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Abstract

Within this paper we conclude the treatise of vNM-Stable
Sets for (cooperative) linear production games with a continuum
of players. The paper resumes a series of presentations of this
topic, for Part LILIILIV, see [1], [2], [3] [4]

The framework has been outlined previously. The coalitional
function is generated by r + 1 “production factors” (non atomic
measures). 1 factors are given by orthogonal probabilities (“cor-
nered” production factors) establishing the core of the game. Fac-
tor r + 1 (the “central” production factor) is represented by a
nonantomic measure with carrier “across the corners” of the mar-
ket. I.e., this factor is available in excess and the representing
measure is no element of the core of the game.

Generalizing our set-up, we assume now that the “central” pro-
duction factor is represented by an arbitrary measure not neces-
sarily of step function character. Then the existence theorem is
achieved by an approximation procedure.

Again it turns out that there is a (not necessarily unique)
imputation outside of the core which, together with the core gen-
erates the vNM-Stable Set as the convex hull. Significantly, this
additional imputation can be seen as a truncation of the “central”
distribution, i.e., the r 4+ 1% production factor. Hence, there is a
remarkable similarity mutatis mutandis regarding the Character-
ization Theorem that holds true for the “purely orthogonal case”
(]5],[6]). This justifies to use the term “Standard vNM-Stable
Set” in the presence of a central production factor.
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1 Continuous vs. Uniform Models

We continue the discussion of convex vNM-Stable sets for a Semi Orthogonal
Game ([1], |2], [3], [4]). Our notation is adapted accordingly. Thus, we
consider a (cooperative) game with a continuum of players, i.e., a triple
(I,E,v) where I := [0,r) reflects the players, F is the o—field of (Borel)
measurable sets (the coalitions), and v (the coalitional function) is a
mapping v : F — R, which is absolutely continuous w.r.t. Lebesgue
measure X. We focus on “linear production games”, that is, v is described by
finitely many measures A?, (p € {0,1,...,r}) via

(1.1) v(S) = min{N(S)|pe{0,1,....r}} (S€E),
for short,
(1.2) v= A{X°A N = AN

(with R = {1,...,7} and Ry = RU {0}). The measures A',..., A" are
orthogonal copies of Lebesgue measure on the carriers C” = (p—1,p] (p=
1,...,r). The “central measure” A" is absolutely continuous w.r.t. Lebesgue
measure such that A\°(I) > 1.

The measures generating v are seen as production factors or commodities
(as v can be interpreted as a production game or a market game). Hence
{A"} cr represent the “cornered” production factors/commodities while A\’
represents a “central” production factor/commodity.

We write
(1.3) = essinfer A’ (peER), I} = Z l
pER\{o}
and require
0 0
(1.4) B>0 (peR), Y <1,
pER
which implies

(1.5) P<1-0r<1 (0 €R).

We claim without proof that these conditions eventually can be disposed of.
For , if the second condition in (1.4) is violated, then the core is the (unique)
vNM-Stable Set of the game. The first one can be removed by some kind of
limiting procedure as will be presented in SECTION 4 and we do not want to
overburden this text.

The density A° is not necessarily piece-wise constant as in our previous set—
ups. Somewhat sloppily we will, therefore, refer to the present setup as to a
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continuous model. The previous model in which the central measure has
a step function density shall — in accordance with Definition 2.3. of Part IV
— be referred to as the uniform model.

With any continuous model we will derive uniform models with central mea-
sure A® derived from A° via the conditional expectations of A’ w.r.t some
finite (Borel) field (see SEcTION 2 of [4]).

More precisely, given some central measure A°, we consider for ¢ € N a
uniform model as follows. Let T = T® :={1,... rt}) and let

(1.6) (t)]; - {(t)DT}

TET
be a family of subsets of I such that

pt
(1.7) Cr = J “br

T = (p—1)t+1

is partitioned into ¢ pieces of equal Lebesgue measure,

(1.8) N =AOD) = (reT = TU).

Let E(t) denote the o-algebra generated by the atoms (“blocks”) of (t)g. The
description of a uniform model is completed by introducing a central measure
AD with piece-wise constant density, adjusted to the family (t)g, or rather
measurable w.r.t. E(t). We choose the conditional measure

(1.9) A= PAX[E} (o),

the density of which is conditional expectation of A° w.r.t. E(t), ie.,

)\O((t)DT)

Wﬂumf (),

(1.10) 5\“)(*) = E{AO

£} ) -

TET

where 1, denotes the indicator function of a coalition. Now {A’} g and A0
generate a coalitional function

(1.11) v® = AOA AN

pER

and hence a game (I, F, v®). At this stage, there is a considerable freedom
in choosing these partitions, essentially we want the partitioning sets to have
equal measure.

By definition, A® coincides with A° on F®. The measures A’ (p € R) do

t)
not change essentially when conditioned to E(t); consequently in particular

(1.12) v(S) = v(S) (SeEY).
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This way, we have connected a continuous model with families of uniform
models D as established in Definition 2.3. of Part IV.

Given some uniform model recall the definition of relevant vectors (see
SectION 3 of [1]) @a®, a®, and a®. We now augment the notation writing

®a® ®ag® and ®a®.

We will then speak of “vectors relevant w.r.t (t)]g ”. Also, it may be necessary
to distinguish between dominance regarding v and regarding v®. We use
the well established notations £ domgn and & domg(t) n.

We start out with a useful detail:

Lemma 1.1. Let t € N and let (t)g constitute a uniform model. Let £,m be
imputations and let €Y .= P {5 ‘ E(t)} (o). Let S be a coalition. If

1. Se€ EY,

2. {&>n} € EY,

then the relations

(

Edomgn , & domgm n and &Y dom? ! n

are equivalent.

Proof: ¢ and €9 coincide on F® hence by (1.12) we know that

(1.13) £(S) <wv(S) if and only if £Y(S) <v®(S) .

Denote 7% = {& > 7.;} and Tc = {£ < 7.;} Then, as T\ € E(t), any atom
O D7 of E® is either contained in 7% or disjoint, i.e.,

(1.14) OD"CT. or VD™ C T.

Assume now that € > n holds true “ on S 7. Let D" be an atom of 3,

ie. D™ C S. Then necessarily A (VD™ N{¢ >n}) > 0. From (1.14) it
follows that ) D™ C {¢ > 1} and hence necessarily

E>n on D7
Therefore, £ > n “ on S ” holds true, that is,
(1.15) €9 >n on S implies €>n on S.
On the other hand, if £ > 1 “ on S 7 is the case, then nessarily & > 1 on

every atom ® D7 of S and hence £ > 1 on every such atom, which implies
€9 > p<n S 7. Thus

(1.16) £€>n on S implies €Y >n on S.



* SECTION 1: CoNTINUOUS VS. UNIFORM MODELS * 6

Now (1.13), (1.16), (1.15) as well as (1.12) prove the Lemma.
q.e.d.
—
Write A to denote the vectorvalued measure (A(eNC?), ..., XA(eNC")). Then,

given some measurability, we can improve upon the notion of “c-relevant
coalitions” as follows.

Theorem 1.2 (The c-free Inheritance Theorem). Lett € N and let ®D
constitute a uniform model. Let & and m be imputations and let S € E(t) be

a coalition such that & domgm 1. Assume that,
1. € is FY—measurable,
2. T, = {£>n} € EO .

Then there exists a vector a'? relevant for v and a coalition T2 such
that the following holds true.

(1.17) A(TH") = %a(t) ,
and

(1.18) ¢ dom;(;a(t) n
holds true.

In other words, one can dispose of the € and its quantifiers as described in
the Inheritance Theorem (Part I, Theorem 3.3, [1]).

Proof: 1*STEP : Apply the Inheritance Theorem 3.3 of [1] to E® and
v®. Thereby find a relevant vector a® and 5 > 0 such that, for any £ < &,
there is 7¢ = T C 9 satisfying €d0m;g(t> n . Clearly, ¢ < 1 as WD
constitutes the basic reference model.

2"dSTEP :

Presently, we focus on some relevant vector ®a” of the third type. It will
be obvious how to proceed for the (simpler to treat) versions a® and a® of
the first and second type according to Theorem 3.5 of Part L.

Also we assume that the critical coordinate for the construction of (’f)a,e is r.
That is, ®a® is of the shape

(1.19) Da” = (1, 1,1, La, )
with
(6% = (t)a? — (h?l_'_"'_'_h?r_l—i—h?T)_l
T Tr h?r — h?r ,

1.20
( ) S 1—(h?1++h?r>

g (t) = = N
67’ a”Tr h;r _ h? Y

T
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according to the definition of relevant vectors (Theorem 3.5. of Part I).
Within the present framework, the the quantities in (1.20) carry an additional
index, say Mh,. Note that o, + 3, = 1. Let

T = (T, s Ty Tr)

denote the sequence corresponding to the positive coordinates of ®a. For
p € R\ {r}, consider the coalition

(1.21) T ner = OD” (peR\{r}).

As . € E®, any atom/block D" of E® is either contained in 7% or
disjoint, i.e.,

(1.22) OD"CT. or D™ C T,

From 7% N C” € WD™ it follows that A("D” N {¢ > n}) > 0. Then,
according to (1.22), @ D™ C {& > n}. Consequently,

(1.23) T ner = WD C {¢>n}

3"4STEP : Next, for p = r and T = 7., T, the argument has to be adapted.

Again, T¢" NC" C WD UOD™ and A(VD™ N {€ > n}) > 0 implies
OD"C{eE>n} (1=7.7).

However, in this case we cannot choose the full atom in order to construct

T, Instead, we choose an arbitrary subset Teo of OD7 with measure

%Ozr and an arbitrary subset T of O D" with measure %ﬁr and define 712"
via
T nCr = TeoruTo

Then of course

(1.24) Op nT € ODT C{t¢>n} (r=7.7),
4*"STEP :
Now,
La® 1 1 al®
ANTT) = (o +58,) = —(ar+ B)NT™T)
and
Nty = Yawg) = 1o 3 A0 ) = o)
t 13 e te
pER\{r}
and it follows that
N 1 (¢t 1*> t 1 (¢ 1 t
(125) A(T?a()> = —A(Tsa()> , AO(T?G()) — _AO(TEG()>

te te
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and hence

1, 1 ) 1
1.26 Tt — —o(TE® .
(1.26) o) = Lo(r) =

As £ is measurable w.r. E(t) (i.e., has constant density on the atoms), we

have &(Tt*") = = (T=""’). Hence,

1 t ]_ t ]_ t 1 "
(1.27) §Ti) = 6T ) < o) = 00T,
g g

On the other hand by (1.23) and (1.24) ,
(1.28) €>mnon T
Combining (1.27) and (1.28), we have

€ dom%Ta(t) n,

q.e.d.

Remark 1.3. We emphasize that within the constructions in the 2"¢STE P
and the 3"*STEP the choice of

(1.29) T NeCr = T T C {€>n}

is arbitrary up to generating the correct measures «,. and 3,. This leads
directly to formulating the next Theorem.

Theorem 1.4. Let t € N and let (t)g constitute a uniform model. Let &
be an imputation and let €(t) =P {E ‘ E(t)}. Let m be an imputation and

S € E® be a coalition such that €Y domg(t) n. Assume that T = {&€ > n}

is W —measurable . Then there ezists a vector a®) relevant for ®D and a
L it L
such that

coalition T

=1 1
(1.30) ATy = cal
and

(1.31) §dom” ) 1

holds true.

Proof:
1StSTEP :

Run through the steps of the proof of the previous theorem. For all the
1
atoms v and v° coincide. For C" N T2 both v and v° coincide because of
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(1.25) - an this still allows for a free choice of this set up to generating the

correct measures. All one has to do is in the 4"STEP to arrange for T
1

and Tt% in a way that

(132)  &(Ti) =€(TH) and  ETH) = €0(TH7)

is satisfied. However, £€® is the conditional probability of &. Therefore by
taking equal chunks out of {5 > ¢ } N D™ and {5 < ¢ } NOD™ if
necessary, we can achieve the desired form of Tio and similarly for Tibr.

2"ISTEP :

We are going to make this more precise (sometimes omitting an index ® for
clarity).

Indeed, as —hE )) is the conditional probability of A° over D™ it follows that

(1.33) / Xl = / Y N
() (o)

Now, for € > 0 we can choose

c 70 (t) . 30 () ¢ N (t)
e e U S N

such that

(1.34) A(FSUFEUFY)=¢
and
7O (t) _ (t) 7O
(1.35) /()\ - h(?p)> A\ = /(h(?p) ~ A > X .
Fg Fg
via Ljapounoffs Theorem. Then we have
(1.36)
/%M+/%M+/%M
Fe F= Fe
_ (t)
= / iz, A
FEUFEUFS
+ / (AO > dX + / (Aod)\ h(t > dX + / ()\OdA — hgg)) dX
Fe Fe Fe
- 5h(t X + ( > (AOdA h )) d\

— h' .
(Tp)
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the last equation following from (1.35). That is, for ¢ = %= we obtain

)
0 5 & 5 o .0 _ Oérh(?p)
(1.37) AN(FEUFEUFY) = AN = —

FEUFUFE
So that, when we choose T%ar = FSUFZUPFE, then

ah® 00

(138) AO(T%O&) — t(?P) — ?Pt(?p) — A(t)(T%ar) )

That is

0 i@y _ axpyp® — 0 _ Loww e _ le e

A(D™NT ) = A(D™)h h z.'"a a zh
o (’7:7‘) o t (’7:7‘) - t ,7:'r Tr T t Tr ?’,«)

and

1(t)g® =

ENODT N1y = E9OD" nTie)
= 0, A(D7) = a,A°("D™)

(1.39) _ lz_cg)(t)ae? _ l(t)ae? X0
t Tr [d [d (Tr)
_ Q0
= e
ie.,
¢ lar _ =(0) lar r
Ty = €9(T) = hd,
3"ISTEP :
For T't5" the argument is rather similar.
— = A
Finally for 7, we have W D™ C E, hence
é = 1-10r = 1—h7(f)*::13g on OD”
Therefore, no matter the choice of T%ﬁr, we have

Now, exactly as in the 2"*STEP we can choose TP C OD™ via Lja-
pounoffs Theorem such that

X(T7) = gA(D™)
is true. Then again

)= Pl = 20a a0 -

0 T %(t)a
(1.40) A(D™"NT Q) = JVa"
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This way we obtain (1.32).
q.e.d.

Now let S be a set with rational measure A(S) = £. Then we can construct
a uniform model ®D such that S € E® just by cutting S into g pieces each of
them having measure % and choosing the decomposition of I'\ S suitably. This
suggests that we can apply the previous Theorem with somewhat relaxed

conditions as follows.

Corollary 1.5 (The rational Inheritance Theorem). Let & and 1 be
imputations and let S be a coalition such that & dom¢n. Assume that,

1. X(S) = % is rational,

2. 1. = {é > 0} has rational measure X(Ts) = 2 (w.lo.g. with the
same t).

Let (t)]=3 be a uniform model such that S € E(t) and T € E(t) and let
¢" = P{¢|EW} (o) . Then the relations

»®

(1.41) £domgmn, & domg(t) n, and &Y dom7

hold true simulataneously. Moreover, there exists a vector a® relevant for
v® such that T1*"Y C S and

v v(®) @)
(142) € domT%au) n, € dOmT%a(t) n, E(t) domT%a(t) n .

Proof: The first claim follows from Lemma 1.1 and the second from Theorem
1.2,

q.e.d.

Naturally the next step is to establish that a rational measure for the coalition
involved in a dominance relation can be enforced. In the following Lemma
domination refers to v.

Lemma 1.6. Let & and 1 be imputations, S a coalition and let § domg n.
Then there exists a coalition T C S such that A\(T?) = X(TNC?) is rational
for every p € R and

&domrn .

Proof:

15*STEP : First of all assume that £(S) < v(S) is the case. For each p € R
choose a sequence of rational numbers 72 such that r? 1,, A(S”) (n — oo0) and

by Ljapounoffs Theorem an increasing sequence of coalitions S% C S? | C S*
such that A(S?) = 72 and S? 1 S” (n € N), hence S,, TS (n € N). Then

£(S,) TE(S) and A°(S,) T A°(S) forall pe Ry (ne€N),
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hence v(S,,) T v(S) (n € N). Consequently, for sufficiently large n € N we
have &£(S,,) < v(S,) and, as S,, C S, also & > i on S,,. That is indeed,

&domg, n
for sufficiently large n € N.
2MSTEP :
Now we consider the case
(1.43) £(S)=v(9) .

Denote s, := A(S?)(p € R). If, for some T C S we have &(T") < v(T'), then
we may proceed as in the first step.

Then, consider the case that
(1.44) For all T C S with X(T') < X(S), we have £(T") = v(T).

Then we construct for all 0 < ¢ < 1 a subcoalition S* C S? such that
A(SPP) = ts, holds true. Then, for rational r, such that ¢ := Z—’; < 1 for all
p € R, we observe that

A(SH) =ts, = "o _ T
Sp

is rational and yields A(S?) = v(S?) (by (1.44)). As S* C S we know that
& > non St that is € domg: 7 and we are done.
3"4STEP :

Therefore, let us now assume that £(S) = v(S) and that for all coalitions
T C S with X(T') < A(S), we have &(T") > v(T).

Let

(1.45) R, := {p e RIE(S) =M(9)} = {peR[N(S) = v(9}#0

such that
(1.46) £(S) < A(S) (peR\R,).
Next define
(1.47)
R. := {p € R|there exists ¢y > 0 such that for all 0 < ¢ < ¢

and all T C S with A(S) —e < A(T) < A(S) it follows that
E(T)>XN(T) +#0.

Clearly

(1.48) R.CR, .
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Now choose ¢, jointly for all p € R,, i.e., in a way such that

forall 0 < e < e, and all T C S with A(S) —e < A(T) < A(S),
(1.49) it follows that
E(T) > M(T) (p € R.) and £T) = M(T) (p € R, \R.)

Consider now the vector-valued measure p := (& X, A% ..., A"). For some
£ < eo and T C S satistying A(S) —e < A(T) < A(S) we have

E(S\T) = &(5) — &(T) = X(5) — &(T)

(1.50) < A(S) — A(T) = N(S\T) (peR.)
and
sy BN = &) &) = _A”<S> - &)

Next, in view of (1.46), we can decrease ¢, if necessary in order to make sure
that for all 7' C S with A(S) —e < A(T") < A(S), we have

(1.52) §(T) < X(T) (peR\R,).

Now we choose rational numbers ¢, {g,},cr such that

(1.53) 0<g<s , s—q<ec, ,

as well as

(154) O<Qp<3p , qu:q )
PER

holds true. Thereafter choose r such that
(1.55) 0<r<l, s—rs<ec,

is satisfied. Finally put

w0 b-g)

SN ()

Now choose T' C S such that A(T") = rs and accordingly T satisfies (1.50)
and (1.51).

Consider the straight line connecting p(S \ T') and w(S). By Ljapounoffs
Theorem we find for every 0 < ¢ < 1 some coalition S*, S\ T C S* C S with
values

p(SY) =tu(S\T) + (1 = t)u(S)

on this line.
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St obviously satisfies

£(5") < N(S") (peR,)

(1:57) £(5") = M(S) (peR.\R.).

Here the first line is based on (1.45) and (1.51), while the second line is based
on (1.45) and (1.50).

In particular choose t satisfying

1

(1.58) t:—<1—g> - (—@) pER;
r s Sp

this is possible by (1.56).

Then

(1.59) :s—trs:s—s<1—g>
= dq
and
A(S™) = A°(Sh)
= tA?(S\T)+ (1 = t)A?(S)
= t(s, —15,) + (1 —1)s,

dp
= s, —1trs, = sp—sp< - —
Sp

:qp

(1.60)

are rational numbers. As s — g < &,, we know that S satisfies (1.52), i.e.,
(1.61) E(SYH) < A(S) (peR\R,).

Combining (1.57) and (1.61) we see that &£(S?) < v(S?) and as S* C S we
have & > m on S and hence

(1.62) &domg: 1,

q.e.d.

The following lemma collects the above results.

Lemma 1.7. Let & and n be imputations and let T be a coalition such that
&dom?. n. Then there exists a coalition S and an imputation ¥ such that

1. ScT,
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2.9=monS,

5. {&>9rc{E>n),
4. A(SNC?) is rational for all p € R,

5. )\({é > 1.9}) N C* is rational for all p € R,
6. £Edomg ¥ .

Proof: According to Lemma 1.6 we find S C T such that that A(S) N C”
is rational for all p € R and £€domgn. As S C {¢& > 7} we are done if it

so happens that S = {£ > 7.7} is true. Assume, therefore, that {& > 7.7} \ S
has positive measure. Then, as & and 1 are imputations, it follows that

{€< 7.;} C I'\ S has positive measure.

Denote T'>. = {é > 7.;} and T< := {é < 7.7} Choose R* C T+ and R~ C
T < of sufficiently small but positive measure such that A((T'> \ R*) N C”)
is rational for all p € R and

(1.63) J@=ian= [ - éax

holds true. Then

(1.64) Y = n+(E—n)lgr —(n— &)l

is an imputation. Moreover ¢ = &+ (n—€) =n > £ on R*. Similarly,
¥ =n+E-n)=&§on R
Thus

(1.65) (>0} =T.\R, C{€>n)

and {é > 1.9}00” has rational measure )\({é > 1.9}ﬂCp) = A(T-\RT)NC?)
for all p € R. Finally, as 9 = m holds true on S, we have clearly £ domg ¥
as well.

q.e.d.

Corollary 1.8. Let & and n be imputations and let S be a coalition such that
&domgn. Then there exists to € N such that for every multiple t = rty of to
there is a uniform model constituted by (t)g as well as a coalition R and an
imputation 9 such that the following is satisfied:

1. RCS,
2. 9=mon R,
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9. {E>0)C{E>n},
4. Re EW,

5. {€ > 9} € B,
6. Edomp v .

Proof: Follows immediately from Lemma 1.7: choose R and ¥ accordingly

and let to be an integer such that A(R N C”) and A({§ > ¥}) N C” are
multiples of % for all p € R. Then decompose each C” (p € R) into atoms

ED™ in a way that RN C” and {é > 1.9} N C” are respected.

q.e.d.

Remark 1.9. The choice of a model via (t)]g in the context of the previous
results still allows for certain degrees of freedom. It is sufficient to choose
the atoms @ D7 to be of equal measure % and not to cut into the two sets S

and {& > ¥} that are given by Lemma 1.7.

Combining our results we obtain relations between dominance w.r.t v and
dominance w.r.t. v, The following is a version of lower hemicontinuity.

Theorem 1.10 ( Dominance is lhc.). Let £and m be imputations and
denote €V = P {E ‘ E(t)} (o) . Also, let S be a coalition such that & domg n.
There exists tg € N and for all multiples t = rty € N some uniform model
DD as well as a vector a®) relevant with respect to D such that 7"
satisfies

1. 7¢O C S,

vt

2. &dom? ym, & dom;(:zt) n, and &Y domTazt) n .

Proof:

Choose ty € N and some multiple t = 7ty as well as (t)]=3 and some R C S
and ¥ according to Lemma 1.8. That is, £ =9 on R and {& > n} as well as
R are F-measurable. Then we obtain

(1.66) v®D(R) = v(R)
and hence, in view of Lemma 1.1,

(1.67) &dom} 9, & dom%(t) 9, and £V dom}’g(t) 9 .
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Now by the “e—free” Inheritance Theorem 1.2, there exists a vector a = a®
relevant w.r.t v® such that 7" C R and

(t)
E dom;a(t) I .

Again by Lemma 1.1 we have

o®

(1.68) §dom? ) 7, £dom;:zt) n, and &Y dom? 1 -
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2 Truncating the Central Factor

In the framework of the uniform model the pre sub—imputation & is con-
structed via some truncation procedure of the central measure. It provides
the basis for the construction of a vNM—-Stable Set via the convex hull with
the core. We refer to this pre sub—imputation as to the standard trunca-
tion.

We provide the procedure for the continuous model. We will suitably truncate
the central density and augment it in order to receive an imputation. This
imputation together with the core will allow the definition of a vNM-Stable
Set as the convex hull of both.

Simultaneously we are dealing with a continuous model and a uniform one.
The first one is represented by a game (I, F,v) with coalitional function

v= A{X°A N = AN

PERo

where A’ is an arbitrary (“continuous”) central distribution. The second we
indicate by some family

D = {(t)DT} with T = TO .= {1,...,7t})

TET

The central distribution is the conditional probability A® w.r.t the corre-
sponding field E® . The game v® is defined accordingly.

We have to recall notation in order to relate the uniform setup of Part IV
and the continuous one.

\ A
First of all the sets T? and T? are provided by Definition 2.1 of Part IV.
\
Naturally, the corresponding sets with a model indexed with ® are T and

\%
)T, The corresponding coalitions are written

(o .— J D" . O - ) “p
(2 1) TE(t)-\l/-a Te(i)'?'(’
' Y Y A A
T U Oqe  TO = U e
peER peER

In the uniform context (Part IV) we use discrete values h, of the central
density as well as quantities

(2.2) hy = min{h.|T €T’} peR

p
and

(2.3) myo= ) M

pER\{o}
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Now with respect to some (t)]=) and the central distribution A® derived from
Y, we denote the values by

(2.4) Oh, = PIX|UD™} (1€ TW).

Accordingly we have data

(2.5) (t)hg = HliIl{(t)hT‘TG(t) T’} peR
and
t)px #) 0
(2.6) Opy = Z O
peR\{o}

Now recall the definition
(2.7) I := essinfee X , o= Z I (0 €R)
pER\{co}

and the assumption

(2.8) Y <1

PER
imposed on the continuous model. Clearly we have

29)  On0>10, Uni>r, and 1-Uny<1-0% (pER).

Define for 0 € R

(2.10)
\Y ° °
E’ = {w|Aw)+ Z H<1l,nC’ = {w Ao(w)+l;<1}m0",
pER\ {0}
\Y vV
E = |JE,
pER

as well as

N vV

Ef .= C’\E’” (peR) ,
2.11 A A .
(2.11) E = UE” = U{w )\O(w)21—l;}ﬂcp,

pER PER

The notation for the “standard truncation” vector & established by Defi-
nition 2.4 of Part IV to our present set—up is straightforward. We write

(2.12) 20 = {70} 0.
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The pre imputation generated is the measure given by

O .
(2.13) '19“ =1 Z W 1p- ,  that is, Z xt))\|tDT :

reT® TETM®

Now we present the version for the continuous model. First of all we put

— \
(2.14) € =X on E.
Then, we define
. A
(2.15) §:=1-0;=1- > 1on E° (c€R).

pER\{o}

Because of (2.8), £ is indeed a sub-imputation. Using the indicator function
1, we can also write

> o .0 * o .0 *
(216) &= ) X1, +> (1-l)L, = ALy +) (1-1;)1
pER pER PER

Definition 2.1. The sub—imputation & is called the standard truncation
measure.

Figure 2.1 indicates the shape of the measure &.
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AO

11

Figure 2.1: The Continuous Case — The Shape of &
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Now the standard truncation measure £ may be projected to the uniform
model induced by some D®.

Thus, we denote the conditional measure (sub-imputation)

E@} :

which has a piece-wise constant density €?. The values attained by this
density are the quantities

(2.17) gY = P{é

(2.18) gV = ]E{E

(t)DT} (reTW).

This result, of course, has to be well distinguished from the standard trun-
cation measure that is obtained by the standard truncation vector of the

uniform model which is 9 as given by (2.13).

The following establishes a condition for the two sub-imputations provided
by (2.17) and (2.13) to be identical. This condition will be maintained
throughout this SEcTioN and the following one. Eventually we devoe that
last SECTION) to the task of removing it.

Definition 2.2. We shall say that A° is locally flat if there are positive

rational numbers £, 1 and %= (p € R) such that the following are satisfied.

1. For some rational number r we have

(2.19) A ({3\0 - zg}) - ; (p €R)
(2.20) A(IVE> -2 andA(ﬁ;) - ¢

Lemma 2.3. Let A° be locally flat. Then there exist a uniform model (t)Q
such that the following is satisfied.

(2.21) Or0=19 (peR); Dnt =15 (c€R).

\% \%
(2.22) OT = E



* SECTION 2: TRUNCATING THE CENTRAL FACTOR % 23

Proof:
1StSTEP :

{)\0 = lg} has positive and rational measure. Making use of the considerable

degrees of freedom available (Remark 1.9), we can arrange for some D to
satisfy for all p € R

feosferr. a((ie-s) !
= t

®)

as well as
AVARRVN
E F c

’

=

Then, for all p and at least one 7 € T®) we have ) D™ C {)\0 = lo}. Hence

p

Y = I* and in view of Wh% > 19 we have (2.21). Next, (2.22) follows at
once.

2MSTEP :
Vv
Let @ D™ C OT7 for some o € R. Then

A <1 —h®=1-1.

[

Hence
[ ]

\Y
D' N {w AN(w) <1 —z;} = OUD'NE°

has positive measure as A is the conditional expectation of A’. As we
\

Y
assume that E° is measurable, we conclude ¥ D™ C E°.

\Y%
On the other hand, if ® D™ C E?, then

® p7 C {w

N(w) <1—1%=1 —h;(t)} ,

\%
hence hi <1 — h3" and therefore ® D™ C OT. This implies (2.22).
q.e.d.

Lemma 2.4. Let A° be locally flat and let DD be satisfying conditions (2.21)
and (2.22). Then

(2.23) E(t) = P{E\g(”} — 5 — gz

Proof: Recall

=

(2.24) é@ = ]E{g‘

ol _ 3 (0) o
} _]E{A 1‘é+2(1 lp)]l‘gp

pER

E(t) }
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and

R L NPED D
pER

V N N
Note that T and T” carry an index ¢, we omit writing ®T* etc. for the
sake of clarity. Now, as we assume local flatness. we can employ Lemma 2.3.
Therefore, for the first two terms in (2.24) and (2.25) we obtain:

Em} _ E{imﬂ Ew}

(2.26) _ E{i@ Ew}l — A0

K K

V

E{XO1
| T

| B

as 1 v is F® measurable.

For the second terms in (2.24) and (2.25) respectively we find

]E{Z(l ~ )1 | B 1«;@)}
pPER

(1=01, )= 1=Up1 . |
Z P | Er peZR p | Tr

PER

(2.27)

again in view of Lemma 2.3. Now in view of (2.26) and (2.27) we obtain our
result.

q.e.d.

Combining we obtain

Lemma 2.5. Given the continuous model there exists a uniform model (t)Q
such that the following holds true:

V vV A A
1. O =Er, OTP=FEr (pcR).
2. O =19 (peR); ©hr: =1 (0 €R).

p p o o
32 E(t) _ ]P{E‘E(t)} _ 1—9@) — 9=

Definition 2.6. Let (t)Q be a uniform model derived from the continuous
model (I, E,v) via the conditional measures AW of A We call (t)g com-
patible if the conditions listed in Lemma 2.5 are satisfied.

We are now in the position to formulate a version of u.h.c. continuity com-
plementing [.h.c. continuity presented in Theorem 1.10.

Theorem 2.7 (Dominance is uhc.). Let X° be locally flat. Let & and ) be
imputations. Suppose that there is some compatible uniform model (t)Q and
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a relevant vector a® such that there is a coalition S® = T obtained by
Theorem 1.2 and hence satisfying Remark 1.35.

Assume furthermore, that the conditional expectation €9 = P {5 ‘ E(t)} sat-
1sfies the following:

o®

1. £€Ydom?% 7 .
2. {£>n} cEY,  teN,.

Then, there is tg € Ng such that for allt € Ng, t > tg

g domg(t) n.

Proof:

1StSTEP :

We proceed as in the proof of Lemma 1.7. As {& >0} € F®, and € and n
are imputations, it follows that {£€ <} C I'\ S has positive measure.
Denote T» := {¢€ >n}and T< := {£ <n}. Choose Rt C T and R~ C

T < of sufficiently small but positive measure such that A({T'> \ RT} N C*)
is rational for all p € R and

(2.28) JE-ian= [ - éax

holds true. Decrease R™ if necessary in a way such that for some ¢y € Ny
we have RT € FW(t € Ng, t > to). Decrease R" if necessary in a way
such that for some t1; > tg0 we have RT NS = (0 (¢t € No, ¢t > t11). In
view of item 2 of our assumptions, we can now find tyy € IN, t99 > tq1, such
that for ¢t € Ny, t > tge, we have ({¢ > n} \ RT) € E®. Combining these
requirements, we have for ¢t € Ny, ¢t > to

(2.29) {e€>n\RNH eEY | R"NS" = 0.
Now consider the imputation
(2.30) V= n+(E—n)lgr — (n—§)lg-.

We know that ¢ = &€+(n—€) =n > &on RT. Similarly, ¢ = n+(&—n) =&
on R™.

Thus
(2.31) {§>5}}=T>\R+ Q{é>7°7}

and {€ > 9} € EW for t € Ny, t > t. Finally, 9 = n holds true on S.
Therefore we have clearly £€® domg(t) Y as well.
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By Theorem 1.2 we know that

(2.32) g1(s%) <o(5").

Moreover, any atom/block @ D" of E® is either contained in or disjoint to
{& > 9}. For every atom D7 of S® we know that ¥ D™ N {é > '1.9} has
positive measure, hence ) D™ C {é > 1.9}

Therefore, from £€® > 9 on S! it follows that

(2.33) £€>9 on S

2"ISTEP :

Typically we shall treat the case that relevant vector a® is of the third type,
a® = (t)ae, the other types can be treated in exactly the same way. Thus

our relevant Coalition iS
1 S)
?(t)a

S, = 17 =T

As previously, assume that the critical coordinate for the construction of
Ma” is r. That is, ®a” is of the shape

(2.34) Ma” = (1,11 s By)
with
Oz ae(t) (h?l +...+hs  + h?'r> _1
/A ?'r — h? ’
(2.35) —
B :a/?(t)zl—(h?l_'_..,—i—h?r)‘
T Tr ?T _ h?r ’

according to the definition of relevant vectors (Theorem 3.5. of Part I'). Note
that o, + 5, = 1. Let

~

T = (T, s Ty Tr)

denote the sequence corresponding to the positive coordinates of Ma”. For
p € R\ {r}, the coalition

(2.36) Tt ner = OD” (peR\{r}).
yields
(237 &UD7) = N("D”), YEOD”) = AV(“D"),

~ \Y \
as WD € T® = E. moreover, as the ) quantities within the right hand
equation are the conditional probabilities of the quantities on the left hand
equation, we find that all quantities involved are equal, hence we have
(2.38) R
F2OD™) — A\(OD™) — OF® — A\OOpT
E°D7) = X(YD") = VE(MD;) = AV(YDT) peRC{r}.
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3"4STEP :

Next turn to C", we write for short

7o = TN D7 and T% = T 0O D™
R v v
Again, regarding 7,, we have ¥ D™ ¢ E = T hence
(2.39) E=A° and &Y = A® on Op™

Now A’ may vary on that set and we cannot argue with measurability as 7%
is not measurable. However, according to Remark 1.3 we do have complete
freedom for choosing T up to preserving its measure «,. Hence, as AW g
the conditional probability of A’ on D™ we can choose T in such a way
that A°(72r) = A®(T°) holds true. Thus, using (2.39), we have again (the
analogue to (2.38))

(240)  E(T) = N(T™) = OET) = AT

4BSTEP :

_ -~ A A
Regarding 7,, we now have @ D™ ¢ E = T® hence

(2.41) E=1r =n =& on D |
This time we choose T?" to be such that
(2.42) ATy = AO(Ter)

which is possible as above via the conditional probability argument. Com-
bining (2.38), (2.40), and (2.41) we obtain

(2.43) grie?) = g9
and combining (2.38), (2.40), and (2.42) we have
(2.44) ATy = AT

which implies

(2.45) o(TH") = O (Tta®)
Therefore
(246) &) = E9TrT) <o) = (T’

Now combining (2.33) and (2.46) and observing that i and ¥ coincide on
St = T2 we obtain

5 domgt n (t > to),
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q.e.d.

For the remainder of this SEcTIoN and for SECTION 3 we assume that A is
locally flat, hence Lemma 2.5 applies. Thuse we have we have (2.21), (2.22),
and (2.23) for some compatible (/D.

Next we have to augment the sub-imputation &€ to an imputation. The
development is quite similar to the one in Part IV. We have to distribute
that missing chunk of mass over IA? — as in the uniform model the mass
missing is distributed over IA“

Recall the construction for a uniform model. A vector A = (Aq,...,A,)

is called an admissible distribution of mass (Definition 4.5. of Part IV,
[4]) if it satisfies the conditions

A
(2.47) A, <hy and Y AXNT) = 1—&(I)
pER

(see equation 4.54 of Part IV). Naturally the analogue for the continuous
model leads to

Definition 2.8. A vector A = (A,,...,A,), is said to represent an
admaissible distribution of mass if

(2.48) A, <l (peR) ZA,\Ep = 1-£)
PER
18 satisfied.

Now if a the uniform model is given by ¥ D, then Z® is established by (2.12).
Given an admissible distribution of mass, we obtain a pre-imputation

(2.49) 0 = z +ZA S = a0 10 gA
g(f)TP

The corresponding imputation is constructed via

o

(2.50) 90 = 9™ and A = 9T = Y"?
so that (2.49) results in

o )
(2.51) 90 =9 1O 98
The imputation ()92 has a step function density, hence resembles a mul-
A
tiple of uniform distribution on every Y T? (see Part IV). The continuous

counterpart (viewing &) of 9 is therefore the measure
(2.52) = E+) AN, = E+ A2
pER |
with an admissible distribution of mass A. We have to make sure that the
non—discriminating use of the term is justified.
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Corollary 2.9. Let A be an admissible distribution of mass (within the
continuous model) and let D be a compatz'ble uniform model. Then, A 1s
an admissible distribution of mass for ¢ D and vice versa.

Proof: As ¢® is the conditional expectation of € we know that €9 (I) = £(I).
Hence,

(253)  AD = 1A = 1(1-&X) = t(1-€9(D) = t-1€(T) .
In view of (2.21) of Lemma 2.3 we see that

(2.54) A<l = pW

P
for p € R and t € N,.

Both equations (2.53) and (2.54) show that A is an admissible distribution
of mass within the context of the continuous model as well as in the context
of ®D.

q.e.d.

Lemma 2.10. Let ® D be a compatible uniform model.
1. Let A be an admissible distribution of mass (for &€ as well as for @(t)).

Then for € = &€ + A2 and 20 = 0 + e we have

(2.55) g — ]P{ (t) _ ﬁg%os)

2. Let A be admissible and let o = (ap, aq, ..., ;) be a “convex” set of
weights, 1.e., nonnegative and summing up to 1. Let

€ =€ = amE+ ) a\
(2.56) =R
= a (E+A2)+> a,NeX
pER
and
70 — zea ao%(t)+zapec
(2.57) peR
= ap (Y +e2 +Za/’
pER

Then we have

(2.58) e = P{¢|EV} = 9" = o
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Proof: Essentially this follows from (2.23) of Lemma 2.3 as the A* are E®
measurable. More precisely,
£ — AL _ p {g E(t)}

- PLEXS[EY) - € P EY)

0] ()
=& +ZAP]P{)\‘£CP E }

cR
(2.59) 0
= £ +> A | B
pER
_ 5®
=9 _'_Zép)\ ‘ {f“p
pER

10
proves (2.55). Obviously, the proof of (2.58) is running along the same lines,
q.e.d.
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3 The Standard vINM-Stable Set

We focus on the continuous model (I, E,v) assuming that AY is locally flat.
Let A be an admissible distribution of mass and consider the set

(3.1) H := ConvH {éé,xp (pER)} .

We will prove within this section that H is a vNM-Stable Set. The assump-
tion of local flatness serves to avoid a limiting procedure as it implies that —
for sufficiently large t and some compatible (t)g — the “flat” part of the cen-
tral measure A° provides the “minimal” undercutting sequences of A®). To
remove this basic assumption will be another task to be tackled in SECTION

4.

Remark 3.1. The role of the admissile distribution of mass A2 is discussed
in the uniform context in SEcTION 5 of Part IV ([4]). As is seen in the
proof of Theorem 5.4. (see the 3"*STEP in particular), the quantity A®

serves to render € to be an imputation. However the dominance relations
are actually provided w.r.t the sub-imputation obtained by omitting A2.

AN
The measure A2 lives on E and dominance w.r.t some relevant coalition

involves E only for a relevant vector a®. But it is seen, that the dominance
relations are actually constructed w.r.t. the standard truncation measure
(sub-imputation) &, the measure A2 is actually not involved.

[}

Therefore, frequently we can without loss of generality assume that £ is an

imputation hence A2 = 0, £ = £. Consequently the typical element of H
writes

(3.2) € = ap &+ Zap)\p .

pER

We will base our discussion on this assumption in SECTION 4. In the present
section we will continue to carry on M. We make it clear that A2 does not
harm the approximation procedure. In passing, this procedure serves also to
demonstrate that our above arguments about the negligible role of A2 hold
true for the continuous model as well.

Remark 3.2. The Standard vNM-Stable Set is defined in [5] and [6] with
respect to a purely orthogonal production game. It is the convex hull of
r imputations, say ¥9” (p € R). Each one is restricted to a carrier C” and
satisfies two conditions:

19’ is absolutely continous w.r.t A°.

The density 9” w.r.t A? is restricted by 1.



* SECTION 3: THE STANDARD VNM-STABLE SET * 32

In particular, if A’(I) = 1 = v(I) is normalized (hence an extremal of the
core), then 9 = N’.

The framework of a continuous model involves the central measure A?). The
set H is the convex hull of » + 1 imputations. The measures A’ seen as
imputations (the extremals of the core) naturally satisfy the two conditions
above. In this respect, the situation is exactly the same as in the purely
orthogonal case.

The imputation &2 is a sum of the standard truncation £ and some fractions
of the A”. Let us assume (in view of Remark 3.1) that £ is an imputation
and A2 = 0, hence the elements of 3 have the form (3.2), that is

E = aOE—FZap)\p.

PER

— \%
Now, with respecto to some A’, the density of & on C? C T is the one of

— AN
€ = X wich is bounded by 1 — [ < 1. The density on some C” C T' equals
1—15+ A, <1by (2.48) which is 1 — I* < 1 when A* = 0. Therefore

d€ .

WSQO(l_Zp)+apS1 (PER).

Next, d—ﬁ_o is directly computet in view of Definition 2.1 in SECTION 2, that is
(2.14) and (2.15); we have

_ \Y
g 1 on r‘f < 1.
A\’ . -
1—lp on T

Thus, € satisfies the above two conditions in a suitably modified sense: it
is absolutely continuous w.r.t Lebesgue measure X (or all the A” ) and the
density w.r.t all measures X',..., A", A? is bounded by 1. This justifies the
following definition.

Definition 3.3. The set H is called a Standard vNM-Stable Set.

Now we prove that H{ indeed deserves to be called stable.

Theorem 3.4. Let A be an admissible distribution of mass and let

[e)

E-gd -l

be the resulting imputation. Then
(3.3) H = Coan{EA A (pe R)}

18 internally stable.
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Proof:
1StSTEP :

vV
By Lemma 2.5 we can find a compatible uniform model /D such that 0T

AN
and OT are E® measurable. Hence for every p € R we have either D" C(®)
V AN
T? or else O DT C® 7.
15*'STEP : Let /5\, n € H be imputations and let S be a coalition satisfying

€ domg 7

Then there are sets of “convex” coefficients {c,}pery; {Bp}per, Such that

£ = a2+ N and §j = BEL+D BN

peER peER

A
holds true. As FE is measurable w.r.t E(t), we have

° iA
g(t) _ g_(t) + Zép)‘

| B
pER

Accordingly, the two imputations E, n € H involved yield conditional ver-

sions .
g(t) _ Oéog(t) X Z a,\’
pER
as well as .
A" = BE” + BN

pER

On the other hand, a second set of quantities adapted results from the con-
struction of the vector Z® as obtained within the framework of the game
generated by

A® —p { A© ‘ E“’}

via the construction provided in Part IV. The corresponding imputation is
9" = 970, Using the same A we obtain the imputation

(3.4) 90 = 9"y ar
which is obtained in the usual manner by
7O — 7O 4 S A" = 304 et
peT®)
via

[0}

90 — 9=
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This construction canonically results in sub—imputations
20 = q® +Z e . §O = g +Z 3,e¢"
peER pER
and imputations
(3.5) 920 = que® + Z%)\p and 0¥ = B,9Y + ZBPM
pER PER

Recall that A is an admissible distribution of mass in the context of the
uniform model induced by (t)]=3 as well in the context of the continuous model.

2"dSTEP :

Now consider the l.h.c.—Theorem 1.10. Accordingly, for some ¢ € Ny, choose
a') such that

Ta(t) - IS
and the relations
o~ v o~ o®  ~ () o® o~
(3.6) §dom?! »m, &dom! 7, and & dom? 7"
are satisfied.
However, by (2.58) in Lemma 2.10 we know that
(3.7) E(t) _p {E‘ E(t)} _ @(t) _ 93"
and analogously
(3.8) 7® = P{f|ED} = 97"
Thus, (3.6) implies
ﬁ(t) dom;tzt) 97"

On the other hand,
2 gy t) ._ i(t) P
9 %Y e HY = ConvH (9" N (peR)
contradicting the result of the main Theorem of Part IV according to which

H® is a vNM-Stable Set in the context of (/D. q.e.d.

Lemma 3.5 (The Extended s—free Inheritance Theorem ). Let A" be
locally flat. and let 'D be a compatible uniform model.

Let A be admissible and let {a,},ery, {Bo}per, be a set of “convez” coeffi-
cients such that

§E=§6 = ozoééJrZap)\P X .

PER
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Let m be an imputation such that T~ = {& > 7.7} 18 ];"(t)fmeasumble and
let S € EY be a coalition such that

~(t

(3.9) £ )domg(t) n.

is satisfied. Then there exists a relevant vector a® (w.r.t ®D) and a corre-
. » 1g(t)
sponding coalition T+*" such that

(3.10) §dom’ s ) 7

holds true.

Proof:
1StSTEP :

Consider the “c—free” Inheritance Theorem 1.2 to E(t), S e E(t), and n and

apply it to E(t). Repeating the four steps of Theorem 1.2 w.r.t. E(t), we come
. . 1 .
up with a relevant vector a®) and a coalition 77" such that equation (1.25)

and (1.27) are satisfied. Again we focus on some vector ®a” of the shape
(3.11) Mg” = (1,...,1,...,1,...... Lo, )

That is, (1.25) and (1.27) now read

R 1 t 1
(3.12) ATy = sal ATy s
Let
T = (T, . .\ % Tr)

denote the sequence corresponding to the positive coordinates of ®a such
that

o(t) (hﬂ +.oo+ hF'rfl + hi) —1

o= 0T he, —h ’
(3.13) ™o
ﬁ _ a/?(t) _ ]_—(h71++h?r)
g Tr h= — hs,

Tr

according to the definition of relevant vectors (Theorem 3.5. of Part I).
Recall that o, + 3, = 1.

Observe that the choice of the coalition T+’ according to Theorem 1.2
and Remark 1.3 at this stage allows for a free choice of the subsets of C",
i.e. in the notation of the proof of Theorem 1.2, of

Tior = Op. 077" and T = Op. A"

within ®D™ and D™ respectively.
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2"ISTEP :

L(t)°

Again the assumption {¢& > n} € E® implies that & > 5 on T - 10
matter the choice of T#% and T%. For, indeed following the construction
in Theorem 1.2, we have

€(t) domT%(%@ n,

L(t)g°

Hence E(t) exceeds m on every atom D7 involved in Tt Hence {& >

S]
n} N D" has positive measure in every atom D" cutting into Ti"a

E(t) > m on D™ and E(t) is the conditional probability of & over D™ .
Therefore

, for

(3.14) €>n on D7

as {& > n} € E®. Consequently

(3.15) E>n on T
regardless the choice of T and Teor.

3"ISTEP :

We now attempt to modify 7% such that

(3.16) EriVaTy = EV(i¥a%) = 004"
and simultaneously

(3.17) o(TH797) = (%) = 0 (4%

holds true. This will be done by choosing components Tior and T that
have allowed for a degree of freedom so far, appropriately. Essentially, we
repeat and extend the argument that was given for taking out “equal chunks”
in Theorem 1.4 for proving (1.32).

~

We know that 7 is overshooting and the truncated sequence (71,...,7,) is
undercutting, that is

0 0 0
D_hs <1 ) hel+hol

peR peR\{r}

v _ A v y,

Consequently 7, C T (p € R) and 7, € WT. As T = E we conclude
~ \

that D™ C E, hence for p € R\ {r} .

~ 6 R —_ R
ED7NTi"*) = D7) = £€Y(D7)

= A(D%) = X(D7)
0 _ g% 0

T T (7o)

(318) _ (,5)0,97/:/]:E
Lo
G -
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Therefore, with respect to the first (r — 1) positive coordinates of (t)ae, the
sets

7% nCcr = D7 (peR\{r})
satisfy
1(t 1
(319) EDPNTI") = Salng),
4*"STEP :

Now we turn to the non-atoms of T%“m, ie. to C"NTi" =T yTibr,

First of all consider ® D . In the context of Theorem 1.2 we can choose the
1 .

set Tt freely in the above sense.

Now, as %h&?p) is the conditional probability of A° over D7 it follows that

(3.20) / X —hE = / e = A
{fon2) | {foant |

Now, for € > 0 we can choose

Fe C {A0>h§2p)} , Fe C {Aozhgg)} , Fe C {A0<h§2p)}

such that

(3.21) A(FSUFEUFY)=¢
and
70 (t) _ (t) 7O
(3.22) / ()\ — h(?p)> d\ = / (h(?p) - A > d .
ks F

via Ljapounoffs Theorem. Then we have

(3.23)
/%M+/%M+/%M
Fe F= Fe
_ ®)
= / iz, A
FEUFEUFS
+ / (AO >dA+ / (Aod)\ h(t >dA+ / (Aodx—hgtgp)) dX
Fe Fe Fe
— 5h(t X + ( > (AOdA h )) dX

— h' .
(Tp)
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the last equation following from (3.22). That is, for ¢ = %= we obtain

(3.24) AN(FEUFEUFE) = / Ndx = — @)
FEUFsUFS
So that, when we choose T%ar = FSUFZUPFE, then

Ofrhgt) f(t) h(t)

(3.25) XO(T7or) = t?f” - ?pt@) — AW (7Y

That is

A (DPATH) = ADPRY . = G0 = 1g0mee _ lwgs 0
(Tr) t ) t Tr Tr t Tr (Tr)

and

€(t)(D?r N T%(t)ae) _ €(t)(D?T N T%om)
= o, A(D™) = 0, A°(D™)

(3.26) = L0040, = Loge. 0
t Tr r t T (7_7‘)
_
= 7
ie.,
%/ mla, z®) mlay . Qr
Erier) = E0(rie) = Zal)
5%hSTEP :

— = A
Finally for 7, we have ¥ D™ C E, hence

é = 1-10Ir = 1-h* =29 on ®UD

r Tr
Therefore, no matter the choice of T%BT, we have

1—r  1-hY"

Erir) = Vi) = B, fr e = poal)

t N t Tr

Now, exactly as in the 4" STEP we can choose Ti% C D™ via Ljapounoffs
Theorem such that .

N1t = BX(D7)

is true. Then again

_ : 1 1
(327) XD T = %hgﬁ) B ¥(t)“6?rhg) - ;‘Eg)(t)aea

Now we combine out results regarding €, that is (3.19), (3.26), and (3.27).
We obtain

(3.28) EriVaTy = EV(iVa%) = 004
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i.e., the desired relation (3.16) as well as

t T t 1
(3.29) o) = T = v(0a”) = 5,

that is, the desired relation (3.17).

6'"STEP : Next we extend this result to /S\ This is rather obvious as the
remaining summands are multiples of A” and hence do not change when one
turns to the stepfunction case, more precisely we proceed as follows. We have
to consider R Aa

§:=¢

and we recall the vector/pre-imputation

720 = zO 4 Z ép80ﬂ+zap)\p — 20 4 g2 | 2

pe’il\’(t) PER
which induces the imputation
~(t 2®
3” = 98" (teNy) .

Now because of
AP(T%Q(”) _ ecp(t)ae

and in view of (3.16) it follow that

= a® =) () 6° () (0 g°
(3-30) (re)=¢ (1) =9 (T"°),
which together with (3.15) shows
§dom” s 7 -
q.e.d.
Theorem 3.6 ( Dominance is u.h.c. — for relevant vectors ). Let

XY be locally flat. Let (t)Q be a compatible uniform model. Let A be an
admissible distribution of mass and let

be the resulting imputation. Also, for some “convex set of coefficients” o =
(c,...,q) let

—~ ~Aa °

& = €& = aoﬁ—i—Zozp)\pEiH

PER
Assume that for some imputation 1 there exists for all a relevant vector a'®)
. o 1 o .

and a corresponding coalition T+ such that the conditional expectations

() .
& satisfy

(

~(t)
(3.31) § dom,,mm (t€N).
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Then there there is some relevant vector a') and a corresponding coalition
T such that

(3.32) EdomT%a(t) n

holds true.

Proof: Follows immediately by Lemma 3.5. Note that essentially one has to
1

rearrange the non-atoms of T NC" in a way described in the 4**STEP

and 5*"STEP of Lemma 3.5 in order to receive the desired properties of

7ie

q.e.d.

Theorem 3.7. Let (I,F,v) be a continuous model. Let XY be locally flat.
Let A be an admissible distribution of mass and let

[e)

E-et -
be the resulting imputation.

Then the set H defined by (3.1), i.e.,
(3.33) H = Coan{EA A (pe R)}
15 externally stable, hence a vNM-Stable Set.

Proof:
15*'STEP : Let n ¢ H.
Use Definition 2.6 and Lemma 2.5 in order to find a uniform model (t)Q. By
Lemma 1.7 and Corollary 1.8, we can assume that {é > 7.;} is measurable
wr.t. O,
2"4STEP :
Let H® be the vNM-Stable Set constructed by means of % as described
in the 1*STEP of the proof of Theorem 3.4, that is by means of
7O — O 4 S A = g0 et
peT®)
and
g0 — g (t € Ny) .

If n € H® for a sequence D (¢ € N; € N), then by an limiting argument,
we would have n € H as well, hence, we can assume that i ¢ F().
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Therefore, we find 2 € H® and a relevant vector a®) such that 97" € HW
satisfies

(3.34) 9% dom,_ n (t€Ny).

Tll

By Lemma 2.3, (2.58) we know that

hence

~(t

®)
(3.35) § dom,,vm (t€Ny).

Now from the u.h.c. Theorem 3.6 we finally conclude that there is some
to € Ny such that for all ¢t > ¢,

(3.36) €dom, ) n

holds true,
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4 All Games Have Standard Stable sets

We shall dispose of the locally flat requirement for A°. That is, we consider
a continuous model (I, F,v) with arbitrary A’. Then we focus on the same
candidate given by (3.1), i.e.,

(4.1) H := ConvH {ZA A (pe R)}

Again we attempt to prove that H is externally stable.

Remark 4.1. For simplicity we will assume that A has “no levels" on all

carriers C* (p € R), that is A°({A\° = I/3NC?) =0 (p € R) holds true. The
slight changes to be made in our procedure in order to deal with a deviation
from this principle are rather obvious but tedious and would actually cloud
our view.

(o]

Also, we will assume that € is an imputation hence A2 = 0, € = £, and
hence the typical element of H writes

(4.2) €= ap £+ Zozp)\p :

PER

The argument for this assumption has been provided in Remark 3.1.

Theorem 4.2. Let (I, E,v) be a continuous model. Let A be an admissible
distribution of mass and let

E- s - gaat

be the resulting imputation. Then the set H defined by (3.1) is externally
stable.

Proof:
In view of Remark 4.1 we assume A2 = 0.

For small £ > 0 we will construct a central measure A\° which satisfies the
locally flat condition. The resulting continuous model is denoted (I, E v).
The dominance relations of this model will be seen to induce dominance also
with regard to the original model (I, F,v).

15tSTEP : Choose € > 0 such that for all 0 € R
1-10* 1—-0*)—(r—1
w ( U)< Dor-De

19 (1—15) +et
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In addition, choose ¢ sufficiently small such that the following quantities are
well defined. For p € R define

[ Vv
(4.4) Tr C {AO <l2+e}megE”
such that A{U’} < ¢ is a rational number. Similarly, define a set

. [ A
(4.5) VP C {)\0<min)\0+5}ﬂCp§Ep
E

A
such that A{V?} < e and A{E* \°V*} is rational. Define

(46) EAO = Z lg]lsUﬂg + (1 - l; - 5>]lEVPgAO]IC/’\(EUPUEVP) .
PER

If necessary, rearrange ¢ such that A\°(I) > 1. Then consider the continuous
model (I, E v). Clearly, the minima are unchanged, that is (with obvious
notational adaptation)

g0 _ 70 gx __ J*
(4.7) l,=1, (peR), T,=10 (peR).
Also,
\ Y A AN
(4.8) ‘Ef =E’U VP F°Ef=E’\ V7’

Y AN
from which it follows that A(°E”) and A(°E®) are rational. Therefore, “\°
is locally flat and we may apply the results of the previous sections to this
central measure. Obviously we have

(4.9) A0 > a0

Now let € denote the standard truncation measure derived from the model
(I,E~X%). Then, from (4.9) and (4.7) it follows that

(4.10) £>°¢€.

2"STEP : Now let n ¢ H. Let =K denote the standard-T vNM Stable Set
for . By some continuity argument (sic!) one observes that n € “H cannot
be true for all e. Hence, by rearranging ¢ if necessary we can assume that

n ¢ K.

Therefore, there exists for large t € N some compatible model (t)g and some
relevant vector a® plus a set of convexifying coefficients {,},cr, such that

(4.11) €= ag E+ Zozp)\p

PER
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yields
(412 Edon? 0 m

here dominance is established w.r.t. %. Also we have assumed that %€ is an
imputation following Remark 4.1. Naturally we put

(4.13) €= €+ N,

PER

Because of (4.10) we conclude that

(4.14) =3
holds true as well. Hence we have at once
(4.15) €>n  on T,

It is therefore essentially our task to establish some kind of (“relevant”) sub-
coalition of 7% which is effective for v with respect to €. To this end we
have to discuss the three familiar types of relevant vectors, that is,

t©

a®  gve

and a®® .

For short and to ease up our notation we shall henceforth omit the index ®,
i. e., just write
a, T* a®, a® and a® .

3"4STEP : First of all assume that the relevant vector is @ = a(®. Then
A" is not involved in forming %, that is

(4.16) (T = AT = ... = XN (T*) < AY(T?) .

Also, if the last inequality in (4.16) is a strict one, then the coefficient «q in
the representation (4.13) equals 0, that is we have

(4.17) =Y aN=¢

PER

In view of (4.9) we have all the more
(4.18) v(T) = AT = ... = N (T*) < AT,

and consequently

~

(4.19) E(T%) = v(T?%) = (T).
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Now by (4.19) and (4.15) we obtain
gdom}’a n

(f the last inequality in (4.16) happens to be an equation the argument is
obviously the same). This way we have established domination for the case
that a is of the type a®.

4*"STEP : Now assume that the relevant vector is a = a®. W.lLo.g the
critical index is as always r. That is A" is not involved in forming %, more
precisely:

W(T?) = N(T7) = .= AT
(4.20) _ EAO(TQ) = %< )\(T)(Ta)

Also in (4.2) we have w.l.g. a, = 0, that is

(4.21) €= ap E+ Z a,\ .

pER\{r}

We know that by the construction of a® with reference to 2\”, the coalitions
T%r = T*NC? are “minimal” (belong to some minimizing undercutting
sequence in the language of Part TV), hence yield

T C°U? (p€R)

and therefore |
N(T) =1 (peR\{r}),

as well as
0 *
A(r)(Ta,r) _ ll_ZPER\{T} lP _ ll_lr > l
t 9 t 10 t
(4.22) 1 1110 1
0) /a,ry __ 0 - R
)\((T)—;l—le =t > T
pER\{r} "

Now we switch to the context of the original model (I, F,v). For some 6 > 0
sufficiently small we choose S? C T*” such that

(4.23) MN(SP) =6 peR\{r}.

Also choose *S™ € T%" such that

(% QT 1_l;
(4.24) )\(S)zélo >0,

p
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then
(4.25) NSy =6(1-17)
as 5).\0 = 1Y% on T".
Now, as T* C va, we know that
E=A">N" = €>n
holds true on 7. Then clearly
(4.26) E>n on *S = S'U..USTTU S CT

Now denote tentatively

(4.27) L7 = A(*S™) = N'(*S") ,

then

(4.28) L' = 5(1;:) )

Next let

(4.29) H™ = A°(*S"), G = X(*9"),

then

(4.30) H = 6(1-101) =d6- > AU
pER\{r}

as A’ is constant and equals I° on U”. Because of (4.24) and

ZSS;\OSZS—F»S on T’ (peR)

we obtain
T r ]‘_l: 0
H <G SéT(lr—I—s)
. 1-10x
(4.31) =6(1 —17) 4 é¢e( 7 )
r ]'_l:
= H" +d¢( M ) -

Finally we define
Go == 10— > AU,
pER\{r}
then

G >06-0 ) (I5—¢)

pER\{r}

= 61— > ) —de(r—1) = H —be(r—1) .

pER\{r}

(4.32)
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Now, in IR? consider the triangle
(0,0),(L",0),(L",G")
as well as the straight line
{(z1,G) |0 <@ < L7}

(see Figure 4.1).

Gr
/1
- |
7
T - HT
1 7
1
7
———————————————————— TEY CELEEEEEPREE e
L
7 1 '
7 1 I
7 1 I
7 1 I
7 ! 1
e ! 1
7 ! 1
- ! '
L . !
0 5 LO I

Figure 4.1: Reducing a Relevant Coalition
Because of G° < H" < G" this straight line and the line connecting (0,0)
and (L", G") intersect at some point (L% G°). As the resulting triangle
(0,0), (L%, 0), (L%, G")
is similar to the one above we have

LY L
GY G"
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hence

L 110
LO — GO o (
Gr

by (4.28)

)
(1—l*)H’" S~ 1)e

Q2

by (4.32) and (4.31)
(4.33) (1—[*) 5(1—[* d(r—1e

5(1—1%) +5gl L

by (4.30)

_ 5 (1 l—gl:) (1(1__l*l)*)_ (r 1__11;)6

> 9
by assumption (4.3) .

5*"STEP : By definition the point (L",G") is an element within the range
of the vector-valued measure (A", )\0). Using Ljapounoffs Theorem we can
therefore find a coalition S™ C *S” such that

(4.34) (A7, A0S = (L°,GY)
holds true. Then

(4.35) A"(ST)=L">§,
while the coalition S := S'U...U S" Satisfies

AUS) = D NS+ (S

pER\{r}
(4.36) Y NS4 E — 5
pER\{r}
hence
(4.37)  w(S) = ANS) = ... = ATHS) = AUS) =5 < N'(9) .

— \ \%
As € coincides with A° on E and S C E, we have
(4.38) E(S) = A'(S) =v($) =4 .
and thus

(4.39) ES) == a E(S)+ D> aX(S) = w(S)=4.
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In addition S C *S and (4.26) show that

(4.40) E>n on S.
Consequently, by (4.39) and (4.40) we obtain

(4.41) £domgn

6'"STEP : It remains to treat the case @ = a®. This we will achieve by
following the same path as indicated within the last two steps.

Hence for sufficiently small § > 0 we choose again S C T*” as in (4.23) such
that

(4.42) N(SP) =6 peR\{r}.

Now recall that as @ = a® the coalition 7" decomposes into two compo-
V A
nents, say 7" = T%" N E" and T%" = T%" N E". In T®" we have the same

situation as in the 4"STEP (as we are dealing with a coalition in IVC) and
hence we can choose some coalition *S* C T*" such that the situation of Fig-
ure 4.1 prevails when we replace *S” by *S® (that is , put H" := A°(*5?)).
However, this time we focus on the point (d, H°) located on the intersection
of the line (0,0), (L",G") and the line

{(z1,22) |2, 1 =0} .
This point obviously yields

H <G == 0— > A(S) .

peR\{r}

(see Figure 4.2). Now via Ljapounoffs Theorem we choose a coalition S* C
T such that

(A A (Sa = (6, H)

A(SY) = HY< 6

(4.43)

is satisfied.

AN
On T?" the situation differs as we have a coalition in E. On T?" we have

(4.44) A=A and €=¢

as the minima have not changed, see (4.7). Now we choose S? C T?" Such
that

(4.45) A(S4) = A%SP) = 4.
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G
_ 1
- I
7
T d HT
! 7
! -
'
__________________________________ 0
P H
' 1
7 1
7 1
- 1
e 1
- l
- 1
- 1
0 ) L

Figure 4.2: Modification: The Construction of (8§, H°)

Then, as
A0>1 1% onSPCTP"

we have
A(S%) > 8(1— 1)
= 0— 51°
(4.46) 2

pER\{r}
> 65— Y XS =G

pER\{r}

Thus, we have found a second point within the range of (A", A?) which yields

o

(A", A0 (8P = (6, HY)

(4.47) i
A(SP = H' > 6

Naturally we combine the two points (4.43) and (4.47) in order to render the
second coordinate to be § as well. That is, we find «, 5 > 0 adding up to 1
(a “convex combination”) such that

(4.48) a6, HY) + B(6, H') = (4,9) .

Accordingly, we again use Ljapounoff’s Theorem to find S* C §¢, S C S
such that in a way that

(4.49) (A, A%)(S9) = (5,a8) , (A", A%)(S%) = (5, B5) .
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and

(4.50) (A", A0 (S*uU SP) = (6,6),

Then

(4.51) S = U 97| u(srus?)
peR\{r}

satisfies

(4.52) )\1(5)... = A'(9) = AO(S) = v(9) .

TThSTEP :

Now we turn to € and é We know that € coincides with A° on

S = U St UsSe,

pER\{r}
while £ = 1 —I* < A on S?. Therefore we have
(4.53) E($) < X'(S) = v(3)
and hence it follows from (4.52) that
(4.54) £(S) < X°(S) = v(S) .

But £ > 5 follows exactly the same way as in the previous steps (compare
(4.26)). Combining this and (4.54) we obtain indeed

£domgn ,

q.e.d.

The above proof gives rise to consider a slightly modified version of a relevant
coalition. We have constructed e-relevant coalitions for the case that A°
is not locally flat. However the description — other than in the discrete
model — is not “canonical” we cannot just determine “relevant” coalition by
specifying its values of A, the stringent form that is governing the uniform
case is missing.

5
Definition 4.3. Consider the vectorvalued measure X = (X', ..., A", A").
Let ¢ > 0. We shall say that a coalition S is e—relevant if one of the
following three alternatives is satisfied:

1.

(4.55) A(S) = (e, ... e, X(S)) . A%(S) > e .
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2.
\
S C FE
(4.56) .
AS) = (g,...,6,A7(5),e), A(S)>e.
3.
\Y N
S = S*us?, S'U..USTIUS“CE, S’CE,
(4.57)

A(S) = (g,...,e,8) .

Presently we formulate a version of the Inheritance Theorem for arbitrary A°
(i.e., not necessarily locally flat) but restricted to the dominating imputation
being an element of J as follows

Theorem 4.4. Let Ee H and ) be imputations. Then Edomn if and only
if there exists €9 > 0 such that for all € < eq there is a relevant coalition S°
such that £ domge m holds true.

Proof: The “if” part is obvious. Assume, therefore, that there is some
coalition T such that & domr n holds true.

W.Lo.g we assume again that & is an imputation, thus gadmits of a repre-
sentation

(4.58) €= g€+ a\.

PER

We distinguish the following three cases

1STEP : Assume v(T) < A°(T). Then w.l.g we have v(T) = A'(T). De-
crease (if necessary) T2 to 7" such that A*(T"?) = A'(T) = v(T) . Continue
this way until 7" has been decreased to 7" such that A" (T"") = )\1(T) v(T)
such that we have for 77 := T'UT?U...UT"

(4.59) v(T) =X T) =...= XN (T) < XUT") .
If during this process it happens that
(T = AT .

occurs, then turn to the 2"* and 3"STEP. Otherwise clearly v has not
changed but £ has been diminished at most, thus effectiveness is being pre-
served. Hence & domz» m and we have item 1 for some ¢ = v(7). In order
to proceed to arbitrary small £ we continue similarly as in previous versions
of the Inheritance Theorem (see [5] and [1]): using Ljapounoff regarding the

vectorvalued measure X', ..., A", A% . we cut 7" into equal pieces T an T such
that

AL AT = AL A (T) = (AL, AT
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and v(T) = ANT) < A°(T) as well as v(T) = )\ILT) < )\OLT). Then we
must have either £€(T) < A(T) = v(T) or else £(T) < AY(T) = v(T) for
both reverse strict inequalities holding true would establish a contradiction.

Hence one of these coalitions is effective and domination takes place.

Note that this procedure actually works for arbitrary & dominating n — we
do not refer to the fact that & € JH.

2"dSTEP :

V
Assume now that v(T') = A’(T) and T C E. W.Lg we have X" (T7) > X\(T)
and o, = 0 in the representation (4.58), otherwise we are done. Then, choose
e > 0 such that

(4.60) X (T) < X(T7) .
%
Applying Ljapounoff on the vectorvalued measure A = (A',..., A", A")
— -
choose a coalition 7¢ = T<' U ---UT*" C T such that XA(T¢) = eX(T). Then

of course we have

v(T7) = XT°) < XM(T) (peR\{r}), w(T%)=N(T) <X(T).

Next choose coalitions S* C T=',..., 8"t C T"~! such that A'(S') = ... =
X' HT) = v(T®). In doing this, we naturally decrease A’ by exactly the
quantity

G = Y (YT SY)

{peR\{r}}

Now we compensate this loss of matter by enlarging A on T°" by exactly
this amount. That is, we choose some coalition T satisfying T°" C T CTr
such that

ATy =G6"";
we choose some coalition T satisfying 7¢" C T C T such that

XNTHYy=ag"1.
This can be achieved as we are sure that

AT AXT) = X(T)+G < AT+ ) AT?) = A(T7) = eX(T) < A(T")

{peR\{r}}
by (4.60).
Now we have
(4.61) AT UT ) = X(T) + G L

Therefore, if we denote S” := T<"UT then the coalition S = S*U...US"
obviously satisfies

A0S = AU(T)+G™ 1, AY(STu...usSTTh = AYTFu. L uTEe -Gt
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hence
(4.62) X°(S) = XUT°) = o(T°) = A'(SH)=... = X" = v(9).

Clearly
N (S) = N'(87) = N (T) = v(T*) = v(S) .

v _
Now, we know that S C E, hence £ = A° on S. Then, in view of (4.58) we
can establish that

(4.63) E(S) = ap A%S)+ D a,N(S)=wv(S)
{peR\{r}}
and as all sets constructed are subsets of T we have
(4.64) E€>n on S.
Thus N
& domgn.
The generalization to smaller ¢ is obvious.
3rdSTEP :

N
Assume now that v(T) = A°(T) and T N E # (). First note that, for p € R,
N

we can outrule 77 C FE. Indeed, if this holds true say for p = r, then
AT >1—1r and as X° > 19 for p # r, we have

o(T) = XT) > Y BAT?)+ (1 - A7)
{peR\{r}}
> Bo(T7)+ (1—)v(T7)
{peR\{r}}
= v(T).

Hence all inequalities are equations and

A =1 on T ,{peR\{r}}) , X =1-0)! on T".

p

That is A° has minimum levels on each C”. We would then have a locally
flat A, a case which we have ruled out for the present discussion.

4*BSTEP :

\%
Therefore we can assume that w.l.g T" has positive measure in E as well as

AN
in E. Accordingly we write
\ A
T"=T°UT?, T°CE, T°CE.

Now, for sufficiently small € > 0 we first choose (via Ljapounoff) 7° C T

%
such that the vectorvalued measure A\ satisfies

AT = v(gT)K(T)
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that is
A(T%)=e <N (T*) (p€ER).

Next we can choose
SPCT? ({peR\{r}}) suchthat MN(S?)=¢

holds true. Also choose S° C T such that (A", A°)(S") is located on the ray
(0,0), (A", A°)(T") and satisfies A"(S") = . Then clearly

(4.65) A(StU...usTtuSH) <A (S) = ¢
We write F" = ¢ — Z{peR\{r}} A?(S*) then

(4.66) ANESHY<F , X(S)=¢.

N
Next choose S? C T? such that A"(S?) = ¢ holds true. Then, as T” C E,
we have A > 1 —[* on T? and /\Oglg on S”.

Hence
N(S%) > e(1-1)

-e- ¥k
(4 67) {PER\{T}}

> e— Y A(S)

{peR\{r}}

= F”’
that is
(4.68) A(SH>Fr  XN(SP)=¢.

Again using Ljapounoff we use (4.66) and (4.68) to construct some coalition
S™ C T" such that

(4.69) (A", A%)(S7) = (g, F")
holds true. Then, with S := S'U...US" we obtain
(4.70) A(S) = D NS+ FT =g,
{peR\{r}}

meaning

AUS) =...=X(5) = A°(S) =v(9) .
Now we have generally £ < A” and hence by (4.58)
(4.71) E(S) < ag X%(S)+ D a,N(S) =w(S) .

pER

As all the sets constructed are subsets of 7" we have of course E >mnon S,
hence & domg 1 , the generalization to smaller £ runs as above.

q.e.d.
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Theorem 4.5 (All Games have a Standard vINM-Stable Set). Let
(I,E,v) be a continuous model. Let A be an admissible distribution of mass
and let

E-et -t
be the resulting imputation. Then the set H defined by (3.1) is internally
stable, hence a vNM-Stable Set.
Proof:
1StSTEP :

Again w.l.g A® = 0 and £ is an imputation. Assume that for some E, neX
we have

(4.72) € doms 7j

for some coalition S satisfying one of the above three items. Let

€= af+Y N, 7= BE+ D BN .

peER pER

We can rewrite these equations such that

(4.73) €= o€+ (1—aple”

8]
e® = —— | A
; (ZpER aP)

is a core element. Similarly we write

where

(4.74) 7 =B€+ (1- Bo)e” .
Now we can apply Theorem 4.4 and distinguish the following alternatives.
2"ISTEP :

First consider an e-relevant coalition S as described in item 1 or item 3 . In
both cases we have

ANS) = .. = AT(S9) < A(9),

and hence

(4.75) e=v(S) =e*S) =¢€’(9) .

As E is effective for S we have

~

e >v(S) > £(S) = ap€(S) + (1 — ap)e®(S) = ap€(S) + (1 — ap)e ,
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that is ~

0> [67)) (E(S) — 8)
Consequently
(4.76) £(S)<e or ap=0.

On the other hand we deduce from &€ > 7 “on S” that £(S) > 7J(5), hence

ao€(S) + (1 — ap)e®(S) > Bo€(S) + (1 — Bo)e’(S) |

ie.,
o€ (S) + (1 — ag)e > Bo€(S) + (1 — fo)e ,
that is ~
(a0 — B0)&(S) > (a0 — Bo)e -
Consequently
(4.77) £(S)>e¢.

Combining (4.76) and (4.77) we obtain oy = 0 and hence £ = e®. Now, if
Bo > 0 then

~

N =0€+ (1 —Bo)e’ > foc + (1 — fo)e = £ = v(5) > &(5)
which is impossible, hence 3y = 0 and ) = €’ . Therefore (4.72) results in
e“domg e’ |

but dominance between two core elements is impossible as well.
3"ISTEP :

Now consider the case presented in item 2. This time we have

ANS) = ... = ATHS) = A%S) < A'(9).

Vv
Note that S C E implies ~
E=X" on S

and therefore R
£ = apA’+ ) N
pER

on S. Hence we write now
(4.78) €=\ + (1—a,)e’,
where

0% (&%)

— pNE +
UERZ\{T} (ZpeR\{r}U{O} aP) ZpeR\{r}U{O} p

AO
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satisfies €°(S) = v(S) = 4. Similarly
(479) ﬁ =G\ + (1 - 67’)800 )

with €%(S) = v(S) = e. Now, if X"(S) = ¢, then we can apply the procedure
as in the 2"*STEP. If, on the other hand, A"(S) > ¢, then £(S)z or (S) > ¢

would result; none of which is compatible with ¢ = v(S) > &€(S) > 7n(9).
Hence necessarily a,, = 0. Thus we obtain

e’ domg e”

but v(S) = €°(S) > €%(S) = ¢ is by no means possible.
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