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Summary

In this thesis, we apply two different concepts of uncertainty to economic

problems. Following Knight (1921), we distinguish between risk, where the

uncertainty can be captured by a single probability measure, and Knightian

uncertainty (or Ambiguity), where we use a set of priors because it is not

possible to assign a single probability measure to the underlying uncertainty.

In the first part of the thesis, we extended the Foster–Hart measure of

riskiness to both general gambles and dynamic frameworks. Foster and Hart

(2009) proposed an operational measure of riskiness for discrete random vari-

ables. Their defining equation has no solution for many common continuous

distributions. We show how to extend consistently the definition of riskiness

to continuous random variables. For many continuous gambles, the risk mea-

sure is equal to the worst–case risk measure, i.e. the maximal possible loss

incurred by that gamble. For many discrete gambles with a large number of

values, the Foster–Hart riskiness is close to the maximal loss. We give a simple

characterization of gambles whose riskiness is or is close to the maximal loss.

We also extend the Foster–Hart risk measure to dynamic environments for

general distributions and probability spaces, and we show that the extended

measure avoids bankruptcy in infinitely repeated gambles.

In the second part of this thesis, we study a two–player investment game

with a first mover advantage in continuous time with stochastic payoffs. One

of the players is assumed to be ambiguous with max–min preferences over

a strongly rectangular set of priors. We develop a strategy and equilibrium

concept allowing for ambiguity and show that equilibira can be preemptive

(a player invests at a point where investment is Pareto dominated by wait-

ing) or sequential (one player invests as if she were the exogenously appointed

leader). Following the standard literature, the worst–case prior for the am-

biguous player if she is the second mover is obtained by setting the lowest

possible trend in the set of priors. However, if the ambiguous player is the

first mover, then the worst–case prior can be given by either the lowest or the

highest trend in the set of priors. This novel result shows that “worst–case

prior” in a setting with κ–ambiguity does not equate to “lowest trend”.
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Chapter 1

General Introduction

Uncertainty is a major ingredient of life. Except for the promises made by

dubious visionaries, no human being can predict what the future will bring.

Yet, everyday decisions have to be made, the outcomes of which heavily depend

on the uncertain future development of certain underlying factors.

In Economics in particular, one is interested in the behavior of agents under

uncertainty. Wrong decisions along with poorly developing markets may have

a huge impact on the whole society as the recent financial crisis so drastically

demonstrated.

The present thesis applies two different aspects of uncertainty to several

economic questions. In the first part, we consider so–called risky situations, i.e.

situations in which the underlying stochastic is captured by a single probability

measure. A tool that measures the underlying risk in monetary form is pro-

vided. This is done by extending an existing risk measure developed in Foster

and Hart (2009) to both continuous distributions and dynamic frameworks.

In the second part of the thesis, the uncertainty of the market is understood

in a much broader sense. We allow for different possible dynamics driving the

underlying stochastic. This form of uncertainty is called Knightian Uncer-

tainty or Ambiguity in the literature. We introduce the concept of Knightian

Uncertainty to a game of two firms competing for the same irreversible invest-

ment project. The distribution of the underlying stochastic is assumed to be

ambiguous.

1
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1.1 Risk measures

A major issue that all financial institutions have to be concerned with is the

measurement of the risk that their future endeavors entail. One of the risks

that banks, for instance, have to take into account is the risk that debtors

might not be able to settle the money they borrowed. For this reason a debtor

has to pay interest the amount of which depends on how likely it is that she

might not be able to pay back the loan. With these interest rates, the creditor

receives compensation for the risk and the loss of opportunity of instantaneous

consumption.

Further examples of risk that financial institutions have to handle are “mar-

ket risk” (i.e. the risk resulting from moving market prices) and “operational

risk” (i.e. the risk resulting from failed internal processes, mistakes made by

people or external events).

In 1974, the presidents of the central banks of the ten biggest economies

were worried that banks did not have enough equity to overcome critical times.

For this reason, the “Basel Committee on Banking Supervision” was founded,

which developed in 1988 a framework or set of rules for financial institutions.

This set of rules eventually led to guidelines and laws in more than 100 coun-

tries. Among other things, these guidelines stipulate to banks how to measure

and ensure the risky components of their portfolio. Revising and improving

these guidelines led to a more sophisticated set of rules called Basel 2 in 2004.

However, in the course of the recent financial crisis, it became evident that

Basel 2 still needed drastic improvements. The result was published as Basel

3 in 2010.

The measure on which the whole risk quantifying process is based in the

Basel 2 and Basel 3 reports is called Value at Risk. The Value at Risk for

a given confidence level α determines the maximal possible loss of a financial

position if one ignores losses that occur with a probability smaller than or

equal to α.

Many papers, however, discuss the shortcomings of this measure, see among

others Artzner et al. (1999) and Föllmer and Schied (2004). One of the un-

desirable properties of Value at Risk is that it is not subadditive. This means
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that the risk of a portfolio can be higher than the accumulated risk of the

individual positions in it. For this reason, an investor might want to split her

portfolio into several single accounts in order to reduce the risk. Such a be-

havior contradicts one of the main techniques of reducing risk proposed in the

finance literature, namely diversification. Another shortcoming is that Value

at Risk could give incentives to take the risk of very high losses as long as they

occur with a small enough probability. As Value at Risk does not recognize

losses which occur with a sufficiently small probability, an investor might want

to take high risks if they come (as it is often the case) with the possibility of

great gains. If these small probability events, however, take place, they could

lead to bankruptcy.

The hedge fund manager David Einhorn referred to Value at Risk as “an

airbag that works all the time, except when you have a car accident”.1 In

his popular scientific book, Riedel (2013) even saw in the use of Value at

Risk one of the reasons for the emergence of the recent financial crisis. It

is therefore crucial for the research community to come up with some more

sophisticated measures that are both applicable for the financial industry and

able to overcome the negative properties of Value at Risk.

In the field of mathematical finance, risky assets are described by random

variables on a probability space which take values in the real numbers. Those

numbers denote the possible gains and losses of the positions. A (monetary)

risk measure is defined as a real valued function on a space of such assets.

That means, a risk measure assigns to every position a real number denoting

the risk of it.

This is a very general notion for a risk–quantifying method, of course. Risk

measures should certainly satisfy several desirable properties. For instance, if

an asset X has higher payments than an asset Y in every state of the world, the

risk of X should not be higher than the risk of Y . This monotonicity property,

along with positive homogeneity, subadditivity and translation invariance are

proposed by Artzner et al. (1999) as desirable properties. Risk measures which

satisfy these properties are called coherent risk measures and are formally

1See Einhorn (2008).
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defined as follows: let A be the set of all assets, that is the set of all real

valued functions on a probability space.

Definition 1 (Artzner et al. (1999)) A risk measure ρ : A → R is called

coherent if it fulfills

• Monotonicity: For all g and h ∈ A, if g ≤ h then ρ(h) ≤ ρ(g).

• Positive Homogeneity: For all λ ∈ R+
2 and all g ∈ A, ρ(λg) = λρ(g).

• Subadditivity: For all g and h ∈ A, ρ(g + h) ≤ ρ(g) + ρ(h).

• Translation Invariance: For all g ∈ A and all α ∈ R, ρ(g+α) = ρ(g)−α3.

In Artzner et al. (1999), the research is done on a finite probability space.

Delbaen (2002) extended the theory of coherent risk measures to arbitrary

probability spaces and discussed the connection between coherent risk mea-

sures and the theory of cooperative games. Föllmer and Schied (2004) and

Frittelli and Rosazza Gianin (2002) weakened the axioms positive homogene-

ity and subadditivity and replaced them with convexity, defining in that way

the more general class of convex risk measures.

1.2 The Foster–Hart Measure of Riskiness for

Continuous Distributions

An important task for supervising agencies is to ensure that banks, or more

general financial players do not go bankrupt. The complicated network on

financial markets between banks, insurance companies and firms demonstrates

the dependence of the financial players on each other. The bankruptcy of even

just one of these players may affect other players that are connected with her

immensely. The bankruptcy of Lehman Brothers in 2008 is a good example

2Define R+ := {x ∈ R|x ≥ 0}.
3Artzner et al. (1999) defined the condition of translation invariance as ρ(g + α · r) =

ρ(g) − α, where r is the “total rate of return on a reference instrument”. That means r is
some kind of interest rate on a risk-free investment. In our case we say α = 1.
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for the impact one player may have on the whole financial industry. In the

course of Lehman Brothers’ bankruptcy, many banks got in trouble and had

to be bailed out. As described above, the commonly used Value at Risk is not

an appropriate measure for that purpose.

An approach that aims to find a tool that helps prevent bankruptcy was

proposed by Foster and Hart (2009). They developed a new risk measure,

the Foster–Hart measure of riskiness, which yields a minimal capital reserve

an agent has to have in order to avoid bankruptcy in the long run. More

precisely, they showed that a decision maker who is offered a gamble gt in

every discrete time period t avoids bankruptcy with probability one if and

only if her wealth Wt at time t exceeds the assigned risk R(gt). A gamble is

defined as a real valued discrete random variable, that has a positive expected

value and where losses occur with positive probability.

Formally, R is defined as the unique positive solution to

E log

(
1 +

gt
R(gt)

)
= 0. (1.1)

The Foster–Hart measure of riskiness satisfies all properties given in Defi-

nition (1) except for translation invariance.4

Foster and Hart (2009) considered only discrete distributed gambles. Most

of the financial options and portfolios are, however, priced by using continuous

distribution. For instance, the famous Black–Scholes option pricing model

developed by Black and Scholes (1973) and Merton (1973) relies on lognormal

distributed prices.

It seems therefore natural and important to extend the Foster–Hart mea-

sure to continuous distributions. This is studied in the second chapter of this

thesis. One of our main findings is that the defining equation (1.1) does not

admit a solution for arbitrarily continuous distributions. In fact, there exists a

whole class of distribution for which the defining equation does not possess a

4For the purpose of the Foster–Hart measure, it is indeed reasonable to drop the cash
invariance property. See chapter VI.D in Foster and Hart (2009) for a more detailed dis-
cussion about the connection between the Foster–Hart measure and the class of coherent
measures.
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solution. We show, however, that for this class, a reasonable extension is given

by the maximal loss of these gambles. This extension is motivated by the fact

that for discrete distributions which converge to such continuous distributions,

the riskiness numbers converge to the maximal loss. Furthermore, given a se-

quence of discrete gambles which converge to a continuous distributed gamble

X for which a solution to equation (1.1) exists, we show that the respective

sequence of riskiness numbers converge to the solution R(X) of equation (1.1).

We therefore argue that the robust extension of the Foster–Hart measure of

riskiness is given by either the (unique) solution to equation (1.1) if it exists

or the maximal loss of the given gamble, otherwise.

This extension is now applicable to all continuous distributed gambles.

The extended risk measure is applied to many commonly used continuous

distributions such as the lognormal distribution and uniform distribution in

section 2.3.

1.3 Dynamic Foster–Hart Measure of Riski-

ness

An important justification for our extension is the fact that the no–bankruptcy

result of Foster and Hart (2009) carries over to the extended version. To show

this, we need to embed the Foster–Hart measure of riskiness into a dynamic

framework. The analysis in chapter 2 and in Foster and Hart (2009) is done in

a static framework. In the third chapter of this thesis, a dynamic framework

for our extended version of the Foster–Hart measure of riskiness is introduced.

Dynamic measurement of risk plays an important role when it comes to

incorporate the arrival of new information about the assets over time. The

arrival of new information yields the opportunity to quantify the risk of these

positions in a more precise way. If we want to measure the risk of an asset that

has its payments in, say, a year from now, it would be very likely that in six

months new information about the asset is revealed or the market situation has

been changed in a way that the assigned risk should be adjusted accordingly.

Since the late 1990s, many works have dealt with the incorporation of new
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information to risk measures, see among others Wang (1999) and Karatzas and

Cvitanic (1999). The information over time is modeled by a filtration (Ft)t∈N.

A dynamic risk measure is then defined as a family of conditional risk measures

(ρt)t∈N, where every ρt(X) determines the risk of a financial position given the

information Ft at time t. That means every ρt(X) is a Ft−measurable random

variable. Wang (1999) shows some basic desirable properties a dynamic risk

measure should satisfy. In Riedel (2004) and Detlefsen and Scandolo (2005),

the class of coherent risk measures is extended to a dynamic framework.

Another useful property is the notion of time–consistency. Suppose, for

instance, you know that tomorrow in every state of the world a position X will

never have a higher risk than a position Y . It would seem rather unreasonable

if today X is assigned to have a greater risk than Y. A dynamic risk measure

that is not time–consistent might yield an inconsistent behavior of a decision

maker. In terms of risk, the decision maker would prefer position Y to X today,

even if she knows that tomorrow, her preferences about these assets will be

the other way around. Time–consistency is exactly the condition which avoids

such an unreasonable behavior. Time–consistency, in particular for dynamic

coherent risk measures, is studied in Riedel (2004), Cheridito et al. (2004),

Detlefsen and Scandolo (2005), and Cheridito and Kupper (2011).

The dynamic version of the Foster–Hart measure of riskiness is proposed in

chapter 3 as a family of conditional Foster–Hart risk measures. These condi-

tional measures are defined in a very similar way to the extended Foster–Hart

measure of chapter 2, but now conditioned on the information given at the re-

spective time. To verify the existence and uniqueness of this family of random

variables, however, is not trivial and to prove it requires some work which is

done in detail at the end of the chapter.

Besides the benefits a dynamic measurement of risk delivers, the dynamic

Foster–Hart measure also justifies our extension of the Foster–Hart measure.

It is shown that the no–bankruptcy result carries over to the extended version

of the Foster–Hart measure. That means in particular that for some gambles,

a wealth equal to the maximal loss of the gamble suffices to accept the gambles

without taking the risk of going bankrupt. This result seems surprising at first

sight, as in the original work of Foster and Hart (i.e. for discrete gambles), a
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wealth that is strictly greater than the maximal loss is required to overcome

the possibility of bankruptcy. However, in contrast to discrete distributed

gambles, the maximal loss occurs for continuous distributed gambles with a

probability of zero (and losses that are close to the maximal loss with very

small probability), which makes a big difference for the purpose of staying

solvent.

Despite these nice properties, one shortcoming of the dynamic Foster–Hart

measure of riskiness is demonstrated in section 3.4. We show that it is not

time–consistent. In fact, we give an example where two different gambles will

have the same risk tomorrow. Yet, today, one gamble is assigned to have a

higher risk than the other. This contradicts the time–consistency property.

1.4 Knightian Uncertainty

We can think of many situations where uncertainty about the future is greater

than considered in the first two chapters of this thesis. Often times it is not

possible to give an exact stochastic description of future events. Think, for

instance, about the weather forecast or betting on a soccer game. Whereas

the probabilities of the result of a coin–flip can be exactly determined (and

we speak of risk), the determination of the probability that the sun will shine

next Sunday for more than 5 hours is fairly vague (and we speak in this case

of uncertainty). In fact, most of the weather forecasting portals indeed assign

such probabilities, yet the weather is such a complex system that depends on

many different factors which make it impossible to assign an exact probability

for the given event.

Similar situations can be observed in financial markets. In classical finan-

cial markets, the dynamics of the assets are assumed to be known. However,

the only thing that is indeed known is the past development of the assets. Of-

ten times, banks compute from these past data just one particular stochastic

or dynamic underlying these assets. Yet, as the recent financial crisis demon-

strates, there are far more events that are not included in the model delivered

by past data, effecting the future development of the assets.
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Uncertainty that cannot be described by a single probability distribution

was first discussed by Frank Knight in his famous book Risk, Uncertainty and

Profit (Knight (1921)). Knight described there why he distinguished between

risk and uncertainty: “Uncertainty must be taken in a sense radically distinct

from the familiar notion of Risk, from which it has never been properly sep-

arated. [...] The essential fact is that risk means in some cases a quantity

susceptible of measurement, while at other times it is something distinctly not

of this character; and there are far–reaching and crucial differences in the

bearings of the phenomena depending on which of the two is really present and

operating. [...] It will appear that a measurable uncertainty, or risk proper, as

we shall use the term, is so far different from an unmeasurable one that it is

not in effect an uncertainty at all.”

This unmeasurable uncertainty was afterwards named after Frank Knight

as “Knightian Uncertainty”.

Also in decision theory the approach of subject expected utility and the

sure thing principle introduced by Savage (1954) were questioned by the famous

Ellsberg paradox brought up by Ellsberg (1961). Roughly speaking, the sure

thing principle states that if two acts are equal on a given event, it does not

matter, for ranking these events in terms of preferences, to what they are

equal on that event. Ellsberg, however, indicates that the sure thing principle

does not hold if agents are uncertain about the probability with which payoff–

relevant events occur.

Knightian uncertainty, or as it is often called, Ambiguity, was rigorously

formalized in a decision theoretical framework by Gilboa and Schmeidler (1989)

and Bewley (2002).5 Gilboa and Schmeidler and Bewley allow for a whole set

of probability measures which possibly describe the dynamics of the underlying

in order to account for the uncertainty in the market. Gilboa and Schmeidler

(1989) compare different options under the probability measure that delivers

the worst–case, i.e. the probability measure delivering the minimal expected

utility. Under Bewley preferences, a decision maker prefers an option over an-

other if and only if it is unanimously preferred under all probability measures.

5Bewley wrote his article in the late 1980s. It was published more than ten years later
in 2002.
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A framework that has as a special case the Gilboa Schmeidler max–min

approach and allows for subjective attitude towards ambiguity is given by

the so–called smooth ambiguity model developed by Klibanoff et al. (2005).

They allow, essentially, the decision maker to assign a subjective probability

to a possible probability measure representing the decision maker’s subjective

opinion on how likely it is that this probability measure is the “right one”.

A further important model which allows one to measure ambiguity aversion

is given in Maccheroni et al. (2006). This so–called variational preference model

adds to the multiple priors model of Gilboa and Schmeidler a convex function

that captures the attitude of a decision maker towards ambiguity. Similar to

the smooth ambiguity model, it is possible to distinguish between attitude

towards risk and ambiguity.

1.5 Knightian Uncertainty and Real Options

Games

In the second part of the thesis, we adopt ambiguity into a real option game.

As a “real option”, we understand the right but not the obligation firms

might have to invest in a certain irreversible project. The valuations of those

projects can be done by using well–known pricing methods from the option

pricing literature.

The real option theory goes back to the 1980s, when McDonald and Siegel

(1986) studied an irreversible investment option of a firm which might enhance

the profit flow. The main problem studied has to do with discussing the opti-

mal point in time of investment. It is shown that in a stochastic framework the

net present value rule fails to be the optimal decision rule. In fact, investment

should be done later than it is suggested by the NPV rule.

Considering not only a single firm (monopoly), but rather two (or more)

firms, evokes the need to include game theoretical components into the model.

Many works have dealt with this combination of real option theory and game

theory, such as Dixit and Pindyck (1994), Huisman (2001), Mason and Weeds

(2010) and Thijssen et al. (2012), just to name a few. Most of the literature
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concentrates either on preemption games such as Smets (1991), Huisman and

Kort (1999) and Boyer et al. (2004), or (much less studied) war of attrition

games, see Hoppe (2000) and Murto (2004). In a preemption game, firms have

a first–mover advantage and profit from being the first to invest, whereas in

a war of attrition game, it is beneficial not to be the first to invest due to a

second–mover advantage. A framework that connects preemption and attrition

is proposed in Steg and Thijssen (2015). Such models are solved backward in

time by first computing the follower value function, assuming the competitor

has already invested. In a second step, the leader value function is determined.

Using these functions, equilibrium results can be obtained.

All papers mentioned so far, however, assume the firm(s) to be certain

about the right distribution of the profit flow. As discussed above, this is

quite a restrictive assumption. Indeed, it is very unlikely that the market un-

certainty can be captured by a single distribution. For this reason, Nishimura

and Ozaki (2007) and in a similar way Kort and Trojanowska (2010), consid-

ered a monopolistic firm which is uncertain about the distribution to use in

order to evaluate the profit flow. Instead of using a single probability mea-

sure, they considered a set of measures that supports a set of possible drifts

of the underlying stochastic process. Such a form of ambiguity is called drift

ambiguity. Nishimura and Ozaki (2007) and Kort and Trojanowska (2010)

assumed the monopolistic firm to be ambiguity–averse applying the max–min

expected utility approach of Gilboa and Schmeidler (1989). The uncertainty

about the drift is constructed using the so–called kappa–ignorance developed

by Chen and Epstein (2002). Using kappa–ignorance, a firm considers all pos-

sible drifts in an interval [µ, µ]. Thijssen (2011) modeled the ambiguity not

on the profit flow, but on the appropriate factor at which the cash flows are

discounted. Even though the source of ambiguity was different, he came to the

same result as Nishimura and Ozaki (2007) and Kort and Trojanowska (2010);

an increase in ambiguity delays the investment of the firm. In such monopo-

listic models, the prior that yields the minimal expected utility is always given

by the worst possible trend µ.

The inclusion of ambiguity, however, into a real options game has not been

studied yet. This is what we do in chapter 4 of the present thesis.
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We consider a preemption game with two firms being (potentially) hetero-

geneous in terms of both costs of investment and degree of uncertainty. The

potentially low–cost firm is assumed to be uncertain about the drift of the un-

derlying stochastic process using kappa–ignorance. The potentially high–cost

firm, however, uses just a single prior. The fact that only one firm is ambiguous

is, however, not important for our analysis. We model this in order to be able

to indicate the effect ambiguity has on the payoff functions and equilibrium

outcomes in contrast to a purely risky approach (see section 4.6 for a more

detailed discussion on this point).

The main finding is that the determination of the payoff function and the

worst–case scenario is no longer trivial under competition. We show that two

opposing effects are at work; one supports the worst possible trend to be the

right candidate for the worst–case, whereas the other one indicates exactly the

opposite, namely that the worst–case is given by the best possible trend. Our

main result demonstrates that the first effect always dominates the latter if

the drop in the payoff due to competition is sufficiently small. In the case that

this condition is not satisfied, we show that for the leader value function, there

exists a unique threshold x∗ such that the worst case is given by the lowest

possible trend whenever the underlying process lies below x∗, and is given by

the best possible trend if the underlying process lies above that threshold.

For the equilibrium concept, we use the framework developed in Riedel

and Steg (2014). They extended the famous subgame perfect equilibrium

concept given in Fudenberg and Tirole (1985) for deterministic timing games

to stochastic timing games. To be able to include an ambiguous player, we just

need to make some minor adjustments. The resulting equilibria can be either of

preemptive or sequential type. We call an equilibrium a preemptive equilibrium

whenever one of the firms is forced to invest in equilibrium sooner that it would

do without the fear of competition (i.e. the fear of being preempted by its

opponent). In a sequential equilibrium, such a fear does not exist and the

firms invest at their optimal leader and follower threshold, respectively.

In contrast to the work of Pawlina and Kort (2006), which considered cost–

asymmetric firms without ambiguity, we show that the high cost–firm may also

become the leader in such a preemption game even in a sequential equilibrium.
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This is the case if the cost disadvantage is sufficiently small compared to the

degree of ambiguity.



Chapter 2

The Foster-Hart Measure of

Riskiness for General Gambles1

2.1 Introduction

Risk measures are often used in the financial industry to determine a minimal

capital reserve a company needs to have in order to overcome possible losses

and ensure in that way its financial survival. In their famous work Artzner et al.

(1999) introduced the class of coherent risk measures by stating four desirable

axioms, namely monotonicity, homogeneity, subadditivity and cash invariance.

Weakening the axioms homogeneity and subadditivity and replacing them by

convexity, Frittelli and Rosazza Gianin (2002) and Föllmer and Schied (2002)

proposed the more general class of convex risk measures.

These classes, however, are far away from defining a specific applicable

measure. For this reason, Aumann and Serrano (2008) developed a specific

index of riskiness that assigns to a random variable with known distribution

a riskiness number. The Aumann–Serrano index of riskiness is defined as the

reciprocal of the constant absolute risk aversion of an agent. Searching for an

operational interpretation for this index, 2 Foster and Hart (2009) introduced

1Parts of this chapter were published in Riedel and Hellmann (2015).
2Meanwhile, Homm and Pigorsch (2012) found an operational interpretation even for the

Aumann–Serrano index, showing its close connection to the adjustment coefficient which is
a parameter for a ruin probability.

14
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a new notion of riskiness, or critical wealth level, for random variables with

known distribution. Their concept admits a simple operational interpretation

because an agent avoids bankruptcy in the long run almost surely provided

she accepts a gamble only if her current wealth exceeds the critical value. This

measure is objective in so far as it depends only on the distribution of the

outcome; in decision–theoretic terms, it is probabilistically sophisticated, in

the language of the finance literature on risk measures, it is law–invariant.

Formally, the Foster–Hart measure of riskiness R(X) is defined for a dis-

crete random variable X on some probability space (Ω,F , P ) that satisfies

EX > 0 and P (X < 0) > 0 by the unique solution of

E log

(
1 +

X

R(X)

)
= 0 . (2.1)

Foster and Hart (2009) argued that this number describes a threshold which

divides between two different regimes: staying solvent with probability one on

the one hand and the possibility of going bankrupt on the other. Consider, for

instance, a gamble that pays with half of the probability $200 and with half of

the probability $-100. We easily compute that the unique solution of equation

(2.1) gives R = 200. The main theorem of Foster and Hart (2009) states now

that a decision maker does not go bankrupt in the long run if and only if she

rejects such gambles whenever her current wealth level is below $200.

Foster and Hart (2009) and Hart (2011) presented a duality between the

Aumann–Serrano index and the Foster–Hart measure of riskiness; the index is

independent of the wealth of a decision maker and is based on the risk aver-

sion whereas the riskiness measure focuses on the wealth level regardless of

risk aversion. Furthermore, two new complete orders on gambles were intro-

duced by Hart (2011), the wealth–uniform dominance and the utility–uniform

dominance, showing that these orders are equivalent to the Aumann–Serrano

index and the Foster–Hart measure of riskiness, respectively. Bali et al. (2011)

provided a generalized version of both the Foster–Hart measure of riskiness

and the Aumann–Serrano index of riskiness which involves a dependence on

the risk aversion as well as on the wealth level of a decision-maker and finally
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both measures have been extended from gambles to securities 3 by Schreiber

(2012).

Neither the Aumann–Serrano index nor the Foster-Hart measure belongs to

the class of coherent risk measures. In fact, both fail only the cash invariance

condition. However, Foster and Hart (2013) introduced another class of risk

measures satisfying four basic axioms: dependence, homogeneity, monotonicity

and compound gamble and showed that the minimal measure satisfying these

four axioms is exactly the Foster–Hart measure.

Until now, the Foster-Hart measure of riskiness has only been studied for

gambles with finitely many outcomes; even the finite examples were mostly

confined to gambles with few values. Many financial applications involve dis-

tributions with a large number or a continuum of outcomes; it seems natural

and important to generalize the concept of critical wealth level to such cases.

To our surprise, we realized that even for the most simple case of a uniform

distribution, the defining equation of Foster and Hart does not always have a

finite solution. The non–finite value of infinity is always a possible solution for

the defining equation, but it would seem most counterintuitive and implausible

to reject a uniformly distributed gamble on, say, the interval [−100, 200] at

arbitrary wealth levels. We show later that even for arbitrarily high gains

greater than a certain critical value, the only solution for the defining equation

is infinity. Clearly, there can come no useful theory out of a measure that

suggests, regardless of how much money one may possess, to reject an uniform

distributed gamble over, say, [−100, 3.7× 1012].

In this chapter we therefore set out to study the concept of riskiness for

distributions with densities. We show that there are two classes of gambles.

For some of them, the defining equation of Foster and Hart has a finite solution,

and one can use this number as its riskiness. For others, the defining equation

has no solution. We show that in this case, a reasonable extension is to use

the maximal loss of the gamble as its riskiness. This might seem surprising

at first sight, as for finite gambles, the Foster–Hart riskiness is always strictly

3The difference between gambles and securities lies in the fact on how they affect the
wealth. If W0 denotes the initial wealth level, then accepting a gamble g leads to a wealth
of W = W0 + g and accepting a security r causes the wealth of W = W0r.
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larger than the maximal loss. But we argue that it is the only rational way to

extend the concept to arbitrary gambles.

As for discrete gambles the riskiness number is well defined, we approach

this problem by studying an increasing sequence of discrete gambles (Xn) that

converge to a continuous gamble X. We then investigate the asymptotic be-

havior of the respective riskiness numbers. For the uniform distribution above,

an approximation involves a sequence of uniformly distributed finite gambles

on a grid. As the grid becomes finer and finer, we show that the riskiness

values converge to the maximal loss. This result carries over to gambles with

arbitrary distributions. For gambles with a density where the Foster–Hart

equation does have a solution, we also show that the riskiness values converge

to that value. This is important as it provides a justification for using finite

gambles with many outcomes as an approximation to non–finite gambles with

a density.

A couple of examples eventually conclude this chapter.

2.2 Foster–Hart Model

For the sake of a better understanding of the Foster–Hart measure of riskiness,

we briefly summarize the model proposed in Foster and Hart (2009).

In the Foster–Hart model, a decision maker with positive initial wealth

level W0 > 0 is offered a gamble Xt in every discrete time period t ∈ N that

she can either accept or reject. A gamble X is a real valued discrete random

variable, for which it holds that P (X < 0) > 0 and E[X] > 0. Accepting a

gamble in period t leads to a wealth in the next period of Wt+1 = Wt + Xt,

whereas rejecting the gamble leaves the wealth unchanged, i.e. Wt+1 = Wt.

Further, let G denote the process of gambles (Xt)t=1,2,.... G is assumed to be

finitely generated, i.e. each offered gamble Xt belongs to the finitely generated

coneG0 = {λX : λ ≥ 0 and X ∈ G0}, where G0 denotes a finite set of gambles.

The decision maker is assumed to have a homogeneous critical wealth func-

tion Q(X) which assigns to each gamble X a nonnegative real number such

that she accepts X if and only if W ≥ Q(X). Furthermore, the decision maker
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is not allowed to borrow any money, i.e. Wt ≥ 0 for all t ∈ N. Bankruptcy

is then defined as limt→∞Wt = 0. Note, due to the no–borrowing condition,

once the decision maker’s wealth is zero, it stays zero forever.

The main result of Foster and Hart (2009) now states that, under these

assumptions, a decision maker avoids bankruptcy for sure if and only if she

rejects all offered gambles whenever her wealth is smaller than the assigned

risk R of these positions, where R is given by the unique positive solution of

equation (2.1).

2.3 Motivating Example and Notations

In the following, we consider on some probability space (Ω,F , P ) the reciprocal

λ = 1
R

of the Foster–Hart measure of riskiness, i.e. λ is the unique positive

solution of

E log (1 +Xλ) = 0 . (2.2)

Note that for discrete random variables this equation is defined for all

nonnegative values of λ up to, but strictly smaller than λ∗(X) = 1/L(X),

where L(X) = maxω∈Ω(−X(ω)) is the maximal loss of the gamble.

For discrete random variables with positive expectation and possible losses,

such a strictly positive solution always exists. For example, if X is a Bernoulli

random variable with

P (X = 200) = P (X = −100) =
1

2
,

one can easily verify that 0 = 1
2

log (1 + 200λ) + 1
2

log (1− 100λ) leads to λ =

1/200 or R(X) = 200.

The starting point of our analysis is the following simple observation that

struck us when we wanted to apply the measure of riskiness to more general,

continuous distributions.

Example 1 Let X be uniformly distributed over [−100, 200]. X has the pos-

itive expectation 50 and losses occur with positive probability. It thus qualifies
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Figure 2.1: The function λ 7→ E log (1 + λX) for the uniform distribution over
[−100, 200] has no zero.

as a gamble in the sense of Foster and Hart. We study the equation

φ(λ) := E log (1 + λX) = 0 . (2.3)

φ is well–defined for positive values λ ≤ 1/L where L = 100 is the gamble’s

maximal loss. We plot the function φ(λ) in Figure 2.1. No solution for λ > 0

to equation (2.3) exists.

For a formal proof, note that φ is continuous and concave on [0, 1
L

], with

positive slope in 0 as EX > 0 (see the argument in Foster and Hart (2009)).

Thus, there exists a root for the defining equation if and only if φ(1/L) < 0.

For the maximal possible value λ∗(X) = 1/L = 1/100 we have

E log (1 + λ∗(X)X) =

∫ 200

−100

1

300
log
(

1 +
x

100

)
dx

=

[
1

3

((
1 +

x

100

)
log
(

1 +
x

100

)
−
(

1 +
x

100

))]200

−100

= log 3− 1 ' 0.0986 > 0 .

We conclude φ(λ) > 0 for all λ ∈ (0, λ∗(X)].
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(a) 1
210 log

(
1 + x

100

)
(b) 1

1100 log
(
1 + x

100

)
Figure 2.2: The integrand of E log

(
1 + X

L

)
for the uniform distributed gamble

over [−100, 110] and [−100, 1000].

How can we explain the fact that no solution to the defining equation for

such continuous gambles as the one above exists, whereas for discrete gambles

always a solution can be obtained? To answer this question, consider again

the function φ(λ) = E log(1 + λX). We can easily verify that φ is continuous

and concave on [0, 1
L

),4 with positive slope in 0. Thus, there exists a root

for the defining equation if and only if limλ→ 1
L
φ(λ) < 0. If X is discrete,

its distribution places a strictly positive weight on the event {X = −L(X)},
where X achieves the maximal possible loss. As a consequence, the expression

log(1 − λL(X)) tends to minus infinity as λ approaches the value λ∗(X) =

1/L(X). The expectation that defines φ then also converges to negative infinity

for λ→ λ∗(X), and the function φ has a unique zero in (0, λ∗(X)).

On the other hand, for continuous random variables X, the event {X =

−L(X)} has probability zero. In some cases, we have we have limλ→ 1
L
φ(λ) =

φ( 1
L

) > 0. In these cases, the distribution puts more weight on the positive area

of the integral that defines the expectation than on the negative. Therefore,

4If X is continuous, the maximal loss L is not reached with a positive probability. There-
fore, in contrast to the discrete case, equation (2.2) is also defined for λ = 1

L and φ is
continuous and concave on [0, 1

L ].
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the expectation is positive for any λ ∈ (0, 1
L

].

To illustrate that, we draw the integrand of E log
(
1 + X

L

)
for the uni-

form distributed gamble X with support [−100, 110] in Figure 2.2(a) and with

support [−100, 1000] in Figure 2.2(b). In the first case, we observe that the

negative area of the integral is greater than the positive. Therefore, the inte-

gral is negative which implies that a solution to the defining equation exists.

In fact, one can show that λ = 0.0027 solves the defining equation. In the

second case, more weight is put on the gain side of the distribution and the

integral becomes positive. Hence, if the maximal loss is fixed, from a certain

value on, there never exists a solution to the defining equation.

How can we assign a riskiness to a gamble for which the defining equation

of Foster and Hart has no solution? One could take λ = 0, of course, resulting

in a riskiness measure of ∞. Does this mean that one should never accept

uniformly distributed gambles? Then an investor with a wealth of, say, a

billion dollars would reject the above uniform gamble on [−100, 200]. Given

that such a gamble has an expected gain of 50 and a maximal loss of 100, this

would seem quite counterintuitive. Following the above argument, it would

become even more counterintuitive if we consider the above uniform gamble

with a much higher right bound of, say, one billion.

In this note, we therefore set out to extend the notion of riskiness for

continuous random variables like the uniform above by approximating them via

discrete random variables. We show that the limit of the riskiness coefficients

exists. If the expectation E log(1 + λ∗(X)X) is negative (including negative

infinity), one can use equation (2.2) to define the riskiness of X. (This also

shows that our notion is the continuous extension of the discrete approach).

For continuous random variables with E log(1 + λ∗(X)X) ≥ 0 such as our

uniform random variable above, we use the limit of the riskiness coefficient of

the approximating discrete random variables. This limit turns out to be equal

to the maximal loss L(X).

Whereas the riskiness measure is quite conservative for Bernoulli random

variables as it prescribes a high value of 200 for the wealth for a Bernoulli

random variable with maximal loss of 100, it does accept the uniform random

variable over [−100, 200], which has the same maximal loss of 100, even if one
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has just $100.

How can one explain this difference? The point is that the Bernoulli random

variable above is quite far away from the uniform random variable over the

whole interval [−100, 200]. For the Bernoulli case, a loss of $100 has a high

probability of 50 %. For the uniformly distributed random variable, a loss of

close to $100 occurs with a very small probability and the loss of exactly $100

even with probability zero; as the defining aim of the operational measure

of riskiness is to avoid bankruptcy, this is a crucial difference. Indeed, our

analysis below shows that the riskiness decreases if we spread the Bernoulli

random variable more uniformly over the interval [−100, 200], say by using a

uniform grid. For discrete random variables uniformly distributed over a fine

grid, the riskiness is close to the maximal loss of 100.

Let us study next how the riskiness numbers of discrete distributions that

approximate the uniform one look like. We approximate the uniform distribu-

tion over [−100, 200] by finite gambles.

Example 2 We consider discrete and uniformly distributed gambles on the

grid −100,−100 + 300
n−1

, . . . ,−100 + 300k
n−1

, . . . , 200. The riskiness is the root of

fn(λ) =
1

n

n−1∑
k=0

log

(
1 + λ

(
−100 +

300k

n− 1

))
.

For the simplest case n = 2 we showed above that R = 1
λ

= 200.

In the following table the riskiness numbers for different grid sizes are

shown. We observe that the riskiness number decrease and converge to the

maximal loss as the grid becomes finer and finer. As the single weights on spe-

cific losses vanish, the investor might accept the gambles at ever lower wealth

levels. In the limit, she is able to gamble as long as her wealth suffices to cover

the maximal loss without taking any risk of bankruptcy.
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n grid size riskiness

2 300 200

3 150 145.74

5 75 119.46

11 30 104.997

21 15 101.197

31 10 100.3651

41 7.5 100.1195

61 5 100.0137

101 3 100.0002

2.4 Main Result

We now go beyond specific examples and clarify for which gambles the Foster–

Hart index is equal or close to the maximal loss. We will characterize such

distributions by a simple condition.

Before we start, let us fix what we mean by gamble.

Definition 2 Let (Ω,F , P ) be a probability space. We call a random variable

X : (Ω,F)→ R a gamble if

• its expectation is positive: EX > 0,

• losses occur with positive probability: P [X < 0] > 0,

• and its maximal loss is bounded: L(X) := ess sup(−X) <∞ 5.

We call a gamble finite if its support is finite.

Let us now describe how one could construct an approximating sequence

of discrete gambles more formally. We approximate X from below by an

increasing sequence of discrete random variables Xn ↑ X. For each Xn, there

is a unique positive number 0 < λn < λ∗(X) that solves the defining equation

E log (1 + λnXn) = 0 .

5We define as usual ess sup(−X) := inf{x ∈ R|P (−X > x) = 0}.
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The sequence (λn) is increasing and bounded, thus the limit λ∞ = limn→∞ λn

exists and is bounded by λ∗(X). We will show that for random variables X

with φ(λ∗(X)) = E log (1 + λ∗(X)X) < 0, λ∞ is the unique positive solution

of the defining equation (2.2). For random variables like the uniform one,

where φ(λ∗(X)) = E log (1 + λ∗(X)X) ≥ 0, we have λ∞ = λ∗(X).

Without loss of generality, we take L = 1 and thus λ∗(X) = 1. We consider

two different sequences of partitions of the support of the continuous random

variables.

On the one hand, if the support of X is the compact interval [−1,M ], we

define

xnk = −1 +
k

2n
(M + 1), k = 0, . . . , 2n − 1

and set

Xn =
2n−1∑
k=0

xnk1{xnk≤X<xnk+1} .

On the other hand, if the support of X is the infinite interval [−1,∞), we

define

xnk = −1 +
k

2n
, k = 0, . . . , n2n − 1

and set for n ≥ 1

Xn =
n2n−1∑
k=0

xnk1{xnk≤X<xnk+1} + (−1 + n)1{X≥(−1+n)}.

For both cases the next Lemma holds true.

Lemma 1 The sequence (Xn) is increasing and limXn = X a.s.

Proof: Consider first the case where the support of X is given by a compact

interval [−L,M ]. Obviously, we have xnk < xnk+1.

Further,

xnk = −1 +
k

2n
(M + 1) = −1 +

2k

2n+1
(M + 1) = xn+1

2k .
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Therefore, we get

Xn =
2n−1∑
k=0

xnk1{xnk≤X<xnk+1} =
2n−1∑
k=0

xn+1
2k 1{

xn+1
2k ≤X<x

n+1
2(k+1)

}.

The last expression is smaller than Xn+1 since we have on each interval

[xn+1
2k , xn+1

2(k+1)) 6= ∅ that

Xn = xn+1
2k

and

Xn+1 ≥ xn+1
2k

with Xn+1 > xn+1
2k on ∅ 6= [xn+1

2k+1, x
n+1
2(k+1)) ⊂ [xn+1

2k , xn+1
2(k+1)). Hence, (Xn) is an

increasing sequence.

Analogously, we can prove the statement for the support [−1,∞), just by

setting xnk equal to −1 + k
2n

and Xn to

n2n−1∑
k=0

xnk1{xnk≤X<xnk+1} + (−1 + n)1{X≥(−1+m)}.

Finally, we have limXn = X a.s. by construction of the sequence (Xn).

�

As we have −1 ≤ Xn ≤ X ∈ L1,6 we conclude, using Lebesgue dominated

convergence theorem, that limEXn = E limXn = EX > 0. Hence, for n

sufficiently large, we have EXn > 0. From now on, we always look at such

large n only. As the density of X is strictly positive on its support, we also

have P (Xn < 0) ≥ P (Xn = −1) > 0. Therefore, the Foster–Hart riskiness is

well–defined for Xn. Let λn ∈ (0, 1) be the unique positive solution of

E log(1 + λnXn) = 0 .

The next Lemma follows directly by Lemma 1 and by the monotonicity

of the Foster–Hart measure of riskiness, see Proposition 2 in Foster and Hart

(2009).

6We denote by L1 the space of all random variables X with EX <∞.
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Lemma 2 The sequence (λn) is increasing and bounded by L(X) = 1. As a

consequence,

λ∞ = limλn

exists and is less or equal to L(X) = 1.

We can now state our main theorem. The limit λ∞ identified in the previous

lemma is the right tool to define the riskiness for general gambles.

Theorem 1 Let X be a gamble with maximal loss L > 0. Let (Xn) be a

sequence of finite gambles with Xn ↑ X a.s., where each Xn has the same

maximal loss L. Denote by ρn := ρ(Xn) > L their Foster–Hart riskiness.

Then the following holds true:

1. If E log(1 + X/L) < 0, then ρ∞ > L and ρ∞ is the unique positive

solution of the Foster–Hart equation (2.1).

2. If E log(1 + X/L) ≥ 0, then the Foster–Hart equation has no solution

and ρ∞ = L(X).

Proof:

It is easier to prove the converse of the two statements. Without loss of

generality, we take L = 1 (else replace X by X/L). Let us start with assuming

λ∞ < 1. In that case, the sequence

Zn = log (1 + λnXn)

is uniformly bounded. Indeed,

−∞ < log(1− λ∞) ≤ Zn ≤ log(1 + |X|) ≤ |X| ∈ L1 .

As we have Zn → log(1+λ∞X) a.s., we can then invoke Lebesgue’s dominated

convergence theorem to conclude

0 = limEZn = E limZn = E log(1 + λ∞X) .
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In particular, the equation (2.3) has a positive solution λ∞ < 1. As φ(λ) =

E log(1 + λX) is strictly concave and strictly positive on (0, λ∞), we conclude

that we must have φ(1) = E log(1 +X) < 0. This proves the second claim.

Now let us assume λ∞ = 1. In that case, we cannot use Lebesgue’s theorem.

However, the sequence

Z ′n = − log (1 + λnXn)

is bounded from below by − log(1 + |X|) ≥ −|X| ∈ L1. We can then apply

Fatou’s lemma to conclude

−E log(1 +X) = E limZ ′n ≤ lim inf −E log (1 + λnXn) = 0 ,

or

E log(1 +X) ≥ 0 .

This proves the first claim. �

After stating our main theorem, we are eventually able to define our ex-

tended Foster–Hart measure of riskiness.

Definition 3 Let X be a gamble. If E log(1 + X/L) < 0, we define the ex-

tended Foster–Hart measure of riskiness ρ(X) as the unique positive solution

of equation

E log

(
1 +

X

ρ(X)

)
= 0 .

If E log(1 +X/L) ≥ 0, we define ρ(X) as the maximal loss of X,

ρ(X) = L .

Remark 1 Foster and Hart (2009) noticed that the measure of riskiness is

not necessarily continuous, meaning that for a sequence of gambles (Xn) which

converges in distribution to a gamble X, the limit of the respective riskiness

numbers is not necessarily ρ(X). This, however, can only be the case if the

sequence of maximal losses (L(Xn)) does not converge to L(X). It is therefore

important that we fix the maximal loss of each gamble of the approximating

sequence (Xn) equal to the maximal loss of X.
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Further note, for the construction of the sequence (Xn) the increase with

respect to first order stochastic dominance of (Xn) is important as it has a

clear interpretation; higher gains and/or lower losses strictly decrease 7 the

riskiness number. Thus, since Xn ≤ X we have ρ(Xn) ≥ ρ(X) ≥ L and we

showed that in the limit ρ(Xn)→ ρ(X).

For gambles where the defining equation does not have a solution, our

theorem suggests to use the maximal loss as their riskiness.

The previous theorem also gives a simple test to see whether the Foster–

Hart riskiness is equal (or close to) the maximal loss of a distribution. Indeed,

the sign of the expectation E log(1 + X/L) determines whether the riskiness

is equal or close to the maximal loss.

The maximal loss is indeed obtained for a large number of gambles. For

example, for the uniform distribution on [−100, 200] and for a uniform distribu-

tion on, say, [−100, 1012], the riskiness is the same, namely 100 (and similarly

for finite gambles with such a support on a dense grid, compare Example (2)

above for more details). The Foster–Hart riskiness index then boils down to

the so–called worst–case risk measure.

This property appears to be undesirable. Why would uniform gambles

on [−100, 200], and the much more favorable uniform gambles on [−100, 1012]

have the same riskiness? Let us look at the operational interpretation of the

riskiness that Foster and Hart had in mind. The aim is to find a critical wealth

level that ensures solvency with probability one if it is used as a decision rule

for acceptance and rejection of gambles. For solvency, losses clearly play a

much more important role than potential gains (and of course one needs to

have at least the maximal loss in order to guarantee no–bankruptcy even for

a favorable gamble like the uniform on [−100, 1012]). Our analysis shows that

frequently the maximal loss only determines whether one should accept or

reject a gamble.

In the next chapter, we extend the Foster–Hart result on solvency to our

gambles. A decision maker does avoid bankruptcy with probability one if she

7In case of continuous distributed gambles, the sequence of Foster–Hart riskiness numbers
of a monotone increasing, with respect to first order stochastic dominance, sequence of
gambles is at least monotone decreasing but not necessarily strictly anymore.
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(a) Generalized Foster–Hart riskiness ρ (b) λ = 1
ρ

Figure 2.3: ρ and λ for lognormally distributed gambles over (−1,∞) with
σ = 2.

uses our extended riskiness as a decision rule. In particular, if a decision maker

faces a sequence of independent uniformly distributed gambles with sufficiently

high maximal gains, she stays solvent with probability one if she accepts every

gamble which maximal loss is below her wealth. As the operational interpreta-

tion of Foster and Hart (2009) carries over, this provides another justification

for using the maximal loss as an extension of the Foster–Hart riskiness.

Our theorem also shows that, for certain gambles, the Foster–Hart index

does not care about the way gains are distributed. Whether you have specific

gains with a certain density or point masses on some numbers does not matter.

Further examples given in the next section illustrate this point.

2.5 A list of examples

2.5.1 Lognormal Distribution

The lognormal distribution is used in many financial applications, for instance

in the widely used Black–Scholes options pricing model. It seems, therefore,

important to be able to apply the measure of riskiness for this distribution.

A random variable X is said to be lognormally distributed if its density ϕ
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is

ϕ(x;µ, σ, L) =
1

(x+ L)
√

2πσ
exp

(
−1

2

(log(x+ L)− µ)2

σ2

)
, x > −L, 8

where µ and σ are the expected value and the standard deviation, respectively,

of the normally distributed random variable XN = log(X + L) and L is the

maximal loss of X.

For the special case of lognormally distributed gambles with L = 1, we can

obtain an interesting result.

Proposition 1 For the lognormally distributed random variable X =

exp(XN) − 1 with EX > 0, there exists a solution for the defining equation

(2.1) if and only if EXN < 0.

Proof: We can easily check that

E log

(
1 +

exp(XN)− 1

1

)
= E log(exp(XN)) = EXN

and therefore E log(1 + X
L(X)

) < 0 if and only if EXN < 0. �

Now, if we also fix σ = 2, we can numerically compute the riskiness as a

function of µ. The result is drawn in Figure 2.3. As Proposition 1 already

says, we observe that the critical value for which there exists no zero for the

defining equation is µ∗ = 0.

2.5.2 Uniform Distribution

Let us consider the motivating example again. We fix L = 100 and check for

which value M∗ of the maximal gain the defining equation (2.1) has a solution

for the uniformly distributed gamble over [−100,M∗], i.e. we need to find M∗

8See Johnson et al. (1995).
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(a) Generalized Foster–Hart riskiness ρ (b) λ = 1
ρ

Figure 2.4: ρ and λ for uniformly distributed gambles over [−100,M ].

such that E log
(
1 + X

L

)
= 0. Therefore,

E log

(
1 +

X

100

)
=

∫ M∗

−100

1

100 +M∗ log
(

1 +
x

100

)
dx

=

[
100

100 +M∗

((
1 +

x

100

)
log
(

1 +
x

100

)
−
(

1 +
x

100

))]M∗
−100

=
100

100 +M∗

((
1 +

M∗

100

)
log

(
1 +

M∗

100

)
−
(

1 +
M∗

100

))
.

Setting this equal to zero yields

log

(
1 +

M∗

100

)
= 1,

which implies

M∗ = L(e− 1) ' 171.8.

Hence, for all values M < M∗ there exists a solution to the defining equation

and we take this solution as the riskiness. For all M ≥ M∗ there does not

exists a finite solution and we take therefore the maximal loss L = 100 as the

riskiness.

In Figure 2.4 the graph of the riskiness ρ as well as the solution λ of equation

(2.3) is plotted against the maximal gain M of the gambles. In order to have
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a positive expectation, we consider only values of M with M > 100.

As a result the graph of the riskiness shows a continuous function; the

riskiness tends to the maximal loss L = 100 as we approach the critical value

M∗ and converges to infinity as the expectation of the gamble goes to 0 (i.e.

M ↓ 100).

2.5.3 Mixed Distribution

Consider mixed gambles that have a discrete part as well as a continuous one.

For instance, we take a gamble X that is uniformly distributed over the interval

[−100, 0] and that places a probability of 50% on the event {X = M}, where

M > 50 to ensure a positive expectation. For M > M∗ := 100(e− 1) ' 171.8,

no solution to the defining equation exists as a similar calculation as in the

previous example shows:

E log

(
1 +

X

100

)
=

1

2
log

(
1 +

M

100

)
+

1

2

∫ 0

−100

1

100
log
(

1 +
x

100

)
dx

=
1

2

(
log

(
1 +

M

100

)
+

(
1 +

0

100

)
log

(
1 +

0

100

)
−
(

1 +
0

100

))
=

1

2

(
log

(
1 +

M

100

)
− 1

)
.

For M > M∗, this expression is positive.

We observe that the critical value for this mixed distribution is the same

as for the uniform distribution over [−100, 171.8] (see Example (2.5.2)). This

seems to be surprising at first sight as we replaced an uniform distribution

over an interval by a positive mass on the maximal gain. But notice that the

Foster–Hart measure of riskiness is more sensitive on the loss side than on the

gain side. The decrease of the probability of the event {X ≤ 0} from 1
2

to

' 0.37 vanishes the higher gains of the mixed gamble and the critical value is

exactly the same.

On the other hand, if we take a mixed distribution that has a point mass
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(a) Generalized Foster–Hart riskiness ρ (b) λ = 1
ρ

Figure 2.5: ρ and λ for beta distributed gambles over [−100, 200] with α = 2.

on its maximal loss L, the defining equation always posses a solution. Indeed,

due to the fact that the event {X = −L} has a positive probability, we have

limλ→ 1
L
E log(1 +λX) = −∞ and therefore a solution to equation (2.1) exists.

2.5.4 Beta Distribution

Let us consider beta distributed gambles. The density of a random variable

X that is beta distributed over the compact interval [−L,M ] is, for instance,

given in Johnson et al. (1995) as

ϕ(x;α, β, L,M) =
1

B(α, β)

(x+ L)α−1(M − x)β−1

(M + L)α+β−1
, x ∈ [−L,M ], α, β > 0,

where B(α, β) denotes the Betafunction defined as

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.

The mean of X is given by

EX =
αM − βL
α + β

.



2.5. A LIST OF EXAMPLES 34

We can parameterize our beta distributed gamble X by

X = cZ − L,

where Z is a beta distributed random variable over [0, 1] and c = M+L. Using

this parameterization, we can now explicitly compute for which value of M (or

c) no solution to the defining equation exists. Let us fix L = 100, α = 2 and

β = 2. We have

E log

(
1 +

X

L

)
= E log

(
1 +

cZ − L
L

)
= E log

(
cZ

L

)
= log(c)− log(L) + E log(Z).

Thus, we are searching for c∗ that solves

log(c∗) = log(L)− E log(Z).

Now,

E log(Z) =

∫ 1

0

log(x)

B(2, 2)
x(1− x)dx

=
1

B(2, 2)

[
log(x)

(
1

2
x2 − 1

3
x3

)
−
(

1

4
x2 − 1

9
x3

)]1

0

= −5

6
.

Hence,

c∗ = 100 exp

(
5

6

)
' 230.09

which means

M∗ ' 130.09.

Figure 2.5 shows the graph of the riskiness and of λ = 1
ρ

against M . For
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M > M∗, where no positive solution exists, the maximal loss L = 100 is used

to determine the riskiness. The figure again demonstrates that the maximal

loss is a continuous extension of the Foster–Hart measure of riskiness.



Chapter 3

A Dynamic Extension of the

Foster–Hart Measure of

Riskiness1

3.1 Introduction

Foster and Hart (2009) introduced a notion of riskiness, or critical wealth level,

for gambles with known distribution. Formally, the Foster–Hart measure of

riskiness is given by the unique solution R(X) of

E log

(
1 +

X

R(X)

)
= 0 . (3.1)

The Foster–Hart measure of riskiness R(X) is defined for discrete random

variables X on some probability space (Ω,F , P ) that satisfy EX > 0 and

P (X < 0) > 0.

In chapter 2 we noticed that for general continuous distributions the defin-

ing equation does not necessarily admit a solution. In this case, the riskiness

numbers of sequences of discrete gambles that approximate the gamble with

continuous distribution converge to the maximal loss of the gambles. We thus

suggest to use the maximal loss as the reasonable extension for the Foster-Hart

1This chapter was published in Hellmann and Riedel (2015).

36
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measure when there exists no solution to equation (3.1).

In this chapter, we study the extended Foster–Hart index of riskiness for

general gambles in dynamic settings. As many financial applications require

to quantify risk over time in a dynamic way, it seems natural and important

to generalize the concept to a dynamic framework.

Dynamic measurement of risk plays an important role in the recent litera-

ture 2 since it allows, in contrast to the static case, to measure risk of financial

positions over time. The arrival of new information can thus be taken into ac-

count. This is important for many situations; suppose, for instance, one faces

a gamble that has its payments in, say, one month. In two weeks from now

the information about this gamble might be much more precise which allows

to adjust the risk assessment and to determine the risk more accurately. A

static risk measure cannot do that. To cover such cases it is therefore crucial

to be able to merge from static to dynamic risk measurement.

We thus set out to study the Foster–Hart measure of riskiness (or more

precisely the extended Foster–Hart measure of riskiness defined in chapter 2)

in a dynamic framework. As a first step, we define the concept of conditional

Foster–Hart riskiness for general probability spaces and filtrations. In the

original work of Foster and Hart (2009) a somewhat dynamic approach is

already needed to prove the no–bankruptcy result. Their approach, however,

is rather intuitive than precise in a measure–theoretic sense. We provide here

a more rigorous approach which allows us also to drop the assumption used

in Foster and Hart (2009) that all gambles are multiples of a finite number

of so–called basic gambles.3 Furthermore, we allow the extended Foster–Hart

measure of riskiness to measure also gambles with potentially unbounded gains.

In the new framework, we show that Foster–Hart’s no-bankruptcy result

(and with it the operational interpretation) carries over to general continuous

distributions. The proof uses a different martingale argument which might be

interesting in itself.

A desirable property of a dynamic risk measure is the notion of time–

2See, among others, Detlefsen and Scandolo (2005) and Föllmer and Schied (2011), Chap-
ter 11 for a detailed introduction to dynamic risk measures.

3See section 2.2 for a description of the assumptions used by Foster and Hart (2009).
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consistency. Time–consistency for dynamic risk measures is widely stud-

ied in the recent literature, see, among others, Riedel (2004), Roorda et al.

(2005), Detlefsen and Scandolo (2005), Weber (2006) and Artzner et al. (2007).

Roughly speaking a measure is time–consistent if it assigns a greater risk to

one gamble than to another whenever it is known that the same holds true

tomorrow. This property yields a consistent behavior of an agent who bases

her decision on a time–consistent risk measure.

This property is not satisfied by many risk measures. In fact, the still most

widely used Value at Risk has, besides many other undesirable properties,

this inconsistence feature as it is shown in Cheridito and Stadje (2009). The

same holds true for the dynamic Average Value at Risk. Cheridito and Stadje

(2009), however, propose an alternative time–consistent version of the Value

at Risk by composing one period Value at Risks over time.

On the other hand, a nice example for a time–consistent risk measure is

given in Detlefsen and Scandolo (2005). They show that the dynamic entropic

risk measure which is closely related to an agent with expected exponential

utility preferences is time–consistent.

The dynamic version of the Foster–Hart measure of riskiness, however,

does not satisfy the time–consistency condition. We show this by the use of

a simple two period example. This example indicates a difference between

the original static Foster–Hart measure and our dynamic version. In some

instances the static Foster–Hart measure differentiates between two gambles,

which are assigned to the same risk in every possible state of the world at a

certain point in time by the conditional measure.

The chapter is set up as follows: Section 2 introduces the dynamic frame-

work as well as the dynamic extended Foster–Hart measure of riskiness. In

Section 3 we give the more general no–bankruptcy result. Section 4 contains a

counterexample which shows the time–inconsistency of the new defined mea-

sure. Finally, we prove the existence of the dynamic Foster–Hart index in

Section 5.
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3.2 The Dynamic Framework

In the following, let (Ω,F , (Ft)t∈N, P ) be a filtered probability space. We

denote by At the set of all Ft−measurable random variables and consider a

sequence of random variables (Xt) that is adapted to the filtration (Ft)t∈N. In

order to be able to measure the risk of Xt in every time period s < t, Xt has

to satisfy all the conditions of Definition (2) given the filtration (Fs).

Definition 4 We call a random variable X ∈ L2 on (Ω,F , P ) a gamble for

the σ–field Fs ⊂ F if X is bounded from below and satisfies E[X|Fs] > 0 a.s.

and P (Xt < 0|Fs) > 0 a.s.

In the remainder, we assume that for t > s, Xt is a gamble for Fs. We

denote by Ls(Xt) the maximal loss of Xt given the information at time s.

Formally,

Ls(Xt) := ess inf{Z ∈ As|P (−Xt > Z|Fs) = 0 a.s.}.

We now embed the extended riskiness notion of chapter 2 in the dynamic frame-

work. As time goes by, we learn something about the realization of the random

variable and are therefore able to quantify the risk more precisely. Measuring

the risk of Xt in every single time period s < t yields a family of conditional

risk measures (ρs(Xt))s=1...t−1, where every ρs(Xt) is a Fs−measurable random

variable. For continuous random variables the equation

E

[
log

(
1 +

Xt

ρs(Xt)

)
|Fs
]

= 0 (3.2)

does not always have a solution. Following the arguments given in chapter 24,

this is the case on the set

B :=

{
E

[
log

(
1 +

Xt

Ls(Xt)

)
|Fs
]
≥ 0

}
.

As in the static case, on B the conditional maximal loss is the reasonable

extension of the classical riskiness notion.
4For more details we refer to Section 3.5.
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The next theorem shows that what we define later as the dynamic extended

Foster–Hart riskiness is well defined.

Theorem 2 There exists one and only one Fs–measurable random variable

ρs(Xt) ≥ Ls(Xt) that solves equation (3.2) on Bc and satisfies ρs(Xt) = Ls(Xt)

on B.

We give the technical proof of the theorem in Section 3.5.

We are now ready to give the definition of the dynamic extended Foster–

Hart measure of riskiness.

Definition 5 The dynamic extended Foster–Hart measure of riskiness for a

gamble Xt is the family of conditional risk measures (ρs(Xt))s=1...t−1, where

each ρs(Xt) is equal to the conditional maximal loss Ls(Xt) on B and the

solution to equation (3.2) on Bc.

3.3 No–Bankruptcy Result

The main result of Foster and Hart (2009) yields that a decision maker who

rejects a gamble whenever her wealth is below the assigned riskiness number

avoids bankruptcy (with probability one). It is crucial not to lose this property

(and with it the operational interpretation of the measure) when working with

continuous distributed gambles.

We provide here the respective no–bankruptcy theorem for the extended

Foster–Hart measure of riskiness.

Theorem 3 Let (Xn) be a sequence of gambles that are uniformly bounded

above by some integrable random variable Y > 0 and satisfy some minimal

possible loss requirement, i.e. there exists ε > 0 such that a.s.

Ln−1(Xn) ≥ ε > 0

for all n. Let W0 > 0 be the initial wealth and define recursively

Wt+1 = Wt +Xt+1



3.3. NO–BANKRUPTCY RESULT 41

if E [log (1 +Xt+1/Wt) |Ft] ≥ 0 and

Wt+1 = Wt

else. We then ensure no–bankruptcy, i.e.

P [limWt = 0] = 0 .

Proof: Throughout the proof, we assume that all inequalities and equalities

between random variables hold P−almost surely.

Note first that Wt > 0. This can be shown by induction. We have W0 >

0. We have either Wt+1 = Wt which is positive by induction hypothesis, or

Wt+1 = Wt + Xt+1. In this case, the condition E [log (1 +Xt+1/Wt) |Ft] ≥ 0

implies that

Wt ≥ ρt(Xt+1) ≥ Lt(Xt+1).

Thus, Wt − Lt(Xt+1) ≥ 0. The maximal loss can only be obtained by

the riskiness measure if the considered gamble is continuous. Therefore, if

ρt(Xt+1) = Lt(Xt+1), we have P (Xt+1 = Lt(Xt+1)|Ft) = 0. Hence, it holds

that

Wt+1 > Wt − Lt(Xt+1) ≥ 0.

We can thus define St = logWt. We claim that S is a submartingale. Indeed,

on the set

A :=

{
E

[
log

(
1 +

Xt+1

Wt

)
|Ft
]
< 0

}
which belongs to Ft, there is nothing to show. On the set Ac, we have

E [St+1|Ft] = E [logWt+1|Ft]

= logWt + E

[
log

Wt+1

Wt

|Ft
]

= logWt + E

[
log

(
1 +

Xt+1

Wt

)
|Ft
]

≥ logWt = St .
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S is thus a submartingale. We apply the theorem on submartingale

convergence in Shiryaev (1984), Chapter VII, Theorem 1. For a > 0, let

τa = inf {t ≥ 0 : Xt > a}. A stochastic sequence belongs to class C+ if for

every a > 0 we have

E (Xτa −Xτa−1)+ 1{τa<∞} <∞.

Let us check that our sequence S is of class C+. Indeed, we have

(Sτa − Sτa−1)+ = log

(
1 +

Xτa

Wτa−1

)
1{Xτa≥0}

and in that case

Wτa−1 ≥ ρτa−1(Xτa) ≥ ε > 0.

Hence, we conclude

E (Sτa − Sτa−1)+ ≤ E log

(
1 +

Y

ρτa−1(Xτa)

)
≤ E log

(
1 +

Y

ε

)
≤ E

Y

ε
<∞,

where Y is the uniform integrable upper bound for our gambles and ε is the

minimal possible loss lower bound.

By Theorem 1 in Shiryaev (1984), Chapter VII, we conclude that the set

{St → −∞} is a null set. Indeed, on the set {St → −∞}, S is bounded above.

The theorem then states that the limit of S exists and is finite (almost surely),

and thus cannot be negative infinity. �

3.4 Time Consistency

An important question arising in a dynamic framework is how the conditional

risks at different times are interrelated. This question leads to the important

notion of time–consistency.

A dynamic risk measure (ρs)s=1...t−1 is called time–consistent if for any
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gamble X1
t , X

2
t and for all s = 1, ..., t− 2 it holds that

ρs+1(X1
t ) ≥ ρs+1(X2

t ) a.s. =⇒ ρs(X
1
t ) ≥ ρs(X

2
t ) a.s. (3.3)

That means, in particular, that if we know that tomorrow in every state of

the world gamble X1
t is assigned to have a higher risk than gamble X2

t , this

should also hold true today.

Riedel (2004) and Roorda et al. (2005) give representation theorems for

time–consistent dynamic coherent risk measures. Similar results for convex

risk measures have been obtained by Detlefsen and Scandolo (2005). However,

as the Foster–Hart measure of riskiness is neither coherent nor convex we

cannot simply conclude from these conditions whether or not the Foster–Hart

measure of riskiness is time–consistent.

We therefore create an example that shows that the dynamic Foster–Hart

measure of riskiness fails the time–consistency condition.

Example 3 Consider two discrete gambles X1
2 and X2

2 that have their pay-

ments in two periods (t = 2) from now. They are distributed according to the

binomial trees given below. In t = 1, two states of the world are possible which

occur with equal probability 1
2
. We compute the riskiness today (t = 0) and in

each state in t = 1.

Gamble X1
2 has the following structure:

ρ(X1
2 ) ≈

219.426

ρ2
1(X1

2 ) =

250 −2001
2

1000
1
2

1
2

ρ1
1(X1

2 ) =

120 −1001
2

600
1
2

1
2

Hence, X1
2 has the payoffs {600,−100, 1000,−200} occurring each with

equal probability. The riskiness in t = 1 in state one is the unique positive
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solution to the equation

1/2 log(1 + 600/ρ1
1(X1

2 )) + 1/2 log(1− 100/ρ1
1(X1

2 )) = 0.

Solving this gives ρ1
1(X1

2 ) = 120. In a similar way we get that the riskiness

number in state two is ρ2
1(X1

2 ) = 250 and that the riskiness today is ρ(X1
2 ) ≈

219.426.

The second gamble X2
2 is distributed according to the following tree:

ρ(X2
2 ) ≈

243.76

ρ2
1(X2

2 ) =

250 −2401
2

6000
1
2

1
2

ρ1
1(X2

2 ) =

120 −1051
2

840
1
2

1
2

Although the payoffs of X2
2 differ from the payoffs of X1

2 , the riskiness

numbers at time t = 1 coincide. Today, however, the risk of X2
2 is strictly

greater than the risk of X1
2 which contradicts the time–consistency condition

(3.3). Therefore, the dynamic extended Foster–Hart riskiness is not time–

consistent.

From this example we can see an interesting distinction between the

dynamic Foster–Hart measure of riskiness and the original static one. As

E[log(1 + X
ρ

)|F0] = E log(1 + X
ρ

), we can view the riskiness in time zero as the

static Foster–Hart riskiness number.

Where the conditional Foster–Hart measure of riskiness in time 1 does not

differentiate between gamble X1 and X2, the unconditional one does. In fact,

the conditional measure at time 1 requires for both gambles in each state the

same wealth to overcome the possibility of going bankrupt, whereas the static

risk measure requires a higher wealth for the second gamble.

This may lead to an inconsistent behavior. Suppose, for instance, an agent’s
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strategy is solely induced by the Foster–Hart riskiness measure (i.e. the agent

rejects a gamble whenever her wealth is below the Foster–Hart number and

accepts it otherwise) and her wealth is $230. At t = 1 both gambles would be

rejected in the lower node and might be accepted in the upper one. At time 0,

however, the agent would reject X2 but accept X1. Nevertheless, as Theorem

(3) shows, both measures entail the same no–bankruptcy property.

3.5 Existence of the Foster–Hart Index

In this section, we show that our concept of the extended Foster–Hart index

of riskiness is well–defined. All inequalities and equalities between random

variables are assumed to hold P−almost surely.

Let Xt be a gamble for the σ–field Fs. Without loss of generality, we can

assume Ls(Xt) = 1 almost surely (else replace Xt by Xt/Ls(Xt)).

We write G = Fs and X = Xt in the following for shorter notation. We

fix a regular version P (ω̃, dω) for the conditional probability distribution of X

given G (which exists as X takes values in a Polish space). Whenever we write

conditional expectations or probabilities in the following, we have this regular

version in mind.

Firstly, we argue that there exists no solution to equation (3.2) on B. For

ω̃ ∈ B, we consider the function

λ 7→
∫

Ω

log(1 + λX(ω))P (ω̃, dω).

We can now apply the arguments given in chapter 2. Indeed, one can easily

verify that this function is concave and positive for all 0 < λ ≤ 1. This shows

that no solution to the defining equation exists on B.

Let us move on to the proof of Theorem (2). For our construction, we need

that there exist wealth levels W for which we accept the gamble X given G.

We thus start with the following observation.

Lemma 3 There exist G–measurable random variables W ≥ 1 such that

E[log(W +X)|G] ≥ logW .
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In particular, this holds true for all W with

W ≥ 2E[X2|G]

E[X|G]

and ∣∣∣∣XW
∣∣∣∣ ≤ 1

2
.

Proof of Lemma 3: We use the estimate

log(1 + x) ≥ x− 2x2 (3.4)

for |x| ≤ 1/2 (which one can obtain from a Taylor–expansion and the Lagrange

version of the error term). Take an G–measurable W with

W ≥ 2E[X2|G]

E[X|G]

and ∣∣∣∣XW
∣∣∣∣ ≤ 1

2
.

Such W exists because X has finite variance. For example, we can take

W = max

{
2E[X2|G]

E[X|G]
, 2|X|, 1

}
.

As |X/W | ≤ 1/2, log(1 +X/W ) is everywhere defined. By the estimate (3.4),

we obtain

E

[
log

(
1 +

X

W

)
|G
]
≥ E

[
X

W
− 2X2

W 2
|G
]

=
1

W

(
E [X|G]− E [2X2|G]

W

)
,

and now we can use the fact that W ≥ 2E[X2|G]/E[X|G] to conclude that

E

[
log

(
1 +

X

W

)
|G
]
≥ 0 .
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�

As a consequence of the preceding lemma, the set

Λ = {λ G −measurable| 0 < λ ≤ 1, E [log(1 + λX) |G] ≥ 0}

is not empty. Let λ0 be the G–essential supremum of Λ. By definition, λ0

is G–measurable and λ0 ≥ λ for all λ ∈ Λ. Moreover, λ0 is the smallest

G–measurable random variable with these properties.

The set Λ is upwards directed: take λ1, λ2 ∈ Λ. Then we have for λ3 =

max{λ1, λ2}

E [log(1 + λ3X)|G] = 1{λ1≥λ2}E [log(1 + λ1X)|G]

+ 1{λ1<λ2}E [log(1 + λ2X)|G]

≥ 0 .

The other properties being obvious, we conclude λ3 ∈ Λ. Hence, Λ is upwards

directed; as a consequence, there exists a sequence (λn) ⊂ Λ with λn ↑ λ0.

Our next claim is E [log(1 + λ0X)|G] ≥ 0. The sequence

Zn = − log (1 + λnX)

is bounded from below by − log(1 + |X|) ≥ −|X| ∈ L1. We can then apply

Fatou’s lemma to conclude

−E [log(1 + λ0X)|G] = E [limZn|G] ≤ lim inf −E [log (1 + λnXn) |G] ≤ 0 ,

or

E [log(1 + λ0X)|G] ≥ 0 .

We claim now that we have

E [log (1 + λ0X) |G] = 0 (3.5)

on the set {λ0 < 1}. This will conclude the proof of our lemma.
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It is enough to establish the claim on all sets

Γn =

{
λ0 ≤ 1− 1

n

}
for all n ∈ N. From now on, we work on this set only without stating it

explicitly. Let

Am,n =

{
E [log (1 + λ0X) |G] ≥ 1

m

}
∩ Γn .

We will show that Am,n is a null set for all m,n ∈ N.

Let ε = 1/(1 +mn) and set λ1 = (1− ε)λ0 + ε. Then we have λ1 > λ0 and

λ1 ≤ (1− ε)(1− 1/n) + ε = 1− 1/n+ ε/n < 1. We also note

λ1 − λ0 = ε(1− λ0) ≤ ε. (3.6)

We have

1 + λ1X ≥ 1− λ1 ≥
1− ε
n

> 0 . (3.7)

Thus, log(1 + λ1X) is finite (on Γn where we work).

We now want to show

E [log (1 + λ1X) |G] ≥ 0

on Am,n. If Am,n was not a null set, this would contradict the definition of λ0

as the G–essential supremum of Λ.

In order to establish the desired inequality, it is enough to show

E [log (1 + λ1X) |G]− E [log (1 + λ0X) |G] ≥ − 1

m

because of the definition of Am,n. Now, on the set {X ≥ 0} we have

log (1 + λ1X) ≥ log (1 + λ0X).

We need a uniform estimate for log (1 + λ1X) − log (1 + λ0X) on the set
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{X < 0}. With the help of the mean value theorem, we obtain on {X < 0}

log

(
1 + λ1X

1 + λ0X

)
≥ − n

1− ε
(λ1 − λ0) ≥ − nε

1− ε
.

(By the mean value theorem and (3.6), we have

log (1 + λ1X)− log (1 + λ0X) =
1

ξ
(λ1 − λ0)X

for some ξ in between 1 + λ1X and 1 + λ0X. By (3.7) 1 + λ1X ≥ (1 − ε)/n.

Hence, we have 0 < 1/ξ ≤ n/(1− ε).)
By the definition of ε, we thus have

log

(
1 + λ1X

1 + λ0X

)
≥ − nε

1− ε
= − 1

m

uniformly on {X < 0} as desired. It follows

E [log (1 + λ1X) |G]− E [log (1 + λ0X) |G]

≥ E

[
log

(
1 + λ1X

1 + λ0X

)
1{X<0}|G

]
≥ − 1

m
.



Chapter 4

Fear of the Market or Fear of

the Competitor? Ambiguity in

a Real Options Game 1

4.1 Introduction

Since the seminal contribution of Chen and Epstein (2002), there has been

a solid framework for dealing with Gilboa and Schmeidler (1989) max–min

preferences in a continuous time multiple prior model of ambiguity. This model

has been applied to several problems in economics and finance to gain valuable

insights in the consequences of a form of Knightian uncertainty, as opposed to

risk, on economic decisions. The main insight of Chen and Epstein (2002) is

that in order to find the max–min value of a payoff stream under a particular

kind of ambiguity (called strongly rectangular) we need to identify the upper-

rim generator of the set of multiple priors, and value the payoff stream as if

this is the true process governing the payoffs.

In the literature this process has become known as the worst–case prior,

because it identifies the prior that at any given time t gives the lowest ex-

pected discounted payoff from time t. In the literature on investment under

uncertainty (so–called “real options”) the approach has been used to value

1Parts of this chapter can be found in Hellmann and Thijssen (2015).
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investment projects when the decision maker is not sure about the stochastic

process governing the cash-flows resulting from the project. Typically, this

literature models cash–flows as geometric Brownian motions and ambiguity

takes the form of κ-ambiguity over the true trend of the diffusion. In that

case it has been shown by Nishimura and Ozaki (2007) that the worst–case at

any time t corresponds to the lowest possible trend that is considered under

κ-ambiguity.

In this chapter, we extend the Nishimura and Ozaki model to a timing

game between two firms, which both have the option to invest in a project,

where one firm is ambiguous about the process governing cash-flows, and the

other firm (potentially) has a cost disadvantage. For our analysis, however,

the assumption that only one firm is ambiguous does not play a role. In fact

section 6 shows that our result can easily be adopted to the case where both

firms are ambiguous, possibly to a different degree. This assumption is made

to illustrate the difference an introduction of ambiguity makes compared to a

purely risky world. In our analysis we may now compare a risky firm to an

ambiguous one.

In such timing games, players typically have to balance the expected future

payoffs of being the first or second firm to invest; the leader and follower roles,

respectively.

The purpose of this chapter is threefold. Firstly, we want to explore the

effects of ambiguity on the leader and follower payoffs to players. Secondly,

we wish to extend the equilibrium concepts for stochastic timing games2 to

include ambiguous players. Thirdly, we want to investigate the interaction of

ambiguity and cost (dis-) advantages on equilibrium investment scenarios.

Our main conclusions are as follows. First, contrary to all of the literature

on ambiguity in the real options literature, the worst–case prior is not always

the lowest possible trend under κ–ambiguity. As in any timing game, an

ambiguous player has to consider the payoffs of the leader and follower roles.

2Since the seminal contribution of Fudenberg and Tirole (1985) for deterministic timing
games, many attempts to defining equilibria in stochastic timing games has been made
such as Thijssen (2010), Thijssen et al. (2012), de Villemeur et al. (2014), Boyarchenko and
Levendorski (2014), Azevedo and Paxson (2014), Huisman and Kort (2015).
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The payoffs of the latter role follow along very similar lines as in Nishimura and

Ozaki (2007), i.e. the worst–case payoff corresponds to valuing the follower’s

payoff stream as if the payoffs are driven by the diffusion with the lowest

admissible trend under κ-ambiguity. For the leader’s payoff, however, the

situation is different, because of the interplay between two opposing forces. On

the one hand, the leader’s payoff consists of current payoffs of being the leader.

The worst–case for these payoffs is represented by the lowest admissible trend,

like in the follower payoff. There is, however, another force at work: the risk

that the other player invests as well, which reduces the firm’s monopoly payoff

to a duopoly payoff. This event has a downward effect on the leader’s payoff

and is discounted using the expected time it takes until the other firm enters

the market. This expected time is reached faster for higher values of the trend

of the stochastic process, so that the worst–case for this part of the leader’s

payoffs is represented by the highest admissible trend. We use an analysis

based on backward stochastic differential equations and “g–expectations”, as

introduced by Peng (1997), to study which effect dominates. It turns out that

for small values of the stochastic process, the worst–case always corresponds to

the lowest admissible trend, whereas for higher values the highest admissible

trend may represent the worst–case, depending on the underlying parameters.

Secondly, we show that equilibria can be of two types. First, there may

be preemptive equilibria in which one of the firms invests at a time where it

is not optimal for either firm to do so. This type of equilibrium is familiar

from the literature ( e.g. Fudenberg and Tirole (1985), Weeds (2002), Pawlina

and Kort (2006)) but we use a technique recently developed by Riedel and

Steg (2014) to rigorously prove existence of this type of equilibrium rather

than relying on fairly ad hoc arguments that are often used in the existing

literature. It should be pointed out here that in a preemptive equilibrium it is

known a.s. ex ante which firm is going to invest first. This firm will invest at

a point in time where its leader value exceeds its follower value, but where its

competitor is indifferent between the two roles. A second type of equilibrium

that can exist is a sequential equilibrium, in which one firm invests at a time

where it is optimal for them to do so. By that we mean that the firm would

choose the same time to invest even if it knew that the other firm could not
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preempt. Each game always has at least an equilibrium of one of these two

types, which can not co-exist. These two types of equilibrium each lead to

a clear prediction, a.s., as to which firm invests first. The role of first mover

depends crucially on the levels of ambiguity and cost (dis-) advantage, as we

show in a numerical analysis.

As mentioned above we obtain our equilibrium results by using techniques

developed by Riedel and Steg (2014). It should be pointed out that we cannot

simply adopt their strategies to our setting due to the presence of an am-

biguous player. In fact, the notion of extended mixed strategy as introduced

in Riedel and Steg (2014) presents a conceptual problem here. An extended

mixed strategy consists, in essence, of a distribution over stopping times as

well as a coordination device that allows players to coordinate in cases where

equilibrium considerations require one and only one firm to invest and it is not

clear a priori which firm this should be. In our model we need this coordination

device as well, but we do not want ambiguity to extend to the uncertainty cre-

ated by this coordination mechanism, i.e. ambiguity is over payoffs exclusively.

This presents problems if we want to define payoffs to the ambiguous firm if it

plays a mixture over stopping times. For equilibrium existence, however, such

mixtures are not needed, so we choose to restrict attention to what we call ex-

tended pure strategies, which consist of a stopping time and an element related

to the coordination mechanism mentioned above. By making this simplifying

assumption, together with strong rectangularity of the set of priors, we can

write the worst–case payoff of a pair of extended pure strategies as a sum of

worst–cases of leader and follower payoffs.

At the end of this chapter, we provide some comparative statics. We ex-

plore the effect a change of the degree of ambiguity, the volatility and the

cost–disadvantage has on equilibrium outcomes. We show numerically that

the investment thresholds of the ambiguous firm increase with the degree of

uncertainty. Due to the construction of the set of priors via κ–ignorance, an

increase of volatility implies also an increase of uncertainty. Both firm’s in-

vestment thresholds rise with the volatility. The effect on the set of priors,

however, yields that the thresholds of the ambiguous firm is more affected by

a change of the volatility. Finally, it is shown that ambiguity might outbalance
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the cost–disadvantage. Pawlina and Kort (2006) argued that in a purely risky

world, the low–cost firm always becomes the leader. We show that this might

change if ambiguity is introduced.

4.2 The Model

We follow Pawlina and Kort (2006) in considering two firms that are competing

to implement a new technology. Uncertainty in the market is modeled on a

filtered probability space (Ω,F , (Ft)t≥0 ,P) using a geometric Brownian motion

dX

X
= µdt+ σdB,

where (Bt)t≥0 is a Wiener process. The sunk costs of investment are I > 0 for

firm 1 and αI, α ≥ 1, for firm 2. So, firm 1 may have a cost advantage.

The payoff streams are given by processes (Dk`Xt)t≥0, where Dk`, k, ` =

0, 1, denotes the scaling factor if the firm’s investment status is k (k = 0 if the

firm has not invested and k = 1 if the firm has invested) and the investment

status of the competitor is `. It is assumed that D10 > D11 ≥ D00 ≥ D01 ≥ 0,

and that there is a first mover advantage, i.e. D10 −D00 > D11 −D01.

We assume that firm 1 may have a cost advantage, but also that it is

ambiguous about the trend µ. Following the recent literature on ambiguity

in continuous time models, we model the set of priors that the firm considers

using a set of density generators. The set of measures that is considered by

the firm is denoted by PΘ, where Θ is a set of density generators. A process

(θt)t≥0 is a density generator if the process
(
M θ

t

)
t≥0

, where

dM θ
t

M θ
t

= −θtdBt, M θ
0 = 1, (4.1)

is a P–martingale. Such a process (θt)t≥0 generates a new measure Pθ via the

Radon–Nikodym derivative dPθ/dP = M θ
∞.

In order to use density generators as a model for ambiguity the set Θ

needs some more structure. Following Chen and Epstein (2002), the set of
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density generators, Θ, is chosen as follows. Let (Θt)t≥0 be a collection of

correspondences Θt : Ω � R, such that

1. There is a compact subset K ⊂ R, such that Θt(ω) ⊆ K, for all ω ∈ Ω

and all t ∈ [0, T ];

2. For all t ∈ [0, T ], Θt is compact-valued and convex-valued;

3. For all t ∈ (0, T ], the mapping (s, ω) 7→ Θs(ω), restricted to [0, t]×Ω, is

B[0, t]×Ft-measurable;

4. 0 ∈ Θt(ω), dt⊗ dP-a.e.

The set of density generators is then taken to be,

Θ = {(θt)t≥0 |θt(ω) ∈ Θt(ω), dP− a.e., all t ≥ 0},

and the resulting set of measures PΘ is called strongly-rectangular. For sets

of strongly rectangular priors the following has been obtained by Chen and

Epstein (2002):

1. P ∈PΘ;

2. All measures in PΘ are uniformly absolutely continuous with respect to

P and are equivalent to P;

3. For every X ∈ L2(Ω,F ,P), there exists P∗ ∈PΘ such that for all t ≥ 0,

EP∗ [X|Ft] = inf
Q∈PΘ

EQ[X|Ft]. (4.2)

Finally, for further reference, define the upper-rim generator (θ∗t )t≥0, where

θ∗t = arg max{σw(t)θt|θt ∈ Θt}. (4.3)

Note that (θ∗t )t≥0 ∈ Θ.
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From Girsanov’s theorem it immediately follows that under Pθ ∈PΘ, the

process
(
Bθ
t

)
t≥0

, defined by

Bθ
t = Bt +

∫ t

0

θsds,

is a Pθ-Brownian motion and that, under Pθ, the process (Xt)t≥0 follows the

diffusion
dXt

Xt

= µθ(t)dt+ σdBθ
t .

Furthermore,

µθ(t) = µ− σθt.

In the remainder we will assume that Θt = [−κ, κ], for all t > 0, for some

κ > 0. Denote ∆ = [µ, µ] = [µ − σκ, µ + σκ]. This form of ambiguity is

called κ–ignorance (cf. Chen and Epstein (2002)). The advantages of using

this definition of ambiguity are that (i) Θ is strongly rectangular so that the

results stated above apply and (ii) the upper–rim generator takes a convenient

form, namely θ∗t = κ, for all t ≥ 0. In addition, it can easily be shown that(
Bθ
t

)
t≥0

is a P-martingale for every (θt)t≥0 ∈ Θ.

Notice, Cheng and Riedel (2013) show that κ−ignorance can be applied in

an infinite time–horizon. In particular, they show that value functions taken

under drift ambiguity in the infinite time horizon are nothing but the limits of

value functions of finite time horizons T if T →∞.

In our model, we assume firm 1 to be ambiguity averse in the sense of

Gilboa and Schmeidler (1989).

For our upcoming computations it is crucial to assume that any finite

threshold will be hit by the underlying stochastic process with probability

one given any possible drift µ ∈ [µ, µ]. For a geometric Brownian motion this

is ensured if µ ≥ 1/2σ2.

Finally, the discount rate is assumed to be r > µ.
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4.3 Leader and Follower Value Functions

4.3.1 The Non–Ambiguous Firm

Assume firm 1 becomes the leader at t. Then the non–ambiguous firm 2 solves

the optimal stopping problem

F2(xt) = sup
τF2 ≥t

EP

[∫ τF2

t

e−r(s−t)D01Xsds+

∫ ∞
τF2

e−r(s−t)D11Xs − e−r(τ
F
2 −t)αI

∣∣∣Ft] .
(4.4)

Thus, τF2 is the optimal time firm 2 invests as a follower.

On the other hand, if the non–ambiguous firm becomes the leader at a

certain point in time t, its value function is

L2(xt) = EP

[∫ τF1

t

e−r(s−t)D10Xsds+

∫ ∞
τF1

e−r(s−t)D11Xsds− αI
∣∣∣Ft] , (4.5)

where τF1 denotes the optimal time at which the ambiguous firm invests as a

follower. From the standard literature on real option games (cf. Pawlina and

Kort (2006)) we know that the former value function can be written as

F2(xt) =


xtD01

r−µ +
(
xF2 (D11−D01)

r−µ − αI
)(

xt
xF2

)β(µ)

, if xt ≤ xF2 ,

xtD11

r−µ − αI if xt > xF2 ,

(4.6)

where τF2 is the first hitting time of xF2 , i.e

τF2 = inf{s ≥ t|Xs ≥ xF2 }.

The standard procedure of dynamic programming yields that the threshold xF2

is given by

xF2 =
β(µ)

β(µ)− 1

αI(r − µ)

D11 −D01

,

where β(µ) is the positive root of the fundamental quadratic 1/2σ2β(µ)(β(µ)−
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1) + µβ(µ)− r = 0, which is

β(µ) =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
> 1.

Applying the standard techniques of backward induction and dynamic pro-

gramming, one can show that the leader value (4.5) turns out to be

L2(xt) =


xtD10

r−µ − αI +
xF1 (D11−D10)

r−µ

(
xt
xF1

)β(µ)

, if xt ≤ xF1 ,

xtD11

r−µ − I, if xt > xF1 .

Accordingly, the real value xF1 describes the optimal time for the ambiguous

firm to become the follower, i.e.

τF1 = inf{s ≥ t|Xs ≥ xF1 }.

What remains to study is the case when both firms invest simultaneously

at t. One can show that the shared value function of firm 2 turns out to be

M2(xt) = EP

[∫ ∞
t

e−r(s−t)D11Xsds− αI
∣∣∣Ft] =

xtD11

r − µ
− αI.

4.3.2 The Ambiguous Firm

If ambiguity is introduced, the standard techniques for computing the value

functions are not applicable any longer. In our case, where ambiguity is mod-

eled by a strongly rectangular set of density generators, one needs, in contrast

to the standard case, to allow for changing priors over time.

The value functions of the ambiguous firm 1 are given by

F1(x) := sup
τF1 ≥t

inf
Q∈PΘ

EQ

[∫ τF1

t

e−r(s−t)D01Xsds+

∫ ∞
τF1

e−r(s−t)D11Xs − e−r(τ
F
1 −t)I

∣∣∣Ft]
(4.7)
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and

L1(xt) = inf
Q∈PΘ

EQ

[∫ τF2

t

e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]− I,

(4.8)

respectively.

If the set of priors PΘ is strongly rectangular, it turns out that prob-

lem (4.7) can be reduced to a standard optimal stopping problem and, hence,

can be solved by using standard techniques. This reduction is possible due to

the following lemma, the proof of which is standard and is, thus, omitted.

Lemma 4 Let PΘ be strongly–rectangular. Then

F1(xt) = sup
τF1 ≥t

EP
θ∗
[∫ τF1

t

e−r(s−t)D01Xsds+

∫ ∞
τF1

e−r(s−t)D11Xsds− e−r(τ
F
1 −t)I

∣∣∣Ft] ,
(4.9)

where (θ∗t )t≥0 is the upper–rim generator (4.3).

Hence, for the follower problem of the ambiguous firm, the worst–case is always

induced by the worst possible drift µ. This observation indeed makes sense;

the actions of the opponent have, essentially, no influence of the decision as a

follower. The problem therefore reduces to one of a “monopolistic” decision

maker. Nishimura and Ozaki (2007) already showed that for such decisions,

the worst–case is always given by the worst possible trend µ.

In other words, we find that the follower value of the ambiguous firm can

be expressed by

F1(xt) =


xtD01

r−µ +
(
xF1 (D11−D01)

r−µ − I
)(

xt
xF1

)β(µ)

, if xt ≤ xF1 ,

xtD11

r−µ − I if xt > xF1 ,

(4.10)

where

xF1 =
β(µ)

β(µ)− 1

I(r − µ)

D11 −D01

.

In the similar way, one can argue that for simultaneous investment the
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value function of firm 1 is induced by the worst–case µ and therefore

M1(xt) = inf
Q∈PΘ

EQ
[∫ ∞

t

e−r(s−t)D11Xsds− I
∣∣∣Ft] =

xtD11

r − µ
− I.

Determining the leader value function of the ambiguous firm, however, is a

different issue. The action of the opponent (in this case the decision when to

invest as a follower) is crucial for the computation of the leader function which

might lead, as we will see, to a non–trivial behavior of the worst–case prior.

The next theorem describes the leader value function of the ambiguous firm.

Two cases are distinguished there. If the difference D10 − D11 is sufficiently

small, we find that the worst–case is, as before, always induced by µ. In case

this condition is not satisfied, the worst–case is given by µ for values xt up to

a certain threshold x∗, where it jumps to µ. The intuition for this fact can

already be derived from equation (4.8); the lowest trend µ gives the minimal

values for the payoff stream (DklXt). However, the higher the trend µ the

sooner the stopping time τF2 is expected to be reached. The higher payoff

stream (D10Xt) is then sooner replaced by the lower one (D11Xt). If the drop

of the payoffs becomes sufficiently small, the former effect always dominates

the latter. In this case the worst–case is given by µ for each xt.

Theorem 4 The worst–case for the leader function of the ambiguous firm is

always given by the worst possible drift µ if and only if the following condition

holds
D10 −D11

D10

≤ 1

β1(µ)
. (4.11)

In this case, the leader function becomes

L1(xt) =


D10xt
r−µ −

(
xt
xF2

)β1(µ)
D11−D10

r−µ xF2 − I if xt < xF2

D11xt
r−µ − I if xt ≥ xF2 .

(4.12)

On the other hand, if D10−D11

D10
> 1

β1(µ)
, then there exists a unique threshold x∗

such that µ is the worst–case on the set {Xt < x∗} and µ is the worst–case on

{x∗ ≤ Xt < xF2 }. Furthermore, in this case the leader value function is given
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by

L1(xt) =



D10xt
r−µ −

1
β1(µ)

D10x∗

r−µ

(
xt
x∗

)β1(µ) − I if xt < x∗

D10xt
r−µ +

(x∗)β2(µ)x
β1(µ)
t −(x∗)β1(µ)x

β2(µ)
t

(x∗)β2(µ)(xF2 )β1(µ)−(x∗)β1(µ)(xF2 )β2(µ)

·
(
D11

r−µ −
D10

r−µ

)
xF2

+
(xF2 )β1(µ)x

β2(µ)
t −(xF2 )β2(µ)x

β1(µ)
t

(x∗)β2(µ)(xF2 )β1(µ)−(x∗)β1(µ)(xF2 )β2(µ)

·
((

1− 1
β1(µ)

)
D10

r−µ −
D10

r−µ

)
x∗ − I if x∗ ≤ xt < xF2

D11xt
r−µ − I if xt ≥ xF2 ,

(4.13)

where β1(µ) and β2(µ) are the positive, respective negative root of the quadratic

equation 1/2σ2β(µ)(β(µ)− 1) + µβ(µ)− r = 0.

In case the worst–case is not trivially given by the lowest possible trend,

the value function seems to become a bit messy. However, the terms

(x∗)β2(µ)x
β1(µ)
t − (x∗)β1(µ)x

β2(µ)
t

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)
and

(xF2 )β1(µ)x
β2(µ)
t − (xF2 )β2(µ)x

β1(µ)
t

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

admit a clear interpretation; they represent the expected discount factor that

xF2 is reached before x∗ and vice versa, respectively.

Figure 4.1 depicts the implications of Theorem (4). In case the drop of

the payoff from being the only one who has invested to the situation that

both players have invested is sufficiently big, the value x∗ nicely distinguishes

between two different “regimes”.

For xt < x∗ the ambiguous player fears most a worse development of the

underlying stochastic (e.g. the development of the market), that is of the un-

derlying trend µ, whereas at times where xt > x∗ the fear of not being the

only one having invested dominates the former one. Indicating this observa-

tion, we call the two regimes “fear of the market” and “fear of competition”,

respectively.

For the proof of Theorem (4), we need a completely different approach

compared to the standard literature on real option games. We use back-
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Figure 4.1: The critical value x∗ differentiates between two “regimes”.

ward stochastic differential equations3 and g−expectations introduced by Peng

(1997). The advantage of this approach lies in the fact that we know the

value of our problem at the entry point of the follower. This value yields the

starting point for a backward stochastic differential equation. The non–linear

Feynman–Kac formula reduces the problem to solving a certain non–linear

partial differential equation. From this PDE we are eventually able to derive

the worst–case prior.

Proof: Denote

Yt := inf
Q∈PΘ

EQ

[∫ τF2

t

e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft] .

Applying the time consistency property of a rectangular set of density gener-

ators gives

Yt = inf
Q∈PΘ

EQ

[∫ τF2

t

e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]

3A brief introduction into the theory of backward stochastic differential equations is given
in the Appendix.
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= inf
Q∈PΘ

EQ
[

inf
Q′∈PΘ

EQ
′
[ ∫ τF2

t

e−r(s−t)D10Xsds

+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣FτF2 ]∣∣∣Ft]

= inf
Q∈PΘ

EQ
[ ∫ τF2

t

e−r(s−t)D10Xsds

+ e−r(τ
F
2 −t) inf

Q′∈PΘ
EQ
′

[∫ ∞
τF2

e−r(s−τ
F
2 )D11Xsds

∣∣∣FτF2
] ∣∣∣Ft]

= inf
Q∈PΘ

EQ

[∫ τF2

t

e−r(s−t)D10Xsds+ e−r(τ
F
2 −t)Φ(xτF2 )

∣∣∣Ft] ,
where

Φ(xt) := inf
Q∈PΘ

EQ
[ ∫ ∞

t

e−r(s−t)D11Xsds
∣∣∣Ft] =

D11xt
r − µ

. (4.14)

Chen and Epstein (2002) show that Yt solves the BSDE

−dYt = g(Zt)dt− ZtdBt,

for the generator

g(z) = −κ|z| − rYt +XtD10.

The boundary condition is given by

YτF2 = Φ(xF2 ).

Notice that the stopping time τF2 is hit at some finite time t <∞ with proba-

bility one by the underlying process (due to our assumption that µ ≥ 1/2σ2).

In the terminology of Peng (1997), we say that the leader value is the

g−expectation of the random variable Φ(xF2 ), and denote it by

Yt = Eg[Φ(xF2 )|Ft].
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Denote the present value of the leader payoff by L, i.e.

L(xt) = Yt.

The non–linear Feynman–Kac formula4 (cf. Appendix, Theorem (8)) im-

plies that L solves the non–linear PDE

LXL(x) + g(σxL′(x)) = 0.

Hence, L solves

1

2
σ2x2L′′(x) + µxL′(x)− κσx |L′(x)| − rL(x) +D10x = 0. (4.15)

Expression (4.15) implies that µ is the worst–case on the set {x ≤ xF2 |L′(x) >

0} and µ is the worst–case on {x ≤ xF2 |L′(x) < 0}.
The unique viscosity solution to the PDE (4.15) is given by

L(µ, x) =
D10x

r − µ
+ Axβ1(µ) +Bxβ2(µ), (4.16)

where µ equals either µ or µ. The constants A and B are determined by some

boundary conditions.

One can easily see that for x close to zero we have L′(x) > 0. Now two

cases are possible; either L′(x) > 0 for all x ∈ [0, xF2 ] or we can find (at least)

one point x∗ at which the worst–case changes from µ to µ.

Let us first assume that µ is always the worst–case. Since β2(µ) < 0, we

have B = 0. In order to determine the constant A, we apply a value matching

condition at xF2 that gives

L(µ, xF2 ) =
D10x

F
2

r − µ
+ A1x

F
2

β1(µ)
=
D11x

F
2

r − µ
.

4Note that Peng (1991) shows that the non–linear Feynman–Kac formula not only holds
for deterministic times but also first exit times like τF2 .
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This implies

A1 =
D10 −D11

r − µ
xF2

1−β1(µ)
,

and therefore

L(xt) =
D10xt
r − µ

+

(
xt
xF2

)β1(µ)
D11 −D10

r − µ
xF2 . (4.17)

We get that µ is always the worst–case on [0, xF2 ] if and only if L′(x) ≥ 0

for all x ≤ xF2 (see equation (4.15)). Due to the continuity and concavity of

the value function (4.17), this is equivalent to the condition

L′(xF2 ) ≥ 0.

Therefore,

L′(xF2 ) =
D10

r − µ
+

(
D11 −D10

r − µ

)
β1(µ)

(
xF2
xF2

)β1(µ)−1

≥ 0

D11 −D10 ≥ −
D10

β1(µ)

D10 −D11

D10

≤ 1

β1(µ)
.

If this condition is not satisfied, the worst–case changes at some point x∗ <

xF2 from µ to µ, where x∗ is determined by the condition L′(x∗) = 0. We denote

by L̃1(µ, x) the solution to (4.16) on [0, x∗] and by L̂1(µ, x) the solution to (4.16)

on [x∗, xF2 ]. The unknowns in equation (4.16) are determined by applying twice

a value matching condition and once a smooth pasting condition. Indeed, it

must hold that

1. L̂1(µ, xF2 ) = Φ(xF2 ),

2. L̃1(µ, x∗) = L̂1(µ, x∗),

3. L̃′1(µ, x∗) = L̂′1(µ, x∗).

In case µ is not always the worst–case, the unique solution of (4.16) is given
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by

L(xt) = 1xt<x∗L̃1(µ, xt) + 1xt≥x∗L̂1(µ, xt),

where5

L̃1(µ, xt) =
D10xt
r − µ

− 1

β1(µ)

D10x
∗

r − µ

(xt
x∗

)β1(µ)

,

and

L̂1(µ, xt) =

D10xt
r − µ

+
(x∗)β2(µ)x

β1(µ)
t − (x∗)β1(µ)x

β2(µ)
t

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
(xF2 )β1(µ)x

β2(µ)
t − (xF2 )β2(µ)x

β1(µ)
t

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗.

We can easily verify that L̂1 and L̃1 satisfy the boundary conditions. In-

deed,

L̂1(µ, xF2 ) =

D10x
F
2

r − µ
+

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
(xF2 )β1(µ)(xF2 )β2(µ) − (xF2 )β2(µ)(xF2 )β1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗

=
D10x

F
2

r − µ
+

(
D11

r − µ
− D10

r − µ

)
xF2

=
D11x

F
2

r − µ

=Φ(xF2 ),

5In the Appendix a detailed derivation of the functions L̃1 and L̂1 is presented.
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and

L̂1(µ, x∗) =

D10x
∗

r − µ
+

(x∗)β2(µ)(x∗)β1(µ) − (x∗)β1(µ)(x∗)β2(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
(xF2 )β1(µ)(x∗)β2(µ) − (xF2 )β2(µ)(x∗)β1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗

=
D10x

∗

r − µ
+

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗

=
D10x

∗

r − µ
− 1

β1(µ)

D10x
∗

r − µ

=L̃1(µ, x∗).

To prove the smooth pasting condition at x∗ requires a bit more work. Firstly,

we observe that the value x∗ is chosen such that it always holds that L̃′1(µ, x∗) =

0.

The next lemma shows that there exists such a value x∗, which is unique

and satisfies also L̂1(µ, x∗) = 0.

Lemma 5 If D10−D11

D10
> 1

β1(µ)
, then there exists one and only one value x∗ that

solves L̂′1(µ, x∗) = 0 on (0, xF2 ].

The proof is reported in the Appendix.

�

Remark 2 The leader value function L1 is always concave on [0, xF2 ] even if

the worst–case changes at some point. We prove this fact in the Appendix.

Figure 4.2 shows a typical run of the leader and follower value functions of

both the ambiguous and the non–ambiguous firm. We observe that the leader

value function of firm 1 drops below its follower value function if xt is close

to xF2 . The reason for that is that xF1 and xF2 differ (in the illustrated case

we have xF2 < xF1 ). That means that the leader and follower value functions
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Figure 4.2: The leader and follower value functions of the ambiguous and
non–ambiguous firm.

hit the shared value function M at different times. This is the case because

xF1 and xF2 are determined using a different trend. But even if firms use the

same prior, in some cases we would observe this patter, namely if we consider

cost–asymmetric firms, i.e. α > 1.

4.3.3 Optimal Leader Threshold

Next we want to determine the optimal time to invest as a leader. Suppose

firm 2 knows it becomes the leader and searches for the optimal time to invest.

It then faces at time t the following optimal stopping problem

L∗(xt) = sup
τ tL,2≥t

EP

[∫ τ tL,2

t

e−r(s−t)D00Xsds+

∫ τF1

τ tL,2

e−r(s−t)D10Xsds

+

∫ ∞
τF1

e−r(s−t)D11Xsds− e−r(τ
t
L,2−t)αI

∣∣∣Ft].
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The solution can be found by applying the standard techniques and is well

known from the literature. It is given by

τ tL,2 = inf{s ≥ t|Xs ≥ xL2 },

where

xL2 =
β1(µ)

β1(µ)− 1

αI(r − µ)

D10 −D00

.

The ambiguous firm solves the following optimal stopping problem

L∗(xt) = sup
τ tL,1≥t

inf
Q∈PΘ

EQ

[∫ τ tL,1

t

e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds

+

∫ ∞
τF2

e−r(s−t)D11Xsds− e−r(τ
t
L,1−t)I

∣∣∣Ft].
Again, in order to determine this stopping time for the ambiguous firm, we

cannot apply the standard procedure. Nevertheless, the stopping time does

not differ from the one of a non–ambiguous firm given a drift µ.

Proposition 2 The optimal time to invest as a leader for the ambiguous firm

is

τ tL,1 = inf{s ≥ t|Xs ≥ xL1 },

where

xL1 =
β1(µ)

β1(µ)− 1

I(r − µ)

D10 −D00

.

For the proof we refer to the Appendix.

4.4 Equilibrium Analysis

The appropriate equilibrium concept for a game with ambiguity as described

here is not immediately clear. In this chapter, we consider two types of equi-

libria: preemptive equilibria in which firms try to preempt each other at some

times where it is sub–optimal to invest, and sequential equilibria, where one

firm invests at its optimal time.
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4.4.1 Strategies and Payoffs

The appropriate notion of subgame perfect equilibrium for our game is devel-

oped in Riedel and Steg (2014). Let T denote the set of stopping times with

respect to the filtration (Ft)t≥0. The set T will act as the set of (pure) strate-

gies. Given the definitions of the leader, follower and shared payoffs above,

the timing game is

Γ =
〈
(Ω,F , (Ft)t≥0 ,P),PΘ,T ×T , (Li, Fi,Mi)i=1,2, (πi)i=1,2

〉
,

where, for (τ1, τ2) ∈ T ×T ,

π1 = inf
Q∈PΘ

EQ[L11τ1<τ2 + F11τ1>τ2 +M11τ1=τ2 ], and

π2 = EP[L21τ1>τ2 + F21τ1<τ2 +M21τ1=τ2 ].

The subgame starting at stopping time ϑ ∈ T is the tuple

Γϑ =
〈
(Ω,F , (Ft)t≥0 ,P),PΘ,Tϑ ×Tϑ, (Li, Fi,Mi)i=1,2, (π

ϑ
i )i=1,2

〉
,

where Tϑ is the set of stopping times no smaller than ϑ a.s.,

Tϑ := {τ ∈ T |τ ≥ ϑ,P− a.s.},

and, for (τ1, τ2) ∈ Tϑ ×Tϑ,

πϑ1 = inf
Q∈PΘ

EQ[L11τ1<τ2 + F11τ1>τ2 +M11τ1=τ2|Fϑ], and

πϑ2 = EP[L21τ1>τ2 + F21τ1<τ2 +M21τ1=τ2|Fϑ].

As it is argued in Riedel and Steg (2014), careful consideration has to

be given to the appropriate notion of strategy. They show that the notion

of extended mixed strategy is versatile and intuitively appealing. For the

subgame Γϑ this is a pair of processes (Gϑ, αϑ), both taking values in [0, 1],

with the following properties.

1. Gϑ is adapted, has right–continuous and non–decreasing sample paths,
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with Gϑ(s) = 0 for all s < ϑ, P− a.s.

2. αϑ is progressively measurable with right–continuous sample paths when-

ever its value is in (0, 1), P− a.s.

3. On {t ≥ ϑ}, it holds that

αϑ(t) > 0⇒ Gϑ(t) = 1, P− a.s.

We use the convention that

Gϑ(0−) ≡ 0, Gϑ(∞) ≡ 1, and αϑ(∞) ≡ 1.

For our purposes extended mixed strategies are, in fact, more general than

necessary. Therefore, we will restrict attention to what we will call extended

pure strategies. For the subgame Γϑ this is a pair of extended mixed strategies

(Gϑ
i , α

ϑ
i )i=1,2, where Gϑ

i is restricted to take values in {0, 1}. In other words,

in an extended pure strategy a firm does not mix over stopping times, but

potentially mixes over its “investment intensity” αϑ.

An extended pure strategy for the game Γ is then a collection (Gϑ, αϑ)ϑ∈T of

extended pure strategies in subgames Γϑ, ϑ ∈ T satisfying the time consistency

conditions that for all ϑ, ν ∈ T it holds that

1. ν ≤ t ∈ R+ ⇒ Gϑ(t) = Gϑ(ν−) + (1−Gϑ(ν−))Gν(t), P-a.s. on {ϑ ≤ ν},

2. αϑ(τ) = αν(τ), P-a.s., for all τ ∈ T .

The importance of the α component in the definition of extended pure

strategy becomes obvious in the definition of payoffs. Essentially α allows

both for immediate investment and coordination between firms. It leads to in-

vestment probabilities that can be thought of as the limits of conditional stage

investment probabilities of discrete–time behavioral strategies with vanishing

period length. In the remainder, let τ̂ϑi be the first time that αϑi is strictly

positive, and let τ̂ϑ be the first time that at least one αϑ is non–zero in the
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subgame Γϑ, i.e.

τ̂ϑi = inf{t ≥ ϑ|αϑi (t) > 0}, and τ̂ϑ = inf{t ≥ ϑ|αϑ1 (t) + αϑ2 (t) > 0},

respectively. At time τ̂ϑ the extended pure strategies induce a probability

measure on the state space

Λ = {{Firm 1 becomes the leader}, {Firm 2 becomes the leader},

{Both firms invest simultaneously}},

for which we will use the shorthand notation

Λ = {(L, 1), (L, 2),M}.

Riedel and Steg (2014) show that the probability measure on Λ, induced by

the pair (αϑ1 , α
ϑ
1 ), is given by

λϑL,i(τ̂
ϑ) =



αϑ
i,τ̂ϑ

(1−αϑ
j,τ̂ϑ

)

αϑ
i,τ̂ϑ

+αϑ
j,τ̂ϑ
−αϑ

i,τ̂ϑ
αϑ
j,τ̂ϑ

if τ̂ϑi = τ̂ϑj

and αϑi (τ̂ϑi ), αϑj (τ̂ϑi ) > 0

1 if τ̂ϑi < τ̂ϑj , or τ̂ϑi = τ̂ϑj

and αϑj (τ̂ϑj ) = 0

0 if τ̂ϑi > τ̂ϑj , or τ̂ϑi = τ̂ϑj

and αϑj (τ̂ϑj ) = 0

1
2

(
lim inft↓τ̂ϑi

αϑi (t)(1−αϑj (t))

αϑi (t)+αϑj (t)−αϑi (t)αϑj (t)
if τ̂ϑi = τ̂ϑj ,

+lim supt↓τ̂ϑi
αϑi (t)(1−αϑj (t))

αϑi (t)+αϑj (t)−αϑi (t)αϑj (t)

)
αϑi (τ̂ϑi ) = αϑj (τ̂ϑj ) = 0,

and αϑi (τ̂ϑi +), αϑj (τ̂ϑj +) > 0,
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and

λϑM(τ̂ϑ) =


0 if τ̂ϑi = τ̂ϑj , αϑi (τ̂ϑi ) = αϑj (τ̂ϑi ) = 0,

and αϑi (τ̂ϑi +), αϑj (τ̂ϑi +) > 0
αϑ
i,τ̂ϑ

αϑ
j,τ̂ϑ

αϑ
i,τ̂ϑ

+αϑ
j,τ̂ϑ
−αϑ

i,τ̂ϑ
αϑ
j,τ̂ϑ

otherwise.

Note the following:

1. If τ̂ϑi < τ̂ϑj there is no coordination problem: firm i becomes the leader

λ-a.s.;

2. If τ̂ϑi = τ̂ϑj , but αϑj (τ̂ϑj ) = 0, there is no coordination problem: firm i

becomes the leader λ-a.s.;

3. In the degenerate case where αϑi (τ̂ϑi ) = αϑj (τ̂ϑj ) = 0, and

αϑi (τ̂ϑi +), αϑj (τ̂ϑj +) > 0, the leader role is effectively assigned on the basis

of the flip of a fair coin;

4. There is no ambiguity (for firm 1) over the measure λ.

In order to derive the payoffs to firms, let τϑG,i denote the first time that

Gϑ
i jumps to one, i.e.

τϑG,i = inf{t ≥ ϑ|Gϑ
i (t) > 0}.

The payoff to the ambiguous firm of a pair of extended pure strategies

((G1, α1), (G2, α2)) in the subgame Γϑ is given by

V ϑ
1 (Gϑ

1 , α
ϑ
1 , G

ϑ
2 , α

ϑ
2 ) :=

inf
Q∈PΘ

EQ
[
1τϑG,1<min{τϑG,2,τ̂ϑ}

(∫ τϑG,1

ϑ

e−r(s−ϑ)D00Xsds+

∫ τF2

τϑG,1

e−r(s−ϑ)D10Xsds

+

∫ ∞
τF2

e−r(s−ϑ)D11Xsds− e−r(τ
ϑ
G,1−ϑ)I

)∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ
[
1τϑG,2<min{τϑG,1,τ̂ϑ}

(∫ τϑG,2

ϑ

e−r(s−ϑ)D00Xsds+

∫ τF1

τϑG,2

e−r(s−ϑ)D01Xsds
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+

∫ ∞
τF1

e−r(s−ϑ)D11Xs − e−r(τ
F
1 −ϑ)I

)∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ
[
1τϑG,1=τϑG,2<τ̂

ϑ

(∫ τϑG,1

ϑ

e−r(s−ϑ)D00Xsds

+

∫ ∞
τϑG,1

e−r(s−ϑ)D11Xsds

)∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ

[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,1(τ̂ϑ)

(∫ τ̂ϑ

ϑ

e−r(s−ϑ)D00Xsds

+

∫ τF2

τ̂ϑ
e−r(s−ϑ)D10Xsds+

∫ ∞
τF2

e−r(s−ϑ)D11Xsds− e−r(τ
ϑ
G,1−ϑ)I

)∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ

[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,2(τ̂ϑ)

(∫ τ̂ϑ

ϑ

e−r(s−ϑ)D00Xsds

+

∫ τF1

τ̂ϑ
e−r(s−ϑ)D01Xsds+

∫ ∞
τF1

e−r(s−ϑ)D11Xs − e−r(τ
F
1 −ϑ)I

)∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑM(τ̂ϑ)

(∫ τ̂ϑ

ϑ

e−r(s−ϑ)D00Xsds

+

∫ ∞
τ̂ϑ

e−r(s−ϑ)D11Xsds

)∣∣∣Fϑ].
Hence, the payoff of the ambiguous firm can written as

V ϑ
1 (Gϑ

1 , α
ϑ
1 , G

ϑ
2 , α

ϑ
2 ) := inf

Q∈PΘ
EQ
[
1τϑG,1<min{τϑG,2,τ̂ϑ}

L1(xϑ)
∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ
[
1τϑG,2<min{τϑG,1,τ̂ϑ}

F1(xϑ)
∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ
[
1τϑG,1=τϑG,2<τ̂

ϑM1(xϑ)
∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,1(τ̂ϑ)L1(xϑ)
∣∣∣Fϑ]
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+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,2(τ̂ϑ)F1(xϑ)
∣∣∣Fϑ]

+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑM(τ̂ϑ)M1(xϑ)
∣∣∣Fϑ] .

In the same way, the payoff for the unambiguous firm can be written as

V ϑ
2 (Gϑ

2 , α
ϑ
2 , G

ϑ
1 , α

ϑ
1 ) :=EP

[
1τϑG,2<min{τϑG,2,τ̂ϑ}

L2(xϑ)
∣∣∣Fϑ]

+EP
[
1τϑG,1<min{τϑG,2,τ̂ϑ}

F2(xϑ)
∣∣∣Fϑ]

+EP
[
1τϑG,1=τϑG,2<τ̂

ϑM2(xϑ)
∣∣∣Fϑ]

+EP
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,2(τ̂ϑ)L2(xϑ)
∣∣∣Fϑ]

+EP
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑL,1(τ̂ϑ)F2(xϑ)
∣∣∣Fϑ]

+EP
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,1}

λϑM(τ̂ϑ)M2(xϑ)
∣∣∣Fϑ].

4.4.2 Preemptive and Sequential Equilibria

An equilibrium for the subgame Γϑ is a pair of extended pure strategies(
(Ḡϑ

1 , ᾱ
ϑ
1 ), (Ḡϑ

2 , ᾱ
ϑ
2 )
)
, such that for each firm i = 1, 2 and every extended pure

strategy (Gϑ
i , α

ϑ
i ) it holds that

V ϑ
i (Ḡϑ

i , ᾱ
ϑ
i , Ḡ

ϑ
j , ᾱ

ϑ
j ) ≥ V ϑ

i (Gϑ
i , α

ϑ
i , Ḡ

ϑ
j , ᾱ

ϑ
j ),

for j 6= i. A subgame perfect equilibrium is a pair of extended pure strategies(
(Ḡ1, ᾱ1), (Ḡ2, ᾱ2)

)
, such that for each ϑ ∈ T the pair

(
(Ḡϑ

1 , ᾱ
ϑ
1 ), (Ḡϑ

2 , ᾱ
ϑ
2 )
)

is

an equilibrium in the subgame Γϑ.

There are several types of equilibria of interest in this model. Fix ϑ ∈ T .

For firm i we denote the optimal time of investment, assuming that the other

firm cannot preempt, in the subgame Γϑ by τϑL,i, i.e.

τϑL,i = inf{t ≥ ϑ|Xt ≥ xLi }.
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We also define the preemption region as the part of the state space where both

firms prefer to be the leader rather than the follower, i.e.

P = {x ∈ R+|(L1(x)− F1(x)) ∧ (L2(x)− F2(x)) > 0}.

The first hitting time of P in the subgame Γϑ is denoted by τϑP .

We distinguish between two different equilibrium concepts. Lemma (6)

determines a preemptive equilibrium.

Lemma 6 (Riedel and Steg (2014)) Suppose ϑ ∈ T satisfies ϑ = τϑP P− a.s.
Then

(
(Gϑ

1 , α
ϑ
1 ), (Gϑ

2 , α
ϑ
2 )
)

given by

αϑi (t) =

1 if t = τ tP , Ljt = F j
t , and (Lit > F i

t or F j
t = M j

t )

1L1
t>F

1
t
1L2

t>F
2
t

Ljt−F
j
t

Ljt−M
j
t

otherwise,

for any t ∈ [ϑ,∞) and Gϑ
i = 1t≥ϑ, i = 1, 2, j ∈ {1, 2} i, are an equilibrium in

the subgame at ϑ.

In a preemptive equilibrium both firms try to preempt each other. Invest-

ment takes place sooner than it optimally would, i.e. the time one firm would

invest without the fear of being preempted. The resulting equilibrium in the

latter case is called sequential equilibrium. For certain underlying parameters,

the preemption time τϑP is greater than the optimal investment time τϑL,i of firm

i. A sequential equilibrium is given by the next lemma.

Lemma 7 Suppose ϑ = τϑL,i < τϑP P − a.s. for one i ∈ {1, 2}. Then(
(Gϑ

1 , α
ϑ
1 ), (Gϑ

2 , α
ϑ
2 )
)

given by

αϑi (ϑ) = 1, Gϑ
i (t) = 0 for all t < ϑ, Gϑ

j (t) = 0 for all t ≤ ϑ

are an equilibrium in the subgame at ϑ.

Proof: The stopping time τϑL,i is determined in Proposition (2) as the

stopping time that maximizes the leader payoff. Hence, without the threat of

being preempted by its opponent, i.e. τϑL,i < τϑP P − a.s., it is not optimal to
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deviate for firm i. Firm j does not want to stop before τϑL,i as its payoff of

becoming the leader is strictly smaller than becoming the follower up to τϑP .

�

Now, we are finally able to formulate a subgame perfect equilibrium for our

game.

Theorem 5 There exists a subgame perfect equilibrium ((G1, α1), (G2, α2))

with αϑi and Gϑ
1 given by

(i) Lemma (6) if either ϑ ≥ τϑP P− a.s. or τϑP ≤ τϑL,i P− a.s..

(ii) Lemma (7) otherwise (i.e. ϑ < τϑP P− a.s. and τϑP > τϑL,i P− a.s.).

Proof: Optimality for case (ii) follows along the same lines as in the proof

of Lemma (7).

If ϑ ≥ τϑP P−a.s., then optimality for case (i) follows directly from Lemma

(6). What remains to prove is that, in case ϑ < τϑP P − a.s., neither of the

firms wants to invest sooner than τϑP .

We start with firm 2. Suppose that firm 1 plays the preemption equilibrium

strategy. Then if firm 2 plays the preemption strategy, its payoff is V2(x) =

Ex[e
−rτPL2(xP )], for any x < xP . (This is the case, because, either the other

firm is indifferent between the leader and follower role at xP , in which case firm

2 becomes the leader, or firm 2 is indifferent in which case F2(xP ) = L2(xP ).)

Note that we have V2(x) = Ex[e
−rτPL2(xP )] =

(
x
xP

)β1(µ)

L2(xP ) (cf. Dixit and

Pindyck (1994), Chapter 9, Appendix A). V2 is a strictly increasing function,

with V2(xP ) = L2(xP ) and V2(0) = 0 > L2(0), so that V2(x) > L2(x) for any

x < xP .

The only deviations τ̂ that could potentially give a higher payoff have

τ̂ < τP , P-a.s. Consider the first hitting time τ̂ of some x̂ < xP . Let V̂2 denote

the payoff to firm 2 of this strategy (while the other firm plays its preemption

strategy). For x̂ ≤ x < xP , it holds that V̂2(x) = L2(x) < V2(x).

For x < x̂, note that V̂2(x) =
(
x
x̂

)β1(µ)
L2(x̂) = L2(x̂)

x̂β1(µ)x
β1(µ). Consider the

mapping x 7→ L2(x)

xβ1(µ) . This function attains its maximum at xL2 > xP . There-

fore, its derivative is positive on (0, xP ), implying that V2(x) > V̂2(x). Any
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Figure 4.3: The resulting thresholds with respect to κ for the values D10 = 1.8,
D11 = 1, D01 = 0, D00 = 0, r = 0.1, σ = 0.1, µ = 0.04, I = 100 and α = 1.

stopping time τ can be written as a mixture of first hitting times. So, no

stopping time τ̂ with τ̂ < τP , P-a.s. yields a higher payoff than τP .

For firm 1, the argument is similar after realizing that V1(x) = L1(xP )

x
β1(µ)

P

xβ1(µ)

and V̂1(x) = L1(x̂)

x̂β1(µ)x
β1(µ). This holds because xP < xL1 < x∗, so that µ is the

trend under the worst–case measure for every x ∈ (0, xP ].

�

4.5 Comparative Statics

In this section, we analyze the sensitivity of equilibrium outcome with respect

to a change of the degree of ambiguity κ, the volatility σ and the cost difference

α, respectively.

4.5.1 Comparative Statics With Respect to κ

Nishimura and Ozaki (2007) argued that in a monopolistic model where the

firm faces drift uncertainty, an increase in κ postpones investment and de-
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creases the profit.

In our duopoly framework, we observe that both the leader and the follower

value function of the ambiguous firm decrease with an increase of κ.

For equilibrium outcomes it is important to investigate how investment

times (or thresholds) vary with a change of κ. We find that the follower

investment threshold of the ambiguous firm rises if κ increases. Hence, the

non–ambiguous firm’s payoff increases as it enjoys the benefits of being the

only one who has invested for a longer time. Further, we easily see that xL1

increases with κ.

To see what happens to the preemption time τ 1
P := inf{t ≥ 0|L1(xt) ≥

F1(xt)}, we need to consider L1 − F1. Both functions L1 and F1 decline by a

decrease of κ. However, due to the complexity of the ambiguous firm’s leader

value function, it is not possible to come up with an analytic result about

which function decreases more. For this reason, we consider some numerical

examples which suggest that the leader function is more affected by a change

of κ than the follower function.

Figure 4.3 depicts the change of the leader thresholds as well as the pre-

emption thresholds of both firms with respect to κ. Starting with complete

symmetric firms (α = 1 and κ = 0), Figure 4.3 shows that both the preemption

threshold and the leader threshold of firm 1 increases with κ. This indicates

that L1 decreases more by an increase in κ than F1. This observation makes

sense; if it were the other way around, firm 1 could benefit from an increase

of kappa. Indeed, if firm 1’s preemption threshold would decrease more than

firm 2’s, firm 1 might benefit by receiving the leader role for ever bigger κ.

4.5.2 Comparative Statics With Respect to σ

Comparative statics with respect to the volatility σ is even more complex as a

change of sigma affects not only the volatility but also the interval of possible

trends. Since [µ, µ] = [µ−σκ, µ+σκ], an increase in σ enlarges the uncertainty.

Notice, a change of σ and a change of κ of the same size have exactly the same

impact on the interval of possible trends.

From the standard literature on real options it is well known that an in-
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crease of σ postpones the investment of a monopolistic firm in a purely risky

environment (cf. Nishimura and Ozaki (2007)).

Figure 4.4 shows what happens to the investment thresholds in our frame-

work. All thresholds for both firms increase with the volatility. Due to the

effect on the interval of possible trends, however, firm 1’s thresholds rise much

stronger.

4.5.3 Comparative Statics With Respect to α

Let us move on to investigate the effect the degree of cost asymmetry α has on

equilibrium scenarios. In a purely risky framework, the firm that has the lower

investment cost always becomes the leader (cf. Pawlina and Kort (2006)). This

result, however, might change if ambiguity is introduced. Figure 4.5 shows that

even if the the non–ambiguous firm has a higher cost of investment, it might

become the leader anyway. Ambiguity, therefore, might outbalance the cost

advantage.

From Figure 4.5 we can observe that the preemption threshold as well
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Figure 4.5: The resulting thresholds with respect to α for the values D10 = 1.8,
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as the leader threshold of firm 2 increase with α. To the far right, there even

does not exist a preemption threshold anymore, as the cost disadvantage is too

big such that firm 2’s leader function always lies below its follower function on

[0, xF1 ]. Firm 1’s leader threshold is unaffected by a change of α. Its preemption

threshold, however, is slightly decreasing. The reason for this fact might not

be obvious in case condition (4.11) is not satisfied. First note, firm 1’s follower

function is not affected by a change of α. Further note, the preemption point

can only lie in the region where L1 is increasing. That means, if the worst–

case changes at some point, the preemption point is smaller than x∗. Thus,

the function needed to be considered is

D10xt
r − µ

− 1

β1(µ)

D10x
∗

r − µ

(xt
x∗

)β1(µ)

− I.

This function is also not directly affected by a change of α. Yet, due to the

fact that xF2 increases with α, L1 increases in the region [x∗, xF2 ]. Since the

smooth pasting condition has to be fulfilled, this implies that x∗ moves to the

left. This, however, means that L1 is also increasing in the region before x∗ is
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reached. This implies that the preemption threshold of firm 1 is decreasing.

4.6 Both Player Ambiguous

We want to emphasize that our analysis is independent of the assumption that

only one of the firms is ambiguous. Throughout the paper, this assumption

is made in order to elaborate the difference that an introduction of ambiguity

makes in contrast to purely risky world.

We may very well allow also for both firms to be ambiguous about the

trend of the underlying dynamics. We even do not need to require that the

firms have the same degree of ambiguity (same κ).

In fact, for the analysis of the worst–case prior, it is only required that

the degree of ambiguity and the cost of investment of each player is common

knowledge (such that each firm is able to compute the follower threshold of her

competitor). The determination of the follower and leader value function of a

second ambiguous firm would be completely analogues to that we presented in
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section 3.2. Recall that ambiguity is assumed not to be about strategies but

about payoffs exclusively. This implies, knowing the new value functions, the

equilibrium analysis follows along the same lines as presented in section 4.

In Figure 4.6, we draw different equilibrium outcomes for the case that both

players are ambiguous, possibly with a different degree. The firms are assumed

to be symmetric in terms of the investment costs. The degree of ambiguity

for firm 1 is κ1 = 0.3. We vary the degree of ambiguity for the second firm.

We see that both the preemption threshold and the leader threshold of firm 2

are strictly increasing, whereas the preemption threshold as well as the leader

threshold of firm 1 are slightly decreasing.

4.7 Appendix

4.7.1 Derivation of L̃1 and L̂1

In the proof of our main theorem, we only verified that the given functions

L̃1 and L̂1 are indeed a solution to the differential equation (4.16). Here, we

demonstrate how one can derive from the given value matching and smooth

pasting conditions the resulting functions L̃1 and L̂1.

Proof: Firstly, we apply the value matching condition at xF2 , i.e.

D10x
F
2

r − µ
+ A1(xF2 )β1(µ) +B(xF2 )β2(µ) =

D11x
F
2

r − µ
.

Hence,

A1 =

(
D11

r − µ
− D10

r − µ
−B(xF2 )β2(µ)−1

)
(xF2 )1−β1(µ). (4.18)

Secondly, we apply the value matching condition at x∗, i.e.

D10x
∗

r − µ
+ A(x∗)β1(µ) =

D10x
∗

r − µ
+ A1(x∗)β1(µ) +B(x∗)β2(µ).

This yields

A =

(
D10

r − µ
− D10

r − µ
+ A1(x∗)β1(µ)−1 +B(x∗)β2(µ)−1

)
(x∗)1−β1(µ). (4.19)
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Now we can write

L̃1(x) =
D10x

r − µ
+

((
D10

r − µ
− D10

r − µ
+

[
D11

r − µ
− D10

r − µ
−B(xF2 )β2(µ)−1

]

(xF2 )1−β1(µ)(x∗)β1(µ)−1 +B(x∗)β2(µ)−1

)
(x∗)1−β1(µ)

)
xβ1(µ).

The smooth pasting condition at x∗ yields that the first derivative of L̃1 at x∗

is equal to zero. Therefore,

L̃1
′
(x) =

D10

r − µ
+ β1(µ)

(
D10

r − µ
− D10

r − µ
+

[
D11

r − µ
− D10

r − µ
−B(xF2 )β2(µ)−1

]

(xF2 )1−β1(µ)(x∗)β1(µ)−1 +B(x∗)β2(µ)−1

)
= 0.

This implies

− 1

β1(µ)

D10

r − µ
−
(
D10

r − µ
− D10

r − µ

)
=

[
D11

r − µ
− D10

r − µ
−B(xF2 )β2(µ)−1

]

(xF2 )1−β1(µ)(x∗)β1(µ)−1 +B(x∗)β2(µ)−1

)
⇐⇒

(
− 1

β1(µ)

D10

r − µ
−
(
D10

r − µ
− D10

r − µ

))
(xF2 )β1(µ)−1(x∗)1−β1(µ)

=
D11

r − µ
− D10

r − µ
−B(xF2 )β2(µ)−1 +B(x∗)β2(µ)−1(xF2 )β1(µ)−1(x∗)1−β1(µ)

⇐⇒
(
− 1

β1(µ)

D10

r − µ
−
(
D10

r − µ
− D10

r − µ

))
(xF2 )β1(µ)−1(x∗)1−β1(µ)

− D11

r − µ
+

D10

r − µ

= B
(
(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

)
.
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Therefore, we get

B =
1

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

[((
− 1

β1(µ)
+ 1

)
D10

r − µ
− D10

r − µ

)
(4.20)

(xF2 )β1(µ)−1(x∗)1−β1(µ) − D11

r − µ
+

D10

r − µ

]
.

Plugging this into equation (4.18) gives

A1 =

(
D11

r − µ
− D10

r − µ
−
[

1

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1
(4.21)

((
− 1

β1(µ)
+ 1

)
D10

r − µ
− D10

r − µ

)
(xF2 )β1(µ)−1(x∗)1−β1(µ)

− D11

r − µ
+

D10

r − µ

]
(xF2 )β2(µ)−1

)
(xF2 )1−β1(µ).

Now, using (4.20) and (4.21), we get

L̃1(x) =

D10x

r − µ
+

[
D10x

∗

r − µ
− D10x

∗

r − µ
+

[(
D11

r − µ
− D10

r − µ

)
(xF2 )1−β1(µ)

− (xF2 )β2(µ)−β1(µ)

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

[((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)

(xF2 )β1(µ)−1(x∗)1−β1(µ) − D11

r − µ
+

D10

r − µ

]]
(x∗)β1(µ)

+
1

(x∗)β2(µ)−β1(µ)(xF2 )1−β1(µ) − (xF2 )β2(µ)−1

[((
− 1

β1(µ)
+ 1

)
D10

r − µ
− D10

r − µ

)

(xF2 )β1(µ)−1(x∗)1−β1(µ) − D11

r − µ
+

D10

r − µ

]
(x∗)β2(µ)

]( x
x∗

)β1(µ)

=
D10x

r − µ
+

[
D10x

∗

r − µ
− D10x

∗

r − µ
+

(
D11

r − µ
− D10

r − µ

)
(xF2 )1−β1(µ)(x∗)β2(µ)
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− (xF2 )β2(µ)−β1(µ)(x∗)β1(µ) − (x∗)β2(µ)

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

[((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)

(xF2 )β1(µ)−1(x∗)1−β1(µ) − D11

r − µ
+

D10

r − µ

]]( x
x∗

)β1(µ)

=
D10x

r − µ
+

[(
(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

)
(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

x∗
(
D10

r − µ
− D10

r − µ

)

−
(
(xF2 )β2(µ)−β1(µ)(x∗)β1(µ) − (x∗)β2(µ)

)
(xF2 )β1(µ)−1(x∗)1−β1(µ)

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)]( x
x∗

)β1(µ)

.

Let’s split the last expression into two parts. Firstly, we consider the part

concerning D10

r−µ :(
(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

)
x∗

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

D10

r − µ

+

(
(xF2 )β2(µ)−β1(µ)x∗ − (x∗)β2(µ)−β1(µ)+1

)
(xF2 )β1(µ)−1

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

D10

r − µ

=
(x∗)β2(µ)−β1(µ)+1(xF2 )β1(µ)−1 − (x∗)β2(µ)−β1(µ)+1(xF2 )β1(µ)−1

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

D10

r − µ

=0.

What remains is to consider the part concerning D10

r−µ . That is:

−
(
(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

)
x∗

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

D10

r − µ

−
(
(xF2 )β2(µ)−1 − (x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1

)
x∗

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

D10

r − µ

+

(
(xF2 )β2(µ)−1 − (x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1

)
x∗

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

1

β1(µ)

D10

r − µ
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=− 1

β1(µ)

D10

r − µ
x∗
(
(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

)
(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

=− 1

β1(µ)

D10

r − µ
x∗.

Therefore, we get

L̃1(x) =
D10x

r − µ
− 1

β1(µ)

D10x
∗

r − µ

( x
x∗

)β1(µ)

.

Let’s move on to the computation of L̂1. Using the expressions (4.21) and

(4.20) we find:

L̂1(x) =

D10x

r − µ
+

(
D11(xF2 )1−β1(µ)

r − µ
− D10(xF2 )1−β1(µ)

r − µ

−
[

1

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)

(xF2 )β1(µ)−1(x∗)1−β1(µ) − D11

r − µ
+

D10

r − µ

]
(xF2 )β2(µ)−β1(µ)

)
xβ1(µ)

+
1

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

[((
− 1

β1(µ)
+ 1

)
D10

r − µ
− D10

r − µ

)

(xF2 )β1(µ)−1(x∗)1−β1(µ) − D11

r − µ
+

D10

r − µ

]
xβ2(µ).

To make it more tractable, we again split this expression into two parts. Firstly,

we put all expressions containing the term (D11

r−µ −
D10

r−µ) together.

(
D11

r − µ
− D10

r − µ

)
(xF2 )1−β1(µ)xβ1(µ)

+

(
D11

r−µ −
D10

r−µ

) (
(xF2 )β2(µ)−β1(µ)xβ1(µ) + xβ2(µ)

)
(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1
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=

(
D11

r − µ
− D10

r − µ

)
(xF2 )(x∗)β1(µ)

(
(x∗)β2(µ)−β1(µ)xβ1(µ) − (xF2 )β2(µ)−β1(µ)xβ1(µ) + (xF2 )β2(µ)−β1(µ)xβ1(µ) + xβ2(µ)

)
(x∗)β2(µ)(xF2 )β1(µ) − (xF2 )β2(µ)(x∗)β1(µ)

=
(x∗)β2(µ)xβ1(µ) − (x∗)β1(µ)xβ2(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2 .

In a similar way, we get for the remaining part that((
1− 1

β1(µ)

)
D10

r−µ −
D10

r−µ

)
(xF2 )β1(µ)−1(x∗)1−β1(µ)xβ2(µ)

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

−

((
1− 1

β1(µ)

)
D10

r−µ −
D10

r−µ

)
(xF2 )β2(µ)−1(x∗)1−β1(µ)xβ1 (µ)(xF2 )β1(µ)−1

(x∗)β2(µ)−β1(µ)(xF2 )β1(µ)−1 − (xF2 )β2(µ)−1

=x∗
((

1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
(x∗)β1(µ)−1xF2

(xF2 )β1(µ)−1(x∗)1−β1(µ)xβ2(µ) − (xF2 )β2(µ)−1(x∗)1−β1(µ)xβ1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

=
(xF2 )β1(µ)xβ2(µ) − (xF2 )β2(µ)xβ1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗.

Putting this together eventually yields the desired expression:

L̂1(x) =
D10x

r − µ
+

(x∗)β2(µ)xβ1(µ) − (x∗)β1(µ)xβ2(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

(
D11

r − µ
− D10

r − µ

)
xF2

+
(xF2 )β1(µ)xβ2(µ) − (xF2 )β2(µ)xβ1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗.

�

4.7.2 Proof of Lemma (5)

In this section, we show that if the worst–case for the leader value is not always

given by the worst possible trend, there exists a unique value x∗ at which the
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worst–case changes from µ to µ.

Proof: The critical value x∗ is found by applying the smooth pasting con-

dition L̂1(µ, x∗) = 0. The first derivative of L̂1 is given by

L̂′1(µ, x) =
D10

r − µ
+
β1(µ)(x∗)β2(µ)xβ1(µ)−1 − β2(µ)(x∗)β1(µ)xβ2(µ)−1

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)(
D11

r − µ
− D10

r − µ

)
xF2

+
β2(µ)(xF2 )β1(µ)xβ2(µ)−1 − β1(µ)(xF2 )β2(µ)xβ1(µ)−1

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗.

In order to prove the existence of x∗, we will show that if x∗ ↑ xF2 , L̂′1(µ, x∗)

becomes negative, and if x∗ ↓ 0, L̂′1(µ, x∗) becomes positive.

We have

L̂′1(µ, x∗) =
D10

r − µ
+

(β1(µ)− β2(µ))(x∗)β1(µ)+β2(µ)−1

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)(
D11

r − µ
− D10

r − µ

)
xF2

+
β2(µ)(xF2 )β1(µ)(x∗)β2(µ) − β1(µ)(xF2 )β2(µ)(x∗)β1(µ)

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
.

Clearly, limx∗↑xF2 L̂
′
1(µ, x∗) has the same sign as the following expression.

D10

r − µ
(
(xF2 )β2(µ)(xF2 )β1(µ) − (xF2 )β1(µ)(xF2 )β2(µ)

)
(4.22)

+ (β1(µ)− β2(µ)) (xF2 )β1(µ)+β2(µ)(
D11

r − µ
− D10

r − µ
−
(

1− 1

β1(µ)

)
D10

r − µ
+

D10

r − µ

)
.
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Using the fact that 1
β1(µ)

< D10−D11

D10
yields that expression (4.22) is smaller

than

(β1(µ)− β2(µ)) (xF2 )β1(µ)+β2(µ) 1

r − µ
(D11 −D10 +D10 −D11) = 0. (4.23)

Considering the case x∗ ↓ 0, one can easily see that limx∗↓0 L̂′1(µ, x∗) has

the same sign as

lim
x∗↓0

(
D10

r − µ
(
(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)

)
+ (β1(µ)− β2(µ)) (x∗)β1(µ)+β2(µ)−1

(
D11

r − µ
− D10

r − µ

)
xF2

+
(
β2(µ)(xF2 )β1(µ)(x∗)β2(µ) − β1(µ)(xF2 )β2(µ)(x∗)β1(µ)

)
((

1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

))

= lim
x∗↓0

(
(x∗)β2(µ)

(
D10

r − µ
(
(xF2 )β2(µ) − (x∗)β1(µ)−β2(µ)

)
+ (β1(µ)− β2(µ))(x∗)β1(µ)−1

(
D11

r − µ
− D10

r − µ

)
xF2

+
(
β2(µ)(xF2 )β1(µ) − β1(µ)(x∗)β1(µ)−β2(µ)(xF2 )β2(µ)

)
((

1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)))

= lim
x∗↓0

(x∗)β2(µ)︸ ︷︷ ︸
→+∞

(
D10

r − µ︸ ︷︷ ︸
>0

(xF2 )β2(µ) − (x∗)β1(µ)−β2(µ)︸ ︷︷ ︸
→0



+ (β1(µ)− β2(µ))(x∗)β1(µ)−1︸ ︷︷ ︸
→0

(
D11

r − µ
− D10

r − µ

)
xF2

+

β2(µ)(xF2 )β1(µ)︸ ︷︷ ︸
<0

− β1(µ)(x∗)β1(µ)−β2(µ)(xF2 )β2(µ)︸ ︷︷ ︸
→0


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((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
︸ ︷︷ ︸

<0

)
.

Therefore, we get L̂′1(µ, x∗) > 0 for x∗ close to 0. Due to continuity of L′2

on [0, xF2 ], we can find in that region a solution to L̂′1(µ, x∗) = 0.

The uniqueness of x∗ is automatically given by the uniqueness of the solu-

tion to PDE (4.15).

�

4.7.3 Concavity of L1

In this section, we prove that the leader function of the ambiguous firm is

concave on [0, xF2 ] . In case the worst prior is always given by the lowest

possible trend, this statement is trivial. The next proof shows that concavity

is not lost even if the worst–case changes at some point.

Proof: Suppose condition (4.11) is not satisfied (i.e. µ is not always the

worst–case). The concavity of L1(x) for x < x∗ is trivial. We therefore consider

the second derivative of L1(x) in the interval [x∗, xF2 ).

L̂′′1(µ, x) =

β1(µ)(β1(µ)− 1)(x∗)β2(µ)xβ1(µ)−2 − β2(µ)(β2(µ)− 1)(x∗)β1(µ)xβ2(µ)−2

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)(
D11

r − µ
− D10

r − µ

)
xF2

+
β2(µ)(β2(µ)− 1)(xF2 )β1(µ)xβ2(µ)−2 − β1(µ)(β1(µ)− 1)(xF2 )β2(µ)xβ1(µ)−2

(x∗)β2(µ)(xF2 )β1(µ) − (x∗)β1(µ)(xF2 )β2(µ)((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗.

Now, we have

β1(µ)(β1(µ)− 1)xβ1(µ)−2

[(
D11

r − µ
− D10

r − µ

)
xF2 (x∗)β2(µ)
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−
((

1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗(xF2 )β2(µ)

]
< β1(µ)(β1(µ)− 1)xβ1(µ)−2x∗(xF2 )β2(µ)[(

D11

r − µ
− D10

r − µ

)
−
((

1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)]

= β1(µ)(β1(µ)− 1)xβ1(µ)−2x∗(xF2 )β2(µ)

[
D11

r − µ
− D10

r − µ
+

1

β1(µ)

D10

r − µ

]
< β1(µ)(β1(µ)− 1)xβ1(µ)−2x∗(xF2 )β2(µ) 1

r − µ
[D11 −D10 +D10 −D11]

= 0,

where we used the fact that x∗(xF2 )β2(µ) < (x∗)β2(µ)(xF2 ) (because x∗ < xF2 and

β2(µ) < 0) and D10−D11

D10
> 1

β1(µ)
.

In a similar way, we have

β2(µ)(β2(µ)− 1)xβ2(µ)−2

[
−
(
D11

r − µ
− D10

r − µ

)
xF2 (x∗)β1(µ)

+

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)
x∗(xF2 )β1(µ)

]
< β2(µ)(β2(µ)− 1)xβ2(µ)−2x∗(xF2 )β1(µ)[
−
(
D11

r − µ
− D10

r − µ

)
+

((
1− 1

β1(µ)

)
D10

r − µ
− D10

r − µ

)]

= β2(µ)(β2(µ)− 1)xβ2(µ)−2x∗(xF2 )β1(µ)

[
− D11

r − µ
+

D10

r − µ
− 1

β1(µ)

D10

r − µ

]
< β2(µ)(β2(µ)− 1)xβ2(µ)−2x∗(xF2 )β1(µ) 1

r − µ
[−D11 +D10 −D10 +D11]

= 0,

which proves the concavity of L1.

�
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4.7.4 Proof of Proposition (2)

The proof follows along very similar lines as the proof of Theorem (4). We

take the same procedure, but now considering the value function in the con-

tinuation region, i.e. before any investment has taken place. Applying the

BSDE approach and applying different value matching and smooth pasting

conditions eventually yield the desired stopping time.

Proof: Denote

Yt = inf
Q∈PΘ

EQ
[ ∫ τ tL,1

t

e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds

+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft].

Using the time consistency property of a rectangular set of density generators

yields

Yt = inf
Q∈PΘ

EQ
[ ∫ τ tL,1

t

e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds

+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]

= inf
Q∈PΘ

EQ

[
inf

Q′∈PΘ
EQ
′

[∫ τ tL,1

t

e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds

+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Fτ tL,1

]∣∣∣Ft]

= inf
Q∈PΘ

EQ

[∫ τ tL,1

t

e−r(s−t)D00Xsds

+ e−r(τ
t
L,1−t) inf

Q′∈PΘ
EQ
′

[∫ τF2

τ tL,1

e−r(s−τ
t
L,1)D10Xsds

+

∫ ∞
τF2

e−r(s−τ
t
L,1)D11Xsds

∣∣∣Fτ tL,1
]∣∣∣Ft]
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= inf
Q∈PΘ

EQ

[∫ τ tL,1

t

e−r(s−t)D00Xsds+ e−r(τ
t
L,1−t)L1(xτ tL,1)

∣∣∣Ft] .
Chen and Epstein (2002) show that Yt solves the BSDE

−dYt = g(Zt)dt− ZtdBt,

for the generator

g(z) = −κ|z| − rYt +XtD00.

The boundary condition is given by

Yτ tL,1 = L(xL1 ),

where L(xL1 ) is given by Theorem (4) and xL1 = xτ tL,1 .

Denote the present value of the leader payoff by Λ, i.e.

Λ(xt) = Yt.

The non–linear Feynman–Kac formula implies that Λ solves the non–linear

PDE

LXΛ(x) + g(σxΛ′(x)) = 0.

Hence, Λ solves

1

2
σ2x2Λ′′(x) + µxΛ′(x)− κσx |Λ′(x)| − rΛ(x) +D00x = 0. (4.24)

In the continuation region the leader function has to be increasing, hence

Λ′ > 0. This implies that µ is the worst–case in the continuation region.

Therefore, equation (4.24) becomes

1

2
σ2x2Λ′′(x) + (µ− κσ)xΛ′(x)− rΛ(x) +D00x

=
1

2
σ2x2Λ′′(x) + µxΛ′(x)− rΛ(x) +D00x

=0.
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The general increasing solution to this PDE is

Λ(x) =
D00x

r − µ
+ A2x

β1(µ).

We have to distinguish two cases here. Either condition (4.11) holds, which

means that the boundary condition takes the form (4.12) or the boundary

condition becomes (4.13).

We will show that for both cases, the optimal investment threshold becomes

xL1 =
β1(µ)

β1(µ)− 1

I(r − µ)

D10 −D00

. (4.25)

If condition (4.11) is satisfied, the boundary condition is given by

L1(xL1 ) =
D10x

L
1

r − µ
+

(
xL1
xF2

)β1(µ)
D11 −D10

r − µ
xF2 − I.

Otherwise, the boundary condition is given by

L1(xL1 ) =
D10x

L
1

r − µ
− 1

β1(µ)

D10x
∗

r − µ

(
xL1
x∗

)β1(µ)

− I.

In addition to the value matching condition, we apply a smooth pasting

condition. Smooth pasting implies that the derivatives of the value function

Λ and L coincide at xτ tL,1 , i.e.

Λ′(xτ tL,1) = L′1(xτ tL,1). (4.26)

This condition ensures differentiability at the investment threshold.

Applying condition (4.26) gives

D00

r − µ
+ β1(µ)A2x

L
1

β1(µ)−1
=

D10

r − µ
+ β1(µ)A1x

L
1

β1(µ)−1
,

where

A1 =

(
1

xF2

)β1(µ)−1
D11 −D10

r − µ
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in the first case and

A1 = − 1

β1(µ)

D10x
∗

r − µ

(
1

x∗

)β1(µ)

in the second.

Hence,

A2 =
D10 −D00

r − µ
1

β1(µ)

1

xL1
β1(µ)−1

+ A1.

Applying the value matching condition finally yields

D00x
L
1

r − µ
+

(
D10 −D00

r − µ
1

β1(µ)

1

xL1
β1(µ)−1

+ A1

)
xL1

β1(µ)
=
D10x

L
1

r − µ
+ A1x

L
1

β1(µ) − I

⇐⇒ D10 −D00

r − µ
xL1 −

D10 −D00

r − µ
1

β1(µ)
xL1 = I

⇐⇒
β1(µ)− 1

β1(µ)

D10 −D00

r − µ
xL1 = I,

and therefore, for both cases, it holds that

xL1 =
β1(µ)

β1(µ)− 1

I(r − µ)

D10 −D00

.

�

4.7.5 Backward Stochastic Differential Equations

For the proof of our main theorem, it is crucial to express the leader value

function by a backward stochastic differential equation (BSDE). For this reason

we briefly summarize in this section some important results regarding BSDEs

that have been obtained in the literature. We refer to El Karoui et al. (1997),

and El Karoui and Mazliak (1997) for a detailed survey of this topic.

We start with considering the following stochastic differential equation

(SDE)

dXs = σ(Xs)dBs + µ(Xs)ds, (4.27)
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with initial condition X0 = x. Here (Bs) denotes a d−dimensional Brownian

motion and σ : Rn 7→ Rn+d and µ : Rn 7→ Rn are given Lipschitz functions.

One can show that the integral form is given by

Xt = x+

∫ t

0

σ(Xs(ω))dBs(ω) +

∫ t

0

µ(Xs(ω))ds.

This process satisfies the Ito formula. It holds for a smooth function f on

Rn × [0,∞)

df(Xt, t) = ∂tf(Xt, t)dt+∇xf(Xt, t)dXt +
1

2

n∑
i,j=1

(σσ∗)ijDxixjf(Xt, t)dt,

where σ∗ denotes the transpose of σ. With the help of this formula, one can

show that the solution to SDE (4.27) is a diffusion process with the infinitesimal

generator

L =
n∑
i=1

µi(x)Dxi +
1

2

n∑
i,j=1

(σ(x)σ∗(x))ijDxixj .

In many situations, however, one can find an inverse type of problem where

a terminal condition at T is given (a good example is the leader value function

(4.8) of the ambiguous firm). Starting with this terminal condition, one then

wants to explore the process backward in time.

For this purpose, backward stochastic differential equations were intro-

duced. Formally, a backward stochastic differential equation is given by

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdBs, (4.28)

where Y and Z are unknown processes, the function g is called the generator

of the BSDE and ξ = YT ∈ L2
P (FT ) denotes the terminal condition.

In its differential form (4.28) can be written as

dYs = −g(s, Ys, Zs)ds+ ZsdBs, s ∈ [0, T ].

This type of differential equations were first studied for a linear generator by
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Bismut (1973).

The following theorem gives an important existence and uniqueness result

for the solution of BSDE (4.28).

Theorem 6 (Pardoux and Peng (1990)) Let M2(0, T,Rn) be the space of all

Rn-valued stochastic processes η on [0, T ] which satisfy E
∫ T

0
|ηt|2 <∞. Let g :

Ω× [0,∞)×Rm×Rm×d be a given function such that g(·, y, z) ∈M2(0, T,Rm)

for each T and for each fixed y ∈ Rm and z ∈ Rm×d. Further, let g be a

Lipschitz function, i.e. there exists a constant c such that

|g(ω, t, y, z)− g(ω, t, y′, z′)| ≤ c(|y − y′|+ |z − z′|), y, y′ ∈ Rm, z, z′ ∈ Rm×d.

Then, for each given YT = ξ ∈ L2
P (Ft), there exists a unique pair of pro-

cesses (Y, Z) ∈ M2(0, T,Rm × Rm×d) satisfying BSDE (4.28). Moreover, Y

has continuous path, a.s.

Hence, for suitable conditions stipulated on the generator g, there exists always

a unique solution to BSDE (4.28).

For the one dimensional case m = 1, one can obtain the following compar-

ison theorem.

Theorem 7 (Peng (1992)) Let the same condition for two generators g1 and

g2 hold as in the last theorem. Further let m = 1. If ξ1 ≥ ξ2 a.s. and g1 ≥ g2

a.s., then for the correspondent processes it holds that

Y 1
t ≥ Y 2

t a.s.

for any time t.

That means, for comparison in the one dimensional case it suffices to consider

the generator and the terminal conditions of the BSDEs.

Finally, an important result concerns the relationship between backward

stochastic differential equations and partial differential equations (PDEs). Of-

ten times it is much more convenient to solve a PDE rather than a BSDE (like

it was the case in the proof of Theorem (4)). The next theorem describes the

connection between a solution of a particular PDE and a BSDE.
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Suppose X t,x
s , s ∈ [t, T ] is a solution to SDE (4.27) with initial condition

X t,x
t = x ∈ Rn. Consider the following BSDE

dY t,x
s = −g(X t,x

s , Y t,x
s , Zt,x

s )ds+ Zt,x
s dBs, (4.29)

with Y t,x
T = φ(X t,x

T ). Consider the case m = 1. Then the following theorem

was first established by Peng (1991).

Theorem 8 Assume that b, σ, and φ are given Lipschitz functions on Rn

that take values in Rn, Rn×d and R, respectively, and that g is a real valued

Lipschitz function on Rn × R× Rd. Then the following relation holds

Y t,x
s = u(s,X t,x

s ).

In particular, we have u(t, x) = Y t,x
t , where u = u(t, x) is the unique viscosity

solution of the following PDE

∂tu+ Lu+ g(x, u, σ∗Du) = 0,

where Du = (Dx1u, ..., Dxnu) and with terminal condition u|t=T = φ.
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