides at p = 1 and arrive at the inequality

0 ≥ 1

1− s

[
(1− s)

∫
sf 2

2σ̃2
esf

2/(2σ̃2)dµ−
∫
esf

2/(2σ̃2)dµ log

∫
esf

2/(2σ̃2)dµ

]
.

Now we set
u(s) :=

∫
esf

2/(2σ̃2)dµ,
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s ∈ (0, 1]. Then we get

0 ≥ 1

1− s
[s(1− s)u′(s)− u(s) log u(s)] ,

or equivalently

0 ≥ 1− s
s

u′(s)

u(s)
− 1

s2
log u(s).

Hence, the function

v(s) := exp

(
1− s
s

log u(s)

)
is non-increasing in s, and therefore we have v(s) ≤ lims↓0 v(s) =: v(0+) for all
s ∈ (0, 1].

Note that

v(0+) = lim
s↓0

(
u(s)(1−s)/s

)
= lim

s↓0

(∫
esf

2/(2σ̃2)dµ

)(1−s)/s

= exp

(
1

2σ̃2

∫
f 2dµ

)
.

Thus, we have

exp

(
1− s
s

log u(s)

)
≤ exp

(
1

2σ̃2

∫
f 2dµ

)
for all s ∈ (0, 1], or equivalently∫

esf
2/(2σ̃2)dµ ≤ exp

(
1

2σ̃2

s

1− s

∫
f 2dµ

)
.

Setting t = s/(2σ̃2) completes the proof.

Combining inequalities (11) and (13), we now get the following analogue of
Proposition 2.1 from [B-C-G]:

Proposition 5.2. Let µ be a probability measure on some measurable space (X,X )
which satisfies the modified LSI (7) with Sobolev constant σ2 > 0 with respect to the
gradient operator ∇ and which moreover satisfies the modified LSI (7) with Sobolev
constant σ̃2 with respect to the gradient operator ∇+. Furthermore, let f : X → R be
a bounded measurable function such that

∫
fdµ = 0 and |∇|∇f || ≤ 1 on the support

of µ. Then, we have∫
exp

(
1

2σσ̃
f

)
dµ ≤ exp

(
1

2σ̃2

∫
|∇f |2dµ

)
.

It might seem cumbersome to require µ to satisfy even two modified LSIs with
respect to two different gradients. However, due to our results from the previous
section these conditions are merely of formal nature.
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Proof. First, applying (11) to λf leads to∫
eλfdµ ≤

∫
eλ

2σ2|∇f |2dµ.

Moreover, (13) with t = λ2σ2 for any λ ∈ [0, 1√
2σσ̃

) and with f replaced by |∇f |
gives us ∫

eλ
2σ2|∇f |2dµ ≤ exp

(
λ2σ2

1− 2σ2σ̃2λ2

∫
|∇f |2dµ

)
.

Combining these two inequalities then yields∫
eλfdµ ≤ exp

(
λ2σ2

1− 2σ2σ̃2λ2

∫
|∇f |2dµ

)
.

Setting λ = 1
2σσ̃

completes the proof.

6 Relating First Order and Second Order Difference
Operators

In Proposition 5.2, we estimated the exponential moments of f involving a first
order difference operator. Now we go on to second order difference operators. Here,
it is convenient to work with the operator D as defined in (1) and to make use of
the Laplacian as introduced in (4), including properties like Theorem 3.5.

As in [B-C-G], we will consider second order differences in form of a suitably
defined “Hessian”. Remember we have Diif = Dif as discussed in the context of
(4). Therefore, taking the n×n-matrix with entries (f

′′
(x))ij = Dijf(x) would lead

to first order differences on the diagonal. For this reason, we set

f
′̂′
(x)ij :=

{
Dijf(x), i 6= j,

0, i = j,
(15)

instead. In other words, we take the Hessian of f with respect to the difference
operator D but remove its diagonal. Note that this definition also corresponds well
to the Laplacian (4).

Our next aim is to derive an inequality of the form

γE|∇f |2 ≤ E‖f ′̂′‖2HS

for some constant γ > 0. Here, as before, E denotes taking the expectation with
respect to the product measure µ = ⊗ni=1µi. One of our main tools is the following
lemma:

Lemma 6.1. Let µ1, . . . , µn be probability measures on (R,B), and denote by µ =
⊗ni=1µi their product measure. Consider f, g ∈ L2(µ). Then, we have:
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1. E(Dif)g = Ef(Dig) = E(Dif)(Dig), where Di is the difference operator from
Example 3.2.1.

2. E(Df)g = Ef(Dg), where D is the gradient operator from Example 3.2.1 and
the integral has to be understood componentwise.

3. E(∆f)g = Ef(∆g) =
∑

i 6=j E(Dijf)(Dijg), where ∆ is the Laplacian as in (4).

Hence, the difference operators Di, the gradient operator D and the Laplacian ∆ are
in some sense selfadjoint operators on L2(µ).

Proof. Part 1 follows from the fact that by Fubini’s theorem, we have

EgEif = EEifEig = EfEig.

Here, Ei once again denotes taking expected values in the i-th component. Having
established Part 1, Parts 2 and 3 are immediate. Note that in Part 3 we use that
we always have Dijf = Djif for any i, j by (1) and Fubini’s theorem.

Using this result, we can prove an inequality of the form in question:

Proposition 6.2. Let µ1, . . . , µn be probability measures on (R,B), and denote by
µ = ⊗ni=1µi their product measure. Let f ∈ L2(µ) be a function such that its Hoeff-
ding decomposition with respect to µ is given by

f =
n∑
k=d

fk

for some d ≥ 2. Then we have∫
|∇f |2dµ ≤ 1

d− 1

∫
‖f ′̂′‖2HSdµ.

Equality holds if we have f = fd, i. e. the Hoeffding decomposition of f consists of
a single term only. Here, ‖·‖HS denotes the Hilbert Schmidt norm of a matrix.

Proof. First, let f = fd. Then, we have due to Lemma 6.1.3 (using the notation
introduced there)

E‖f ′̂′‖2HS =
∑
i 6=j

E(Dijf)(Dijf) = Ef∆f.

Moreover, Theorem 3.5 yields ∆f = (d)2f (since f = fd). Consequently, we have

E‖f ′̂′‖2HS = (d)2Ef 2. (∗)

On the other hand, we clearly have |∇f |2 = (∇1f)2 + . . . + (∇nf)2. More-
over, if X1, . . . , Xn is a set of independent random variables with distributions µi,
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i = 1, . . . , n, we have fd(X1, . . . , Xn) =
∑

i1<...<id
hi1...id(Xi1 , . . . , Xid), where the

summands on the right hand side are pairwise orthogonal in L2. Here we used the
notation from the proof of Theorem 3.5.

Now let X̄1, . . . , X̄n be a set of independent copies of the random variables
X1, . . . , Xn (cf. Remark 3.3.3). We then extend the family of the hi1...id(Xi1 , . . . , Xid)
by considering the same functions but we replace precisely one entry Xij by the cor-
responding independent copy X̄ij (in other words, and once again using the notation
from Remark 3.3.3, we take the Tijhi1...id(Xi1 , . . . , Xid)). Doing so, we still have a
(larger) family of pairwise orthogonal functions in L2⋃

i1<...<id

{hi1...id(Xi1 , . . . , Xid)} ∪ {Tijhi1...id(Xi1 , . . . , Xid), j = 1, . . . , d},

now integrating with respect to the Xi and the X̄i, however.

We easily see that still using Remark 3.3.3, we get (similarly to the deduction of
(5))

(∇ifd(X1, . . . , Xn))2 =
1

2
Ēi(fd − Tifd)2

=
1

2
Ēi
( ∑

i1<...<id
i∈{i1,...,id}

(hi1...id(Xi1 , . . . , Xid)− Tihi1...id(Xi1 , . . . , Xid))
)2
.

Together with the orthogonality relations as described above, we get (once again
applying Fubini’s theorem)

E(∇ifd(X1, . . . , Xn))2

=
∑

i1<...<id
i∈{i1,...,id}

1

2

(
EĒi(h2i1...id(Xi1 , . . . , Xid) + Tih

2
i1...id

(Xi1 , . . . , Xid))
)

=
∑

i1<...<id
i∈{i1,...,id}

Eh2i1...id(Xi1 , . . . , Xid).

As in the proof of Theorem 3.5, it therefore remains to check how often each
term Eh2i1...id(Xi1 , . . . , Xid) appears in E|∇f |2 =

∑
i(∇ifd)

2. However, it is clear
that each i ∈ {i1, . . . , id} replicates the summand Ehi1...id(Xi1 , . . . , Xid) exactly once.
Consequently, it follows that

E|∇f |2 = dEf 2. (∗∗)

Comparing (∗) and (∗∗) completes the proof in case of f = fd.

In the general case we make use of the orthogonality of the Hoeffding decompo-
sition and get

E|∇f |2 =
n∑
k=d

1

k − 1
E‖f ′̂′k ‖2HS ≤

1

d− 1
E‖f ′̂′‖2HS.
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Here we used that the integrals of the Hilbert Schmidt norms of the second order
differences of the Hoeffding terms sum up for reasons of orthogonality. This finally
completes the proof.

Note that in Proposition 5.2, the condition |∇|∇f || ≤ 1 also involves second
order difference operators. It would be desirable to replace it by a simpler condition,
for instance involving a Hessian again. However, we have not found a satisfactory
solution for this problem.

We are now ready to prove Theorems 1.1 and 1.2:

Proof of Theorem 1.1 and Theorem 1.2. First, combine Proposition 5.2 with (X,X ) =
(Rn,Bn) and Proposition 6.2. This leads us to∫

exp

(
1

2σσ̃
f

)
dµ ≤ exp

(
1

2σ̃2

1

d− 1

∫
‖f ′̂′‖2HSdµ

)
(16)

if µ satisfies the modified LSI (7) with constant σ2 > 0 with respect to ∇ and
furthermore with constant σ̃2 > 0 with respect to ∇+.

Now, from (16) we get∫
exp

(
1

2σσ̃
|f |
)
dµ ≤

∫ (
exp

(
1

2σσ̃
f

)
+ exp

(
1

2σσ̃
(−f)

))
dµ

≤ 2 exp

(
1

2σ̃2

1

d− 1

∫
‖f ′̂′‖2HSdµ

)
. (17)

Thus, by applying Hölder’s inequality we obtain∫
exp

(
1

2σσ̃κ
|f |
)
dµ ≤

(
2 exp

(
1

2σ̃2

1

d− 1

∫
‖f ′̂′‖2HSdµ

))1/κ

for all κ ≥ 1. Using
∫
‖f ′̂′‖2HSdµ ≤ b2, we see that this is ≤ 2 if

κ ≥
(

log 2 +
1

2σ̃2
b2/(d− 1)

)
/ log 2, (∗)

or equivalently
1

2σσ̃κ
≤ log 2

2σσ̃ log 2 + σ
σ̃
b2/(d− 1)

.

Note that from (∗) we immediately get that any such κ will be ≥ 1 as required.

From Proposition 4.2, Proposition 4.3, Lemma 4.4 and Proposition 4.6 we know
that µ indeed satisfies modified LSIs of type (7) both with respect to ∇ and with
respect to ∇+, and that we can set σ2 = 2 and σ̃2 = 4 or, in the Bernoulli case,
σ2 = 1 and σ̃2 = 2. We thus get∫

exp

(
log 2√

32 log 2 + 1√
2
b2/(d− 1)

|f |

)
dµ ≤ 2
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if σ2 = 2 and σ̃2 = 4 and∫
exp

(
log 2√

8 log 2 + 1√
2
b2/(d− 1)

|f |

)
dµ ≤ 2

if σ2 = 1 and σ̃2 = 2. Noting that

log 2√
32 log 2 + 1√

2
x
≥ 1

6 + 2x
and

log 2√
8 log 2 + 1√

2
x
≥ 1

3 + 2x

for all x ≥ 0 completes the proof.

7 Allowing First Order Hoeffding Terms

In this section, we give a version of Theorem 1.1 which also allows functions with
non-vanishing first order Hoeffding terms. This is an analogue of Theorem 1.3 in
Bobkov, Chistyakov and Götze [B-C-G] and will be done by setting up conditions
which guarantee that the limit behavior as n → ∞ does not change. However,
establishing this needs some extra work.

First we introduce some notation. Let X1, . . . , Xn be independent random vari-
ables and f : Rn → R a function such that f(X1, . . . , Xn) has Hoeffding decomposi-
tion f =

∑n
k=0 fk. Then, we denote by

Rf := f − f0 − f1 =
n∑
k=2

fk

the projection of f onto the space of the statistics f(X1, . . . , Xn) whose Hoeffding
terms of orders 0 and 1 vanish. Due to (6) it is clear that we have

DijRf = Dijf (18)

for all i 6= j.

We always consider statistics with expected value 0 (and therefore f0 = 0).
Moreover, as in Section 3, we denote the first order Hoeffding term by

f1(X1, . . . , Xn) =
n∑
i=1

hi(Xi).

If we want to obtain a result similar to Theorem 1.1, for instance∫
ec|f |dµ ≤

∫
ec(|f1|+|Rf |)dµ ≤ 2

for some constant c > 0, we have set up conditions ensuring f1 = O(1). The
following theorem presents two ways of doing so:
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Theorem 7.1. Let µ1, . . . , µn be probability measures on (R,B), and denote by µ =
⊗ni=1µi their product measure. Moreover, let f : Rn → R be a bounded measurable
function such that its Hoeffding decomposition with respect to µ is given by

f = f1 +
n∑
k=d

fk = f1 +Rf

for some d ≥ 2. (In particular, we have Ef = 0.) Denote by D and ∇ the difference
operators as introduced in Example 3.2. Suppose that the condition

|∇|∇Rf || ≤ 1

is satisfied on the support of µ and that we have∫
‖f ′̂′‖2HSdµ ≤ b2

for some b ≥ 0. Here, ‖f ′̂′‖HS is the “dediagonalized” Hessian of f with respect to
D, and ‖f ′̂′‖HS denotes its Hilbert Schmidt norm. Furthermore, assume that one of
the conditions

(i) |∇f1|2 ≤ γ2 on the support of µ for some γ ≥ 0 or

(ii) |∇|∇f1|| ≤ 1 on the support of µ and
∫
|∇f1|2dµ ≤ α2 for some α2 ≥ 0

is satisfied. Then, there we have∫
exp

(
1

12 + 4b2/(d− 1) + 7γ
|f |
)
dµ ≤ 2

in case of condition (i) and∫
exp

(
1

4(3 + b2/(d− 1) + α2)
|f |
)
dµ ≤ 2

in case of condition (ii).

Proof. The basic argument is as follows: if we have two functions ϕ1 and ϕ2 on Rn

both satisfying ∫
eci|ϕi|dµ ≤ 2 (∗)

for some constants ci > 0, i = 1, 2, then we have∫
emin(c1,c2)|ϕ1+ϕ2|/2dµ ≤

∫
ec1|ϕ1|/2ec2|ϕ2|/2dµ

≤
(∫

ec1|ϕ1|dµ

)1/2(∫
ec2|ϕ2|dµ

)1/2

≤ 2
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due to the Cauchy Schwarz inequality. In our situation, we set ϕ1 = f1 and ϕ2 = Rf .
Hence, we only have to check (∗).

In case of Rf , this clear because of Theorem 1.1. In case of f1 together with
condition (ii), we apply Proposition 5.2 and then proceed as in the proof of Theorem
1.1. Using the notation from (∗), this leads to

c1 =
1

6 + 2α2
and c2 =

1

6 + 2b2/(d− 1)
,

so that we can estimate min(c1, c2)/2 as stated in the theorem.

It therefore remains to check (∗) in the case of f1 together with condition (i).
Here, inequality (11) yields∫

eλf1dµ ≤
∫
eσ

2λ2|∇f1|2dµ ≤ eσ
2λ2γ2

for any λ > 0, thus ∫
eλ|f1|dµ ≤ 2eσ

2λ2γ2 .

As in the proof of Theorem 1.1 it follows that∫
eλ|f1|/κdµ ≤

(
2eσ

2λ2γ2
)1/κ

.

for all κ ≥ 1. This is ≤ 2 if

λ

κ
≤ λ log 2

log 2 + λ2σ2γ2
.

In particular, we see that any such κ must be ≥ 1 indeed (as long as we require κ >
0). The expression on the right hand side attains a maximum at λ = (log 2)1/2/(σγ)
whose value is exactly (log 2)1/2/(2σγ). Plugging in σ2 = 2 we thus get

1

2
c1 =

(log 2)1/2

4
√

2γ
≥ 1

7γ
.

With c2 as in the first part of the proof we arrive at the bound given in the theorem.

Similarly to Theorem 1.2, it is possible to improve the constants c1 and c2 if all
the underlying measures are Bernoulli distributions. As the result would be pretty
lengthy we will skip the details. The same holds for results similar to Remark 1.3.

Unfortunately, the results of Theorem 7.1 are not too satisfactory. This is because
of several aspects:

1) In the condition |∇|∇Rf || ≤ 1, we must use Rf instead of f .
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2) Condition (i) exclusively makes use of first order differences and requires them
to be pointwise bounded, which does not fit well into the context of this work.

3) In case of condition (ii) we take the expected value of |∇f1|2 instead, however
this is at the cost of getting the additional condition |∇|∇f1|| ≤ 1.

These problems do not occur in [B-C-G] in case of the unit sphere. This is
because of the following reasons: comparing our results to [B-C-G], the analogue of
the first order Hoeffding term f1 is the “linear part” of a function f in case of the
unit sphere. Of course, the linear part has constant derivatives. By contrast, if we
apply any of the difference operators from Example 3.2 to f1, the result will not be
constant in general. This complicates controlling the additional terms. It would be
desirable to simplify the conditions given in Theorem 7.1 for instance by combining
some of them, but it is not clear how this could be achieved.

Finally, we observe that using Example 3.2.2 and Remark 3.3.3, we get

|∇f1(X1, . . . , Xn)|2 =
n∑
i=1

1

2
Ēi(hi(Xi)− hi(X̄i))

2

=
1

2

n∑
i=1

(hi(Xi)
2 + Ēihi(X̄i)

2)

due to the properties of the Hoeffding decomposition according to Theorem 3.4, and
as a consequence

E|∇f1(X1, . . . , Xn)|2 =
n∑
i=1

Ehi(Xi)
2.

See also the proof of Theorem 6.2 for similar calculations.

This allows us to replace the condition |∇f1| = O(1) in (i) and (ii) from Theorem
7.1 by a condition of the form maxi |hi| = O(1/

√
n). This can be especially useful

in case of symmetric Bernoulli distributions, as here we have hi(Xi) = riXi for some
ri ∈ R and we therefore only have to bound the numbers ri.

8 Functions in Independent Bernoulli Variables

To start with the applications of Theorem 1.1, we consider functions of n indepen-
dent symmetric Bernoulli variables each taking values in {±1}. It is well-known
that a function f of this type can be represented as

f(X1, . . . , Xn) = α0 +
n∑
i=1

αiXi +
∑
i<j

αijXiXj + . . . , (19)

where the coefficients αI (with a suitable multi-index I) are real numbers and the
sum goes up to order n. More precisely, we have

αi1...id = Ef(X1, . . . , Xn)Xi1 · · ·Xid
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for any i1 < . . . < id, d = 0, 1, . . . , n.

This representation is called the Fourier-Walsh expansion of the function f , and
the expression on the right-hand side of (19) is also known as a Rademacher chaos.
It is immediately clear that (19) is at the same time the Hoeffding decomposition of
f . Consequently, we see that for applying our results like Theorem 1.2 we need to
require (19) to start with the second order terms.

To begin, we will therefore discuss functions of the form

f : Rn → R; f(x1, . . . , xn) :=
∑
i<j

αijxixj (∗)

with the αij being real numbers and the probability measures µi all given by the
symmetric Bernoulli distribution on {±1}. Hence, the product measure which we
will again denote µ is just the uniform distribution on {±1}n.

We then get ∫
fdµ = 0 and

∫
f 2dµ =

∑
i<j

α2
ij, (20)

as we readily check. From the proof of Proposition 6.2, we therefore obtain that due
to f = f2 (using the notation from Theorem 3.4), we have∫

‖f ′̂′‖2HSdµ = (2)2

∫
f 2dµ = 2

∑
i<j

α2
ij. (21)

So what remains to be checked is the condition |∇|∇f || ≤ 1 for all x ∈ {±1}n.
To simplify notation, we introduce the convention that

∑(j) means summing over
all indexes but j. Similarly,

∑(j,k) denotes summing over all indexes but j and k.
Furthermore, in the sequel we will assume that αij = αji for all i > j (note that a
priori we only allowed indexes i < j).

With the help of Remark 3.3.1 (in particular, remember the operator σk), we
can rewrite

|∇|∇f(x)|| = 1

2

( n∑
k=1

(|∇f(x)| − |∇f(σkx)|)2
)1/2

. (22)

We next estimate the difference of the two norms in (22).

For this, once again due to Remark 3.3.1, we observe that for a function f as in
(∗), we have

(∇if(x))2 = (Dif(x))2 =
( n∑
j=1

(i)αijxixj
)2

=
( n∑
j=1

(i)αijxj
)2

(using (5) in the second step as we have f = f2). If i 6= k, this becomes( n∑
j=1

(i,k)αijxj + αikxk
)2
.
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Likewise, assuming i 6= k we have

(∇if(σkx))2 =
( n∑
j=1

(i,k)αijxj − αikxk
)2
.

If i = k, we have (∇kf(x))2 = (∇kf(σkx))2.

This means that if we set v to be the vector with entries
∑n

j=1
(i,k)αijxj for all

i 6= k and entry
∑n

j=1
(k)αkjxj in the k-th component and moreover w to be the

vector with entries αikxk for all i 6= k and k-th component wk = 0, we have

||∇f(x)| − |∇f(σk(x))|| = ||v + w| − |v − w||

≤ 2|w| = 2
( n∑
i=1

(k)α2
ik

)1/2
.

Going back to (22) and plugging in leads to

|∇|∇f(x)|| ≤ (
∑
i 6=k

α2
ik)

1/2 =
√

2(
∑
i<j

α2
ij)

1/2. (23)

The term on the right-hand side equals ‖f ′̂′(x)‖HS, which is the same as E‖f ′̂′(x)‖HS

in this case.

We now apply Remark 1.3. For this, set A := (
∑

i<j α
2
ij)

1/2. (Note that this
is in fact the L2-norm of f as we have already seen in (20).) We can then choose
τ :=

√
2A as a uniform bound on |∇|∇f ||. Moreover, as for the constant b from

Theorem 1.1, from (21) we get that we can set b :=
√

2A again, i. e. we have b = τ .
This leads us to the following result:

Example 8.1. Let µ be the product measure of n symmetric Bernoulli distributions
µi = 1

2
δ+1 + 1

2
δ−1 on {±1}, and define f : Rn → R by

f(x1, . . . , xn) :=
∑
i<j

αijxixj

for any real numbers αij, i < j. Set

A := (
∑
i<j

α2
ij)

1/2.

Then, we have ∫
exp

(
1

5
√

2A
|f |
)
dµ ≤ 2.

Consequently, we have fluctuations of order 1 if A = O(1). For instance, if we
assume f to be symmetric (that is, invariant under permutations), i. e. αij ≡ r for
all i < j and some r ∈ R, then this means we need r = O(n−1).
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It is possible to replace the constant 5
√

2 ≈ 7.1 in the denominator of the bound
given in Example 8.1 by about 6.4. This follows from the proof of Theorem 1.1 if
we skip the last few estimates. In particular, we see that we do not lose much in
the process of deducing our final inequalities.

We next extend our results to arbitrary functions of n independent Bernoulli
variables, i. e. we now allow Hoeffding decompositions which consist of terms from
order 2 up to order n. For this, we go back to the deduction of Example 8.1 and see
that we can reformulate (23) as

|∇|∇f(x)|| ≤ ‖f ′̂′(x)‖HS.

Moreover, a close analysis of the deduction of (23) shows that we do not need
to assume the Hoeffding term we consider to be of order 2. To see this, take the
example of a function f whose Hoeffding decomposition consists of a single term of
order d. Then, arguing as in case of d = 2 we have

(∇if(x))2 = (Dif(x))2 =
( ∑

i1<...<id
i∈{i1,...,id}

αi1...idxi1 · · ·xid
)2
,

so that for i 6= k it follows that

(∇if(x))2 =
( ∑

i1<...<id
i∈{i1,...,id}

(k)αi1...idxi1 · · ·xid +
∑

i1<...<id
i,k∈{i1,...,id}

αi1...idxi1 · · ·xid
)2
.

Thus, we have
(∇if(x))2 = (gi,k(x) +Dikf(x))2,

where gik does not depend on xk, while we have Dikf(σkx) = −Dikf(x). In partic-
ular, we get

(∇if(σk(x)))2 = (gi,k(x)−Dikf(x))2,

while for i = k we have (∇kf(x))2 = (∇kf(σkx))2.

This explains why everything we did in case of d = 2 also works for d ≥ 2
arbitrary. Moreover, it is clear that we can apply all these arguments to sums of
such terms (possibly from order 2 up to order n) as well, since (∇if(x))2 will have
the same structure again.

Setting B := supx∈{±1}n‖f
′̂′
(x)‖HS, τ := B and b := B in Remark 1.3, we

therefore arrive at the following generalization of Example 8.1:

Example 8.2. Let µ be the product measure of n symmetric Bernoulli distributions
µi = 1

2
δ+1 + 1

2
δ−1 on {±1}, and define f : Rn → R by

f(x1, . . . , xn) :=
∑
i<j

αijxixj +
∑
i<j<k

αijkxixjxk + . . . ,
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where the sum goes up to order n and the αi1...id are any real numbers. Set

B := sup
x∈{±1}n

‖f ′̂′(x)‖HS.

Then, we have ∫
exp

(
1

5B
|f |
)
dµ ≤ 2.

It is possible to sharpen this estimate if we do not set b = B but take the integral∫
‖f ′̂′(x)‖HSdµ. However, since we have τ = B anyway, this will not change the order

of the fluctuations which solely depends on B either way.

Let us check which sort of results we can expect by applying Example 8.2. For
this, we again consider a single Hoeffding term but now of order d > 2. To start,
we take d = 3 and assume the Hoeffding term to be symmetric (in order to get a
simple result), i. e. we set

f(x1, . . . , xn) := r
∑
i<j<k

xixjxk

for some r which we assume to be positive.

Due to (6) we have

Dijf(x) = r
n∑
k=1

(i,j)xixjxk,

from which we get

B := sup
x∈{±1}n

‖f ′̂′(x)‖HS = r(n− 2)
√
n(n− 1).

It therefore follows that∫
exp

(
1

5r(n− 2)
√
n(n− 1)

|f |

)
dµ ≤ 2,

in other words we have fluctuations of order 1 if r = O(n−2).

However, the optimal result would be r = O(n−3/2)). In fact, even if we do not
apply Example 8.2 but evaluate the behavior of |∇|∇f || directly we will not arrive at
the optimal rate. This is because we are dealing with concentration of second order.
In the same way, if we applied a first order concentration result like Proposition 2.1,
we would already get a non-optimal result if we considered a second order Hoeffding
term as in Example 8.1. In case of a third order Hoeffding term our result would be
still worse (in fact, we would get r = O(n−5/2)).

Similarly, if we consider a symmetric Hoeffding term of order d for an arbitrary
d ∈ {2, 3, . . . , n}, i. e. a function f given by

f(x1, . . . , xn) := r
∑

i1<...<id

xi1 · · ·xid
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for some r > 0, we get that

sup
x∈{±1}n

‖f ′̂′(x)‖HS = r
√
n(n− 1)

(
n− 2

d− 2

)
.

Hence, we obtain fluctuations of order 1 if r = O(1/(
√
n(n− 1)

(
n−2
d−2

)
)) or, to put it

differently, if r = O(n−(d−1)) in case we regard d as a fixed number independent of
n.

It is now possible to combine these results and consider functions whose Hoeffding
decompositions consist of several terms. Note that at this point we may even allow
first order Hoeffding terms with the help of the results from Section 7 (especially its
concluding remarks). In a similar way, we could also discuss general (non-symmetric)
functions of independent symmetric Bernoulli variables.

To sum up, we see that our second order results work best for functions whose
Hoeffding decompositions are dominated by their second order term. That means,
the suprema of the other terms should not be of larger order than the supremum of
the second order term. To achieve optimal results for higher order terms we would
need higher order analogues of Theorems 1.1 and 1.2.

We conclude this section by comparing some of our results to related work. One
example of exponential inequalities for Rademacher chaoses can be found in de la
Peña and Giné [D-G], Corollary 3.2.6. We now give a reformulated version of this
result:

Proposition 8.3. Let µ be the product measure of n symmetric Bernoulli distribu-
tions µi = 1

2
δ+1 + 1

2
δ−1 on {±1}, and define f : Rn → R by

f(x1, . . . , xn) := α0 +
n∑
i=1

αixi +
∑
i<j

αijxixj +
∑
i<j<k

αijkxixjxk + . . . ,

where the sum goes up to order d for some d ≤ n and the αi1...ik are any real numbers.
Then, there exists some λ = λ(d) ∈ (0,∞) such that∫

exp

[(
|f |

λ‖f‖2

)2/d
]
dµ ≤ 2.

Here, ‖f‖2 denotes the L2-norm of f with respect to µ.

If we once again take

f(x1, . . . , xn) :=
∑
i<j

αijxixj

and remember (20), we see that applying Example 8.1 leads to the same result as
Proposition 8.3 (up to constants). We cannot expect to get finer estimates as e. g.

36



Theorem 1.2 in Talagrand [T2], which also provides information about Gaussian
type tail probabilities for small t.

On the other hand, let us apply Proposition 8.3 to single Hoeffding terms of some
fixed higher order d which does not depend on n. The concentration rates we obtain
then depend on the L2-norm ‖f‖2 instead of supx∈{±1}n‖f

′̂′
(x)‖HS as in Example

8.2. In general, this will lead to better estimates than in our case. For instance,
Proposition 8.3 yields the optimal rates of concentration for symmetric Hoeffding
terms which we could not recover from Example 8.2 in the above discussion.

Finally, consider functions with Hoeffding decompositions with terms up to order
n (or some order that grows with n). In this case, Proposition 8.3 will yield a
constant λ which depends on n, while our results as stated in Example 8.2 might
still allow us to control the higher order terms in a convenient way.

9 Multilinear Polynomials in Independent Random
Variables

In this section, we transfer the results from previous section to a more general
situation. That is, we consider functions of the same form as in (19), i. e.

f(X1, . . . , Xn) := α0 +
n∑
i=1

αiXi +
∑
i<j

αijXiXj + . . . , (24)

where the coefficients αI (with a suitable multi-index I) are real numbers and the
X1, . . . , Xn are some independent random variables.

Functions of this type are called multilinear polynomials in the Xi. Multilinear
polynomials appear in many probability theory related fields like random graphs
or Boolean functions. Recently, an invariance principle for multilinear polynomials
was proved by E. Mossel, R. O’Donnell and K. Oleszkiewicz [M-O-O]. With special
regard to concentration inequalities for such functions we also mention the work of
W. Schudy and M. Sviridenko [S-S1], [S-S2].

So take n independent random variables X1, . . . , Xn. In order to be able to
proceed similarly to the previous section, we assume EXi = 0 and EX2

i = 1 for all i.
Due to the conditions from Theorem 1.1 we must then require the sum (24) to start
with the terms of order 2. Moreover, we have to assume the Xi to be a. s. bounded
by some universal constant M > 0.

As in the symmetric Bernoulli case, we first consider functions of the form

f(X1, . . . , Xn) :=
∑
i<j

αijXiXj
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for any real numbers αij, i < j. In particular, it follows from the above discussion
that this is a function whose Hoeffding decomposition just consists of a single term
of order 2.

The first steps are then exactly the same as in case of the symmetric Bernoulli
distribution. The differences only begin with the condition |∇|∇f(X1, . . . Xn)|| ≤ 1
a. s. Instead of (22), we must now work with the more general expression

|∇|∇f(X)|| =
( n∑
k=1

1

2
Ēk(|∇f(X)| − |Tk∇f(X)|)2

)1/2
(25)

with X = (X1, . . . , Xn) and Tk as in Remark 3.3.3.

First, we consider the difference of the two norms in the expectation of (25).
Using the assumptions on the moments of the Xi and Remark 3.3.3, we get

(∇if(X1, . . . , Xn))2 =
1

2
Ēi(

n∑
j=1

(i)αij(Xi − X̄i)Xj)
2

=
1

2
(
n∑
j=1

(i)αijXj)
2(X2

i + 1). (26)

In comparison to the symmetric Bernoulli case, we get an additional factor (X2
i +

1)/2.

Now, as a consequence from (26), for i = 1, . . . , n, i 6= k we have

(∇if(X1, . . . , Xn))2 =
1

2
(
n∑
j=1

(i,k)αijXj + αikXk)
2(X2

i + 1)

as well as

(Tk∇if(X1, . . . , Xn))2 =
1

2
(
n∑
j=1

(i,k)αijXj + αikX̄k)
2(X2

i + 1),

while for i = k we have

(∇kf(X1, . . . , Xn))2 =
1

2
(
n∑
j=1

(k)αkjXj)
2(X2

k + 1)

and

(Tk∇kf(X1, . . . , Xn))2 =
1

2
(
n∑
j=1

(k)αkjXj)
2(X̄2

k + 1).

In particular, we do not have (∇kf)2 = (Tk∇kf)2 anymore. Therefore, these terms
will need different treatment than those in the symmetric Bernoulli case.

Hence, we copy our approach from the previous section for all entries but the
k-th one. For that, set a :=

∑n
i=1

(k)(∇if)2, b := (∇kf)2, c :=
∑n

i=1
(k)(Tk∇if)2 and

d := (Tk∇kf)2 so that ||∇f | − |Tk∇f || = |
√
a+ b−

√
c+ d|.
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The simplest idea for estimating |
√
a+ b−

√
c+ d| is as follows: For simplicity,

assume that a, b, c, d > 0. (This is no loss of generality since if this is not the case
everything we will do in the sequel can either easily be adapted or gets trivial.)
Then, we have

|
√
a+ b−

√
c+ d| = |a+ b− c− d|√

a+ b+
√
c+ d

≤ |a− c|√
a+ b+

√
c+ d

+
|b− d|√

a+ b+
√
c+ d

≤ |a− c|√
a+
√
c

+
|b− d|√
b+
√
d

= |
√
a−
√
c|+ |

√
b−
√
d|.

However, this estimate is too weak of be useful. This is because in fact, remembering
(25) the second summand will finally yield a contribution of

1

2
Ēk(∇kf − Tk∇kf)2 = (∇kkf)2.

Unlike in case of the difference operator D, we do not have ∇kk = ∇k. However,
using (26), EX2

i = 1 and E
√
X2
i + 1 ≤

√
2 (due to Jensen’s inequality), we still get

(∇kkf)2 =
1

2
Ēk(∇kf − Tk∇kf)2

=
1

4
(
n∑
j=1

(k)αkjXj)
2Ēk(

√
X2
k + 1−

√
X̄2
k + 1)2

≥ 1

4
(
n∑
j=1

(k)αkjXj)
2(X2

k + 1− 2
√

2
√
X2
k + 1 + 2)

=
1

4
(
n∑
j=1

(k)αkjXj)
2(
√
X2
k + 1−

√
2)2.

Comparing this to (26), we see that in essence we would have arrived as a purely
first order condition again.

Therefore, we slightly modify the upper estimate. That is, we do not compare
the k-th entries against each other but against the norm of the “complete” vector.
Indeed, by a simple modification of the above procedure we arrive at the estimate

|
√
a+ b−

√
c+ d| ≤ |

√
a−
√
c|+ |b− d|√

a+ b
.

We proceed with estimating |
√
a−
√
c|. Similarly to the symmetric Bernoulli case,

define v to be the vector with entries (
∑n

j=1
(i,k)αijXj)

√
(X2

i + 1)/2, w to be the vec-
tor with entries αikXk

√
(X2

i + 1)/2 and w′ the one with entries αikX̄k

√
(X2

i + 1)/2
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for all i 6= k in each case (i. e. we consider (n − 1)-dimensional vectors only). It
follows that

|
√
a−
√
c| = ||v + w| − |v + w′||

≤ |w − w′| =
(1

2

n∑
i=1

(k)α2
ik(X

2
i + 1)(Xk − X̄k)

2
)1/2

.

Moreover, in case of |b− d|/
√
a+ b, we immediately get

|b− d|√
a+ b

=
1√
2

(
∑n

j=1
(k)αkjXj)

2|X2
k − X̄2

k |
(
∑n

i=1(
∑n

j=1
(i)αijXj)2(X2

i + 1))1/2
.

Using these estimates, we take squares and the integral Ēk. Temporarily omitting
the factor 1/2, this yields

Ēk
(( n∑

i=1

(k)α2
ik(X

2
i + 1)(Xk − X̄k)

2
)1/2

+
(
∑n

j=1
(k)αijXj)

2|X2
k − X̄2

k |
(
∑n

i=1(
∑n

j=1
(i)αijXj)2(X2

i + 1))1/2

)2
=Ēk

( n∑
i=1

(k)α2
ik(X

2
i + 1)(Xk − X̄k)

2 +
(
∑n

j=1
(k)αijXj)

4(X2
k − X̄2

k)2∑n
i=1(
∑n

j=1
(i)αijXj)2(X2

i + 1)

+ 2
( n∑
i=1

(k)α2
ik(X

2
i + 1)(Xk − X̄k)

2
)1/2 (

∑n
j=1

(k)αijXj)
2|X2

k − X̄2
k |

(
∑n

i=1(
∑n

j=1
(i)αijXj)2(X2

i + 1))1/2

)
≤

n∑
i=1

(k)α2
ik(X

2
i + 1)(X2

k + 1) +
(
∑n

j=1
(k)αijXj)

4(X2
k +M2

k )2∑n
i=1(
∑n

j=1
(i)αijXj)2(X2

i + 1)

+ 2
( n∑
i=1

(k)α2
ik(X

2
i + 1)(X2

k + 1)
)1/2 (

∑n
j=1

(k)αijXj)
2(X2

k +M2
k )

(
∑n

i=1(
∑n

j=1
(i)αijXj)2(X2

i + 1))1/2
.

Here, we set Mk := ess sup |Xk|. Moreover, we have used Hölder’s inequality in the
form of

Ēk|Xk − X̄k| ≤ (Ēk(Xk − X̄k)
2)1/2.

Now we define two more vectors u, u′ ∈ Rn via

uk :=
( n∑
i=1

(k)α2
ik(X

2
i + 1)(X2

k + 1)
)1/2

and

u′k :=
(
∑n

j=1
(k)αijXj)

2(X2
k +M2

k )

(
∑n

i=1(
∑n

j=1
(i)αijXj)2(X2

i + 1))1/2

for each k = 1, . . . , n. Summarizing the above discussion and putting everything
together (in particular, remember there is second factor 1/

√
2 coming from (25))

then reveals that we have shown |∇|∇f(x)|| ≤ 1
2
|u + u′|, which we now simply

estimate by 1
2
(|u|+ |u′|).
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We can then identify |u|/2 as

1

2

(∑
i 6=k

α2
ik(X

2
i + 1)(X2

k + 1)
)1/2

, (27)

and in case of |u′|/2 we have

1

2

(∑n
i=1(
∑n

j=1
(i)αijXj)

4(X2
i +M2

i )2∑n
i=1(
∑n

j=1
(i)αijXj)2(X2

i + 1)

)1/2

≤ 1√
2
M max

i=1,...,n

√
M2

i + 1|
n∑
j=1

(i)αijXj|. (28)

In the latter inequality we have used the simple estimate∑
i

x2i y
2
i ≤

∑
i

xizi(yi/zi) max
i
xiyi

for positive xi, yi, zi. Moreover, remember that M ≥ maxiMi is an upper bound on
the Xi.

It is now possible to relate (27) and (28) to the difference operators from Section
3 again. As for (27), note that we have

‖f ′̂′(X1, . . . , Xn)‖HS =
(∑
i 6=j

α2
ijX

2
iX

2
j

)1/2
.

Therefore, we can interpret (27) as the value of the Hilbert-Schmidt norm of the
Hessian f ′̂′(X1, . . . , Xn) if in each of the components f ′̂′ij(X1, . . . , Xn) we replace the

random variables Xi and Xj by
√

(X2
i + 1)/2 and

√
(X2

j + 1)/2, respectively.

Moreover, using (26) we see that in fact, (28) is nothing but

M max
i=1,...,n

ess sup (i)|∇if(X1, . . . , Xn)|.

Here, e̊ss sup(i) means that we only take the essential supremum in Xi but not
(yet) in the other random variables. The appearance of first order differences is
a consequence of the structures of ∇kf and Tk∇kf which we have discussed after
deducing (26).

As in the symmetric Bernoulli case, we now note that all we did so far actually
does not depend on the fact that we have dealt with a second order Hoeffding term
only, but we can choose any multilinear polynomial with terms from order 2 up to
n instead. Again, the background is that for i 6= k we basically have

(∇if(X1, . . . , Xn))2 = (gik(X1, . . . , Xn) + g′ik(X1, . . . , Xn))2

for a function gik which does not depend on Xk and a function g′ik which is closely
related to Dikf .
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Finally, in some applications it is more convenient to allow arbitrary indepen-
dent random variables and then to consider suitable compositions ψi(Xi). So let
X1, . . . , Xn be independent random variables with distributions µ1, . . . , µn and prod-
uct measure µ = ⊗ni=1µi together with measurable functions ψi : R → R such that
we have

Eψi(Xi) = 0, Eψi(Xi)
2 = 1 and max

i
sup

x∈supp(µi)
|ψi(x)| ≤M. (29)

Here, M is some universal constant, and supp(µi) denotes the support of µi.

The functions to consider are then of the form

f(x1, . . . , xn) :=
∑
i<j

αijψi(xi)ψj(xj) +
∑
i<j<k

αijkψi(xi)ψj(xj)ψk(xk) + . . . , (30)

where the sum goes up to order n and the αi1...id are real numbers.

The modified Hessian we introduced in the context of (27) can now be defined
as follows:

Definition 9.1. Let f be a function as in (30), and let f ′̂′(x) be its dediagonalized
Hessian with respect to the difference operator D. Then, we denote by f ′̂′∗(x) the
n× n-matrix which we get if for all i 6= j, in the ij-th entry of f ′̂′(x) we replace the
functions ψi(xi) and ψj(xj) by

√
(ψi(xi)2 + 1)/2 and

√
(ψj(xj)2 + 1)/2, respectively.

Based on this, we choose real numbers B1 and B2 such that

B1 ≥ sup
x∈supp(µ)

‖f ′̂′∗(x)‖HS (31)

and moreover
B2 ≥M sup

x∈supp(µ)
max
i=1,...,n

|∇if(x)|, (32)

where supp(µ) denotes the support of µ.

We then arrive at the following result:

Example 9.2. Consider n independent random variables X1, . . . , Xn with distribu-
tions µi, and let µ = ⊗ni=1µi be their product measure. Furthermore, let ψi : R→ R
be measurable functions as in (29). Consider the function f : Rn → R which is given
by

f(x1, . . . , xn) :=
∑
i<j

αijψi(xi)ψj(xj) +
∑
i<j<k

αijkψi(xi)ψj(xj)ψk(xk) + . . . ,

where the sum goes up to order n and the αi1...id are real numbers. Choose B1 and
B2 as in (31) and (32). Then, we have∫

exp

(
1

8(B1 +B2)
|f |
)
dµ ≤ 2.
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Proof. Most of the proof directly follows from the above discussion. In particular,
we apply Remark 1.3 with τ = B1 +B2. It only remains to check that it is possible
also to set b = B1 +B2.

For this, note that by definition we have

b2 ≥ E‖f ′̂′(X1, . . . , Xn)‖2HS.

The entries of f ′̂′(X1, . . . , Xn) are of the form

f
′̂′
ij(X1, . . . , Xn) = Dijf(X1, . . . , Xn) = ψi(Xi)ψj(Xj)gij(X1, . . . , Xn)

for some function gij which does not depend on Xi and Xj. Moreover, we have

f
′̂′∗
ij (X1, . . . , Xn) =

√
ψi(Xi)2 + 1

2

√
ψj(Xj)2 + 1

2
gij(X1, . . . , Xn)

for the same function gij.

Since Eψi(Xi)
2 = 1 for all i = 1, . . . , n, it follows that

Ef ′̂′(X1, . . . , Xn)2ij = Ef ′̂′∗(X1, . . . , Xn)2ij

for any i 6= j. Using (31), we therefore get that

B2
1 ≥ E‖f ′̂′∗(X1, . . . , Xn)‖2HS = E‖f ′̂′(X1, . . . , Xn)‖2HS,

which completes the proof.

To sum up, Example 9.2 enables us to replace the condition |∇|∇f || ≤ 1 by con-
ditions solely depending on the dediagonalized Hessian of f (or simple modifications
of it) and first order difference operators.

As the case of a single Hoeffding term of second order is of particular importance,
we also give a reformulation of Example 9.2 for this situation. Setting

A1 := (
∑
i<j

α2
ij)

1/2 and A2 := max
i=1,...,n

n∑
j=1

(i)|αij|,

it is possible to take B1 := (M2 + 1)A1/2 and B2 := M2
√

(M2 + 1)/2A2.

Therefore, applying Remark 1.3 with τ := B1 + B2 and b :=
√

2A1 leads us to
the following analogue of Example 8.1:

Example 9.3. Let X1, . . . , Xn be independent random variables with distributions
µi, and let µ := ⊗ni=1µi be the product measure. Consider the function f : Rn → R
which is given by

f(x1, . . . , xn) :=
∑
i<j

αijψi(xi)ψj(xj)

43



with functions ψi as described in (29) and real numbers αij. Define A1, A2, B1 and
B2 as above. Then, we have∫

exp

(
1

6(B1 +B2) + 4A2
1/(B1 +B2)

|f |
)
dµ ≤ 2.

As a simple application, we continue the discussion of Bernoulli variables which
we started in the previous section. The aim is getting an analogue of Example 8.1
for the non-symmetric case. So, consider the product measure µ of n Bernoulli
measures µi := pδ+1 + (1− p)δ−1 for some p ∈ (0, 1).

As the expected value of the measures µi is 2p− 1 and the variance is 4p(1− p),
we consider

f(x1, . . . , xn) :=
∑
i<j

αij(xi − (2p− 1))(xj − (2p− 1))

= 4p(1− p)
∑
i<j

αijψ(xi)ψ(xj) := 4p(1− p)f̃(x1, . . . , xn)

Here, we set
ψ(x) = (x− (2p− 1))/

√
4p(1− p),

so that we have
|ψi(x)| ≤ 2 max(p, 1− p)/

√
4p(1− p)

on the relevant domain. If we assume p ∈ (0, 1/2] we can therefore take M :=√
(1− p)/p as an upper bound on |ψ|.

Now define A1, A2, B1 and B2 as above with respect to f̃ . Then, applying
Example 9.3 (where we can replace the factor 6 in the denominator by 3 as we are
in a two-point situation) leads us to the inequality∫

exp

(
1

(3(B1 +B2) + 4A2
1/(B1 +B2))4p(1− p)

|f |
)
dµ ≤ 2.

Consequently, if A2 is of the same order as A1 (or a smaller one), we get the same
behavior as in the symmetric case but just with an additional dependency on p.

Let us discuss the differences between Examples 8.1 and 8.2 and Examples 9.2
and 9.3 in general. We particularly focus on the additional term A2 (or B2, in
general). We start with functions of the form

f(x1, . . . , xn) :=
∑
i<j

rψi(xi)ψj(xj)

for some real number r which we assume to be positive. Then, we immediately get

A1 = r
√
n(n− 1) and A2 = r(n− 1).

As we have A2 ≤ A1, we will replace A2 by A1 in the sequel.
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As in the symmetric Bernoulli case, we therefore have fluctuations of order 1 if
we have r = O(n−1). The only difference is that we now also have a dependency on
the bound M . To illustrate this, we use the rough estimate

B1 +B2 ≤
(M2 + 1

2
+M3

)
A1 ≤ 2M3A1

as we have M ≥ 1 (and consequently
√

(M2 + 1)/2 ≤ M , in particular). Setting
τ = 2M3A1 in the deduction of Example 9.3, we get∫

exp

(
1

(12M3 + 2M−3)r
√
n(n− 1)

|f |

)
dµ ≤ 2.

We can proceed in the same way for any symmetric Hoeffding term of order
d ≥ 2 and finally for any symmetric function whose Hoeffding decomposition starts
with terms of at least second order. In doing so, we get the same results as in
case of symmetric functions of symmetric Bernoulli variables but with an additional
dependency on the upper bound M . This also holds for non-symmetric functions if
A2 is not of larger order than A1.

So, it remains to check the situations in which the order of A2 is larger than the
order of A1. We consider a single Hoeffding term of order 2 again. Then, the cases
to consider are those in which there is a small number of rows (or, equivalently,
columns) (αi1, αi2, . . . , αin) which “dominate” the matrix consisting of the αij.

For instance, for i 6= j, set αij = r for some r > 0 if i = 1 or j = 1 and 0 if not,
i. e. we consider

f(X1, . . . , Xn) := rψ1(X1)
n∑
j=2

ψj(Xj). (33)

We obviously have A1 = r
√
n− 1 and A2 = r(n− 1). So by applying Example 9.3,

we see that we get fluctuations of order 1 if r = O(n−1).

On the other hand, we clearly have

|f(X1, . . . , Xn)| ≤ rM |
n∑
i=2

ψi(Xi)|,

which means f is dominated by a statistic of order 1. Hence we should already
expect fluctuations of order 1 if r = O(n−1/2). Similar to the case of the third
or higher order Hoeffding terms we studied at the end of Section 8, we therefore
get non-optimal results at this point because we are not in a proper second order
situation.

Indeed, the situation of A2 dominating A1 will occur if we are dealing with a
“degenerated” second order statistic for which there is a first order term dominating
the behavior of f . Calculating |∇|∇f || directly in simple examples confirms these
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observations. In particular, we see that unlike in the symmetric Bernoulli case we
shall need A2 (or B2 in general) as well.

To conclude this section, we compare our results to related work again. If we
focus on second order Hoeffding terms, a possible object of comparison is the Hanson-
Wright inequality. To state it, we quote M. Rudelson and R. Vershynin [R-V],
Theorem 1.1:

Theorem 9.4 (Hanson-Wright inequality). Let X = (X1, . . . , Xn) ∈ Rn be a ran-
dom vector with independent components Xi which satisfy

EXi = 0 and ‖Xi‖ψ2 := sup
p≥1

p−1/2(E|X|p)1/p ≤ K.

Let A be an n× n matrix. Then, for every t ≥ 0,

P
(
|XTAX − EXTAX| > t

)
≤ 2 exp

(
−cmin

(
t2

K4‖A‖HS
,

t

K2‖A‖2→2

))
.

Here, ‖A‖2→2 := supx 6=0‖Ax‖2/‖x‖2 denotes the operator norm of A with respect to
the Euclidean norm on Rn, and c is some positive absolute constant.

Let us compare this to Example 9.3. For that, take an upper triangular matrix
A = (αij)i<j and n independent random variables X1, . . . , Xn which we assume to
be centered, to have unit variance and to be bounded by some constant M . This is
necessary for applying Example 9.3, and of course it also implies that the subgaussian
tails condition ‖Xi‖ψ2 ≤ K is fulfilled.

We then have a function

f(X1, . . . , Xn) =
∑
i<j

αijXiXj

whose Hoeffding decomposition consists of the second order term only indeed. Note
that we can rewrite the quantities A1 and A2 from Example 9.3 as

A1 = ‖A‖HS and A2 = ‖A‖∞→∞,

where ‖A‖∞→∞ := supx 6=0‖Ax‖∞/‖x‖∞ denotes the operator norm of A with re-
spect to the supremum norm ‖x‖∞ := maxi |xi| on Rn. (In principle, by a suitable
adaption of Definition 9.1, we could even rewrite B2 from (32) this way.)

Then, applying Example 9.3 and Chebychev’s inequality leads us to

P (|f | ≥ t) ≤ 2 exp (−Ct)

for any t > 0. Here, C = C(M, ‖A‖HS, ‖A‖∞→∞) is some absolute constant. Possible
values for C are given in Example 9.3.

To sum up, we cannot recover the Gaussian rate for small t from Theorem 9.4,
but the non-Gaussian part of the rate function in the Hanson-Wright inequality
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only differs from ours by the matrix norms involved. Recalling our discussion in the
context of (33), in typical second order situations we can therefore expect to arrive
at the same rates up to constants. This extends to more general cases like Hoeffding
terms of higher order if we compare results like Theorem 4.1.12 in de la Peña and
Giné [D-G] or Theorem 8.3 in Major [M] to Example 9.2.

Finally, since we are considering polynomials we can also refer to Theorem 1.4
in Adamczak and Wolff [A-W]. Some annotations on those results as compared to
ours have already been made in Section 2, and we will not go deeper into the details
here.

10 Second Order Concentration of Empirical Dis-
tribution Functions

The following section deals with concentration of empirical distribution functions.
In doing so, we lean on S.G. Bobkov and F. Götze [B-G3] (particularly Sections 6
and 7). Our aim is to transfer some of their results to the second order situation.

The general situation is as follows: We consider a family of independent random
variables ξj with distributions Pj, j = 1, . . . N , where N is any natural number.
Let P = ⊗Nj=1Pj be their product measure. On this probability space (RN ,P), we
consider a random vector (X1, . . . , Xn) in Rn with some distribution µ. Here, n is
some natural number which might or might not coincide with N .

For instance, we might take N = n and ξi = Xi for all i. Another possible
situation is switching to double indexes ξjk, 1 ≤ j ≤ k ≤ n for some n ∈ N, setting
ξkj ≡ ξjk for all j 6= k and considering the symmetric random matrix W which is
defined by Wjk := ξjk/

√
n. (We thus have N = n(n− 1)/2.) Then, a random vector

of particular interest is the collection of the eigenvalues (X1, . . . , Xn) of W , where
we assume X1 ≤ . . . ≤ Xn.

In any such situation, we want to study the fluctuations of the empirical distri-
bution function

Fn(y) :=
1

n
card{i ≤ n : Xi ≤ y}, y ∈ R.

Its expected value with respect to P is the mean empirical distribution function

F (y) := EFn(y) =
1

n

n∑
i=1

P(Xi ≤ y).

Moreover, with respect to the random variables ξj, for any fixed y ∈ R, Fn(y) has
Hoeffding decomposition

Fn(y) = Fn,0(y) + Fn,1(y) + Fn,2(y) + . . .+ Fn,N(y).
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Note that Fn,0(y) ≡ F (y) by Theorem 3.4.

In [B-G3], the fluctuations of Fn around its expectation F were considered by
studying the Kolmogorov metric, for example. In our situation, we will work with
the difference operators we introduced in Section 3 and study the fluctuations of
Fn − Fn,1 − F , i. e. we also subtract the first order Hoeffding term.

By Remark 1.3, if for some y ∈ R the conditions from Theorem 1.1 with b = τ
(depending on y) are fulfilled, we have∫

e|Fn(y)−Fn,1(y)−F (y)|/(8τ)dP ≤ 2.

By applying Chebychev’s inequality, this immediately yields a result parallel to [B-
G3], Proposition 6.3:

Proposition 10.1. In the situation as described above, fix y ∈ R and assume that

|∇|∇(Fn(y)− Fn,1(y)− F (y))|| ≤ τ

on the support of P as well as ∫
‖Fn(y)

′̂′‖2HSdP ≤ τ 2

for some τ ≥ 0. Then, for any r > 0 we have

P(|Fn(y)− Fn,1(y)− F (y)| ≥ τr) ≤ 2e−r/8.

In particular, with some absolute constant C, we have

E|Fn(y)− Fn,1(y)− F (y)| ≤ Cτ.

More precisely, it is possible to take C = 16.

Unlike in Proposition 6.3 from [B-G3], we do not have to assume that F has a
density. The background is that F having a density encodes a kind of first order
boundedness condition, which we have replaced by the conditions from Theorem
1.1. Moreover, note that we have used ‖Fn(y)

′̂′‖HS = ‖(Fn(y)−Fn,1(y)−F (y))
′̂′‖HS

due to (18).

To see how Proposition 10.1 differs from Proposition 6.3 in [B-G3], we con-
sider the simple example of N = n and ξi = Xi. Then, we can write Fn(y) =∑n

i=1 1(−∞,y](Xi), and it is clear that the Hoeffding decomposition with respect to
the Xi consists of terms of order 0 and 1 only. Therefore, we have Fn−Fn,1−F ≡ 0,
and we can thus set τ = 0. Proposition 10.1 then yields that we have zero tails
indeed. This is of course a trivial result, but it illustrates that by considering second
order concentration the situation can change quite remarkably.

We can also adapt Proposition 6.4 from [B-G3], which gives estimates in the
case of replacing the mean value F (y) by some canonical probability distribution
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function G(y) (for instance the semi-circle distribution in case of eigenvalues of a
random matrix). Here, the basic argument for adapting it is as follows: for any
λ > 0, we have∫

eλ|Fn(y)−Fn,1(y)−G(y)|dP ≤
∫
eλ(|Fn(y)−Fn,1(y)−F (y)|+|F (y)−G(y)|)dP

≤ eλ‖F−G‖
∫
eλ|Fn(y)−Fn,1(y)−F (y)|dP,

where ‖·‖ denotes the Kolmogorov distance, i. e.

‖F −G‖ = sup
y∈R
|F (y)−G(y)|

for any two probability distribution functions F and G on the real line.

Going back to the proof of Theorem 1.1 in Section 6, we now take λ = 1/(2σσ̃)
and combine the estimate from above with (17). (In particular, note that at this
point we assume |∇|∇(Fn(y)− Fn,1(y)− F (y))|| ≤ 1.) This leads us to∫

exp

(
1

2σσ̃
(|Fn(y)− Fn,1(y)− F (y)| − ‖F −G‖)

)
dP

≤ 2 exp

(
1

2σ̃2

1

d− 1

∫
‖Fn(y)

′̂′‖2HSdP
)
.

We can then proceed in the same way as in the rest of the proof of Theorem 1.1 and
finally get∫

exp

(
1

2(3 + b2/(d− 1))
(|Fn(y)− Fn,1(y)− F (y)| − ‖F −G‖)

)
dP ≤ 2

in parallel to Theorem 1.1 (given that the respective second order conditions hold).
We can also make similar conclusions as in Remark 1.3, so that we can finally assume
|∇|∇(Fn(y)− Fn,1(y)− F (y))|| ≤ τ for some τ ≥ 0.

As a result, we get the following analogue of Proposition 6.4 from [B-G3]:

Proposition 10.2. In the situation of Proposition 10.1, fix y ∈ R and assume that

|∇|∇(Fn(y)− Fn,1(y)− F (y))|| ≤ τ

on the support of P as well as ∫
‖Fn(y)

′̂′‖2HSdP ≤ τ 2

for some τ ≥ 0. Moreover, let G be any distribution function on the real line. Then,
for any r > 0 we have

P(|Fn(y)− Fn,1(y)−G(y)| ≥ τr + ‖F −G‖) ≤ 2e−r/8.

In particular, up to some absolute constant C,

E|Fn(y)− Fn,1(y)−G(y)| ≤ Cτ + ‖F −G‖.

As in Proposition 10.1, it is possible to take C = 16.
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In contrast to Proposition 6.4 from [B-G3], we still have to take F instead of G
in the second order conditions. The reason is that as our work is based on Hoeffding
decompositions, we must take care of removing the terms of order 0 and 1, i. e. in
particular the expected value.

We go on with formulating second order analogues of Theorem 1.2 and Theorem
7.1 from [B-G3]. These theorems give estimates for the Kolmogorov distance ‖Fn−
F‖. In the second order setting, we will rather get estimates for

sup
y∈R
|Fn(y)− Fn,1(y)− F (y)|,

which is not a Kolmorogov distance in the proper sense because it is not a difference
of two distribution functions due to the additional first order Hoeffding term. In
principle, this is no problem, and we will keep denoting it ‖Fn−Fn,1−F‖. However,
we cannot assume this quantity to be bounded by 1 anymore, which entails some
minor changes in the theorems we state.

Before we go on to the results, we need to adapt inequalities (6.5) and (6.6) from
[B-G3]. This can easily be achieved by applying Proposition 10.1, which yields the
bounds

P(Fn(y)− Fn,1(y)− F (y) ≥ τr) ≤ 2e−r/8 (34)

as well as
P(F (y) + Fn,1(y)− Fn(y) ≥ τr) ≤ 2e−r/8. (35)

Now we can formulate a second order version of Theorem 1.2 from [B-G3].

Theorem 10.3. In the situation of Proposition 10.1, assume that F is continuous
and that for any y ∈ R we have

|∇|∇(Fn(y)− Fn,1(y)− F (y))|| ≤ τ

on the support of P as well as ∫
‖Fn(y)

′̂′‖2HSdP ≤ τ 2

for some τ ≥ 0 which does not depend on y. Then, for any r > 0 we have

P(‖Fn − Fn,1 − F‖ ≥ r) ≤ 8

r
e−γr/τ .

In particular,

E‖Fn − Fn,1 − F‖ ≤ C(8τ + τ 2) log
(

1 +
1

τ

)
.

Here, γ and C are positive absolute constants.

Proof. The proof of the first statement works in the same way as the proof of its
analogue in Theorem 1.2 from [B-G3]. The only difference is we have to replace (6.5)
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with (34) and (6.6) with (35). Note that we need to assume F to be continuous
since otherwise we would not be able to find points −∞ = y0 ≤ y1 ≤ . . . ≤ yk−1 ≤
yk = +∞ for any k ∈ N such that

F (yi)− F (yi−1) ≤
1

k
, i = 1, . . . , k,

as in (7.1) from [B-G3]. We finally get γ = 1/16.

The proof of the second statement also works similarly to the one of its analogue
in [B-G3], but here we must keep in mind that we cannot assume ‖Fn − Fn,1 − F‖
to be bounded by 1 anymore. For any r0 > 0, write

E‖Fn − Fn,1 − F‖ =

∫ ∞
0

P(‖Fn − Fn,1 − F‖ ≥ r)dr =

∫ r0

0

+

∫ ∞
r0

≤ r0 +
128τ

r0
exp(−r0/(16τ)), (∗)

where we have used the first part of the theorem.

Now, set r0 = 32τ log(1 + 1
τ
). Then, the second term in (∗) becomes

128τ

r0
exp(−r0/(16τ)) =

4

log(1 + 1/τ)
e−2 log(1+1/τ)

=
4τ 2

(1 + τ)2 log(1 + 1/τ)

≤ 4Bτ 2 log
(

1 +
1

τ

)
with some constant B satisfying (1 + τ) log(1 + 1/τ) ≥ ( 1

B
)1/2. For instance, we can

take B = 1, and then, by (∗), we have

E‖Fn − Fn,1 − F‖ ≤ 32τ log
(

1 +
1

τ

)
+ 4τ 2 log

(
1 +

1

τ

)
≤ 4(8τ + τ 2) log

(
1 +

1

τ

)
,

which finishes the proof. In particular, we see that we can take C = 4.

To conclude this section, we give an analogue of Theorem 7.1 from [B-G3], i. e.
in our case a version of Theorem 10.3 with F being replaced by some canonical
distribution function G again. The proof is similar to the ones of Proposition 10.2
and Theorem 10.3.

Theorem 10.4. In the situation of Proposition 10.1, assume that for any y ∈ R we
have

|∇|∇(Fn(y)− Fn,1(y)− F (y))|| ≤ τ

on the support of P as well as ∫
‖Fn(y)

′̂′‖2HSdP ≤ τ 2
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for some τ ≥ 0 which does not depend on y. Moreover, let G be any continuous
distribution function on the real line. Then, for any r > 0 we have

P(‖Fn − Fn,1 −G‖ ≥ r + ‖F −G‖) ≤ 8

r
e−γr/τ .

In particular,

E‖Fn − Fn,1 −G‖ ≤ C(8τ + τ 2) log
(

1 +
1

τ

)
+ ‖F −G‖.

Here, γ and C are the same positive absolute constants as in Theorem 10.3.

11 Empirical Distribution Functions: The Bernoulli
Case

In this section, we apply some of the results about second order concentration of
empirical distribution functions from the previous section. It would be desirable to
combine them with the rules of calculus for second order concentration for multilin-
ear polynomials from Sections 8 and 9.

In general, however, the Hoeffding decomposition of an empirical distribution
function Fn(y) := 1

n

∑
i 1{Xi≤y} with respect to the random variables ξ1, . . . , ξN does

not have the form of a multilinear polynomial. Yet, there is one exception, namely
the case that all the ξi have symmetric Bernoulli distributions on {±1}. In this
situation, we can use our results from Section 8.

It is easy to derive some basic concentration properties in the symmetric Bernoulli
situation. Assume that we have Xi = ϕi(ξ1, . . . , ξN) for all i = 1, . . . , n, where the
ϕi are any functions on {±1}N . (We do not have to require any restrictions on these
functions at this general stage.)

Now, our aim is to apply Proposition 10.2. By Example 8.2, a possible value for
τ as in Proposition 10.2 is given by

τ = τ(y) = sup
x∈{±1}N

‖Fn(y)
′̂′
(x)‖HS.

Moreover, for any 1 ≤ k 6= l ≤ N , by using Remark 3.3.1 we get

νkl(x, y) :=DklFn(y)(x) (36)

=
1

4n

n∑
i=1

(
I(ϕi(x) ≤ y)− I(ϕi(σkx) ≤ y)

− I(ϕi(σlx) ≤ y) + I(ϕi(σklx) ≤ y)
)
,

where I(A) denotes the indicator function of some event A.
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As a first step, we can therefore formulate a pretty general second order concen-
tration result for Fn(y):

Example 11.1. Let N, n be natural numbers, and consider N independent symmet-
ric Bernoulli variables ξ1, . . . , ξN each taking values in {±1}. Set Xi := ϕi(ξ1, . . . , ξN)
for all i = 1, . . . , n, where the ϕi are any functions on {±1}N . Let Fn(y) be the em-
pirical distribution function of the random variables Xi, and denote its Hoeffding
terms with respect to the ξi by Fn,d(y), d = 0, 1, . . . , N . With νkl as defined in (36)
and any y ∈ R, set

τ(y) := sup
x∈{±1}N

( ∑
1≤k 6=l≤N

νkl(x, y)2
)1/2

.

Then, for any r > 0 we have

P(|Fn(y)− Fn,1(y)− F (y)| ≥ τ(y)r) ≤ 2e−r/5

as well as
E|Fn(y)− Fn,1(y)− F (y)| ≤ Cτ(y),

where C is some absolute constant.

Here we have replaced the bound given in Proposition 10.2 by its slightly better
analogue from Example 8.2.

Next, we must to evaluate the behavior of the νkl. We start with some simples
examples which give a flavor of what we can expect. For instance, let N = n and
take

Xi := ϕi(ξ1, . . . , ξn) :=

{
ξiξi+1, i ∈ {1, . . . , n− 1},
ξnξ1, i = n.

(37)

Here we have νkl ≡ 0 if |k−l| > 1 and {k, l} 6= {1, n}. Otherwise we have expressions
of the form

νi,i+1(x, y) =
1

2n

(
I(xixi+1 ≤ y)− I(−xixi+1 ≤ y)

)
.

These terms can only be non-zero if y ∈ [−1,+1), and it is easily seen that

τ(y) = sup
x∈{±1}n

( ∑
1≤k 6=l≤n

νkl(x, y)2
)1/2

=
(

2n
1

4n2

)1/2
=

1√
2n

for any y ∈ [−1,+1).

Let us briefly check how this changes when we introduce additional coefficients
ai ∈ R, i. e. we take

ϕi(ξ1, . . . , ξn) :=

{
aiξiξi+1, i ∈ {1, . . . , n− 1},
anξnξ1, i = n.
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In this case, we can only have νi,i+1(x, y) 6= 0 if y ∈ [−|ai|,+|ai|), and thus we obtain
the same asymptotic behavior as before for y ∈ [−a,+a), where a := mini |ai|, while
it changes with |y| increasing until we reach a rate of 1/(

√
2n) when we arrive at

a′ := maxi |ai| (if there is a single i such that ai = a′). In particular, rescaling the
functions ϕi leads to the same rate functions as before just for different values of y.

As a slightly more advanced example, consider

Xi := ϕi(ξ1, . . . , ξn) :=
n∑
j=1

(i)ξiξj (38)

for all i = 1, . . . , n. (Again, we assume N = n.) It is clear that the Xi will take
values in {−(n− 1) + 2m : m = 0, 1, . . . , n− 1}.

However, in this example we will not arrive at any useful concentration rates
anymore. For instance, take y = n − 3 and x = (1, . . . , 1). Then, for any i ∈
{1, . . . , n} and any 1 ≤ k 6= l ≤ n, we have

I(ϕi(x) ≤ y)− I(ϕi(σkx) ≤ y)− I(ϕi(σlx) ≤ y) + I(ϕi(σklx) ≤ y) = −1

and thus νkl(x, y) = −1/4. This means that

τ(y) = sup
x∈{±1}n

( ∑
1≤k 6=l≤n

νkl(x, y)2
)1/2
≥
√
n(n− 1)/4,

a rate which is of course useless.

The reason is that while in (37), the Hoeffding decomposition of Fn(y) with
respect to the ξi will stop with the second order terms, this does not hold in (38)
anymore. As we have seen in Section 8, our results do not perform well if there are
higher order Hoeffding terms which dominate the second order term. This is what
causes problems here.

Our next goal is to establish conditions which guarantee rates of concentration
that are still of interest, i. e. smaller than O(1). Note that if νkl 6= 0, we necessarily
have |νkl| ≥ 1/(4n). Thus, even if we have N = n and all the νkl are of order O(1/n),
we still only get fluctuations of order O(1) (cf. τ(y) as defined in Example 11.1).

So we need to control the number of zeros among the νkl. One idea is the
following simple counting argument. Fix some pair of indexes 1 ≤ k 6= l ≤ N , and
determine how many of the functions ϕi depend on both ξk and ξl. This can be
formulated as follows: For any i = 1, . . . , n, set

ζi(k) :=

{
1, if there is some x ∈ {±1}N s. th. ϕi(x) 6= ϕi(σkx),

0, else.

In other words, ζi(k) is 1 if ϕi depends on ξk and 0 if not. Then,

w(k, l) :=
n∑
i=1

ζi(k)ζi(l)
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counts the number of the indexes i which both depend on ξk and on ξl. We therefore
get a very simple estimate for τ(y) as in Example 11.1 by

τ(y) ≤ 1

4n

( ∑
1≤k 6=l≤N

w(k, l)2
)1/2

=
1√
8n

( ∑
1≤k<l≤N

w(k, l)2
)1/2

.

This is helpful for identifying typical collections of functions ϕ1, . . . , ϕn for which
we will certainly get useful concentration rates when applying Example 11.1. For
instance, assume that each of the functions ϕi depends on at most d indexes such
that if we compare the sets of indexes for any two i 6= j, the number of indexes they
have in common is of order O(1). The d indexes will cause

(
d
2

)
≈ d2 of the numbers

w(k, l) to be non-zero, and due to the second assumption these w(k, l) will be of
order O(1).

Putting all together, we get that we can expect τ(y) to be of order

O
( 1

n

√
nd2
)

= O
( d√

n

)
.

As a point of interest, we note this implies that the highest terms of the Hoeffding
decompositions of the ϕi with respect to the ξj should be of order less than O(n1/2).

It would be desirable to apply the results from Section 10 to random matrices
similarly to the work of S.G. Bobkov and F. Götze [B-G3]. However, this is a harder
task. One problem is that we cannot use the results about multilinear polynomials
from Section 9 in this context anymore. Therefore we will need to search for different
methods for evaluating the condition |∇|∇f || ≤ 1.

12 Random Graphs

As a final application of our results, we now study subgraph counting in Erdős-Rényi
random graphs G(n, p). Problems of this type have been widely discussed in the past
two decades, for instance by J.H. Kim and V.H. Vu [K-V1], [K-V2], S. Janson and
A. Ruciński [J-R], S. Janson, K. Oleszkiewicz and A. Ruciński [J-O-R], S. Chatterjee
[C] and B. DeMarco and J. Kahn [D-K]. Our own results are particularly inspired
by Section 5.3 in the work of R. Adamczak and P. Wolff [A-W], and as in the latter
paper we will focus on counting cycles of fixed length.

First we repeat the basic definitions. An undirected graph (or simply graph)
G = (V,E) is a collection of a finite set of vertices V and a set of edges (i. e. subsets
of V which consist of two elements) E. Moreover, given G, a graph H = (V ′, E ′) is
called a subgraph of G if we have V ′ ⊂ V and E ′ ⊂ E.

Given p ∈ (0, 1), the Erdős-Rényi random graph G = G(n, p) is a graph with n
vertices which we will simply call 1, . . . , n and whose edges are selected independently
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such that for any two vertices i 6= j, with probability p there is an edge between
them.

The problem of subgraph counting can then be described as follows: given any
graph H with vertex set {1, . . . , k} for some k ≤ n, we search for the number of
copies of H which can be found in the Erdős-Rényi random graph G. As in [A-
W], we call this number YH(n, p). Of course, YH(n, p) is a random variable, and in
[A-W], an explicit representation of YH(n, p) is given.

We now check how our second order results behave in this context. For this, we
use that the edges form a collection of independent Bernoulli variables taking values
in {0, 1}. That is, given any two numbers i 6= j, we consider the random variable
X{i,j} which is 1 with probability p and 0 with probability 1− p. (Note that we do
not distinguish between the cases i < j and j < i.) Then, the collection of these
random variables is just the set of the (random) edges of G(n, p). Now, our aim is
to apply the results from Section 9.

As in [A-W], we consider the situation where H = K3, i. e. we count the number
of triangles in G(n, p). It is clear we can express this number as

YK3(n, p) := Y :=
∑
i<j<k

X{i,j}X{j,k}X{k,i}.

We now relate this to the conditions we imposed in Section 9.

First, we take the Hoeffding decomposition of Y . For any numbers i′ 6= j′, we
clearly have

D{i′,j′}Y =
n∑
k=1

(i′,j′)(X{i′,j′} − p)X{j′,k}X{k,i′}.

Moreover, we only have D{i′,j′}{i′′,j′′}Y 6= 0 if {i′, j′} ∩ {i′′, j′′} 6= ∅. Therefore,
considering, say, D{i′,j′}{j′,k′}Y , we get

D{i′,j′}{j′,k′}Y = (X{i′,j′} − p)(X{j′,k′} − p)X{k′,i′}

and similarly

D{i′,j′}{j′,k′}{k′,i′}Y = (X{i′,j′} − p)(X{j′,k′} − p)(X{k′,i′} − p),

while all third order differences of different type are 0.

Remembering the proof of Theorem 3.4, by combining these results we obtain

Y =

(
n

3

)
p3 +

∑
i<j

(n− 2)p2(X{i,j} − p) +
∑
i<j<k

p
(
(X{i,j} − p)(X{i,k} − p)

+ (X{i,j} − p)(X{j,k} − p) + (X{i,k} − p)(X{j,k} − p)
)

+
∑
i<j<k

(X{i,j} − p)(X{j,k} − p)(X{k,i} − p)
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as the Hoeffding decomposition of Y . In the second order term, we have combined
all types of differences involving three different fixed indexes i, j, k.

Clearly, the X{i,j} all have variance p(1− p). We therefore set

ψ{i,j}(x) := ψ(x) := (x− p)/
√
p(1− p)

for each pair i 6= j, so that we have Eψ(X{i,j}) = 0 and Eψ(X{i,j})
2 = 1 as required

in (29). Moreover, an upper bound on |ψ| on {0, 1} is clearly given by M :=
max(

√
p/(1− p),

√
(1− p)/p). Now we rewrite the Hoeffding decomposition of Y

as

Y =

(
n

3

)
p3 +

∑
i<j

(n− 2)p5/2(1− p)1/2ψ(X{i,j})

+
∑
i<j<k

p2(1− p)
(
ψ(X{i,j})ψ(X{i,k}) + ψ(X{i,j})ψ(X{j,k}) + ψ(X{i,k})ψ(X{j,k})

)
+
∑
i<j<k

p3/2(1− p)3/2ψ(X{i,j})ψ(X{j,k})ψ(X{k,i}),

which is obviously a multilinear polynomial in the ψ(X{i,j}).

We can thus apply Example 9.2 if we remove the terms of order 0 and 1, i. e. we
consider

Y −
(
n

3

)
p3 −

∑
i<j

(n− 2)p3/2(1− p)1/2ψ(X{i,j}) =: F.

So it remains to deduce suitable values for B1 and B2 as in (31) and (32).

For this, we first consider the dediagonalized Hessian of F with respect to D.
Again due to (18), this is the same as the dediagonalized Hessian of Y with respect
to D, and here we know from above that it has entries

D{i,j}{j,k}Y = (X{i,j} − p)(X{j,k} − p)X{i,k}
= p(1− p)ψ(X{i,j})ψ(X{j,k})X{i,k}

whenever the two sets of indexes {i, j} and {i′, j′} have precisely one element in
common (say, j as we just assumed) and entries 0 else.

Remembering (31) and in particular Definition 9.1, we therefore get

p(1− p)
√

(ψ(X{i,j})2 + 1)/2
√

(ψ(X{j,k})2 + 1)/2X{i,k} ≤
1

2
max(p, 1− p).

Here we have used
√

(ψ(X{i,j})2 + 1)/2 ≤ max(
√

1/(2(1− p)),
√

1/(2p)). As there
are n(n− 1)(n− 2) matrix entries which are possibly non-zero, we then obtain that
we can set

B1 :=
1

2

√
n(n− 1)(n− 2) max(p, 1− p).
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Furthermore, a generalization of (26) (note that we also have third order terms
in the present situation) yields

∇{i,j}F =
∣∣∣ n∑
k=1

(i,j)
(
p2(1− p)(ψ(X{i,k}) + ψ(X{j,k}))

+ p3/2(1− p)3/2ψ(X{i,k})ψ(X{j,k})
)∣∣∣√(ψ(X{i,j})2 + 1)/2

for any i 6= j. Arguing in a similar way as above and putting everything together,
we see that we can take

B2 :=
3√
2

(n− 2) max(p, 1− p)5/2.

Applying Example 9.2 and using B1+B2 ≤ 3B1, we arrive at the following result:

Example 12.1. Define YK3(n, p) as above, and let

YK3(n, p) = EYK3(n, p) + YK3,1(n, p) + YK3,2(n, p) + YK3,3(n, p)

be its Hoeffding decomposition with respect to the random variables X{i,j}, i < j. Set

FK3(n, p) := YK3(n, p)− EYK3(n, p)− YK3,1(n, p).

Then, we have∫
exp

(
2

15
√
n(n− 1)(n− 2) max(p, 1− p)

|FK3(n, p)|

)
dµ ≤ 2.

As a consequence, it follows that

P(|FK3(n, p)| ≥ t) ≤ 2 exp(−2t/(15
√
n(n− 1)(n− 2) max(p, 1− p)))

for any t > 0.

Here we have replaced the factor 8 in the denominator of the bound given in
Example 9.2 by 5 due to Theorem 1.2 and Remark 1.3. Note that in a way, Example
12.1 yields rates of concentration which are uniform in p.

Now we compare our results to the concentration properties of YK3(n, p) −
EYK3(n, p) as stated in Adamczak and Wolff [A-W], for instance. For example,
Proposition 5.5 in [A-W] yields

P(|YK3(n, p)− EYK3(n, p)| ≥ t)

≤2 exp

(
− 1

C
min

(
t2

L6
pn

3 + L4
pp

2n3 + L2
pp

4n4
,

t

L3
pn

1/2 + L2
ppn

,
t2/3

L2
p

))
(39)

for any t > 0, where Lp = (log(2/p))−1/2.
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To compare this to Example 12.1, we fix some p > 0 and consider values of t
which are of order t = O(nk) for some k ≥ 0. Then, (39) can roughly be rewritten
as

P(|YK3(n, p)− EYK3(n, p)| ≥ rnk) ≤ 2 exp
(
−Cr,p min

(
n2k−4, nk−1, n2k/3

))
for r > 0, while Example 12.1 yields

P(|FK3(n, p)| ≥ rnk) ≤ 2 exp(−C ′r,pnk−3/2).

It is thus easily seen that our second order results will yield better concentration
rates for k < 5/2 and k > 9/2, hence small and large values for t, where the large
values are not really of interest since the maximal number of triangles in G(n, p) is(
n
3

)
anyway.

On the other hand, the point of view taken in many articles on subgraph count-
ing in G(n, p) is somewhat different. That is, usually the behavior of p (possibly
depending on n) is taken into account as well, and the domain of particular interest
is the law of large numbers regime. In other words, in the above setting we take
t = εEYH(n, p) for some ε > 0 fixed and examine how concentration varies in n and
p. In general, upper and lower tails, i. e. P(±(YH(n, p)− EYH(n, p)) ≥ εEYH(n, p)),
are studied separately, and the lower tails yield sharper concentration results than
the upper ones.

For instance, one result due to S. Janson, K. Oleszkiewicz and A. Ruciński [J-O-
R] is as follows: given ε > 0 such that P(YH(n, p) − EYH(n, p) ≥ εEYH(n, p)) > 0,
we have

exp

(
−C(H, ε)M∗

H(n, p) log
1

p

)
≤ P(YH(n, p)− EYH(n, p) ≥ εEYH(n, p))

≤ exp (−c(H, ε)M∗
H(n, p)) ,

where c(H, ε) and C(H, ε) are constants and M∗
H(n, p) is some function (whose

explicit expression we skip). Typically, the constants c(H, ε) and C(H, ε) are not
given much attention.

In the situation we studied above, i. e. H = K3, Corollary 1.7 in [J-O-R] yields
that we have C−1n2p2 ≤M∗

K3
(n, p) ≤ Cn2p2 for some constant C and p ≥ 1/n. On

the other hand, from Example 12.1 it follows that our results lead to

P(|FK3(n, p)| ≥ εEYK3(n, p)) ≤ 2 exp(−Cεn3/2p3/max(p, 1− p))

for some absolute constant C > 0. That is, for p ≥ 1/2 we get a rate of n3/2p2,
while as p → 0 we only have a rate of n3/2p3, which is unfortunately weaker than
the results by [J-O-R] and [A-W]. (In particular, from Theorem 1.5 and Corollary
1.7 in [J-O-R] we know that we should expect a rate of Θ(1) if p ≤ n−1, something
we clearly do not recover here.)

This is partly because our conditions as in Theorem 1.1 make use of suprema,
which leads to estimates as in Example 12.1 which are in some sense uniform in p.

59



Moreover, even for p fixed we have seen that the law of large numbers regime, i. e.
roughly speaking t = rnk with k = 3, is not the domain where our second order
concentration results perform best anyway.

Similar observations also hold for cycles of arbitrary length. Without going too
much into the details, denote by YKm the number of cycles of length m in G(n, p),
and set

FKm(n, p) := YKm(n, p)− EYKm(n, p)− YKm,1(n, p),

where YKm,1 denotes the first order term of the Hoeffding decomposition of YKm with
respect to the random variables X{i,j}, i ≤ j.

Arguing in a similar way as above, we then get a result of the type

P(|FKm(n, p)| ≥ t) ≤ 2 exp(−Ct/(nm−3/2 max(p, 1− p)))

for any t > 0, where C is some constant which only depends on m. We can refor-
mulate this as

P(|FKm(n, p)| ≥ εEYKm(n, p)) ≤ 2 exp(−Cεn3/2pm/max(p, 1− p))

again with some universal constant C = C(m).

Comparing this to results like Proposition 5.6 in [A-W] or Theorem 1.5 and
Corollary 1.7 in [J-O-R], we get similar results as in the case of triangles. That
is, for fixed p there are situations (typically for small t or ε small) in which we
obtain better concentration rates than the ones obtained in [A-W] and [J-O-R]. On
the other hand, as we have to take suprema we get rates which are in some sense
uniform in p. In particular, we therefore cannot recover the optimal rate functions
M∗

Km
(n, p) which study concentration in n and p. Moreover, with m growing larger,

we once again observe that our results yield weaker estimates as the influence of
higher order Hoeffding terms increases.

A Appendix

In Theorem 1.1, we have required f to be measurable and bounded on the support of
µ. A natural idea would be to weaken the boundedness assumption by, for instance,
only requiring some moment conditions on f . On the other hand, the function f
must fulfill |∇|∇f || ≤ 1, or, more in general, |∇|∇f || <∞ on the support of µ. In
the sequel, we will show that in fact, this condition already implies the boundedness
of f .

For that, we will prove that f is bounded if and only if |∇f | is bounded. (Actu-
ally, we only need to consider the support of µ, a fact we will ignore from now on.)
One direction is trivial. Therefore, it suffices to prove the following lemma:
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Lemma A.1. Let X1, . . . Xn be independent random variables with distributions µi
on (R,B), i = 1, . . . n, and let µ = ⊗ni=1µi be the product measure. Moreover, let
f : Rn → R any function in L2(µ). Assume that f is not in L∞(µ). Then, |∇f | is
not in L∞(µ) either.

Assuming f ∈ L2(µ) is necessary in order to apply the gradient operator ∇.
Below, we will give a sketch of the proof but only in a simplified situation. However,
it is then pretty clear how the general case will work.

Proof. We assume that all the µi are probability measures on N. The proof then
works by induction.

So consider n = 1 with µ1 ≡ µ, and assume that we have |∇f | ≤ M for some
universal constant M > 0. We can furthermore assume µ({1}) > 0. Then, we have

M ≥ |∇f(k)| =
(1

2

∞∑
l=1

(f(k)− f(l))2µ({l})
)1/2 ≥ |f(k)− f(1)|

√
µ({1})/2

for all k ∈ N. However, it follows that f must be bounded, which is a contradiction
since we assumed that f /∈ L∞(µ).

In the induction step, we consider some function f on Nn+1 and once again
assume |∇f | ≤ M for some universal constant M . As above, we can also assume
µn+1({1}) > 0. Now first consider the function

f[n] : Nn → N; (k1, . . . , kn) 7→ f(k1, . . . , kn, 1).

As |∇f | ≤ M , it follows that in particular we have |∇f[n]| ≤ M , and by induction
we therefore get that f[n] must be bounded by some universal constant, say, M1.

To continue, take any vector (m1, . . . ,mn,mn+1) ∈ Nn+1 and consider the func-
tion

fn+1 : N→ R; k 7→ f(m1, . . . ,mn, k).

Again, in particular we have |∇fn+1| ≤M . However, as in the case of n = 1 we see
that we have

M ≥ |fn+1(k)− fn+1(1)|
√
µn+1({1})/2

for all k ∈ N, and thus, fn+1 is bounded by some universal constant M2 which does
not depend of the choice of m1, . . . ,mn. Combining both arguments leads to

|f(m1, . . . ,mn,mn+1)| ≤ |fn+1(mn+1)− fn+1(1)|+ |f[n](m1, . . . ,mn)|
≤M1 +M2,

so that f would be bounded by the universal constant M1 + M2. This once again
leads to a contradiction.

It is possible to generalize this proof by choosing suitable partitions of the under-
lying spaces, for instance. We will then have to work with estimates rather than
exact values of f .
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