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Abstract
The planning of human body movements is highly predictive. Within a sequence of actions, the anticipation of a
final task goal modulates the individual actions within the overall pattern of motion. An example is a sequence of
steps, which is coordinated with the grasping of an object at the end of the step sequence. Opposed to this property
of natural human movements, real-time animation systems in computer graphics often model complex activities by
a sequential concatenation of individual pre-stored movements, where only the movement before accomplishing
the goal is adapted. We present a learning-based technique that models the highly adaptive predictive movement
coordination in humans, illustrated for the example of the coordination of walking and reaching. The proposed
system for the real-time synthesis of human movements models complex activities by a sequential concatenation
of movements, which are approximated by the superposition of kinematic primitives that have been learned from
trajectory data by anechoic demixing, using a step-wise regression approach. The kinematic primitives are then
approximated by stable solutions of nonlinear dynamical systems (dynamic primitives) that can be embedded
in control architectures. We present a control architecture that generates highly adaptive predictive full-body
movements for reaching while walking with highly human-like appearance. We demonstrate that the generated
behavior is highly robust, even in presence of strong perturbations that require the insertion of additional steps
online in order to accomplish the desired task.
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1 INTRODUCTION

A central problem in computer animation is the
online-synthesis of complex behaviors that consist of
sequences of individual actions, which have to adapt to
continuously changing environmental constraints. An
example is the online planning of coordinated walking
and reaching, when the position of the reaching goal is
dynamically changing.

A prominent approach for the solution of this
problem in computer graphics is the adaptive inter-
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publish, to post on servers or to redistribute to lists, requires
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polation between motion-captured example actions
[WP95, GSKJ03, AFO03]. Other approaches are
based on learned low-dimensional parameterizations of
whole body motion, which are embedded in mathemat-
ical frameworks for the online generation of motion
(e.g. [HPP05, SHP04, RCB98, WFH08, LWS02]).
Several methods have been proposed that segment
action streams into individual actions, where mod-
els for the individual actions are adapted online in
order to fulfill additional constraints, such obstacle
avoidance or the correct positioning of end-effectors
([KGP02, RGBC96, PSS02]). The dependencies
between constraints in such action sequences have
been recently exploited to generate more realistic
animations. In [FXS12] captured motion examples
are blended according to a prioritized "stack of con-
trollers". In [SMKB14] the instantaneous blending
weights of controllers are pre-specified differently for
different body parts involved in the current action and
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the priority of the different controllers is governed
by their sequential order. In [HK14] the synthesis
of locomotion plus arm pointing at the last step is
carried out by blending of captured actions determining
the weights by "inverse blending optimization". In
this study arm pointing was blended with the arm
swinging motion of the last step. The choice of the the
arm pointing primitives depended on the gait phase,
according to an empirical rule introduced by authors.

Physics-based animation is another approach for the on-
line generation of motion (e.g. [ST05, FP03]). Com-
plex action sequences are segmented into individual
actions, which are characterized by solutions of opti-
mization problems, derived from mechanics and ad-
ditional constraints (contact, friction, or specified via-
points) ([AMJ07, LHP05, MLPP09]). While these ap-
proaches generate highly adaptive behavior for indi-
vidual actions, the problem to generate natural-looking
transitions between the individual actions is non-trivial.
As consequence, artifacts (e.g. hesitation, jerky move-
ment) can emerge at transition points, (e.g. [WZ10]).

Opposed to these approaches skilled human motor be-
havior has been shown to be highly predictive. Within
complex activities, action goals and the associated con-
straints influence actions that appear already a long time
before the constraint within the behavioral stream, and
thus allows the generation of smooth and optimized be-
haviors over complex action sequences. This was in-
vestigated, for example, in a recent study on the co-
ordination of walking and reaching. Human subjects
had to walk towards a drawer and to grasp an object,
which was located at different positions in the drawer.
Humans optimized their behavior already significantly
before object contact, consistent with the hypothesis of
maximum end-state comfort during the reaching action
[WS10, Ros08], and steps prior to the reaching were
modulated in order to accomplish the goal.

Whole body movements of humans and animals are
organized in terms of muscle synergies or movement
primitives [Ber67, FH05]. Such primitives characterize
the coordinated involvement of subsets of the available
degrees of freedom in different actions. An example
is the coordination of periodic and non-periodic
components of the full-body movements during
reaching while walking, where behavioral studies
reveal a mutual coupling between these components
[CG13, CMCH96, Ros08, MB01]. The realism and
human-likeness of synthesized movements in robotics
and computer graphics can be improved by taking such
biological constraints into account [FMJ02].

We present a learning-based framework that makes
some of these properties applicable for realtime
animation in computer graphics. The underlying
architecture is simple and approximates complex full-
body movements by dynamic movement primitives

that are formulated in terms of nonlinear dynamical
systems [GMP+09, PMSG09]. These primitives
are constructed from kinematic primitives, that are
learned from trajectory sets by anechoic demixing
in an unsupervised manner. Similar to the related
approaches in robotics [GRIL08, BRI06], the method
generates complex movements by the combination
of a small number of learned dynamical movement
primitives [OG11, GMP+09]. We demonstrate this
approach by the highly adaptive online generation of
multi-step sequences with coordinated arm movements.

The paper is structured as follows: After the description
of the animation system in section 2, we present some
example results section 3, followed by a conclusion.

2 SYSTEM ARCHITECTURE
Our work is based on motion capture data from a sin-
gle human subject performing a drawer opening task. In
the following, this data set is described briefly. Then the
different key elements of the proposed algorithm are in-
troduced: movement generation by dynamic primitives,
modeling of coordination by step-wise regression, and
the algorithms for online blending and control.

2.1 Motion capture data
Our system was based on motion capture data from a
single human subject that executed a drawer opening
task, walking towards a drawer and then reaching for
an object in the drawer. The distance of the subject
from the drawer and the position of the object was var-
ied [LRSS13] (Fig. 1). These training sequences con-
sisted of three subsequent actions or movements: 1) a
normal walking step; 2) a shortened step with the left-
hand starting to reach towards the drawer. This step
showed a high degree of adaptability, and was typically
adjusted in order to create an optimum distance from
the drawer (maximum comfort) for the reaching move-
ment during the last action; 3) the drawer opening and
the reaching of the object while standing. The object
position in the drawer was indicated to the participants
at the beginning of each trial. (See [LRSS13] for further
details). (See video [Demo1].)

The analysis of the distances between the pelvis and
the drawer or the object in these action sequences re-
veals the predictive nature of human movement plan-
ning, as shown in Fig. 2 where the distances ordered
according to the initial walking distance to the drawer.
While the length of the first step and the distance from
the drawer in the last step are relatively constant, a
major distance adjustment is made in the second step.

1 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v1.avi
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Figure 1: Illustration of the human behavior. The figure
illustrates important intermediate postures (normal walking
step, step with initiation of reaching, standing while drawer
opening, and object reaching).
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Figure 2: Predictive planning in real human trajectories. Dis-
tances from the pelvis to the front panel of the drawer (green,
yellow, red), and the distance between the front panel and the
object (blue) for different trials. Mainly the second action is
adjusted as function of the initial distance from the goal.

The length of the first step is not significantly cor-
related with the initial distance to the drawer (linear
regression: R2 = 0.08, p = 0.429), while the correla-
tions with the distance to the drawer after first step,
and the length of the second step are highly significant
(R2 = 0.95, p = 1.4 ·10−6).

2.2 Real-time synthesis of movements by
learned dynamic primitives

The modeling of the individual actions within the
sequence exploits a learning-based approach, which
we implemented successfully before for locomotion
as well as to other complex human body movements
[GMP+09]. The system architecture is illustrated in
Fig. 3.

Based on the motion capture data, we learned spatio-
temporal components of the three actions in an un-
supervised way, applying anechoic demixing [OG11,
CdEG13]). We have shown before that this method
leads to highly compact approximations of human tra-
jectories, reaching almost perfect approximations of of-
ten with less than five learned source functions. The
skeleton model of the animated characters had 17 joints.
The joint angle trajectories were represented by normal-
ized quaternions (exploiting an exponential map repre-
sentation, c.f. [Mai90], with 3 variables specifying each

Limit cycle attractors Periodic signals

time

Mixing model

Joint angles

3D positions

x(t) SVR

s (t)0

time
Non-periodic signal Kinematic model

x(t) = m + w s (t - t)Si i ij j ij
j

s (t - t) j ij

f ( M x(t) ) j tij 

timing control

Figure 3: Architecture for the online synthesis of body
movements using dynamic primitives.

quaternion). The angles were approximated by an ane-
choic mixture model of the form:

ξi(t)︸︷︷︸
angles

= mi +∑
j

wi j s j (t− τi j)︸ ︷︷ ︸
sources

(1)

The index i specifies the joint-angle component, and the
index j the source signals s j. The parameters wi j and
τi j specify the mixing weights and time delays of the
source decomposition model, which are estimated to-
gether with the other parameters by the demixing algo-
rithm. The parameters mi specify the means of the joint
trajectories.

In order to generate movements online, the source func-
tions are generated by mapping the solutions of a non-
linear dynamical system (canonical dynamics) onto the
source functions s j. For mathematical convenience, we
chose a limit cycle oscillator (Hopf oscillator) as canon-
ical dynamics. It can be characterized by the differ-
ential equation system (with ω defining the eigenfre-
quency), for the pair of state variables [x(t),y(t)]:

ẋ(t) = [1− (x2(t)+ y2(t))]x(t)−ωy(t)+ k(xp(t)− x(t))

ẏ(t) = [1− (x2(t)+ y2(t))]y(t)+ωx(t)+ k(yp(t)− y(t))

The last terms specify coupling terms to a pair of
input signals xp(t) and yp(t), and k is the coupling
strength. For k = 0 this equation produces a stable
limit cycle. The state space variables x and y are
mapped onto the source functions s j by nonlinear
mapping functions f j(x,y), which were learned by
support vector regression (using a radial basis function
kernel and the LIBSVM Matlabr library [CL01]). The
learned source functions s j(t) and corresponding states
[x(t),y(t)] from the attractor solution of the limit cycle
oscillator were used as training data.
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Figure 4: Comparison of approximation quality for different
methods for blind source separation as function of the number
of sources, using a step-wise regression approach (residuals
after subtraction of the contribution of the non-periodic source
signal). Solid lines: Approximation quality for trajectories
of all three actions as a function of the number of (periodic)
source functions for anechoic demixing (blue) and principle
component analysis (PCA) (green). The purple dotted line
shows the approximation quality for the first action, fixing the
delays across trials. The red dashed line shows approximation
quality when 2 additional sources (with fixed delays) were
included in order to model the remaining residuals. Circles
mark the chosen numbers of sources in our implementation.

The coupling term (for k > 0) allows the coupling of
different dynamic primitives, if they are specified by the
state variables of another oscillator. We have discussed
elsewhere that this form of coupling, with appropriate
constraints for the parameters, allows to guarantee the
stability of the solutions of networks of such primitives.
The relevant stability conditions can be derived using
Contraction theory [LS98, PMSG09].
In our architecture we used one leading oscillator, and
the other oscillators were coupled to this leading oscil-
lator in the described form (star topology of the cou-
pling graph, where couplings are unilateral from the
center to the leaves of the star). The stability proper-
ties of this form of coupling were studied in detail in
[PMSG09], and it can be shown that this dynamics has
only a single exponentially stable solution. The state of
the leading oscillator was also used for the control of
the non-periodic source functions.
From the source signals that were generated online, the
joint angles were computed using equation (1). Exploit-
ing the fact that the attractor solution of the Hopf oscil-
lator lies on a circle in state space, the delays can be
replaced by an appropriate rotations of the variables of
the state space (x,y). In this way, we obtained a dy-
namics without explicit time delays, avoiding difficul-
ties with the design of appropriate controllers. Different
motion styles were generated by blending of the mixing
weights wi j and the trajectory mean values mi.

2.3 Stepwise regression approach for the
modeling of the individual actions

In order to model the step sequences with coordinated
walking and reaching we approximated the training

data by the described anechoic mixtures, using a
step-wise regression approach that introduced different
types of source functions for the three different compo-
nent actions.

Reaching is a non-periodic movement and therefore
requires the introduction of a non-periodic source
function. In order to generate such a function online,
the phase of the leading Hopf oscillator was derived
from the state variables according to the relation-
ship φ(t) = mod2π(arctan(y(t)/x(t))), (ensuring
0 ≤ φ < 2π). The non-periodic source signal was
defined by s0(t) = cos(φ(t)/2), and the corresponding
delay was set to zero.
The three actions of the training sequences were
modeled as follows:

1st action: The weights of the non-periodic sources
were determined in order to account for the non-
periodic part of the training trajectory. Then this
component was subtracted from the trajectory data, and
the periodic source functions were determined by ane-
choic demixing, using an algorithm from [CdEG13],
which had been modified in order to constrain all time
delays belonging to the same source function to be
equal. This constraint simplifies the blending between
different motion styles, since then the delays of the
sources are identical over styles, so that they do not
have to be blended. Compared to the unconstrained
anechoic model, this constraint requires the intro-
duction of more sources for the same approximation
quality (see Fig. 4). The first step could be modeled
with sufficient accuracy using three periodic sources in
addition to the non-periodic one.

2nd action: In order to model the second highly
adaptive step, five periodic sources were required. The
first three periodic sources were identical with the ones
used for the approximation of the first action, and also
the corresponding delays. The weights were optimized
in order to minimize the remaining approximation
error. The contributions of these three periodic sources
(and of the non-periodic sources), then were subtracted
from the training data, and two additional periodic
sources were learned from the residuals (with constant
delays across trials).

3rd action: In order to approximate this action, we
used the same non-periodic and five periodic source
signals, with the same time delays, that were identified
for the modeling of the second action, while the
weights of these sources were re-estimated.

The estimated source functions are shown in Fig. 5.
The dotted curve illustrates the non-periodic source.
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Figure 5: The source signals extracted by anechoic de-
mixing algorithm. a): three periodic source signals extracted
from the first action and non-periodic source signal (dashed
line). b): two additional periodic source signals that were
used for the modeling of the second and the third actions.

The source functions illustrated in the upper panel were
used for the approximation of all three actions, and the
two in the lower panel only for actions two and three.
Fig. 4 shows the approximation quality as a function
of the number of source functions for the first and the
second action, comparing normal anechoic demixing
[OG11], our algorithm with constant delays over the
different conditions [CdEG13], and a reconstruction us-
ing PCA. The measure for approximation quality was
defined as Q = 1− (‖X − X̂‖2

F)/‖X‖2
F , where X is the

matrix with the samples of the original signal, and X̂ is
the reconstructed signal, ‖ ·‖2

F is the squared Frobenius
norm. Especially, the model without constraints for the
delays still achieves significantly better approximation
quality than PCA. The reconstruction error for the first
action (purple circle on Fig. 4) is 95.6%, while the one
with the two additional sources, used for actions 2 and
3, is 96.7% for the whole dataset (red circle).
The absolute values of the amplitudes of the weights
for a single trajectory are depicted at Fig. 6, separately
for the two source signals that carried the maximum
amount of variance. This is the non-periodic source
and the periodic source with the lowest frequency. The
figure shows that the primitives clearly contribute to the
different degrees of freedom of the human body. The
non-periodic source primarily contributes to the joint
angles of the arm, while the periodic source function
strongly influences the hip and the leg joints. This
clearly reflects the organization of human full body
movements in terms of movements primitives. The
figure also shows that the contribution of the sources
changes between the steps. In the first action the con-
tribution of the first periodic source is dominant, while
in the second and last action the non-periodic source
function makes a dominant contribution, reflecting the
non-periodic reaching movement.

2.4 Online blending of the mixing weights
As illustrated in Fig. 6, the mixing weights change be-
tween the different actions within the sequence. For
the modeling of a smooth transitions between the differ-
ent actions the mixing weights thus had to be smoothly
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L Ankle
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Actions:   1 2 3 1 2 3
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Figure 6: Absolute values of the weights for an example
trajectory of the data set. The computed mixing weights are
shown from the different actions within the sequence for the
periodic source function with minimum frequency and for the
non-periodic source. The color code is the same for both pan-
els.

interpolated in an online fashion at the transitions be-
tween the individual actions.

For the weights associated with the periodic
sources, the corresponding weight matrices were
linearly blended according to the relationship
W (t) = (1 − α(t))Wprev + α(t)Wpost, where Wprev
is the weight matrix in the step prior to the transition
and Wpost the one after the transition. The mean values
for each of the angle trajectories were morphed accord-
ingly: m(t) = (1−α(t))mprev +α(t)mpost, where mprev
is the mean value in the step prior to the transition and
mpost is the one after the transition. The time-dependent
blending weight α(t) was constructed from the phase
variable φ(t) of the leading oscillator. Identifying the
transition point, where the weights switch between the
subsequent actions with the phase φ = 0, the blending
weight was given by the equation (here, regarding only
two adjunct actions, we use convention: φ ∈ [−2π;0[
for a previous action, and φ ∈ [0;2π[ for a next one):

α(t) =


0 φ <−β ,

(1+ sin(πφ(t)
2β

))/2 φ ∈ [−β ;β ],

1 φ > β

 (2)

The parameter β = π/5 determines the width of the
interpolation interval and was chosen to guarantee
natural-looking transitions. This value was derived
in previous work, optimizing transitions for other
scenarios [GMP+09].

The weights associated with the non-periodic source
had to be treated separately since they can have
different signs before and after the transition. Since
the timing of this source is completely determined by
the phase φ(t) of the leading oscillator, we constrained
the blending by allowing sign changes for these
weights only at the point where this phase crosses
zero (φ(t) = 0). The ramp-like non-periodic source is
normalized in a way so that s0(0) = 1 and s0(T ) = −1
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Figure 7: Learned nonlinear mappings between action length
and duration and the mixing weight of the 1st source for hip
flexion angle: a) 1st action, b) 2nd action.

(T being the duration of an oscillation of the leading os-
cillator in the attractor state). The following morphing
rule W (t) = sign(φ(t))[(α(t) − 1)Wprev + α(t)Wpost ]
ensures a smooth transition that make the
weights for this source converge at the bound-
aries between the actions against the value
ξtrans = (mprev +mpost)/2+(Wpost−Wprev)/2.

2.5 Learning of mappings between step
parameters and mixing weights

In order to make the generated behavior highly adap-
tive for conditions that were not in the training data
and for dynamic changes of the environment, we de-
vised an online control algorithm for the blending of
the weights W , separately for each action. For this
purpose, we learned nonlinear functions that map the
step lengths and the duration of the steps onto the mix-
ing weights. For the learning of this highly nonlin-
ear mapping we used locally weighted linear regression
(LWLR, [AMS97]). Fig. 7 shows some example for the
weights of the first periodic source.

The required step lengths are computed online from
the total distance to the drawer. The length of the step
of the second action was optimized in order to generate
an optimum (maximally comfortable) distance for the
third action, which was estimated from the human
data to be about 0.6m. The total distance between the
start position and the drawer D was then redistributed
between the first two actions using a linear weighting
scheme, specifying the relative contributions by the
weight parameter γ . The remaining distance D− 0.6m
was then distributed according to the relationships
D1 = (D−0.6m)γ and D2 = (D−0.6m)(1− γ), where
we fitted γ = 0.385 based on the human data. This
approach is motivated by the hypothesis that in humans
predictive planning optimizes end-state comfort, i.e.
the distance of the final reaching action [LRSS13].

We extended the algorithm in addition by a method
that introduces additional normal steps (corresponding
to action 1), in cases where the goal distance exceeds
the distance that can be modeled without artifacts by a
three-action sequence. If the distance between the goal

Figure 8: Two synthesized trajectories, illustrated in parallel
for two conditions with different initial distance of the charac-
ter from the drawer. Both animations look highly natural even
though these goal distances were not present in the training
data set.

and the agent was too short for the introduction of long
steps, instead a variable number of short steps as in ac-
tion 2 were introduced.

3 RESULTS
Two example sequences of concatenated actions gener-
ated by our algorithm, for distances to the goal object
that were not in the training set are shown in Fig. 8. An
example video can be downloaded from [Demo2].

A more systematic evaluation shows that the algorithms
can, without introducing additional steps, create nat-
ural looking coordinated sequences for goal distances
between 2.34 and 2.94 m [Demo3]. If the specified
goal distance exceeded this interval our system intro-
duced automatically additional gait steps, making the
system adaptive for goal distances beyond 3 meters.
This is illustrated in [Demo4] that presents two exam-
ples of generated sequences for goal distances 3.84 and
4.62 m. With 3 actions the largest achievable range of
goal distances without artifacts was about 60 cm, while
adding another step increases this range to about 78 cm.
Adding two or more normal gait steps our method is
able to simulate natural-looking actions even for goal
distances longer than 5 m. The next [Demo5] illustrates
the sequence of three actions of first type followed by
actions 2 and 3 for the goal distance 5.3 m.

Fig. 9 illustrates that, like in humans, the posture at the
transition between the second and third action depends

2 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v2.avi
3 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v3.avi
4 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v4.avi
5 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v5.avi
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Figure 9: Postures at the transition between actions 2 and 3
for different lengths of the second action (red: 0.53 m , green:
0.39 m). Even though the distances to the drawer are the same
in the last action the postures differ due to the predictive plan-
ning of the second action.

Figure 10: Online perturbation experiment. The goal
(drawer) jumps away during the approaching of the charac-
ter. The online planning algorithm introduces automatically
an action of type 2 (short step) to adjust for the large distance
to the goal.

on the previous step. In one case the step lengths for ac-
tion 2 were 0.53m and 0.39m, while the distance in the
last step was identical (0.6m). This illustrates that in
fact the posture for the reaching is modified in a predic-
tive manner over multiple steps, where the predictive
planning modifies the posture at the beginning of the
last action even if the distance to the goal object for this
action is identical. A planning scheme that is not pre-
dictive would predict here the same behaviors for the
last action since the relevant control variable (distance
from the object) is identical for both cases.

An even more extreme demonstration of this online
adaptivity is shown in movie [Demo6]. Here the drawer
jumps away during the approaching behavior by a large
distance so that it can no longer be reached with the
originally planned number of steps. (Fig. 10). The on-
line planning algorithm adapts to this situation by au-
tomatically introducing an additional step so that the
behavior is successfully accomplished. Again the be-
havior has a very natural appearance even though this
scenario was not part of the training data set.

6 www.uni-tuebingen.de/uni/knv/arl/avi/wscg15/v6.avi

4 CONCLUSIONS
We have presented a method for the online animation of
multi-step human movements that was inspired by con-
cepts derived from biological systems. The proposed
system realizes a predictive planning of multi-step
sequences, including periodic an non-periodic move-
ments that reproduce critical properties observed in
experiments on human motor planning. The planning
is predictive and optimizes the ’comfort’ during the
execution of the final action. The proposed system
exploits the concept of movement primitives in order
to implement a flexible and highly natural-looking
coordination of periodic and non-periodic behaviors
of the upper and lower limbs, and to realize smooth
transitions between subsequent actions within the
sequence. For the first time, our architecture is im-
plemented for generation of goal-directed movements.
Our approach differs from the whole-body motion
blending approach presented in [HK14], where, in
order to increase naturalness of the transitions, it was
necessary to introduce empirical rules that depend on
the gait phase. Future work will extend our approach
to other classes of movements, including, for instance,
adaptive arm reaching movements accomplished while
walking. In addition, we plan a systematic evaluation
of the realism of the generated motions, including
psychophysical studies.
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