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Introduction

When confronted with an economic problem, politicians in office must select the pol-
icy that – they believe – brings the best answer to the given problem. Economists
are regularly consulted for advice. In order to make up their minds, economists build
models of the economic problem in order to simulate the impact of each competing
policy. They recommend selecting the policy leading to the best outcome according
to their models. Hence, their recommendations depend heavily on the models con-
structed. A good model captures the key trade-offs of the economic problem at hand
but is inevitably based on strong assumptions. These assumptions are acceptable if
they are sufficiently realistic or if they do not affect which policy is recommended.

Making an inappropriate assumption in a model can lead to a wrong policy
recommendation for two main reasons. First, the outcome simulated for a policy
can be very different from the one that would be reached in reality. That is, the
positive evaluation of policies is falsified by the inappropriate assumption. Second,
an inappropriate assumption can lead to a bad policy recommendation if it falsi-
fies the normative evaluation of the outcomes attached to the competing policies.
Economists evaluate the desirability of each outcome using indicators and recom-
mend the policy whose outcome is deemed the best by the relevant indicator. Even
if the positive evaluation is correct, the recommendation of economists can be wrong
if the indicator used makes judgments at odds with those that politicians in office
would make.

A standard modeling assumption is that economic agents are self-centered, i.e.
they only care about their personal outcome. Recently, behavioral experiments in
laboratory or questionnaire studies have shown that this assumption is not realistic.
Agents are not self-centered but rather other-regarding, i.e. they care about the
relative aspects of their personal outcomes. Dropping the self-centered assumption
has both positive and normative consequences. On the positive side, other-regarding
agents behave differently than their self-centered counterparts. The outcome associ-
ated to a given policy can therefore be different if agents are other-regarding agents
rather than self-centered. On the normative side, the mere fact that agents are
other-regarding can affect which outcome is deemed to be the best.

The main normative criterion used by economists for comparing outcomes is
Pareto efficiency. This anti-paternalism criterion forces the normative evaluation to
respect unanimous agreements among the concerned agents. Consider for example
an economy made up of Alice and Bob with a unique good, say income. Assume
policy 1 leads to an income of 20 for Alice and 10 for Bob. Is it better than policy
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vi INTRODUCTION

2 that leads to 100 for Alice and 11 for Bob?

Alice Bob

Policy 1 20 10

Policy 2 100 11

If agents are self-centered, the Pareto criterion concludes that policy 2 is better.
On the other hand, if Bob is other-regarding, he might prefer the outcome of policy
1 over that of policy 2. Hence, there would be no agreement between the two
concerned agents and the Pareto criterion is silent. Chapters 1 and 2 investigate how
to compare economic outcomes when agents are affected by their relative situations.

Written in collaboration with Martin Van der Linden, Chapter 1 investigates
the normative evaluation of distributions of a multi-good endowment among other-
regarding agents. More precisely, agents are assumed to have jealous separable
preferences of the well-being externality type. Being jealous, an agent is never posi-
tively affected when another agent’s bundle increases. This assumption on individual
preferences rules out altruistic agents but not self-centered agents. The separability
assumption on other-regarding preferences rules out any behavioural consequences
of dropping the self-centered assumption. Finally, the preferences of an agent are of
the well-being externality type if this agent evaluates the bundle received by another
agent by looking at how this bundle is valued by the other agent.

We show that, under mild assumptions on the preference profile, both the First
and the Second Welfare Theorems hold. This implies that, if agents are allowed
to trade, Pareto efficiency is not a motive for intervention in the distribution of re-
sources among such other-regarding agents. Nevertheless, Pareto efficiency is a crite-
rion providing only a very partial ranking of outcomes. There exist other normative
criteria that help to discriminate between efficient outcomes and hence potentially
motivate an intervention. This is for example the case of equality. The focus of
Chapter 1 is to investigate indicators representing the normative judgments made
by a central planner interested in both Pareto efficiency and equality. The main
insight we obtain is that whether or not the indicator must take into account the
other-regarding part of preferences depends on the definition of equality considered.
On the one hand, equality of resources allows for focusing only on the self-centered
part of preferences. The standard indicator derived for economies populated with
self-centered agents can therefore be directly extended for the evaluation of the
economies we consider. On the other hand, a less resourcist definition of equality
based on the satisfaction obtained by the agents forces the indicator to account for
the other-regarding part of preferences. For this second view on equality, we pro-
pose a new indicator. For economies populated with self-centered agents, the new
indicator boils down to the standard indicator.

While Chapter 1 investigates normative judgments considering the well-being of
all agents in a population, Chapter 2 is concerned with poverty judgments, which
focus only on the well-being of agents at the bottom of the resource distribution.
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Even if poverty is a multidimensional phenomenon in practice, Chapter 2 is limited
to the measurement of income poverty. The resources considered are therefore one-
dimensional.

There are both an absolute and a relative aspect to income poverty. The absolute
aspect captures the ability an agent has to ensure “subsistence” by satisfying her
basic needs. The relative aspect accounts for “social participation”. For a given
purchasing power, the ability of an agent to engage in the everyday life of her
society depends crucially on the standards of living in her society. If an agent is not
able to afford to participate in the customary activities of her society, she should be
considered as socially excluded due to her lack of resources. An agent can hence be
deemed poor just because of her low relative situation.

The absolute and relative aspects of income poverty have created a long-lasting
debate about poverty alleviation policies. These policies can roughly be categorized
into two types: redistributive policies and growth-promoting policies. Redistributive
policies aim at transferring resources from the non-poor to the poor. These poli-
cies distort incentives to make effort and hence they potentially dampen economic
growth. On the contrary, growth-promoting policies potentially increase inequalities,
for opposite reasons. An intuition largely shared is that redistributive policies make
sense in countries in which social participation is the main issue whereas growth-
promoting policies make sense in countries in which subsistence is the main issue.
Beyond these easy cases, the type of policy being the most appropriate to alleviate
poverty is still largely debated. Economists have a hard time when comparing two
different policy mixes because of the nonexistence of a poverty measure – i.e. no
indicator of poverty – balancing the absolute and relative aspects of income poverty
in a transparent way. As a result, economists cannot answer the question whether
a given unequally distributed growth process is poverty reducing or not.

Chapter 2 is concerned with the definition of an income poverty measure that
balances the absolute and relative aspects of poverty. I show that standard poverty
measures provide very counter-intuitive judgments when assessing unequally dis-
tributed growth processes. More precisely, any standard measure either ignores the
social participation effects of growth or fails to give a minimal priority to subsistence
over social participation. In both cases, the poverty judgments are largely at odds
with intuition. As a result, the conclusions drawn from standard poverty measures
should always be considered with extreme caution. I propose a new measure of in-
come poverty that is conceptually very simple, satisfies compelling properties and is
decomposable between the absolute and relative aspects of poverty. In an empirical
illustration using data from the World Bank, I show that my measure provides judg-
ments in line with intuition, contrary to standard measures. Furthermore, I show
that, depending on the initial importance of absolute poverty; my measure deems an
unequally distributed growth process to be poverty-reducing or poverty-increasing.

The first two chapters only aim at evaluating economic outcomes and hence
ignore the question of implementation. The objective of the literature on imple-
mentation is to find which rules of the economic game lead to outcomes satisfying
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efficiency and fairness principles, if any. In other words, being able to identify fair
and efficient outcomes is just the first step; finding which policies lead to these out-
comes is the second step. A central feature of the literature on implementation is
that agents respond to incentives. The behavior of agents, and hence the outcome
reached, depends crucially on the incentives given by the rules of the economic game.

Predicting the outcome reached in a game often requires more assumptions than
just the maximizing behavior of the players. A game is a modeling tool for strategic
interactions. In a strategic interaction, a player’s outcome depends not only on the
strategy she plays but also on the strategies played by the other players. A player
can therefore not compute the strategy maximizing her outcome without making as-
sumptions about the strategy played by the other players. Accordingly, economists
cannot predict a game’s outcome without making assumptions on the kind of strat-
egy profile – a list containing one strategy for each player – that are likely to be
played. These assumptions define solution concepts. A solution concept rules out
the strategy profiles not meeting its internal consistency and rationality require-
ments. Equipped with the solution concepts studied by Game Theory, economists
can predict which outcomes of a game are likely to be reached. Therefore, solution
concepts allow economists to investigate which rules of the economic game lead to
the desired outcomes, taking into account behavioral response of the agents.

Written in collaboration with Martin Van der Linden, Chapter 3 investigates
the incentives given by assignement mechanisms in the context of the allocation
of school seats. Assignement mechanisms are commonly used in districts where a
decentralized allocation – leaving students and schools to decide the allocation of
seats without intervention – would lead to segregation issues. In these districts, an
authority centralizes the allocation of the available school seats to a set of students.
The mechanisms used in this context are matching algorithms taking two inputs:

1. for each student, the preferences of her parents over the accessible schools,

2. for each school, a priority ordering of students established by the authority.

Based on the parents’ preferences and the priority orderings, an algorithm returns
an allocation of the seats. From the parents’ point of view, each mechanism defines a
different game of school choice. There are indeed strategic interactions between the
parents because the seat assigned to a student depends not only on the preferences
declared by her parents but also on the preferences declared by other parents.

There are three properties we would like a mechanism for allocating school seats
to satisfy. First, the mechanism should always generate a Pareto efficient alloca-
tion. This efficiency property requires that there never exists another allocation
that is unanimously preferred by the parents to the allocation returned. Second,
the mechanism should always respect the priority ordering established by the au-
thority. This stability property requires that no student has her priority violated in
a school she deems better than the school to which she is assigned by the mecha-
nism. Finally, the mechanism should incentivize parents to reveal truthfully their
preferences. This incentive compatibility property requires that no parent has the
possibility to profitably manipulate the preferences she reveals. Unfortunately, there
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exists no mechanism for allocating school seats satisfying all three properties. This
non-existence of a mechanism satisfying a set of very compelling properties arises
in many economic contexts. Trade-offs between properties must hence be made in
order to go beyond this impossibility. Sometimes, the mechanism one would con-
sider to be the best satisfies none of the properties, but is “close” to satisfying each
of them. The issue in the implementation literature is that a property is a binary
notion, either a mechanism satisfies it or not. If two mechanisms do not satisfy a
property, we ignore which of these mechanisms is the “closest” to satisfying it.

We propose a new family of criteria allowing for comparisons of mechanisms ac-
cording to the properties they do not satisfy. Each criterion in this family is defined
by a different solution concept. We apply two criteria in this family in order to com-
pare the stability of school seats allocation mechanisms. These criteria are based
on the solution concept Nash equilibrium, for the first, and undominated strategy
profiles, for the second. The main finding of Chapter 3 is that the comparison of
mechanisms with respect to a property can be reversed depending on the solution
concept considered. The relevant solution concept to consider depends of course
on the information available to parents. If the game of school choice is repeated, a
parent can anticipate the strategies of the other parents and it is likely that they
will coordinate on an equilibrium. If the game of school choice is a one shot game,
parents ignore what other parents will declare and the best they can do might be to
declare an undominated strategy.

The last chapter looks slightly like an outlier. Pursuing a PhD provides many
opportunities to discover new material and research areas. Nevertheless, Chapter
4 is probably less of an outlier than it seems at first sight. It is concerned with
strategic behavior in contexts in which another standard assumption of economic
models must be relaxed.

When an agent ignores the value of a parameter influencing her decision, economists
commonly assume that the agent assigns a probability distribution over all possible
values that the parameter can take. In some environments however, agents have
simply no clue about which probability distribution to pick. The archetypical ex-
ample is that of an Ellsberg urn. An Ellsberg urn contains a finite number of balls
– say ten balls – that are either black or white, but the proportion of white balls is
unknown. It is hence not possible to assign a probability to the event that a ball
drawn from that urn has the color white. It might still be the case that the agent has
objective but imprecise information about this proportion. For example, the agent
might know there are at least 7 white balls. Nevertheless, the agent is faced with
multiple beliefs – or priors – with respect to the probability that the ball drawn is
white.

# of balls # of white balls Proba. white ball drawn

Classical urn 10 7 0.7

Ellsberg urn 10 ≥ 7 {0.7, 0.8, 0.9, 1}
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With an Ellsberg urn, an agent is faced with ambiguity, i.e. she has multiple
priors with respect to the correct probability distribution of the ambiguous event.
Decision theory has shown that when faced with ambiguity, an agent who is averse
to ambiguity bases her decision on the least favorable probability distribution in her
set of priors. Her decision rule is therefore of the maxmin type.

Written in collaboration with Frank Riedel, Chapter 4 investigates the strategic
implications of decision-making under ambiguity. We consider Ellsberg games, which
expand the set of strategies accessible to players. Standard games allow players to
use either pure or mixed strategies. A strategy is pure if it specifies exactly which
accessible action a player takes at each state of the game. A player’s strategy is
mixed if it specifies for each state of the game a probability distribution over all
her accessible actions. Mixed strategies allow a player to hide her actions to her
opponents. This feature is particularly important in competitive games in which
predictable players are easy to take advantage of.

In Ellsberg games, in addition to pure and mixed strategies, players can use
ambiguous randomization strategies, called Ellsberg strategies. An Ellsberg strategy
specifies, for each state of the game, a set of probability distributions over all actions
accessible to the player. Ellsberg strategies allow a player to take advantage of the
ambiguity aversion of her opponents. In Ellsberg games, an Ellsberg equilibrium is
a strategy profile such that all players play a best response. An Ellsberg equilibrium
is hence a solution concept generalizing Nash equilibrium. Ellsberg equilibria have
nevertheless less predictive power than Nash equilibria. Indeed, there exist games
in which some outcomes can be sustained by an Ellsberg equilibrium but not by a
Nash equilibrium.

We focus on the interpretation to give to Ellsberg strategies. One interpretation
is that players let their actions depend on the result of an ambiguous randomization
experiment performed with a device such as an Ellsberg urn. Another interpretation
of ambiguous strategies equilibria follows from the theorem we prove, which is an
extension of Harsanyi’s Purification Theorem to 2×2 normal form Ellsberg games.
According to our theorem, Ellsberg equilibria can be interpreted as the limit of pure
and mixed equilibria in a slightly disturbed version of the original game. This version
is such that the game’s payoffs are known up to a small ambiguous disturbance whose
value is private information to the players.



Chapter 1

Fair Social Orderings with

Other-regarding Preferences

(Joint with Martin Van der Linden)

1.1 Introduction

The recent developments of behavioral economics have drawn economists’ attention
to the other-regarding concerns that drive economic behaviors. While supporting
the use of other-regarding preferences (ORP) in positive analysis, economists have
traditionally been reluctant to base normative judgments on ORP. Some authors
notably feared that taking ORP into account could lead to the acknowledgment
of sadistic, malicious and other “antisocial” preferences (Harsanyi, 1982). It has
therefore been argued that if agents happen to have ORP, preferences should be
laundered in order to recover self-centered preferences before performing any nor-
mative evaluation.1 Yet, others have argued that less malevolent forms of ORP
should not necessarily be laundered, and that concerns for one’s relative position in
society might be relevant for social evaluations (Fleurbaey, 2012).

In this paper, we defend the latter position. Although ORP must be partially
laundered, some information on ORP remains pertinent for social evaluations. We
think that the extent to which ORP matter to a social planner should depend on
the kind of normative principles one wants to implement. We illustrate this point
with two examples. Consider the classical normative principles of efficiency and
equality. Efficiency is embodied in Pareto axioms that capture the idea that the
social planner should respect unanimous agreements in the population. We believe
that this objective is not properly met if one only takes self-centered preferences
into account. Consider the following two allocations in an economy with one good
and two agents.

1The notion of “preference laundering” is from Goodin (1986).

1



2 CHAPTER 1. FAIR SOCIAL ORDERINGS WITH ORP

Allocations Jane Kumiko
1 10 10
2 11 100

Suppose that Kumiko is self-centered, by which we mean that she cares only
about her own bundle. On the other hand, Jane suffers when she receives less
than Kumiko, to the point that she prefers allocation 1 to allocation 2. Clearly,
one cannot claim that allocation 2 is better than allocation 1 by virtue of Pareto
efficiency. Pareto efficiency is meant to embody a respect for unanimous agreements,
and there is no such agreement to move from allocation 1 to allocation 2.2

Quite differently, equality principles state that it is sometimes desirable to harm
one agent in order to make another better off. Equality principles take the form of
transfer axioms identifying situations in which it is desirable to move resources from
one agent to another. Whether or not ORP should play a role in these axioms is
more questionable. Consider the following example.

Allocations Jane Kumiko Henriqua
1 12 8 100
2 10 10 100

Assume that both Kumiko and Henriqua are self-centered. Again, Jane suffers
when she receives less than Henriqua. If equality is understood as equality of re-
sources, allocation 2 should be socially preferred to allocation 1.3 From a resourcist
point of view, equality should not bother about social sentiments, and Jane and
Kumiko are therefore treated equally in allocation 2.

Conversely, if social sentiments matter for equality, one may consider that Jane
and Kumiko are not equal in allocation 2, because one suffers from her social environ-
ment and the other does not. According to this view, differences in social sentiments
may justify that Jane receives more resources than Kumiko, and allocation 1 could
be socially preferred to allocation 2.

From a normative standpoint, we believe that the resourcist notion of equality
is more appealing. Yet, we recognize that this is a controversial issue. There might
be applications in which compensations based on differences in social sentiments are
justified. Therefore, we will study the consequences of both normative positions on
the social ranking of allocations.

2Which allocation is fairer remains a controversial issue. In questionnaire experiments,
Schokkaert (1999) reports that about 60% of his sample considered it fair to give more to only
one agent, even if it generates larger inequalities. This support diminishes with the magnitude
of the induced inequality. In another questionnaire experiment from Konow (2001), up to 80% of
the respondents considered it unfair to unequally increase the resources allocated to two agents
(the percentage is significantly lower for different framings of the question). In these experiments,
however, no information on ORP was given to the respondents. As a consequence, it is difficult to
infer whether people would consider that a normative principle embodying unanimity should take
ORP into account.

3Notwithstanding the fact that redistributing resources from Henriqua to Jane and Kumiko
would also be a social improvement.
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Related Literature

So far, the literature on welfare economics with ORP mainly focused on the con-
sequences of ORP for the First and Second Welfare Theorems. Most papers show
that Walrasian equilibria need not be Pareto efficient when agents have ORP (among
others Winter (1969), Hochman and Rodgers (1971), and Archibald and Donaldson
(1976)4). The failure of the First Welfare Theorem has encouraged authors to study
the conditions under which redistributing resources could be Pareto improving. This
line of research was initiated by Hochman and Rodgers (1969) for altruistic prefer-
ences and taken up by Brennan (1973) in the case of jealous preferences. Generally,
the Second Welfare Theorem does not hold either with ORP (see e.g. Dufwen-
berg et al. (2011), Example 1). Consequently, many papers focused on identifying
restricted ORP domains on which the validity of the Second Welfare Theorem is
recovered (e.g. Winter (1969), Archibald and Donaldson (1976), Dufwenberg et al.
(2011)).

With its emphasis on the Welfare Theorems, the current literature is mostly con-
cerned with Pareto efficiency. In this paper, we study the combination of efficiency
and equality principles. We leave aside questions of implementability through com-
petitive equilibria to focus on devising social ordering functions (SOFs) that generate
rankings of all possible allocations. Since Arrow (1950), the theory of ordinal social
orderings has unfortunately been plagued with impossibility results. On economic
domains, a recent line of research has sought to overcome these impossibilities while
maintaining ordinal non-comparability (Fleurbaey and Maniquet, 2011). This is
made possible by relaxing the Arrovian Independence of Irrelevant Alternatives ax-
iom. In the case of ORP, this approach is followed by Treibich (2014) in a model
with a single good. Treibich (2014) considers a conception of equality in which ORP
matter for equality. Our paper tackles the multiple goods case and addresses both
the resourcist and the non-resourcist case.

The paper is organized as follows. In section 1.2, we introduce the model and
define the preference domains we study. In section 1.3, we analyze the consequences
for SOFs of a resourcist conception of equality in which ORP do not matter. In
section 1.4, we consider notions of equality taking ORP into account. Finally, in
section 1.5, we discuss some difficulties in characterizing SOFs using the axioms we
introduce, and present a couple of SOFs that fail to satisfy these axioms. Except
for Proposition 3, complete proofs are in the Appendix.

1.2 The model

1.2.1 Definitions and Notation

We study the problem of allocating a social endowment of private goods to a finite
set of agents having heterogeneous ORP. Apart from the domain of preferences, our

4An exception being (Gersbach and Haller, 2001, section 5.2) who identify conditions under
which Walrasian equilibria are efficient in the presence of externalities.
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framework is identical to Fleurbaey and Maniquet (2006). There are ℓ perfectly
divisible goods, and the social endowment is a strictly positive vector Ω ∈ Rℓ

++.
We consider the case ℓ ≥ 2, although we sometimes provide intuition in a one-
good economy for simplicity. The consumption set of each agent is the non-negative
orthant Rℓ

+. The set of agents is N := {1, . . . , n}, with n ≥ 2. We write zi ∈ Rℓ
+ for

the bundle of agent i ∈ N . An allocation is a vector zN := (z1, . . . , zn) listing the
bundles of all the agents in the economy. The set of allocations is Z := Rnℓ

+ . The
social environment of agent i is the (n − 1) × ℓ-dimensional vector z−i which lists
the bundles of all agents in zN but i. Similarly, z−i,j denotes the bundle of everyone
but i and j in allocation zN .

Each agent i is associated with a preference relation Ri, an ordering over the set
of allocations Z.5 The asymmetric and symmetric parts of Ri are denoted Pi and Ii.
Agents are assumed to differ only in their preferences. They are identical in every
other respect, ranging from needs to legitimate claims over the social endowment. A
preference profile (sometimes profile for short) RN := (Ri)i∈N is a list of preference
relations for every individual in the population. A typical domain of admissible
profiles is denoted by D.

Following Fleurbaey and Maniquet (2006), we study the construction of social
orderings over the set of allocations as a function of the profile. A social ordering
function R (SOF) maps every profile in some domain D to a ranking of all the
allocations in Z. For any SOF R and any profile RN ∈ D, R(RN ) is the social
ordering of the allocations associated with RN . Again P (RN) and I(RN) represent
the asymmetric and symmetric part of R(RN).

1.2.2 Preference Domains

Preferences are continuous.

Preference axiom 1 (Continuity). For all zN ∈ Z, i ∈ N , the upper-contour set
{z′N ∈ Z | z′N Ri zN} and the lower-contour set {z′N ∈ Z | zN Ri z

′
N} are closed.6

Moreover, for a fixed z−i, agent’s preferences are strictly monotonic in their own
consumption.

Preference axiom 2 (Strict monotonicity in own consumption). For all zN , z
′
N ∈

Z, i ∈ N , if z′i > zi and z−i = z′−i, then z′N Pi zN .7

Next, following Dufwenberg et al. (2011), people’s preferences over their own
bundle do not depend on their social environment.

Preference axiom 3 (Separability). For all (zi, z−i), (z
′
i, z−i), (zi, z

′
−i),

(z′i, z
′
−i) ∈ Z, i ∈ N ,

(z′i, z−i) Ri (zi, z−i) ⇔ (z′i, z
′
−i) Ri (zi, z

′
−i).

5An ordering is a complete, reflexive and transitive binary relation.
6The topology on Rℓ+ is the usual Euclidean topology.
7We denote vector inequalities by the usual >,≥, >>.
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We consider only “negative” social sentiments, excluding the possibility of altru-
ism. No altruism says that, other things being equal, an agent cannot be strictly
better off if another agent receives more resources.

Preference axiom 4 (No altruism). For all zN , z
′
N ∈ Z, if zj ≥ z′j for some j ∈ N

and z−j = z′−j, then z′N Ri zN for all i 6= j ∈ N .

Notice that No altruism does not exclude the possibility that agents are self-
centered, i.e. that they care only about their own bundle.

The main reason we discard altruistic preferences is because of the pathological
impossibilities induced by altruism when trying to combine efficiency and equality
principles (as explained at the end of section 1.3.3). Without restricting altruis-
tic preferences, there is little hope that one would be able to construct Paretian
egalitarian social ordering functions at all.

From a normative point of view, disregarding altruistic preferences might be
less problematic than it seems. A good deal of agents’ altruism reflects political
preferences (Fleurbaey, 2012). Agents might have altruistic political preferences
and support the adoption of equality principles, while being hurt in terms of ev-
eryday preferences Ri when someone else gets more resources. Altruistic political
preferences are accounted for by requiring the social orderings to satisfy equality
principles. Then, when it comes to performing social evaluations, one should be
careful to exclusively rely on everyday preferences in order to avoid double counting
(Hammond, 1987).

This being said, everyday preferences Ri are likely to exhibit some altruism too.
Such altruism would be disregarded if one assumes No altruism. Notice however that
if one is really made better off in terms ofRi by transferring some of her resources, she
will do so by herself. Conversely, an agent will typically not be able to alter other
individuals’ resources in order to alleviate their negative other-regarding feelings.
Thus coping with envy requires an intervention from the social planner, whereas
altruism is more easily taken care of by the agents themselves.8 This may justify
focusing primarily on preferences satisfying No altruism.

We denote by R the domain of profiles satisfying Continuity, Strict monotonicity
in own consumption, Separability, and No altruism. For most applications, R is too
large and it is useful to consider further restrictions. A common approach in the
literature consists in partly specifying the way in which agents are affected by their
social environment.

By Separability, every preference relation over allocations Ri is associated with
a unique preference relation over bundles Rint

i . We call Rint
i the internal preferences

of agent i.

Definition 1 (Internal preferences). For all zi, z
′
i ∈ Rℓ

+,

z′i R
int
i zi ⇔ (z′i, z−i) Ri (zi, z−i), for some z−i.

8One might still worry that overlooking altruism would limit the scope for Pareto improving
redistribution. In effect, such redistributions might not be self-enforced by the agents due to
coordination failures (see Dufwenberg et al. (2011), Example 2, or Warr (1982)).
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A traditional way to model consumption externalities is to assume that agent
i’s preferences depend only on her internal preferences over her own bundle, and on
other agents’ internal preferences over their bundles. In utility terms, i’s utility will
be a function of her internal utility and the internal utility of the other agents, as in
the following example.9 By Continuity, internal preference relations are continuous
and can be represented by an internal utility function which is denoted by mi. An
example of an ORP that satisfies our assumptions is provided by Example 1.

Example 1. adapted from (Fehr and Schmidt, 1999)

Ui(zN) = mi(zi)−
αi

n− 1

∑

j 6=i

max[mj(zj)−mi(zi), 0].

In preference terms, other things being equal, i should be indifferent to a change
in j’s bundle as long as j is internally indifferent to the change in her bundle.

Preference axiom 5 (Well-being externality). For all zN , z
′
N ∈ Z, if z′i I

int
i zi for

all i ∈ N , then z′N Ii zN for all i ∈ N .

The preferences represented by the utility function in Example 1 satisfy Well-be-
ing externality. We denote by RWBE the restriction of R to profiles that satisfy
Well-being externality.

Well-being externality is a strong assumption, but it can be defended by pref-
erence laundering considerations. Think of an economy with two goods: beef and
carrots. Assume that Jane is a self-centered vegetarian, whereas Kumiko likes beef
and has ORP. Now consider the two following allocations.

zN beef carrots

Jane 10 2
Kumiko 10 10

z′N beef carrots

Jane 15 2
Kumiko 10 10

As Jane is self-centered and vegetarian, she is indifferent between zN and z′N .
Suppose that Kumiko’s preferences do not satisfy Well-being externality and she
prefers zN to z′N because she envies the extra beef that Jane gets in z′N . Even if
these are Kumiko’s actual preferences, it is debatable whether a social planner should
take them into account. It may sound odd to consider a meat lover worse off because
of the meat received by a vegetarian. Instead, one may think that an agent should be
allowed to envy another agent’s satisfaction about their bundle, but not that agent’s
actual bundle. This is precisely what Well-being externality requires (see Archibald
and Donaldson (1976) for a more detailed defense of Well-being externality) .

Another way to restrict R is to exclude extreme forms of ORP. For instance,
some RN ∈ R are such that, at a given allocation zN , it is impossible to find a

9This is the case in most models of ORP, e.g. Edgeworth (1881), Bolton and Ockenfels (2000)
and Charness and Rabin (2002). See Dufwenberg et al. (2011) for more examples in a multidimen-
sional setup.
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way to distribute additional resources while making everyone better off than in zN .
Profiles that do not exhibit such intense forms of ORP are said to satisfy Social
monotonicity (Dufwenberg et al., 2011).

Profile axiom 1 (Social monotonicity). For all zN ∈ Z, for all w̄ ∈ Rℓ
++, there

exists a distribution w ∈ Z with
∑

i wi = w̄ such that if z′N = zN + w, we have,

z′N Pi zN , for all i ∈ N.

In this paper, we introduce a different restriction on the intensity of ORP. No
resource destruction unanimity requires that any allocation z′N obtained from zN by
only destroying resources is strictly worse than zN for at least one agent, no matter
how the destruction of resources is split among agents.

Profile axiom 2 (No resource destruction unanimity). For all zN ∈ Z and all
w := (w1, w2, w3, ..., wn) with wi ∈ Rℓ

+ and
∑

i wi > 0, there exists j ∈ N such that

(zN + w) Pj zN .

The next proposition shows the logical relation between Social monotonicity and
No resource destruction unanimity on RWBE (the proof is in Appendix 13).

Proposition 1. On RWBE, Social monotonicity and No resource destruction una-
nimity are equivalent.

We denote by RNRDU the subdomain of profiles in R satisfying No resource
destruction unanimity. RWBE−NRDU is the restriction of R to profiles that satisfy
both Well-being externality and No resource destruction unanimity.

Example 2. A preference profile RN in which the agents’ preferences can be repre-
sented by utility functions of the form

Ui(zN ) = mi(zi)−
αi

n−1

∑
j 6=imj(zj),

with 0 ≤ αi < 1 for all i ∈ N satisfies Separability, No altruism, Well-being exter-
nality and No resource destruction unanimity, as proven in Appendix 1.7.8.

In the next section, we study the construction of SOFs on RWBE−NRDU when
ORP matter for efficiency, but they do not matter for equality.

1.3 When ORP do not matter for equality

1.3.1 Social Ordering Axioms

In following with the argument of the introduction, we consider that ORP are rele-
vant for efficiency axioms independently of whether ORP are taken into account by
equality axioms. Therefore, we adopt the following efficiency axiom throughout.
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Social ordering axiom 1 (Strong Pareto). For all RN ∈ D, zN , z
′
N ∈ Z,

if z′N Ri zN for all i ∈ N, then z′N R(RN ) zN ,

if in addition there exists j ∈ N such that z′N Pj zN , then z′N P (RN) zN .

In a multidimensional setting, one way to formalize the idea of resource equality
is through the notion of bundle dominance. When j’s bundle dominates k’s bundle
in every dimension, a Pigou-Dalton transfer from j to k should be deemed as a social
improvement.

Social ordering axiom 2 (Transfer). For all RN ∈ D, zN , z
′
N ∈ Z, j, k ∈ N ,

∆ ∈ Rℓ
++, if

zj −∆ = z′j >> z′k = zk +∆,

and z−j,k = z′−j,k, then z′N R(RN) zN .

In multidimensional frameworks with heterogeneous self-centered preferences
(Ri = Rint

i for all i ∈ N), it is well-known that Domination among Poor is not com-
patible with Pareto efficiency axioms (Fleurbaey and Trannoy, 2003).10 This result
extends readily to our domain R, since R includes profiles with only self-centered
preferences. To overcome this impossibility, we follow Fleurbaey and Maniquet
(2011) in weakening Domination among Poor .11

A first way to do so is to restrict our notion of equality to equality among equals.
In our framework where the only heterogeneities come from differences in prefer-
ences, this means restricting the application of Domination among Poor to agents
having identical preferences (see Fleurbaey and Maniquet (2011) for a normative
justification). As argued in the introduction, if ORP do not matter for equality,
agents should not be treated differently because of differences in ORP. Thus, if two
agents are identical in every respect, except for differences in the other-regarding
part of their preferences, equalizing their resources should still constitute a social
improvement. A social planner should then be willing to apply Domination among
Poor between any two agents having the same internal preferences.

Social ordering axiom 3 (Transfer among equals INT). For all RN ∈ D, zN , z
′
N ∈

Z, j, k ∈ N , ∆ ∈ Rℓ
++, if

zj −∆ = z′j >> z′k = zk +∆,

Rint
j = Rint

k ,

and z−j,k = z′−j,k, then z′N R(RN) zN .

10We say that a set of axioms is not compatible on a domain if there exist no SOF satisfying
these axioms on this domain.

11This means we give priority to efficiency over equality. See Sprumont (2012) for the opposite
approach.
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Notice that because Transfer among equals INT is independent of ORP, the
desirability of a transfer does not depend on the preferences of agents who are not
involved in the transfer. Even if every agent not involved in the transfer prefers
the pre-transfer allocation zN to the post transfer allocation z′N because of other-
regarding considerations, z′N must still be socially preferred to zN .

Another way to redistribute resources while maintaining compatibility with ef-
ficiency is to restrict the application of Domination among Poor to some region of
the allocation space. Consider a transfer from j to k such that, in the post-transfer
allocation z′N , z′j is larger than the equal-split bundle Ω/|N | in every dimension,
while z′k is smaller than Ω/|N | in every dimension. Then Equal-split transfer says
that z′N is socially at least as good as zN .

Social ordering axiom 4 (Equal-split transfer). For all RN ∈ D, zN , z
′
N ∈ Z,

j, k ∈ N , ∆ ∈ Rℓ
++, if

zj −∆ = z′j >> Ω/|N | >> z′k = zk +∆,

and z−j,k = z′−j,k, then z′N R(RN) zN .

When agents do not differ in legitimate claims over the endowment, the alloca-
tion in which everyone receives an equal share Ω/|N | seems like a natural reference.
Choosing Ω/|N | as a reference for transfer axioms means that Ω/|N | is viewed as an
internal welfare lower-bound.

1.3.2 Possibility Results

In the self-centered setting, Fleurbaey and Maniquet (2011) introduced a SOF based
on the egalitarian equivalence principle (Pazner and Schmeidler, 1978). This SOF
consists in applying the leximin criterion to an index uΩi measuring i’s well-being
as the share of the social endowment that would leave i indifferent with her current
bundle. In our framework, this SOF naturally extends as follows.

Definition 2 (Internal Ω-equivalent utility). For all zN ∈ Z, i ∈ N and Ri satisfy-
ing Separability,

uΩinti (zi, R
int
i ) = λi ⇔ zi I

int
i λiΩ.

The construction of the Internal Ω-equivalent utility uΩinti is illustrated in Figure
1.1.

Let ≥ℓex be the leximin operator. That is (u′i)i∈N ≥ℓex (ui)i∈N if the smallest
element of (u′i)i∈N is greater than smallest element of (ui)i∈N , or they are equal and
the second largest element of (u′i)i∈N is greater than the second smallest element of
(ui)i∈N , and so on.

Social ordering function 1 (Internal Ω-equivalent leximin (RΩℓex)). For all RN ∈
D satisfying Separability, zN , z

′
N ∈ Z

z′N R
Ωℓex(RN) zN ⇔ (uΩinti (z′i, R

int
i ))i∈N ≥ℓex (u

Ωint
i (zi, R

int
i ))i∈N .
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good 1

good 2 b

b
zi

b λiΩ ⇔ uΩinti (zi, R
int
i ) = λi

Rint
i Ω

Figure 1.1: Internal Ω-equivalent utility uΩinti

A peculiar feature of RΩℓex is that it can go against the preferences of the agent
who is the worst-off according to uΩinti . Because R

Ωℓex only uses information on
internal preferences, it can be that z′N P

Ωℓex(RN ) zN although zN is preferred to z′N
by the agent with the lowest uΩinti . Nevertheless, this SOF satisfies our two equality
axioms and Strong Pareto on RWBE−NRDU .

Proposition 2. On the domain RWBE−NRDU , RΩℓex satisfies Strong Pareto, Trans-
fer among equals INT and Equal-split transfer.

Proposition 2 is driven by the fact, established in the proof of Proposition 3,
that on RWBE−NRDU , there cannot be a Pareto improvement unless every agent is
internally better off. To put it in another way, the set of pairs of allocations (zN , z

′
N)

such that z′N Ri zN for all i ∈ N is a subset of the set of pairs (zN , z
′
N) such that

z′i R
int
i zi for all i ∈ N . Let us define the Pareto axiom relying only on internal

preferences.

Social ordering axiom 5 (Strong Pareto INT). For all RN ∈ D, zN , z
′
N ∈ Z,

if z′i R
int
i zi for all i ∈ N, then z′N R(RN ) zN ,

if in addition there exist j ∈ N for which z′j P
int
j zj then, z′N P (RN) zN .

Then we have the following proposition.

Proposition 3. On the domain RWBE−NRDU , Strong Pareto INT implies Strong
Pareto.

Proof. We show that if an allocation z2 Pareto dominates another allocation z1,
then allocation z2 also dominates z1 according to the internal preferences. This
implies that an SOF that satisfies Strong Pareto INT also satisfies Strong Pareto.
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The construction of the allocations used in the proof is illustrated in Figure 1.2.
Assume to the contrary that there exist z1N , z

2
N ∈ Z such that:

z2N Ri z
1
N for all i ∈ N, (1.1)

z1j P
int
j z2j for some j ∈ N, (1.2)

By No altruism, if (2) is satisfied, there exists a k 6= j ∈ N such that z1k P
int
k z2k.

Let S = {i ∈ N |z1i P
int
i z2i } be the subset of agents who strictly prefer their bundles

in z1N to their bundle in z2N . In the figure, S = {j, k} and N\S = {g, h}.
Consider z3N ∈ Z constructed as follows:

z3i >> z1i and z3i I
int
i z2i for all i ∈ N\S,

z3i = z2i for all i ∈ S.

Observe that for all i ∈ N , z3N Ii z
2
N by Well-being externality.

Consider z4N ∈ Z constructed as follows:

z4i = z1i for all i ∈ N\S,

z4i = z3i for all i ∈ S.

Observe that for all i ∈ S, z4N Ri z
3
N by No altruism.

Consider z5N ∈ Z constructed as follows:

z5i >> z4i and z5i I
int
i z1i for all i ∈ S,

z5i = z1i for all i ∈ N\S.

Observe that for all i ∈ N , z5N Ii z
1
N by Well-being externality. Given No re-

source destruction unanimity and the construction of z4N and z5N , there must exist
m ∈ S such that z5N Pm z4N . However, z5N Pm z4N contradicts (1.1) as we have
z1N Im z5N Pm z4N Rm z3N Im z2N , which implies that z1N Pm z2N . �

An immediate corollary of Proposition 3 is that the set of internally efficient
allocations is a subset of the set of efficient allocations on RWBE−NRDU and, hence,
the First Welfare Theorem holds. In their Theorem 3, Dufwenberg et al. (2011)
show that the converse is true with Social monotonicity. That is, the set of efficient
allocations is a subset of the set of internally efficient allocations and the Second
Welfare Theorem holds. Because Social monotonicity is equivalent to No resource
destruction unanimity on RWBE (Proposition 1), the set of efficient allocations is
identical to the set of internally efficient allocations on RWBE , and both the First
and the Second Welfare Theorem hold.

As exemplified with R
Ωℓex, some of the SOFs satisfying Strong Pareto, Transfer

among equals INT and Equal-split transfer on RWBE−NRDU are independent of the
other-regarding part of the preferences. Thus, one is not forced to use information
on ORP in order to satisfy efficiency and resource equality. Yet, the axioms of
Proposition 2 fail to uniquely characterize R

Ωℓex. One is left with some degrees
of freedom in the choice of an SOF satisfying the three axioms. Then a natural
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Figure 1.2: On RWBE−NRDU , there can be no Pareto improvement without an
internal Pareto improvement.

question is whether this freedom allows for the use of some information on ORP. We
would like to know whether RΩℓex is a particular case, or whether all SOFs satisfying
the axioms of Proposition 2 are necessarily independent of the other-regarding part
of preferences.

An SOF is independent of the other-regarding features of preferences if it asso-
ciates the same ranking of allocations to any two profiles having the same internal
preference profile.12

Social ordering axiom 6 (Independence of other-regarding features).
For all RN , R′

N ∈ D and zN , z
′
N ∈ Z, if Rint

i = Rint
i

′ for all i ∈ N , then

z′N R(RN) zN ⇔ z′N R(R′
N ) zN

The next proposition states that there exist SOFs which satisfy efficiency and
equality of resources, but that are not independent of the other-regarding part of
preferences.

Proposition 4. On the domain RWBE−NRDU , there exist SOFs satisfying Strong
Pareto, Transfer among equals INT and Equal-split transfer that violate Indepen-
dence of other-regarding features.

12Independence of other-regarding features is only used to clarify the properties of our SOFs.
We do not view it as a particularly desirable axiom a priori.



1.3. WHEN ORP DO NOT MATTER FOR EQUALITY 13

The argument in the proof of Proposition 4 (see the Appendix) is in fact fairly
general. Take any SOF R satisfying a set of axioms A and Independence of oth-
er-regarding features. If the SOF is not uniquely singled out by the set of axioms
in A, there exist profiles in which the ranking of some pairs of allocations is not
constrained by the axioms in A. Typically, a subset F of these unconstrained allo-
cations are deemed indifferent by R. Thus, one can construct an alternative SOF
R

∗ which ranks allocations outside F just as R, but uses some ORP information to
rank allocations inside F . This new R

∗ will satisfy the axioms in A by construction,
but violate Independence of other-regarding features. Whether any of these SOFs
have desirable properties is an open question.

In the next subsection, we show that the existence of SOFs satisfying Strong
Pareto, Transfer among equals INT, and Equal-split transfer is sensitive to enlarge-
ments of the domain of preferences. We also show that, once Well-being externality
is dropped, it is no longer possible to construct an SOF which satisfies both Inde-
pendence of other-regarding features and the other social ordering axioms.

1.3.3 Impossibility Results on Alternative Domains

First, consider the existence of SOFs satisfying Independence of other-regarding
features and the other social ordering axioms. In general, if one forgoes Well-be-
ing externality, such SOFs do not exist because Strong Pareto and Independence
of other-regarding features are incompatible on RNRDU (see Proposition 5). One
might wonder whether replacing Well-being externality by an alternative preference
axiom permits recovering the compatibility between Strong Pareto and Indepen-
dence of other-regarding features. A natural alternative to Well-being externality
is Own-preference externality which states that i is indifferent to a change in j’s
bundle from zj to z′j if i herself is internally indifferent between zj and z′j .

Preference axiom 6 (Own-preference externality). For all zN , z
′
N ∈ Z, and any

i ∈ N , if z′j I
int
i zj for all j ∈ N , then z′N Ii zN .

The next example is a utility representation of a preference relation satisfying
Own-preference externality.

Example 3. from (Dufwenberg et al., 2011)

Ui(zN ) = mi(zi)−
αi

n− 1

∑

j 6=i

mi(zj).

Let RNRDU−OPE be the subdomain of profiles in RNRDU which satisfy Own-pref-
erence externality. The next proposition shows that Own-preference externality is
not sufficient to recover compatibility between Strong Pareto and Independence of
other-regarding features.

Proposition 5. On the domain RNRDU−OPE, no SOF satisfies Strong Pareto and
Independence of other-regarding features.
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Figure 1.3: Incompatibility between Independence of other-regarding features and
Strong Pareto with Own-preference externality

The proof of Proposition 5 is simple and illustrates the deep conflict between
Strong Pareto and Independence of other-regarding features when preferences vio-
late Well-being externality. Consider allocations zN , z

′
N and the internal indifference

curves depicted in Figure 1.3. Let RN be such that k is self-centered and j’s prefer-
ences are as in Example 3 with αj > 0. Consider the symmetric profile R′

N in which
j is self-centered and k’s preferences are as in Example 3 with αk > 0. Suppose
that j and k are the only two agents in the economy. Notice that in RN , agent
j prefers z′N to zN , because she suffers when k gets better according to her own
internal preferences and zk P

int
j z′k. As k is indifferent between the two allocations,

z′N must be socially preferred to zN , by Strong Pareto. The situation is symmetric
in profile R′

N . In R′
N , k prefers zN to z′N because j is worse off in zN according

to k’s internal preferences. As j is indifferent between the two allocations in R′
N ,

society must strictly prefer zN to z′N under R′
N . But Independence of other-regard-

ing features requires that social preferences be identical in RN and R′
N because the

internal preferences are unchanged, which yields a contradiction.
As far as the compatibility of efficiency and equality axioms is concerned, forgoing

Well-being externality also leads to an impossibility.

Proposition 6. On the domain RNRDU−OPE, if n ≥ 4, no SOF satisfies Strong
Pareto and either Transfer among equals INT or Equal-split transfer.

The impossibility in Proposition 6 is due to a common problem in combining
efficiency and resource equality axioms. Problems typically arise when some Pareto
improvements induce changes in bundle dominance between agents. In the self-
centered case, these problems are avoided when one restricts Domination among
Poor using either the equal preferences or the equal-split approach. This is not the
case in an ORP setting unless one assumes Well-being externality, as illustrated in
Figure 1.4. In some profiles in RNRDU−OPE, j may prefer z′N to zN although she
receives strictly less of every good in z′N . This is due to the fact that j evaluates
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zh = z′h

b

b
zj

⊗

b

b

z′j
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Rintk

Rintj = Rinth

good 2

good 1

b

z′k

Figure 1.4: Dominance reversal between the bundles of agents j and h in
RNRDU−OPE

k’s situation according to her own internal preferences. Although k is internally
indifferent between z′k and zk, j considers that k is much better off with z′k than zk,
and this more than compensates j’s own internal welfare loss. Thus all three agents
are weakly better off in z′N than in zN , although the bundle dominance between
h and j is reversed (see the proof in Appendix 1.7.4 for a precise example of a
problematic preference profile).

No resource destruction unanimity is also essential for the compatibility between
efficiency and resource equality, as we show in the next proposition.

Proposition 7. On the domain RWBE, if n ≥ 4, no SOF satisfies Strong Pareto
and either Transfer among equals INT or Equal-split transfer.

On RWBE , multiple progressive transfers can lead to an allocation which is
strictly worse for everyone than the pre-transfer allocation. Take a one good world
and the two allocations

Allocations Jane Kumiko Henriqua Madhu
zN 1 1 4 4
z′N 2 2 3 3

For some preference configurations violating No resource destruction unanimity,
we can have zN Pi z

′
N for all i ∈ N , even if z′N is deemed at least as desirable as

zN by Equal-split transfer. Intuitively, this happens when Jane and Kumiko are
harmed so much by the fact that the other receives more resources (and care so
little about Henriqua and Madhu receiving less), that they both prefer allocation
zN .13 In this case, Strong Pareto would require that zN P (RN) z

′
N whereas equality

axioms would require that z′N R(RN ) zN , a contradiction (again see the proof in
appendix 1.7.5 for a precise example of profile).

13In a multi-goods framework, this problem may arise even with anonymous ORP, i.e. ORP in
which agents are indifferent to permutation of the other agents’ bundles in the economy. See the
proof in Appendix 1.7.5.
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A very similar problem arises in domains that violate No altruism. On these
domains, a transfer from Kumiko to Jane may be desirable according to some equal-
ity axiom, in spite of the fact that Jane prefers the pre-transfer allocation out of
altruism for Kumiko. If Kumiko does not care much about Jane receiving less, there
could be a unanimous agreement to go back to the pre-transfer allocation. This
would make Pareto efficiency and equality axioms directly incompatible.

1.4 When ORP Matter for Equality

When ORP are taken into account in the notion of equality, the transfer axioms
considered above are inappropriate in several respects. First, assume that a transfer
from Jane to Kumiko harms Henriqua because of her ORP. If Henriqua is already
disadvantaged as compared to Jane and Kumiko, it is not clear anymore whether
such a transfer fosters equality. To avoid this kind of problem, we will further restrict
our application of Domination among Poor to situations in which the agents not
involved in the transfer are indifferent to the transfer. Such transfer axioms will be
qualified as neutral.

Second, referring back to the example in the introduction, giving more to Jane
may be justified by the fact that Jane suffers more from her social environment than
Kumiko. If the difference in other-regarding feelings is “sufficiently large”, then a
transfer from Jane to Kumiko may not be desirable. Therefore one must define a
welfare dominance condition determining what a “sufficiently large” difference is and
adapt the transfer axioms accordingly.

Another question is how important the bundle dominance condition is to the
social planner (i.e. zj −∆ = z′j >> z′k = zk + ∆ and ∆ >> 0). A resourcist social
planner who cares about ORP might simply adapt the transfer axiom of the former
section by adding a neutrality and a welfare dominance condition. We call this view
a mixed normative position.

An alternative is for the social planner to depart completely from a resourcist
notion of equality. What matters to such an observer is not whether resources are
equalized, but whether, given their ORP, agents secure a similar level of well-being.
This kind of social planner would only retain the neutrality and welfare dominance
condition and discard any concern for bundle dominance. We call this view a non-
resourcist position.

1.4.1 Mixed Normative Position

Let us first adapt the equal-split axiom by defining Neutral equal-split transfer. The
new axiom differs from Equal-split transfer by the addition of a neutrality condition
and a welfare dominance condition. The welfare dominance condition requires that
the agent who benefits from the transfer prefers (Ω/|N |, . . . ,Ω/|N |) to the post-
transfer allocation, while the agent who suffers from the transfer prefers the post-
transfer allocation to (Ω/|N |, . . . ,Ω/|N |). As in Equal-split transfer, the choice of
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(Ω/|N |, . . . ,Ω/|N |) as a reference allocation reflects the idea that (Ω/|N |, . . . ,Ω/|N |)
is a natural welfare lower-bound in our distribution model.

Social ordering axiom 7 (Neutral equal-split transfer). For all RN ∈ D, zN , z
′
N ∈

Z, j, k ∈ N , ∆ ∈ Rℓ
++, if

zj −∆ = z′j >> Ω/|N | >> z′k = zk +∆,

z′N Pj (Ω/|N |, . . . , Ω/|N |), (Ω/|N |, . . . , Ω/|N |) Pk z
′
N ,

z−j,k = z′−j,k, and zN Ii z
′
N for all i 6= j, k ∈ N , then z′N R(RN) zN .

The next fairness axiom adapts Transfer among equals INT in a similar fashion.
If ORP matter for equality, it is not always the case that one wants to redistribute
between agents having the same internal preferences Rint

i . A transfer should, how-
ever, be desirable as soon as two agents have the same global preferences Ri. Then
both agents agree that, even after the transfer, one of them is in a more favorable
position.

Social ordering axiom 8 (Neutral transfer among equals). For all RN ∈ D,
zN , z

′
N ∈ Z, j, k ∈ N , ∆ ∈ Rℓ

++, if

zj −∆ = z′j >> z′k = zk +∆,

Rj = Rk,

z−j,k = z′−j,k and zN Ii z
′
N for all i 6= j, k ∈ N , then z′N R(RN) zN .

An immediate consequence of the way we constructed the two neutrality axioms
is that they are implied by their internal counterparts. In combining resourcism
with a concern for ORP, we had to make the two neutrality axioms more restrictive
than Equal-split transfer and Transfer among equals INT. A corollary of Proposition
2 is therefore that, on RWBE−NRDU , RΩℓex also satisfies Neutral equal-split transfer
and Neutral transfer among equals. Again, RΩℓex is not the only such SOF (the
argument of Proposition 4 still applies). As an example, RRDℓex, which we define in
the next subsection, satisfies the two neutral transfer axioms together with Strong
Pareto, while violating Independence of other-regarding features.

1.4.2 Non-resourcist Position

We now analyze the consequences of departing more clearly from a resourcist concep-
tion of equality. Non-resourcist equality axioms will be called redistributions axioms.
We first define Neutral equal-split redistribution, the non-resourcist version of Neu-
tral equal-split transfer. With Neutral equal-split redistribution, the reduction in
welfare inequalities is guaranteed by the fact that zN Pj z

′
N Pj (Ω/|N |, . . . ,Ω/|N |),

and (Ω/|N |, . . . ,Ω/|N |) Pk z
′
N Pk zN . No additional conditions are imposed.14 In

particular, bundle dominance is not required, and the resources ∆ taken from k and
given to j do not need to be strictly positive.

14Requiring that zN Pj z
′

N is not essential but is meant to distinguish clearly between the Pareto
efficiency and equality axioms. Without this condition, the application of Neutral equal-split
redistribution would overlap with that of Strong Pareto.
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Social ordering axiom 9 (Neutral equal-split redistribution). For all RN ∈ D,
zN , z

′
N ∈ Z, j, k ∈ N , ∆ ∈ Rℓ, if

zj −∆ = z′j , z
′
k = zk +∆,

zN Pj z
′
N Pj (Ω/|N |, . . . , Ω/|N |), (Ω/|N |, . . . , Ω/|N |) Pk z

′
N Pk zN ,

and zN Ii z
′
N for all i 6= j, k ∈ N , then z′N R(RN ) zN .

The next fairness axiom adapts Neutral transfer among equals in a similar fash-
ion. Let πj,k : Z → Z denote a permutation bijection which associates every allo-
cation zN with the allocation πj,k(zN ) obtained by swapping j and k’s bundles. In
πj,k(zN ), j receives zk, k receives zj and the other agents get the same bundles as in
zN . In Neutral redistribution among equals, a redistribution is viewed as reducing
inequalities if j and k have the same preferences, k benefits from the redistribution,
and after the redistribution k is worse off than if her bundle was swapped with j’s
bundle.

Social ordering axiom 10 (Neutral redistribution among equals).
For all RN ∈ D, zN , z

′
N ∈ Z, k, j ∈ N , ∆ ∈ Rℓ, if

zj −∆ = z′j and z′k = zk +∆,

Rj = Rk,

zN Pj z
′
N Pj π

j,k(z′N), π
j,k(z′N) Pk z

′
N Pk zN ,

and z′N Ii zN for all i 6= j, k ∈ N , then z′N R(RN ) zN .

The two redistribution axioms are satisfied by the reference distribution leximin
R
RDℓex. The SOF applies the leximin criterion to an index of individual well-

being that we denote by uRDi for reference distribution. The index uRDi measures
the factor λi which would leave i indifferent between the current allocation and
(λi

Ω
|N |
, 1
λi

Ω
|N |
, . . . , 1

λi

Ω
|N |

), the allocation in which i consumes λi
Ω
|N |

and everyone else

consumes 1
λi

Ω
|N |

. In particular, when λi = 1, agent i is indifferent between the current
allocation and the equal-split allocation.

Definition 3 (Reference distribution Ω-equivalent utility). For all RN ∈ D, for all
zN ∈ Z, i ∈ N ,

uRDi (zN , RN) := λi ⇔ zN Ii

(
λi

Ω

|N |
,
1

λi

Ω

|N |
, . . . ,

1

λi

Ω

|N |

)

The corresponding SOF is

Social ordering function 2 (Reference distribution leximin (RRDℓex)). For all
RN ∈ D, zN , z

′
N ∈ Z

z′N R
RDℓex(RN) zN ⇔ (uRDi (z′N , RN))i∈N ≥ℓex (u

RD
i (zN , RN))i∈N .

When all agents are self-centered, this SOF yields the same social ranking as
R

Ωℓex.
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Proposition 8. On the domain R, RRDℓex satisfies Strong Pareto, Neutral redis-
tribution among equals, and Neutral equal-split redistribution.

Notice that we do not have to restrict the domain to RWBE−NRDU to obtain this
possibility result. This is also true in the mixed normative position. A corollary of
Proposition 8 is that RRDℓex satisfies Strong Pareto, Neutral transfer among equals,
and Neutral equal-split transfer on the whole domain R.

As is clear from the definition of RRDℓex, the SOF relies heavily on the other-
regarding part of preferences. A natural question is again whether the social planner
is forced to use such information on ORP to construct a SOF satisfying the axioms in
Proposition 8. With a non-resourcist notion of equality, it turns out to be the case
(contrary to the resourcist view of Section 1.3 and the mixed position of Section
1.4.1). If a social planner is willing to endorse such a strong departure from a
resourcist conception of equality, she must take ORP into account in the definition
of her SOF, even on RWBE−NRDU .

Proposition 9. On the domain RWBE−NRDU , no SOF satisfies Strong Pareto, Inde-
pendence of other-regarding features and either Neutral redistribution among equals
or Neutral equal-split redistribution.

The intuition of the proof is illustrated in Figure 1.5 and relies on the possibil-
ity to redistribute non-strictly positive amounts of resources between agents. The
depicted economy has only two agents k and j with the same preferences. In this
profile, any agent i envies the other agent only if the internal well-being of the other
agent is higher than i’s internal well-being.

Consider the allocations depicted in the figure. Allocation z′N is constructed
from allocation zN by taking some of k’s good 1 and giving it to j, and by taking
some of j’s good 2 and giving it to k. Although k is internally worse-off after the
redistribution, there exist preference profiles in RWBE−NRDU such that she prefers
allocation z′N , because her internal well-being loss is more than compensated by the
internal well-being loss of j (see Appendix 1.7.7). Then by Neutral redistribution
among equals and Neutral equal-split redistribution, z′N is socially preferred to zN .
These profiles can also be constructed in such a way that z′′N is preferred by both
agents to z′N . Hence by Strong Pareto and transitivity z′′N is socially preferred to zN .
Notice however that in an alternative profile in which both agents have the same
internal preferences but are self-centered, zN is socially preferred to z′′N by efficiency.
So one cannot have Independence of other-regarding features.

1.5 On characterizations and some excluded SOFs

The social ordering axioms we have used throughout the paper are not sufficient to
characterize a class of SOFs. For instance, when ORP do not matter to equality,
one does not have to chose the straight line going through Ω and the origin as a
reference to calibrate the utility levels uΩi . As in the self-centered case (Fleurbaey
and Maniquet, 2011, Appendix 2), any other monotonic path Λ containing 0, Ω

|N |
and
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Figure 1.5: Impossibility to satisfy Independence of other-regarding features with
strict non-resourcism.

Ω could be used in defining an alternative SOF R
Λ−ℓex satisfying the above axioms.

Similarly, when ORP matter to equality, one could define any two increasing and
decreasing monotonic paths Λ+ and Λ− containing both 0 and Ω

|N |
. If these paths

are use to replace the straight lines λiΩ
|N |

and Ω
λi|N |

in the definition of RRDℓex, the
resulting SOF also satisfies the above axioms.

Characterization results using robustness axioms exist in the self-centered case
(Fleurbaey and Maniquet, 2011, Chapter 5) as well as in an ORP model with a
single good (Treibich, 2014). In our multidimensional setting, they are still out of
reach and left for further research. We have obtained preliminary results indicating
that under reasonable robustness conditions (in particular, separability conditions),
transfer axioms and Strong Pareto imply that “leaky” transfers are desirable (a leaky
transfer is a transfer in which what is given to the “poor” agent is less than what is
taken from the “rich” agent). Such results are important building blocks for deriving
characterizations along the lines of Fleurbaey and Maniquet (2011). Yet, a complete
characterization remains unachieved.

This being said, our axioms do constrain significantly the realm of acceptable
SOFs. In the sequel, we provide some intuition about the extent of these restrictions.
We do so by introducing intuitive candidate SOFs and explaining why they are not
acceptable SOFs given our axioms. We focus on the domain RWBE−NRDU and the
fairness axioms Strong Pareto and Neutral equal-split transfer.

First, we consider the family of SOFs R
RD∗ℓex. Each member of this family

is based on a particular reference distribution z∗N which defines a specific index of
individual well-being. This index measures the factor λi that would leave i indifferent
between the current allocation and

(
z∗1 , . . . , z

∗
i−1, λiz

∗
i , z

∗
i+1, . . . , z

∗
n

)
. Notice that z∗N

need not be the equal-split allocation, nor does it need to employ the same bundle
for every agent different from i.
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Definition 4 (Reference distribution* z∗i -equivalent utility). For all RN ∈ D, for
all zN ∈ Z, i ∈ N ,

uRD∗
i (zN , RN) := λi ⇔ zN Ii

(
z∗1 , . . . , z

∗
i−1, λiz

∗
i , z

∗
i+1, . . . , z

∗
n

)

The corresponding SOF is

Social ordering function 3 (Reference distribution leximin (RRD∗ℓex)). For all
RN ∈ D, zN , z

′
N ∈ Z

z′N R
RDℓex(RN ) zN ⇔ (uRD∗

i (z′N , RN))i∈N ≥ℓex (u
RD∗
i (zN , RN ))i∈N .

In general, the SOFs belonging to R
RD∗ℓex violate Neutral equal-split trans-

fer. Indeed, a necessary condition for a leximin SOF to satisfy Neutral equal-split
transfer is that for any two preference relations Ri, Rj ∈ RWBE−NRDU , we have
uRD∗
i ((Ω/|N |)N , RN) = uRD∗

j ((Ω/|N |)N , RN). Intuitively, assume that the condition is
not met and that

j = argmin
i∈N

uRD∗
i ((Ω/|N |)N , RN).

Then one can construct an allocation zN close to (Ω/|N |)N for which Neutral equal-s-
plit transfer recommends a transfer from j to another agent, although j is the
worst-off according to uRD∗

i .
Next, we consider a special case of the former family, which we denote by

R
RD∗∗ℓex. This SOF takes the equal-spit allocation as the reference allocation, i.e.

z∗N = (Ω/|N |)N . As a consequence, RRD∗∗ℓex satisfies Neutral equal-split transfer.

Definition 5 (Reference distribution** Ω-equivalent utility). For all RN ∈ D, for
all zN ∈ Z, i ∈ N ,

uRD∗∗
i (zN , RN) := λi ⇔ zN Ii

(
λi

Ω

|N |
,
Ω

|N |
, . . . ,

Ω

|N |

)
(1.3)

The corresponding SOF is

Social ordering function 4 (Reference distribution** leximin (RRD∗∗ℓex)). For
all RN ∈ D, zN , z

′
N ∈ Z

z′N R
RD∗∗ℓex(RN ) zN ⇔ (uRD∗∗

i (z′N , RN))i∈N ≥ℓex (u
RD∗∗
i (zN , RN))i∈N .

R
RD∗∗ℓex is not a suitable SOF because it is not always well-specified. For cer-

tain preference profiles, there are allocations for which there exists no λi such that
condition (1.3) is satisfied. Assume for instance that agent i is very jealous and
zN = (zi, 0, . . . , 0). Then, there might exists no z′i large enough such that the extra
self-centered satisfaction i gets from consuming z′i instead of zi compensates the fact
that all the other agents now receive Ω

|N |
. R

RDℓex solves this issue by allowing the

reference social environment to change with λi (see definition 3).
Finally, we consider R

RD∗∗∗ℓex. It is based on evaluating i’s well-being index at
zN using a reference social environment in which everyone gets zi, the bundle of
i in zN . Precisely, the index measures the factor λi that would leave i indifferent

between the current allocation and
(
λi

Ω
|N |
, zi, . . . , zi

)
.
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Definition 6 (Reference distribution*** Ω-equivalent utility). For all RN ∈ D, for
all zN ∈ Z, i ∈ N ,

uRD∗∗∗
i (zN , RN) := λi ⇔ zN Ii

(
λi

Ω

|N |
, zi, . . . , zi

)

The corresponding SOF is

Social ordering function 5 (Reference distribution*** leximin (RRD∗∗∗ℓex)). For
all RN ∈ D, zN , z

′
N ∈ Z

z′N R
RD∗∗∗ℓex(RN) zN ⇔ (uRD∗∗∗

i (z′N , RN))i∈N ≥ℓex (u
RD∗∗∗
i (zN , RN))i∈N .

The problem with R
RD∗∗∗ℓex is that it violates Strong Pareto. To see why, con-

sider two allocations zN and z′N such that

(i) zj I
int
j z′j ,

(ii) zj 6= z′j and

(iii) and zi = z′i for all i ∈ N\{j}.

Assume that there is a unique agent k ∈ N whose bundle affects j’s ORP, and
assume further that Rint

j 6= Rint
k . On RWBE−NRDU , we have zN Ii z

′
N for all i ∈ N

by Strong Pareto. Nevertheless, uRD∗∗∗
j (zN , RN ) 6= uRD∗∗∗

j (z′N , RN) since j is not
indifferent between an environment in which k receives zj and another in which k
receives z′j. From these observations, it is easy to see that RRD∗∗∗ℓex will not satisfy
Strong Pareto.

1.6 Conclusion

When it comes to the importance of other-regarding preferences (ORP) for welfare
economics, a traditional argument has been that other-regarding concerns should be
laundered because taking them into account would pave the way for acknowledging
antisocial and degrading traits such as malice, sadism or submissiveness (Harsanyi,
1982). In this paper, we challenge the common wisdom that preference laundering
requires discarding all information about ORP. We argue that appropriate prefer-
ence laundering should depend on the type of normative principles one is willing
to implement. In particular, the same preference laundering should not necessarily
apply to efficiency and equality principles. We show that it is possible to construct
consistent rules for collective decisions that adopt differentiated approaches to pref-
erence launderings (Proposition 2).

Another line of research has focused on determining whether models with ORP
differ significantly from self-centered models in terms of their normative properties.
In general equilibrium theory, for instance, it has been repeatedly found that the
First Welfare Theorem breaks down with ORP. By restricting the domain studied
by Dufwenberg et al. (2011) to preferences satisfying No altruism, we obtain a
different result. When one considers only “negative” ORP, efficiency in terms of
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ORP do not ORP matter to equality
matter to equality

Resourcism Non-resourcism

RWBE−NRDU
R

Ωℓex
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Ωℓex, RRDℓex
R
RDℓex

ROPE−NRDU ∅ R
RDℓex

R
RDℓex

RWBE ∅ R
RDℓex

R
RDℓex

Figure 1.6: Summary of the main possibility and impossibility results. Both SOFs
R

Ωℓex and R
RDℓex use the leximin aggregator on individual indices of well-being,

respectively uΩinti and uRDi . The index uΩinti is independent of ORP: uΩinti (zi, R
int
i ) =

λ⇔ zi I
int
i λiΩ, whereas the index uRDi makes extensive use of ORP: uRDi (zN , RN) :=

λi ⇔ zN Ii

(
λi

Ω
|N |
, 1
λi

Ω
|N |
, . . . , 1

λi

Ω
|N |

)
.

self-centered preferences implies efficiency for the general ORP profile (Proposition
3). As a consequence, the First Welfare Theorem still applies on this restricted ORP
domain.

The literature on general equilibirum has also identified numerous ORP config-
urations for which the Second Welfare Theorem remains valid. This is notably the
case with a condition on ORP known as Social monotonicity (Dufwenberg et al.,
2011). We identify a new condition that we call No resource destruction unanim-
ity and show that it is equivalent to Social monotonicity on a particular domain
of preferences. Therefore, on this domain, efficient allocations can be implemented
via competitive equilibria. However, the question of how to rank different efficient
allocations remains. One way to do so is by using social-ordering functions (SOFs)
based on equality principles.

If one believes that equality is a matter of resources and should not depend on
ORP, we show that it is possible to rank allocations through social-ordering functions
(SOFs) relying solely on self-centered preferences (Proposition 2). One of these SOFs
is R

Ωℓex, a direct adaptation of the Ω-equivalent leximin SOF defined in Fleurbaey
and Maniquet (2006). However, one has some freedom in the construction of SOFs
satisfying equality principles. In particular, one does not have to exclude information
on ORP from the construction of such SOFs. Whether further desirable fairness
axioms would force the social planner to focus only on self-centered preferences is
left as an open question.

Things change if the social observer departs fully from a resourcist notion of
equality and considers that the harm one suffers from her social environment matters
for equality. It is then impossible to construct SOFs that are independent of ORP.
The reference distribution SOF R

RDℓex that we introduce provides an example of
how information about ORP can be used to satisfy this second conception of equality
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together with efficiency.

1.7 Appendix

1.7.1 Proof of Proposition 2

On RWBE−NRDU , the social ordering function R
Ωℓex satisfies Equal-split transfer

and Strong Pareto.

Transfer among equals INT

Take any z′N , zN ∈ Z s.t. z′N R(RN ) zN by virtue of Transfer among equals INT.
By definition of Transfer among equals INT we have zj ≫ z′j ≫ z′k ≫ zk, and
Rint
j = Rint

k = Rint. By Strict monotonicity in own consumption, this implies

zj P
int z′j P

int z′k P
int zk,

which in turn means that uΩintj (zj , Rj) > uΩintj (z′j , Rj) > uΩintk (z′k, Rk) > uΩintk (zk, Rk).
As the uΩinti depend only on the internal preferences, the value of uΩinti is equal in
zN and z′N for all i 6= j, k. Hence z′N R

Ωℓex(RN) zN .

Equal-split transfer

The argument is identical provided that zj ≫ z′j ≫
Ω
|N |

≫ z′k ≫ zk.

Strong Pareto

R
Ωℓex satisfies Strong Pareto INT. By Proposition 3, on RWBE−NRDU Strong Pareto

INT implies Strong Pareto. So R
Ωℓex satisfies Strong Pareto.

1.7.2 Proof of Proposition 4

Let Ω′ be some social endowment non-proportional to Ω. Let R
ΩΩ′ℓex be such that

z′N R
ΩΩ′ℓex(RN ) zN if and only if either z′N P

Ωℓex(RN) zN holds, or z′N I
Ωℓex(RN) zN

and z′N R
Ω′ℓex(RN ) zN holds (Fleurbaey and Maniquet, 2011, chap.5).

As RΩℓex, this SOF satisfies all the axioms of Proposition 2 on RWBE−NRDU . Notice
that RΩΩ′ℓex only alters the ordering of some allocations which are deemed indiffer-
ent under R

Ωℓex.
For every profile RN ∈ RWBE−NRDU , let us define the set of pairs of allocations
which have different rankings under R

Ωℓex and R
ΩΩ′ℓex, A(RN) = {(zN , z

′
N) ∈

Z2 | zN I
Ωℓex z′N and z′N P

ΩΩ′ℓex zN}. The ranking of the pairs of allocations
in A(RN) are not constrained by the set of axioms in Proposition 2. Indeed, there
exist two different SOF (namely R

Ωℓex and R
ΩΩ′ℓex) which satisfy the set of axiom

in Proposition 2 and rank the pairs differently.
So consider any complete ranking R

(
A(RN)

)
of the allocations in A(RN) ⊂ Z which
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does not satisfy Independence of other-regarding features. For example, consider the
following SOF :

z′N R̃
Ωℓex zN ⇔

{
z′N R

Ωℓex(RN ) zN , if (zN , z
′
N) ∈ Z\A(RN)

z′N R
(
A(RN )

)
zN , if (zN , z

′
N) ∈ A(RN)

By construction, R̃Ωℓex satisfies all the axioms in Proposition 2, but does not sat-
isfy Independence of other-regarding features. Notice that SOF R̃

Ωℓex is transitive
by construction: it essentially follows the judgements of the transitive SOF R

Ωℓex

but ranks pairs of allocations judged indifferent by R
Ωℓex according to the ordering

R
(
A(RN)

)
(transitive by assumption). SOF R̃

Ωℓex hence increases the discrimina-
tive power of the SOF R

Ωℓex without altering the strict the judgements of RΩℓex.

1.7.3 Proof of Proposition 5

Consider an economy with two goods z1, z2 and two agents j, k. The agents have
the following preferences:

Preference profile RN :

Uj(zN ) = mj(zj)− βmj(zk),

Uk(zN) = mk(zk)

Preference profile R′
N :

U ′
j(zN) = mj(zj),

U ′
k(zN) = mk(zk)− βmk(zj)

where Rint
j 6= Rint

k and β > 0. The two profiles satisfy No resource destruction una-
nimity as they both contain two agents, one of which is self-centered. Notice however
how the profiles violates Well-being externality, as one agent’s utility depends on
the other’s consumption through her own internal utility function. Consider the two
allocations zN , z

′
N ∈ Z and the internal indifference curves depicted in Figure 1.3.

We have the following contradiction:

z′N P (RN) zN by Strong Pareto,

z′N P (R′
N) zN by Independence of other-regarding features,

zN P (R′
N) z

′
N by Strong Pareto,

1.7.4 Proof of Proposition 6

Let the economy be composed of two goods z1, z2 and four agents, g, h, j, k ∈ N .
Agents j and k share the same internal preferences represented by the internal utility
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function m = mj = mk and so do agents g and h: m′ = mg = mh. Their preferences
are represented by the following global utility functions:

Uj(zN) = m(zj)−
8

11
m(zh),

Uk(zN) = m(zk)−
8

11
m(zg),

Ug(zN ) = m′(zg),

Uh(zN ) = m′(zh),

This preference profile respects both Separability and No resource destruction una-
nimity. Suppose the equal split bundle is (5, 5) and consider the following serie of
allocations represented in Figure 1.7 (the level of internal utility for these allocations
are as represented in the figure):

z1N =
(
(9, 9)︸ ︷︷ ︸
j

, (1, 1)︸ ︷︷ ︸
k

, (1, 9)︸ ︷︷ ︸
h

, (9, 1)︸ ︷︷ ︸
g

)
,

z2N =
(
(8, 8)︸ ︷︷ ︸
j

, (2, 2)︸ ︷︷ ︸
k

, (1, 9)︸ ︷︷ ︸
h

, (9, 1)︸ ︷︷ ︸
g

)
,

z3N =
(
(3, 3)︸ ︷︷ ︸
j

, (7, 7)︸ ︷︷ ︸
k

, (9, 1)︸ ︷︷ ︸
h

, (1, 9)︸ ︷︷ ︸
g

)
,

z4N =
(
(4, 4)︸ ︷︷ ︸
j

, (6, 6)︸ ︷︷ ︸
k

, (9, 1)︸ ︷︷ ︸
h

, (1, 9)︸ ︷︷ ︸
g

)
.

This profile of preferences violates Well-being externality, and induces the following
cycle showing that Strong Pareto and Equal-split transfer or Transfer among equals
INT are not compatible.

z2N R(RN ) z
1
N by Equal-split transfer or by Transfer among equals INT;

z3N I(RN ) z
2
N by Strong Pareto;

z4N R(RN ) z
3
N by Equal-split transfer or by Transfer among equals INT;

z1N P (RN) z
4
N by Strong Pareto, since agent k strictly prefers z1N .

1.7.5 Proof of Proposition 7

Let the economy be composed of two goods z1, z2 and four agents, g, h, j and k.
Consider the following internal utility function,

m(zi) = zi1 + zi2, (1.4)
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Figure 1.7: On RNRDU−OPE, no SOF satisfy Strong Pareto and Equal-split transfer.
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where zim is the quantity of the m-th good in i’s bundle. Suppose the four agents
have the following preferences.

Uj(zN ) = m(zj)− βj
∑

s 6=j∈N

m(zs)

m(zs) + 1
,

Uk(zN ) = m(zk)− βk
∑

s 6=k∈N

m(zs)

m(zs) + 1
,

Ug(zN) = m(zg),

Uh(zN ) = m(zh),

where βj , βk ≥ 0. This profile satisfies Well-being externality but not necessarily
No resource destruction unanimity. As we show hereafter, for βj and βk sufficiently
large, there exist allocations in which j and k would agree together to destroy part
of their resources. Assume the equal split bundle is (3, 3) and consider the two
following allocations

zN =
(
(1, 0)︸ ︷︷ ︸
j

, (0, 1)︸ ︷︷ ︸
k

, (6, 5)︸ ︷︷ ︸
h

, (5, 6)︸ ︷︷ ︸
g

)
,

z′N =
(
(2, ǫ)︸ ︷︷ ︸
j

, (ǫ, 2)︸ ︷︷ ︸
k

, (5, 5− ǫ)︸ ︷︷ ︸
h

, (5− ǫ, 5)︸ ︷︷ ︸
g

)
,

for some ǫ > 0 arbitrarily small.15 Applying Transfer among equals INT or Equal-s-
plit transfer twice, we have z′N R(RN ) zN . But we also have

Uj(z
′
N)− Uj(zN) ≈ 1− βj

[(2
3
+

10

11
+

10

11

)
−
(1
2
+

11

12
+

11

12

)]

︸ ︷︷ ︸
=t>0

,

Uk(z
′
N )− Uk(zN) ≈ 1− βk

[(2
3
+

10

11
+

10

11

)
−
(1
2
+

11

12
+

11

12

)]

︸ ︷︷ ︸
=t>0

,

where the approximation is arbitrarily accurate as ǫ tends to zero. So for βj , βk >
1
t
,

zN Pj z
′
N and zN Pk z

′
N . As zN Pg z

′
N and zN Ph z

′
N , we have zN P (RN) z

′
N by

Strong Pareto, a contradiction.

1.7.6 Proof of Proposition 8

To prove Proposition 8, we first prove that Reference distribution Ω-equivalent utility
is a utility representation of the preferences.

Lemma 1. For any i ∈ N , uRDi is a utility representation of Ri.

Proof. Take any zN , z
′
N ∈ Z such that z′N Ri zN .

By definition of uRDi ,
(
λ′i

Ω
|N |
, 1
λ′i

Ω
|N |
, . . . , 1

λ′i

Ω
|N |

)
Ri

(
λi

Ω
|N |
, 1
λi

Ω
|N |
, . . . , 1

λi

Ω
|N |

)
. By Strict

15The ǫ is needed to meet the conditions of the transfer axiom, i.e. ∆ >> 0.
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monotonicity in own consumption and No altruism this implies that λ′i ≥ λi, and
hence uRDi (z′N , RN) ≥ uRDi (zN , RN). �

Strong Pareto

This is a direct consequence of lemma 1 and the definition of the leximin operator.

Neutral equal-split redistribution

Let z′N R(RN ) zN by virtue of Neutral equal-split redistribution. By definition we
have zN Pj z

′
N and z′N Pk zN so that uRDj (zN , RN) > uRDj (z′N , RN) and uRDk (z′N ) >

uRDk (zN) by lemma 1.
Because of the neutral character of the axiom we have that uRDi (zN , RN) = uRDi (z′N , RN)
for all i 6= j, k ∈ N . Also z′N Pj (Ω/|N |, . . . , Ω/|N |) implies that uRDj (z′N , RN) >
1 by Strict monotonicity in own consumption and No altruism. On the other
hand, (Ω/|N |, . . . Ω/|N |) Pk z

′
N implies that uRDk (z′N) < 1 for the same reason. So

uRDj (z′N , RN) > uRDj (zN , RN) > 1 > uRDk (zN) > uRDk (z′N ), the desired result.

Neutral redistribution among equals

By definition of Neutral redistribution among equals we have zN Pj z
′
N Pj π

j,k(z′N ),
and πj,k(z′N ) Pk z

′
N Pk zN . By lemma 1, and Rj = Rk this implies uRDj (zN , RN) >

uRDj (z′N , RN) > uRDk (z′N , RN) > uRDk (zN , RN). Because of the neutral character of
the axiom we have that uRDi (z′N , RN) = uRDi (zN , RN) for all i 6= j, k.

1.7.7 Proof of Proposition 9

The proof is by contradiction. Assume there exists R satisfying Strong Pareto,
Independence of other-regarding features.

Neutral equal-split redistribution

Consider a profile with two agents j, k ∈ N having the same preferences represented
by the following utility functions:

Uj(zN) =

{
m(zj)−m(zk), if m(zj) < m(zk)

m(zj), if m(zj) ≥ m(zk)

Uk(zN ) =

{
m(zk)−m(zj), if m(zk) < m(zj)

m(zk), if m(zk) ≥ m(zj)

Notice that the induced profile satisfies No resource destruction unanimity. Let the
values of the internal utility functionmi at zN and z′N be as represented in Figure 1.8,
where z′k−zk = zj−z

′
j . We have z′N R(RN ) zN by Neutral equal-split redistribution.

Observe that even if k is internally worse-off after the redistribution, j’s internal
utility loss is sufficient for k’s global utility to increase. Also z′′N P (RN ) z

′
N by
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m = 20

m = −5

zj

z′j = z′′j
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b b z
′′
k

Figure 1.8: On RWBE−NRDU , no SOF satisfies Strong Pareto, Independence of oth-
er-regarding features and any of Neutral equal-split redistribution or Neutral redis-
tribution among equals.

Strong Pareto, so z′′N P (RN) zN by transitivity. Now consider R′
N where j, k ∈ N

have self-centered preferences

uj(zN ) = m(zj),

uk(zN ) = m(zk).

By Strong Pareto, zN P (R′
N) z

′′
N , which contradicts Independence of other-regarding

features.

Neutral redistribution among equals

As Rj = Rk, the same counterexample applies.

1.7.8 Domain of profiles given in example 2

The domain of profiles given in example 2 belongs to RWBE−NRDU . It satisfies
No altruism since αi ≥ 0, Separability because of the additively separable form
of agents’ ORP and Well-being externality as the utility functions is of the form
Ui(zN ) = Ui(mi(zi), mj(zj), mk(zk), . . . ). There remains to prove that No resource
destruction unanimity is satisfied.
Remember that the condition means that for any zN ∈ Z, and any w = (w1, w2, . . . , wN)
with wi ∈ Rℓ

+ and
∑

i wi = w̄ > 0, we have (zN + w) Pj zN , for some j ∈ N .
Let Γi := mi(zi + wi) −mi(zi) be the internal well-being gain obtained by agent i
from the distribution of w. We have that for all i ∈ N , Ui(zN + w) − Ui(zN ) =
Γi −

αi

n−1

∑
j 6=i Γj . No resource destruction unanimity is violated if and only if we

have Γi ≤
αi

n−1

∑
j 6=i Γj for all i ∈ N . We show that the last inequality cannot hold

by contradiction.
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Summing the n previous inequality yields

∑

i∈N

Γi ≤
∑

i∈N

[
αi

n− 1

∑

j 6=i

Γj

]
.

By expending the sum on the right-hand side of this inequality, on can see that

∑

i∈N

[
αi

n− 1

∑

j 6=i

Γj

]
=
∑

i∈N

[
Γi
∑

j 6=i

αj
n− 1

]
,

Let us denote the term in the parenthesis of the right-hand side Γ̃i := Γi
∑

j 6=i
αj

n−1
.

Since by assumption αi < 1 for all i ∈ N , we have Γ̃i < Γi. But then the inequality
cannot hold, therefore our profile must respect No resource destruction unanimity.

1.7.9 Proof of Proposition 1

No resource destruction unanimity implies Social monotonicity on R

Take any zN ∈ Z and any w̄ ∈ Rℓ
++. We will only need to consider the distributions

of w̄ in which each agent receives a share σi ≥ 0 of w̄, with
∑

i∈N σi = 1. That is
the vector of additional resources for any of these distributions σ is the Kronecker
product σ ⊗ w̄ = (σ1w̄, . . . , σnw̄), and the resulting allocation is (zN + σ ⊗ w̄).

Let Σ be the n − 1-dimensional simplex, i.e. the set of all distributions σ. Let
us define the set of σ ∈ Σ which lead to allocations that i strictly prefers to zN ,

Bi := {σ ∈ Σ | (zN + σ ⊗ w̄) Pi zN}.
Similarly, let us define the indifference counter-part of Bi,

Ei := {σ ∈ Σ | (zN + σ ⊗ w̄) Ii zN}.
Given the above notation, a sufficient condition for Social monotonicity to hold

is ∩i∈NBi 6= ∅ and No resource destruction unanimity implies that σ ∈ ∪i∈NBi for
any σ ∈ Σ.

The proof is by induction. It relies on two classes of properties called Subgroup
Social Monotonicity-k (SSMk) and Scale Invariance (SIk−1). In the induction basis,
we prove SSM2 and SI1. The induction step then consists in proving that SSMk

and SIk−1 hold if SSMk−1 and SIk−2 hold. Finally, noticing that SSM |N | implies
Social monotonicity will complete the proof.

We first introduce SSMk, which is a version of Social monotonicity in which the
new resources are only distributed to a subset of agents N ′ ⊆ N , with |N | = k.
For any subset N ′ ⊆ N with |N | = k, let ΣN

′

be the k − 1-simplex, that is the
distributions σ ∈ Σ such that σj = 0 for all j ∈ N\N ′.

Definition 7 (Subgroup Social Monotonicity-k). For all N ′ ⊆ N with |N ′| =
k, for all zN ∈ Z, and for all w̄ ∈ Rℓ

++, there exists a distribution σ∗ ∈ ΣN
′

such that,

(zN + σ∗ ⊗ w̄) Pi zN , for all i ∈ N ′.
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Given the above notations, Subgroup Social Monotonicity-k holds if ∩i∈N ′Bi 6= ∅

for all N ′ ⊆ N with |N ′| = k.
Second, we introduce SIk−1, which states that there is a way to distribute the

complete extra resource among a subset of k agents leaving k−1 of them indifferent
to the initial allocation, while the last agent receives a strictly positive amount of
resources.

Definition 8 (Subgroup Indifference-(k-1)). For all N ′ ⊆ N with |N ′| = k,
for all zN ∈ Z, for all w̄ ∈ Rℓ

++, and for any j ∈ N ′, there exists a distribution
σ∗ ∈ ΣN

′

with σj > 0 such that

(zN + σ∗ ⊗ w̄) Ii zN , for all i ∈ N ′\{j}.

Given the above notations, SIk−1 holds if for all N ′ ⊆ N with |N ′| = k and any
j ∈ N ′, there exists a σ with σj > 0 such that σ ∈ ∩i∈N ′\{j}Ei.

1. Induction basis: We show that both SSM2 and SI1 hold under the assump-
tions of our domain.

First we prove SI1. Take any two agents j, k ∈ N . For SI1 to hold, it is enough to
construct a σ′ ∈ Σ{j,k} with σ′

k > 0 and σ′ ∈ Ej . Notice that by Strict monotonicity
in own consumption, Σ{j} ∈ Bj . Also, by No altruism, Σ{k} /∈ Bj . Thus consider the
continuous path that goes from Σ{j} to Σ{k} along the edge Σ{j,k}. By Continuity,
there must exists some σ′′ ∈ Σ{j,k} with σ′′ ∈ Ej. In order to derive a contradiction,
assume σ′′

k = 0. Then by No altruism and Strict monotonicity in own consumption,
σ′′ /∈ Bk. Because σ ∈ Σ{j,k}, σ′′

h = 0 for all h 6= j, k ∈ N . Thus by No altruism and
Strict monotonicity in own consumption, σ′′ /∈ Bh too. But this means σ′′ /∈ Bi for
all i ∈ N , contradicting No resource destruction unanimity. Hence we must have
σ′′
k > 0, and we found the desired distribution.

Second we prove SSM2. Take any two agents j, k ∈ N . By SI1, there exists
σ′ ∈ Ej ∩Σ{j,k} with σ′

k > 0. As argued above, σ′ /∈ Bh for all h 6= j, k ∈ N because
σ′ ∈ Σ{j,k}. But then by No resource destruction unanimity, σ′ ∈ Bk, as otherwise
no-one is strictly better at σ′. By Continuity, Bk ∩ Σ{j,k} is open in Σ{j,k}. Thus
there exists a 1 dimensional ball b ∈ Σ{j,k} centered in σ′ such that for all σ ∈ b we
have σ ∈ Bk. In particular, there exists σ′′ ∈ Bk ∩ Σ{j,k} with σ′′

k < σ′
k, and hence

σ′
j < σ′′

j . By Strict monotonicity in own consumption, No altruism, and because the
initial σ′ ∈ Ej , we have σ′′ Pj σ

′ which implies σ′′ ∈ Bj ∩ Bk, the desired result.

2. Induction step: If SSMh and SIh−1 hold for all h < k, then SSMk and SIk−1

hold.

First we prove SIk−1. Take any N ′ ⊆ N with |N ′| = k and any j ∈ N ′.
Take N ′ = {1, . . . , k}. We chose {1, . . . , k} for notational convenience and with-

out loss of generality. Consider any distribution

σ ∈ ΣN
′\{1} with σk > 0 and σ ∈ ∩i∈{2,...,k−1}Ei.
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By SIk−2, σ exists. We prove SIk−1 by showing the existence of a continuous
path that lies in the intersection of ΣN

′

and ∩h∈{2,...,k−1}Eh and connects σ to some
distribution in the non-empty set

Σ̄ := {σ̄ ∈ ΣN
′\{k} | σ̄1 > 0 and σ̄ ∈ ∩i∈{2,...,k−1}Ei}.

If such path exists, following the same argument as in the inductions basis,
it must cross E1 at some distribution σ′ ∈ ΣN

′

, as σ ∈ Σ\B1 whereas σ̄ ∈ B1

and preferences are continuous. Again, if σ′
k = 0, then No resource destruction

unanimity is violated as we have σ′ ∈ Ii for all i ∈ N ′\{k}, σ′
k = 0 and σ′

j = 0 for
all j ∈ N\N ′. Thus σ′ has the desired properties and SIk−1 holds.

There remains to prove the existence of such path. We construct it as the limit
of a sequence of sequences {γn}Cn=1, where each sequence corresponds to a different
value of C. For any C, γn ∈ ΣN

′

, γ1 := σ and γC ∈ Σ̄. These sequences are
constructed in such a way that all γn ∈ ∩i∈{2,...,k−1}Ei. In a nutshell, moving from
γn to γn+1 is done as follows. Let γn+1

k = γnk −αγ
1
k for some α ∈ (0, 1), and distribute

the fraction of resource αγ1k among agents in {1, . . . , k − 1} in a way that leaves all
agents in {2, . . . , k − 1} indifferent with γn. Observe that the existence of such
distribution is not implied by SIk−2 as the resources are not added to the economy,
but rather taken from k. If we can prove the existence of such γn+1, the properties
of our domain imply that γn+1

1 > γn1 . By choosing α = 1
C

, we have γCk = 0, and
hence γC ∈ Σ̄. The number C of sequences can be made arbitrarily large, which
will make α arbitrarily small. Thus the sequence of sequences tends to the desired
continuous path.

There remains to prove for all n that it is possible to distribute the resource
αγ1k among agents in {1, . . . , k − 1} in such a way that γn+1

1 > γn1 and γn+1 ∈
∩i∈{2,...,k−1}Ei. The desired distribution γn+1 is constructed using the following pro-
cedure.

• Set γn+1
k

:= γnk − αγ1k.

• Let ρ̂n be such that ρ̂ni := γni for all i ∈ N\{k} and ρ̂nk := γn+1
k . By No

altruism, we have ρ̂n ∈ Bi ∪ Ei for all i ∈ N\{k}.

• By SSMk−2, there exists a way to distribute the share of resources taken from
k among agents in {2, . . . , k−1} so as to leave them all strictly better off than
in ρ̂n. Formally, there exists a ρ ∈ ΣN

′

with

– ρi > γni for all i ∈ {2, . . . , k − 1} and
∑

i∈{2,...,k−1} ρi − γni = αγ1k,

– ρk = γn+1
k ,

– ρj = γnj for all j ∈ N\{2, . . . , k},

such that ρ ∈ Bj for all j ∈ {2, . . . , k − 1}.

• Now consider the set of distributions ρτ obtained by setting ρτj = ρj − τj with
τj ∈ (−∞, ρj] for all j ∈ {2, . . . , k − 1}, and transferring all the resources to
agent 1, that is ρτ1 = ρ1 +

∑
j∈{2,...,k−1} τj . For any τ := (τ2, . . . , τk−1), let ρτ

denote the resulting allocation.
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• We consider a particular subset of such distributions ρτ . Let

T :=
{
τ
∣∣∣

∑

j∈{2,...,k−1}

τj > 0,

and ρτ ∈ Bj ∪ Ej for all j ∈ {2, . . . , k − 1}
}

By Continuity, because ρ ∈ Bj for all j ∈ {2, . . . , k − 1}, there exists τ >> 0
small enough in every dimension to have ρτ ∈ Bj for all j ∈ {2, . . . , k − 1}.
Thus T is non-empty.

• Now let

τ ∗ := arg sup
τ∈T

∑

j∈{2,...,k−1}

τj .

By Continuity and the finiteness of {2, . . . , k − 1}, ∩j∈{2,...,k−1}(Bj ∪ Ej) is
closed, hence ρτ

∗

∈ ∩j∈{2,...,k−1}(Bj ∪ Ej). In fact, as we show below, we must
have ρτ

∗

∈ Ej for all j ∈ {2, . . . , k − 1}. Then setting γn+1 = ρτ
∗

completes
the argument.

• We show that ρτ
∗

∈ Ej for all j ∈ {2, . . . , k − 1} by contradiction. Assume
ρτ

∗

∈ Bj for some j ∈ {2, . . . , k − 1}. Then by Continuity, there exists
τ̃j (small enough) such that, starting from ρτ

∗

, if we take τ̃j away from j’s
resource and distribute it in any way among {1, . . . , j − 1, j + 1, . . . , k − 1},
the resulting allocation remains in Bj. By SSMk−2 and No altruism, we
can choose a redistribution (τ̃1, . . . , τ̃j−1, τ̃j+1, . . . , τ̃k−1) of τ̃j that makes every
agent in {1, . . . , j − 1, j + 1, . . . , k − 1} strictly better off at ρτ̃ than at ρτ

∗

.
Because ρτ

∗

∩j∈{2,...,k−1} (Bj ∪Ej), we get ρτ̃ ∈ ∩j∈{2,...,k−1}Bj . Notice also that
∑

j∈{2,...,k−1}

τ̃j ≥
∑

j∈{2,...,k−1}

τ ∗j (1.5)

Then by the above argument, we can take away some more resources τ̃ >> 0
from all agent in {2, . . . , k−1} and redistribute them to agent 1 while remaining
in ∩j∈{2,...,k−1}Bj (for τ ∗ >> 0 small enough). But this means we just found
some τ̂ ∈ T such that∑

j∈{2,...,k−1}

τ̂j =
∑

j∈{2,...,k−1}

τ̃j +
∑

j∈{2,...,k−1}

τ̃ j >
∑

j∈{2,...,k−1}

τ̃j , (1.6)

which combined with (2.19) contradicts the fact that

τ ∗ = arg sup
τ∈T

∑

j∈{2,...,k−1}

τj .

This completes the proof of SIk−1.

Second we show SSMk holds. Take any N ′ ⊆ N with |N ′| = k and any j ∈ N ′. By
SIk−1, there exists σ′ ∈ ∩i∈N ′\{j}Ii∩ΣN

′

with σ′
j > 0. Since Bj∩ΣN

′

is open in ΣN
′

,

there exists a ball b ∈ ΣN
′

centered in σ′ such that for all σ ∈ b we have σ ∈ Bj .
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Take a fraction of resource from σ′
j sufficiently small such that all its distributions

among agents in N ′\{j} leave j in Bj . Again, by No altruism and SSMk−1, there
exists σ′′ ∈ b such that σ′′ ∈ ∩i∈N ′Bi. This proves the theorem.

Social monotonicity implies No resource destruction unanimity on RWBE

The proof is by contradiction. Take any z00N ∈ Z. Assume that there exists z0N ∈ Z
such that

z0N Ri z
00
N , for all i ∈ N, (1.7)

z0j < z00j , for all j ∈ S ⊆ N, (1.8)

z00k = z0k, for all k ∈ N\S, (1.9)

so that No resource destruction unanimity is violated. We show that if Social mono-
tonicity holds, the existence of such z0N implies a contradiction .

The intuition of the proof relies on the idea that by Social monotonicity, starting
from z0N , we can start redistributing additional resources in arbitrarily small incre-
ments while making everyone better off. If we do so in the appropriate way and
given the contradiction assumption (1.7), we can reach an allocation zπN in which
for some Sn∗ ⊂ S,

zπN Pj z
00
N , for all j ∈ Sn∗ , (1.10)

z00j I intj zπj , for all j ∈ Sn∗ , (1.11)

and zπk P
int
k z00k , for all k ∈ N\Sn∗ .

Then by No altruism and Well-being externality we find a series of allocations
which eventually bring agents in N\Sn∗ back to the bundle they had in z00N , while
preserving (1.10). By Well-being externality again, we can do the same with agents
in Sn∗ , which means everyone is back at z00N . But this induces a contradiction be-
cause we then have z00N Pj z

00
N for all j ∈ Sn∗ .

By Social monotonicity, for any r > 0, there exists some (w1, . . . , wn) ∈ Z+ such
that

∑
i∈N wi = (r, . . . , r) and (z0N + w) Pi z

0
N for all i ∈ N . Now consider figure

1.9. By a standard argument (see for instance (Mas-Collel et al., 1995, Proposition
3.C.1)), because preferences satisfy Strict monotonicity in own consumption and
Continuity, there exists zրN such that for all i ∈ N , zրi I inti (z0i + wi) and zրi =
z0i + (γi, . . . , γi) for some γi ∈ R. Because wi > 0 by assumption and preferences
satisfy Strict monotonicity in own consumption, we have γi > 0, for all i ∈ N .

It will be convenient to use the γi constructed above to define an internal utility
function for agent i. For all zN ∈ Z and for all i ∈ N , let

mi(zi) := γi.

This internal utility function is defined for the particular reference allocation z0.
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uint1 (z01 + w1) = γ̃1

z01 + w1

Figure 1.9: An internal utility function starting from z0.

Notice that because preferences satisfy Separability, mi is indeed a utility repre-
sentation of i’s internal preferences . Also mi is continuous (again, see (Mas-Collel
et al., 1995, Proposition 3.C.1)).

The next lemma shows that starting from any allocation, if we distribute (r, . . . , r)
additional resources following Social monotonicity, there is an upper-bound to the
amount of extra internal utility that can be obtained, and that this upper-bound is
strictly decreasing in r.

To state the lemma, we need some additional notation. For any zN ∈ Z, let
mN(zN ) := (m1(z1), . . . , mn(zn)). Also, for any r > 0 , let M(r, zN ) be the set
of internal utility vectors mN := (m1, . . . , mn) which can be obtained from zN by
distributing (r, . . . , r) and making everyone strictly better off than at zN . Formally

M(r, zN ) :=
{
mN ∈ Rn | mN = mN (ẑN) for some ẑN ∈ Z such that

ẑN = (zN + w), for some w ∈ Z+ with
∑

i∈N

wi = (r, . . . , r),

and for all i ∈ N, ẑN Pi zN

}
.

(1.12)

By Social monotonicity, for any r > 0 and any zN ∈ Z, the set M is non-empty.

Lemma 2 (Upper-bound to extra utility strictly decreasing in r).
For any zN ∈ Z, any r > 0, and any mN ∈M(r, zN ), mN ≤ (mN(zN ) + (r, . . . , r)).

Proof. By definition of M(r, zN ) for all mN ∈ M(r, zN ), there exists some ẑN ∈ Z
such that mN = mN (ẑN) and

ẑi ≤ zi + (r, . . . , r), for all i ∈ N (1.13)
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Now assume there exists m̃N ∈M(r, zN ) such that for some j ∈ N , m̃j > (mj(zj) + r).
This implies that ẑj P

int
j

(
zj + (r, . . . , r)

)
. But by Strict monotonicity in own con-

sumption, this means that there is some good h such that ẑjh > zjh+r, contradicting
(1.13). �

The next lemma shows that for every allocation zN in which every agent i ∈ S
has strictly lower internal utility than at z00N , there exists another allocation z′N
which everyone prefers to zN , in which all agents have strictly higher internal utility
than at zN , but in which agents i ∈ S still have strictly lower internal utility than
at z00N .

From now on, we will denote zS := (zi)i∈S the allocation zN restricted to the
subset of agents in S. Similarly mS(zS) := (mi(zi))i∈S and mS := (mi)i∈S. Also let
m00
N := mN (z

00
N ).

Lemma 3 (Internal utility increasing but still lower than m00
N ).

Take any zN ∈ Z such that mS(zS) << m00
S . There exists z′N ∈ Z such that

z′N Pi zN , for all i ∈ N, (1.14)

mi(zi) < mi(z
′
i), for all i ∈ N, (1.15)

and mj(z
′
j) < m00

j , for all j ∈ S, (1.16)

Proof. Let

r∗ :=
mins∈S

(
m00
s −ms(zs)

)

2
,

and let m′
n := mN (z

′
N) be any element of M(r∗, zN). This construction is illustrated

in Figure 1.10 for the case zN = z0N with two agents. By assumption mS(zS) <<
m00
S , which implies mins∈S

(
m00
s − ms(zs)

)
> 0 and r∗ > 0, so that M(r∗, zN ) is

non-empty.
By definition of M(r∗, zN ) and because preferences satisfy Strict monotonicity in

own consumption, there exists some z′N constructed as in (1.12) such that conditions
(1.14) and (1.15) are satisfied. There only remains to show that at m′

n condition
(1.16) is satisfied.

Because m′
N ∈M(r∗, zN) we can apply Lemma 2 to get



38 CHAPTER 1. FAIR SOCIAL ORDERINGS WITH ORP

b

b

z001

z002

z01

z02

b

b

Rint
1

Rint
2

good 2

good 1

b

b

m00
1

m00
2

b

b z01 + (m′
1, . . . , m

′
1)

z12 + (m′
2, . . . , m

′
2)

m00
1

2
= min

(m00
1 ,m00

2 )

2
= r1

Figure 1.10: Choosing an allocation to satisfy Lemma 3.

m′
N ≤ mN(zN ) + (r∗, . . . , r∗),

m′
S ≤ mS(zS) + (r∗, . . . , r∗),

m′
S ≤ mS(zS) +

(
mins∈S

(
m00
s −ms(zs)

)

2
, . . . ,

mins∈S
(
m00
s −ms(zs)

)

2

)

[by construction of r∗],

m′
S −mS(zS) ≤

m00
S −mS(zS)

2
m′
S −mS(zS) << m00

S −mS(zS) [by m00
S >> mS(zS)],

m′
S << m00

S ,

the desired result.
�

We are now ready to prove the general result.
By construction of z0N and given that preferences satisfy Strict monotonicity in

own consumption, mS(z
0
S) << mS(z

00
S ). So starting from z0N , Lemma 3 applies and

we can obtain z∗N satisfying the conditions (1.14), (1.15) and (1.16) with respect to
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Figure 1.11: Possible allocations associated with t ∈ C, where S = {1, 2}.

z0N . In particular

z∗N Pi z
0
N , for all i ∈ N, (1.17)

Notice that z∗N also satisfies the conditions of Lemma 3. Thus we can apply the
lemma again to z∗N and get a nonempty set of allocations zN such that

zN Ri z
∗
N , for all i ∈ N, (1.18)

mi(z
∗
i ) ≤ mi(zi), for all i ∈ N, (1.19)

and mj(zj) ≤ m00
j , for all j ∈ S,

were we voluntarily turned strict inequalities and preference relations into weak ones.
In particular, the last two inequalities imply

0 ≤ m00
j −mj(zj) ≤ m00

j −mj(z
∗
j ), for all j ∈ S, (1.20)

which in turn implies

0 ≤ max
j∈S

(m00
j −mj(zj)) ≤ max

j∈S
(m00

j −mj(z
∗
j )). (1.21)

Next we define C, the set of maxj∈S(m
00
j −mj(zj)) ∈

[
0,maxj∈S(m

00
j −mj(z

∗
j ))
]
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which can be obtained via some zN satisfying conditions (1.18), (1.19) and (1.20).
Possibles zN are illustrated in Figure 16 for the case of 3 agents. Formally

C :=
{
t ∈
[
0,max

j∈S
(m00

j −mj(z
∗
j ))
]
|

t = max
j∈S

(m00
j −mj(zj)) for some zN ∈ Z satisfying

zN Rj z
∗
N , for all i ∈ N,

mi(z
∗
i ) ≤ mi(zi), for all i ∈ N,

and 0 ≤ m00
j −mj(zj) ≤ m00

j −mj(z
∗
j ), for all j ∈ S

}
.

The rest of the argument follows the intuition we gave at the beginning of the proof,
using the set C to construct the appropriate allocations. We will be interested in
c := inf C. We will consider two cases. In case 1, c = 0. We will show that given
the assumptions on our domain, this means that all agents in S are back to their
initial internal utility level m00

S , which will lead to a contradiction.
In case two, c > 0, and there will be two subcases. In the subcase 1, we will

assume (m00
j − mj(z

∗∗
j )) > 0 for all j ∈ S in which case we will be able to apply

Lemma 3 again and show that c could not have been the infimum of C. In subcase
2, we will assume that (m00

j −mj(z
∗∗
j )) > 0 for some subset of S1 ⊂ S only. Then

we will be able to repeat the whole argument several times up to the point where
Sn∗ brings us back to case 1.

In order to solve those two cases, we will need to associate c with an allocation
that everyone weakly prefers to z∗N . Because c is the infimum of C, and C might not
be closed, we have no guaranteed that c ∈ C, and such allocation might not exist.
However, we will be able to construct it under the assumptions on our domain. The
next part of the proof describes this construction.

By (1.18), (1.19) and (1.20), C is nonempty. Because C is also bounded, c is
well-defined. Because c is the infimum of C, there is a sequence {cg}∞g=1 such that
for all g ∈ N, cg ∈ C, and cg → c. By definition of C this means that there is a
corresponding sequence {z̃gN}

∞
g=1 such that for all g ∈ N,

cg = max
j∈S

(m00
j −mj(z̃

g
j )), (1.22)

z̃gN Rj z
∗
N , for all i ∈ N, (1.23)

mi(z
∗
i ) ≤ mi(z̃

g
i ), for all i ∈ N, (1.24)

and 0 ≤ m00
j −mj(z̃

g
j ) ≤ m00

j −mj(z
∗
j ), for all j ∈ S (1.25)

The next lemma shows that {z̃gN}
∞
g=1 can be turned into a bounded sequence having

similar properties for j ∈ N . By the Bolzano-Weierstrass theorem (Rudin, 1976,
Theorem 3.6 (b)), we will then be able to find a converging subsequence which will
allow us to apply Continuity.

Lemma 4 ( {z̃gN}
∞
g=1 can be turned into an equivalent bounded sequence). Based

on {z̃gN}
∞
g=1, we can construct yet another sequence {ẑgN}

∞
g=1, such that for all g ∈ N,
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ẑgN Rj z̃
g
N , for all j ∈ S, (1.26)

mj(ẑ
g
j ) = mj(z̃

g
j ), for all j ∈ S, (1.27)

and {ẑgN}
∞
g=1 is bounded. (1.28)

Proof. The construction goes as follows.

ẑgj := z0j + (mj(z̃
g
j ), . . . , mj(z̃

g
j )), for all j ∈ S, (1.29)

ẑgk := z00k , for all k ∈ N\S. (1.30)

By construction of ẑN and by definition of mj, (1.27) is immediate. Then by (1.25)
it follows directly that for all j ∈ S and for all g ∈ N,

0 ≤ m00
j −mj(z̃

g
j ) ≤ m00

j −mj(z
∗
j ),

0 ≤ mj(z
∗
j ) ≤ mj(z̃

g
j ).

But then by construction {ẑgS}
∞
g=1 is bounded. Then, because {ẑg

N\S}
∞
g=1 is constant,

{ẑgN}
∞
g=1 is bounded.

We now prove (3.28). By construction we have

ẑgj I
int
j z̃gj , for all j ∈ S. (1.31)

By Separability, this implies

(ẑgS, z̃
g

N\S) Ij z̃
g
N , for all j ∈ S, (1.32)

Now by (1.24), given that z∗N satisfies (1.16) with respect to z0N and that for all
k ∈ N\S, z0k = z00k by assumption, we have

mk(z̃
g
k) > m00

k , for all k ∈ N\S. (1.33)

Therefore by No altruism and Well-being externality

(ẑgS, ẑ
g

N\S) Rj (ẑ
g
S, z̃

g

N\S), for all j ∈ S, (1.34)

which by transitivity implies

(ẑgS, ẑ
g

N\S) Rj z̃
g
N , for all j ∈ S, (1.35)

the desired result.
�

Now by transitivity and (1.23), Lemma 4 implies that for all g ∈ N,

ẑgN Rj z
∗
N , for all j ∈ S, (1.36)

where {ẑgN}
∞
g=1 is as constructed in the lemma. Because {ẑg

N\S}
∞
g=1 is bounded, by

the Bolzano-Weierstrass theorem, the sequence has a converging subsequence, say
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{ẑ
t(g)
N\S}

∞
g=1. Let z∗∗N be the limit of {z̃

t(g)
N\S}

∞
g=1. By Continuity,

z∗∗N Rj z
∗
N , for all j ∈ S. (1.37)

By transitivity, (1.17), and given the contradiction assumption (1.7), we then have

z∗∗N Pj z
00
N , for all j ∈ S. (1.38)

By (1.25) and (1.27) we have that for all g ∈ N

0 ≤ m00
j −mj(ẑ

t(g)
j ), for all j ∈ S, (1.39)

Thus by continuity of mj we get

0 ≤ m00
j −mj(z

∗∗
j ), for all j ∈ S, (1.40)

Also, by (1.22) and (1.27), for all g ∈ N,

ct(g) = max
j∈S

(m00
j −mj(z̃

t(g)
j )) = max

j∈S
(m00

j −mj(ẑ
t(g)
j )),

So by Continuity of m

c = max
j∈S

(m00
j −mj(z

∗∗
j )),

Remember that by definition of C, we have c ∈
[
0,maxj∈S(m

00
j −mj(z

∗
j ))
]
. Finally

notice that because ẑ
t(g)
k = z00k for all k ∈ N\S and every g ∈ N, we also have

z∗∗k = z00k , for all k ∈ N\S. (1.41)

We are now ready to study the two cases mentioned above.

Case 1 : maxj∈S(m
00
j −mj(z

∗∗
j )) = 0. This is equivalent to

0 ≥ m00
j −mj(z

∗∗
j ), for all j ∈ S. (1.42)

By (1.40) and (1.42) we have

0 = m00
j −mj(z

∗∗
j ), for all j ∈ S. (1.43)

By Well-being externality, this means

(z00S , z
∗∗
N\S) Ij z

∗∗
N , for all j ∈ S. (1.44)

But by (1.41),

(z00S , z
∗∗
N\S) = (z00S , z

00
N\S) = z00N . (1.45)

Thus (1.44) can be rewritten as

z00N Ij z
∗∗
N , for all j ∈ S. (1.46)

contradicting (1.38).
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Case 2 : maxj∈S(m
00
j −mj(z

∗∗
j )) > 0. There are two subcases.

Subcase 1 : (m00
j −mj(z

∗∗
j )) > 0 for all j ∈ S. Then notice that the assump-

tions of Lemma 3 hold at z∗∗N . So we can apply the lemma once again
and obtain an allocation z∗∗∗N which is associated with some r∗∗∗ ∈ C such
that r∗∗∗ < c, contradicting the fact that c is the infimum of C.

Subcase 2 : there exists a nonempty S̃1 ⊂ S
with (m00

j −mj(z
∗∗
j )) = 0 for all j ∈ S̃1.

Slightly abusing the notation, let S̃1 be the largest such set. Then for
any j ∈ S1 := S\S̃1, (m

00
j −mj(z

∗∗
j )) > 0. Thus we can repeat the former

steps.

By Well-being externality, we have

(z∗∗S1
, z00
S̃1
, z∗∗N\S) Ih z

∗∗
N , for all h ∈ S. (1.47)

Thus by (1.33), Well-being externality, and No altruism we have

(z∗∗S1
, z00
S̃1
, z00N\S) Rh (z∗∗S1

, z00
S̃1
, z∗∗N\S), for all h ∈ S1. (1.48)

which by transitivity yields

(z∗∗S1
, z00N\S1

) Rh z
∗∗
N , for all h ∈ S1, (1.49)

and

(z∗∗S1
, z00N\S1

) Ph z
00
N , for all h ∈ S1. (1.50)

Notice that this brings us back to an allocation (z∗∗S1
, z00N\S1

) very similar

to z0N , except that the relevant set of agents is now S1 ⊂ S instead of
S. Starting from (z∗∗S1

, z00N\S1
) we can repeat the whole argument as many

times as we want. Every time we do so, we get smaller and smaller sets
Sn ⊂ · · · ⊂ S1 ⊂ S.

Because N is finite, either we reach subcase 1 directly for some Sn∗ and
get a contradiction, or there is some Sn∗∗ with a single agent. But if Sn∗∗

contains a single agent, we again reach Case 1 and get a contradiction.
Hence we are done.
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Chapter 2

A new index combining the absolute

and relative aspects of income

poverty: theory and application

2.1 Introduction

Income poverty reduction is a major political objective, both at national and inter-
national levels. In the past decade, policy makers such as the EU Commission or the
World Bank have adopted quantified poverty reduction targets.1 These targets are
based on income poverty measures, which are composed of two elements: a poverty
line and an index (Sen, 1976). A poverty line specifies the income threshold below
which individuals are considered to be poor. An index aggregates the poverty of
all individuals in a society and, hence, allows us to compare poverty in different
societies.

There exist two central approaches for measuring income poverty, absolute poverty
and relative poverty. They differ in the type of poverty line used. An absolute line
has its income threshold independent of the standard of living whereas a relative
line’s income threshold evolves as a constant fraction of the standard of living. These
two types of lines aim at capturing different deprivations. On the one hand, absolute
poverty refers to the idea of subsistence. An individual is absolutely poor if her in-
come is not sufficient to satisfy several of her basic needs, such as being sufficiently
nourished. In a first approximation, the real cost of subsistence is absolute as it
does not depend on standards of living. For example, 100 grams of rice contain the
same amount of calories in New-York or in New-Delhi. On the other hand, relative
poverty refers to the ideas of social participation or inclusion. An individual is rela-
tively poor if her income is not sufficient to engage in the everyday life of her society
(Townsend, 1979; Sen, 1983). The real cost of not being excluded from social par-
ticipation is relative as it depends on standards of living. The archetypical example
is that of the linen shirt (Smith, 1776). Adam Smith observed that in the England
of his time people would be too ashamed to appear in public without wearing a

1See World Bank (2015) or European Commission (2015).
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linen shirt, which he argued was not the case in the Roman Empire that had a lower
standard of living.2

Many policy makers aim at reducing both the absolute and relative poverties.
These two objectives appear for example in the poverty reduction target of the
EU Commission or in the new twin goals of the World Bank.3 Against absolute
poverty policy makers implement pro-growth policies, which typically reward efforts
at the potential cost of increasing inequalities. Increasing a poor individual’s income
improves her absolute poverty but increasing the inequality she experiences worsens
her relative poverty. Against relative poverty policy makers implement redistributive
policies, some of which may distort incentives. Of course, not all policies induce a
trade-off between growth and equality. Nevertheless, one policy seldom dominates
all the altenative policies in both dimensions.

As the two objectives are not always aligned, policy makers must regularly arbi-
trate between them. Trading-off absolute and relative poverty amounts to answer-
ing the following question: when does unequal growth alleviates income poverty?
A country experiences unequal growth if its economic growth goes along with an
increase in income inequality. That is, all individuals get more resources but the
additional resources go disproportionately more to the middle class and the rich
than to the poor.

One serious difficulty is that the two measurement approaches make opposite
extreme judgments on unequal growth. Hence, they evaluate very differently the
merits of development programs leading to unequal growth. On the one hand,
absolute measures evaluate growth positively, regardless of its distribution. On
the other hand, relative measures judge positively any reduction in the inequality
experienced by the poor, regardless of the poor’s income level. Clearly, neither
absolute measures nor relative measures are able to make this trade-off. Measuring
both forms of poverty in parallel does not solve the issue since, more often than not,
the two approaches yield opposite conclusions.4

This paper proposes a new way to measure poverty that combines the absolute
and relative aspects of income poverty. Previous attempts to develop such a measure

2The normative foundations for taking a relativist approach in poverty measurement are re-
viewed in Ravallion (2008). For instance, Sen (1983) made the case that an absolute level in the
space of capabilities translates into a relative level in the space of resources. Townsend (1979) dis-
cussed how individuals not having the resources for obtaining the living conditions that are widely
encouraged in their society would be excluded from ordinary living patterns, customs and activi-
ties. Runciman (1966) pointed out that the comparison of own income with incomes of better-off
individuals creates a feeling of deprivation.

3In its EU2020 strategy, the EU Commission targets to reduce by 20 millions the number of
individuals that are at risk of poverty or social exclusion (AROPE). The AROPE individuals are
inter alia those individuals that are at risk of poverty (relative poverty) or are severely materially

deprived (absolute poverty). In 2013, the World Bank committed itself to twin goals: eliminating
extreme poverty (absolute poverty) and boosting shared prosperity (relative poverty). The second
objective has a clear relative flavor since it is defined as raising the living standards of the bottom
40% of individuals in any given country.

4A common practice is to use absolute measures in low- and middle-income countries and
relative measures in high-income countries. Official national poverty definitions mostly follow this
practice (Ravallion, 2012) that leads to extreme judgments as explained above.
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followed two different routes. One route proposes to measure both forms of poverty
in parallel before looking for a way to aggregate them (Atkinson and Bourguignon,
2001; Anderson and Esposito, 2013). Unfortunately, this approach is confronted
to several difficulties, including double counting issues. The other route aims at
developing a single measure based on a poverty line making the trade-off between
the absolute and relative aspects of income. The most influential proposals of such
endogenous lines are the hybrid lines (Foster, 1998) and the weakly relative lines
(Ravallion and Chen, 2011). So far, this second route has mostly focused on defining
new poverty lines. Surprisingly, indices to use in combination with an endogenous
line have not been rigorously studied. In empirical applications (Chen and Ravallion,
2013), the default practice is to use an endogenous line in combination with an index
derived for absolute lines, such as the very popular Foster-Greer-Thorbecke (FGT)
indices (Foster et al., 1984).

As shown in this paper, there are two limitations associated with measures com-
bining an endogenous line and an index derived for absolute lines. First, indices
derived for absolute lines loose some of their desirable properties when combined
with endogenous lines. Second, the endogenous measures obtained by this practice
weigh the absolute and relative aspects of income poverty in a questionable way.
They may consider that absolutely poor individuals in low-income countries are less
poor than relatively poor individuals in middle- and high-income countries. The
problem is so serious that these endogenous measures may conclude that there is
more poverty in the latter countries than in low-income countries. In the application,
measures composed of an endogenous line and an FGT index deem Brazil equally
or more poor than Ivory Coast in 2010. Even if income inequality was larger in
Brazil than in Ivory Coast, such judgment could be seriously questioned given that
mean income in Brazil was more than four times larger than that of Ivory Coast.
Moreover, 22.7 % of individuals in Ivory Coast lived on less than 1.25 $ a day – the
World Bank’s threshold for extreme poverty (Ravallion et al., 2009) – but only 5.4%
in Brazil.

Why do measures combining an endogenous line with an FGT index yield this
debatable conclusion? FGT indices implicitly attribute to each individual a value
of individual poverty that depends only on her normalized income, i.e. her income
divided by the income threshold in her society. In 2010, an individual living on 1 $ a
day in Ivory Coast has the same normalized income as an individual living on 3.6 $
a day in Brazil for the weakly relative line used by Chen and Ravallion (2013). As a
result, FGT indices attribute to both the same individual poverty. This conclusion
ignores that, unlike the latter, the individual in Ivory Coast is below the threshold
for extreme poverty. Being extremely poor is not reflected in normalized incomes.
Hence, an extremely poor individual in Ivory Coast can be deemed less poor than
a non-extremely poor individual in Brazil. This problem is not limited to indices
based on normalized incomes but is rather pervasive. It also affects indices based on
absolute gaps, i.e. the distance between the threshold and the individual income.

This paper proposes a new index combining the absolute and relative aspects
of income poverty. In order to avoid the problem faced by standard indices, I
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depart from individual poverty comparisons based on normalized incomes. To begin
with, I define an absolute poverty threshold, which in the application is fixed at
1.25 $ a day. Below this subsistence threshold, an individual is deemed absolutely
poor and her individual poverty does not depend on the standard of living in her
society. For instance, two individuals living with 1.25 $ a day in Ivory Coast and
Brazil contribute identically to poverty in their respective countries. Then, I define
the endogenous poverty line above the absolute threshold. An individual above
the absolute threshold but below the endogenous line is deemed relatively poor.
Her individual poverty depends on the standard of living in her society. In the
application, an individual living on 2 $ a day in Ivory Coast, where the mean is 3
$ a day, contributes identically to poverty as an individual living on 6.8 $ a day in
Brazil, where the mean is 13.8 $ a day.

More generally, I formalize the comparison of individual poverties across societies
having different standards of living by defining the concept of equivalence ordering.
In a nutshell, two individuals that are attributed equal individual poverties are on the
same equivalence curve. I constrain equivalence curves below the absolute threshold
to be independent of standards of living. In contrast, the equivalence curves above
the absolute threshold may evolve with standards of living. The constraints I impose
on equivalence curves imply that absolutely poor agents are always considered poorer
than relatively poor agents. This judgment is in line with largely shared intuitions,
as appeared from questionnaire studies run all over the world by Corazzini et al.
(2011).

This paper has two main theoretical results. First, I characterize a family of
additive indices based on mean-sensitive endogenous poverty lines. In other words,
I identify the set of properties defining a family of indices based on poverty lines
sensitive to mean income. This is the first characterization of indices based on non-
absolute lines. This result extends the characterization of additive indices of Foster
and Shorrocks (1991) to non-absolute lines. Then, I investigate which members of
this additive family satisfy compelling properties. To do so, I define an extended
family of FGT indices based on equivalence orderings meeting the constraints men-
tioned above. This family depends on two parameters, one of which is the poverty
aversion parameter. The second result shows that a unique member of this extended
FGT family satisfies two basic properties. One property is classical and requires that
a progressive transfer between two poor individuals does not increase poverty. The
other property is new and specific to indices based on endogenous lines. It requires
that destroying part of the income of a poor individual does not reduce poverty.
This property excludes all values of poverty aversion except the one associated to
the Poverty Gap Ratio.

The index characterized is new and inherits the properties of its underlying
equivalence ordering. That is, absolutely poor individuals are distinguished from
relatively poor individuals and the former are always considered poorer than the
latter. Being additive, the new index is decomposable between the respective con-
tributions of absolutely and relatively poor individuals. This last feature simplifies
the analysis of the evolution of poverty and its communication.
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Finally, a poverty measure based on the new index is applied to World Bank data.
This application illustrates that the judgments obtained from the new measure are
more in line with general intuitions than those obtained with standard measures.
For instance, the new measure deems Brazil less poor than Ivory Coast. In a second
step, the new measure is used to assess the evolution of poverty in several countries
that experienced unequal growth. Urban China constitutes a proeminent example
because it experienced over the period 1990 – 2010 a strong growth together with
a sharp increase in inequality. The new measure concludes that poverty in urban
China was reduced by about 75% over this period. By decomposing the measure,
one can see that this improvement almost entirely rests on the drastic reduction
in absolute poverty. Absolute poverty accounted for about two-third of income
poverty in 1990, but less than 10% in 2010. This shows that if the main issue in
urban China was absolute poverty in 1990, it has become relative poverty in 2010.
Studying different countries shows that the measure may yield different judgments
on unequal growth. Over the period 1990 – 2010, income poverty did not change
in Mexico as the reduction in absolute poverty was compensated by the increase
in relative poverty. Over the period 1996 – 2010, unequal growth has lead to an
increase in poverty in Hungary where the impact on relative poverty was dominant.
In general, whether unequal growth reduces the poverty measure or not depends on
the initial importance of absolute poverty.

The paper is organized as follows. A literature review is presented in Section
2.2. The framework and the characterization of the additive family are presented
in Section 2.3. The index proposed is derived and discussed in Section 2.4. The
robustness of the results is investigated in Section 2.5. Other income standards
than the mean are discussed in Section 2.6. The empirical illustration is presented
in Section 2.7. I conclude in Section 2.8. All proofs are relegated in the Appendix.

2.2 Literature review

I review in this section the literature on income poverty measurement. More specif-
ically, I present the poverty measures that are popular in empirical applications and
I emphasize their limitations when comparing societies with different standards of
living.

The objective of the literature on income poverty measurement is to rank income
distributions with respect to the poverty they contain. I divide all existing measures
between those based on absolute lines and those based on endogenous lines. Initially,
most contributions were concerned with indices based on absolute lines. This early
literature on absolute measures is nicely reviewed in Zheng (1997).

2.2.1 Absolute measures

Absolute measures are measures based on absolute lines. A poverty line is absolute
if its income threshold does not evolve with standards of living. I make two remarks
on absolute lines in order to avoid any confusion. First, the threshold of an absolute
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line is constant in real terms. To be sure, all incomes in this paper are expressed
in real terms. The threshold of an absolute line is often defined by the cost of a
particular bundle of goods. The line is then “anchored” in that bundle. This does
not prevent the nominal threshold of the absolute line to evolve over time with
inflation or to vary from one country to another as a function of purchasing power.
Second, the bundle of goods “anchoring” an absolute line can potentially capture both
subsistence and social participation for a given society at a given time. Absolute
measures can therefore account for both functionings, but only when comparing two
societies having the same standards of living.

I present here the notation necessary for exposing the relevant results in the
literature on absolute measures. Let an income distribution y := (y1, . . . , yn) be a
list of non-negative incomes sorted in non-decreasing order (y1 ≤ · · · ≤ yn). Absolute
poverty lines are defined by a constant threshold z∗ ∈ R++.5 Agent i qualifies as
poor if yi < z∗. The objective is to rank all distributions in a set Y . Let a poverty
index be a real-valued function P : Y ×R++ → R representing the complete ranking
on Y . For any two y, y′ ∈ Y , there is strictly more poverty in y than in y′ if
P (y, z∗) > P (y′, z∗), and weakly more if P (y, z∗) ≥ P (y′, z∗). The number of poor
agents is denoted q(y) or simply q when no confusion is possible.6 Similarly, the
number of agents in y is denoted n(y) or n. Since income distributions are ordered,
if i ≤ q then agent i is poor.

A central result is the characterization of additive indices. Given an absolute
line, any index satisfying five basic properties must be ordinally equivalent to an
additive index (Foster and Shorrocks, 1991):

P (y, z∗) :=
1

n

n∑

i=1

d(yi), (2.1)

where function d : R+ → [0, 1] is non-increasing in yi and returns zero for all incomes
above z∗. The value returned by the function d can be interpreted as the individual
poverty associated to earning income yi. This individual poverty only depends on
own income (and z∗). An additive index can be interpreted as the average individual
poverty in the distribution.

This family is very broad as very few restrictions are imposed on the function d.
The Foster-Greer-Thorbecke (FGT) subfamily proposes an exponential expression
for the function d (Foster et al., 1984):

P FGT (y, z∗) :=
1

n

q∑

i=1

(
z∗ − yi
z∗

)α
. (2.2)

The FGT family has a unique parameter α ∈ [0,∞), which can be interpreted as
poverty aversion. The larger α, the higher is the priority given by the index to
agents at the bottom of the income distribution. This family allows for a very wide
variety of judgments and admits the Head-Count Ratio (HC) and the Poverty Gap

5R+ denotes the set of non-negative reals and R++ the set of strictly positive reals.
6Although it is not explicit in its notation, q depends on z∗.
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Ratio (PGR) as particular cases:

HC(y, z∗) :=
q

n
corresponds to α = 0,

PGR(y, z∗) :=
1

n

q∑

i=1

(
z∗ − yi
z∗

)
corresponds to α = 1.

Virtually all empirical applications use a poverty measure based on an index in the
FGT family. Many other absolute indices have been proposed, including those of
Kakwani (1980), Chakravarty (1983) or Duclos and Gregoire (2002).

Limitation of absolute measures

Absolute measures are not well-suited for evaluating the impact on poverty of un-
equal growth. Growth increases the standard of living, which in turns raises the
cost of social participation.7 The shortcoming of absolute measures is that they
completely ignore these social participation effects. In a nutshell, they ignore the
relative aspect of income poverty.

Table 2.1 presents an example illustrating the problem. This example compares
the income distributions of two societies A and B, each populated by two agents,
one poor and one non-poor. To fix ideas, assume incomes are given in $ a day. I as-
sume that the subsistence threshold, denoted by za, is $1.25 a day. This subsistence
threshold is smaller than the income threshold z∗ defining income poverty in this
example. Distribution B dominates distribution A but all extra resources go to the
non-poor individual, except for an epsilon. Any absolute measure concludes there is
less poverty in society B than in A. This conclusion is debatable for small epsilon.
If the poor individual has more income in B than in A, she is worse off in A than in
B in the two-dimensional space relevant for poverty evalution: subsistence and so-
cial participation. Indeed, the poor individual is above the subsistence threshold in
both societies but has more difficulties to participate in society B than in society A.8

Table 2.1: Absolute measures ignore social participation effects.

y1 y2 za z∗

Society A 3 15 1.25 5

Society B 3 + ǫ 100 1.25 5

The problem illustrated in Table 2.1 results from the axiom of Focus . This
axiom is satisfied by all indices derived for absolute lines. Focus encapsulates the
key property distinguishing poverty indices from inequality indices, namely that

7This assumption is in line with evidence provided by national poverty thresholds. In purchasing
power parity, national income thresholds tend to increase with standards of living (Ravallion, 2012).

8Empirical Social Choice has shown from questionnaire experiments that resources dominance is
far from being unanimously accepted by respondents as a sufficient normative criteria for concluding
that one distribution is better than another one (Gaertner and Schokkaert, 2012). A tentative
explanation put forward by this literature is that respondents consider other-regarding feelings
and hence would agree with dominance in the space of utilities, but not in the space of resources.
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poverty indices are only concerned with the fate of poor agents. Formally, Focus
requires the index not to be affected by the income of non-poor agents.

Social ordering axiom 11 (Focus).
For all y, y′ ∈ Y and z∗ ∈ R++, if n(y) = n(y′), q(y) = q(y′) and yi = y′i for all
i ≤ q(y), then P (y, z∗) = P (y′, z∗).

A corollary of Focus is that a distribution has the same poverty as its associated
censored distribution, obtained by replacing the income of all non-poor agents by
the income threshold z∗. This axiom, together with a monotonic property, implies
that if a censored distribution first-order stochastically dominates another, then it
has less poverty, excluding social participation effects.

Social participation effects can be accounted for in the identification of poverty
by the use of endogenous lines. However, measures obtained by combining endoge-
nous lines with indices derived for absolute lines fail to give a minimal priority to
subsistence over social participation.

2.2.2 Endogenous measures

Endogenous measures are measures based on endogenous lines. The income thresh-
old of an endogenous line may evolve with standards of living. In practice, the
threshold is endogenously determined by the mediation of an income standard like
mean or median income.

Relative lines are the most famous example of endogenous lines. The threshold
of a relative line evolves as a constant fraction of the income standard. Relative
lines are widely used in developed countries. For example, the “At Risk of Poverty”
measure of the European Commission is based on a relative line. Nevertheless,
relative lines have been heavily criticized, mainly on two grounds (Ravallion and
Chen, 2011). First, their threshold goes to zero in low-income countries, making
clear that subsistence is not accounted for. Second, relative lines are based on a
rather extreme view on social participation. Indeed, any equi-proportionate growth
does not get any individual out of poverty because the threshold is multiplied by the
same factor as the individual incomes. Poverty measures based on an FGT index
together with a relative line are unaffected by equi-proportionate growth. In that
sense, these relative measures ignore absolute gains and losses.

Given the shortcomings of relative measures, a literature emerged with the am-
bition to balance the absolute and relative aspects of income poverty, albeit most
efforts concentrated on identification. Two main routes have been proposed for
endogenous identification.

The first route consists in using two different lines for identification, one absolute
and one relative (Atkinson and Bourguignon, 2001). The absolute line captures
subsistence, referred to as “absolute poverty”, and the relative line captures social
participation, referred to as “relative poverty”. As the relative line’s threshold is
larger than that of the absolute line in high-income countries and smaller in low-
income countries, the two lines cross. As a consequence, some individuals in low-
income countries can be deemed absolutely poor but not relatively poor. If this route
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proposes a meaningful way of identifying the poor, the construction of a good index
based on two lines has proved very difficult. The first solution is to construct two
measures, one based on the absolute line and the other on the relative line. In order
to judge unequal growth, the two measures need to be aggregated. Atkinson and
Bourguignon (2001) suggest to consider the two measures in lexicographic order,
as they judge subsistence to be a more serious component of poverty than social
participation. Lexicographic aggregation unfortunately makes the relative measure
almost irrelevant in poverty judgments. Another possibility is to weight the two
measures (Anderson and Esposito, 2013). The second solution is to derive a unique
index by aggregating the income gaps with respect to each of the two lines (Atkinson
and Bourguignon, 2001). Unfortunately, this raises a problem of double counting for
individuals that are both absolutely and relatively poor. So far, a characterization
of the properties of an index based on two lines remains missing. As a result, there is
no guarantee that measures based on two lines give a minimal priority to subsistence
over social participation.

The second route consists in using a unique endogenous line balancing the abso-
lute and relative aspects of income poverty. Foster (1998) proposes hybrid lines that
feature a constant income elasticity ρ.9 This income elasticity can be interpreted as
the extent to which poor individuals should share the benefits of economic growth.
Absolute lines have an income elasticity of zero and relative lines have an income
elasticity of one, representing two extreme views on this parameter.10 A different
proposal by Ravallion and Chen (2011) suggests using weakly relative lines, whose
income elasticity is zero for low-income countries and then increases with standards
of living, tending ultimately to a value of one. Both hybrid and weakly relative lines
are interesting proposals for identifying the poor. Unfortunately, a characterization
of the properties of an index based on a unique endogenous line remains missing. So
far, all endogenous measures used in empirical applications are based on FGT in-
dices, which are characterized for absolute lines (see for example Chen and Ravallion
(2013)). This is problematic as those indices loose some of their desirable properties
when combined with endogenous lines.

Limitations of endogenous measures

Current endogenous measures are not well-suited for evaluating the impact on
poverty of unequal growth. They give no priority to subsistence over social par-
ticipation. The judgment that subsistence should be given priority over social par-
ticipation is not only the intuition of experts like Atkinson and Bourguignon (2001)
but appears to be largely shared as shown in questionnaire studies conducted in
different parts of the World (Corazzini et al., 2011).

Current endogenous measures consider that some individuals whose income is
below the subsistence level are less poor than other individuals living in a richer

9For a given income standard, letting za be the threshold of an absolute line and zr be the
threshold of a relative line, the hybrid threshold is given by zh = zρaz

1−ρ
r .

10Madden (2000) estimates empirically an upper-bound for the value of this parameter using
Irish data.
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society but whose income is above subsistence level. Notice that I make a pairwise
comparison of individuals living in different societies. Such a comparison cannot
be performed using a standard poverty axiom because axioms compare two dis-
tributions, not two individuals. The issue is nevertheless extremely serious as it
often leads endogenous measures to conclude that there is more poverty in middle
and high-income societies than in low-income societies. In other words, endogenous
measures often conclude that growth increase poverty even if many individuals were
brought above the subsistence level.

Table 2.2 presents an example illustrating the problem. Assume for simplicity
that the endogenous measure uses an FGT index P based on a relative line z whose
threshold is defined as 50% of the mean income (denoted y). For example, index P
could be the HC or the PGR. The normalized income gap of a poor individual is
defined to be one minus her normalized income:

g
(
yi, z(y)

)
:=

z(y)− yi
z(y)

= 1−
yi
z(y)

. (2.3)

FGT indices are then simply the average of normalized income gaps taken to the
power α. The example in Table 2.2 compares the income distributions of two soci-
eties C and D, each populated by two agents, on poor and one non-poor. The poor
individual in society C has income below the subsistence threshold, i.e. below $1.25
a day, whereas the poor individual in society D has income above the subsistence
threshold. Nevertheless, the poor individual in society D has a larger normalized
income gap, implying the endogenous measure concludes there is more poverty in D
than in C.11 Observe that for any other monotonic endogenous line, another example
featuring the same issue can be constructed.

Table 2.2: Endogenous measures give no priority to subsistence ($1.25 a day).

y1 y2 za z(y) g(y1, z(y)) P (y)

Society C 1 5 1.25 1.5 1
3

1
2

(
1
3

)α

Society D 1.5 10.5 1.25 3 1
2

1
2

(
1
2

)α

The problem illustrated in Table 2.2 results from the axiom of Scale Invariance.
This axiom is satisfied by virtually all endogenous measures. This axiom is often
defended on the grounds that it renders the currency units in which income is
measured irrelevant. Formally, Scale Invariance requires the index not to be affected
when the income of all agents are multiplied by the same factor as the income
threshold.

Social ordering axiom 12 (Scale Invariance).
For all y ∈ Y and λ > 0, P (y, z∗) = P (λy, λz∗).

A corollary of Scale Invariance is that a censored distribution has the same
poverty as its associated normalized gaps censored distribution, obtained by replac-

11The HC concludes that there is equivalent poverty in both societies. A conclusion that is also
questionable.
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ing all censored incomes by their normalized gaps. Therefore, whether or not an
individual has income below the subsistence level is irrelevant. The fact that Scale
Invariance imposes more than just the irrelevance of currency units has already
been emphasized by Zheng (2007). This author derives indices satisfying a weaker
property than Scale Invariance. His approach is nevertheless only concerned with
indices based on absolute lines (his indices satisfy Focus).

The empirical illustration provides examples of such debatable judgments by
current endogenous indices, for example when comparing Brazil with Ivory Coast in
2010, as explained in the Introduction.12

I showed that standard measures provide very counter-intuitive judgments when
comparing income poverty between societies with different standards of living. There
is a need for a new measure that can provide sound judgments on unequal growth.
Clearly, no absolute measure can account for social participation effects. Therefore, I
study indices based on a unique endogenous line. As emphasized above, there exists
no characterization of any such index. In the next section, I derive an additive
family of indices based on endogenous lines.

2.3 Additive indices based on endogenous lines

I describe in this section the characterization of a family of additive indices based
on endogenous lines. The family is based on the concept of an equivalence ordering.
The presentation of this new object requires the introduction of additional notation.

2.3.1 Notations and basic restrictions

The notation is a slight modification of the notation used for absolute measures,
presented in section 2.2. Mean income y :=

∑
yi
n

is the income standard capturing
standards of living. This choice and the robustness of the results for other income
standards are discussed in Section 2.6. I refer to yi as the absolute situation of agent
i and yi

y
as her relative situation.

An endogenous poverty line is defined by its associated threshold function z :
R++ → R++ specifying the income threshold z(y) associated to y. Agent i qualifies
as poor if yi < z(y). Letting N := {n ∈ N|n ≥ 3}, the set of income distributions
considered is

Y :=
{
y ∈ RN

+ | y > 0 and yn ≥ z(y)
}
.

For technical reasons, this set excludes lists of zeros and any distribution for which
all agents are poor. These two restrictions are arguably rather mild.

In order to keep the notation minimal, the notation P for poverty indices features
the income distribution as its unique argument, suppressing its dependence on the
line z. A poverty index is therefore a real valued function P : Y → R. For any two

12From a theoretical perspective, societies having different standards of living can be either the
same country at different points in time or two different countries at the same point in time.
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y, y′ ∈ Y , there is strictly more poverty in y than in y′ if P (y) > P (y′), and weakly
more if P (y) ≥ P (y′).

Endogenous lines

This research does not provide a guide for the selection of an endogenous line. The
endogenous line is assumed to be exogenously given. How can a practitioner select
a good line? Ideally, for each value of mean income, the threshold function returns
the minimal cost of a bundle of goods sufficient to secure subsistence and social
participation.13 In practice, such a line could be regressed on the costs of a set
of reference bundles, each bundle constructed for a different country (the sample
should cover countries with different standards of living). A more pragmatic choice
is to select an hybrid or a weakly relative line. Most important is that the line makes
sense in the societies that are being compared.

The selection of an endogenous line is a normative choice. Therefore, this selec-
tion involves some arbitrariness. An important remark is that selecting an endoge-
nous line does not involve more arbitrariness than selecting an absolute line. There
are of course fewer parameters to fix when opting for an absolute line, but this is
precisely because absolute lines assume the income threshold to be constant. This
assumption is as arbitrary as selecting a positive slope for the line. What is more,
this assumption implies that the associated poverty measure ignores completely so-
cial participation effects, as illustrated in Table 2.1.

For the results to hold, the endogenous line must meet two mild restrictions,
besides being continuous. Possibility of Poverty Eradication requires the existence
of an income level that, if earned by all agents, makes all agents non-poor.

EL restriction 1 (Possibility of Poverty Eradication).
There exists g > 0 such that g ≥ z(g).

The restriction Slope Less than One requires that the slope of z at mean income
y, denoted s(y), is never larger than one.14 This restriction implies that if an agent
is not poor in an initial distribution and if her income and mean income increase by
the same amount, this agent cannot be considered poor in the new distribution.

EL restriction 2 (Slope Less than One).
For all y > 0 we have s(y) ≤ 1.

Together, the two restrictions imply there exists a minimal value of mean income
above which poverty-free income distributions always exist.

The presentation of the results is simplified by the introduction of specific sub-
domains of endogenous lines. The intercept of a line – the limit of the function z
when y tends to zero – is denoted by z0.

13This interpretation derives from Sen (1983): “absolute deprivation in terms of a person’s
capabilities relates to relative deprivation in terms of commodities, incomes and resources”. This
interpretation can also be found in Atkinson and Bourguignon (2001).

14Slope Less than One is necessary in order for the line to admit an EO meeting Translation
Monotonicity, defined below.
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• Piecewise-linear lines:
There exists yk ≥ 0 and s̄ ≥ 0 such that for all y ≤ yk, we have z(y) = z0 and
for all y > yk we have z(y) = z0 + s̄(y − yk).

• Monotonic lines:
For all y, y′ > 0 with y < y′, we have z(y) ≤ z(y′) and there exists g > 0 with
g ≥ z(g) such that s(g) > 0.

Finally, linear lines are piecewise-linear lines such that yk = 0, relative lines are
linear lines such that z0 = 0 and s̄ > 0 and absolute lines are linear lines such that
z0 > 0 and s̄ = 0.

Observe that weakly relative lines (Ravallion and Chen, 2011) are piecewise-
linear lines. Both weakly relative lines and hybrid lines (Foster, 1998) are monotonic
lines.

Equivalence orderings

I introduce here the concept of an equivalence ordering (EO). The set of accessible
bundles is

X := {(yi, y) ∈ R+ × R++}.

These bundles are two-dimensional since the individual poverty of an agent depends
on both her income and mean income in her society. Given an endogenous line z,
the set of bundles at which an agent qualifies as poor is

Xp :=
{
(yi, y) ∈ X

yi < z(y)
}
.

An EO is a preference relation for an ethical observer that compares individual
bundles. See Figure 4.4 for examples of EOs.

Definition 9 (Equivalence Ordering).
An equivalence ordering � is a continuous ordering on Xp.

15

The poverty line compares bundles in different societies. An EO extends this
logic below the poverty line. The line is the frontier equivalence curve of the EO,
defining the threshold below which an agent is deemed poor. Let (yi, y) � (y′i, y

′)
denote the judgment that agent i with income yi when mean income is y has a
weakly smaller individual poverty than with income y′i when mean income is y′.
The symmetric and asymmetric parts of � are denoted ∼ and ≻ respectively.

The selection of an EO is a normative choice. This choice is arbitrary to some
extent. As a consequence, some might be afraid that this approach leads to a
significant increase in the arbitrariness of poverty judgments. This is not the case for
two reasons. First, all major poverty measures implicitly define such an EO. Their
EO is constrained by axioms with little ethical content such as Scale Invariance.16

15An ordering is a reflexive, transitive and complete binary relation.
16Another restriction implicitely constraining the EO is Translation Invariance, which requires

the index not to be affected if the income of all agents is increased by the same amount as the
poverty line.
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Figure 2.1: (a) Equivalence curves of a generic EO in R and an income distribution
(y1, y2, y3) ∈ Y . (b) EO implied by an absolute measure. (c) EO implied by a
relative measure.

Second, the choice of an EO is guided by intuitive restrictions excluding exotic
trade-offs between an agent’s absolute and relative situation.

Given an endogenous line, the basic domain R of continuous EO is defined by
three restrictions. Strict Monotonicity in Income requires that, at any mean income,
more income leads to strictly smaller individual poverty.

EO restriction 1 (Strict Monotonicity in Income).
For all (yi, y) ∈ Xp and a > 0, we have (yi + a, y) ≻ (yi, y).

The other two restrictions limit the importance of a poor agent’s relative situation
for her individual poverty. Translation Monotonicity requires that any poor agent is
made weakly better-off by the equal distribution of an extra amount of income. It
seems hard to conceive that the relative situation of a poor agent is made worse by
such an equal distribution of income. As a result, the slopes of the EO’s equivalence
curves are never larger than one.

EO restriction 2 (Translation Monotonicity).
For all (yi, y) ∈ Xp and a > 0, we have (yi + a, y + a) � (yi, y).

Finally, Minimal Absolute Concern requires that an agent with zero income is
strictly poorer than another agent with non-zero income, regardless of the mean
incomes in their respective societies.

EO restriction 3 (Minimal Absolute Concern).
For all (yi, y) ∈ Xp with yi > 0 and y′ > 0, we have (yi, y) ≻ (0, y′).

Domain R is very wide and admits an infinity of different EOs below each en-
dogenous line. This domain is flexible as it admits the implied EOs of standard
poverty measures as special cases. This is for example the case of absolute and
relative measures, as illustrated in Figure 4.4.b and 4.4.c.17 As a result, additive
indices presented in (2.1) are a special case of the family of additive indices based
on endogenous lines that I derive below.

17The EO below a relative line in Figure 4.4.c lies inside the domain R since bundle (0, 0) is
excluded from the set X of bundles.
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2.3.2 Characterization of an additive family

Any poverty index based on an absolute line and satisfying five basic axioms must
have an additive mathematical expression (Foster and Shorrocks, 1991). I extend
this standard result to indices based on endogenous lines. I present here the modified
versions of the basic axioms used for this extension.

An EO captures the trade-offs at the individual level between the absolute and
the relative situation. Domination among Poor requires poverty indices to respect
the individual poverty comparisons encapsulated in an EO. It does so by imposing
a monotonicity requirement in the space of individual poverty distributions, limited
to poor agents. If the individual poverty of one poor agent decreases, while the
individual poverties of all other agents do not increase, then poverty must decrease.

Social ordering axiom 13 (Domination among Poor).
There exists � ∈ R such that for all y, y′ ∈ Y with n(y) = n(y′), if (y′i, y

′) � (yi, y)
for all i ≤ q(y′), then P (y) ≥ P (y′).
If in addition there is j ≤ q(y) such that (y′j, y

′) ≻ (yj, y), then P (y) > P (y′).

Observe that Domination among Poor implies a weak version of Focus . Indeed,
only the situation of poor agents is relevant for the index, but the incomes of non-
poor agents can influence the index via the income standard.

Subgroup consistency is a standard axiom requiring that, if poverty decreases in
a subgroup while it remains constant in the rest of the distribution, overall poverty
must decline.18 Sen (1992) questioned the desirability of this axiom by arguing
that incomes in one subgroup may affect poverty in another subgroup. Foster and
Sen (1997) recommend not to use this axiom when the index aims at capturing
relative aspects of income poverty. I subscribe to this point of view. The issue
becomes transparent once the channel through which one subgroup affects the other
is modeled. In this framework, incomes in a subgroup impact mean income which
affects other poor agents’ individual poverty. If the line is absolute and the EO
features flat equivalence curves (see Figure 4.4.b), relative income does not matter
and subgroup consistency is compelling. If relative income does matter, then it is
not always meaningful to extrapolate the judgments made on subgroups to the whole
population. Weak Subgroup Consistency restricts such extrapolations to cases for
which the incomes in a subgroup do not influence the individual poverty of agents in
the other subgroup. These cases occur when the two subgroups of a population have
the same mean income, implying that the subgroups have the same mean income
as the total population. In such cases, poverty judgments made on subgroups are
relevant for the total population.

Social ordering axiom 14 (Weak Subgroup Consistency).
For all y1, y2, y3, y4 ∈ Y such that n(y1) = n(y3), n(y2) = n(y4), y1 = y2 and
y3 = y4, if P (y1) > P (y3) and P (y2) = P (y4), then P (y1, y2) > P (y3, y4).

18A formal definition of this axiom can be found in Foster and Shorrocks (1991).
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The remaining three auxiliary axioms need no specific modification. Symmetry
requires that agents identities do not matter. Working with sorted distributions is
therefore without loss of generality.

Social ordering axiom 15 (Symmetry).
For all y, y′ ∈ Y , if y′ = y · πn(y)×n(y) for some permutation matrix πn(y)×n(y), then
P (y) = P (y′).

Continuity requires poverty indices to be continuous in incomes. This is impor-
tant for empirical applications in order to avoid measurement errors having excessive
impacts on poverty judgments.

Social ordering axiom 16 (Continuity).
For all y ∈ Y , P is continuous in y.

Replication Invariance permits comparing poverty in distributions of different
population sizes. If a distribution is obtained by replicating another one several
times, then the latter’s poverty equals that of the original distribution.

Social ordering axiom 17 (Replication Invariance).
For all y, y′ ∈ Y , if n(y′) = kn(y) for some positive integer k and y′ = (y, y, . . . , y),
then P (y) = P (y′).

Those five axioms allow us to derive an extension of the additive separability
result of Foster and Shorrocks (1991). Its formal statement needs two definitions.
First, a numerical representation is a continuous function representing an EO.

Definition 10 (Numerical Representation d).
The continuous function d : X → [0, 1] is a numerical representation of � ∈ R if

• for all (yi, y), (y
′
i, y

′) ∈ Xp we have (yi, y) � (y′i, y
′) ⇔ d(yi, y) ≤ d(y′i, y

′),

• for all (yi, y) ∈ X\Xp we have d(yi, y) = 0.

A numerical representation differs from a utility representation of equivalence
levels in two ways. First, it is constant for all equivalence levels above the poverty
threshold. Second, below the poverty threshold, its value decreases when individ-
ual poverty decreases. The values returned by this function can be interpreted as
individual poverty, i.e. the opposite of utility.

Next, I define additive poverty indices which aggregate agents’ individual poverty
by summing them.

Definition 11 (Additive Poverty Index).
P is an additive poverty index if it is ordinally equivalent to another index P̂ : Y →
[0, 1] such that for all y ∈ RN

+

P̂ (y) :=
1

n

n∑

i=1

d(yi, y), (2.4)

where d is a numerical representation of an EO in R.
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Theorem 1 characterizes the family of additive poverty indices based on endoge-
nous lines. This is the first characterization of indices based on endogenous lines.

Theorem 1 (Characterization of additive poverty indices).
Let P be a poverty index based on an endogenous poverty line. The following two
statements are equivalent.

1. P is an additive poverty index.

2. P satisfies Domination among Poor, Weak Subgroup Consistency, Symmetry,
Continuity and Replication Invariance.

Proof. It is easy to check that additive poverty indices satisfy these five axioms, so
the proof that statement 1 implies statement 2 is hence omitted. The proof of the
reverse implication is in Appendix 2.9.1. In a nutshell, the proof shows that the
result on additive separability of Gorman (1968) applies. The crucial assumption to
verify is that the index satisfies a separability property. After applying Theorem 1
in Gorman (1968), the remaining part of the proof is a modification of Foster and
Shorrocks (1991). �

The difference with the result of Foster and Shorrocks (1991) is that numerical
representations of individual poverty depend now on two-dimensional bundles, made
of own income and mean income. This new dependence on mean income vanishes if
the line is absolute and the EO has only flat equivalence curves.

The family of additive indices is very broad. Choosing an index in that family
requires selecting both an EO below the line and a numerical representation for this
EO. I show in the next section that both normative choices can be deduced from
largely shared intuitions. A new index emerges then as the focal additive index with
good properties.

2.4 A new index with good properties

In this section, I first describe how to select an EO and its numerical representation
from largely shared intuitions. Then, I present the index defined by these choices
and show that this index is workable, it distinguishes absolutely poor agents from
relatively poor agents and it is decomposable between the contributions of these two
kinds of poor agents.

2.4.1 Selection of an equivalence ordering

The example given in Table 2.2 showed that endogenous measures satisfying Scale
Invariance give no priority to subsistence over social participation. The EO of an
endogenous measure satisfying Scale Invariance has its equivalence curves evolve as
constant fractions of the income threshold. Geometrically, these equivalence curves
are homothetic.
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Figure 2.2: (a) Absolute-homothetic EO below the endogenous line z. (b) Homoth-
etic EO below the endogenous line z and two income distributions yC and yD in Y .
The homothetic EO deems the poor agent in distribution yC to be less poor than
the poor agent in distribution yD, even if the latter earns income above the absolute
threshold za.

An EO giving priority to subsistence can never consider that an agent whose
income is below the subsistence threshold is less poor than another agent whose
income is above, regardless of the standards of living in their respective societies.
Accordingly, when comparing two agents with incomes below subsistence, the one
with larger income can not be judged poorer than the other, independently of their
respective relative situations. Only EOs having all their equivalence curves flat up
to the subsistence threshold satisfy these intuitions.19

I define a subdomain of EOs based on a fourth restriction. Restriction Abso-
lute-Homotheticity, illustrated in Figure 2.2.a, is defined from the absolute threshold
za. This parameter can be interpreted as the subsistence threshold or alternatively
as the threshold for absolute material deprivation. EOs satisfying Absolute-Homo-
theticity have all their equivalence curves flat up to za. This condition is formally
expressed in part (i).

EO restriction 4 (Absolute-Homotheticity).
There exists za ≥ 0 such that for all (yi, y), (y

′
i, y

′) ∈ Xp:

(i) Priority to subsistence over social participation.
if yi = y′i ≤ za then (yi, y) ∼ (y′i, y

′),

(ii) Homothetic equivalence curves above the absolute threshold.

if yi, y
′
i ≥ za and yi−za

z(y)−za
=

y′i−z
a

z(y′)−za
, then (yi, y) ∼ (y′i, y

′).

(iii) Cost of social participation is never zero.
if za > 0, then za < z0.

19I assume that the cost of subsistence – and hence the subsistence threshold – does not evovle
with the standard of living.
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Part (ii) of the restriction requires the equivalence curves above za to evolve as
constant fractions of the distance between za and the income threshold. This sim-
plifying assumption is a natural default option in the absence of reasons to deviate
from it. In Section 2.5, I show that if equivalence curves above za deviate too much
from homotheticity, then there exists no numerical representation of the EO with
good properties.

The last part is technical and needed for some results, even though it has some
normative content. Part (iii) requires the cost of social participation to be strictly
positive, even in low-income societies. Ravallion (2012) defends this point by giving
several examples of expenditures playing a social role in low-income countries such
as festivals and celebrations.

Given that restriction Absolute-Homotheticity incorporates important intuitions,
the selected EO should meet this restriction. Before turning to the selection of a
numerical representation for an absolute-homothetic EO, I make two important
remarks on this subdomain of EOs.

Given an endogenous line, the only parameter of the absolute-homothetic sub-
domain is the absolute threshold za. A particularly interesting feature of absolute-
homothetic EOs is that they allow categorizing poor agents between those that are
absolutely poor and those that are “only” relatively poor. An equivalent categoriza-
tion can be found in Foster et al. (2013). This categorization implies that relatively
poor agents are never absolutely poor, contrary to the categorization obtained when
identifying the poor with two lines that cross (Atkinson and Bourguignon, 2001).

Let the homothetic EO be the absolute-homothetic EO for which za = 0. As
illustrated in Figure 2.2.b, the homothetic EO does not give priority to subsistence
over social participation. Absolute measures are based on the homothetic EO below
an absolute line. Standard endogenous measures are based on the homothetic EO
below an endogenous line. This shows that the absolute-homothetic domain of EOs
generalizes the implied EOs of standard measures.

2.4.2 Selection of a numerical representation

Having selected an absolute-homothetic EO by fixing the absolute threshold, the
only element of the additive index remaining unspecified is the EO’s numerical rep-
resentation. Many numerical representations should be discarded for their counter-
intuitive judgments. I consider two properties that strongly constrain the set of
acceptable numerical representations.

The first property is specific to poverty indices considering both the absolute and
relative aspects of income. In such a framework, increasing the income of an agent
entails a worse relative situation for the others. Poverty indices must balance those
gains and losses without giving excessive importance to relative losses. Monotonicity
in Income requires that decreasing the income of some poor agent never leads to an
unambiguous poverty reduction.

Social ordering axiom 18 (Monotonicity in Income).
For all y, y′ ∈ Y , if yi < y′i < z(y′) and y′j = yj for all j 6= i, then P (y) ≥ P (y′).
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When a poor agent’s income increases, her individual poverty decreases as both
her absolute and relative situation improve. On the other hand, mean income in-
creases and this might increase the individual poverty of other poor agents, depend-
ing on the EO.20 Moreover, the income threshold might increase and some agents
who were non-poor might therefore become considered as poor. Monotonicity in
Income requires that the positive impact of such an income increase is dominant.
Observe that the larger the number of agents, the lower is the impact of such an
income increase on mean income and hence on the individual poverty of others.

It is worth emphasizing that the Head-Count Ratio, when combined with an
endogenous line, can conclude that destroying part of the income of a poor agent
reduces poverty. The problem is illustrated in Table 2.3. The relative line z has its
threshold equal to 50% of mean income. The distribution in society F is obtained
from the distribution in society E by decreasing the income of poor agent 1. Never-
theless, the HC concludes there is more poverty in society E than in F.

Table 2.3: Index HC violates Monotonicity in Income.

y1 y2 y3 z(y) HC(y)

Society E 2.5 3 12.9 3.1 2
3

Society F 2 3 12.9 2.9 1
3

The second property is a standard requirement that most poverty indices satisfy.
Transfer among Poor requires that a Pigou-Dalton transfer taking place between
two poor agents never unambiguously increases poverty.21 This property is still very
compelling when using mean income as an income standard since balanced transfers
do not alter the mean. As a result, the individual poverty of agents not involved in
the transfer is preserved.

Social ordering axiom 19 (Transfer among Poor).
For all y, y′ ∈ Y and λ > 0, if yj − λ = y′j > y′k = yk + λ, z(y) > yj and y′i = yi for
all i 6= j, k, then P (y) ≥ P (y′).

I investigate which additive indices respect both properties. It is well-known
that poverty indices satisfying Transfer among Poor are based on convex numerical
representations. Monotonicity in Income is a new axiom in this context and I show
below that it has a strong discriminative power.

A central result of this paper is that – when selecting an absolute-homothetic
EO below a monotonic line – there is a unique numerical representation belonging
to the extended Foster-Greer-Thorbecke family that satisfies both Monotonicity in
Income and Transfer among Poor . Before formally stating this result in Theorem
2, I define this family of numerical representations.

20The individual poverty of absolutely poor agents is not affected as their equivalence curve is
flat for absolute-homothetic EOs.

21A Pigou-Dalton transfer is a progressive balanced transfer preserving the relative ranks of the
two agents involved in the transfer.
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Beyond the subdomain of homothetic EOs, the graph of a numerical represen-
tation depends on the particular mean income at which it is drawn. As a result,
the mathematical expression of a numerical representation depends on the refer-
ence mean income, denoted by yr, at which it is expressed. Defining a particular
family of numerical representations requires introducing a function that specifies for
each bundle the income yielding the same individual poverty at the reference mean
income.22

Definition 12 (Equivalent Income Function at yr).
For any � ∈ R and yr > 0, the equivalent income function er : X → [0, z(yr)] is
the continuous function such that for all (yi, y) ∈ X: (yi, y) ∼

(
er(yi, y), y

r
)
.

Given the restrictions on the domain R of EOs, the equivalent income function
is well-defined.23 Using the concept of equivalent income function, I propose an
extension of the Foster-Greer-Thorbecke (FGT) family of numerical representations.

Definition 13 (Extended FGT Family).
For any given EO in R, the numerical representation d belongs to the extended FGT
family if there exist yr ≥ 0 such that for all (yi, y) ∈ Xp:

d(yi, y) =

(
z(yr)− er(yi, y)

z(yr)

)α
with α ≥ 0,

where er is the equivalent income function at yr.

The extended FGT family depends on two parameters: the reference mean in-
come yr at which d takes an exponential expression and the exponent α, interpreted
as poverty aversion. For homothetic EOs, this family coincides with the standard
FGT family presented in (2.2) since the mathematical expression of their numerical
representation does not depend on the reference mean income.

In the extended FGT family, each value of poverty aversion defines a subfamily
whose members are parameterized by the reference mean income. For example, the
PGR at yr is the numerical representation that is linear (α = 1) at mean income yr.
The PGR at the origin, defined by yr = 0 and illustrated in Figure 2.3, plays a key
role in the remainder of this paper.

Theorem 2 formalizes the central result showing that in the extended FGT family,
only the PGR at the origin satisfies Monotonicity in Income and Transfer among
Poor .

Theorem 2 (Characterization of PGR at the origin).
Let z be a monotonic line. Let P be an additive poverty index based on an absolute-
homothetic EO below z with a numerical representation in the extended FGT family.

22As the case y = 0 is ruled out from my domain, the definition of this function must be modified
if yr = 0. The function e0, the equivalent income function at y = 0, is defined from ey

′

with y′ > 0.
Take any (yi, y) ∈ X , e0 : X → [0, z0] is the continuous function such that for all ǫ > 0 there is
δ > 0 such that if y′ < δ, then |e0(yi, y)− ey

′

(yi, y)| < ǫ.
23The existence of an equivalent income function at any value of mean income is guaranteed for

all EO’s in our domain by restriction Minimal Absolute Concern. Furthermore, it is a function –
it returns a unique value – since EOs meet restriction Strict Monotonicity in Income and since its
domain of images is bounded above by the income threshold.
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1. P satisfies Monotonicity in Income only if:

α = 1.

2. P satisfies Monotonicity in Income and Transfer among Poor if and only if:

α = 1 and yr = 0,
that is, d is the PGR at the origin.

Proof. See in Appendix 2.9.3. The proof is based on Lemma 6, presented in Ap-
pendix 2.9.2, which gives a necessary condition and a sufficient condition for an
index to satisfy Monotonicity in Income. �

Theorem 2 shows that a unique member of the very rich extended FGT family
satisfies both properties.

Claim 1 shows that Monotonicity in Income is responsible for the largest part
of the result. First, among all values of poverty aversion, only the one associated to
the PGR is acceptable. This characterization of the poverty aversion’s value is due
to the exponential mathematical form of the extended FGT family. For the case
α < 1, as the income of a poor agent tends to the income threshold, the priority
granted to her over – say – an absolutely poor agent tends to infinity. Therefore,
when the income of an absolutely poor agent increases, the individual poverty of
a relatively poor agent close to the income threshold is negatively affected and the
index concludes poverty has increased. The case α > 1 is plagued with the reverse
problem. As the income of a poor agent tends to the income threshold, her priority
over other poor agents tends to zero. An increase in her income can be negatively
judged by the index. Second, not all members of the PGR at yr subfamily satisfy
Monotonicity in Income. If the monotonic line is piecewise-linear, then the PGR at
yr satisfies the axiom if and only if yr is below an upper-bound whose value depends
on the parameters of the line and the absolute threshold.24

Claim 2 shows that Transfer among Poor further restricts the acceptable mem-
bers of the PGR subfamily to a unique index. If the reference mean income is not
yr = 0, then there exist mean incomes at which the numerical representation is con-
cave, which violates Transfer among Poor . To see why, consider Figure 2.3. When
drawn at the reference mean income, the graph of the PGR at y is linear, as shown in
Figure 2.3.b for the PGR at the origin. When drawn at a larger mean income than
the reference, its graph is piecewise-linear and convex because the income threshold
is then larger than at the reference mean income, as shown in Figure 2.3.c for the
PGR at the origin. If the reference value for mean income is not zero, then there
exists values of mean income at which the income threshold is lower than at the
refence mean income and the graph is piecewise-linear and concave.

24The proof for this claim can be found in Appendix 2.9.3. The intuition for the upper-bound
goes as follows. The larger the reference mean income yr, the lower is the individual poverty
gain made when bringing an agent with zero income to the absolute threshold. In other words,
the larger yr, the lower the priority of absolutely poor agents over relatively poor agents. This
priority tends to zero when yr tends to infinity. In this sense, the upper-bound requires the index
to guarantee a minimal priority to absolutely poor agents.
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Figure 2.3: (a) Poverty Gap Ratio at the origin representing an absolute-homothetic
EO (its values d are indicated at the end of three equivalence curves). (b) Graph
of the PGR at the origin drawn at y = yr = 0. (c) Graph of the PGR at the origin
drawn at y = y1.

The PGR at the origin representing an absolute-homothetic EO defines a new
index of poverty. I present this new index in the coming subsection.

2.4.3 Presentation of the new index

Given an endogenous line z, how can the practitioner compute the index identified
above?

The first step is to select an absolute-homothetic EO by fixing the absolute
threshold za. The value for parameter za is selected to be either the subsistence
threshold or a meaningful threshold for absolute material deprivation for the em-
pirical question tackled by the practitioner. The choice of za defines an absolute-
homothetic EO. The second step is mechanical and simply amounts to computing
the mathematical expression of the index P . This mathematical expression, illus-
trated in Figure 2.3, is the PGR at the origin for the selected EO.

In practice, from distribution y with mean income y, compute the censored dis-
tribution ŷ by setting the income of all non-poor agents equal to z(y). Compute then
the equivalent gap distribution g0 from the censored distribution ŷ. The equivalent
gap of agent i is defined as:

g0i :=
z0 − e0(ŷi, y)

z0
, (2.5)

where e0(ŷi, y) is the equivalent income at y = 0 given the selected EO, and z0 is
the intercept of the endogenous line. See Section 2.7 for an empirical illustration.

The new index is then simply the average equivalent gap:

P (y) :=
1

n

n∑

i=1

g0i .

Notice that the equivalent gap is different from the normalized gap presented in
(2.3). The conceptual difference is that the former gives priority to subsistence over
social participation by comparing individual situations using an absolute-homothetic
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EO. The equivalent gap is only equal to the normalized gap in the special case in
which the EO is homothetic (za = 0), thereby denying the existence of an absolute
form of poverty.

Interesting features of the index

I argue in what follows that this new index is conceptually simple, it yields judgments
in line with intuitions and it is decomposable between absolute and relative poverty.

The index is conceptually simple for two main reasons. First, the index makes
a clear distinction between absolutely poor agents and relatively poor agents. The
latter are never considered to be poorer than the former. Then, its expression is
the average equivalent gap, interpretable as the average individual poverty in the
population.

This additive index satisfies both Monotonicity in Income and Transfer among
Poor . Furthermore, the index inherits the judgments of its absolute-homothetic EO.
I emphasize that, when comparing poverty using this index:25

• An extra dollar has the same impact on global poverty when it is given to
an absolutely poor agent in a low-income country as when it is given to an
absolutely poor agent in a high-income country.

• An extra dollar has more impact on global poverty when it is given to a rela-
tively poor agent in a low-income country than when it is given to a relatively
poor agent in a high-income country. Even if bringing an agent from the
subsistence threshold to the poverty threshold has the same impact on her in-
dividual poverty in both countries, it is more costly to do so in the high-income
country.

• Growth, however unequally distributed, decreases the individual poverty of
absolutely poor agents.26

• On the contrary, growth should not be too unequally distributed in order for
the individual poverty of relatively poor agents to decrease.

A corollary of the last two bullet points is that this index concludes that growth,
if strong enough, eventually eradicates absolute poverty but not necessarly relative
poverty. Whether the latter form of poverty is eventually eradicated depends on the
distributive aspects of growth.

Finally, this additive index is decomposable between the absolute and relative
aspects of income poverty. Absolutely poor agents have income below the absolute
threshold za, whereas relatively poor have income between the absolute threshold
and the poverty threshold in their society. The numerical representation attributes

25Remember that from a theoretical perspective, comparing two different countries or the same
country at different points in time is equivalent.

26This judgment resonates with the ideas of Sen (1983): “If there is starvation and hunger, then
- no matter what the relative picture looks like - there clearly is poverty. In this sense, the relative
picture – if relevant – has to take a back seat. . . ”
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an individual poverty equal to zero for non-poor agents and equal to one for agents
with zero income. The key parameter za

z0
measures which fraction of the zero-one

range is attributed to absolute poverty. This fraction corresponds to the evolution
of the individual poverty of an agent, from 1 to 1 − za

z0
, when bringing her income

from zero to the absolute threshold. The complement of this fraction is attributed
to relative poverty. Hence, the individual poverty d(yi, y) of an absolutely poor
agent can be decomposed between its absolute contribution daa(yi, y) and its relative
contribution dar(yi, y),

d(yi, y) = daa(yi, y) + dar(yi, y),
where

daa(yi, y) :=
za − yi
z0

,

dar(yi, y) :=
z0 − za

z0
.

The individual poverty of a relatively poor agent is directly equal to its relative
contribution dr(yi, y). Let qa be the number of absolutely poor agents in y. By
definition, the number of relatively poor agents equals q − qa. The index can be
decomposed in the following way:

P (y) = P a(y) + P r(y), (2.6)
where

P a(y) :=
1

n




qa∑

i=1

daa(yi, y)

︸ ︷︷ ︸
1

+

qa∑

i=1

dar(yi, y)

︸ ︷︷ ︸
2


 , (2.7)

P r(y) :=
1

n




q∑

i=qa+1

dr(yi, y)

︸ ︷︷ ︸
3



. (2.8)

Index P is hence decomposable between the contribution P a of absolutely poor
agents and the contribution P r of relatively poor agents. The contribution of abso-
lutely poor agents can be further decomposed. Term 1 in (2.7) measures the absolute
contribution due to their individual poverty, coming from earning less than the sub-
sistence threshold. Term 1 is ordinally equivalent to the PGR based on an absolute
line whose threshold is the absolute threshold. Term 2 measures the relative con-
tribution due to the individual poverty of absolutely poor agents. Term 3 in (2.8)
accounts for the individual poverty of relatively poor agents, and therefore measures
the relative poverty of relatively poor agents. Terms 2 and 3 together measure the
total relative poverty in the population.

A last remark relates to the key parameter za

z0
. Given a particular poverty line,

the domain of absolute-homothetic EOs has the absolute threshold as the unique
parameter. Therefore, the index proposed is technically a family of indices, parame-
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terized by za

z0
. If this fraction tends to one, the index tends to consider absolute and

relative poverty in lexicographic order. In this case, any two income distributions
are first compared based on the absolute poverty of absolutely poor agents, using
term 1 in (2.7). If the comparison is non-conclusive, then relative poverty enters the
picture. On the other hand, if za

z0
tends to zero, there exist no absolutely poor agents

and the index becomes the standard PGR based on the endogenous line. These two
limit positions are rather extreme and the value of this fraction should hence not
deviate too much from one half. Most importantly, the parameter za should be a
meaningful absolute threshold for the question tackled.

Given its interesting features, this index is a good candidate for comparing
poverty between societies having different standards of living. I conduct an empiri-
cal application using this index in Section 2.7. In the next two sections, I investigate
the robustness of Theorems 1 and 2 to several assumptions.

2.5 Robustness with mean income as the income

standard

I show in this section that, when mean income is the income standard, any other
index satisfying Monotonicity in Income and Transfer among Poor should be “close”
to the index presented above.

2.5.1 Outside the extended FGT family

The very sharp conclusions of Theorem 2 are valid for numerical representations in
the extended FGT family. I investigate in this subsection the robustness of these
conclusions outside that family. I show by means of an example that, for other
families, the discriminating power of Monotonicity in Income is less strong but the
PGR at the origin still emerges as the focal numerical representation. Any other
numerical representation satisfying Monotonicity in Income and Transfer among
Poor must be close to the PGR at the origin.

For simplicity, the poverty line is linear and the EO is homothetic. Given these
assumptions, I define the quadratic family of numerical representations. This family
has no particular ethical appeal but is useful to illustrate the trade-off emerging
from Monotonicity in Income.

Definition 14 (Quadratic Family).
For any homothetic EO, the numerical representation d belongs to the quadratic
family if for all (yi, y) ∈ Xp:

d(yi, y) =

(
1−

yi
z(y)

)
+ α

((
yi
z(y)

)2

−
yi
z(y)

)
with α ∈ [−1, 1].

The quadratic family admits a unique parameter α interpreted as poverty aver-
sion. The case α = 0 corresponds to the standard PGR. Quadratic poverty indices
satisfy Domination among Poor only when α belongs to [−1, 1], a range which allows



2.5. ROBUSTNESS 71

yi
z(ȳ)
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Figure 2.4: (a) Numerical representations in the quadratic family for three different
values of the poverty aversion parameter α. (b) The upper and lower bounds on the
poverty aversion parameter α evolve monotonically as a function of the slope s̄ of
the line.

for much less variety of judgments around the PGR than the extended FGT family.
The restrictions on α under which Monotonicity in Income is satisfied are stated
in Theorem 3 and illustrated in Figure 2.4.b. The coefficient of poverty aversion is
bounded above and below and those bounds depend monotonically on the poverty
line’s slope.

Theorem 3 (Bounds on poverty aversion around PGR).
Let z be a linear poverty line with slope s̄. Let P be an additive poverty index based
on a homothetic EO below z with a numerical representation in the quadratic family.
P satisfies Monotonicity in Income if and only if:

(s̄− 1)

(1 + s̄)
≤ α ≤

4− s̄+ 4(1− s̄)
1
2

(s̄+ 8)
(2.9)

Proof. See in Appendix 2.9.4. �

The steeper the slope, the narrower is the range of acceptable values for poverty
aversion around the case α = 0, corresponding to the PGR. There is no collapse
towards the PGR when the slope is equal to one. There exist indices exhibiting
a – slightly – higher poverty aversion than the PGR that respect Monotonicity in
Income and Transfer among Poor .

Theorem 3 is obtained for homothetic EOs and linear lines. Defining the extended
quadratic family using equivalent income functions, a similar bound result can be
derived for any absolute-homothetic EO below a monotonic line. The PGR at the
origin is not the only index satisfying the two properties. Outside the extended
FGT family, there are acceptable indices with larger poverty aversion. However,
this bound result shows that the numerical representation of alternative indices
should not be too far from the PGR. The steeper the poverty line, the closer these
indices are to the PGR at the origin. In this sense, the PGR at the origin is focal.

So far, the EO has been assumed absolute-homothetic. As argued in sections 2.2
and 2.4, there are good ethical reasons for flat equivalence curves below the absolute
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Figure 2.5: Homothetic-homothetic EO based on a piecewise-linear line.

threshold. Nevertheless, the homotheticity of equivalence curves above the absolute
threshold has just been presented as a convenient assumption. A natural question
to ask is whether choosing an EO from a different domain allows for a wider set
of indices satisfying both Monotonicity in Income and Transfer among Poor . As
shown in the next subsection, the mere existence of such indices is not guaranteed,
even for EOs that “almost” belong to the absolute-homothetic domain. What is
more, the PGR at the origin is still the focal index with good properties.

2.5.2 Beyond absolute-homothetic orderings

This section provides an additional reason to rely on absolute-homothetic EOs.
Some additive indices based on absolute-homothetic EOs satisfy both Monotonicity
in Income and Transfer among Poor .27 There are no such indices if the EO departs
too much from being absolute-homothetic.

For simplicity, the poverty line is piecewise-linear. For such lines, I define a
domain extending the absolute-homothetic domain. The homothetic-homothetic
domain RHH , illustrated in Figure 2.5, is defined from the general domain R by the
additional restriction Homothetic-Homothetic Piecewise-Linear.

EO restriction 5 (Homothetic-Homothetic Piecewise-Linear).
There exist two piecewise-linear curves x and z defined by:

x(y) =

{
x0 if y ≤ yk,
x0 + sx(y − yk) eℓse,

z(y) =

{
z0 if y ≤ yk,
z0 + sz(y − yk) eℓse,

with 0 ≤ sx ≤ sz, 0 < x0 < z0 and yk ≥ z0 such that for all (yi, y), (y
′
i, y

′) ∈ Xp:

(i) Homothetic equivalence curves below x.

if yi < x(y) and yi
x(y)

=
y′i
x(y′)

, then (yi, y) ∼ (y′i, y
′).

(ii) Homothetic equivalence curves between x and z.

if yi ≥ x(y) and yi−x(y)
z(y)−x(y)

=
y′i−x(y

′)

z(y′)−x(y′)
, then (yi, y) ∼ (y′i, y

′).

27I am grateful to Martin Ravallion for having pointed out that the existence of additive indices
respecting Monotonicity in Income is not guaranteed for all EO in R.
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For a given poverty line z as defined in restriction 5 and x∗ < z0, the subdomain
of EOs RHH(z, x∗) is parameterized by the slope sx of the intermediate line x defined
in restriction Homothetic-Homothetic Piecewise-Linear:

RHH(z, x∗) :=
{
� ∈ RHH

 � is below line z and x0 = x∗
}
.

Let �sx denote a generic element in RHH(z, za). The case sx = 0 corresponds to
the absolute-homothetic EO at the origin of the subdomain RHH(z, x∗). The case
sx = shx :=

x0

z0
sz corresponds to the homothetic EO below the poverty line. The case

sx = sz is the limit since larger intermediate slopes entail that both lines cross.
Theorem 4 consists of two claims. Claim 1 says there is a range of values for

the slope parameter sx, centered on the value sx = shx making the EO homothetic,
outside which no additive poverty index satisfies both properties. Claim 2 says that
if the slope parameter sx is smaller than shx and if the numerical representation
belongs to the extended FGT family, then the two properties force the numerical
representation to be the PGR at the origin.

Theorem 4 (Non absolute-homothetic EOs and PGR at the origin).
Let z be a piecewise-linear poverty line with yk ≥ z0 and s̄ > 0. Let x∗ > 0 be such
that x∗ < z0. Let �sx be an EO belonging to the subdomain RHH(z, x∗).

1. There exists an additive index P based on �sx satisfying both Monotonicity in
Income and Transfer among Poor if and only if

• either sx = 0,

• or for some sx and sx with sx < shx < sx < sz we have:28

sx ≤ sx ≤ sx.

2. Assume sx ∈ [sx, s
h
x] with sx ≥ 0. Let P be an additive index based on �sx

with a numerical representation belonging to the extended FGT family. The
two following statements are equivalent:

• P satisfies both Monotonicity in Income and Transfer among Poor.

• The numerical representation of P is the PGR at the origin.

Proof. See in Appendix 2.9.5. �

The domain RHH of homothetic-homothetic EOs is defined without flat equiv-
alence curves below an absolute threshold. Extending the definition of the domain
RHH to a domain RAHH of absolute-homothetic-homothetic EOs with za < x0 is
straightforward. The last result can then be extended to EOs in RAHH . This

28The expressions for sx and sx are respectively:

sx := sz −
z0 − x0

x0
and sx :=

1

2



((

x0

z0 − x0

)2

+ 4sz
x0

z0 − x0

)0.5

−
x0

z0 − x0


 .
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extended result implies for the definition of absolute-homothetic EOs that have ho-
mothetic curves above the subsistence threshold is not just a convenient assumption
but rather a precondition for the existence of indices satisfying both Monotonicity
in Income and Transfer among Poor . Other EOs admitting poverty indices with
these properties are not too far from being absolute-homothetic, as shown by the
acceptable range around the homothetic value of the slope parameter given in Claim
1 of Theorem 4.

I have made the claim that Monotonicity in Income cannot be satisfied by an
index based on an EO far from satisfying restriction Absolute-Homotheticity. This
raises the question of the relationship that poverty axioms and EO restrictions have.
What is their relative status in the case that an incompatibility arises? In my
view, they have an equal status in the sense that they both constrain the set of
acceptable indices. The difference is the channel through which they constrain them.
Axioms constrain the comparison of distributions whereas EO restrictions constrain
the comparison of individual bundles. When an incompatibility arise between a set
of axioms and EO restrictions, one must arbitrate between them on the basis of
their respective normative merits. I see no reason to systematically give priority to
one type of “index constraint” over the other.

The message of this section is that the PGR at the origin is the focal numerical
representation satisfying both Monotonicity in Income and Transfer among Poor .
This conclusion is derived when considering that mean income is the relevant refer-
ence statistic for standards of living. In the next section, I argue why mean income
is a good income standard for poverty measurement. Moreover, I show that the
index proposed is still very relevant when using other income standards.

2.6 Income standards other than the mean

I discuss in this section the choice of the income standard to which the poverty line
is sensitive. I argue that median income is not a good income standard for poverty
measurement and that other income standards are preferable, such as the mean or a
lower partial mean. Finally, I study the robustness of Theorems 1 and 2 when using
poverty lines sensitive to income standards different than mean income.

An income standard is a reference statistic gauging the size of an income dis-
tribution. Let f : RN

+ → R+ denote an income standard. As for poverty indices,
income standards can be derived from the properties defining its concept. The two
properties more specific to income standards are Normalization and Linear homo-
geneity. Normalization requires that if all incomes in a distribution are equal, then
the income standard is also equal to the common income. Linear homogeneity re-
quires that if all incomes in a distribution are multiplied by a common factor, the
value taken by the income standard is also multiplied by the same factor.

Besides the mean, there exist four types of income standards that are in com-
mon use (Foster et al., 2013). These four types are quantiles (e.g. the median),
generalized means (e.g. the geometric mean), partial means (e.g. mean among the
99% least rich individuals) and the Sen mean. All four types of income standards
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are presented and discussed in this section.
The choice of income standard is important because it defines the channel through

which the income of other agents affect individual poverty. More specifically, it
defines the distributional changes altering the income threshold and, hence, the in-
dividual poverty of poor agents. Poverty judgments hence depend on the income
standard used.

I defend the use of mean-sensitive lines even if median-sensitive lines are often
used in practice. For example, the AROP measure of the European Commission
uses a median-sensitive line.29 Both statistics have different advantages and flaws.

The main advantage of the mean corresponds to a major flaw of the median. A
poverty measure aims at evaluating the impact that economic policies have on the
worse-off individuals. If some policies impact growth, many policies have only re-
distributive consequences. I find highly counter-intuitive that policies whose unique
impact are regressive transfers from the middle class to the rich are deemed to be
poverty reducing. Axiom Transfer among Non-Poor requires the index not to be af-
fected by redistributions among non-poor individuals. An index satisfying this axiom
is therefore immune to “redistributive manipulations”. Transfer among Non-Poor is
a weakening of Focus .

Social ordering axiom 20 (Transfer among Non-Poor).
For all δ > 0 and all y, y′ ∈ Y with n(y′) = n(y), if yj − δ = y′j > y′k = yk + δ,
k > q(y) and y′i = yi for all i 6= j, k, then P (y) = P (y′).

For mean-sensitive indices, Transfer among Non-Poor is implied by Domina-
tion among Poor . In contrast, de Mesnard (2007) has shown that median-sensitive
indices behave very counter-intuituively when income distributions experience an
increase in inequality. The issue does not only show up in theory, it is particularly
problematic in a World in which intra-country inequalities are on the rise (Bour-
guignon, 2013). An illustration of such behavior took place in New-Zealand between
1981 and 1992. According to Easton (2002), the implementation of policies inducing
regressive transfers led to a decrease in the income of the bottom 80 % of households.
Nevertheless, the median-sensitive HC dropped due to the large decline in median
income and some institutions used these figures to argue the regressive policies were
a success.

The main drawback of mean-sensitive indices is that the mean is affected by
“outliers”. What if a policy incentivize a very rich individual – say Bill Gates – to
immigrate to the country, or simply allows an individual to flourish and become
very rich? This could be good news but some fear that a mean-sensitive index
systematically concludes otherwise. In theory, this need not necessarily be the case.
Indeed, the conclusion depends on the redistributive system of the country. If the
presence of very rich benefits to the poor – say via the country’s tax-and-transfers
system – then the value returned by a mean-sensitive index can decrease. In this
sense, a mean-sensitive index can be used to judge a country’s institutions. In

29The At Risk of Poverty measure is the Head-Count Ratio based on a relative line whose
threshold is 60 % of the median income.
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practice, however, the income standard is not always computed from administrative
data but often from random samples. The median is known to be more robust than
the mean in random samples (Cowell and Victoria-Feser, 1994). Median-sensitive
lines have hence a less volatile income threshold.

For those who judge that the lower robustness of the mean is a more serious
issue in practice than the “manipulability” of the median, mean income among the
99% least rich individuals can offer a good compromise. This partial mean is much
less affected by outliers than the mean. The downside of such a partial mean is
that regressive redistributions among non-poor individuals benefiting the 1% richest
individuals affect it.

In the remainder of this section, I study the robustness of the results to the use
of different income standards. The median is first investigated before turning to
other income standards.

2.6.1 Median income

The median is a particular quantile. Let x ∈ [0, 100] be a percentile. The quantile
income at the xth percentile in distribution y is the income level yx such that x
percent of individuals earn more than yx and 1 − x individuals earn less. Quantile
incomes are crude as they only provide information about a specific point of the
distribution.

Median income, corresponding to the case x = 50, is the income standard such
that half of the population earn more and half of the population earn less. Formally,
the definition of median income is slightly different for distributions with even or
odd number of dimensions. Median income ym is defined to be the income of agent
m where m : N+ → N+ is defined by:

m :=






n+1
2

if n is odd,

n
2

otherwise.

Changing the income standard requires modifying several definitions. I present here
only the major non-straightforward modifications. For a given median-sensitive
poverty line z, the results depend on the domain of income distributions considered.
Let Y r be the domain of distributions containing a strict minority of poor agents
and let Y p be its complement:

Y r :={y ∈ RN
+ | z(ym) ≤ ym},

Y p :={y ∈ RN
+ | 0 < ym < z(ym)}.

Given the median-sensitive line z, let y∗m be the lowest value of median income
for which y ∈ Y r, implicitly defined by z(y∗m) = y∗m. This is the limit value for
median income above which a distribution belongs to Y r. Let Y := Y p ∪ Y r = {y ∈
Rn

+| ym > 0} be the general domain of distributions. Poverty indices are based on
an equivalence ordering �m ranking the set of poor bundles

Xp := {(yi, ym) ∈ X| z(ym) > yi},
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where X := R+ × R++. Poverty axioms as well as restrictions to endogenous lines
and EOs in the general domain Rm are easily modified. Such modifications allow
characterizing additive poverty indices with median-sensitive lines for the domain
of income distributions containing a strict minority of poor agents.

Theorem 5 (Characterization of median-sensitive additive poverty indices).
Let P : Y → R be a poverty index based on a median-sensitive poverty line. State-
ment 2 implies statement 1.

1. On Y r, P is ordinally equivalent to an index P ′ : Y → [0, 1] defined by

P ′(y) =
1

n

n∑

i=1

d(yi, ym), (2.10)

where d is a numerical representation of an EO in Rm.

2. P satisfies the modified versions of Domination among Poor, Weak Subgroup
Consistency, Symmetry, Continuity and Replication Invariance.

Proof. See in Appendix 2.9.6. �

With median-sensitive lines, the characterization of additive poverty indices is
only valid on Y r. On the general domain Y , additive indices satisfy the five axioms,
but there might be other indices to do so.

The consequences of the modified version of Monotonicity in Income are different
than for mean-sensitive poverty lines. This axiom constrains the domain of median-
sensitive lines for which there exists additive indices respecting it. Additive indices
respect Monotonicity in Income when their poverty line is flat for all values of
median income below y∗m.

Theorem 6 (Flat median-sensitive lines for low median incomes).
Let z be a monotonic median-sensitive poverty line with z0 > 0. Let P : Y → [0, 1]
be an additive poverty index based on an absolute-homothetic EO below z. The
following two statements are equivalent.

1. P satisfies Monotonicity in Income.

2. z is flat for all ym < y∗m.

Proof. See in Appendix 2.9.7. �

For all distributions in Y r, median income is above the poverty threshold and
hence the incomes of poor agents do not affect the reference statistic. The modified
version of Monotonicity in Income puts no extra constraint on additive indices as this
axiom is implied by Domination among Poor . For distributions in Y p, the median
income is below the threshold. If the median income increases by an amount not
sufficient for the median agent to change, the reference statistic changes by the same
amount, irrespective of the number of agents. This drastic impact drives the result.
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In contrast, mean income changes only by a fraction 1
n

of the amount gained by a
poor agent.

I argued above that median-sensitive lines lead to counter-intuitive judgments
about the impacts of regressive redistributive policies. If their flaws are not judged
serious enough for switching to mean-sensitive lines, this research still provides good
reasons for adopting the index proposed in Section 2.4. Indeed, contrary to the HC
or the PGR, this index gives priority to subsistence over social participation.

2.6.2 Other income standards

Besides the mean and the median, other income standards can be used as reference
statistic. I discuss the robustness of the results in each case.

Partial means

Partial means return mean income for a subset of the distribution. Two types are
in common use: lower partial means and upper partial means. As for quantiles,
they are attached to a percentile x ∈ [0, 100]. In distribution y, the lower partial
mean below x, denoted f ℓpm(y, x), is the mean income among the bottom x percent
of income earners. On the contrary, the upper partial mean above x is the mean
income among the top 100− x percent of income earners.

I only consider lower partial means because they better capture the evolution of
the cost of social participation for poor individuals. Furthermore, since lower partial
means are not affected by outliers, lines sensitive to these income standards offer a
good compromise between the issues attached to mean and median-sensitive lines,
respectively.

The additive representation result holds for the lower partial mean below x if the
set of distributions considered only contains distributions for which the percentage
of poor individuals is less than x:

Y ℓpm := {y ∈ RN
+ | z

(
f ℓpm(y)

)
≤ y x

100
n},

where y x
100

n denotes the income of the agent whose index i is the largest natural
number less than or equal to x

100
n.

The characterization of the PGR at the origin as the only numerical representa-
tion inside the FGT family satisfying modified versions of Monotonicity in Income
and Transfer among Poor holds when using lower partial means. Formal statements
and proofs of these two claims may be found in Appendix 2.9.8.

Generalized means

Generalized means form a class of income standards putting more emphasizis on the
bottom or on the top of the income distribution, depending on the value taken by
its unique parameter β ∈ (−∞,+∞). Generalized means, denoted f gm(y, β), are
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defined in the following way (Atkinson, 1970):

f gm(y, β) :=





(
y
β
1+···+yβn

n

) 1
β

if β 6= 0,

(y1 × · · · × yn)
1
n if β = 0.

If β < 1, then the bottom of the distribution is emphasized, if β > 1, then the
top of the distribution is emphasized. The most popular members of this class are
the arithmetic mean (β = 1), the geometric mean (β = 0) and the harmonic mean
(β = −1).

I only consider generalized means with β < 1 as they better capture the evolution
of the cost of social participation for poor individuals.30 These generalized means
are not well-suited income standards for my purpose. Any EO respecting modified
versions of the basic restrictions defining R must have all its equivalence curve
flat. Such an EO cannot account for the impact that the relative situation has on
individual poverty.

Theorem 7 (Non-flat EO violates Translation Monotonicity).
Let f gm be an income standard in the generalized mean family with β < 1. If � is
an EO respecting the modified version of Strict Monotonicity in Income and � is
non-flat, then � violates the modified version of Translation Monotonicity.31

Proof. See in Appendix 2.9.9. �

This result is a consequence of the exponential expression of this income stan-
dard. A small increment given to an agent whose income is close to zero has a dis-
proportionate impact on the value taken by the generalized mean. Then, the small
increment received by another poor agent whose bundle is on a non-flat indiffence
curve cannot compensate for this disproportionate increase in income standard. The
non-flat EO considers that the equal distribution of the additional resource made
this other agent poorer, which violates Translation Monotonicity.

Notice that Translation Monotonicity is imposed as a restriction on the EO
rather than as a poverty axiom. Imposing that equal increments reduces poverty as
an axiom would be less strong. When Domination among Poor is imposed, the EO
restriction Translation Monotonicity implies this associated axiom. Nevertheless,
this EO restriction appears as a minimal limitation at the individual level to the
importance of relative aspects of income. Therefore, I conclude from Theorem 7 that
generalized means should not serve as income standards for poverty measurement.

30As generalized means satisfy a separability property, the additive representation result should
hold if the set of distributions considered only contains distributions for which at least one indi-
vidual is non-poor.

31An EO is non-flat if there exists (yi, f
gm(y)) ∈ Xp such that s(yi, fgm(y)) > 0, i.e. the slope

in (yi, f
gm(y)) is strictly positive.
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Sen mean

The Sen mean, denoted f sm, is interpreted as the expected minimum value among
two income draws with replacement in the distribution.

f sm(y) :=
1

n2

n∑

i=1

n∑

j=1

min{yi, yj}

=
1

n2
((2n− 1)y1 + (2n− 3)y2 + · · ·+ 3yn−1 + yn) .

By definition, this income standard cannot be larger than the mean income. The
Sen mean places more emphasis on incomes at the bottom of the distribution.

Since the Sen mean does not satisfy a separability property, the equivalent of
the additive representation theorem does not hold. In particular, additive indices
do not satisfy the modified version of Weak Subgroup Consistency .

Unlike for generalized means, the modified version of Translation Monotonicity
only requires the equivalence curves of the EO to have slopes no larger than one.32

Using the Sen mean as the income standard therefore allows us to account for the
impact that relative income has on individual poverty. Neveretheless, the exact im-
plications of the modified version of Monotonicity in Income for Sen-mean-sensitive
indices is still an open question.

Moving average of an income standard

I discuss in this subsection an important point valid for any choice of income stan-
dard. Endogenous measures are regularly criticized for the counter-intuitive judg-
ments they sometimes provide when a distribution is affected by a negative shock.
Think of a transient economic crisis. Assume that even if all incomes decrease, the
crisis has a smaller effect on the incomes at the bottom of the distribution than at
the top. Endogenous measures can conclude that poverty has decreased, a highly
debatable judgment. This problem is of course coming from the endogeneity of the
line.

Based on such examples, some argue against the use of endogenous measures.
Instead, they suggest using absolute measures whose absolute line is unchanged over
many years and then updated to account for changes in the standard of living. After
having changed the line, comparisons across the two periods – the periods before
and after the update – are typically made using the new absolute line. It should be
clear that this approach does not account for social participation effects (illustrated
in Table 2.1). As a result, growth is deemed poverty reducing, regardless of how
unequally distributed its gains are.

Another point of view on the counter-intuitive judgments made by endogenous
measures is that the income standard is not appropriate. In practice, endogenous
lines have their income threshold updapted each time the poverty measure is recom-
puted, typically every year. The cost of social participation has some inertia and

32For all y ∈ RN+ , given the mathematical expression of the Sen mean, we have (∇f sm(y)·1n) = 1.
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does not react as quickly. At the beginning of a crisis, poor individuals have a lower
income and face almost the same costs of social participation. It takes some time
before people adapt their social standards and expectations. A solution would then
be to introduce some inertia in the income standard. This can be done by letting
the poverty line evolve with a moving average of the values taken by the income
standard over several years.33

This section has discussed the choice of an income standard. I emphasized that
median-sensitive lines lead to counter-intuitive judgments when intra-country in-
equality increases. Therefore, median-sensitive lines are not well-suited for the eval-
uation of unequal growth. If the lack of robustness of the mean in random samples
is judged too serious, a good compromise is to use a partial mean, such as mean
income among the 99% least rich agents. For any choice of income standard, the
index proposed in Section 2.4 is a strong candidate for replacing standard indices
that give no priority to subsistence over social participation, such as the HC and
the PGR.

2.7 Empirical illustration

In this section, I apply the new index using World Bank data. The objective is to
verify that the index proposed is well-suited for evaluating unequal growth. First,
using different poverty measures, I compare poverty between several low-income
low-inequality countries and middle-income high-inequality countries. I show that
the judgments obtained by a poverty measure based on my index are more in line
with intuition than those obtained by standard measures. Second, I use the poverty
measure based on my index in order to evaluate whether the economic growth taking
place over the last 20 years in low- and middle-income countries was poverty reducing
in spite of the increase in intra-country inequality. I discuss the variables influencing
the answer.

The data is taken from PovcalNet, a website built by the World Bank that pro-
vides income and consumption data.34 This data is gathered from more than 850
surveys of randomly sampled households in 127 low- and middle-income countries
between 1981 and 2010. The frequency and precision of the surveys vary from one
country to another. In some countries, the surveys focus on income, whereas in
others on the value of total consumption. In order to permit cross-country compar-
isons, the Bank translates the survey data by making use of the Purchasing Power
Parity (PPP) exchange rates for household consumption from the 2005 International
Comparison Program. The national income distributions presented in PovcalNet are
estimated from the survey data. More information about the data can be found in
Chen and Ravallion (2013).35

33I am grateful to Karel Van den Bosch and Tim GoedemÃľ for having pointed out to me the
usefulness of moving average income standards.

34PovcalNet: the on-line tool for poverty measurement developed by the Development Research
Group of the World Bank. www.iresearch.worldbank.org/PovcalNet.

35PovcalNet is the database used in Chen and Ravallion (2013).
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Figure 2.6: (a) Absolute-homothetic EO below the endogenous poverty line (za =
$1.25 a day). (b) Homothetic EO below the endogenous poverty line.

2.7.1 A poverty measure based on the new index

This section demonstrates how to apply the new index. I assume that the selected
endogenous line has the following weakly relative definition, illustrated in Figure
2.6:

z(y) = max($2, $0.625 + 0.5y).

Its income threshold equals $2 a day in countries whose mean income is lower than
$2.75 a day. The World Bank considers that $2 a day is the treshold for income
poverty in developing countries. For mean incomes higher than $2.75 a day, this line
has a constant slope of one half. Observe that the intercept $0.625 of this second
part is positive. As a result, the line does not evolve as a constant fraction of the
mean.

This line is very close to that used by Chen and Ravallion (2013). The only
difference is that the income threshold for low-income countries used by these authors
is $1.25 a day, considered by the World Bank as the threshold for extreme poverty.36

For richer countries, these authors fit their line on national thresholds. Their premise
is that thresholds adopted at a country level reflect a balance made between absolute
and relative aspects of income. The endogenous line selected is of course debatable
but the objective pursued here is not to argue in favor of its use but rather to pick
one that seems reasonable and that serves for purposes of illustration.

The new index is based on an absolute-homothetic EO below the endogenous
line. The only parameter of this family of EOs is the subsistence threshold za. I
take za to be the threshold for extreme poverty: $1.25 a day. This threshold was
computed as an average of income thresholds in the fifteen poorest countries of the
World (Ravallion et al., 2009). Many among these countries establish their national
thresholds based on the cost of a bundle of goods whose consumption guarantees
to reach a minimal level of physical survival (including a minimal nutrition level).
Therefore this choice seems natural for za. Individuals earning less than $1.25 a day

36It makes little sense for my purpose to consider that agents whose income is $1.25 a day have
the same individual poverty than agents at the poverty line in richer countries since I consider
$1.25 a day to be the subsistence threshold.
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are deemed absolutely poor and those earning more than $1.25 a day but less than
the endogenous threshold are deemed relatively poor. The absolute-homothetic EO
defined is illustrated in Figure 2.6.a.

The poverty measure based on my index is denoted PEL, where the superscript is
meant to indicate that it is based on the endogenous line. Given the endogenous line
selected and the choice of za, this poverty measure has the following mathematical
expression.37

PEL(y) =
1

n

q∑

i=1

(
2− ek(yi, y)

2

)
, (2.11)

where ek(yi, y) =

{
yi if yi ≤ 1.25,

1.25 + (2 − 1.25) yi−1.25
z(y)−1.25 otherwise.

Judgements based on PEL are compared with those obtained by four other measures.
Among the four alternative measures, three are based on the Head-Count Ratio
while the last is based on the Poverty Gap Ratio. The first measure, HCAL, is an
absolute measure corresponding to the fraction of individuals whose income is below
the absolute line defined by the subsistence threshold $1.25 a day. The second,
HCRL, is a relative measure corresponding to the fraction of individuals whose
income is below the relative line whose threshold is half the mean income. This
measure provides some information about the inequality in the distribution. The
third measure, HCEL, is an endogenous measure corresponding to the fraction of
individuals whose income is below the endogenous line defined above. The last
measure, PGREL, is the Poverty Gap Ratio below the endogenous line, defined
by:

PGREL(y) =
1

n

q∑

i=1

(
z(y)− yi
z(y)

)
.

This last measure satisfies both Monotonicity in Income and Transfer among Poor
but gives no priority to subsistence over social participation.

I now consider the relations existing between PEL and PGREL. For mean in-
comes below $2.75 a day, the endogenous line is flat. The respective EOs of PEL

and PGREL, illustrated respectively in Figure 2.6.a and 2.6.b, are hence equivalent
for these low values of mean incomes. As a result, PEL and PGREL return equal
values for very poor countries. Above $2.75 a day, PEL systematically returns lower
figures than PGREL because the absolute-homothetic EO of PEL associates to any
bundle an equivalent income at $2.75 a day larger than the one associated to the
same bundle by the homothetic EO of PGREL. Therefore, if distribution A has a
larger mean income than distribution B with yB = 2.75 and PEL concludes that
there is more poverty in A than in B, then PGREL draws the same conclusion. In-
dex PGREL places more emphasis on poverty in richer countries as its homothetic

37Given that the endogenous line is flat for mean incomes below yk = 2.75, the PGR at the
origin is equivalent to the PGR at yk.
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EO weighs more the relative aspect of individual poverty.

2.7.2 Empirical results

The data extracted from PovcalNet is used for computing the five poverty measures.
I first show that, when dealing with unequal growth, PEL makes poverty judgments
that are more in line with intuition than those of the other four measures.

Table 2.4 provides figures for six countries in 2010. The countries are sorted
in increasing order of mean income. Three low-income low-inequality countries are
considered, namely Ethiopia, Nepal and Ivory Coast. Their mean incomes amount
to $2, $2.2 and $3 a day respectively and their Gini coefficients in 2010 amount to
34%, 33% and 43%.38 Three middle-income high-inequality countries are considered,
namely Bolivia, South Africa and Brazil. Their mean incomes amount to $8.3, $8.4
and $13.8 a day respectively and their Gini coefficients in 2010 amount to 50%, 63%
and 54%. Remember that for my purpose, the distributions of two countries can
equally be interpreted as two distributions corresponding to the same country but
at different points in time.

Table 2.4: Cross-country comparison of poverty figures in 2010.

Countries Mean Gini HCAL HCRL HCEL PGREL PEL

Ethiopia 2.0 34 30.6 17.7 65.0 23.1 23.1

Nepal 2.2 33 24.8 18.5 56.3 18.7 18.7

Ivory Coast 3.0 43 22.7 30.0 47.6 18.3 17.4

Bolivia 8.3 50 13.4 43.3 48.3 25.3 16.5

South Africa 8.4 63 13.8 57.1 61.3 32.8 17.6

Brazil 13.8 54 5.4 43.1 46.5 22.1 11.7

All poverty measures and the Gini coefficients are expressed in %. Mean incomes
are expressed in $ a day (2005 PPP). Source: PovcalNet.

HCAL is strongly negatively correlated with mean income and HCRL is strongly
positively correlated with inequality, as measured by the Gini coefficient.39 HCRL

concludes that middle-income countries, having a larger income inequality, have by
far the largest poverty. HCAL reaches opposite conclusion. On the sole basis of
these two measures, it is hence difficult to balance the absolute and relative aspects
of growth. The three measures based on the endogenous line are more nuanced.
PGREL places more emphasis on poverty in richer countries and concludes that the
two poorest countries are Bolivia and South Africa. In contrast, the two poorest
countries according to PEL are low-income countries, namely Ethiopia and Nepal.

38The Gini coefficient is a popular measure of inequality. The larger the Gini coefficient, the
larger is inequality. The figures were obtained online from the World Bank Poverty and Equity
Database on the 24th of August 2015, www.povertydata.worldbank.org. The Gini coefficient is
measured in 2010 for Ethiopia and Nepal; in 2009 for Bolivia, South Africa and Brazil and in 2008
for Ivory Coast.

39In the sample, the coefficients of correlations are -0.97 and 0.99 respectively.
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Pairwise comparisons of countries having different mean incomes illustrate the
different judgments made by PEL, PGREL andHCEL. PGREL andHCEL conclude
that there is less – or approximately equal – poverty in Ivory Coast than in Brazil,
even if the fraction of absolutely poor individuals is much higher in the former
(22.7 %) than in the latter (5.4%). In contrast, PEL places more emphasis on
the absolute aspects of income poverty and concludes that there is more poverty
in Ivory Coast than in Brazil. Oppositions of the same type can be found when
comparing South Africa with Nepal or Ivory Coast, or when comparing Brazil with
Bolivia. Observe that PEL does not always follow the judgments of HCAL. Unlike
PEL, HCAL concludes that there is much more poverty in Nepal and Ivory Coast
than in South Africa. If Nepal and Ivory Coast underwent a very unequal growth
transforming their distributions into that of South Africa, whose distribution is very
polarized, PEL would not lead to conclusions as enthusiastic as those obtained from
HCAL. Observe that the difference in judgments described above are based on large
differences in the respective figures.

Table 2.4 demonstrates that the poverty judgments drawn from PEL can be
radically different from those obtained with the other four measures. Moreover, the
judgments drawn from PEL seem to be in line with basic intuitions. Next, PEL

is used in order to evaluate the impact of the unequal growth taking place over
the period 1990-2010 in different geographic entities. The decomposability of PEL

allows us to analyze the variables influencing the poverty judgments.

Table 2.5: Evaluation of several unequal growths.

Geo Entity Year Mean HCRL HCAL HCEL PEL P a/PEL

World 1990 3.0 21.2 43.0 70.7 30.7 0.82

2010 4.9 26.4 20.8 52.7 17.7 0.66

Urban China 1990 1.9 9.1 23.4 61.2 18.9 0.62

2010 7.1 21.7 0.6 30.6 4.7 0.08

Costa Rica 1990 7.0 31.5 8.4 40.0 11.4 0.53

2010 15.3 40.3 2.6 43.7 8.9 0.22

Mexico 1990 7.8 24.1 4.5 29.2 7.4 0.39

2010 10.6 35.8 0.7 41.2 7.5 0.05

Hungary 1996 8.8 9.8 0.2 16.0 1.7 0.07

2010 12.5 15.2 0.2 20.1 2.2 0.06

All poverty measures are expressed in %. Mean income is expressed in $ a day
(2005 PPP). P a corresponds to the contribution to PEL of absolutely poor agents,

defined by (2.7). Source: PovcalNet.

Table 2.5 provides the before- and after-growth figures for five geographic enti-
ties.40 All five geographic entities experienced an increase in mean income together
with an increase in inequality, as indicated by HCRL. PEL allows us to decompose

40The figures for the World are an aggregate of the figures for the low- and middle-income
countries, weighted by their population. The figures for urban China are obtained by computing
the endogenous threshold for the mean income in urban China.
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the fraction of poor individuals (HCEL) between those that are absolutely poor
(HCAL) and those that are “only” relatively poor. Furthermore, the figure for PEL

can be decomposed between the contribution of absolutely poor agents (P a) and
that of relatively poor agents (P r). These decompositions are illustrated in Fig-
ure 2.7 for the World, urban China and Mexico. In Figure 2.7, the contribution of
absolutely poor agents (P a) is further decomposed between its absolute (P aa) and
relative components (P ar).41

The World and urban China experienced a large decline in income poverty over
the period: PEL dropped by 42% and 75%, respectively. In other words, in spite of
the increase in income inequality, particularly important in urban China as indicated
by HCRL, PEL concludes unambiguously that growth has been poverty reducing.42

These reductions reflect primarly the changes in absolute poverty. Absolute poverty
was a main concern in both entities in 1990. In the World for example, 43% of
individuals were absolutely poor in 1990 and these individuals contributed to 82%
of PEL. In 2010, only 20.8% of individuals remainded absolutely poor in the World,
contributing then to 66% of PEL. For urban China, absolute poverty has been
almost eradicated over the period. These evolutions and trade-offs appear clearly
when studying the graphs decomposing PEL in Figure 2.7. The decrease in PEL in
both entities is clearly driven by changes in P a whereas at the same time P r does
not change much.

Costa Rica and Mexico experienced a lower reduction in poverty than the World
and urban China over this period. PEL dropped by 22% in Costa Rica whereas it
returned to its initial value in Mexico. The increase in relative poverty mitigated the
significant reduction in absolute poverty achieved by the two countries. Absolute
poverty was an important concern in 1990 – 53% of PEL for Costa Rica and 39% of
PEL for Mexico – although not as dominant as for the World and urban China. The
fraction of absolutely poor individuals fell from 8.4% to 2.6% in Costa Rica and from
4.5% to 0.7% in Mexico. At the same time however, the large increase in inequality
in these two countries implied that more individuals were poor in 2010 than in
1990, as shown by HCEL. Again, the trade-offs for Mexico appear clearly when
studying the graphs decomposing PEL in Figure 2.7. In Mexico, the large increase
in inequality taking place between 1990 and 1994 increased significantly P r. The
later reduction in P a only compensated for the increase in P r. Appendix 2.9.10
contains a further analysis of the Mexican case based on cumulative distributions of
income and individual poverty.

Hungary experienced an increase in poverty over the period 1996 – 2010, in spite
of an increase of 43% of its mean income. PEL increased by 30% in Hungary over
the period. Absolute poverty was not an important concern in 1996 – P a was less
than 10 % of PEL in 1996 – and did not change significantly over the period. On
the contrary, income inequality increased and 20% of individuals were poor in 2010
whereas only 16 % of individuals were poor in 1996. The increase in PEL is directly

41P aa and P ar correspond respectively to term 1 and term 2 in (2.7).
42It is the intra-country inequality that is accounted for when discussing the evolution of in-

equality in the World. Intra-country inequality influences poverty in the World via its impact on
the country-specific endogenous thresholds.
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Figure 2.7: Evolution of income poverty between 1990 and 2010 in urban China,
Mexico and the World as measured by PEL. The left graphs show the decomposition
of poor agents (HCEL) between absolutely poor (HCAL) and relatively poor, to-
gether with the endogenous threshold. The right graphs show the decomposition of
PEL between the contribution of absolutely poor agents (P a) and that of relatively
poor agents (P r), together with mean income. P a is further decomposed between
its absolute (P aa) and relative contributions (P ar). Source: PovcalNet.
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driven by the increase in P r.
The distinction between absolutely and relatively poor agents and the decompos-

ability of the index make it possible to separately track these two forms of poverty
and aggregate them in a coherent way. I illustrate this possibility for the case of
urban China, shown in Figure 2.7. In urban China in 1990, 23.4% of individuals
were absolutely poor and 37.8% were relatively poor, adding up to 61.2% of poor
individuals. Overall, the poverty index for the income distribution in 1990 takes a
value of 18.9%. This value of income poverty can be decomposed into the contri-
bution of absolutely poor agents (11.8%) and that of relatively poor agens (7.1%).
Hence, absolutely poor agents contributed to 62% of income poverty, which shows
that absolute poverty was the main issue in urban China in 1990. In 2010, 0.6% of
individuals were absolutely poor and 30% were relatively poor, adding up to 30.6%
of poor individuals. Overall, the poverty index for the income distribution in 2010
takes a value of 4.7%, a figure 75% lower than that of 1990. This lower value of
income poverty can be decomposed into the contribution of absolutely poor agents
(0.4%) and that of relatively poor agens (4.3%). Hence, absolutely poor agents con-
tributed to 8% of income poverty. This demonstrates that the reduction in absolute
poverty is responsible for most of this three-quarters reduction in income poverty.
Moreover, it shows that relative poverty became the main issue in urban China in
2010.

Analyzing with PEL several unequal growths has shown that very different con-
clusions can be drawned by this measure. Different factors influence the conclusions
of PEL, such as the extent of growth or the extent of the increase in inequality. A
key factor is the importance for PEL of absolute poverty at the beginning of the
period. If absolute poverty is not the main concern, like in Hungary, the increase in
inequality entails an increase in PEL.

Altogether, PEL confirms that poverty reduction has been impressive over the
last decades in low- and middle-income countries (“the World” in Table 2.5). In fact,
poverty decreased even more than Head-Count based measures suggest. Over the
period 1990-2010, even if the fraction of poor individuals decreased only by 25% ,
PEL concludes that income poverty was reduced by 42%.

2.8 Concluding remarks

Comparing income poverty between societies with different standards of living has
always been done with extreme caution. This caution follows in part from the
inability of standard poverty measures to consider simultaneously the absolute and
relative aspects of income poverty. Bringing together the concepts of endogenous
lines (Foster, 1998; Ravallion and Chen, 2011) and other-regarding preferences, I
show how these aspects can be combined by endogenous poverty measures based on
a new index; therefore providing a firmer foundation for these comparisons.

The distrust of standard poverty measures has complicated the evaluation of un-
equal growth. A literature proposing several definitions for pro-poor growth emerged



2.8. CONCLUDING REMARKS 89

in order to fill the gap.43 Araar and Duclos (2009) classified the different proposals
in two categories, the absolute and the relative pro-poorness measures. The exis-
tence of these two categories shows that the pro-poor growth literature is confronted
to the difficulty of considering simultaneously the absolute and relative aspects of
income. My index constitutes a possible answer to this difficulty. In the spirit of
Ravallion and Chen (2003), growth could be deemed pro-poor if it leads to a de-
crease in an endogenous poverty measure based on my index. The endogenous line
and the subsistence threshold become then the key parameters for the evaluation of
the pro-poorness of growth.

There are several direct applications for this research. A proeminent example is
the measurement of income poverty by the World Bank. This institution recently
established a commission aimed at advicing it on the best way to monitor the real-
ization of its twin goals.44 The decomposition of the new index between absolute and
relative poverty should simplify the analysis and the communication on the progress
achieved towards its twin goals. In the same vein, the EU Commission could re-
place the AROPE measure by a measure based on the new index. Countries whose
official income poverty definition is judged non-satisfactory could also use the new
index, especially if they experience unequal growth. The United States constitute a
prominent example as several observers like Ruggles (1990) and Citro and Michael
(1995) questioned its absolute line. See Blank (2008) for a review of the political
initiatives that have attempted to modify it.

Switching the poverty measure changes the evaluation of policies aimed at reduc-
ing poverty. Up to now, policy makers used absolute measures for policy evaluation
in low- and middle-income countries and relative measures in high-income countries.
This practice ensures that the most relevant aspect of income poverty is captured
in each case, at the cost of ignoring the other aspect. The limitation of this practice
is that it yields extreme judgments on growth. On the one hand, absolute measures
evaluate policies creating economic growth positively, regardless of their distribu-
tional aspects. On the other hand, relative measures judge redistributive policies
positively, regardless of their impact on growth, as long as the inequality experienced
by the poor decreases. The evaluation of policies with a measure based on the new
index solves these limitations. This index combines both aspects and emphasizes
more the aspect that is dominant in the distribution considered. Indeed, its judg-
ments depend on the importance of absolute poverty in the initial distribution. As
a consequence, the policies recommended by this index should be in line with what

43A basic definition of pro-poorness is to require that growth reduces a poverty measure based on
the Watts index (Ravallion and Chen, 2003). This definition has been called “weak” as it does not
specify a minimal extent of poverty reduction for a given growth in mean income (Kakwani, 2008).
Alternatively, growth can be deemed pro-poor if the average growth among the poor is higher
than the growth in mean income (Duclos, 2003). Another contribution from Foster and Szekely
(2008) aims at getting around the arbitrariness inherent in a poverty line. These authors suggest
comparing the growth rate in mean income with that of different generalized means. The lower
the parameter β defining a particular generalized mean, the more emphasize is put on incomes at
the bottom of the distribution.

44The Commission on Global Poverty was established in 2015.
http://www.worldbank.org/en/programs/commission-on-global-poverty.
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the specific situation requires.
The index proposed has applications outside income poverty measurement. If the

emphasis has been put on income, the index can measure the poverty in any other
resource for which both the absolute and relative aspects matter, like education or
health.

More generally, this research contributes to attempts at introducing relative con-
siderations into the normative evaluation of economic outcomes. Adapting utilitar-
ian indicators to other-regarding preferences is of course straightforward. Neverthe-
less, utilitarian indicators often provide judgments that are at odds with equality
of opportunity principles. Social ordering functions, i.e. indicators of well-being de-
rived from efficiency and fairness principles, offer in that respect a good alternative
to utilitarian indicators (Fleurbaey and Schokkaert, 2011). Recently, a nascent liter-
ature has started investigating how to derive social ordering functions for economies
populated with other-regarding agents. See Treibich (2014) for the single-good case
and Decerf and Van der Linden (2014) for the multi-good case.

2.9 Appendix

2.9.1 Proof of Theorem 1

I show that statement 2 implies statement 1. Take any endogenous line z and any
poverty index P satisfying the five axioms.

STEP 1: From a poverty ordering on income distributions to a poverty order-
ing on distributions of individual poverty.

I define a continuous mapping m : Y → RN ′

, where N ′ := {n ∈ N|n ≥ 2}. Let
� be a EO in R whose unanymous judgments among the poor are respected by P .
By Domination among Poor , such � exists. Consider any numerical representation
d of �. For each (yi, y) ∈ X, let νi := d(yi, y). Mapping m is defined for all y ∈ Y
such that

m(y) = (ν1, · · · , νn−1) := ν.
Observe that if distribution y has n components, thenm(y) has n−1 components.

The size of distribution ν is taken to be n− 1 as for all y ∈ Y we have d(yn, y) = 0
since yn ≥ z(y) and is hence omitted. Mapping m is continuous since d is continuous
in both its arguments and the mean is a continuous function of its arguments. Given
the numerical representation d, mapping m returns the distribution of individual
poverties corresponding to any income distribution.

I show for the mapping defined that m(Y ) = Vd := [0, 1]N
′

. The domain of
images of Y through mapping m is hence a product space: Vd = ×N ′

i=1[0, 1]i. This
means that (i) m(Y ) ⊆ Vd and (ii) Vd ⊆ m(Y ), that is for all ν ∈ Vd there exists
y ∈ Y such that m(y) = ν. If (i) follows directly from the definition of mapping m,
(ii) remains to be proven. Lemma 5 proves that Vd ⊆ m(Y ).
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Lemma 5. For all endogenous line z, �∈ R and ν ∈ Vd, there exists y ∈ Y such
that ν = m(y).

Proof. Take any endogenous line z, �∈ R and ν ∈ Vd. Let g > 0 be such that
g ≥ z(g). Such g always exists by restriction Possibility of Poverty Eradication. We
construct y such that y = g and m(y) = ν. For all i ≤ q, y is such that yi := ai
defined implicitly by νi = d(ai, g). By restriction Minimal Absolute Concern and
the continuity of d, we have that ai ∈ [0, z(g)) for all i ≤ q. Let y′ be such that
y′i := yi for all i ≤ q and y′j := g for all j with q + 1 ≤ j ≤ n. We have y′ ≤ g as
z(g) ≤ g. There exists hence ℓ ≥ g such that, if yj := ℓ for all j with q + 1 ≤ j ≤ n,
then we have y = g. As ℓ ≥ g ≥ z(g), all agents j with q + 1 ≤ j ≤ n are non-poor.
By construction we have m(y) = ν. �

P is by definition the representation of a complete poverty ordering �Y on Y .
By Domination among Poor , for any two y, y′ ∈ Y such that m(y) = m(y′) we have
P (y) = P (y′). Therefore, the complete ordering �Y implies a complete ordering
�Vd on Vd since Vd = m(Y ). Ordering �Vd is defined such that for all y, y′ ∈ Y we
have y �Y y′ ⇔ m(y) �Vd m(y′). Ordering �Vd is continuous since the ordering
on Y is continuous by Continuity and mapping m is continuous. Being continuous,
ordering �Vd can be represented by a continuous index P ν : Vd → R. In particular,
ordering �Vd is represented by P ν defined such that for all ν ∈ Vd and y ∈ Y with
m(y) = ν, we have P ν(ν) = P ν

(
m(y)

)
= P (y).

STEP 2: Index P ν representing ordering �Vd on distributions of individual poverty
is additively separable.

If the assumptions of Theorem 1 in Gorman (1968) are all met, then for any n ∈ N
and any ν of size n− 1, index P ν has the following functional form:

P ν(ν) = F̃

(
n−1∑

i=1

ϕ̃(νi)

)
(2.12)

where F̃ and ϕ̃ are strictly increasing functions.
Take any n ∈ N . For the remaining part of Step 2, I abuse slightly notation by

denoting Vd the subset of Vd containing elements of size n − 1. The three assump-
tions required for this theorem are the following:

Assumption 1: There exists a complete and continuous ordering on a product
space.

I proved in Step 1 that the ordering �Vd is complete and continuous on Vd, which
is a product space Vd = ×n−1

i=1 [0, 1]i.

Assumption 2: Each sector [0, 1]i of Vd has a countably dense subset, is arc-
connected and is strictly essential. Strict essentiality means that given any sub-
distribution (ν1, · · · , νi−1, νi+1, · · · , νn−1) ∈ ×n−2

j=1 [0, 1]j, not all elements of [0, 1]i are
indifferent for the ordering �Vd .
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As all sectors are real intervals. Any sector therefore has a countably dense
subset and is arc-connected. Strict essentiality follows directly from Domination
among Poor together with the fact that for any i ≤ n − 1 and any subdistribution
(ν1, · · · , νi−1, νi+1, · · · , νn−1), the individual poverty νi is not constrained as the in-
dividual poverty of the agent n with highest income is discarded.45

Assumption 3: Let S := {[0, 1]1, · · · , [0, 1]n−1} be the set of sectors in Vd andA ⊆ S
be any subset of sectors, we have that each A is separable. Separability means that
for all (u, w), (v, w), (u, t), (v, t) ∈ Vd, we have P ν(u, w) ≥ P ν(v, w) ⇔ P ν(u, t) ≥
P ν(v, t). Separability is proven in two substeps.

Substep 1: Construct for each of the four distributions of individual poverty (u, w),
(v, w), (u, t) and (v, t) a particular income distribution associated to it.

Construct y1, y2, y3, y4 ∈ Y such that m(y1) = (u, w), m(y2) = (v, w), m(y3) =
(u, t), m(y4) = (v, t) and y1 = y2 = y3 = y4 = g with g ≥ z(g). Such distributions
exist and are constructed following the procedure given in Lemma 5.

Decompose in subgroups y1 = (y1A, y
1
B, y

1
n), such that subdistributions y1A and y1B

are associated – via the numerical representation d – to the subdistributions u and
w respectively.46 Typically, y1A 6= y1B 6= g but the next operations aims at obtaining
such equality.

Triplicate y1 and re-organize the subgroups to obtain at least one non-poor agent
per subgroup. Let y1

′

:= (y1, y1, y1) = (y1A, y
1
A, y

1
A, y

1
B, y

1
B, y

1
B, y

1
n, y

1
n, y

1
n). This tripli-

cation does not affect the mean: y1
′

= y1. Reorganize subgroups: y1
′

= (y1A′, y1B′, y1n)
with y1A′ := (y1A, y

1
A, y

1
A, y

1
n) and y1B′ := (y1B, y

1
B, y

1
B, y

1
n). Letting u′ := (u, u, u) and

w′ := (w,w, w), we have that

m(y1
′

) = (u, u, u, 0, w, w, w, 0) = (u′, 0, w′, 0),
as d(yi, g) = 0 for any yi ≥ z(g).

Construct y1∗A′ such that m(y1∗A′) = u′ with y1∗A′ = g and y1∗B′ such that m(y1∗B′) = w′

with y1∗B′ = g. Those income distributions exist as proven in Lemma 5, as both
subgroups A′ and B′ contain at least one non-poor agent. The income distribution
y1∗ := (y1∗A′, y1∗B′, g) is such that m(y1∗) = (u′, 0, w′, 0). This distribution is such that
y1∗ = g as its three subgroups have mean g.

Using the same procedure (decomposition, triplication, reorganization), con-
struct successively y2

′

, y3
′

, y4
′

and y2∗, y3∗, y4∗ such that:

y1∗ = (y1∗A′, y1∗B′, g) with m(y1∗) = (u′, 0, w′, 0) = (u, u, u, 0, w, w, w, 0),

y2∗ = (y2∗A′, y2∗B′, g) with m(y2∗) = (v′, 0, w′, 0) = (v, v, v, 0, w, w, w, 0),

y3∗ = (y3∗A′, y3∗B′, g) with m(y3∗) = (u′, 0, t′, 0) = (u, u, u, 0, t, t, t, 0),

y4∗ = (y4∗A′, y4∗B′, g) with m(y4∗) = (v′, 0, t′, 0) = (v, v, v, 0, t, t, t, 0).

For all m ∈ {1, 2, 3, 4}, we have P (ym
′

) = P (ym) by Replication Invariance. As

45In the definition and the proof of strict essentiality, the indices are not sorted by income level
but refer to the identities.

46For each element ui ∈ u there exists y1i ∈ y1A such that ui = d(y1i , y
1). The same holds for w

and y1B.
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(ym
′

i , g) ∼ (ym∗
i , g) for all i ≤ q(ym∗), we have P (ym∗) = P (ym

′

) by Domination
among Poor . Therefore, proving P (y1∗) ≥ P (y2∗) ⇔ P (y3∗) ≥ P (y4∗) is equivalent
to proving P ν(u, w) ≥ P ν(v, w) ⇔ P ν(u, t) ≥ P ν(v, t). For notational simplicity,
drop the symbols ∗ and ′ to name the new distributions and subgroups as the old
ones.

Substep 2: Prove separability from judgments on the associated income distribu-
tions: P (y1A, y

1
B, g) ≥ P (y2A, y

2
B, g) ⇔ P (y3A, y

3
B, g) ≥ P (y4A, y

4
B, g).

These income distributions are constructed such that P (y1A) = P (y3A), P (y
2
A) =

P (y4A), P (y
1
B) = P (y2B) and P (y3B) = P (y4B) by Domination among Poor . By as-

sumption, we have P (y1) ≥ P (y2). As P (y1B) = P (y2B), we have that P (y1A, g) ≥
P (y2A, g) by Weak Subgroup Consistency (remember all our subgroups have their
mean equal to g). By Weak Subgroup Consistency again, this implies P (y1A) ≥
P (y2A).

47

Then, P (y1A) ≥ P (y2A) together with P (y1A) = P (y3A) and P (y2A) = P (y4A) imply
P (y3A) ≥ P (y4A). Two cases can arise.

• Case 1: P (y3A) > P (y4A).
As P (y3B) = P (y4B), we have P (y3B, g) = P (y4B, g) by Domination among Poor .
Together we obtain P (y3A, y

3
B, g) > P (y4A, y

4
B, g) by Weak Subgroup Consis-

tency . This case is hence such that P (y3) ≥ P (y4), as desired.

• Case 2: P (y3A) = P (y4A).
I show by contradiction this case is such that P (y3) ≥ P (y4). Assume we have
P (y3A, y

3
B, g) < P (y4A, y

4
B, g). As P (y3A) = P (y4A), Weak Subgroup Consistency

implies that P (y3A, y
3
B, y

4
A, g) < P (y4A, y

4
B, y

3
A, g). Again, as P (y3B) = P (y4B), we

obtain P (y3A, y
3
B, y

4
A, y

4
B, g) < P (y4A, y

4
B, y

3
A, y

3
B, g). This is a contradiction as

the two distributions have equal poverty by Symmetry .

The two cases lead to P (y3) ≥ P (y4), which proves separability.

As all three assumptions hold, we can use Theorem 1 in Gorman (1968) and obtain,
for all ν ∈ Vd:

P ν(ν) = F̃
′

(
n−1∑

i=1

ϕ̃i(νi)

)

where F̃ ′ and ϕ̃i are strictly increasing functions. Functions ϕ̃i might still depend
on the rank i of the considered agent. Nevertheless, since �Vd is separable, we must
have ϕ̃i = ϕ̃ + f(i). Defining F̃ (x) := F̃

′

(x +
∑
f(i)), a translation of F̃

′

, we can
use (2.33) with function ϕ̃ independent of rank i.

STEP 3: Show functions F̃ and ϕ̃ do not depend on the number n of agents.

47Strictly speaking Weak Subgroup Consistency cannot be applied again as subgroup g contains
a unique agent and hence does not belong to Y . Nevertheless, further replications of the income
distributions solve the issue.
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Theorem 1 in Gorman (1968) is valid for a fixed number n of agents. Therefore,
when n is allowed to vary, equation (2.33) must be written:

P ν(ν) = F̃n

(
n−1∑

i=1

ϕ̃n(νi)

)
.

I modify the proof of Foster and Shorrocks (1991) in order to show that these func-
tions are independent of n.

Step 3.1: Define transformations of F̃n and ϕ̃n for normalization purposes.
Let Fn and ϕn be the following transformations of F̃n and ϕ̃n:

ϕn(νi) = n [ϕ̃n(νi)− ϕ̃n(0)] ,

Fn(x) = F̃n [x+ (n− 1)ϕ̃n(0)] .
These transformations allows rewritting last equation in the following way

P ν(ν) = Fn

(
1

n

n−1∑

i=1

ϕn(νi)

)
,

where ϕn(0) = 0.
Since agent n is non-poor by definition, we have d(yn, y) = 0. Therefore, we

obtain – slightly abusing notation (by introducing agent n’s zero individual poverty
at the end of distribution ν) – that for all n ≥ 3:

P ν(ν) = Fn

(
1

n

(
ϕn(0) +

n−1∑

i=1

ϕn(νi)

))
= Fn

(
1

n

n∑

i=1

ϕn(νi)

)
, (2.13)

where Fn and ϕn are continuous, strictly increasing and ϕn(0) = 0.

Step 3.2: Use Replication Invariance to prove functions Fn and ϕn do not depend
on n.

From the previous step, we have ϕn : [0, 1] → [0, bn] with ϕn(0) = 0 for all
n ∈ N++. Take any y ∈ Y with dimension n = 5 such that a single agent is poor in
y. Consider x := (y, . . . , y) a k-replication of y. Let ν := m(y) = (t, 0, 0, 0) be the
individual poverty distribution associated to y where t can be any element in [0, 1].
Let ν ′ := m(x) = (t, . . . , t, 0, . . . , 0) be the individual poverty distribution associated
to x which contains 4k − 1 zeros and k t’s. The dimension of ν is r = 4 and the
dimension of ν ′ is s = 5k − 1. Therefore we have s = k(r + 1)− 1 = kr + k − 1.

Denoting F := F4 and ϕ := ϕ4, the relationship between ϕ, ϕs, F and Fs for all
t ∈ [0, 1] is computed using (2.13) and Replication Invariance:

P ν(ν) = F

[
1

5
ϕ(t)

]
= Fs

[
k

5k
ϕs(t)

]
= P ν(ν ′),

ϕs(t) = 5F−1
s

[
F (

1

5
ϕ(t))

]
. (2.14)
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Replacing ϕs(t) in (2.13) by its value obtained in (2.14), we get:

F−1[P ν(ν ′)] = F−1

[
Fs

(
1

5k

5k∑

i=1

5F−1
s

[
F

(
1

5
ϕ(ν ′i)

)])]
(2.15)

= G−1
s

(
1

5k

5k∑

i=1

5Gs

(
1

5
ϕ(ν ′i)

))
, (2.16)

where Gs(w) := F−1
s (F (w)) and G4(w) = F−1(F (w)) = w.

By Replication Invariance, we have that F−1[P ν(ν)] = F−1[P ν(ν ′)], which by
(2.16) yields:

Gs

(
1

5
ϕ(t)

)
=

(
1

5k

5k∑

i=1

5Gs

(
1

5
ϕ(ν ′i)

))

= Gs

(
1

5
ϕ(t)

)
+

4k − 1

k
Gs(0),

which shows that Gs(0) = 0.
Consider now any y′ ∈ Y with dimension n = 5 such that two agents are poor

in y′. Consider x′ := (y′, . . . , y′) a k-replication of y′. Let ν := m(y′) = (t, u, 0, 0)
be the individual poverty distribution associated to y′ where t and u can be any
element in [0, 1]. Let ν ′ := m(x′) = (t, . . . , t, u, . . . , u, 0, . . . , 0) be the individual
poverty distribution associated to x which contains 3k − 1 zeros, k t’s and k u’s.

By Replication Invariance, we have that F−1[P ν(ν)] = F−1[P ν(ν ′)], which by
(2.16) yields:

1

5
ϕ(t) +

1

5
ϕ(u) = G−1

s

(
Gs

(
1

5
ϕ(t)

)
+Gs

(
1

5
ϕ(u)

))
,

which can be rewritten as the Jensen equation:

Gs(x+ x′) = Gs(x) +Gs(x
′),

that admits as general solution Gs(x) = rsx+ qs. As Gs(0) = 0 we have qs = 0.
Replacing Gs by its expression in (2.16), we obtain

F−1[P ν(ν ′)] =
1

5k

5k∑

i=1

ϕ(ν ′i).

Therefore, for any y ∈ Y with dimension 5k and its associated ν = m(y):

P ν(ν) = F

(
1

5k

5k∑

i=1

ϕ(νi)

)
(2.17)

The same expression is valid for all y ∈ Y with dimension n as the same reason-
ing can be applied between n(y) and the least common multiple between n(y) and 5.

Finally, transformations d′ and G of respectively functions ϕ and F guarantee that
the domain of image of d′ is [0, 1]. Letting d′(yi, y) =

ϕ(d(yi,y))
ϕ(1)

and G(x) = F
(
xϕ(1)

)
,

we have for all y ∈ Y :

P ν(ν) = G

(
1

n

n∑

i=1

d′(yi, y)

)
= P (y) (2.18)
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where G is a continuous and strictly increasing function and d′ is a numerical rep-
resentation of �. As function G is strictly increasing, P is ordinally equivalent to
P ′ : Y → [0, 1] with P ′(y) = 1

n

∑n
i=1 d

′(yi, y). This proves P is an additive poverty
index.

2.9.2 Proof of Lemma 6

The proof of Theorem 2 relies on Lemma 6, which gives a necessary condition and
a sufficient condition for satisfying Monotonicity in Income. These conditions hold
for the general domains of poverty lines, absolute-homothetic EOs and numerical
representations.

The presentation of Lemma 6 requires introducing two definitions. For a given
additive poverty index, the degree of priority of an income level over another at a
certain mean income measures the ratio of the increase in the index if a marginal
increase takes place at one income level rather than at the other.4849

Definition 15 (Degree of Priority of yi over yj at y). DPij(y) :=
∂1d(yi,y)
∂1d(yj ,y)

DPij(y) can be interpreted as the priority given by the index to an income level
yi over another income level yj when mean income is y.

Monotonicity in Income sets a lower and an upper bound on the degrees of
priority granted by additive indices. These bounds depend on the slopes of the
equivalence curves at the bundles of the concerned agents. These slopes can be
defined using the numerical representation.50

Definition 16 (Slope at (yi, y)). s(yi, y) := −∂2d(yi,y)
∂1d(yi,y)

The two general conditions are the following.

Lemma 6 (Bounds on degrees of priority).
An additive poverty index based on an absolute-homothetic EO below an endogenous
line satisfies Monotonicity in Income:

1. (sufficient condition) if for all y > 0 and yi, yj < z(y), we have:

s(yj, y) ≤ DPij(y) (2.19)

2. (necessary condition) only if for all y > 0 with z(y) ≤ y and all yi, yj < z(y),
(2.19) holds.

48The partial derivative of a function f : X → R in the direction xi at point x ∈ X is denoted
∂if(x).

49Numerical representations need not be differentiable everywhere. The definition of DPij(y) at
points for which d is not differentiable is given in Appendix 2.9.2 which treats non-differentiability
of numerical representations.

50Again, the modification of this definition for points at which d is not differentiable is in Ap-
pendix 2.9.2. This definition allows attributing a unique value of the slope even at points for which
the equivalence curves of the EO exhibit a kink.
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Proof. Consider any additive index P based on an absolute-homothetic EO below
an endogenous line. The index P satisfies Monotonicity in Income if and only if for
all y ∈ Y and i ≤ q we have ∂iP (y1, · · · , yn) ≤ 0. By the additively separable form
of P , this inequality becomes by chain derivation:51

∂1d(yi, y) +

n∑

j=1

∂2d(yj, y)∂iy ≤ 0. (2.20)

From the definition of the mean, we have ∂iy = 1
n
. From the definition of s(yj, y),

we get ∂2d(yj, y) = −∂1d(yj, y)s(yj, y) for all (yj, y) ∈ X. Inequality (2.20) becomes:

∂1d(yi, y)−
1

n

n∑

j=1

∂1d(yj, y)s(yj, y)

︸ ︷︷ ︸
L2.21

≤ 0. (2.21)

In the remainder of the proof, (2.21) is shown to imply the necessary and sufficient
conditions linked to (2.19). Inequality (2.19) can be rewritten:

∂1d(yi, y)− ∂1d(yj, y)s(yj, y)︸ ︷︷ ︸
L2.22

≤ 0. (2.22)

Necessity of condition 2 is proved by contradiction. Assume (2.22) does not hold
for some y1 ∈ Y with z(y1) ≤ y1 and y1i , y

1
j are such that 0 ≤ y1i < y1j < z(y1).

Therefore, at (y1i , y
1), (y1j , y

1) ∈ Xp, we have for some ℓ > 0 that L2.22 = ℓ. I prove
that for all ǫ > 0, there exists y2 ∈ Y with y2 = y1 such that |ℓ−L2.21(y

2)| < ǫ and
hence, for ǫ < ℓ, there exists an y2 such that L2.21(y

2) > 0, violating Monotonicity
in Income. Construct y2 such that

• y21 := y1i ,

• y2k := y1j for all k with 2 ≤ k ≤ n(y2)− 1 and

• y2n := n(y2)y1 −
∑n(y2)−1

h=1 y2h.

Notice y2n ≥ z(y1) since y1 ≥ z(y1), which implies y2 ∈ Y . For distribution y2,
rembering that ∂1d(y

2
n, y

1) = 0, we have:

ℓ− L2.21(y
2) = L2.22 − L2.21(y

2)

= −
1

n(y2)

(
2∂1d(y

1
j , y

1)s(y1j , y
1)− ∂1d(y

1
i , y

1)s(y1i , y
1)
)
.

In order to show that |ℓ− L2.21(y
2)| < ǫ, two cases must be considered:

• Case 1: ∂1d(y
1
j , y

1) and ∂1d(y
1
i , y

1) are finite.
The distance |ℓ − L2.21(y

2)| can be made arbitrarly small by taking n(y2)
sufficiently large, implying L2.21(y

2) > 0, which violates (2.21) and hence
Monotonicity in Income.

• Case 2: ∂1d(y
1
j , y

1) or ∂1d(y
1
i , y

1) are not finite.
Observe first that if ∂1d(y

1
i , y

1) = −∞ and ∂1d(y
1
j , y

1) is finite, then (2.22)

51The case of points at which d is not differentiable is treated in Appendix 2.9.2.
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must hold.
Assume ∂1d(y

1
j , y

1) = −∞. If (2.22) does not hold, then we have s(y1j , y
1) > 0

as d is strictly decreasing in yi. If ∂1d(y
1
i , y

1) is finite, then L2.21(y
2) > 0 and

Monotonicity in Income does not hold. If ∂1d(y
1
i , y

1) = −∞, by the continuity
of d, there exists y1k close to y1i for which the equivalent of (2.22) does not hold
and ∂1d(y

1
k, y

1) is finite, leading again to a violation of the axiom.

The case for which 0 ≤ y1j < y1i < z(y1) leads to the same contradiction. The
only difference lies in the construction of y2: y2

n(y2)−1
:= y1i , y

2
k := y1j for all k with

1 ≤ k ≤ n(y2)− 2. The condition is therefore necessary.

Sufficiency of condition 1 follows from the fact that, if there exists an y ∈ Y vio-
lating (2.21), inequality (2.22) is violated as well for a particular value of yj. For
all y ∈ Y there exists y∗j ∈

[
0, z(y)

)
such that, taking yj := y∗j in L2.22, we have

L2.21(y) < L2.22, which is:

−
1

n

n∑

j=1

∂1d(yj, y)s(yj, y) < −∂1d(y
∗
j , y)s(y

∗
j , y),

where the strict inequality comes from the presence of the non-poor agent n for
whom ∂1d(yn, y) = 0. The key property for last inequality to hold is that ∂1d(yj, y)
and s(yj, y) depend on the income of other agents only through their impact on
mean income y. At mean income y, y∗j is obtained by solving the following problem:

y∗j := arg max
yj∈[0,z(y))

−∂1d(yj, y)s(yj, y).

�

The symmetry of degrees of priority implies that the lower bound given in (2.19)
is associated with an upper bound.52 Lemma 6 shows that the steeper the equiv-
alence curves, the narrower is the range of acceptable degrees of priority. These
rather obscure constraints have strong implications that are best illustrated on spe-
cific domains of poverty lines, EO’s and families of numerical representations.

Non-differentiability of numerical representation d

I extend in this subsection the definitions of degrees of priorities and slopes for
bundles at which the numerical representation is not differentiable. I show how
these extended definitions allows Lemma 6 to hold even at those bundles and hence
everywhere for absolute-homothetic EOs.

Function d is differentiable almost everywhere as the function d is continuous.
Consider any (y1i , y

1), (y1j , y
1) ∈ Xp at which d is not differentible. The definition of

52The symmetric definition of DPij(y) implies that DPij(y) = 1
DPji(y)

, at least at bundles at
which d is differentiable. If s(yi, y) ≥ 0, inequality (2.19) could be completed by a second inequality
it implies, which gives the associated upper bound: s(yj , y) ≤ DPij(y) ≤

1
s(yi,y)

.
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DPij at these bundles is given by

DPij(y
1) :=

limyi→y1+i
∂1d(yi, y

1)

limyj→y1−j
∂1d(yj, y

1)
.

Either these limits take non-negative finite values or they tend to infinity, showing
that DPij ∈ [0,∞).53 For any (y1j , y

1) ∈ Xp at which d is not differentible, the
definition of the slope becomes

s(y1j , y
1) := −

limy→y1+ ∂2d(y
1
j , y)

limyj→y1−j
∂1d(yj, y

1)
=






0 if yj ≤ za,

yj−za

z(y)−za
∂z(y) otherwise.

The definition of the slope at bundle (y1j , y
1) where d is not differentiable implies

lim
y→y1+

∂2d(y
1
j , y) = − lim

yj→y1−j

∂1d(yj, y
1)s(y1j , y

1).

From the previous equation, we can extend (2.22) in Lemma 6, which must now be
compared with an extended version of (2.20), that is obtained by chain derivation
of P at y:

lim
yj→y1+i

∂1d(yi, y) +
n∑

j=1

lim
y→y1+

∂2d(yj, y)∂iy ≤ 0.

The reasoning given in the proof of Lemma 6 is then valid even at those points.
This extension of the validity of Lemma 6 is only necessary for the proof of Theorem
4. Indeed, other theorems relies on families of numerical representations that are
differentiable everywhere.

Observe that non-smooth equivalence curves are not ruled out from absolute-
homothetic EOs. Indeed, poverty lines can exhibit kinks, as it is the case at yk

for piecewise-linear lines. This non-smoothness is not problematic as the extended
definition of slope given above guarantees there is a unique value of slope at these
bundles. The evolution of slopes with y is not continuous at yk, but this does not
affect Lemma 6, which provides conditions to be checked independently at each
particular value of mean income y.

2.9.3 Proof of Theorem 2

Take any monotonic endogenous line z and any absolute-homothetic EO � below
z. Take additive index P whose numerical representation d of � belongs to the
extended FGT family. I prove Theorem 2 claim by claim.

Claim 1: P satisfies Monotonicity in Income only if α = 1.

53It can be that for yi 6= yj we have DPij = ∞

∞
, meaning DPij is not well-defined. I show that

ignoring these cases in the necessary and sufficient condition is not problematic. Two cases can
happen. Case 1: we have yi ≤ yj ≤ za and hence s(yi, y) = s(yj , y) = 0. This case leads to no
violation of inequality (2.19) as DPij ∈ [0,∞). Case 2: we have either yi > za or yj > za (assume
the later without loss of generality). Then there always exists yk < z(y) such that DPkj = 0 and
inequality (2.19) is violated as s(yj , y) > 0.
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The numerical representation of P belongs to the extended FGT family which means
there exists yr ≥ 0 such that for all (yi, y) ∈ Xp we have

d(yi, y) =

(
z(yr)− er(yi, y)

z(yr)

)α
. (2.23)

I show that if α 6= 1 then the necessary condition given in Lemma 6 (see Appendix
2.9.2) for the associated additive poverty index P to satisfy Monotonicity in Income
is violated.

Since line z is monotonic, there exists g > 0 with g ≥ z(g) such that s(g) > 0.
Consider any (y1i , y

1) ∈ Xp with y1 = g and y1i > za. By the monotonicity of z,
we have hence that y1 ≥ z(y1). From the necessary condition in Lemma 6, if there
exists y1j with y1j < z(y1) and s(y1j , y

1) > DPij(y
1) then Monotonicity in Income

does not hold.54 I show below there exists y1j with y1i < y1j < z(y1) leading to a
violation of the necessary condition when α 6= 1.

The degree of priority given by P to agent i over j, when y1i ≤ y1j is obtained by
chain derivation of (2.23):

DPij(y
1) =

∂1d(y
1
i , y

1)

∂1d(y1j , y
1)

=

(
z(yr)− er(y1i , y

1)

z(yr)− er(y1j , y
1)

)α−1
∂1e

r(y1i , y
1)

∂1er(y1j , y
1)

︸ ︷︷ ︸
F1

, (2.24)

where yr denotes the value of mean income at which d takes the exponential
mathematical expression. Factor F1 in (2.24) is equal to one because the EO is
absolute-homothetic. Indeed, absolute-homotheticity implies that for all y > 0 and
yi, yj ∈ [za, z(y)] we have

er(yj, y)− za

er(yi, y)− za
=
yj − za

yi − za
. (2.25)

Therefore (2.24) can be simplified to

DPij(y
1) =

(
z(yr)− er(y1i , y

1)

z(yr)− er(y1j , y
1)

)α−1

. (2.26)

I now prove that the necessary condition is violated for y1j sufficiently close to
z(y1). Three cases must be considered depending on the value taken by α.

• Case 1: 0 < α < 1:
When y1j tends to z(y1), we have that er(yj, y) tends to z(yr). From the
exponential functional form of DPij(y

1), for all ǫ > 0, there exists hence
y1j ∈

[
y1i , z(y

1)
)

such that

DPij(y
1) =

(
z(yr)− er(yi, y)

z(yr)− er(yj, y)

)α−1

< ǫ.

As the poverty line is monotonic and y1 = g, we have s(z(y1)) > 0. As the
EO is absolute-homothetic and y1i > za, we have s(y1i , y

1) > 0 and for all
y1j > y1i we have s(y1j , y

1) > s(y1i , y
1). As a result, for any ǫ < s(y1i , y

1) we have
s(y1j , y

1) > DPij(y
1) and the necessary condition is violated.

54See Appendix 2.9.2 for the definitions of slope s(y1j , y
1) and degree of priority DPij(y1).
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• Case 2: α > 1:
As the numerical representation is differentiable for all y1i and y1j with za <
y1i < y1j , we have DPji(y

1) = 1
DPij(y1)

. From the reasoning given for the case

0 < α < 1, we have that for all ǫ > 0, there exists y1j ∈
[
y1i , z(y

1)
)

such that
DPji(y

1) < ǫ. This leads to a violation of Monotonicity in Income for identic
reasons.

• Case 3: α = 0:
Index P is an increasing transformation of the Head-Count Ratio. Monotonic-
ity in Income is violated for any y ∈ Y with y = g and one non-poor agent i
has income yi = z(y).

Claim 2: P satisfies Monotonicity in Income and Transfer among Poor if and only
if α = 1 and yr = 0.

By Claim 1, P satisfies Monotonicity in Income only if α = 1. Claim 2 is therefore
proven by the combination of steps 1 and 2.

Step 1: If α = 1, then P satisfies Transfer among Poor if and only if yr = 0.

P satisfies Transfer among Poor if and only if the numerical representation d is
convex at all values of mean income. Formally, P satisfies Transfer among Poor if
and only if for all y > 0 and all yi, yj ∈ [0, z(y)) with yi < yj we have DPij(y) ≥ 1.
Lemma 7 shows that we have DPij(y) 6= 1 only in the case yi < za < yj.

Lemma 7. Let � be an absolute-homothetic EO below an endogenous line. Let d
be a numerical representation of � in the extended FGT family with α = 1. For all
(yi, y), (yj, y) ∈ Xp with yi ≤ yj, if DPij(y) 6= 1, then yi < za < yj and

DPij(y) =
z(y)− za

z(yr)− za
. (2.27)

Proof. Consider any (yi, y), (yj, y) ∈ Xp with yi ≤ yj. Given α = 1, the value taken
by DPij(y) depends only on y and on the relative positions of yi, yj and za. Four
cases must be considered.

• Case 1: yi = yj
DPij(y) = 1 by the definition of DPij(y).

• Case 2: yi < yj ≤ za

Equation (2.24) holds as it does not depend on the particular value of mean
income y. By absolute-homotheticity we have for all y > 0 and yi ≤ za that
er(yi, y) = yi. As a result (2.26) holds as well. Replacing α = 1 leads to
DPij(y) = 1.

• Case 3: za ≤ yi < yj
Equation (2.26) holds. Replacing α = 1 leads to DPij(y) = 1.
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• Case 4: yi < za < yj
As α = 1, the numerical representation at any point (yi, y) ∈ Xp is

d(yi, y) =

(
z(y)− er(yi, y)

z(y)

)
.

As the EO is absolute-homothetic, for any yi ≤ za we have er(yi, y) = yi. As
a result we have for any yi ≤ za that

∂1d(yi, y) =
−1

z(yr)
.

As the EO is absolute-homothetic, for any yj ≥ za we have that

er(yj, y)− za = (yj − za)
z(yr)− za

z(y)− za
,

implying for any yj ≥ za that

∂1d(yj, y) =
−1

z(yr)

(
z(yr)− za

z(y)− za

)
.

By the definition of DPij(y), we find for any yi < za < yj that (2.27) holds.

�

I show that yr = 0 is sufficient and necessary for P to satisfy Transfer among
Poor .

• Case yr = 0 (sufficiency)
This case is such that yr < y for all y > 0. As z is assumed monotonic, we
have that z(yr) ≤ z(y). Then for all yi, yj ∈ [0, z(y)) with yi < za < yj we
have by (2.27) and z(yr) ≤ z(y) that DPij(y) ≥ 1. This implies by Lemma
7 that, when yi ≤ yj, we have DPij(y) ≥ 1 and hence the sufficient condition
for Transfer among Poor holds.

• Case yr > 0 (necessity)
This case is such that there exists y < yr such that z(y) < z(yr). Indeed,
if the poverty line is flat for all y < yr, then the numerical representation is
linear in y = 0 as the EO is absolute-homothetic. Therefore the numerical
representation is equivalent to yr = 0 and we have yr = 0.

At y < yr such that z(y) < z(yr) we have for any yi < za < yj thatDPij(y) < 1
from (2.27), violating the necessary condition for Transfer among Poor .

Step 2: If α = 1 and yr = 0, then P satisfies Monotonicity in Income.

The sufficient condition for Monotonicity in Income given in Lemma 6 requires
that for all y > 0 and yi, yj < z(y), we have s(yj, y) ≤ DPij(y).

As the EO satisfies Translation Monotonicity, we have for all (yi, y) ∈ Xp that
s(yj, y) ≤ 1. The sufficient condition can therefore only be violated if DPij(y) < 1.

From Lemma 7, the case DPij(y) 6= 1 can only happen if one agent is absolutely
poor (income below za) and the other relatively poor (income above za). As yr =
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0, α = 1 and since the line is monotonic, (2.27) shows that the relatively poor
agent cannot have a priority over the absolutely poor agent strictly larger than 1.
Therefore, the case DPij(y) < 1 only happens if yj < za < yi.

As the EO is absolute-homothetic, if yj < za then s(yi, y) = 0 and the sufficient
condition holds since DPij(y) is non-negative by definition.

Piecewise-linear poverty line

This subsection shows that if the endogenous line is piecewise-linear, then there
exists an upper-bound for the value of reference mean income below which the PGR
at yr satisfies Monotonicity in Income.

Theorem 8 (Upper-bound for reference mean income).
Let z be a piecewise-linear poverty line with yk ≥ z0 and slope s̄ > 0. Let P be an
additive poverty index based on an absolute-homothetic EO below z with a numerical
representation in the extended FGT family with α = 1.

1. P satisfies Monotonicity in Income if and only if:

yr ≤ yk +

(
1− s̄

s̄2

)
(z0 − za).

Proof.
Step 1: P satisfies Monotonicity in Income if and only if for all y ≥ yk and all
yi, yj < z(y), we have s(yj, y) ≤ DPij(y).

Given z is piecewise-linear, for all y ≤ yk and all yi < z(y) we have s(yi, y) = 0.
As a result, for all y ≤ yk and all yi, yj < z(y) inequality s(yj, y) ≤ DPij(y) holds.
Therefore, the necessary condition for Monotonicity in Income given in Lemma 6 is
also sufficient.

Step 2: P satisfies Monotonicity in Income if and only if for all y ≥ yk and
yj < z(y) we have s(yj, y) ≤

z(y)−za

z(yr)−za
.

As the EO satisfies Translation Monotonicity we have s(yj, y) ≤ 1 for all (yj, y) ∈ Xp.
Assuming without loss of generality that yi ≤ yj < z(y), by Lemma 7 we have that
inequality s(yj, y) ≤ DPij(y) is violated only if yi < za < yj. In that case, by (2.27)
we get

DPij(y) =
z(y)− za

z(yr)− za
.

Therefore, condition of Step 2 is a simplified version of the necessary and sufficient
condition of Step 1.

Step 3: P satisfies Monotonicity in Income if and only if

yr ≤ yk +

(
1− s̄

s̄2

)
(z0 − za).
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For all y ≥ yk, slope s(yj, y) is maximal and tends to s̄ when yj tends to z(y). When
yi < za < yj, considering any yj ≥ za does not affect the value of DPij(y) found in
Step 2. Therefore replacing s(yj, y) by s̄ in the condition of Step 2 is without loss
of generality.

Given yr, DPij(y) is weakly decreasing in y (constant on y ≤ yk) and reach a
minimal value for y = yk. Therefore, if the inequality given in Step 2 holds for
y = yk, then it holds for all y > 0. Therefore Monotonicity in Income holds if and
only if:

s̄ ≤
z(yk)− za

z(yr)− za
=

z0 − za

z(yr)− za
,

which yields the desired threshold for yr as for all yr ≥ yk we have z(yr) = z0 +
s̄(yr − yk). �

2.9.4 Proof of Theorem 3

Take any linear line z with s̄ > 0 and any additive index P with a numerical
representation d of the homothetic EO below z belonging to the quadratic family.55

This proof is made in two steps, which together constitute the proof.

STEP 1: P satisfies Monotonicity in Income if and only if for some arbitrary y1 > 0
and all yi, yj ∈ [0, z(y1)) we have s(yj, y

1) ≤ DPij(y
1).

Take any y1 with z(y1) ≤ y1. As the poverty line is linear and hence s̄ > 0, such y1

exists. As shown in the necessary condition of Lemma 6, P satisfies Monotonicity
in Income only if for all yi, yj ∈ [0, z(y1)) we have s(yj, y

1) ≤ DPij(y
1).

By assumption the EO is homothetic. I show that homotheticity implies that
the degree of priority of one equivalence level over another does not depend on mean
income. For all y1, y2 > 0, (yi, y

1), (yj, y
1) ∈ Xp if yk := e2(yi, y

1) and yℓ := e2(yj, y
1)

then DPij(y
1) = DPkℓ(y

2). Homotheticity implies that

e2(yj, y
1) =

yj
yi
e2(yi, y

1).

By chain derivation, the degree of priority of yi over yj at y1 is hence:

DPij(y
1) =

∂1d
(
e2(yi, y

1), y2
)

∂1d
(
e2(yj, y

1), y2
) ∂1e

2(yi, y
1)

∂1e2(yj, y
1)

= DPkℓ(y
2)

e2(yj ,y1)

yj

e2(yi,y1)
yi

= DPkℓ(y
2).

By assumption, the poverty line z is linear which, together with a monotonic
EO implies that all bundles yielding the same equivalence level have a constant
slope, for all values of mean income. For all (yi, y

1) ∈ Xp and all (yk, y
2) ∈ Xp with

(yk, y
2) ∼ (yi, y

1), we have:

s(yi, y
1) = s

yi
z(y1)

= s
yk
z(y2)

= s(yk, y
2). (2.28)

55If s̄ = 0, then the line is absolute and P satisfies Monotonicity in Income since in that case
Monotonicity in Income is implied by Domination among Poor .
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Therefore, if for all yi, yj ∈ [0, z(y1)) we have s(yj, y
1) ≤ DPij(y

1), then for all
y > 0 and all yi, yj ∈ [0, z(y)) we have s(yj, y) ≤ DPij(y). Therefore the sufficient
condition in Lemma 6 holds as well in that case.

STEP 2: For any y > 0, we have s(yj, y
1) ≤ DPij(y

1) for all yi, yj ∈ [0, z(y)) if and
only if inequalities (2.9) hold.

Take any y > 0. For all yi ∈ [0, z(y)), since d belongs to the quadratic family:

∂1d(yi, y) = −
1

z(y)

(
1 + α

(
1− 2

yi
z(y)

))
.

Therefore for all yi, yj ∈ [0, z(y)), using the expression of s(yi, y) given in 2.28,
inequality s(yj, y) ≤ DPij(y) is rewritten:

yj
z(y)

1 + α
(
1− 2

yj
z(y)

)

1 + α
(
1− 2 yi

z(y)

)

︸ ︷︷ ︸
L2.29

≤
1

s̄
. (2.29)

Two cases must be considered for this inequality:

• Case 1: α < 0.
L2.29 is maximal when (i) yi = 0 and (ii) yj tends to z(y), implying that
s(yj, y) tends to s̄. Replacing those values yields the lower bound on α.

• Case 2: α ≥ 0.
L2.29 is maximal when (i) yi tends to z(y) and (ii)

yj
z(y)

= (1+α)
4α

for all α with
1
3
≤ α ≤ 1. Replacing those values yields the upper bound on α. For all

α ∈
[
0, 1

3

]
, inequality (2.29) is respected for all yi, yj ∈ [0, z(y)) as s̄ ≤ 1.

2.9.5 Proof of Theorem 4

Take any piecewise-linear line z with yk ≥ z0 and s̄ > 0. Take any x∗ > 0 with
x∗ < z0. Let P be an additive index based on an EO in RHH(z, x∗). Let �sx be an
EO belonging to the subdomain RHH(z, x∗) and hence x0 = x∗.

First, I prove Claim 1. If sx = 0, then �sx is absolute-homothetic and Theorem
2 shows that if the numerical representation of P is the PGR at the origin, then it
satisfies both properties. I focus hence on proving the claim for EOs with sx > 0.
The proof relies on Lemma 8 giving a necessary and sufficient condition for an index
to satisfy both properties.

Lemma 8. P satisfies Monotonicity in Income and Transfer among Poor if and only
if for all y ≥ yk and all yi, yj ∈ [0, z(y)) with yi < yj we have 1 ≤ DPij(y) ≤

1
s(yi,y)

.

Proof.
P satisfies Transfer among Poor if and only if for all y > 0 and all yi, yj ∈ [0, z(y))
with yi ≤ yj we have 1 ≤ DPij(y). Given the poverty line is piecewise-linear and the
EO is homothetic-homothetic, for all y, y′ with y < y′ ≤ yk and all yi, yj ∈ [0, z(y))



106 CHAPTER 2. A NEW POVERTY INDEX

we have DPij(y) = DPij(y
′). This implies that if the condition for Transfer among

Poor holds for all y ≥ yk, then it holds for all y > 0.
Given the poverty line is piecewise-linear and the EO is homothetic-homothetic,

for all y < yk and all yi, yj ∈ [0, z(y)), inequality s(yj, y) ≤ DPij(y) is trivially
satisfied as s(yj, y) = 0. By assumption we have yk ≥ z0, which implies z(yk) ≤ yk

and hence z(y) ≤ y for all y ≥ yk. The necessary condition for Monotonicity in
Income stated in Lemma 6 is therefore also sufficient: P satisfies Monotonicity in
Income if and only if for all y ≥ yk and all yi, yj ∈ [0, z(y)) we have s(yj, y) ≤
DPij(y).

56 If P satisfies Transfer among Poor , this condition is met for all yi ≤ yj
as s(yj, y) ≤ 1 by Translation Monotonicity. For all yj < yi, the condition for
Monotonicity in Income is based on inequality s(yi, y) ≤ DPji(y). As DPij(y) =

1
DPji(y)

, we have that P satisfies both Monotonicity in Income and Transfer among

Poor if and only if for all y ≥ yk and all yi, yj ∈ [0, z(y)) with yi < yj we have
1 ≤ DPij(y) ≤

1
s(yi,y)

. �

Given a particular EO, choosing an additive index P is equivalent to choosing its
numerical representation d. At the reference mean income yr at which d is expressed,
selecting d is equivalent to select for all yi, yj ∈ [0, z(yr)) with yi < yj the degrees
of priority DPij(y

r).57 Each income level yi at yr is associated to an equivalence
level corresponding to the equivalence curve of the EO passing through the bundle
(yi, y

r). Being selected at yr, the degrees of priority between two equivalence levels
evolve with mean income y, according to the evolution of the equivalence curves
of the EO. I compute below how those degrees of priority between two equivalence
levels evolve with mean income y. Then, I derive the conditions on the slope sx of
the homothetic-homothetic EO under which it is possible that, for the whole range
of mean incomes

[
yk,∞

)
, the degrees of priority stay inside

[
1, 1

s(yi,y)

]
. The proof of

Claim 1 is in three steps.

STEP 1: Evolution of DPij with mean income depends on sx.

Take yk as reference mean income. Any reference mean income is taken without
loss of generality as there is no constraint on the mathematical expression of d.

Consider any two yi, yj ∈ [0, z(yk)) with yi < yj. Let ek : Xp → [0, z(yk)] be the
equivalent income function at yk. For any y > yk, consider the bundles (y′i, y) and
(y′j, y) yielding equivalent individual poverty, that is yi = ek(y′i, y) and yj = ek(y′j, y).

As EO �sx is homothetic-homothetic, we have for all y ≥ yk and all yℓ ∈
[
0, x(y)

)

that

ek(yℓ, y) = yℓ
x0

x(y)
,

56Although Lemma 6 is only proven for absolute-homothetic EOs, extending its validity to
homothetic-homothetic EOs is staithforward.

57This selection is under the constraint that for any yℓ ∈ [0, z(yr)) with yi < yℓ < yj we have
DPij(y

r) = DPiℓ(y
r)DPℓj(y

r), at least if d is differentiable at (yℓ, y
r).
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and for all yℓ ∈
[
x(y), z(y)

)
that

ek(yℓ, y) = x0 +
z0 − x0

z(y)− x(y)

(
yℓ − x(y)

)
.

The evolution of DPij as a function of y depends on the relative positions of yi,
yj and x(yk) = x0. Three cases must be considered.

• Case 1: yi < yj ≤ x0.
A direct extension of the reasoning on homotheticity in Step 1 of Theorem
3’s proof shows that for all y > yk and all yi, yj < x(yk) we have DPij(y) =
DPij(y

k). This implies that if the necessary and sufficient condition of Lemma
8 is met at yk, it is met for all y ≥ yk.

• Case 2: x0 ≤ yi < yj.
We have DPij(y) = DPij(y

k). Again, checking the condition at yk is necessary
and sufficient.

• Case 3: yi < x0 < yj.
By chain derivation, we obtain successively:

DPij(y) =
∂1d
(
ek(yj, y), y

k
)

∂1d
(
ek(yj, y), y

k
) ∂1e

k(yi, y)

∂1ek(yj, y)
= DPij(y

k)

(
x0

x(y)

z(y)− x(y)

z0 − x0

)

= DPij(y
k)

(
x0

x0 + sx(y − yk)

(z0 − x0) + (sz − sx)(y − yk)

z0 − x0

)
,

and finally

DPij(y) = DPij(y
k)

x0

z0 − x0

(
(z0 − x0) + (sz − sx)(y − yk)

x0 + sx(y − yk)

)
. (2.30)

Taking the partial derivative of DPij(y) with respect to mean income yields

∂DPij(y)

∂y
= DPij(y

k)
x0

z0 − x0
szx

0 − sxz
0

(
x0 + sx(y − yk)

)2 .

There are three subcases to consider, depending on the value of sx.

– Subcase 3.1: sx ∈
(
0, x

0

z0
sz

)
.

The partial derivative of DPij(y) is strictly increasing for all y > yk.

– Subcase 3.2: sx ∈
(
x0

z0
sz, s

z
]
.

The partial derivative of DPij(y) is strictly decreasing for all y > yk.

– Subcase 3.3: sx =
x0

z0
sz.

The partial derivative of DPij(y) is zero for all y > yk. For sx = shx, the
EO �sx corresponds to an homothetic EO. If the numerical representation
is the PGR at the origin, then P respects both properties as shown in
Theorem 2.

The degree of priority between two equivalence levels evolve with y only if yi <
x0 < yj. As shown by the three subcases, this evolution depends on the value taken
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by sx. I study in Step 2 the conditions under which an EO in subcase 3.1 admits
a numerical representation such that P satisfies both properties. In Step 3, I study
those conditions in subcase 3.2.

STEP 2: For subcase 3.1, derive the lower bound sx for sx above which an additive
index satisfies the necessary and sufficient conditions of Lemma 8.

Subcase 3.1 is such that 0 < sx < x0

z0
sz. Step 1 showed for these values of sx

that DPij(y) is strictly increasing in y. The necessary and sufficient condition for
both properties given in Lemma 8 requires that we have 1 ≤ DPij(y) ≤

1
s(yi,y)

for

all y ≥ yk. As DPij(y) is strictly increasing with y, it is sufficient to check these
inequalities at the boundaries of the domain for mean income, that is at y = yk and
when y tends to ∞. From (2.30), the condition in Lemma 8 is satisfied only if for
all yi, yj ∈ [0, z(yk)) with yi < x(yk) < yj we have:

1 ≤ DPij(y
k) and DPij(y

k)
x0

z0 − x0
(sz − sx)

sx︸ ︷︷ ︸
β

≤
1

s(yi, y
k)
. (2.31)

As this subcase is such that sz > sx
z0

x0
, we have β > 1. Observe that the slope

of a given equivalence curve is constant for all y ≥ yk, which implies the second
inequality can be bounded above by the slope at yk.

If inequalities (2.31) are not met when taking DPij(y
k) = 1 for all yi, yj ∈

[0, z(yk)) with yi < x(yk) < yj, then any other value for DPij(y
k) also implies their

violation.58 In other words, if the PGR at yk cannot respect these conditions, no
other numerical representation can. On the contrary, if the PGR at yk does respect
inequalities (2.31), then the index based on this numerical representation satisfies
both Monotonicity in Income and Transfer among Poor . Indeed, I showed in Step 1
that respecting the condition of Lemma 8 for all yi, yj ∈ [0, z(yk)) with yi < yj < x0

or with x0 ≤ yi < yj at mean income yk was sufficient to respect it for all y ≥ yk.
I show that the PGR at yk respect inequalities (2.31) for all yi, yj ∈ [0, z(yk))

with yi < x0 < yj if and only if sx ≥ sx. The first of these inequality holds as
DPij(y

k) = 1. I show that provided sx ≥ sx, the second holds as well for the
subcase 3.1. The left-hand side of this second inequality does not depend on the
specific value taken by yi and yj, given they meet yi < x0 < yj. The tightest upper
bound is obtained when yi tends to x0 and hence s(yi, y

k) tends to sx. Replacing
DPij(y

k) by 1 and s(yi, y
k) by sx yields successively:

x0

(z0 − x0)

(sz − sx)

sx
≤

1

x0
,

sx := sz −
(z0 − x0)

x0
≤sx.

This sx corresponds to the threshold for sx below which the PGR at the origin leads
to an index violating either Transfer among Poor or Monotonicity in Income (and

58The reason is that this definition of DPij considers its minimal value such that inequality
1 ≤ DPij(y

k) holds.
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hence any other numerical representation as well) and above which the PGR at the
origin leads to an index satisfying both properties. This bound is such that sx < shx:

sz −
(z0 − x0)

x0
<
x0

z0
sz,

sz <
z0

x0
,

which holds as sz ≤ 1 and we assumed x∗ < z0.

STEP 3: For subcase 3.2, derive the upper bound sx for sx below which an additive
index satisfies the necessary and sufficient conditions of Lemma 8.

Subcase 3.2 is such that x0

z0
sz < sx < sz. Step 1 showed for this case that DPij(y)

is strictly decreasing in y. As for Step 2, it is sufficient to check the condition in
Lemma 8 at the boundaries:

DPij(y
k) ≤

1

s(yi, y
k)

and 1 ≤ DPij(y
k)

x0

z0 − x0
(sz − sx)

sx︸ ︷︷ ︸
β

. (2.32)

As this subcase is such that sz < sx
z0

x0
, we have β < 1. If inequalities (2.32)

are not met when taking DPij(y
k)β = 1 for all yi, yj ∈ [0, z(y)) with yi < x0 < yj

when y tends to ∞, then any other value for DPij(y
k) also implies their violation.

In other words, if the PGR at y∞ cannot respect these conditions, no other numer-
ical representation of �sx can.59 On the contrary, if the PGR at y∞ does respect
inequalities (2.31), then the index based on this numerical representation satisfies
both Monotonicity in Income and Transfer among Poor , as explained in Step 2.

I show that the PGR at y∞ respect inequalities (2.32) for all yi, yj ∈ [0, z(yk))
with yi < x0 < yj if and only if sx ≤ sx. The second of these inequality holds as
DPij(y

k)β = 1. I show that provided sx ≤ sx, the first holds as well for subcase 3.2.
The tightest upper bound is obtained when yi tends to x0 and hence s(yi, y

k) tends
to sx. Replacing DPij(y

k) by 1
β

and s(yi, y
k) by sx yields successively:

(z0 − x0)

x0
sx

(sz − sx)
≤

1

sx
,

s2x + sx
x0

z0 − x0
− sz

x0

z0 − x0
≤0.

This second order equation in sx has two roots r− and r+, one negative and one
positive. The images of this parabol are negative between the two roots. The
positive root constitutes the threshold sx := r+, given by:

sx =

((
x0

z0−x0

)2
+ 4sz

x0

z0−x0

)0.5

− x0

z0−x0

2
.

This sx corresponds to the threshold for sx above which the PGR at y∞ leads to an
index violating either Transfer among Poor or Monotonicity in Income (and hence

59The PGR at y∞ is defined as the numerical representation in the extended FGT family with
α = 1 granting a degree of priority at yk to absolute over relatively poor agents of 1

β
.
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any other numerical representation as well) and above which the PGR at y∞ leads
to an index satisfying both properties. This bound is such that shx := x0

z0
sz < sx as

successively we have:

2
x0

z0
sz +

x0

z0 − x0
<

((
x0

z0 − x0

)2

+ 4sz
x0

z0 − x0

)0.5

,

(
x0

z0
sz

)2

<
x0

z0
sz,

which is guaranteed as sz ≤ 1 and x0 < z0. This bound is also such that sx < sz as
successively we have:

((
x0

z0 − x0

)2

+ 4sz
x0

z0 − x0

)0.5

<2sz +
x0

z0 − x0
,

x0

z0
<
x0

z0
+ sz,

which is guaranteed as sz > 0 as s̄ > 0. This concludes the proof of Claim 1.

I prove Claim 2, based on arguments exposed in the proof of Claim 1. A direct
application of the reasoning proving Claim 1 of Theorem 2 shows that any P having
its numerical representation in the extended FGT family satisfies Monotonicity in
Income only if α = 1. Then, as by assumption sx ≤

x0

z0
sz, the expression of DPij(y)

for any yi < x(y) < yj given in (2.30) is strictly increasing in y as shown in Step 1
of Claim 1. Therefore, if the numerical representation d of P is the PGR at yr then
P satisfies Transfer among Poor only if yr = yk, that is d is the PGR at the origin.
Finally, Step 2 of Claim 1 showed that if sx ≥ 0 is such that sx ∈ [sx, s

h
x] and if d is

the PGR at the origin, then P satisfies both Monotonicity in Income and Transfer
among Poor when sx ≤ x0

z0
sz. This shows the equivalence of the two statements in

Claim 2.

2.9.6 Proof of Theorem 5

The proof is very close to that of Theorem 1. I therefore omit parts that are straight-
forward modifications in order to emphasize the differences.

Take any median-sensitive endogenous line z and any poverty index P satisfying
the five modified axioms. Let Y r

even := {y ∈ Y r|n(y) ∈ 2N} be the subdomain of Y r

containing only income distributions with an even number of dimensions. I prove
in Steps 1 to 3 that the additive representation is implied for all y ∈ Y r

even, then in
Step 4 I use Replication Invariance to extend this result to the whole Y r.

STEP 1: From a poverty ordering on income distributions to a poverty order-
ing on distributions of individual poverty.

The definition of the mapping is different. Let the continuous mapping be M :
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Y r
even → RN ′

, where N ′ := {n ∈ 2N + 1|n ≥ 1}. Let �m be an EO in Rm whose
unanymous judgments among the poor are respected by P . By modified Domina-
tion among Poor , such �m exists. Consider any numerical representation d of �m.
For each (yi, y) ∈ X, let νi := d(yi, ym). Mapping M is defined for all y ∈ Y r

even such
that

M(y) = (ν1, · · · , νm−1) := ν.
Observe that if distribution y ∈ Y r

even has n components, then M(y) has m − 1
components. The size of distribution ν is taken to be m− 1 as for all y ∈ Y and all
i ≥ m we have d(yi, ym) = 0 since yi ≥ z(ym) and are hence omitted.

I show for the continuous mapping defined that M(Y r
even) = Vd := [0, 1]N

′

. The
domain of images of Y r

even through mapping M is hence a product space: Vd =
×N ′

i=1[0, 1]i. This means that (i) M(Y r
even) ⊆ Vd and (ii) Vd ⊆ M(Y r

even), that is
for all ν ∈ Vd there exists y ∈ Y r

even such that M(y) = ν. If (i) follows directly
from the definition of mapping M , (ii) remains to be proven. Lemma 9 proves that
Vd ⊆M(Y r

even).

Lemma 9. For all �m∈ Rm and ν ∈ Vd, there exists y ∈ Y r
even such that M(y) = ν.

Proof. Consider any ν ∈ Vd and any g ∈ R++ such that g ≥ z(g). For any endoge-
nous line, such a g exists by modified Possibility of Poverty Eradication. I construct
y ∈ R

2(n(ν)+1)
+ such that ym = g and M(y) = ν. Let y be such that, for all i ≤ n(ν),

yi := ai defined implicitly by νi = d(ai, g). If νi = 0 take ai := g. By modified Min-
imal Absolute Concern and the continuity of d, we have that ai ∈ [0, z(g)) for all
i ≤ q. For all j ∈ {m(y), . . . , n(y)}, take yj := g. This construction implies ym = g.
Therefore we have y ∈ Y r

even since (i) n(y) = 2(n(ν) + 1) is even, (ii) a majority of
agents are non-poor as n(ν)+2 agents earn g ≥ z(g) and we have n(ν)+2 > n(y)/2.
We have by construction M(y) = ν, the desired result. �

Again, the poverty ordering �Y r
even

on the set of income distributions is associated
to an ordering �Vd on distributions of individual poverty, by modified Domination
among Poor . This ordering �Vd can be represented by a continuous poverty index
P v : Vd → R.60 In particular, ordering �Vd is represented by P ν defined such that
for all ν ∈ Vd and y ∈ Y r

even with M(y) = ν, we have P ν(ν) = P ν
(
M(y)

)
= P (y).

STEP 2: Index P ν representing ordering �Vd is additively separable.

We verify that the assumptions of Theorem 1 in Gorman (1968) are all met. This
allows deriving the following functional form for the index P ν, for a given n(y) ∈ 2N:

P ν(ν) = F̃

(m−1∑

i=1

ϕ̃(νi)

)
(2.33)

where F̃ and ϕ̃ are strictly increasing functions and m− 1 = n(ν).

60Mapping M cannot be used to obtain the image of income distributions with odd number of
dimensions, otherwise the same ν is obtained for two income distributions with different poverty.
For example ν = (1), corresponds to both yeven := (0, g, g, g) and yodd := (0, g, g); and the ranking
on Vd cannot discriminate these two income distributions having different poverty.
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The assumptions required for this Theorem are the following:

Assumption 1: As before.

Assumption 2: As before.

Assumption 3: Let S := {[0, 1]1, · · · , [0, 1]m−1} be the set of sectors in Vd and A ⊆
S be any subset of sectors, we have that each A is separable. Separability means that
for all (u, w), (v, w), (u, t), (v, t) ∈ Vd, we have P ν(u, w) ≥ P ν(v, w) ⇔ P ν(u, t) ≥
P ν(v, t). Separability is proven in two substeps.

Substep 1: Construct an income distributions associated to each distribution of
individual poverty.

Construct y1, y2, y3, y4 ∈ Y r
even such that M(y1) = (u, w), M(y2) = (v, w),

M(y3) = (u, t), M(y4) = (v, t), y1, y2, y3, y4 ∈ R
2(n(u,v)+1)
+ and y1m = y2m = y3m =

y4m = g with g ≥ z(g). Such distributions exist and are constructed following the
procedure presented in Lemma 9.

Decompose in subgroups y1 = (y1A, y
1
B, y

1
C), such that subdistributions y1A and

y1B are associated –via the numerical representation d – to the individual poverty
subdistributions u and w respectively and y1C is the subdistributions containing the
income for all j ∈ {m(y), . . . , n(y)}, for whom by construction we have yj = g. By

construction, y1 ∈ R
2(n(u,v)+1)
+ and has hence an even number of dimensions. We

can hence decompose y1C = (y1C1, y
1
C2) = (g, . . . , g) such that n(y1C1) = n(y1A)+ 1 and

n(y1C2) = n(y1B) + 1. Typically, the median in y1A is different from the median in
y1B, which is different from g but our next operations will aim at equalizing median
income in subgroups by distributing the agents in subgroup C between the subgroups
A and B.

Duplicate y1 and re-organize the subgroups in a way that equalizes median
income in each subgroup with g. Let x1 := (y1, y1) = (x1A′ , x1B′) with x1A′ :=
(y1A, y

1
A, y

1
C1, y

1
C1) and x1B′ := (y1B, y

1
B, y

1
C2, y

1
C2), implying both x1A′ and x1B′ have an

even number of dimensions. This duplication does not affect the median: y1
m(y1) =

x1m(x1) = g. Furthermore, we have by construction that both the median of x1A′ and

x1B′ are equal to g and M(x1A′) = (u, u) and M(x1B′) = (w,w). Observe finally that
M(x1) = (u, u, w, w, 0), as d(g, g) = 0.

Using the same procedure (decomposition, duplication, reorganization), con-
struct x2, x3, x4 such that:

x1 = (x1A′ , x1B′) with M(x1) = (u, u, w, w, 0),

x2 = (x2A′ , x2B′) with M(x2) = (v, v, w, w, 0),

x3 = (x3A′ , x3B′) with M(x3) = (u, u, t, t, 0),

x4 = (x4A′ , x4B′) with M(x4) = (v, v, t, t, 0).
For all m ∈ {1, 2, 3, 4}, we have P (xm) = P (ym) by Replication Invariance. There-
fore, proving P (x1) ≥ P (x2) ⇔ P (x3) ≥ P (x4) is equivalent to proving P ν(u, w) ≥
P ν(v, w) ⇔ P ν(u, t) ≥ P ν(v, t). For notational simplicity, drop the symbols ′ to
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name the new subgroups A′ and B′ as the old ones.

Substep 2: Prove P (x1A, x
1
B) ≥ P (x2A, x

2
B) ⇔ P (x3A, x

3
B) ≥ P (x4A, x

4
B).

Our income distributions are constructed such that P (x1A) = P (x3A), P (x
2
A) =

P (x4A), P (x
1
B) = P (x2B) and P (x3B) = P (x4B) by Domination among Poor . By as-

sumption we have P (x1) ≥ P (x2). As P (x1B) = P (x2B), we have that P (x1A) ≥ P (x2A)
by Weak Subgroup Consistency (remember all our subgroups have their median equal
to g).

Then, P (x1A) ≥ P (x2A) together with P (x1A) = P (x3A) and P (x2A) = P (x4A) imply
P (x3A) ≥ P (x4A). Since P (x3B) = P (x4B), this implies P (x3) ≥ P (x4). Two cases can
arise.

• Case 1: P (x3A) > P (x4A).
As P (x3B) = P (x4B), we obtain P (x3A, x

3
B) > P (x4A, x

4
B), by Weak Subgroup

Consistency . This case is hence such that P (x3) ≥ P (x4) as desired.

• Case 2: P (x3A) = P (x4A).
I show by contradiction that P (x3) ≥ P (x4). Assume we have P (x3A, x

3
B) <

P (x4A, x
4
B). As P (x3A) = P (x4A), Weak Subgroup Consistency implies that

P (x3A, x
3
B, x

4
A) < P (x4A, x

4
B, x

3
A). Again, as P (x3B) = P (x4B), we obtain P (x3A, x

3
B, x

4
A, x

4
B) <

P (x4A, x
4
B, x

3
A, x

3
B). This is a contradiction as the two distributions have iden-

tical poverty by Symmetry .

The two cases lead to P (x3) ≥ P (x4), which proves separability. All assumptions of
Theorem 1 in Gorman (1968) are met.

STEP 3: Show functions F̃ and ϕ̃ do not depend on the number n of agents.

Theorem 1 in Gorman (1968) is valid for a fixed number of potentially poor agents
n(ν). I modify the proof of Foster and Shorrocks (1991) in order to prove these
functions are independent of n. When n(ν) is allowed to vary – n(ν) will be denoted
n below – (2.33) must be written:

P ν(ν) = F̃n

( n∑

i=1

ϕ̃n(νi)

)

Step 3.1: Define transformations of F̃n and ϕ̃n for normalization purposes.
Let Fn and ϕn be the following transformations of F̃n and ϕ̃n:

ϕn(νi) = 2(n+ 1)[ϕ̃n(νi)− ϕ̃n(0)],

Fn(x) = F̃n[x+ nϕ̃n(0)].
These transformations imply successively:

Fn

(
1

2(n+ 1)

n∑

i=1

ϕn(νi)

)
=Fn

(
2(n+ 1)

2(n+ 1)

n∑

i=1

[ϕ̃n(νi)− ϕ̃n(0)]

)
,

=F̃n

(
n∑

i=1

[ϕ̃n(νi)− ϕ̃n(0)] + nϕ̃n(0)

)
.
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This yields

P ν(ν) = Fn

(
1

2(n+ 1)

n∑

i=1

ϕn(νi)

)
,

where ϕn(0) = 0 and by the definition of mapping M , we have 2(n + 1) = n(y).
As any agent j ∈ {m(y), . . . , n(y)} is non-poor in Y r, we have d(yj, ym) = 0. By
slightly abusing notation (by introducing the zero individual poverty of those non-
poor agents at the end of the distribution ν), we obtain for all even n(y):

P ν(ν) = Fn


 1

n(y)



m(y)−1∑

i=1

ϕn(νi) +

n(y)∑

i=m(y)

ϕn(0)




 (2.34)

= Fn


 1

n(y)

n(y)∑

i=1

ϕn(νi)


 (2.35)

with Fn and ϕn continuous, strictly increasing and ϕn(0) = 0.

Step 3.2: Use Replication Invariance to prove functions Fn and ϕn do not depend
on n.

Same as before.

STEP 4: The additively separable expression obtained for all y ∈ Y r
even is valid

for all y ∈ Y r
odd.

Consider any y ∈ Y r
odd and its duplication x := (y, y) ∈ Y r

even. By Replication
Invariance, we have P (y) = P (x), which means that the mathematical expression
of any y ∈ Y r

odd also take the additively separable form of (2.35) as:

P (x) = F

(
1

n(x)

n(x)∑

i=1

d
(
xi, xm

))
= F

(
1

2n(y)

n(y)∑

i=1

2d
(
yi, ym

))
= P (y),

where d
(
yi, ym

)
= d

(
x2i, xm

)
for all i ≤ n(y) as ym = xm and yi = x2i. This

completes the proof as Y r = Y r
odd ∪ Y

r
even.

2.9.7 Proof of Theorem 6

Let z be any median-sensitive line with z0 > 0. Let P be any additive poverty index
based on an absolute-homothetic EO below z.

I don’t provide a complete proof showing that the second statement implies the
first. The intuition is the following. For any additive index based on an absolute-
homothetic EO below a line z meeting the second statement, Monotonicity in In-
come is implied by Domination among Poor . As additive indices respect Domination
among Poor , such P satisfies Monotonicity in Income.

I prove by contraposition that the first statement implies the second. As by as-



2.9. APPENDIX 115

sumption z0 > 0, we have y∗m > 0. Assume there exists y1m < y∗m with s (y1m) > 0.
I construct an y ∈ Y p at which a violation of Monotonicity in Income arise for
a particular increment. Let ym := y1m and let ym+1 be constructed such that
ym+1 ≤ z(y1m) and ym+1 − ym = ǫ > 0. The numerical representation of P is d.
Let ∆ := d(ym, y

1
m) − d(ym + ǫ, y1m + ǫ) be the individual poverty gain obtained by

the median agent when her income is increased by the increment ǫ. Observe that
the increase in median income with ǫ does not depend on the number of agents, con-
trary to the increase in mean income. By modified Strict Monotonicity in Income
and Translation Monotonicity, we have that ∆ ≥ 0.

Consider income level a < z(y1m) with s(a, y1m) > 0. Such an income a exists
as the EO is absolute-homothetic and s (y1m) > 0. Let δ := d(a, y1m + ǫ) − d(a, y1m)
be the individual poverty loss obtained by an agent earning a when the income
of the median agent is increased by ǫ. We have δ > 0 since s(a, y1m) > 0 and
numerical representation d is strictly decreasing in equivalence levels by modified
Strict Monotonicity in Income.

Let na be the number of agents earning income a in the income distribution
y. If na > ∆

δ
, giving an additional ǫ to the median agent in distribution y strictly

increases poverty. Let y′ be obtained from y when median agent earns an extra ǫ.
As P is an additive index, we have:

P (y)− P (y′) =
1

n

n∑

i=1

(
d
(
yi, ym

)
− d
(
y′i, y

′
m

))
,

=
1

n

(
∆−

(
∑

j 6=m

d
(
yj, y

1
m + ǫ

)
− d
(
yj, y

1
m

)
))

,

=
1

n
(∆− naδ −A) ,

where term A stands for the sum of individual poverty losses obtained by agents
different than the median agent and not earning a. We have A ≥ 0 as the EO is
absolute-homothetic and ǫ > 0, implying that the individual poverty of all poor
agents except the median agent cannot decrease when passing from y to y′. As
a result, if na > ∆

δ
then we have P (y) − P (y′) < 0, which violates Monotonicity

in Income. There exists such y ∈ Y p since the number of agents in distributions
belonging to Y p is not bounded above.

2.9.8 Partial means

I extend here Theorem 1 and Theorem 2 for the class of lower partial means. The
case x = 100 corresponds to the mean.

Monotonicity in Income has different implications when imposed on mean-sensitive
or median-sensitive poverty lines. For mean-sensitive lines, Theorems 2 and 3 show
this axiom forces the index to be close to the PGR at the origin. Unlike the median,
the mean as well as lower partial means are influenced by the income of all poor
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agents.61

The definition of a lower partial mean given in (2.36) is in two parts since I
consider finite income distributions and there is hence no guarantee that x

100
n be a

natural number. For the sake of notational simplicity, let x denote a fraction rather
than a percentage, that is x ∈ (0, 1].

Definition 17 (Lower partial mean).
The income standard f ℓpm : Rn

+ → R+ is a lower partial mean if

f ℓpm(y) :=






1
xn

∑xn

i=1 yi if xn ∈ N,

1
xn

(
∑r

i=1 yi + (xn− r)yr+1) otherwise,
(2.36)

where x ∈ {a ∈ Q|0 < a ≤ 1} and r := maxa∈N a ≤ xn.

Again, changing the income standard requires modifying several definitions. I
present here only the main non-straightforward modifications. The domain of in-
come distributions ranked by poverty indices with partial-mean-sensitive lines de-
pend on the particular partial mean used. This restriction is necessary for the
characterization of aditive indices. Let f ℓpmx be the lower partial mean ignoring the
100(1− x)% richest agents. Any income distribution in the set Y f contains at least
100(1− x)% non-poor agents:

Y f := {y ∈ Rn
+|z(f

ℓpm
x (y)) ≤ yr}.

Poverty indices are based on an equivalence ordering �f on the set of poor bundles
Xp defined as:

Xp := {(yi, f
ℓpm
x (y)) ∈ X|yi < z(f ℓpmx (y))},

where X := R+×R++. Restrictions to endogenous lines and EOs are easily modified
except maybe modified Translation monotonicity:

EO restriction 6 (modified Translation monotonicity).
For all (yi, f

ℓpm
x (y)) ∈ Xp and a > 0, we have

(
yi+a, f

ℓpm
x

(
y+a1

n

))
�
(
yi, f

ℓpm
x (y)

)
.62

All axioms on poverty indices are easily modified except maybe modified Weak
Subgroup Consistency :

Social ordering axiom 21 (modified Weak Subgroup Consistency).
For all y1, y2, y3, y4 ∈ Y f such that n(y1) = n(y3), n(y2) = n(y4), f ℓpmx (y1) =
f ℓpmx (y2) = f ℓpmx (y1, y2) and f ℓpmx (y3) = f ℓpmx (y4) = f ℓpmx (y3, y4), if P (y1) > P (y3)
and P (y2) = P (y4), then P (y1, y2) > P (y3, y4).

Such modifications allow characterizing additive poverty indices with partial-
mean-sensitive lines for the domain of income distributions containing at least
100(1 − x)% of non-poor agents. For notational simplicity, the lower partial mean
f ℓpmx is denoted f .

61The incomes of all poor agents influence the lower partial mean if the percentage of poor agents
is lower than x.

62Where 1n denotes a n-dimensional distribution of ones. Giving an equal increment to all agents
cannot increase the individual poverty of a poor agent.
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Theorem 9 (Characterization of additive partial-mean-sensitive indices).
Let f be a lower partial mean. Let P : Y f → R be a poverty index based on a
f -sensitive poverty line. The following two statements are equivalent.

1. P is ordinally equivalent to an index P ′ : Y f → [0, 1] with

P ′(y) =
1

n

n∑

i=1

d(yi, f(y)), (2.37)

where d is a numerical representation of an EO in R.

2. P satisfies the modified versions of Domination among Poor, Weak Subgroup
Consistency, Symmetry, Continuity and Replication Invariance.

Proof. The proof is very close to the proof of Theorem 1. I therefore omit parts
that are straightforward modifications in order to emphasize differences. Again, I
just prove that statement two implies statement one.

Take any partial-mean-sensitive endogenous line z and any poverty index P satisfy-
ing the five modified axioms. By assumption we have x ∈ Q so x can be expressed
as x = a

b
with a, b ∈ N and their greatest common divider GCD(a, b) = 1. Let Y f

bN

be the subset of income distributions in Y f for which xn belongs to the natural:

Y f
bN

:=
{
y ∈ Y f |n(y) ∈ bN

}
.

I prove in Steps 1 to 3 that the additive representation is implied for all y ∈ Y f
bN,

then in Step 4 I use Replication Invariance to extend it to the wole Y f .

STEP 1: From a poverty ordering on income distributions to a poverty order-
ing on distributions of individual poverty.

The definition of the mapping is different. Let the continuous mapping be M :
Y f
bN → RN ′

, where N ′ := {n ∈ N | n + 1 ∈ aN and n ≥ 1}. Let �f be an EO in
Rf whose unanymous judgments among the poor are respected by P . By modified
Domination among Poor , such �f exists. Consider any numerical representation d
of �f . For each (yi, f(y)) ∈ X, let νi := d(yi, f(y)). Mapping M is defined for all
y ∈ Y f

bN such that

M(y) = (ν1, · · · , νxn−1) := ν.

Observe that if distribution y ∈ Y f
bN has n components, then M(y) has xn − 1

components. The size of distribution ν is taken to be xn − 1 as for all y ∈ Y and
all i ≥ xn we have d(yi, f(y)) = 0 since yi ≥ z(f(y)) and are hence omitted. I show
for the continuous mapping defined that M(Y f

bN) = Vd := [0, 1]N
′

. The domain of

images of Y f
bN through mapping M is hence a product space: Vd = ×N ′

i=1[0, 1]i. This

means that (i) M(Y f
bN) ⊆ Vd and (ii) Vd ⊆M(Y f

bN), that is for all ν ∈ Vd there exists

y ∈ Y f
bN such that M(y) = ν. If (i) follows directly from the definition of mapping

M , (ii) remains to be proven. Lemma 10 proves that Vd ⊆M(Y f
bN).

Lemma 10. For all �f∈ Rf and ν ∈ Vd, there exists y ∈ Y f
bN with M(y) = ν.
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Proof. Consider any ν ∈ Vd and any g ∈ R++ such that g ≥ z(g). For any endoge-
nous line, such a g exists by modified Possibility of Poverty Eradication. I construct
y ∈ Y f

bN such that f(y) = g and M(y) = ν. By the definition of Vd, we have that
n(ν)+1

x
∈ bN. Let y be such that, for all i ≤ xn − 1, yi := ci defined implicitly by

νi = d(ci, g). If νi = 0 take ci := g. By modified Minimal Absolute Concern and
the continuity of d, we have that ci ∈ [0, z(g)) for all i ≤ q. Take then yxn such
that f(y) = 1

xn

∑xn

i=1 yi = g. I prove now that such a yxn exists and is such that
yxn ≥ z(g). Consider y′ with n(y′) = n and for which y′i := yi for all i ≤ xn− 1 and
y′xn := g. By construction, we have y′i ≤ g for all i ∈ {1, . . . , xn(y′)} as g ≥ z(g).
Therefore we have f(y′) ≤ g. Now, there exists c ≥ g such that if yn := c then
f(y) = g. Since c ≥ g and g ≥ z(g) by assumption, we have that agent xn is non-
poor. Take finally yi := yxn for all i ∈ {xn + 1, . . . , n}. This ensures these agents
are non-poor and have a weakly higher income than agent xn and hence y ∈ Y f

bN.
By construction of y, we have f(y) = g and M(y) = ν. �

Again, the poverty ordering �
Y

f
bN

on the set of income distributions is associated

to an ordering �Vd on distributions of individual poverty, by modified Domination
among Poor . This ordering �Vd can be represented by a continuous poverty index
P v : Vd → R. In particular, ordering �Vd is represented by P ν defined such that for
all ν ∈ Vd and y ∈ Y f

bN with M(y) = ν, we have P ν(ν) = P ν
(
M(y)

)
= P (y).

STEP 2: Index P ν representing ordering �Vd is additively separable.

We verify that the assumptions of Theorem 1 in Gorman (1968) are all met. This
allows deriving the following functional form for the index P ν , for a given n(y) ∈ bN:

P ν(ν) = F̃

(
xn−1∑

i=1

ϕ̃(νi)

)
(2.38)

where F̃ and ϕ̃ are strictly increasing functions.
The assumptions required for this Theorem are the following:

Assumption 1: As before.

Assumption 2: As before.

Assumption 3: Let S := {[0, 1]1, · · · , [0, 1]n(ν)} be the set of sectors in Vd and A ⊆
S be any subset of sectors, we have that each A is separable. Separability means that
for all (u, w), (v, w), (u, t), (v, t) ∈ Vd, we have P ν(u, w) ≥ P ν(v, w) ⇔ P ν(u, t) ≥
P ν(v, t). Separability is proven in two substeps.

Substep 1: Construct the income distributions associated to these distributions of
individual poverty.

Construct y1, y2, y3, y4 ∈ R
n(u,w)+1

x
+ such that M(y1) = (u, w), M(y2) = (v, w),

M(y3) = (u, t), M(y4) = (v, t), y1, y2, y3, y4 ∈ Y f
bN and f(y1) = f(y2) = f(y3) =
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f(y4) = g with g ≥ z(g). Such distributions exist in Y f
bN and are constructed

following the procedure presented in Lemma 10.
Decompose in subgroups y1 = (y1A, y

1
B, y

1
C), such that subdistributions y1A and y1B

are associated to the individual poverty subdistributions u and w respectively and
y1C is the subdistributions containing the income for all j ∈ {xn, . . . , n}, for whom
by construction we have yj ≥ z(g).

By construction we have n(y1) = n(u,w)+1
x

and as n(ν)+1
x

∈ bN, xn(y1) ∈ N.
Typically, we have f(y1A) 6= f(y1B) 6= g, but next operations equalize the reference
statistic in new subgroups A′ and B′ of a k-replication of y1 by distributing the
agents in the k-replication of subgroup C between the k-replications of subgroups A
and B and modifying income among some non-poor agents.

Let s1 := (y1, . . . , y1) be the k-replication of y1 with k := b(n(u) + n(w)). Re-
organize the k-subgroups A, B and C in a way to obtain two subgroups A′ and

B′: s1 = (s1A′, s1B′) such that
n(s1

A′
)

n(s1)
= n(u)

n(u)+n(w)
and all agents associated to the k-

replication of subgroup A are in subgroup A′. Given k = b(n(u) + n(w)) and x = a
b

with a, b ∈ N, this equality can be obtained with

• n(s1A′) ∈ N,

• xn(s1A′) ∈ N.

since bx = a ∈ N and xn(y1) ∈ N. The numbers n(s1A′) and xn(s1A′) belong to the
naturals as we have

n(s1A′) = k

(
n(u) +

n(u)

n(u) + n(w)
[n(y1)− n(u)− n(w)]

)
= bn(u)n(y1),

n(s1B′) = k

(
n(w) +

n(w)

n(u) + n(w)
[n(y1)− n(u)− n(w)]

)
= bn(w)n(y1),

which are such that n(s1A′) + n(s1B′) = n(s1) = kn(y1). Income distribution s1A′

contains at least bn(u) non-poor agents and whose income is taken into account
by the lower partial mean f when computing f(s1A′).63 Accordingly, there are at
least bn(w) non-poor agents and whose income is taken into account by f when
computing f(s1B′).

Construct s1∗ = (s1∗A′, s1∗B′) from s1 in such a way that f(s1∗A′) = f(s1∗B′) = f(s1∗) =
g and

(
s1∗i , g)

)
∼
(
s1i , g

)
for all i ∈ {1, . . . , k(n(u) + n(v))}. In order to construct

s1∗, take

• s1∗i := s1i for all i ≤ k(n(u) + n(v)),

• for all agents ℓ ∈ {kn(u) + 1, . . . , kn(u) + bn(u)} in s1∗A′:

s1∗ℓ :=
xn(s1∗A′)g −

∑kn(u)
i=1 s1iA′

bn(u)
,

63The number bn(u) is obtained from xn(s1A′)− kn(u) which is equal to bn(u)xn(y1)− b(n(u) +
n(w))n(u).
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• for all j ∈ {kn(w) + 1, . . . , kn(w) + bn(w)} in s1∗B′

s1∗j :=
xn(s1∗B′)g −

∑kn(w)
i=1 s1iB′

bn(w)
,

• s1∗i := max(s1∗ℓ , s
1∗
j ) for all i ∈ {xn(s1∗) + 1, . . . , n(s1∗)},

where both s1∗ℓ ≥ g and s1∗j ≥ g, which implies those agents are non-poor. We have
by construction that f(s1∗A′) = g and f(s1∗B′) = g.

Observe now that we still have f(s1∗) = g as

f(s1∗) =
1

xn(s1∗)

xn(s1∗)∑

i=1

s1∗i =
1

xn(s1∗A′) + xn(s1∗B′)



xn(s1∗

A′
)∑

i=1

s1∗iA′ +

xn(s1∗
B′

)∑

i=1

s1∗iB′




=
xn(s1∗A′)g + xn(s1∗B′)g

xn(s1∗A′) + xn(s1∗B′)
= g.

By construction we have

M(s1∗A′) = (u, . . . , u, 0, . . . , 0) ,

M(s1∗B′) = (w, . . . , w, 0, . . . , 0) ,
where M(s1∗A′) contains k subdistributions u and bn(u) − 1 zeros; while M(s1∗B′)
contains k subdistributions w and bn(w)− 1 zeros.

Using the same procedure (decomposition, k-replication, reorganization), con-
struct s2∗, s3∗, s4∗ such that:

s1∗ = (s1∗A′, s1∗B′) with M(s1∗) =
(
u, . . . , u, w, . . . , w, 0, . . . , 0

)
,

s2∗ = (s2∗A′, s2∗B′) with M(s2∗) =
(
v, . . . , v, w, . . . , w, 0, . . . , 0

)
,

s3∗ = (s3∗A′, s3∗B′) with M(s3∗) =
(
u, . . . , u, t, . . . , t, 0, . . . , 0

)
,

s4∗ = (s4∗A′, s4∗B′) with M(s4∗) =
(
v, . . . , v, t, . . . , t, 0, . . . , 0

)
.

where the number of zeros in M(s1∗) is equal to b(n(u) + n(w)) − 1. For all
m ∈ {1, 2, 3, 4}, we have P (sm) = P (ym) by Replication Invariance. As by con-
struction (sm∗

i , g) ∼ (smi , g) for all i ≤ q(sm∗) = q(sm), we have P (sm∗) = P (sm) by
Domination among Poor . Therefore, proving P (s1∗) ≥ P (s2∗) ⇔ P (s3∗) ≥ P (s4∗)
is equivalent to proving P (y1) ≥ P (y2) ⇔ P (y3) ≥ P (y4), which is equivalent to
proving P ν(u, w) ≥ P ν(v, w) ⇔ P ν(u, t) ≥ P ν(v, t). For notational simplicity,
drop the symbols ∗ and ′ to name the new distributions sm∗ and subgroups A′ and
B′ as the old ones.

Substep 2: Prove P (s1A, s
1
B) ≥ P (s2A, s

2
B) ⇔ P (s3A, s

3
B) ≥ P (s4A, s

4
B).

Income distributions are constructed such that s1A, s
1
B, s

2
A, s

2
B, s

3
A, s

3
B, s

4
A, s

4
B ∈ Y f

bN,
P (s1A) = P (s3A), P (s

2
A) = P (s4A), P (s

1
B) = P (s2B) and P (s3B) = P (s4B) by Domina-

tion among Poor . The proof is the same as before.

All assumptions of Theorem 1 in Gorman (1968) are met.
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STEP 3: Show functions F̃ and ϕ̃ do not depend on the number n of agents.

Theorem 1 in Gorman (1968) is valid for a fixed number of potentially poor agents
n(ν). I modify the proof of Foster and Shorrocks (1991) in order to prove these
functions are independent of n. When n is allowed to vary – but still respecting
n+1
x

∈ bN – (2.38) must be written:

P ν(ν) = F̃n

( n∑

i=1

ϕ̃n(νi)

)

Step 3.1: Define transformations of F̃n and ϕ̃n for normalization purposes.
Let Fn and ϕn be the following transformations of F̃n and ϕ̃n:

ϕn(νi) =
n+ 1

x
[ϕ̃n(νi)− ϕ̃n(0)],

Fn(X) = F̃n[X + nϕ̃n(0)].
These transformations imply successively:

Fn

(
x

n + 1

n∑

i=1

ϕn(νi)

)
=Fn

(
x

n+ 1

n+ 1

x

n∑

i=1

[ϕ̃n(νi)− ϕ̃n(0)]

)
,

=F̃n

(
n∑

i=1

[ϕ̃n(νi)− ϕ̃n(0)] + nϕ̃n(0)

)
.

This yields

P ν(ν) = Fn

(
x

n+ 1

n∑

i=1

ϕn(νi)

)
,

where ϕn(0) = 0 and by the definition of N ′, we have n+1
x

∈ N.
As any j ∈ {xn(y), . . . , n(y)} is non-poor in Y f , we have d(yj, g) = 0. Therefore,

we obtain that for all n(y) for which xn(y) ∈ N, by slightly abusing notation (by
introducing the zero individual poverty of those non-poor agents at the end of the
distribution ν):

P ν(ν) = Fn


 1

n(y)



xn(y)−1∑

i=1

ϕn(νi) +

n(y)∑

i=xn(y)

ϕn(0)






= Fn


 1

n(y)

n(y)∑

i=1

ϕn(νi)




with Fn and ϕn continuous, strictly increasing and ϕn(0) = 0.

Step 3.2: Use Replication Invariance to prove functions Fn and ϕn do not depend
on n.

Same as before.

STEP 4: The additively separable expression obtained for all y ∈ Y f
bN is valid

for all y ∈ Y f\Y f
bN.
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Consider any y ∈ Y f and s := (y, . . . , y) a k-replication of y with s ∈ Y f
bN. We

have f(y) = f(s) as

f(s) =
1

xn(s)

xn(s)∑

i=1

si,

=
1

kxn

(
k

r∑

i=1

yi + k
(
xn− r

)
yr+1

)
,

=
1

xn

(
r∑

i=1

yi +
(
xn− r

)
yr+1

)
= f(y),

where r := maxc∈N c ≤ xn and k
(
xn− r

)
∈ N.

The mathematical expression of P (s) takes the additive separable form. By
Replication Invariance, we have P (y) = P (s), which means that the mathematical
expression of any y ∈ Y f also take the same additive separable form as:

P (s) =
1

n(s)

n(s)∑

i=1

d
(
si, f(s)

)
=

1

kn

n∑

i=1

k d
(
yi, f(y)

)
= P (y),

where d
(
yi, f(y)

)
= d
(
ski, f(s)

)
for all i ≤ n as f(y) = f(s) and yi = ski.

�

More interestingly, next result shows that the modified version of Monotonicity
in Income has equivalent implications to those derived when the mean is used as
income standard. Observe that on the domain of income distribution Y f , balanced
transfers among poor agents never affect lower partial means.

Theorem 10 (Poverty Gap Ratio for partial-mean-sensitive lines).
Let f be a lower partial mean. Let z be a monotonic f -sensitive poverty line. Let P
be an additive index based on an absolute-homothetic EO below z with a numerical
representation in the extended FGT family.

1. P satisfies modified Monotonicity in Income only if α = 1.

2. P satisfies modified Monotonicity in Income and modified Transfer among
Poor if and only if α = 1 and f r = 0,
that is d is the PGR at the origin.

Proof. The proof of both claims relies on a modification of Lemma 6 for partial
means. This modification provides a necessary condition for Claim 1 and a sufficient
condition for Claim 2 under which modified Monotonicity in Income is satisfied by
additive indices. The modified definitions for the notions of degree of priority and
slope are straightforward:

Definition 18 (Degree of Priority partial means). DPij(f(y)) :=
∂1d(yi,f(y))
∂1d(yj ,f(y))

Definition 19 (Slope at (yi, f(y))). s(yi, f(y)) := −∂2d(yi,f(y))
∂1d(yi,f(y))
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Lemma 11. An additive poverty index based on an absolute-homothetic EO satisfies
modified Monotonicity in Income:

1. (sufficient condition) if for all y ∈ Y f and yi, yj < z
(
f(y)

)
, we have:

s
(
yj, f(y)

)
≤ DPij(f(y)) (2.39)

2. (necessary condition) only if for all y ∈ Y f such that there exists g > 0 with
f(y) = g and z(g) ≤ g, and all yi, yj < z

(
f(y)

)
, inequality (2.39) holds.

Proof. Let f be a lower partial mean. Consider any additive index P based on
any f -sensitive line, EO in Rf and numerical representation d. Monotonicity in
Income requires that for all y ∈ Y and i ≤ q we have ∂iP (y) ≤ 0. By the additively
separable form of P , we obtain by chain derivation:

∂1d(yi, f(y)) +

n∑

j=1

∂2d(yj, f(y)) ∂if(y) ≤ 0 (2.40)

From the definition of lower partial means, we have ∂if(y) = 1
xn

.64 From the
definition of s(yj, f(y)), we get ∂2d(yj, f(y)) = −∂1d(yj, f(y)) s(yj, f(y)) for all
(yj, f(y)) ∈ X. Inequality (2.40) becomes:

∂1d(yi, f(y))−
1

xn

n∑

j=1

∂1d(yj, f(y)) s(yj, f(y))

︸ ︷︷ ︸
L2.41

≤ 0 (2.41)

In the remainder of the proof, inequality (2.41) is shown to imply the necessary and
sufficient conditions linked to (2.39). Inequality (2.39) can be rewritten:

∂1d(yi, f(y))− ∂1d(yj, f(y)) s(yj, f(y))︸ ︷︷ ︸
L2.42

≤ 0. (2.42)

Necessity of condition 2 is proved by contradiction. Assume (2.42) does not hold
for some y ∈ Y f with f(y) = g, z(g) ≤ g, yi := a, yj := b with 0 ≤ a < b < z(g).65

Therefore, at (a, g), (b, g) ∈ Xp, we have for some ℓ > 0 that L2.42 = ℓ. I prove
that for all ǫ > 0, there exists y′ ∈ Y f with f(y′) = g such that |ℓ− L2.41(y

′)| < ǫ
and hence there exists an y′ ∈ Y f such that L2.41(y

′) > 0. Construct y′ such that

• y′1 := a,

• y′k := b for all 2 ≤ k ≤ xn− 1,

• y′xn := xng − a− (xn− 2)b and

• y′j = y′xn for all xn + 1 ≤ j ≤ n.

64We assume for simplicity that xn ∈ N.
65I take a < b without loss of generality as the same reasoning can be held for the other

assumption.
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Notice y′xn > z(g) since a < b < g and g ≥ z(g), which implies that y′ ∈ Y f . For
this y′, as y′xn > z(g) we have for all i ∈ {xn, . . . , n} that ∂1d(y

′
i, g) = 0. Therefore

ℓ− L2.41(y
′) = L2.42 − L2.41(y

′)

= −
1

xn

(
2∂1d(b, g) s(b, g)− ∂1d(a, g) s(a, g)

)
.

Taking n(y′) sufficiently large, we can make |ℓ−L2.41(y
′)| < ǫ, implying L2.41(y

′) >
0, which violates (2.41) and hence modified Monotonicity in Income does not hold.
The case for which ∂1d(b, g) and ∂1d(a, g) are not finite is treated as in the proof of
Lemma 6.

Sufficiency of condition 2 follows from the fact that if there exists an y ∈ Y f

violating (2.41), inequality (2.42) is violated as well for a particular value of yj. For
all y ∈ Y f there exists y∗j ∈

[
0, z(f(y))

)
such that, taking yj := y∗j in L2.42, we have

L2.41(y) < L2.42:

−
1

xn

n∑

j=1

∂1d(yj, f(y)) s(yj, f(y)) < −∂1d(y
∗
j , f(y)) s(y

∗
j , f(y)),

−
1

xn

xn∑

j=1

∂1d(yj, f(y)) s(yj, f(y)) < −∂1d(y
∗
j , f(y)) s(y

∗
j , f(y))

where the strict inequality comes from the presence of the non-poor agent xn. Ob-
serve we can consider only the xn first agents since for all agents k ∈ {xn, . . . , n}, we
have yk > z(f(y)) and hence ∂1d(yk, f(y)) = 0.66 At the value of reference statistic
f(y), y∗j is obtained by solving the following problem:

y∗j := arg max
yj∈[0,z(f(y)))

−∂1d(yj, f(y)) s(yj, f(y)).

�

The necessary condition and the sufficient condition for modified Monotonicity
in Income are direct modifications of that obtained when mean income is the income
standard. The proof of Theorem 10 is not shown as it is done by following the same
argument as the one given in the proof of Theorem 2, the equivalent theorem for
mean income.

�

2.9.9 Proof of Theorem 7

The proof is by contradiction. Assume that EO � is such that for some (y∗i , f
gm(y∗)) ∈

Xp we have k := s(y∗i , f
gm(y∗)) > 0.

The modified version of Translation Monotonicity imposes that for all (yi, f
gm(y)) ∈

Xp and all δ > 0 we have

(yi + δ, f gm(y + δ1
n
)) � (yi, f

gm(y)).

66If yxn = z(f(y)) and s(f(y)) > 0, then the increment ǫ given to a poor agent implies y′ /∈ Y f

as y′xn < z(f(y′)).
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Take any continuous and differentiable numerical representation d of � (such d exists
since � is a continuous ordering). Translation Monotonicity can be equivalently
restated using the numerical representation d: for all y ∈ Y , i ≤ q and δ > 0 we
have:

d(yi + δ, f gm(y + δ1
n
)) ≤ d(yi, f

gm(y)).

A necessary condition for the previous condition to hold is that we have for all
y ∈ Y and i ≤ q67

∂1d(yi, f
gm(y)) + ∂2d(yj, f

gm(y)) (∇f gm(y) · 1
n
) ≤ 0.

Given the slope is defined as

s(yi, f
gm(y)) := −

∂2d(yj, f
gm(y))

∂1d(yj, f gm(y))
,

at (y∗i , f
gm(y∗)), the previous inequality amounts successively to:

∂1d(y
∗
i , f

gm(y∗))− k∂1d(y
∗
i , f

gm(y∗)) (∇f gm(y∗) · 1
n
) ≤ 0,

∂1d(y
∗
i , f

gm(y∗)) (1− k(∇f gm(y∗) · 1
n
)) ≤ 0.

Since the first factor is strictly negative by modified Strict Monotonicity in Income,
a necessary condition for Translation Monotonicity is that:

k (∇f gm(y∗) · 1
n
) ≤ 1. (2.43)

I construct y1 ∈ Y ⊂ RN
+ such that (y1n−1, f

gm(y1)) = (y∗i , f
gm(y∗)) and (2.43)

is violated at y1, leading to a violation of Translation Monotonicity. Let y1 be
constructed such that

• y1j := 0 for all j ≤ n− 2,

• y1n−1 := y∗i , and

• y1n is such that y1n ≥ z(f gm(y1)) and f gm(y1) = f gm(y∗).

For n sufficiently large, there exists such an yn (unshown). By the definition of the
generalized mean, we have:

∂if
gm(y) =

1

n

(
yβ1 + · · ·+ yβn

n

) 1
β
−1

yβ−1
i ,

=
1

n

(
f gm(y)

)1−β
yβ−1
i .

Therefore, we have:68

∇f gm(y1) · 1
n
≥ n−2

n

(
f gm(y1)

)1−β
0β−1.

As I assumed β < 1, the factor 0β−1 = +∞ and (2.43) is violated. As a result,
Translation Monotonicity cannot hold.

67Where · is the notation for a dot product and ∇ is the notation for the gradiant.
68The inequality sign comes from the fact I ignored the positive terms coming from the increments

given to agents n− 1 and n.
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2.9.10 Mexican poverty: further analyzis

This section aims at presenting two extra graphical tools. These tools are modifica-
tions of well-known tools introduced in the poverty measurement literature, which
are both intuitive and helpful in analyzing the evolution of income poverty. I illus-
trate the changes that occured in Mexico using these graphical tools.

The economic growth of Mexico between 1990 and 2010 has lead to an almost
complete eradication of absolute poverty. Nevertheless, the increase in income in-
equality over that period, as measured by the relative measure HCRL, increased
the fraction HCEL of poor individuals. PEL concludes that income poverty has not
changed, even if its nature became more relative than absolute.
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Figure 2.8: Evolution of Mexico’s cumulative distributions below the endogenous
line. The well-being levels presented above are defined as 1 − d(yi, y). Source:
PovcalNet.
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Figure 2.8 shows for several points in time cumulative distributions limited to
individuals whose income is below the endogenous threshold. The upper figure
shows standard cumulative income distributions. The lower figure shows cumulative
well-being distributions. Well-being is defined as 1 − d(yi, y), where the numerical
representation d is based on the absolute-homothetic EO illustrated in Figure 2.6.a.
Any individual with a well-being of one or above is non-poor.

The two graphs are such that the cumulative distributions for 2010 first-order
stochastically dominate those of 1999. There is hence an unambiguous improve-
ment over that period of both incomes and well-beings. The cumulative income
distributions inform on the evolution of several variables. As it is limited to poor
individuals, it shows the evolution of the endogenous threshold, which was $4.5 a
day in 1990, $4.2 a day in 1999 before increasing up to $5.9 a day in 2010. This
evolution translates the changes in mean income, from $7.8 a day in 1990 to $7.1 a
day in 1999 and up to $10.6 a day in 2010. The evolution of HCEL, from 29% in
1990 and 47% in 1999 to 41% in 2010, can be read from the graphs by considering
the end points’ ordinate of these cumulative distributions. Similarly, the same graph
presents the evolution of HCAL, from 4.5% in 1990 and 7.5% in 1999 to 0.7% in
2010.

Income cumulative distributions can be drawn without making any normative
choice on how to balance absolute and relative income in individual well-being (ex-
cept those already made by the endogenous line). The cumulative well-being dis-
tributions in the lower graph make such choices with its absolute-homothetic EO.
These graphs provide again the evolution of HCEL. More interestingly, they show
the evolution of PEL. The values of PEL is equal to the areas below the cumulative
well-being distributions.69 Comparing the graphs related to 1990 and 2010 shows
that less individuals have very low well-being in 2010 than in 1990 (the well-being
threshold for absolute poverty is 1.25

2
= 0.625) but more individuals have well-being

levels between 0.75 and 1, indicating that more individuals are in relative poverty.
The index balances these two aspects and concludes income poverty has not changed
(the area below the two curves is the same): PEL equals 7.4% in 1990, 11.6% in
1999 and 7.5% in 2010.

If the EO used for assessing the well-being of individuals is homothetic, then the
area below the cumulative distributions of “homothetic” well-being equals PGREL.
This cumulative distribution of “homothetic” well-being, which gives no priority
to individuals below the subsistence level za, concludes that income poverty has
changed from 12.4% in 1990, 20.1% in 1999 to 15.6% in 2010.

69Letting F : [0, 1] → [0, 1] : 1− d(yi, y) → F (1− d(yi, y)) be the cumulative well-being distribu-

tion function associated with �AH , we have that PEL =
∫ HCEL
0 1− F−1(x)dx, where 1− F−1(x)

is the individual poverty level such that a fraction x of the population has lower well-being.
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Chapter 3

A general criterion to compare

mechanisms when solutions are not

unique, with applications to school

choice

(Joint with Martin Van der Linden)

3.1 Introduction

The literature on mechanism design studies the institutions through which individ-
uals interact in order to reach an economic decision. The individuals hold private
information that is relevant to the decision and they are assumed to interact strategi-
cally through the institutions. An institution is modeled as a mechanism specifying
the “rules of the game”. A mechanism describes which messages individuals can send
and how these messages translate into a decision that defines an economic outcome.
The aim of this literature is to design mechanisms that satisfy key properties. For
instance, a mechanism should incentivize the individuals to truthfully reveal their
private information and the messages sent by individuals should lead to fair and
efficient outcomes.

When comparing the outcomes of two mechanisms ψ and ϕ, it is standard to
adopt the following two-stage procedure. First, one chooses a solution concept C
that uniquely predicts the way agents play for each type profile in ψ and in ϕ (or
at least C yields a unique outcome for every type profile). Then, one determines
whether the unique C-outcomes of ψ and ϕ satisfy some property of interest, say
property X, for every possible type profile in a relevant domain. When this is the
case for ϕ but not for ψ, one then concludes that ϕ is X and ψ is not X. In our
terminology, this binary categorization of mechanisms ϕ and ψ with respect to X
implies that ϕ is more X than ψ.

For instance, consider the school choice problem for which a set of school seats
has to be allocated among a set of students. Suppose that ϕ is the Deferred Ac-
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ceptance mechanism (DA), whereas ψ is the Top Trading Cycle mechanism (TTC).
Let C be “dominant strategy”, and X be “stability”, a fairness property guarantee-
ing that no student has justified envy given the allocation of seats. The dominant
strategy outcome of DA is stable whatever the type profile, whereas the dominant
strategy outcome of TTC is not necessarly stable (see for example Haeringer and
Klijn (2009)). From this observation, one would typically conclude that DA is more
stable than TTC.

As elegant as this standard technique may be, it presents two major limitations
that make it applicable to only a handful of mechanism comparisons. Most mech-
anisms cannot be uniquely solved via a convincing solution concept. In particular,
comparisons in dominant strategies are known to severely restrict the set of com-
parable mechanisms. Second, it is often the case that both ψ and ϕ fail to satisfy
property X for some (but not all) of the type profiles in the domain. In this case,
ψ and ϕ cannot be compared in terms of X using the standard technique. We refer
to these two limitations as the multiple solutions issue and the subdomain violation
issue.

In this paper, we introduce a simple but powerful criterion that generalizes the
standard technique and allows us to compare a wide variety of mechanisms. Infor-
mally, we will say that a mechanism ϕ is at least as X as ψ if, for each type profile at
which all outcomes satisfy X in ψ, all outcomes satisfy X in ϕ. A formal definition
of our criterion can be found in Section 3.2. In that section, we also discuss how
our criterion encompasses and extends techniques formerly used in the literature to
overcome the limitations of the standard technique.

In the rest of the paper, we illustrate the usefulness of our criterion by applying
it to stability comparisons of constrained school choice mechanisms (Haeringer and
Klijn, 2009). A school choice mechanism is constrained if students can only report
preferences over a limited number of schools. Constrained school choice mechanisms
are well-suited to showcase the use of our criterion because they combine both of
the aforementioned difficulties. In general, constrained school choice mechanisms
have no dominant-strategy and cannot be uniquely solved using reasonable solution
concepts. Also, for many combinations of constrained school choice mechanisms and
solution concepts, the resulting outcome is stable under some type profiles only.

In practice, constrained school choice mechanisms are the norm rather than
the exception.1 In a recent paper, Pathak and Sönmez (2013) show that in many
mechanisms, increasing the number of schools that students can rank decreases the
vulnerability of the mechanism to manipulations by the students. A natural question
is whether this decrease in manipulability comes at the cost of a decrease in stability.
Given that constained school choice mechanisms are subject to the multiple solutions
issue for credible solution concepts, the standard mechanisms comparison techniques
can not be used. Using our new criterion, we are able to answer this question.

1As observed by Pathak and Sönmez (2013) and others, it is rare that school districts allow
students to rank all the schools they could potentially be assigned to. For instance, at the time
Haeringer and Klijn (2009) was written, the authors reported that the New York City school
district allowed students to rank only 12 programs, while the district had more than 500 different
programs available.



3.2. A GENERAL CRITERION FOR COMPARING DIRECT MECHANISMS131

We focus on the constrained versions of the so-called Boston mechanism (BOS)
and Deferred Acceptance mechanism (DA). Through our analysis of BOS and DA,
we illustrate how our criterion can be applied using different solution concepts, and
how the choice of a solution concept can influence our comparisons. Roughly, we
show that if students play Nash equilibria (NE), increasing the number of schools
that can be ranked actually decreases stability in both BOS and DA. Also, under
NE, constrained BOS are more stable than constrained DA. However, if students
play undominated strategies (US), both conclusions are reversed. That is, increasing
the number of schools that can be ranked increases stability, and constrained DA
are more stable than constrained BOS.

The paper is organized as follows. Our criterion and its relation with other
comparison techniques are presented in Section 3.2. The two families of mechanims
studied are defined in Section 3.3. The stability comparisons obtained with our
criterion are in Sections 3.4, 3.5 and 3.6. Section 3.8 concludes.

3.2 A general criterion for comparing direct mech-

anisms

In this section, we give a general mechanism design formulation of our criterion.
We illustrate the definitions with examples from school choice. The reader unfamil-
iar with the school choice model is referred to Appendix 3.9.1 where the model is
described in details.

There is a finite set of players I and a finite set of outcomes A. A generic player
is represented by i. Each player is associated with a type yi ∈ Yi, where Yi is the
set of possible types for player i. A list of types for every agent y := (yi)i∈I is a type
profile. The set of possible type profiles is Y := Πi∈IYi.

Example 1 (School choice profile). The set of players I is composed of a set of
students and a set of schools. Students’ types are determined by their preferences
over schools. A school’s type is determined by a priority ranking over students and a
capacity which determines the number of students it can accept. The sets Yi represent
possible preferences when i is a student, or possible pairs of priorities and capacities
when i is a school. The set of outcomes A contains the assignments of students to
schools. N

A direct mechanism is a function ϕ : Y → A associating every type profile with
a single feasible outcome in A. If players reveal profile y ∈ Y , the outcome under
mechanism ϕ is denoted ϕ(y).

Example 2 (School choice mechanisms). Examples of direct mechanisms are the
aforementioned BOS and DA, which will be formally described in Section 3.3. To-
gether, a school choice profile and a direct mechanism define a preference revelation
game called a game of school choice (Ergin and Sönmez, 2006). In a game of school
choice, the feasible outcomes are the assignments of students to schools in which no
school exceeds its capacity. N
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In a direct mechanism, given a type profile y, a solution concept is a subset
C(y) ⊆ Y of type profiles. Profiles ỹ /∈ C(y) are those profiles we do not expect
players to reveal when their true type profile is y. Conversely, any ŷ ∈ C(y) is
interpreted as a profile that could be revealed when players’ true type profile is y.
The outcomes of ϕ for all possible ŷ ∈ C(y) will be called the set of C-outcomes
under ϕ (e.g. the set of NE or US outcomes) and are denoted by ϕ

(
C(y)

)
. Similarly,

we will refer to C(y) as the set of C-profiles given y (e.g. the set of NE or US profiles).

Example 3 (NE in school choice mechanisms). In school choice mechanism, it is
assumed that the schools always reveal their priorities and capacities truthfully, or
equivalently, that these are known to the school district officials (see Kesten (2011)
for an analysis of capacity manipulation by schools). Therefore, the “NE” solution
concept is defined as usual, except that NE(y)s = ys for every school s and every
type profile y. N

In general, we are interested in knowing whether, given type profile y, the C-
outcomes of a mechanism ϕ satisfy some property X, such as stability or efficiency.
Formally, we consider any property that is a correspondence X : Y → A specifying
the set of outcomes X(y) ⊆ A satisfying it. If the mechanism has a unique C-
outcome for y, then either ϕ satisfies X for y or ϕ violates X for y. When confronted
to the multiple solutions issue, it can be that some C-outcomes of y satisfy X, while
others don’t. Whether ϕ satisfies X for y or not is indeterminate until we specify
what it exactly means when solutions are non-unique. In this paper, we say that ϕ
satisfies X in C for y when all C-outcomes of y satisfy X.

Definition 20 (ϕ satisfies X in C for y). The mechanism ϕ satisfies property X in
solution concept C for the type profile y if

ϕ
(
C(y)

)
⊆ X(y)

For instance, Example 2 in Ergin and Sönmez (2006) shows a type profile for
which one NE outcome of BOS is constrained efficient (i.e. Pareto efficient among
the stable assignment), whereas the other is not. For some type profiles however,
all the NE outcomes of BOS will be constrained efficient.2 If this is the case, we
will say that, for this type profile, BOS is constrained inefficient in NE.

As described in the Introduction, we then have the following comparison criteria.
A mechanism ϕ is at least as X as mechanism ψ in solution concept C if for any
type profile for which ψ satisfies X in C, ϕ satisfies X in C.

Definition 21 (At least as X as). A mechanism ϕ is at least as X as mechanism
ψ in solution concept C if

{
y ∈ Y |ψ

(
C(y)

)
⊆ X(y)

}
⊆
{
y ∈ Y |ϕ

(
C(y)

)
⊆ X(y)

}
.

2A trivial example is when every student has the same priority at each and every schools (e.g.
student 1 has the first priority in every schools, student 2 the second priority at every school, and
so on). Then there is only one NE outcome which is the outcome of a serial dictatorship, and is
therefore (constrained) efficient.
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The corresponding strict comparison follows naturally.

Definition 22 (More X than). A mechanism ϕ is more X than mechanism ψ in
C, if

(i) ϕ is at least as X as ψ,

(ii) there exists a type profile for which ϕ satisfies X in C, but ψ does not satisfy
X in C.

Relation to other comparison techniques in the literature

Let us first consider the standard technique. In the standard technique,

(i) the set of C-outcomes needs to be a singleton for every type profiles, and

(ii) ϕ is said to be more X than ψ if the C-outcome of ϕ satisfies X for all type
profiles, whereas the C-outcome of ψ violates X for some type profiles.

Clearly our criterion encompasses the standard technique in the sense that

1) every pair of mechanisms that can be compared using C in the standard tech-
nique can also be compared using C with our criteria, and

2) our criterion agrees with any comparison made via the standard technique.

An approach often used in practice to extend the standard technique, when
the set of C-outcomes is a singleton but the two mechanisms are faced with the
subdomain violation issue, consists in replacing (ii) by

(ii)-bis ϕ is said to be more X than ψ if for every type profile in which the C-
outcome of ψ satisfies X, the C-outcome of ϕ also satisfies X.

The condition (ii)-bis defines the “profile per profile” approach. For instance, this
approach is used, at least implicitly, in Barberà and Gerber (2014) and Dasgupta
and Maskin (2008).3 Again, our criterion encompasses this approach in the sense of
1) and 2).

Finally, our criterion can also be used to formalize arguments from the literature
involving multiple equilibria. Ergin and Sönmez (2006) proved that the set of NE
outcomes of BOS is the set of stable assignments. As noted by Ergin and Sönmez
(2006), this provides an argument in favor of DA because the outcome of DA is

3In Barberà (2014), C is “iterated elimination of weakly dominated strategy” and X is the
possibility of agenda manipulation in two sequential voting rules. Barberà (2014) conclude that
the two voting rules are equally manipulable because the domains of preference profiles on which
they are manipulable are identical. In Dasgupta and Maskin (2008), C is “truthfull revelation”,
and X is a collection of 5 properties. Dasgupta and Maskin (2008) conclude that the Condorcet
method is best at satisfying X because for any profile in which any other voting rule satisfies X ,
the Condorcet method also satisfies X .
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efficient among the stable assignments when students play dominant strategies.4 Our
comparison criterion provides a useful way to formalize this argument. According to
our criterion, if students play a NE in undominated strategies, then DA is at least
as efficient as BOS.5

Our approach also bears some similarities with the recent literature on mecha-
nisms’ degree of manipulability.6 However, our criterion focuses on the properties
of mechanisms’ outcomes, rather than on the extent to which they are manipula-
ble. This requires us to solve the game associated with the mechanisms of interest,
whereas notions of manipulability can often be defined without explicit attention to
game theoretic considerations. As a consequence, manipulability comparisons need
not be confronted to the multiple solutions issue.

A different criterion for outcome comparison is proposed in Chen and Schonger
(2012). Neither Chen and Schonger (2012)’s criterion nor ours’ encompasses the
other in the sense described above. A comparison with our criterion is provided in
Section 3.7.

We now turn to an application of our criterion to stability comparison for con-
strained versions of BOS and DA, considering NE and US as solution concepts.

3.3 Two classes of competing mechanisms

In this section we describe the two classes of games of school choice that we will
be interested in. These classes were identified by Haeringer and Klijn (2009) and
correspond to constrained versions of BOS and DA. We first describe the well
known unconstrained BOS.

Step 0: Students rank as many schools as they want and report their ranking.

Step 1: Students apply to the school they reported as their first choice. Every
school that receives more applications than its capacity starts rejecting the
worst applicants in its priority ranking up to the point where it meets its
capacity. All other applicants are definitively accepted at the schools they
applied to, and capacities are adjusted accordingly.

...

Step ℓ : Each student who is not yet assigned applies to the school she reported as
her ℓth choice. Every school that receives more new applications in step ℓ than

4While the NE outcome of BOS might very well be a stable outcome which is Pareto dominated
by another stable outcome.

5All undominated profiles of DA lead to the unique optimal stable assignment. Because the NE
outcomes of BOS are stable, if all NE (in undominated strategies) outcomes of BOS are efficient,
the optimal stable assignment is also efficient. It follows that DA is at least as efficient as BOS
according to our criterion.

6See e.g. Aleskerov and Kurbanov (1999); Parkes et al. (2002); Maus et al. (2007a,b); Day and
Milgrom (2008); Dasgupta and Maskin (2010); Erdil and Klemperer (2010); Pathak and Sönmez
(2013); Andersson et al. (2014); Arribillaga et al. (2014); Fujinaka and Wakayama (2015)).
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its remaining capacity starts rejecting the worst new applicants in its priority
ranking up to the point where it meets its capacity. All other applicants are
definitively accepted at the schools they applied to, and capacities are adjusted
accordingly.

The algorithm terminates either when all reported preferences have been con-
sidered, or when every student is assigned to a school. The constrained versions of
BOS, which we will denote by BOSk, are identical to BOS except that at Step 0,
students can rank at most k schools.

We now turn to DA. Again, we first describe the famous unconstrained DA.

Step 0: Students rank as many schools as they want and report their rankings.

Step 1: Students apply to the school they reported as their first choice. Every
school that receives more applications than its capacity definitively rejects the
worst applicants in its priority ranking up to the point where it meets its
capacity. All other applicants are temporarily accepted at the schools they
applied to (they could be rejected at a later step).

...

Step ℓ : Each student who was rejected in step ℓ− 1 applies to the next school in
her reported preferences. Every school considers the new applicants of step
ℓ together with the students it temporarily accepted. If needed, each school
starts rejecting the worst students in its priority ranking up to the point where
it meets its capacity. All other applicants are temporarily accepted to the
schools they applied to (they could be rejected at a later step).

The algorithm terminates either when all reported preferences have been con-
sidered, or when every student is assigned to a school. The constrained versions of
DA, which we will denote DAk, are identical to DA except that at Step 0, students
can rank at most k schools.

3.4 Comparing DAk for different values of k

3.4.1 Nash equilibrium

As was shown by (Haeringer and Klijn, 2009, Theorem 5.3), for any k, every NE
in DAk is also a NE in DAk+1. This tells us right away that if all NE outcomes of
DAk+1 are stable, all NE outcomes of DAk are also stable. Hence, DAk is at least
as stable as DAk+1.

The converse is not true and DAk is therefore more stable than DAk+1. In the
next example, we provide some intuition for this last result. In the example, ti is
a student and sj is a school. In all of our examples, unless stated otherwise, each
school always has one seat. The revealed preferences of student i are Qi and her true
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preferences are Pi. The priorities at school s are Fs. The leftmost panel represents
the revealed preferences for DA3. The boxed schools correspond to the outcome
of DA3 under the revealed profile, and the starred outcome is the most efficient
stable assignment. An empty parenthesis ( ) means that the rest of the ranking is
arbitrary. A parenthesis containing a crossed-out element (✁s) means that the rest of
the ranking cannot contain s, but is otherwise arbitrary.

Example 4.

Q1 : s3 s1 ( )

Q2 : s1 s3 s4
Q3 : (✚✚s1 )
Q4 : s4 s3 ( )

Q5 : (✚✚s4 )

P1 : s3 s∗1 ( )
P2 : s1 s∗2 s3 s4
P3 : s1 ( )
P4 : s4 s∗3
P5 : s∗4 ( )

Fs1 : t1 t3 t2 ( )
Fs2 : t2 ( )
Fs3 : t4 t2 t1 ( )
Fs4 : t2 t5 t4 ( )

The outcome of the revealed profile in Example 4 is unstable and admits two blocking
pairs: (t3, s1) and (t5, s4). Nevertheless, profile Q is a NE since neither t3 nor t5
would obtain a better assignment by declaring their blocking school. For instance,
consider t3. If t3 claimed s1, it would trigger the following rejection chain (Kesten,
2010):

1. t3 claims a seat at s1.

2. Because t3 as higher priority at s1, t2 is rejected and applies to s3.

3. Because t2 has higher priority at s3 than the incumbent t1, t1 is rejected and
applies to s1.

4. Because t1 has higher priority at s1 than t3, t3 is rejected from s1.

One can see that any unstable NE requires such a rejection chain for each blocking
pair. In particular, there is in Example 4 another rejection chain for the blocking
pair (t5, s4). An important feature of Example 4 is that t2 is involved in both of these
rejection chains. What is more, it can be shown that for these two rejection chains
to co-exist, t2 must be able to reveal at least three schools (see Claim 1 of Appendix
3.9.4). Thus this assignment cannot be reproduced as a NE in DA2. As it turns
out, DA2 is in fact stable (again, see Claim 1 of Appendix 3.9.4), which yields the
desired counter-example for DA2 and DA3. N

Such an example can be found for every k (see Claim 1 of Appendix 3.9.4), which
yields the following proposition.

Proposition 10. For all k ∈ N, DAk is more stable in NE than DAk+1.

Proposition 10 suggests that when agents have sufficient information on each
other’s preferences and coordinate on a NE, there might be a stability cost to increas-
ing k. This cost in terms of stability contrasts with the decrease in manipulability
identified by Pathak and Sönmez (2013).
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Proposition 10 relies heavily on the assumption that students play a NE. Because
games of school choice are typically one-shot games in which students have little
information on each others’ preferences, NE might not be a good approximation of
the way students play.7 This motivates the next subsection, in which we repeat the
above analysis while only assuming that students play US.

3.4.2 Undominated strategies

In many respects, US is an interesting solution concept for manipulable games of
school choice. With high stakes games such as games of school choice, one may
expect students to hire experts to learn about the best strategy to adopt. Now,
when students have little information about each others’ preferences, experts might
only be able to recommend that students avoid dominated strategies (see e.g. Roth
and Rothblum (1999)). Therefore, US should be pervasive in practice.

While NE can be viewed as too restrictive, US may seem too loose, in that it
allows many revealed profiles to be played for every true profile. However, in the
games of school choice we are interested in, US is far from being a vacuous solution
concept. In fact, the next example shows that finding a US may be tedious. Doing
so requires an accurate knowledge of the priority rankings as well as some non-trivial
calculations. As a consequence, it significantly constrains the set of strategies that
students can realistically play.

Example 5 (Safe set of schools). Consider the following profile for DA3.

P1 : ( )
P2 : ( )
P3 : ( )
P4 : s1 s2 s3 s4 ( )

Fs1 : t1 t2 t4 ( )
Fs2 : t1 t4 ( )
Fs3 : t2 t4 ( )
Fs4 : t4 ( )

At first glance, it may seem that for t4, declaring Q4 : s1 s2 s4 is undominated. By
ranking s4 (where t4 has the highest priority), t4 makes sure that if t1 and t2 ended
up getting the unique seats at both s1 and s2, she would not end up unassigned. But
notice that if t1 and t2 are assigned to s1 and s2, t2 cannot at the same time be
assigned to s3. Thus for t4, declaring Q′

4 : s1 s2 s3 dominates Q4.
We call {s1, s2, s3} a safe set (of schools) for t4 because by declaring s1, s2, and

s3, t4 is certain to be assigned, whatever the other students declare. N

Interestingly, if students play US, the conclusion of Proposition 10 is reversed,
that is DAk+1 is more stable in US than DAk, as stated in Proposition 11. For
the most part, US in DAk ranks schools according to the true preferences of the
student (Lemma 13 in Appendix 3.9.2). In particular, when the best q ≤ k schools
in Pi form a safe set (defined in Appendix 3.9.1), or when ti only has q acceptable

7This is especially true for small k. Suppose we view NE as the remaining strategy profile after
a process of iterated deletion of dominated strategies. When k is small, there is typically little or
no dominated strategies. Therefore, even at the end of the iterated deletion process, all students
will be left with many possible strategies, and the chances that they coordinate on a NE are small.
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schools, declaring the q most preferred schools without re-ranking is a dominant
strategy (Proposition 18 in Appendix 3.9.5).

As k increases, more and more assigned students have a safe set covering their
q ≤ k preferred schools, or can declare all their acceptable schools. Therefore, they
will play these dominant strategies in any US.8 As we show in Proposition 19 of
Appendix 3.9.5, a student who plays a dominant strategy in DAk cannot be part
of a blocking pair. These observations mean that, as k increases, fewer and fewer
students are part of a blocking pair, which provides some intuition as to why DAk+1

is at least as stable as DAk.
The next example illustrates a situation in which the reverse is not true, namely

a type profile for which DA2 is stable in US, while DA1 is not.

Example 6.

Q1 : s2
Q2 : s1
Q3 : s3

Q′
1 : s1

Q′
2 : s1

Q′
3 : s3

P1 : s2 s∗1 ( )
P2 : s1 s∗2 ( )
P3 : s1 s∗3 ( )

Fs1 : t1 t3 t2
Fs2 : t2 t1 ( )
Fs3 : t3 ( )

Profiles Q and Q′ are both undominated in DA1, and their outcomes are unstable.
Their respective blocking pairs are (t3, s1) for Q and (t2, s2) for Q′. This example is
such that all US outcomes in DA2 are stable, although students find more than two
schools acceptable. For the three students, their two preferred schools form a safe
set. Hence there exists a unique US profile in DA2: the profile in which each student
declares her two preferred schools without re-ranking. N

Such an example can be found for every k (see Claim 6 in Appendix 3.9.4), which
yields the following proposition.

Proposition 11. For all k ∈ N, DAk+1 is more stable in US than DAk.

Proposition 11 suggests that when students have little information and can only
resort to undominated strategies, increasing the number of schools that students
can declare increases stability (in addition to decreasing manipulability (Pathak
and Sönmez, 2013)).

3.5 Comparing BOSk for different values of k

3.5.1 Nash equilibrium

In NE, the comparison of BOSk for different values of k is a direct consequence
of Haeringer and Klijn (2009).9 Theorem 6.1 in Haeringer and Klijn (2009) is a
straightforward extension to BOSk for all k of Ergin and Sönmez (2006)’s proof
that BOS is stable in NE.

8Or an equivalent dominant strategy, that is a dominant strategy which always yields the same
outcome whatever the other students declare (e.g. declaring the safe set first, followed by any set
of other schools).

9Theorem 6.1 in Haeringer and Klijn (2009).
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Proposition 12. For all k ∈ N, BOSk is as stable in NE as BOSk+1.

Proposition 12 says that when students can coordinate on a NE, the number of
schools they are allowed to declare does not affect the stability of BOSk.

3.5.2 Undominated strategies

When looking at US in BOSk, we need a minor additional assumption that is
common in the literature (e.g. in Pathak and Sönmez (2013)). A set of schools
is over-supplied if, the schools in this set as a whole have more quotas than the
number of students. An over-supplied set is such that the schools in the set can
offer a seat at each and every student. From a strategic point of view, a student
who declares an over-supplied set of schools in BOSk is certain to be assigned, i.e.
an over-supplied set of schools is a safe set. We will assume that every over-supplied
set of schools has more than k schools (see (3.46) in appendix for a formal statement
of this condition). Unless stated otherwise, all our results involving BOSk rely on
this assumption.

In many cases, this condition is satisfied because no set of schools can accept all
potential students. This is the case in many public school districts in the United
States. This may be due to the existence of outside options in private schools, or to
the segmentation of public high schools into different groups of schools, each with
a separate assignment procedure. For instance, Pathak and Sönmez (2013) report
that there were over 14,000 applicants in 2009 in the procedure assigning seats at 9
selective public high schools in Chicago, while the 9 schools only had 3,040 seats as
a whole.

Even when there happens to be an over-supplied set of schools, this set must still
contain no more than k schools for the condition to be violated. As mentioned in the
Introduction, k is often much smaller in practice than the total number of schools
m. Thus, even when a set of schools is over-supplied, the condition is unlikely to be
violated. Furthermore, should the condition be violated, it would most likely be in a
district where k is very close to m. In these cases, the impact of increasing k would
be rather marginal, and the effect of such a measure can therefore be disregarded
for all practical purposes.10

As when we compared DAk for different values of k, the result for BOSk in NE
contrasts with the situation in US (Proposition 13 below). The reason BOSk+1 is
at least as stable as BOSk in US is that under the no over-supplied set assumption,
the US outcomes of BOSk+1 are nested in the US outcomes of BOSk (Proposition
16 in Appendix 3.9.4). That is to say, for every US outcome µ of BOSk+1, there
exists an US in BOSk with the same outcome µ. Therefore, whenever all US of
BOSk yield a stable assignment, it directly follows that all US of BOSk+1 also yield
a stable assignment.

The next example illustrates a situation in which the converse is not true. In
most cases, Qi is undominated in BOSk if it contains k acceptable schools, whatever

10This being said, whether our results for BOSk in US still hold when the above condition is
violated remains an open question.
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the order in which the schools are declared (see Lemma 18 in Appendix 3.9.3 for a
more detailed analysis of US in BOSk). However, in the particular case in which
ti has highest priority at her most preferred school, declaring the preferred school
first is a dominant strategy. Based on this special case, the next example describes
a type profile for which BOS3 is stable in US, while BOS2 is not.

Example 7.

Q1 : s1 ( )

Q2 : s2 ( )

Q3 : s3 s1
Q4 : s3 s1
Q5 : ( )

P1 : s∗1 ( )
P2 : s∗2 ( )
P3 : s1 s∗4 s3
P4 : s1 s∗3 s4
P5 : (✚✚s3 ) (✚✚s4 )

Fs1 : t1 ( )
Fs2 : t2 ( )
Fs3 : t1 t3 t4
Fs4 : t1 t4 t3

Profile Q is undominated in BOS2 and its outcome admits the blocking pair (t4, s4).
This example is such that all US outcomes in BOS3 are stable, although several
students have (potentially) more than three schools acceptable. Students t1 and t2
must declare their preferred school first in any US, as they have the highest priority
at their preferred schools. Students t3 and t4 only have three acceptable schools and
must declare all three in any US of BOS3. As t5 does not find s3 or s4 acceptable,
these schools go to either t3 or t4 in any US profile outcome. Observe that any
distribution of s3 and s4 among t3 and t4 result in a stable outcome. N

Again, the above example generalizes to all k (see Claim 7 in Appendix 3.9.4),
which means we have the following proposition.

Proposition 13. Assume any over-supplied set of schools has more than k schools.
Then, for all k ≥ 3, BOSk+1 is more stable in US than BOSk.

Proposition 13 parallels Proposition 11. When agents can only resort to undom-
inated strategies, increasing the number of schools students can declare increases
the stability of BOSk.

3.6 Comparing BOSk and DAk

3.6.1 Nash equilibrium

Using Theorem 6.1 in Haeringer and Klijn (2009) again, one directly obtains that
BOSk is at least as stable as DAk. The converse is not true for k ≥ 2. As noted by
Haeringer and Klijn (2009), DA1 and BOS1 are formally equivalent.11 However for
k ≥ 2, there exist unstable NE in DAk, as shown in Example 4 (see also Haeringer
and Klijn (2009)).12 Therefore we have the following proposition.

Proposition 14. For all k ∈ N, BOSk is at least as stable in NE as DAk.
For all k ≥ 2, BOSk is more stable in NE than DAk.

11Page 1930 in Haeringer and Klijn (2009).
12Example 6.2 in Haeringer and Klijn (2009).
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Once again, Proposition 14 contrasts with its counterpart in US. As in the com-
parison of BOSk with BOSk+1, the reason DAk is at least as stable as BOSk in US
is that the US outcomes of DAk are nested in the US outcomes of BOSk.

3.6.2 Undominated Strategies

Another way to understand proposition 14 is to remember that, as explained in
subsection 3.4.2, more and more students play a dominant strategy in DAk as k
increases. As we explain, this implies that fewer and fewer students are part of a
blocking pair. It is also the case that students who play a dominant strategy in
BOSk cannot be part of a blocking pair (Proposition 21 in Appendix 3.9.5). But in
BOSk, the only dominant strategies arise when a student has the highest priority
at her most preferred school or has only one acceptable school (Proposition 20 in
Appendix 3.9.5)). Because this is independent of k, the number of students who
play dominant strategies in BOSk is fixed for all k.

The next example shows that BOSk is not at least as stable in US as DAk.

Example 8.

Q1 : s1 ( )

Q2 : s1 s2
Q3 : s2 s3

P1 : s∗1 ( )
P2 : s1 s∗2 ( )
P3 : s2 s∗3 s1

Fs1 : t1 ( )
Fs2 : t2 ( )
Fs3 : t3 ( )

Profile Q, which is the truncation of students’ preferences after their second pre-
ferred school, is undominated in both BOS2 and DA2. Its outcome in BOS2 (boxed)
is unstable, with blocking pair (t2, s2). The fact that t2 has a higher priority at s2
than t3 has been denied by BOS2 because t2 did not declare s2 as her favorite school.
Profile Q is the only US profile in DA2 and its outcome (starred) is the most effi-
cient stable assignment. It is unique as all students have a safe set covering their
two preferred schools. N

Another source of instabilities in US outcomes of BOSk that is avoided in DAk

comes from the fact that US of BOSk may contain non-trivial re-ranking. Although
US of DAk may contain re-ranking, these re-ranking are trivial in the sense that
they never influence the outcome (see Lemma 13 in Appendix 3.9.2). On the other
hand, US of BOSk may contain non-trivial re-ranking (like Q3 in the next example)
that turn out to induce instabilities. This is illustrated in the next example.

Example 9.

Q1 : s1 ( )

Q2 : s1 s2
Q3 : s2 s1

P1 : s∗1 ( )
P2 : s1 s∗2
P3 : s1 s2

Fs1 : t1 ( )
Fs2 : t1 t2 t3

Profile Q is undominated in BOS2 and leads to the boxed unstable outcome, with
blocking pair (t2, s2). In this example, the unique US profile in DA2 is P , which
leads to the starred stable outcome. N
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>NE

DAk DAk+1

<US

∧NE
∗ ∨US

∗∗ ∧NE
∗ ∨US

∗∗

=NE

BOSk BOSk+1

<US
∗∗∗

∗ : k ≥ 2 (=NE for k = 1).
∗∗: no oversupplied set of schools O with |O| ≤ k.
∗∗∗ : no oversupplied set of schools with |O| ≤ k and k ≥ 3.

Figure 3.1: Summary of the results. The notation ϕ >C ψ means “ϕ is more stable
than ψ when students play according to solution concept C”.

Constructions like the ones in Examples 8 and 9 can be obtained for all k (see
Claim 9 in Appendix 3.9.4), which yields the following proposition.

Proposition 15. For all k ∈ N, DAk is more stable in US than BOSk.

Proposition 15 shows that when students cannot coordinate on a NE but rather
resort to undominated strategies, DAk induces less instability than BOSk.

The results in sections 3.4 to 3.6 are summarized in Figure 3.1.

3.7 On alternative criteria to compare manipulable

mechanisms

In this section, we discuss alternative criteria for comparing manipulable mecha-
nisms. We begin with a further consideration of Pathak and Sönmez (2013)’s cri-
terion. Although Pathak and Sönmez (2013)’s criterion is initially defined without
reference to a game, they do complement their criterion with a game theoretic inter-
pretation. This interpretation is intimately linked to Pathak and Sönmez (2013)’s
concept of a type profiles’s vulnerability to manipulation.

Definition 23 (Vulnerability to manipulation in mechanism ϕ (Pathak and Sönmez,
2013)). A type profile y is vulnerable to manipulation under mechanism ϕ if there
exists a player i and a type y′i 6= yi ∈ Yi such that

ϕ(y′i, y−i) Pi ϕ(y). (3.1)
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Notice that (3.1) does not say that truth-telling is a dominant strategy for i. It
merely says that for every player i, whenever everyone else says the truth, saying the
truth is a dominant strategy for i. In other words, a type profile is not vulnerable
to manipulation in mechanism ϕ if truth-telling is a NE of ϕ. Therefore Pathak
and Sönmez (2013)’s criteria is equivalent to requiring that everytime there exists a
truth-telling NE in ϕ, there also exists a truth-telling NE in ψ. One may consider
extending this idea to other properties. This would lead to the following criterion.

Definition 24 (Alternative criterion 1). A mechanism ϕ is at least as X as mecha-
nism ψ in C if for any type profile for which there exists a C-outcome of ψ satisfying
X, there also exists a C-outcome of ϕ satisfying X.

We believe that Pathak and Sönmez (2013)’s criterion was specifically designed
for manipulability comparisons. The generalization in Alternative criterion 1 prob-
ably goes beyond what they intended. Alternative criterion 1 makes sense when C
is NE and X is truth-tellingness. Then, if there exists a truth-telling NE, one may
expect that this equilibrium will be played, for many reasons ranging from simplic-
ity, to focal point considerations. In this case, Alternative criterion 1 implicitly says
that whenever the most likely C-profile of ψ is a truth-telling one, then the most
likely C-profile of ϕ should also be truth-telling. This is a very sensible. Things are
different with stability or efficiency. It is harder to argue that players will coordinate
on efficient equilibria, let alone stable equilibria.13 Therefore, we believe that Alter-
native criterion 1 and the criterion we introduce in this paper are complementary.
Alternative criterion 1 is best used for manipulability comparisons (as in Pathak and
Sönmez (2013)), whereas our criterion is useful in matters of stability and efficiency.

Notice also that the two criteria are not always as different from one another
as one may think. For example, the two criteria are identical when the set of C-
outcomes tends to a singleton for every type profile y. When the set of C-profiles is
a singleton in both ϕ and ψ, the two criteria boil down to a “problem-by-problem”,
or “type profile-by-type profile” comparison, as in Barberà and Gerber (2014). In
a “type profile-by-type profile” approach, ϕ is at least as X as ψ if for every type
profile y in which the unique C-outcome of ψ satisfies X, the unique C-outcome of
ϕ also satisfies X.

With school choice mechanisms, the set of C-profiles is often a singleton when
one takes C to be “dominant strategy”. In the criterion of Pathak and Sönmez
(2013), letting C be “dominant strategy” is equivalent to replacing Vulnerability to
manipulation in mechanism ϕ by the following vulnerability condition

Definition 25 (Weak vulnerability to manipulation in mechanism ϕ ). A type profile
y is weakly vulnerable to manipulation in mechanism ϕ if there exists a player i such
that truth-telling is not a dominant strategy. That is, for some type y′i 6= yi ∈ Yi and
for some sub-profile of types y′−i ∈ Y−i (with possibly y′−i 6= y−i) ,

ϕ(y′i, y
′
−i) Pi ϕ(yi, y

′
−i). (3.2)

13A player can figure out on her own how to play a truth-telling strategy, regardless of what other
players declare. On the other hand, one player alone can rarely determine which of her strategies
will favor a stable or efficient outcome, as this depends on what the other players declare.
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Two other approaches have been suggested by Chen and Schonger (2012). The
Theorem 2 in Chen and Schonger (2012) has shown that for the class of mechanism
ψk studied by these authors, the set of NE leading to a stable outcome in ψk is a
subset of the set of NE leading to a stable outcome in ψqk, for any positive integer
q. Furthermore these equilibria generate the same outcome in both ψk and ψqk. In
general, this suggests the following criterion.

Definition 26 (Alternative criterion 2). A mechanism ϕ is at least as X as mech-
anism ψ in C if for any type profile, the C-profiles of ψ that lead to an outcome
satisfying X

(i) are a subset of the C-profiles of ϕ, and

(ii) lead to the same outcome in ϕ (and are therefore a subset of the C-profiles of
ϕ the outcomes of which satisfy X).

A problem with Alternative criterion 2 is that it is silent about the C-profiles
which do not satisfy X. Suppose that the set of C-profiles satisfying X in ψ is
Cψ := Cϕ ∪ {a}, for some new element a /∈ Cϕ. Suppose also that condition (ii) is
satisfied. Then according to Alternative criterion 2, ϕ is more X than ψ. However,
it might very well be the case that at the same time, the set of C-outcomes that
do not satisfy X in ϕ is C̄ϕ := C̄ψ ∪ {b1, . . . , bh}, for some h arbitrarily large and
bi /∈ C̄ψ, for all i ∈ {1, . . . , h}. Then, there is indeed one more C-profile in ϕ than in
ψ the outcome of which satisfies X. But at the same time, there are also arbitrarily
many new C-profiles in ϕ the outcomes of which do not satisfy X. In this case, one
may have some doubts as to whether ϕ is more X than ψ.

Following the discussion of Alternative criterion 2, a better criterion might be
the following, which is illustrated in Figure 3.2.14

Definition 27 (Alternative criterion 3). A mechanism ϕ is at least as X as mech-
anism ψ in C if Alternative criterion 2 is satisfied and for every type profile y, the
C-profiles of ϕ that lead to an outcome which does not satisfy X

(i) are also C-profiles of ψ, and

(ii) lead to the same outcome in ψ (and are therefore a subset of the C-profiles of
ψ the outcomes of which do not satisfy X).

Notice that (i) in Alternative criterion 2 corresponds to the left part of Figure
3.2.

One way to understand Alternative criterion 3 is to assume that, for any mech-
anism ξ and any solution concept C, each C-profile of ξ is just as likely as any
other C-profile of ξ. Then Alternative criterion 3 tells us that obtaining an outcome

14The relative size of the sets are irrelevant. Only the inclusion relations are meaningful. Also,
the figure only represents the (i) parts of the condition.
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satisfy X
the outcomes of which
C-profiles of ϕ

C-profiles of ψ
the outcomes of which

do not satisfy X

C-profiles of ψ
the outcomes of which

satisfy X

C-profiles of ϕ
the outcomes of which

do not satisfy X

Figure 3.2: Parts (i) in Alternative criterion 3

satisfying X in ϕ is at least as likely as obtaining an outcome satisfying X in ψ.15

Under this equal-likelihood assumption, Alternative criterion 3 is of course a very
appealing comparison criterion. Without this assumption, things get more complex
and there will be cases in which Alternative criterion 3 leads to counter-intuitive
comparisons.16

Often, even when the above “equal-likelihood” assumption is appropriate, Al-
ternative criterion 3 is unfortunately too demanding to compare mechanisms. For
instance, the stability of DAk cannot be compared using Alternative criterion 3 in
US. This can be seen in the following simple example.

Example 10.

Q1 : s1
Q2 : s2
Q3 : s3

P1 : s2 s1
P2 : s3 s2
P3 : s1 s3

Fs1 : t1 ( )
Fs2 : t2 ( )
Fs3 : t3 ( )

15Let cξX := |{C-profiles of ξ the outcomes of which satisfy X}| and cξ
¬X

:= |{C-profiles of ξ the
outcomes of which do not satisfy X}|. Then Alternative criterion 3 tells us that cϕX ≥ cψX and

cϕ
¬X ≤ cψ

¬X . One can check that the last inequalities imply c
ϕ

X

c
ϕ

X
+cϕ

¬X

≥
c
ψ

X

c
ψ

X
+cψ

¬X

. Now, assuming

that the probability that any C-profile is played is the same for every C-profile, the last inequality
is equivalent to saying that the probability to observe an outcome satisfying X is larger in ϕ than
in ψ.

16 Using the notation from footnote 15, assume that cψX = 1, cψ
¬X = 1000, cϕX = 1000 and

cϕ
¬X = 1. According to Alternative criterion 3, ϕ is clearly more X than ψ. However, suppose that

the C-profile of ψ which satisfies X is focal, i.e. it is (much) more likely than other C-profiles.
Assume also that the C-profile of ϕ which does not satisfy X is focal. If these are “focal enough”,
one might want to say that ψ is more X than ϕ, contrary to what Alternative criterion 3 would
conclude.
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The depicted revealed profile is a US for DA1 and yields a stable outcome. Yet,
it cannot be a US of DA2 because in all US of DA2, students must reveal as many
schools as they can. Hence the only US in DA2 is the true profile which yields a
stable outcome but cannot be a US of DA1 either. Therefore, according to Alterna-
tive criterion 3 neither is DA2 more stable than DA1, nor is DA2 more stable than
DA1. That is, the two mechanism are not comparable. This is in spite of the fact
that all US in DA2 are stable whereas some US of DA1 are not. N

Another reason why Alternative criterion 3 could be inapplicable is that it re-
quires the C-profiles to yield the same outcomes in both mechanisms. Although
this can work for mechanisms which are “close enough”, such as DAk and DAk+1, it
will often fail in general for mechanism which are more fundamentally different, e.g.
BOSk and DAk.

One way to circumvent the limited applicability of Alternative criterion 3 is
to simply look at the fraction of C-profiles the outcomes of which satisfy X in ϕ
and ψ, as in Alternative criterion 4 below. Under the equal-likelihood assumption,
Alternative criterion 4 preserves the probabilistic interpretation, while freeing us
from the limitation of an approach based on the nestedness of C-profiles ((i) in
Alternative criterion 3) and on fixed outcomes ((ii) in Alternative criterion 3).

Definition 28 (Alternative criterion 4). A mechanism ϕ is at least as X as mech-
anism ψ in C if for every type profile y, the fraction of C-profiles the outcomes of
which satisfy X in ϕ is higher than the fraction of C-profiles the outcomes of which
satisfy X in ϕ. That is, using the notation in footnote 15,

cϕX
cϕX + cϕ¬X

≥
cψX

cψX + cψ¬X
. (3.3)

Again, the equal-likelihood assumption is essential for Alternative criterion 4
to be relevant. Notice that, although Alternative criterion 4 can usually be used
to compare more mechanisms than Alternative criterion 3, condition (3.3) must
still hold for every type profile y. Often, this is still too demanding for Alternative
criterion 4 to be applicable. For instance, we show in Appendix 3.9.5 that Alternative
criterion 4 cannot be used to compare the stability in US of DA2 and BOS2, whereas
our criterion concludes that DA2 is more stable than BOS2. Even when the equal-
likelihood assumption is appropriate, Alternative criterion 4 and our criterion should
therefore be viewed as complementary.

The second approach in Chen and Schonger (2012) consists in assessing proper-
ties based on declared preferences, rather than on true preferences. It presents two
great advantages. First, because it does not rely on game theoretic considerations,
it allows one to directly use the well-known results on stability and efficiency for
non-manipulable mechanisms. One can, for instance, easily show that, in terms
of the true preferences, DAk is stable for any value of k. The second advantage
is empirical. Relying on declared preferences allows one to analyze school choice
problems using data from actual school districts.

For many properties, however, relying on revealed preferences misses the point.
For instance, as argued by Ergin and Sönmez (2006), determining whether a mech-
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anism gives most students their first choice in terms of revealed preferences makes
little sense. If every student gets her first declared choice, but declares her third
choice first in an attempt to game the mechanism, the mechanism might not be
deemed all that efficient.

For similar reasons, one must rely on true preferences to capture the fairness
dimension of stability. Suppose t2 is assigned to s, t1 has higher priority than t2 at
some school s, and t2 would truly prefer s to her current assignment. Then we are
in a situation of “true” justified envy, which many people would deem unfair per se.
On the other hand, if t1 only declared s above her current assignment, but she truly
liked her assignment better than s, we would only face a “declared” unjustified envy,
which most people would deem unproblematic. Clearly, the fairness dimension of
stability is a matter of true preferences, and not of revealed preferences.

However, declared preferences can be of a great help with other aspects of stabil-
ity. The assignments resulting from school choice procedures are regularly challenged
in courts on the basis that priorities have not been respected. The risk of an as-
signment being declared illegal by a court is of primary concern to school choice
officials. It is reasonable to expect courts to rule about assignments based on re-
vealed preferences, rather than true preferences. It is hard to imagine a court ruling
in favor of a student who complains about a mechanism because of preferences she
did not explicitly state. If a student tries to game the mechanism, the court will
most likely hold the student responsible for her attempt at gaming. Therefore, if a
mechanism is stable with respect to revealed preferences, its assignments should not
be invalidated by judges.

Notice that stability with respect to the true preferences should also limit legal
proceedings against final assignments. One would not expect the assignment to be
challenged if the only violation of priorities are with respect to schools that students
like less than their current assignments. Thus the two approaches are complemen-
tary in as much as they capture different aspects of the risk of legal proceedings.
Stability with respect to declared preferences determines the risk that courts rule
in favor of the plaintiff student, while stability with respect to true preferences
determines the risk that a student has an interest to challenge the assignement in
court.

3.8 Conclusion

We have proposed a new criterion for comparing the performance of direct mech-
anisms. We applied our criterion to games of school choice and obtained stability
comparisons which are summarized in Figure 3.1, where US stands for undominated
strategy and NE for Nash equilibrium. We believe that our criterion can be fruit-
fully applied to other properties and mechanisms. In the future, we plan to apply
it to efficiency comparison in games of school choice.

Although US may seem more empirically relevant than NE in games of school
choice, assignment mechanisms are rarely studied in terms of US. The obvious reason
is that US allows for a larger number of potential outcomes. Because comparing
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many potential outcomes can be cumbersome, NE is usually preferred as a solution
concept, as it tends to induce fewer potential outcomes. The criterion we have
introduced is one possible answer to this difficulty of comparing multiple potential
outcomes. It should therefore facilitate the use of “weaker” solution concepts such as
US, whenever these solution concepts are better at describing the way agents play.

As is well known, an NE can be viewed as an iteratively undominated profile
in which players correctly anticipate each other’s actions Mas-Collel et al. (1995).
On the other hand, in US, players do not have enough information on each others’
preferences to iteratively eliminate dominated strategies, nor do they correctly an-
ticipate each others’ actions. There is of course room for a wide variety of additional
information and anticipation structures. In Example 5, we indicated that playing
US requires an accurate knowledge of the whole profile of priorities. If one believes
that this is still too much information, one may want to consider some solution
concept US− in which students play undominated strategies given some restricted
knowledge of the priorities. Alternatively, one could consider a solution concept
US+ in which students know the priority structure and also have some information
about the other students’ preferences. This may be useful in mimicking the features
of some actual school choice problems. For instance, it is often common knowledge
that some schools are highly demanded. To mimic this fact, one may want to assume
that students know each others’ x best choices, or know the number of students who
have some school s among their x preferred school(s). Another interesting middle
point between US and NE is the case in which agents know each others’ preferences
and play iteratively undominated strategies, but do not necessarily anticipate each
others’ action correctly (i.e. players do not necessarily coordinate on a NE).

Which solution concept should be used to analyze games of school choice depends
on which solution concept is best at describing students’ behavior. This is eventually
an empirical question which would benefit from further investigations in laboratory
experiments. Whether any of the alternative solution concepts we just mentioned
would yield different stability comparisons than in US and NE is an open question.

Another open question revolves around the applicability of Alternative criterion
4. In many respects, when the equal-likelihood assumption is satisfied (see section
3.7), Alternative criterion 4 is the ideal criterion to compare manipulable mecha-
nisms. However, we have shown that Alternative criterion 4 may be too demanding
to be applied (see Example 16). It would be interesting to know whether Alternative
criterion 4 is applicable for any mechanisms for some relevant solution concept.

3.9 Appendix

3.9.1 The school choice model, terminology and notation

There is a finite set of schools S := {s1, . . . , sm} and a finite set of students T :=
{t1, . . . , tn}. Schools are associated with a priority profile F := (Fs1, . . . , Fsm) and
a quota profile q := (qs1, . . . , qsm), where qs ∈ N+ denotes the capacity of s ∈ S,
i.e. the number of seats available in that school. Students are associated with a
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preference profile R := (R1, . . . , Rn).
Priorities in F are linear orderings of the students in T , while preferences in

Ri ∈ R are linear orderings of all schools in S and ti herself.17 A strict preference
of ti for s over s′ is denoted by s Pi s

′, while s Ri s
′ denotes a weak preference, i.e.

it allows for s = s′.
The higher priority of student ti over tj at school s is denoted by ti Fs tj. A

assignment profile is M := (F, q, R). The set of all possible preference profiles is P.
The preference profile determines the type of the students (for the simple case in

which schools do not manipulate). Students then play a preference revelation game.
A typical strategy profile for the game is denoted by Q := (Q1, . . . , Qn). Formally,
strategies are linear orderings of the schools in S and ti herself. The fact that ti
declares that she finds s better than s′ and hence declares s weakly before s′ in Qi

is denoted by s Qi s
′, which also allows for s = s′. When necessary, we use Hi to

denote a declared profile different from Qi. There is a re-ranking of two different
schools s and s′ in strategy Qi if s and s′ are declared in Qi and s Qi s

′ although
s′ Pi s. Given a strategy Qi, the truncation of Qi after school s is another strategy
Q′
i obtained from Qi be deleting all schools s′ ∈ Qi declared after s.

For a given preference profile R, the list containing everyone’s preferences but
ti’s is denoted by R−i. Similarly, for a given declared profile Q, the list containing
everyone’s declared preferences but ti’s is denoted by Q−i.

A school s ∈ S is acceptable for ti if s Pi ti. If s is acceptable for ti, we
slightly abuse the notation and write s ∈ Pi. We will also write |Pi| for the number
of acceptable schools for ti. Similarly, a school s ∈ S is declared by ti in Qi if
s Qi ti. We again abuse the notation slightly and write s ∈ Qi if s is declared in Qi,
and |Qi| for the number of declared schools in Qi. By the same token, a subset of
schools S ′ ⊆ S is acceptable or declared for ti if all the schools in S ′ are acceptable
or declared, which we denote (resp.) S ′ ⊆ Pi and S ′ ⊆ Qi.

It will also be useful to identify the x-th ranked school in a preference profile
or a declared strategy. If school s is ranked in the x-th position in Pi, we write
s = Pi(x). Similarly, if s is declared in the x-th position in Qi, we write s = Qi(x).

A mechanism Φ associates every Q ∈ Q with some assignment of seats for the
students. Let Φi(Q) be the seat assigned to student ti in mechanism Φ when the
students report Q. If Φi(Q) 6= ti, ti is assigned in Φ given Q. On the other hand,
ti is unassigned in Φ given Q if Φi(Q) = ti.

For every assignment of types, the space of strategy profiles is Q = P itself.
Whatever the preference relation of the students, students could in theory pretend
they have any other preference relation. Given F and q, a solution concept in game
Φ is a function CΦ : P → 2Q which associates to every potential type profile P a
set of strategy profiles which could be played at a C-equilibrium of the game when
P prevails (we do not allow for mixed strategies).

The outcome of a game of school choice Φ is a feasible assignment µ : T → S,
a function from the set of students to the set of schools such that no school s

17An ordering is a complete, reflexive and transitive binary relation. A linear ordering ≻ is an
ordering that is antisymmetric, that is, a ≻ b and b ≻ a implies a = b.
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is associated with more than qs students. The school assigned to student ti in
assignment µ is noted µi. The notation µi = ti means that student ti is assigned to
herself, or equivalently, is unassigned.

A feasible assignment µ is efficient if there exists no other feasible assignment
µ′ such that for all ti ∈ T we have µ′

i Ri µi and for at least one tj ∈ T we have
µ′
j Pi µj.

A student-school pair (ti, s) is blocking in assignment µ if either ti prefers s
to µi (with possibly µi = ti) and s has empty seats in µ, or ti prefers s to µi and
there exists tj with µj = s and ti Fs tj . A assignment µ is stable if there exists
no blocking pair in µ and no student is assigned an unacceptable school. For any
assignment profile M , there exists a stable assignment. Furthermore, among the
set of stable assignments of M , there is one which is deemed at least as good as
any other stable assignment by all students, as shown by Gale and Shapley (1962).
This Pareto optimal assignment among the stable assignments is called the most
efficient stable assignment.

For a given mechanism Φ, a set of schools SS ⊆ S is a safe set for ti if for any Qi

in which SS is declared, and for any Q−i, ti is at least assigned to the worst school
of SS according to Qi under Φ. Formally, SS ⊂ S is a safe set if Φi(Qi, Q−i) Qi w

SS
Qi

for every Q−i and wSSQi
is the worst school in SS according to Qi. A school s∗ is

accessible for ti in mechanism Φ given Q−i, if whenever s∗ is declared in Qi and the
other students declare Q−i, ti is assigned a school at least as good as s∗ according
to Qi, that is Φi(Qi, Q−i) Qi s

∗.
For any mechanism Φ and strategy Qi, the possible assignment set of ti,

denoted by PAS(Qi), is the set of assignments that mechanism Φ assigns to ti for
some Q−i, that is:

PAS(Qi) = {x ∈ S ∪ {ti} | Φi(Qi, Q−i) = x for some Q−i}.
A set of schools S∗ is over-supplied if there are enough seats in S∗ to host all
students, that is

∑
s∈S∗ qs ≥ |T |. For any student ti and any S∗ ⊆ S, we denote

by wS
∗

i the worst school in S∗ according to Pi, or simply wS
∗

when no confusion is
possible. Finally we say that school s is safe if favorite (SIF) for ti if ti is among
the qs-students with highest priority in school s. The final terminology refers to the
mechanism BOSk: if school s is SIF for ti and Qi(1) = s, then BOSki (Qi, Q−i) = s
for all Q−i.

3.9.2 Some useful lemmas about DAk

Lemma 12. For any Q, any k, any ŝ and any ti, suppose that DAki (Qi, Q−i) = ŝ.
Then for all s∗ 6= ŝ such that ŝ Qi s

∗, there exists Q∗
−i such that

(i) ti’s assignment is unchanged, that is

DAki (Qi, Q
∗
−i) = ŝ,

and
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(ii) s∗ is available to ti, that is for Q∗
i : s

∗, we have

DAki (Q
∗
i , Q

∗
−i) = s∗.

Proof. Let B be the set of schools that ti ranks above ŝ in Qi. These are the schools
ti applied to in the course of DAk under (Qi, Q−i), but did not get assigned to.
Because ti was rejected from the schools in B, it must be that, in the vector of
assignment DAk(Qi, Q−i), there is another student assigned to each of the available
seats in each of the schools in B. Let the set of these students be denoted A.

Now construct Q∗
−i as follows :

• For all tj ∈ A, let Q∗
j be the strategy in which tj reveals only DAkj (Qi, Q−i).

• For all th ∈ T\{A∪ {ti}}, let Q∗
h be any strategy in which th does not reveals

either s∗ or ŝ.

By construction, for every school s ∈ B, there is at least qs-students with higher
priority at s than ti who rank s first in Q∗

−i. Thus ti will be rejected of any of these
schools in DAk(Qi, Q

∗
−i) too. Therefore DAki (Qi, Q−i) = ŝ implies

ŝ Qi DA
k(Qi, Q

∗
−i).

By construction again, weakly less students declare ŝ in Q∗
−i than in Q−i. Therefore,

DAki (Qi, Q−i) = ŝ implies

DAki (Qi, Q
∗
−i) Qi ŝ.

Because Qi is antisymmetric, the last two displayed relations imply

DAki (Qi, Q
∗
−i) = ŝ,

which proves (i).
By construction again, no-one applies to s∗.
Thus if Q∗

i : s
∗, we clearly have

DAki (Q
∗
i , Q

∗
−i) = s∗.

which proves (ii).
�

Lemma 13 (Equivalent US with no re-ranking). Assume Qi is an US of DAk which
features re-rankings, i.e. for some s and s′ reported in Qi, s

′ Pi s but s Qi s
′. Then

the strategy Q′
i which ranks the same schools as Qi but without re-rankings is such

that DAki (Q
′
i, Q−i) = DAk(Qi, Q−i) for all Q−i.

Proof. By Lemma 4.2 in Haeringer and Klijn (2008) we have,

DAk(Q′
i, Q−i) Ri DA

k(Qi, Q−i), for all Q−i. (3.4)
i.e. Q′

i is not weakly dominated by Qi. Then, if in addition there existed some Q∗
−i

for which,

DAk(Q′
i, Q

∗
−i) Pi DA

k(Qi, Q
∗
−i),

it would mean that Q′
i weakly dominates Qi. But this would contradicts the as-

sumption that Qi is undominated. Therefore we must in fact have

DAk(Qi, Q−i) Ri DA
k(Q′

i, Q−i), (3.5)
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for all Q−i. But because R is a antisymmetric, (3.4) and (3.5) imply

DAk(Q′
i, Q−i) = DAk(Qi, Q−i),

for all Q−i, the desired result. �

The following claim parallels Lemma 13 for the case of unacceptable schools.

Lemma 14 (Equivalent US without unacceptable schools). Assume Qi is an US of
DAk in which some unacceptable schools are ranked, i.e. for some s reported in Qi

we have ti Pi s. Then the strategy Q′′
i which is identical to Qi except that Q′′

i does
not rank the unacceptable schools in Qi is such that DAk(Q′′

i , Q−i) = DAk(Qi, Q−i),
for all Q−i.

Proof. By Lemma 13, it is enough to prove the proposition replacing Qi by a strategy
Q′
i ranking the same schools as in Qi but without re-ranking.18 Because DAm is

non-manipulable, we have

DAm(Q′′
i , Q−i) Q

′′
i DA

m(Q̃i, Q−i), for all Q̃i and Q−i.
In particular,

DAm(Q′′
i , Q−i) Q

′′
i DA

m(Q′
i, Q−i),

for all Q−i with |Qj | ≤ k for all tj ∈ T.
But because DAk is equivalent to DAm if we consider only the profiles Q with
|Qk

j | ≤ k for all tj ∈ T , the last displayed relation implies

DAk(Q′′
i , Q−i) Q

′′
i DA

k(Q′
i, Q−i), for all Q−i.

But by construction, Q′′
i is without re-ranking, and therefore, the last displayed

relation implies

DAk(Q′′
i , Q−i) Ri DA

k(Q′
i, Q−i),

for all Q−i such that DAk(Q′
i, Q−i) ∈ Q′′

i ∪ {ti}.
By construction, every acceptable school of Q′

i is ranked in Q′′
i . Therefore, the

only cases in which DAk(Q′
i, Q

∗
−i) /∈ Q′′

i ∪ {ti} is when ti Pi DA
k(Q′

i, Q
∗
−i). But be-

cause Q′′
i only ranks acceptable schools, DAk(Q′

i, Q−i) Ri ti for all Q−i and therefore,
in these cases too, DAk(Q′′

i , Q
∗
−i) Ri DA

k(Q′
i, Q

∗
−i).

Thus, we have

DAk(Q′′
i , Q−i) Ri DA

k(Q′
i, Q−i), for all Q−i.

which corresponds to (3.4) in the proof of Lemma 13. The rest of the proof is
identical to the proof of Lemma 13. �

Lemma 15 (Equivalent US with min{k, |Pi|} acceptable schools declared.). Assume
Qi is an US of DAk in which less than min{k, |Pi|} acceptable schools are declared.
Then there exists a strategy Q′′

i ranking min{k, |Pi|} acceptable schools and such that
DAk(Q′′

i , Q−i) = DAk(Qi, Q−i), for all Q−i.

18Indeed, by construction, if Q′′

i is identical to Q′

i except that it does not rank the unacceptable
schools of Q′

i, Q
′′

i is also identical to Qi except that it does not rank the unacceptable schools of
Q′

i. Also, if DAk(Q′′

i , Q−i) = DAk(Q′

i, Q−i), for all Q−i, because DAk(Q′

i, Q−i) = DAk(Qi, Q−i),
for all Q−i by Lemma 13, we would have DAk(Q′′

i , Q−i) = DAk(Qi, Q−i), for all Q−i, the desired
result.
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Proof. By Lemma 13 and Lemma 14, it is sufficient to prove that there exists Q′′
i

such that

DAk(Q′′
i , Q−i) = DAk(Q′

i, Q−i), for all Q−i,
where Q′

i only ranks the acceptable schools of Qi without re-ranking (as by Lemma
13 and Lemma 14, DAk(Q′

i, Q−i) = DAk(Qi, Q−i), for all Q−i).
Let Q′′

i be any strategy in which min{k, |Pi|} acceptable schools are declared
without re-ranking, including all the (acceptable) schools declared in Q′

i.
Because DAm is non-manipulable, we have

DAm(Q′′
i , Q−i) Q

′′
i DA

m(Q̃i, Q−i), for all Q̃i and Q−i.
In particular,

DAm(Q′′
i , Q−i) Q

′′
i DA

m(Q′
i, Q−i),

for all Q−i with |Qj | ≤ k for all tj ∈ T.
But because DAk is equivalent to DAm if we consider only the profiles Q with
|Qk

j | ≤ k for all tj ∈ T , the last displayed relation implies

DAk(Q′′
i , Q−i) Q

′′
i DA

k(Q′
i, Q−i), for all Q−i.

But by construction, Q′′
i is without re-ranking, and therefore, the last displayed

relation implies

DAk(Q′′
i , Q−i) Ri DA

k(Q′
i, Q−i),

for all Q−i such that DAk(Q′
i, Q−i) ∈ Q′′

i ∪ {ti}.
By construction, every acceptable school of Q′

i is ranked in Q′′
i . Therefore, the

only cases in which DAk(Q′
i, Q

∗
−i) /∈ Q′′

i ∪ {ti} is when ti Pi DA
k(Q′

i, Q
∗
−i). But by

construction Q′
i also ranks only acceptable schools. Therefore, this last case cannot

occur and we have

DAk(Q′′
i , Q−i) Ri DA

k(Q′
i, Q−i), for all Q−i.

which corresponds to (3.4) in the proof of Lemma 13. The rest of the proof is
identical to the proof of Lemma 13. �

3.9.3 Some useful lemmas about BOSk

Lemma 16 (Any assignment possible when unsafe). Take any Qi, an unsafe strategy
of BOSk. Then for all ℓ ∈ {1, . . . , |Qi|}, there exists Qℓ

−i such that

BOSk(Qi, Q
ℓ
−i) = Qi(ℓ).

Proof. By definition of an unsafe strategy, there exists Q∗
−i such that

BOSki (Qi, Q
∗
−i) = ti.

Now consider the Q∗∗
−i in which all tj assigned in BOSk(Qi, Q

∗
−i) declare

Q∗∗
j : BOSkj (Qi, Q

∗
−i) ti,

and for simplicity, students th who are unassigned in BOSk(Qi, Q
∗
−i) declare no
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schools at all in Q∗∗
h .19 Clearly, we still have

BOSki (Qi, Q
∗∗
−i) = ti,

as the same set of students apply to Qi(1) in the first round (hence ti is still rejected
from Qi(1) in the first round), and all the seats at all schools are filled in the first
round. Now constructQℓ

−i fromQ∗∗
−i by changing only the declared profile of students

tj 6= ti who declare Qi(ℓ), and make those students declare no schools at all.
Then if ℓ = 1, BOSki (Qi, Q

1
−i) = Qi(1), as requested. Also, if ℓ > 1, ti is still

rejected from Qi(1) in the first round and all seats at all schools by Qi(ℓ) are filled
in the first round. Therefore, we clearly have BOSki (Qi, Q

ℓ
−i) = Qi(ℓ), the desired

result.
�

Lemma 17. If Qi is US in BOSk, then PAS(Qi) contains only acceptable schools
for i.

Proof. In order to derive a contradiction, assume there is s ∈ PAS(Qi) that is un-
acceptable. We construct Q′

i dominating Qi in BOSk, contradicting the assumption
that Qi is US. We construct Q′

i step by step:

• Step 1: If Qi(1) ∈ Pi, then Q′
i(1) := Qi(1). Else Q′

i(1) := Pi(1).

• Step 2: If Qi(2) ∈ Pi and Qi(2) 6= Q′
i(1), then Q′

i(2) := Qi(2). Else Q′
i(2) :=

Pi(1) if Q′
i(1) 6= Pi(1), and Q′

i(2) := Pi(2) otherwise.
...

• Step ℓ: If Qi(ℓ) ∈ Pi and Qi(ℓ) is not yet declared in Q′
i(h) for h < ℓ, then

Q′
i(ℓ) := Qi(ℓ). Else Q′

i(ℓ) is the preferred school according to Pi that is not
yet declared in Q′

i(h), for h < ℓ.
...

• Last step ℓ∗ is the minimal step such that either ℓ∗ = |PAS(Qi)| or all accept-
able schools are declared in Q′

i.

We now prove by contradiction that Q′
i dominates Qi in BOSk. First, we show by

contradiction that for all Q−i, we have

BOSki (Q
′
i, Q−i) Ri BOS

k
i (Qi, Q−i).

Assume there exists Q−i such that

BOSki (Qi, Q−i)︸ ︷︷ ︸
:=sQ

Pi BOS
k
i (Q

′
i, Q−i)︸ ︷︷ ︸

:=sQ′

. (3.6)

This implies sQ is acceptable as by construction, Q′
i contains no unacceptable

schools.
Let r∗ be the step of algorithm at which ti is assigned in BOSk(Qi, Q−i). Let r′

be the rank of school sQ in strategy Q′
i. As a result, if ti is not assigned a school

19This is for simplicity only. By no means does the argument of the proof require that students
be allowed to declare no schools. Other more realistic constructions of Q∗∗

−i would also do the job.



3.9. APPENDIX 155

before step r′ of BOSki (Q
′
i, Q−i), then ti applies to sQ at step r′. By construction, ti

declares the acceptable school sQ weakly before in Q′
i than in Qi. Therefore r′ ≤ r∗.

Now, since by assumption BOSki (Qi, Q−i) = sQ, the set of tj 6= ti who apply to
sQ before step r∗, together with the set of tj 6= ti who apply to sQ in round r∗ and
have higher priority than ti at sQ, has less than qsQ students. But then, the set of
tj 6= ti who apply to sQ before step r′ < r∗, together with the set of tj 6= ti who
apply to sQ in round r′ and have higher priority than ti at sQ also has less than qsQ
students. Therefore, ti is assigned a school in BOSk(Q′

i, Q−i) at a step of algorithm
r′′ ≤ r′, or in other words

BOSki (Q
′
i, Q−i) Q

′
i s

Q.
Now, by construction of Q′

i, for all ranks h ∈ {1, . . . , r′}, the school Q′
i(h) is by

definition

Q′
i(h) Q

′
i s

Q, (3.7)
and is such that either

(i) Q′
i(h) = Qi(h), or

(ii) Q′
i(h) Ri s

Q.

In the construction, (ii) corresponds to the cases in which either Qi(h) /∈ Pi, or
Qi(h) ∈ Pi but Qi(h) = Q′

i(h) for some h < h. In these cases, the construction
prescribes to set Q′

i(h) to the most preferred school according to Pi which is not yet
declared in Q′

i(h), for some h < h. Because we only look at h such that (3.7) holds,
sQ has not yet been declared, and hence, (ii) must hold.

Now, let us compare the effect of declaring Qi with the effect of declaring Q′
i

step by step in BOSk, for steps r ≤ r′ (when the tj 6= ti declare Q−i). Because
r′′ ≤ r′ ≤ r∗, ti is rejected from the school she applies to in every step r < r′′ when
declaring Qi. Thus at each step r < r′′, either

1. (i) holds and ti is also rejected at step r when declaring Q′
i, or

2. (i) does not hold and (ii) holds, that is

Q′
i(h) Pi s

Q (3.8)
Then either

(a) ti is rejected from Q′
i(h) at step r, or

(b) ti is accepted at Q′
i(h) at step r.

But given (3.8), 2.(b) clearly contradicts (3.6). Thus ti must be rejected at every
step r < r′ of BOSk when declaring Q′

i.
Now, this implies that BOSk will move on to step r′, implying r′′ = r′. But by

(3.7), this means

BOSki (Q
′
i, Q−i) = sQ,

again contradicting (3.6).
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We just showed there exists no Q−i such that (3.6) holds. In order to prove that
the constructed Q′

i dominates Qi, there remains to show that there exists Q∗
−i such

that

BOSki (Q
′
i, Q

∗
−i) Pi BOS

k
i (Qi, Q

∗
−i).

By the definition of PAS(Qi), for all school s ∈ PAS(Qi), there exists Qs
−i such

that

BOSki (Qi, Q
s
−i) = s.

This is also true for any unacceptable school s′ ∈ PAS(Qi). By assumption, there
exists an unacceptable s′ ∈ PAS(Qi). Since Q′

i contains only acceptable schools, we
have that either

• BOSki (Q
′
i, Q

s′

−i) ∈ S, or

• BOSki (Q
′
i, Q

s′

−i) = ti.

In both cases we have BOSki (Q
′
i, Q

s′

−i) Pi s
′.

�

Lemma 18. For all k ∈ N for which there is no over-supplied set of schools (3.46),
Qi is US in BOSk if and only if

Case 1 : Pi(1) is SIF:

Qi(1) = Pi(1).

Case 2 : Pi(1) is not SIF:

• Either Qi(1) is favorite acceptable SIF,

• or Qi(1) is not SIF and Qi contains min{k, |Pi|} acceptable schools, one
of which is preferred to the favorite acceptable SIF.

Proof. The proof is case by case.

Case 1 : If Pi(1) is SIF, then declaring this school first guarantees ti to be assigned
to her favorite school, for all possible declarations of the other students, show-
ing sufficiency. Condition Qi(1) = Pi(1) is necessary as any Q′

i for which
Q′
i(1) = Pi(1) is such that school Q′

i(1) is less preferred than Pi(1). It is then
easy to construct Q∗

−i for which BOSki (Q
′
i, Q

∗
−i) = Q′

i(1) (e.g. Q∗
j (1) 6= Q′

i(1)
for all tj 6= ti), which shows necessity.

Case 2 : We first show sufficiency of each condition.

First, if Qi(1) is the favorite acceptable SIF, then Qi is a safe strategy by
Lemma 20. By the definition of an unsafe strategy, only a safe strategy Q′

i can
dominate the safe Qi that guarantees assignement in the acceptable school
Qi(1). By Lemma 20 , because we assume there is no over-supplied set of
schools (3.46), Q′

i is safe if and only if Q′
i(1) is SIF. As by assumption Qi(1)

is the favorite acceptable SIF, strategy Q′
i must have Q′

i(1) = Qi(1) in order
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to dominate Qi. As Qi(1) is SIF, the two strategies lead to the same assigne-
ment for ti, whatever the strategies declared by other students, and are hence
equivalent. Therefore no Q′

i dominates Qi.

Second, if Qi(1) is not SIF, then Qi is unsafe by Lemma 20, because we
assume there is no over-supplied set of schools (3.46). By Lemma 21, if Qi

is dominated, then Qi is dominated by a safe strategy Q′
i. Again, the safe

strategy Q′
i must be such that Q′

i(1) is SIF (Lemma 20).

Now, by construction, there exists a school s′ ∈ Qi that is preferred to the
favorite acceptable SIF. This guarantees thatQ′

i does not dominateQi. Indeed,
Lemma 16 shows that for any school s declared in an unsafe strategy, there
exists a Q∗

−i such that

BOSki (Qi, Q
∗
−i) = s.

In particular, there exists Q∗∗
−i such that

BOSki (Qi, Q
∗∗
−i) = s′.

As Q′
i(1) is SIF and by assumption s′ Pi Q

′
i(1), strategy Q′

i does not dominate
Qi and hence Qi is undominated.

We then show by contradiction the necessity of these conditions.

First, if Qi(1) is SIF but not the favorite acceptable SIF, it is clearly dominated
by Q′

i for which Q′
i(1) is the favorite acceptable SIF.

Second, consider the case in which Qi(1) is not SIF. Assume first that Qi

contains no school preferred to the favorite SIF. Then it is again dominated
by Q′

i with Q′
i(1) being the favorite SIF. Assume now that Qi contains less

than min(k, |Pi|) acceptable schools. Two cases can arise:

• Qi contains unacceptable schools. As Qi(1) is not SIF, all schools in Qi

belong to PAS(Qi). By Lemma 17, Qi can not be US.

• Qi contains no unacceptable schools but less than min(k, |Pi|) acceptable
schools. There exists hence an acceptable school s that is not declared in
Qi. Strategy Q′

i : Qi s obtained by attaching s at the end of Qi can be
played in BOSk and dominates Qi. By construction of Q′

i we have that
if

BOSki (Qi, Q−i) 6= BOSki (Q
′
i, Q−i),

then BOSki (Qi, Q−i) = ti and BOSki (Q
′
i, Q−i) = s. Since both strategies

Qi and Q′
i are unsafe, there exists such a Q−i by Lemma 21.

�

3.9.4 Proofs of the propositions

Proof of Proposition 10
(DAk+1 less stable than DAk in NE)

We prove in the text that DAk is at least as stable as DAk+1. Next, we show that
DAk+1 is more stable as DAk. The required profile for DA2 and DA1 is provided
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in Example 4. We provide the proof for any k in Claim 1.

Claim 1. For all k, there exists a assignment profile (given in Example 11) such
that all NE outcomes in DAk are stable whereas some NE outcomes in DAk+1 are
unstable.

Example 11. The generic example is an extended version of Example 4 in the text.

P1 : s3 s∗1
P2 : s1 s∗2 s3 s4 . . . sk+2

P3 : s1
P4 : s4 s∗3
P5 : s4
P6 : s5 s∗4
P7 : s5
...

P2k : sk+2 s∗k+1

P2k+1 : s∗k+2

Fs1 : t1 t3 t2
Fs2 : t2
Fs3 : t4 t2 t1
Fs4 : t6 t2 t5 t4
Fs5 : t8 t2 t7 t6

...
Fsk+1

: t2k t2 t2k−1 t2k−2

Fsk+2
: t2 t2k+1 t2k

In Example 4, we showed that DAk+1 is less stable than DAk for k = 2. The
example showing that DAk is more stable than DAk+1 is constructed recursively.
From the example showing that DAk−1 is more stable than DAk, we add an extra
school sk+2 and two extra students t2k and t2k+1 :

• School sk+2 is attached at the end of preference P2,

• The priority ordering Fsk+1
is modified in order to give higher priority to t2k

than to t2,

• Finally, Fsk+2
, Pt2k and Pt2k+1

are as shown above.

N

Proof. The most efficient stable assignment of Example 11 is starred.
The declared profile given below constitutes a NE in DAk+1 and leads to the

outcome boxed. The pairs (t3, s1), (t5, s4), . . . and (t2k+1, sk+2) are blocking in this
assignment even if the profile is a NE as there exists a rejection chain (Kesten, 2010)
for each of these pairs.

Q1 : s3 s1
Q2 : s1 ( ) s3 s4 . . . sk+2

Q3 : ( )
Q4 : s4 s3
Q5 : ( )
Q6 : s5 s4
Q7 : ( )

...
Q2k : sk+2 sk+1

Q2k+1 : ( )
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We prove that there exists no NE of DAq with q ∈ {1, . . . , k} leading to an un-
stable outcome. As NE of DAq are nested in NE of DAq+1, we need only prove
this for q = k. The proof is based on the following claim: for all NE outcome, any
student ti having the highest priority in an acceptable school s must be assigned to
a school s′ with s′ Ri s, and can hence never end up unassigned (proof omitted). By
construction, all students ti with i ∈ {1, 2, 4, 6, . . . , 2k − 1, 2k} are in this situation.
Two cases can arise for Q2:

• Case 1: s2 Q2 sk+2 or sk+2 /∈ Q2.
As a result, the best reply of student t2k+1 is to declare her single acceptable
school sk+2. Student t2k+1 is assigned to sk+2 in any NE outcome as she has
highest priority in sk+2 after t2 and t2 receives either s2 or a school she declares
before s2. Since t2k has highest priority in a school and can therefore not end
up unassigned in NE, she is assigned to sk+1. Applying the same reasoning,
we have that t2k−2 is assigned to sk, t2k−4 is assigned to sk−1, . . . until t4 is
assigned to s3 and t1 is assigned to s1. This shows t2 is assigned to s2 and the
assignment obtained is the most efficient stable assignment.

• Case 2: sk+2 Q2 s2.
We show by contradiction that such declaration is never a NE. As t2 has highest
priority in school P2(2) = s2, student t2 is assigned to a school she deems at
least as desirable as P2(2) for any NE outcome. There are two subcases:

– Student t2 is assigned to s1 in the NE outcome.

As t1 and t4 must be assigned in any NE outcome, student t1 is assigned
to s3 and consequently student t4 is assigned to s4. This reasoning can
be pursued until t2k−2 is assigned to sk+1 and t2k is assigned to sk+2. The
pairs (t3, s1), (t5, s4), . . . and (t2k+1, sk+2) are blocking in such assignment.
As we assumed this assignment is a NE outcome, there must exist a
rejection chain for those blocking pairs. Such rejection chain exists for
(t3, s1) only if Q1 : s3 s1 and Q2 : s1 s3 ( ). The rejection chain exists
for (t5, s4) only if Q4 : s4 s3 and Q2 : s1 s3 s4 ( ). This reasoning is
pursued until we conclude that the rejection chain for (t2k−1, sk+1) exists
only if Q2k−2 : sk+1 sk and Q2 : s1 s3 s4 . . . sk+1. Therefore sk+2 /∈ Q2

because Q2 can contain at most k schools in DAk, which implies there
is no rejection chain for (t2k+1, sk+2), contradicting the hypothesis this
assignment is a NE outcome.

– Student t2 is assigned to a school s with s2 P2 s in the NE outcome.

This can not be a NE since t2 could profitably deviate by declaring s2
before s.

�
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Proof of Proposition 11
(DAk+1 more stable than DAk in US)

For brevity, we will call ∗-strategy a strategy featuring no re-ranking, no unaccept-
able schools, an in which min{k, |Pi|} schools are declared. Similarly, a ∗-profile is
a profile of ∗-strategies. A US∗-profile is a US profile which is also a ∗-profile.

Claim 2. To prove that DAk+1 is at least as stable as DAk in US, it is sufficient
to prove that DAk+1 is at least as stable as DAk in US∗.

Proof. Assume that DAk+1 is at least as stable as DAk in US∗. This means that
whenever DAk is stable for all US∗, DAk+1 is also stable for all US∗.

Now assume that DAk is stable in US, with some stable profiles possibly contain-
ing non-∗-strategies. We need to show that DAk+1 is also stable in US. Necessarily,
DAk is stable in US∗ too, because US∗ are a subset of US. Therefore, by assumption,
DAk+1 is stable in US∗.

Then consider any US profile Q̄k+1 of DAk+1. If Q̄k+1 is a ∗-profile, it is stable
because DAk+1 is at least as stable as DAk in US∗ by assumption. Now assume Q̄k+1

is not a ∗-profile. By Lemma 13, Lemma 14 and Lemma 15, there exists an US∗

profile H̄k+1 with the same outcome as Q̄k+1 in DAk+1. By assumption, because
H̄k+1 is a US∗ profile, its outcome is stable. Thus because the outcome of Q̄k+1 is
the same as the outcome of H̄k+1, the outcome of Q̄k+1 is stable too, the desired
result. �

We now turn to two claims which will help us in the proof of Claim 5, the key
step in the proof of the proposition. The next claim says that if a profile dominates
another profile in DAk, it also dominates the other profile in DAk+1.

Claim 3. Suppose that the reported profile Hk
i dominates Qk

i in DAk, and Qk
i fea-

tures no re-rankings. Then Hk
i dominates Qk

i in DAk+1 too.

Proof. Assume not. Then either

DAk+1
i (Qk

i , Q̂
k+1
−i ) Pi DA

k+1
i (Hk

i , Q̂
k+1
−i ), for some Q̂k+1

−i (3.9)
or

DAk+1
i (Qk

i , Q
k+1
−i ) Ri DA

k+1
i (Hk

i , Q
k+1
−i ), for all Qk+1

−i . (3.10)

Notice that because Hk dominates Qk in DAk, there must exists Q̃k
−i such that

DAki (H
k
i , Q̃

k
−i) Pi DA

k
i (Q

k
i , Q̃

k
−i), (3.11)

holds.
But

DAki (Q
k
i , Q̃

k
−i) = DAk+1

i (Qk
i , Q̃

k
−i),

and

DAki (H
k
i , Q̃

k
−i) = DAk+1

i (Hk
i , Q̃

k
−i),

which together with (3.11) implies

DAk+1
i (Hk

i , Q̃
k
−i) Pi DA

k+1
i (Qk

i , Q̃
k
−i),
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contradicting (3.10). So (3.9) must hold. In what follows, we show that this leads
to a contradiction.

Let us construct Q∗
−i as follows. For each student tj 6= ti ∈ T , let the new

reported preferences be Q̂j in which only DAk+1
j (Hk

i , Q̂
k+1
−i ) is declared. That is

in Q̂−i , every tj 6= ti ∈ T reports only her assignment in DAk+1 under profile

(Hk
i , Q̂

k+1
−i ).

Given the way we constructed Q̂−i, it is clear that

DAk+1
i (Hk

i , Q̂
k+1
−i ) = DAki (H

k
i , Q̂−i). (3.12)

Also because Qk
i features no re-ranking

DAki (Q
k
i , Q̂−i) Ri DA

k+1
i (Qk

i , Q̂
k+1
−i ). (3.13)

The last relation holds because DA satisfies individually rational monotonicity
(Kojima and Manea, 2010). Roughly speaking, this means that when students rank
less unaccessible schools, everyone is weakly better off. In our case, every tj 6= ti ∈ T

report (weakly) less preferences in Q̂−i than in Q̂k+1
−i . Therefore in Q̂−i, (weakly)

less students than in Q̂k+1
−i apply to every school above DAk+1

i (Qk
i , Q̂

k+1
−i ) in ti’s

ranking . Therefore, ti’s assignment can clearly not be a lower school in DAk than
in DAk+1 according to Qk

i . But because Qk
i and Pi agree on the schools ranked in

Qk
i (by assumption, Qk

i features no re-ranking), ti cannot be worse off in DAk than
in DAk+1 which corresponds to (3.13).

Combining the two last relations with (3.9), we get

DAki (Q
k
i , Q̂−i) Ri DA

k+1
i (Qk

i , Q̂
k+1
−i ) Pi DA

k+1
i (Hk

i , Q̂
k+1
−i ) = DAki (H

k
i , Q̂−i),

or in short

DAki (Q
k
i , Q̂−i) Pi DA

k
i (H

k
i , Q̂−i) (3.14)

But because, by assumption, Hk dominates Qk in DAk, we have

DAki (H
k
i , Q

k
−i) Ri DA

k
i (Q

k
i , Q

k
−i), for all Qk

−i, (3.15)
where the last two relations form a contradiction.

�

The next claims says that if some strategy Q̄k
i dominates a ∗-strategy Hk

i with
k declared school, then Q̄k

i always leads to an assignment at least as good as the
worst school declared in Hk

i . This implies that Q̄k
i is a safe strategy.

Claim 4. In DAk, suppose that

1. Q̄k
i dominates Hk

i ,

2. Hk
i ranks k schools,

3. Hk
i is a ∗-strategy.
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Let sH be the worse school listed in Hk
i . Then

DAk(Q̄k
i , Q−i) Ri sH , for all Q−i. (3.16)

Proof. To derive a contradiction, assume that

sH Pi DA
k
i (Q̄

k
i , Q̂−i), for some Q̂−i. (3.17)

First notice that by Lemmas 13 and 14, there exists some ∗-strategy Qk
i that also

dominates Hk
i . By the domination condition,

DAki (Q
k
i , Q̇−i)︸ ︷︷ ︸

:=ŝ

Pi DA
k
i (H

k
i , Q̇−i), for some Q̇−i. (3.18)

Because both Qk
i and Hk

i feature no re-ranking, this implies ŝ /∈ Hk
i . But because

Hk
i ranks k schools, this means that there exists s∗ ∈ Hk

i with s∗ /∈ Qk
i . By definition

of sH we have

s∗ Hk
i sH . (3.19)

But because Hk
i is a ∗-strategy this implies

s∗ Ri sH . (3.20)
Combined with (3.17) and the fact that Q̄k

i and Qk
i always yield the same outcome

for ti, we get

s∗ Pi DA
k
i (Q

k
i , Q̂−i), for some Q̂−i. (3.21)

Following a similar construction to the one we used in Claim 3, we now show that
we can alter Q̂−i in such a way that ti’s assignment is unchanged, but ti could be
assigned to ti if she declared Hk

i , contradicting the fact that Qk
i dominates Hk

i .
Let B be the set of schools that ti ranks above DAki (Q

k
i , Q̂−i) in Qk

i . These
are the schools ti applied to in the course of DAk under (Qk

i , Q̂−i), but did not get
assigned to. Because ti was rejected from the schools in B, it must be that, in the
vector of assignment DAk(Qk

i , Q̂−i), there is another student assigned to each of the
available seats in each of the schools in B. Let the set of these students be denoted
A.

Now construct Q̃−i as follows :

• For all tj ∈ A, let Q̃j be the strategy in which tj reveals only DAk+1
j (Qk

i , Q̂−i).

• For all th ∈ T\{A∪{ti}}, let Q̃h be the strategy in which th reveals only ŝ for
some ŝ 6= s∗.

By construction, for every school s ∈ B, there is at least qs-students with higher
priority at s than ti who rank s first in Q̃−i. Thus ti will be rejected of any of these
schools in DAk(Qk

i , Q̃−i) too. Therefore

DAk(Qk
i , Q̂−i) Ri DA

k(Qk
i , Q̃−i).

By construction again, no-one applies to s∗. Thus because s∗ ∈ Hk
i ,

DAk(Hk
i , Q̃−i) Qi s

∗. (3.22)
But because Hk

i is a ∗-strategy by assumption, it features no re-ranking, and
therefore
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DAk(Hk
i , Q̃−i) Ri s

∗, (3.23)
which combined with (3.21) yields

DAk(Hk
i , Q̃−i) Pi DA

k(Qk
i , Q̃−i), (3.24)

contradicting the assumption that Qk
i dominates Hk

i in DAk.
�

We can now turn to the proof of Claim 5.

Claim 5. Let Hk
i be an US∗ in DAk. Let Ĥk−1

i be obtained from Hk
i as follows.

If Hk
i contains k declared schools : Let Ĥk−1

i be obtained by deleting the last school
in Hk

i ,

otherwise : set Ĥk−1
i := Hk

i .

Then Ĥk−1
i is an US∗ in DAk−1. To put it differently, for all k and all US∗

of DAk, there exists an US∗ of DAk−1 containing the first min(k − 1, |Hk
i |) schools

declared in Hk
i .

Proof. That Ĥk−1
i is a ∗-strategy of DAk−1 is obvious by construction (given that

Hk
i is a ∗-strategy by assumption). Thus we only have to prove that Ĥk−1

i is a US
of DAk−1.

In order to derive a contradiction, assume that there exists a profile Qk−1
i which

dominates Ĥk−1
i in DAk−1. Then by definition,

DAk−1(Qk−1
i , Q−i) Ri DA

k−1(Ĥk−1
i , Q−i), for all Q−i, (3.25)

and DAk−1(Qk−1
i , Q∗

−i) Pi DA
k−1(Ĥk−1

i , Q∗
−i), for some Q∗

−i. (3.26)

Let Q̂k−1
i be the declared profile ranking the same schools as Qk−1

i , but without
re-rankings. By (Haeringer and Klijn, 2008, Lemma 4.2),

DAki (Q̂
k−1
i , Q−i) Ri DA

k
i (Q

k−1
i , Q−i), for all Q−i. (3.27)

Thus,

DAk−1(Q̂k−1
i , Q−i) Ri DA

k−1(Ĥk−1
i , Q−i), for all Q−i, (3.28)

and DAk−1(Q̂k−1
i , Q∗

−i) Pi DA
k−1(Ĥk−1

i , Q∗
−i), for some Q∗

−i. (3.29)

Notice that by construction, neither Q̂k−1
i nor Ĥk−1

i feature re-rankings. There-
fore, Claim 3 applies and both (3.28) and (3.29) still hold in DAk, that is,

DAk(Q̂k−1
i , Q−i) Ri DA

k(Ĥk−1
i , Q−i), for all Q−i, (3.30)

and DAk(Q̂k−1
i , Q∗

−i) Pi DA
k(Ĥk−1

i , Q∗
−i), for some Q∗

−i. (3.31)
Let wk be the worst school in Hk

i , that is the school that is potentially removed
when going from Hk

i to Ĥk−1
i . Now from Q̂k−1

i , construct Q̃k
i as follows.

If Hk
i 6= Ĥk−1

i (i.e. if we removed a school from Ĥk−1
i to construct Hk

i ) :

obtain Q̃k
i by adding wk to Q̂k−1

i respecting the true preference order (i.e. in
such a way that Q̃k

i features no re-rankings).
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otherwise : set Q̃k
i := Q̂k−1

i .

Because Hk
i is US∗, wk is an acceptable school. Therefore, because Q̃k

i features
no re-ranking, we clearly have

DAki (Q̃
k
i , Q−i) Ri DA

k
i (Q̂

k−1
i , Q−i), for all Q−i, (3.32)

and therefore,

DAk(Q̃k
i , Q−i) Ri DA

k(Ĥk−1
i , Q−i), for all Q−i, (3.33)

and DAk(Q̃k
i , Q

∗
−i) Pi DA

k(Ĥk−1
i , Q∗

−i), for some Q∗
−i. (3.34)

Because Hk
i is undominated in DAk, either

DAk(Hk
i , Q

∗
−i) Pi DA

k(Q̃k
i , Q

∗
−i), for some Q∗

−i, (3.35)

or DAk(Hk
i , Q−i) Ri DA

k(Q̃k
i , Q−i), for all Q−i. (3.36)

In what follows, we derive a contradiction in these two cases.

Case 1 : (3.35) holds. If Hk
i = Ĥk−1

i , then (3.35) directly contradicts (3.33). Thus
we must have Hk

i 6= Ĥk−1
i .

Combining (3.35) with (3.33) we get

DAk(Hk
i , Q

∗
−i) Pi DA

k(Ĥk−1
i , Q∗

−i), for some Q∗
−i. (3.37)

Notice that by construction, because Hk
i 6= Ĥk−1

i , the only difference between
Hk
i and Ĥk−1

i is that Hk
i contains wk in last position. Thus it must be the

case that

DAk(Hk
i , Q

∗
−i) = wk, (3.38)

which combined with (3.35) yields

wk Ri DA
k(Q̃k

i , Q
∗
−i), for some Q∗

−i. (3.39)

Now notice that Q̃k
i satisfies the conditions of Claim 4 with respect to Ĥk−1

i

in DAk. Thus, (3.16) holds and if ŵk−1 is the last school of Ĥk−1
i we have

DAki (Q̃
k
i , Q−i) Ri ŵ

k−1, for all Q−i, (3.40)

Then notice that by construction and because Hk
i 6= Ĥk−1

i

ŵk−1 Pi w
k, (3.41)

which combined with (3.40) yields

DAki (Q̃
k
i , Q−i) Pi w

k, for all Q−i,
contradicting (3.39). Therefore case 1 cannot happen.

Case 2 : (3.36) holds. Notice that because we already ruled out case 1, (3.36) is
equivalent to

DAk(Hk
i , Q−i) = DAk(Q̃k

i , Q−i), for all Q−i. (3.42)

There are two subcases.

Subcase 1 :DAk(Hk
i , Q−i) 6= wk for all Q−i.
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Then,

DAk(Hk
i , Q

k−1
−i ) 6= wk,

for all Qk−1
−i with |Qk−1

j | ≤ k − 1 for all tj 6= ti ∈ T.
(3.43)

This means that for any Qk−1
−i with |Qk−1

j | ≤ k− 1 for all tj 6= ti ∈ T , ti
is either assigned a school better than wk or is unassigned, when declaring
Hk
i .

In either cases, removing wk from Hk
i would have no impact on ti’s as-

signment, regardless of Qk−1
−i . Thus we have,

DAk(Hk
i , Q

k−1
−i ) = DAk(Ĥk−1

i , Qk−1
−i ),

for all Qk−1
−i with |Qk−1

j | ≤ k − 1 for all tj 6= ti ∈ T.
(3.44)

Because Hk
i is undominated in DAk, it is undominated for every Qk−1

−i .

Therefore (3.44) tells us that Ĥk−1
i is also undominated in DAk for all

Qk−1
−i . In particular, it is not dominated by Qk−1

i . But DAk−1 is strate-
gically equivalent to DAk constrained to the set of profiles with no more
than k − 1 declared schools. Thus (3.44) implies that Ĥk−1

i is undomi-
nated in DAk−1, a contradiction.

Subcase 2 : DAk(Hk
i , Q

∗
−i) = wk for some Q∗

−i. By (3.42), this implies

DAki (Q̃
k
i , Q

∗
−i) = wk. (3.45)

Then we can use the same kind of constructions as in Claim 4 to construct
a profile Q∗∗

−i of DAk such that Ĥk−1
i yields a strictly better outcome than

Q̃k
i in DAk, contradicting (3.33).

�

With these two lemmas, we are now equipped to prove the “at least as stable”
part of the main proposition.

Proof: By Claim 5, for any US∗ profile Qk+1 in DAk+1, there exists an US∗ profile
Qk in DAk constructed by removing the worst school of every agent ranking k + 1
schools in Qk+1. Let µk the assignment obtained from Qk in DAk. By assumption,
µk is stable.

For any student ti, let wk+1
i be the last school ti declares in Qk+1

i . Now, let TA be
the set of assigned students in µk. Because µk is stable, and wk+1

i is acceptable (Qk+1
i

is an US∗) for every tj ∈ T\TA (the set of unassigned students in µk), all the seats
at every wk+1

j are assigned in µk, and they are assigned to students with a higher

priority at wk+1
j than tj . Thus the profile Qk+1

∗ of DAk+1 constructed from Qk by

adding wk+1
i to the declared profile of every ti ∈ T\TA yields the same assignment,

that is DAk+1(Qk+1
∗ ) = µk.

Now construct a last profile Qk+1
∗∗ from Qk+1

∗ by adding wk+1
h to the declared

strategy of every th ∈ TA for which wk+1
h /∈ Qk

h. By construction, wk+1
h is below wkh,

the last school th ranks in Qk
h. Because th ∈ TA, this means th is assigned to a better

school than wk+1
h in µk. Again, this implies that Qk+1

∗∗ yields the same assignment
µk than Qk+1

∗ .
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But notice that in constructing Qk+1
∗∗ , we have added “back” wk+1

i to the declared
profile of every agent ti for whom Qk

i was constructed from Qk+1
i by removing wk+1

i .
Hence, Qk+1

∗∗ = Qk+1, and we have shown that DAk+1 = µk. Because µk is stable by
assumption, we have shown the “at least as stable” part of the proposition for US∗

profiles. But because of Lemma 2, proving the result for all US∗ is enough, and we
are done with the proof of the “at least as stable” part of the proposition.

�

Next, we show that DAk+1 is more stable than DAk. The required profile for
DA2 and DA1 is provided in Example 6. We provide the proof for any k in Claim
6.

Claim 6. For all k, there exists a profile (given in Example 12) such that all US
outcomes are stable in DAk+1 whereas some US outcomes are unstable in DAk.

Proof. The generic example is the following:

Example 12.

P1 : s∗1 ( )
P2 : s∗2 ( )
...

Pk+1 : s1 s2 . . . s∗k+1 ( )
Pk+2 : s∗k+2 ( )

Fs1 : t1 ( )
Fs2 : t2 ( )

...
Fsk+1

: tk+1 ( )
Fsk+2

: tk+2 ( )

N

All students except tk+1 have highest priority in their preferred school. Student
tk+1 finds k schools better than sk+1, the school she is assigned to in the unique
stable assignment (starred). Mechanism DAk is unstable in US because it is an
undominated strategy for tk+1 to declare her k preferred schools (and hence not
declare sk+1). For any US profile in DAk declared by the other students, if tk+1 does
not declare sk+1 then the outcome is unstable because tk+1 is unassigned whereas
sk+1 has an available seat. On the other hand, mechanism DAk+1 is stable in US
since tk+1 has a safe set covering her k + 1 preferred schools, implying her only
undominated strategy is a truncation of Pi after sk+1. The unique US profile in
DAk+1 lead to the unique stable assignment. �

Proof of Proposition 13
(BOSk+1 more stable than BOSk in US)

This proof of nestedness requires an additional definition. For any strategy Qi, let
Q

(r)
i be the strategy obtained from Qi by deleting the school declared at rank r in

Qi. Formally :

• Q
(r)
i (r′) := Qi(r

′) for all r′ ∈ {1, . . . , r − 1} and

• Q
(r)
i (r′) := Qi(r

′ + 1) for all r′ ∈ {r, . . . , |Qi| − 1}.
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Lemma 19. Let µ := BOSk+1(Q) with Q an US profile in BOSk+1 and k ≥ 3. For
all ti ∈ T , if |Qi| = k + 1, then there exists r ∈ {|Qi| − 2, |Qi| − 1, |Qi|} such that

Qi(r) 6= µi and Q
(r)
i is US in BOSk.

Proof. Take any ti ∈ T . The proof is case by case.

Case 1 : Qi(1) is SIF.

By Lemma 18, as Qi is US in BOSk+1, Qi(1) is the favorite acceptable SIF.

If r = |Qi|, then by Lemma 18 we have Q
(r)
i is US in BOSk as Q

(r)
i (1) is

the favorite acceptable SIF. Furthermore, Qi(r) 6= µi as Qi(1) is SIF, hence
Qi(1) = µi, and as we assumed k ≥ 3, we have 2 ≤ |Qi| − 2 ≤ r.

Case 2 : Qi(1) is not SIF.

Case 2.1 : µi = ti.

By the case 2 of Lemma 18, as Qi is US in BOSk+1, all schools declared
in Qi are acceptable and at least one school declared is preferred to the
favorite acceptable SIF. Let s∗ be the favorite school declared in Qi. Let
r := |Qi| if Qi(|Qi|) 6= s∗ and r := |Qi| − 1 otherwise. By construction,

as we assumed |Qi| = k + 1, strategy Q
(r)
i contains k acceptable schools,

among which s∗ that is preferred to the favorite acceptable SIF. By case
2 of Lemma 18, Q

(r)
i is US in BOSk.

Case 2.2 : µi 6= ti.

The reasoning is the same as for the case above. The only difference is in
the construction of r. Rank r is any element in {|Qi| − 2, |Qi| − 1, |Qi|}
such that Qi(r) 6= µi and Qi(r) 6= s∗ where s∗ is the favorite school
declared in Qi.

�

Proposition 16. For all k ≥ 3 we have US(BOSk+1) ⊆ US(BOSk).

Proof: Take any k ≥ 3 and any profile Q of US in BOSk+1. Let µ := BOSk+1(Q)
be the assignment obtained for the US profile Q. We construct a profile Q′ that is
US in BOSk and show that µ = BOSk(Q′).

Step 1: Construction of profile Q′, a US in BOSk.

We first introduce a particular transformation of a strategy defined for any Qi and
any school s ∈ Qi. Transformation Qs−2

i of strategy Qi exchange the ranks of schools
Qi(2) and s. Formally, let r∗ be the rank of school s in Qi:

• If r∗ = 1 or r∗ = 2 then Qs−2
i := Qi,

• Else Qs−2
i (2) := s, Qs−2

i (r∗) := Qi(2) and for all r ∈ {1, . . . , |Qi|}\{2, r
∗} we

have Qs−2
i (r) := Qi(r).
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For any ti ∈ T , the construction of Q′
i is case by case. In a nutshell, the first

school declared in Q′
i is Qi(1) and, if the agent is assigned a school in BOSk+1(Q)

different from Qi(1), then the second school declared in Q′
i is µi, otherwise we have

Q′
i(2) = Qi(2). The detailed construction of Q′

i goes as follows:

Case 1 : Qi(1) is SIF.

Take Q′
i : Qi(1). By Lemma 18, as Qi is US in BOSk+1, Qi(1) is the favorite

acceptable SIF. Strategy Q′
i : Qi(1) is US in BOSk by Lemma 18 as Q′

i(1) is
the favorite acceptable SIF.

Case 2 : Qi(1) is not SIF.

Case 2.1 : |Qi| < k + 1.

By the case 2 of Lemma 18, if Qi with Qi(1) is not SIF and |Qi| < k + 1
is US in BOSk+1, we have that

• |Qi| = |Pi| and strategy Qi contains all acceptable schools, and

• Pi(1) is not SIF.

By the case 2 of Lemma 18, Qi is therefore an US in BOSk. Let Q′
i := Qi

if µi = ti, and Q′
i := Q2−µi

i otherwise. In the latter case, strategy Q′
i is US

in BOSk by Lemma 18 because Q2−µi
i (1) is not SIF, and Q2−µi

i contains
all acceptable schools.

Case 2.2 : |Qi| = k + 1.

By Lemma 19, there exists r ∈ {|Qi|−2, |Qi|−1, |Qi|} such that Qi(r) 6=

µi and Q
(r)
i is US in BOSk. For this value of r, let Hi := Q

(r)
i , strategy Hi

is hence US in BOSk. Let Q′
i := Hi if µi = ti, and Q′

i := Q2−µi
i otherwise.

In the latter case, strategy Q′
i is US in BOSk by Lemma 18 because

H2−µi
i (1) is not SIF and H2−µi

i contains k acceptable schools, among
which one is preferred to the favorite acceptable SIF. Indeed, the school
deleted from Qi was not the favorite school declared by construction.

Step 2: Proof that BOSk(Q′) = µ.

By the construction of Q′, we have Q′
i(1) = Qi(1) for all ti ∈ T . As a result,

the first step of mechanism BOSk for the profile Q′ is the same as the first step
of mechanism BOSk+1 for the profile Q. Therefore, from now on, we can focus
exclusively on students who are not assigned in the first step of BOSk.

In the second step of mechanism BOSk when profile Q′ is declared, all students
for whom µi ∈ S declare µi and all students for whom µi = ti declare Qi(2).

20 We
show that all students declaring µi in step 2 of BOSk when Q′ is the declared profile
are assigned to µi and all students for whom µi = ti are rejected.

20When k = 3, the construction of Q′

i proposed above does not guarantee that Q′

i(2) = Qi(2) for
students for whom µi = ti. Nevertheless students for whom µi = ti have an undominated strategy
Q∗

i such that both Q∗

i (1) = Qi(1) and Q∗

i (2) = Qi(2). Strategy Q∗

i can be constructed in this way
even if k = 3 by taking either Q∗

i := Q
(3)
i or Q∗

i := Q
(4)
i , depending on the rank of the preferred

school declared in Qi (see case 2.1 in Lemma 19).
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• Consider first any student ti for whom µi = ti.

As µi = ti, this student is rejected in the second step of mechanism BOSk+1 for
profile Q. This implies that at least qQi(2) other students with higher priority
at Qi(2) than ti apply at Qi(2) in the two first step of mechanism BOSk+1

for profile Q. By construction, these qQi(2) other students with higher priority
also apply to Qi(2) in the two first steps of mechanism BOSk for profile Q′

and none among them is assigned another school in step 1 as the first step is
unchanged. As a consequence, ti is rejected from Qi(2).

• Consider now any student ti for whom µi ∈ S.

By construction we have Q′
i(2) = µi and two cases can be considered. Either

there are at most qµi students applying to school µi during the 2 first steps of
mechanism BOSk for profile Q′ and ti is again assigned to µi, or there are more
than qµi such students. The latter case happens only if all students assigned to
µi where assigned during the two first steps of mechanism BOSk+1 for profile
Q. This implies that ti is among the qµi students with highest priority among
those who apply to this school during the two first steps of mechanism BOSk+1

for profile Q. Student ti is by construction still among the qµi students with
highest priority among those who apply to this school during the two first
steps of mechanism BOSk for profile Q′. Therefore ti is assigned to µi.

In later steps of mechanism BOSk for the profile Q′, no more assignements to
schools take place. The students remaining unassigned after step 2 are those for
whom µi = ti. They apply in later steps to schools from which they were rejected
by mechanism BOSk+1 for the profile Q, implying all these schools have accepted a
number of students equal to their quota. After step 2 of mechanism BOSk for the
profile Q′, these schools are also full and therefore student ti for whom µi = ti ends
up unassigned: BOSki (Q

′) = ti. This shows that BOSk(Q′) = BOSk+1(Q).
�

We showed that for any k ≥ 3, any US outcomes in BOSk+1 is also an US
outcome in BOSk. As a result, if all US outcomes in BOSk are stable, all US
outcomes in BOSk are stable as well. This implies that BOSk+1 is at least as stable
as BOSk.

Next, we show that BOSk+1 is more stable than BOSk. Example 7 in the text
provides the required profile for the comparison of BOS2 and BOS3. The generic
profile required is given in Claim 7.

Claim 7. For all k, there exists a profile (given in Example 13) such that all US
outcomes are stable in BOSk+1 whereas some US outcomes are unstable in BOSk.

Proof. The generic example is the following:
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Example 13.

P1 : s∗1 ( )
P2 : s∗2 ( )
...

Pk : s∗k ( )
Pk+1 : s1 . . . sk−1 s∗k+2 sk+1

Pk+2 : s1 . . . sk−1 s∗k+1 sk+2

Pk+3 : s1 . . . sk

Fs1 : t1 ( )
Fs2 : t2 ( )

...
Fsk : tk ( )
Fsk+1

: tk+1 ( )
Fsk+2

: tk+2 ( )

N

All students except tk+1, tk+2 and tk+3 have highest priority in their preferred
school. By Lemma 18, all students except tk+1, tk+2 and tk+3 must declare their
preferred school first in all undominated strategy. Student tk+1 and tk+2 find k −
1 schools better than the school they are assigned to in the most efficient stable
assignment µe (starred). The only stable assignment different from µe is obtained
from µe by letting tk+1 and tk+2 exchange sk+1 and sk+2. Mechanism BOSk is
unstable in US as there exists Qk+1 and Qk+2 undominated in BOSk such that
sk+1 /∈ Qk+2 and sk+1 /∈ Qk+1 (see case 2 of Lemma 18). All US profiles for which
neither tk+1 nor tk+2 declare sk+1 lead to unstable outcomes: one of these two
students is unassigned and the acceptable school sk+1 has an empty seat. On the
other hand, mechanism BOSk+1 is stable since tk+1 and tk+2 must declare both
sk+1 and sk+2 in all their undominated strategies (they find exactly k + 1 schools
acceptable). �

Proof of Proposition 14
(BOSk more stable than DAk in NE)

We proved in the text that DAk is at least as stable as BOSk. Next, we show
that DAk is more stable than BOSk. Haeringer and Klijn (2008) provide a profile
for which DA2 admits a NE leading to an unstable outcome. The generic profile
showing DA2 admits a NE leading to an unstable outcome is given in Claim 8.

Claim 8. For any k, there exists a profile (given in Example 14) such that a NE
outcome of DAk is unstable.

Proof. The generic example is the following:

Example 14.

P1 : s2 s1 ( )

P2 : s3 s2 ( )

P3 : s2 s3 ( )
...

Fs1 : t1 ( )
Fs2 : t2 t1 t3 ( )
Fs3 : t3 t2 ( )

...

N

Any profile in DAk such that
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• Q1 : s1 ( ), Q2 : s3 s2 ( ) and Q3 : s2 s3 ( ),

• Q−1,2,3 is a NE in DAk for the sub-profile M ′ with

M ′ := (F\{Fs1, Fs2, Fs3}, q\{qs1, qs2, qs3}, P\{P1, P2, P3})

is a NE and leads to an outcome DAk(Q) (boxed) for which the pair (t1, s2) is block-
ing. Such a NE in the sub-profile always exists and the profileQ := (Q1, Q2, Q3, Q−1,2,3)
is a NE in the profile (F, q, P ). Indeed, t2 and t3 are assigned to their favorite school,
t1 is assigned to her second favorite school and there exists a rejection chain pre-
venting t1 to be assigned to s2, if she declared s2. Furthermore, no ti ∈ T\{t1, t2, t3}
can obtain a school in {s1, s2, s3} given Q1, Q2 and Q3 and F .

�

Proof of Proposition 15
(DAk more stable than BOSk in US)

Lemma 20. A strategy Qi is safe for ti in BOSk, if and only if

(i) Qi(1) is safe if favorite, or

(ii) there exists a set of over-supplied schools O ⊂ Qi (i.e.
∑

s∈O qj ≥ n) with
|O| ≤ k.

Proof. Sufficiency is obvious, so we focus on necessity. We prove the contrapositive.
Assume neither (i) nor (ii) are true. Consider any sub-profile Q∗

−i constructed as
follows

• Take any set of qQi(1) students tj 6= ti among the students with higher priority
at Qi(1) than ti, and let

Q∗
j (1) := Qi(1).

• For any ℓ ∈ {2, . . . , |Qi|} take qQi(ℓ) students tj whose declaration has not been
constrained yet and let

Q∗
j (1) := Qi(ℓ).

Because (i) is false, there are at least qQi(1) students in T with higher priority at
school Qi(1) than ti.

Because (ii) is false, any oversupplied set of schools contains more than k schools.
Therefore {Qi(1), . . . , Qi(|Qi|)} is not an oversupplied set of schools.

There are hence enough students to perform the constructions described above.
ThereforeQ∗

−i is well-defined. Clearly, by construction and (i) we have BOSki (Qi, Q
∗
−i) 6=

Qi(1). By construction again, for every s 6= Qi(1) ∈ Qi, there are at least qs students
who apply to s in the first round of BOSk. Therefore BOSki (Qi, Q

∗
−i) 6= s and we

have BOSki (Qi, Q
∗
−i) = ti, showing Qi is not a safe strategy.

�
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Lemma 21. If Qi and Q′
i are different unsafe strategy in BOSk and Q′

i contains
min{k, |Pi|} schools, all schools in Q′

i being acceptable, then Qi does not dominate
Q′
i.

Proof. By contradiction. Let r be the lowest rank for which Qi(r) 6= Q′
i(r).

If r > |Q′
i|, implying that strategy Q′

i is the truncation of Qi after rank |Q′
i|,

then we have |Q′
i| = |Pi| < k. As a consequence, Qi(r) is unacceptable because all

acceptable schools are declared in Qi before rank r. By Lemma 16, there exists Q∗
−i

such that BOSki (Qi, Q
∗
−i) = Qi(r), that is ti is assigned an unacceptable school. As

all schools declared in Q′
i are acceptable, ti strictly prefers her assignement when

declaring Q′
i and other students declare Q∗

−i. This shows that strategy Qi does not
dominate Q′

i.
There remains to consider cases for which r ≤ |Q′

i|. To obtain a contradiction,
we construct Q∗

−i such that

BOSki (Q
′
i, Q

∗
−i) Pi BOS

k
i (Qi, Q

∗
−i) = ti,

that is ti is assigned to an acceptable school when playing Q′
i and unassigned for

Qi. We consider two cases for the construction.
First, if Q′

i(r) ∈ Qi:

• Take the qQi(1) students j 6= i with highest priority at school Qi(1) an let
Q∗
j : Qi(1),

• For all s ∈ Qi with s 6= Qi(1) and s 6= Q′
i(r), take qs students u whose

declaration is not yet constrained and let Q∗
u : s,

• Take qQ′

i(r)
− 1 students v whose declaration is not yet constrained and let

Q∗
v : Q

′
i(r),

• Take a student g not yet constrained. If ti FQ′

i(r)
tg then Q∗

g is the truncation
of Q′

i after school Q′
i(r), else it is the truncation of Qi after school Qi(r) with

in addition Qg(r + 1)∗ := Q′
i(r).

• Students whose preference is not specified do not declare school Q′
i(r).

It is possible to construct this Q∗
−i. First, Qi is unsafe and has hence no SIF in

Qi(1). As a result, there are enough students j. Second, there are enough students
to construct Q∗

−i because the number of students whose preference is constrained
(including student ti) is equal to the sum of seats available in schools declared in
the unsafe Qi. As there is no over-supplied set of schools, Q∗

i can be constructed.
By construction, BOSki (Qi, Q

∗
−i) = ti as all seats in all schools declared in Qi

are allocated at step 1 of the algorithm to other students than ti, except one in
school Q′

i(r) if r 6= 1. This last seat is allocated to ti at step r for strategy Q′
i and

is allocated to student g at step r or r + 1 for strategy Qi.
The second case is Q′

i(r) /∈ Qi. The construction of Q∗
−i is almost identical. The

only difference is that no student v is constrained to declare Q∗
v : Q

′
i(r) and student

g’s preference is not constrained. �
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Proposition 17 (US outcomes of DAk nested in US outcomes of BOSk). Take any
Q, a US of DAk. Assume that given k, no set of oversupplied schools can be declared
in DAk or BOSk, that is

there exists no O ⊂ S with |O| ≤ k such that
∑

s∈O

qs ≥ |T |. (3.46)

Then, there exists Q′′ a US of BOSk such that DAk(Q) = BOSk(Q′′).

Proof: First notice that by Lemma 13, Lemma 14 and Lemma 15, it is enough to
prove that BOSk(Q′′) = DAk(Q′), where for all ti ∈ T , Q′

i ranks exactly min{k, |Pi|}
acceptable schools without re-ranking, and no other schools are ranked (in particular
no unacceptable schools are ranked).

The proof consists in showing that any profile Q′′ in which

(i) For all ti who is unassigned in DAk(Q′),

Q′′
i := Q′

i.

(ii) For all ti who is assigned in DAk(Q′),

Q′′
i (1) := DAki (Q

′),
and Q′′

i ranks min{k, |Pi|} acceptable schools, including all the (acceptable)
schools in Q′

i.
21

is an undominated strategy of BOSk. Once this is proven, it is easy to see that
BOSk(Q′′) = DAk(Q′), which yields the desired result desired result.

(i) yields an US for all ti unassigned in DAk(Q′). We first show that Q′′
i is unsafe.

Consider the two cases in Lemma 20. By assumption, case (ii) is ruled out.
Therefore, Q′′

i is safe if and only if Q′′
i (1) is SIF. But because Q′′

i (1) = Q′
i(1), if

Q′′
i (1) was SIF, we would have DAk(Q) = Qi(1), contradicting the assumption

that ti is unassigned in DAk(Q). Therefore, Q′′
i is unsafe.

Now, in order to derive a contradiction, assume that Q′′′
i dominates Q′′

i in
BOSk. By construction, Q′′

i = Q′
i ranks min{k, |Pi|} acceptable schools.

Hence, by Lemma 21, Q′′
i cannot be dominated by an unsafe strategy like

Q′′′
i .

We obtain a contradiction by showing that Q′′′
i cannot be safe either. Again

by Lemma 20 and the assumption on oversupplied schools, if Q′′′
i is safe, Q′′′

i (1)
is SIF. This in turn means Q′′′

i (1) /∈ Q′′
i . Indeed, because Q′′′

i (1) is SIF and
Q′′
i = Q′

i , ti could not be unassigned in DAk(Q′). Because Q′′
i is unsafe (see

above), Lemma 16 applies and for all ℓ ∈ {1, . . . , |Q′′
i |}, there exists Qℓ

−i such
that

BOSki (Q
′′
i , Q

ℓ
−i) = Q′′

i (ℓ).
But because Q′′′

i (1) is a SIF and Q′′′
i dominates Q′′

i in BOSk, the last displayed
equality implies

Q′′′
i (1) Ri Q

′′
i (ℓ), for all ℓ ∈ {1, . . . , |Q′′

i }.

21This is feasible since DAki (Q
′) is acceptable by construction of Q′

i.



174 CHAPTER 3. A CRITERION FOR MECHANISM COMPARISONS

Finally, because Q′′′
i (1) is not declared in Q′′

i , the last displayed relation implies

Q′′′
i (1) Pi Q

′′
i (ℓ), for all ℓ ∈ {1, . . . , |Q′′

i },
and because Q′′

i = Q′
i, this means Q′′′

i would also dominate Q′
i in DAk, contra-

dicting the fact that Q′
i is an US of DAk. Hence, Q′′′

i is unsafe, a contradiction
to Lemma 21.

(ii) yields an US for all ti assigned in DAk(Q′).

Case 1 : DAki (Q
′) is SIF.

By construction, DAki (Q
′) is acceptable. Therefore, Q′′

i can only be dom-
inated by a safe strategy. But by Lemma 20 and the assumption on over-
supplied schools, any safe strategy Q′′′

i that would dominate Q′′
i would be

such that Q′′′
i (1) is SIF. Thus, this would mean that there exists a SIF

Q′′′
i (1) such that

Q′′′
i (1) Pi Q

′′
i (1).

But because Q′′
i (1) = DAki (Q

′) and Q′ is without re-ranking by construc-
tion, this implies Q′′′

i (1) /∈ Q′
i as otherwise, we would have DAki (Q

′) =
Q′′′
i (1) 6= Q′′

i (1), a contradiction. This in turn implies that Q′
i is dom-

inated in DAk by a strategy Q∗
i constructed from Q′

i by only replacing
Q′′
i (1) by Q′′′

i (1), contradicting the assumption that Q′
i is an US of DAk.

Case 2 : DAki (Q
′) is not SIF.

Again, by Lemma 20 and the assumption on oversupplied schools, Q′′
i is

unsafe. But because Q′′
i ranks min{k, |Pi|} acceptable schools, Lemma

21 applies and any Q′′′
i dominating Q′′

i must be a safe strategy. Now, by
the same argument as in (i), this implies Q′′′

i (1) is a SIF that ti strictly
prefers to all the schools in Q′

i, contradicting the assumption that Q′
i is

an US of DAk.

We showed that US outcomes in DAk are also US outcomes in BOSk. As a
result, if all US outcomes in BOSk are stable, then all US outcomes in DAk are
stable as well. This implies that DAk is at least as stable as BOSk. Next, we show
that DAk is more stable than BOSk. Examples 8 and 9 in the text provide each a
profile for the comparison of DA2 and BOS2. The generic profile required is given
in Claim 9.

Claim 9. For any k, there exists a profile (given in Example 15) such that all US
outcomes are stable in DAk whereas some US outcomes are unstable in BOSk.

Proof. The generic example is the following:

Example 15.

P1 : s∗1 . . . sk
P2 : s1 . . . sk
...

Pk : s1 . . . s∗k
Pk+1 : sk

Fs1 : t1 . . . tk tk+1

Fs2 : t1 . . . tk tk+1
...

Fsk : t1 . . . tk tk+1
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N

All students except tk+1 have the same preferences. All schools have the same
priority rankings. The unique stable outcome is such that for all i ∈ {1, . . . , k},
student ti is assigned to si and tk+1 is unassigned.

There are many reasons why BOSk is unstable in US. One of them is that there
exists Qk undominated in BOSk such that Qk(1) 6= sk. If this US is declared,
because Qk+1 : sk is the only undominated strategy of tk+1, tk ends up unassigned,
although she has higher priority at sk than tk+1.

On the other hand, DAk is stable in US since any ti with i ∈ {1, . . . , k} must de-
clare, in any undominated strategy, her i preferred schools first without re-rankings.
This is because ti has a safe set covering her i preferred schools.

�

�

3.9.5 Other proofs and examples

Results about dominant strategies

Proposition 18 (Characterization of dominant strategies in DAk). Qi is a domi-
nant strategy in DAk if and only if either

(i) Qi = Pi, or

(ii) the q ≤ k preferred schools in Pi form a safe set that is declared without re-
ranking in Qi.

Proof. Sufficiency.

(i) This follows directly from the strategy-proofness of DAm. Because DAm

is strategy-proof, Qi := Pi is a dominant strategy in DAm, that is

DAmi (Pi, Q−i) Pi DA
m
i (Q

′
i, Q−i), for all Q′

i and all Q−i.
In particular,

DAmi (Pi, Q
k
−i) Pi DA

m
i (Q

k
i
′, Qk

−i), for all Qk
i
′ with |Qk

i
′| ≤ k

and all Qk
−i with |Qk

j | ≤ k for all tj 6= ti.
But because DAm is equivalent to DAk when students declare no more
than k schools, the last displayed relation is equivalent to

DAki (Pi, Q
k
−i) Pi DA

k
i (Q

k
i
′, Qk

−i), for all Qk
i
′ with |Qk

i
′| ≤ k

and all Qk
−i with |Qk

j | ≤ k for all tj 6= ti,
hence Pi is a dominant strategy in DAk.

(ii) In order to derive a contradiction, assume there exists some Q∗
i and Q∗

−i

such that

DAki (Q
∗
i , Q

∗
−i) Pi DA

k
i (Qi, Q

∗
−i). (3.47)
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Following the same argument as in point (i), Qi would be a dominant
strategy if the true preferences were Qi, that is

DAki (Qi, Q−i) Qi DA
k
i (Q

′
i, Q−i), for all Q′

i and all Q−i.
Because Qi is without re-ranking and ranks all schools up to Pi(q), the
last displayed relation implies

DAki (Qi, Q−i) Ri DA
k
i (Q

′
i, Q−i), for all Q′

i and all Q−i

such that DAk(Q′
i, Q−i) Ri Pi(q).

(3.48)
Now by definition of a safe set,

DAki (Qi, Q−i) Qi Pi(q),
and again, because Qi is without re-ranking

DAki (Qi, Q−i) Pi Pi(q).
Therefore,

DAki (Qi, Q−i) Ri DA
k
i (Q

′
i, Q−i), for all Q′

i and all Q−i

such that Pi(q) Pi DA
k
i (Q

′
i, Q−i).

(3.49)

Together (3.48) and (3.49) imply

DAki (Qi, Q−i) Ri DA
k
i (Q

′
i, Q−i), for all Q′

i and all Q−i

In particular,

DAki (Qi, Q
∗
−i) Ri DA

k
i (Q

∗
i , Q

∗
−i).

contradicting (3.47).

Necessity. By contradiction. Assume there exists a dominant strategy Qi that
violates both (i) and (ii). We consider two alternative cases.

Case 1 : Qi is an unsafe strategy.

We first show that in this case, there exists an acceptable school s∗ which
is not declared in Qi. The proof of the existence of s∗ is based on proofs
showing that a dominant unsafe strategy contains no unacceptable schools
and no re-rankings.

Because Qi is a dominant strategy of DAk, it is also a US of DAk. Thus,
by Lemma 13 and Lemma 14, we can assume without loss of generality
that Qi is without re-ranking and only contains acceptable school. Thus,
the only way to violate (i) and have Qi 6= Pi is if there exists an acceptable
school s∗ not declared in Qi.

AsQi is unsafe, there exists Q−i such thatDAki (Qi, Q−i) = ti. As s∗ /∈ Qi,
we have ti Qi s

∗. Therefore Lemma 12 applies: there exists a profile
Q∗

−i such that DAki (Qi, Q
∗
−i) = ti and Q∗

i such that DAki (Q
∗
i , Q

∗
−i) = s∗.

Together we have

DAki (Q
∗
i , Q

∗
−i) Pi DA

k
i (Qi, Q

∗
−i),

contradicting the assumption that Qi is a dominant strategy.
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Case 2 : Qi is a safe strategy.

First, notice that in this case, there exists a school s∗ with rank r∗ ≤ k
in Pi such that:

1. s∗ is not declared in Qi,

2. the least preferred school declared in PAS(Qi), denoted wPAS(Qi) is
such that:

s∗ Pi w
PAS(Qi).

Indeed, by Lemma 13 and Lemma 14, we can again assume without loss
of generality that Qi is without re-ranking and only contains acceptable
school. Then, the only way for (ii) to be violated is if there exists a school
s∗ with the properties defined above.

As wPAS(Qi) ∈ PAS(Qi), there exists Q−i such that DAki (Qi, Q−i) =
wPAS(Qi). As s∗ /∈ Qi, we have also that wPAS(Qi) Qi s

∗. Therefore
Lemma 12 applies: there exist Q∗

−i such that DAki (Qi, Q
∗
−i) = wPAS(Qi)

and Q∗
i such that DAki (Q

∗
i , Q

∗
−i) = s∗. Together we have

DAki (Q
∗
i , Q

∗
−i) Pi DA

k
i (Qi, Q

∗
−i),

contradicting the assumption that Qi is a dominant strategy.

�

Proposition 19 (Dominant strategy implies not part of blocking pair in DAk). For
all Q−i, if Qi is dominant strategy in DAk, then ti does not participate to a blocking
pair in DAk(Qi, Q−i).

Proof. By contradiction. Assume that for some profile Q−i, student ti is blocking
at a school s in allocation DAk(Qi, Q−i). By the definition of a blocking pair, this
implies that s Pi DA

k
i (Qi, Q−i) and there exists tg with DAkg(Q) = s and ti Fs tg.

By Proposition 18, two alternative cases must be considered:

• Case 1: Qi = Pi.

As s is declared in Qi before school DAki (Qi, Q−i), since s Pi DA
k
i (Qi, Q−i),

student ti was rejected from s in the proceeding of mechanism DAk. At the
step at which ti is rejected from s, there are qs students tj 6= ti assigned to s
with higher priority at s than ti. If any student tj is rejected from s in a later
step of DAk, the seat in s previously occupied by tj is assigned to another
student tk with higher priority at s than tj , and hence with higher priority at
s than ti. There are hence no student tg with ti Fs tg such that DAkg(Q) = s,
contradicting the assumption that ti was blocking at s.

• Case 2: the q ≤ k preferred schools in Pi form a safe set that is declared
without re-ranking in Qi.

By the definition of a safe set, this case implies that for all Q−i we have

DAki (Qi, Q−i) Pi Pi(q + 1).
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As ti is blocking at school s, we have s Pi DA
k
i (Qi, Q−i). As we showed

DAki (Qi, Q−i) Pi Pi(q + 1), this case is such that s is declared in Qi before
DAki (Qi, Q−i). The argument is then the same as in Case 1.

�

Proposition 20 (Dominant strategy implies not part of blocking pair in BOSk).
Assume there is no set of over-supplied schools O with |O| ≤ k. Strategy Qi is a
dominant strategy in BOSk with k ≥ 3 if and only if Qi(1) = Pi(1) and either

1. Pi(1) is SIF, or

2. |Pi| = |Qi| = 1.

Proof. The sufficiency of these conditions is a direct corollary of Proposition 18
(this proposition is applicable as we assume there is no set of over-supplied schools).
When |Pi| = 1 and Pi(1) is not SIF, the necessity of condition 2 is a corallary of the
fact that a single strategy (Qi := Pi) qualifies to be US in Proposition 18. When
|Pi| ≥ 2, we show the necessity of condition 1 for strategy Q′

i to be a dominant
strategy. Two cases must be considered

• Case 1: Pi(1) is SIF but Q′
i(1) 6= Pi(1).

By proposition 18, such Q′
i is not an US in BOSk and hence not a dominant

strategy.

• Case 2: Pi(1) is not SIF.

We prove for this case the non-existence of dominant strategy by showing the
existence of Q′

i and Q′′
i such that

– Q′
i and Q′′

i are US in BOSk and

– Q′
i and Q′′

i are not equivalent strategies.

Let Q′
i be such that Q′

i(1) := Pi(1) and Q′
i contains min{k, |Pi|} acceptable

schools. Strategy Q′
i is US by Proposition 18. Let Q′′

i be such that Q′′
i (1) :=

Pi(2) and Q′′
i contains min{k, |Pi|} acceptable schools. Strategy Q′′

i is US by
Proposition 18 because |Pi| ≥ 2 and Pi(1) is not SIF. Observe this is true
whether Pi(2) is SIF or not.

There exists Q∗
−i – for example Q∗

j contains no school for all tj 6= ti – for which
the two US Q′

i and Q′′
i yield different assignements and they are hence not

equivalent.

�

Proposition 21. Assume there is no set of over-supplied schools O with |O| ≤ k.
For all k ≥ 3 and all Q−i, if Qi is a dominant strategy in BOSk then ti does not
participate to a blocking pair in BOSk(Q).
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Proof. By contradiction. Assume ti participates to a blocking pair with school s.
This implies by definition that s Pi BOS

k
i (Q). By Lemma 20, if Qi is a dominant

strategy then two cases can arise:

• Case 1: Pi(1) is SIF and Qi(1) = Pi(1).
This implies BOSki (Q) = Pi(1). There exists hence no s with s Pi BOS

k
i (Q),

contradicting our assumption.

• Case 2: |Pi| = 1 and Qi = Pi.
If BOSki (Q) = Pi(1), then ti can not participate to a blocking pair for the
reason explained in Case 1. If on the other hand BOSki (Q) = ti, then student
ti was rejected from Pi(1) in the first step of BOSk(Q), implying that qPi(1)

students with higher priority at Pi(1) than ti are assigned to Pi(1). Therefore
ti can not participate to a blocking pair as she only finds Pi(1) acceptable.

�

When Alternative criterion 4 does not apply

We start with a short reminder of notation that will be useful for this example. For
assignment profile M , mechanism φ and solution concept C, let Cφ(M) be the set of
C-profiles under φ. We denote the cardinality of such set using a lower-case cφ(M).
Let Cφ

Stab(M) be the subset of C-profiles under φ whose associated outcome satisfies

stability, and Cφ
¬Stab(M) be the subset of C-profiles which do not. Similarly, the

lower case cφStab(M) and cφ¬Stab(M) denote the cardinality of the corresponding sets.
Our criterion concludes that DA2 is more stable than BOS2 in US (Proposition

15). We show using Example 16 that Alternative criterion 4 is silent when comparing
these two mechanisms.

We show the existence of two type profilesM1 andM2 exhibiting no over-supplied
set of schools such that:

usBOS
2

Stab (M1)

usBOS
2

Stab (M1) + usBOS
2

¬Stab(M1)
>

usDA
2

Stab (M1)

usDA
2

Stab(M1) + usDA
2

¬Stab(M1)
, (3.50)

usBOS
2

Stab (M2)

usBOS
2

Stab (M2) + usBOS
2

¬Stab(M2)
<

usDA
2

Stab (M2)

usDA
2

Stab(M2) + usDA
2

¬Stab(M2)
. (3.51)

The existence of these two type profiles pointing towards different comparisons ren-
ders Alternative criterion 4 silent.

The existence of M2 is shown in Example 8 for which all US profiles in DA2 lead
to stable outcomes whereas some US profiles in BOS2 lead to unstable outcomes.
The existence of M1 is shown by the profile given in Example 16.

Example 16.
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P1 : s2 s∗1
P2 : s1 s∗2
P3 : s∗3 ( )
P4 : s∗4 ( )
P5 : s∗5 ( )
P6 : s1 s3 s4 s5

Fs1 : t1 t6 t2 ( )
Fs2 : t2 t1 ( )
Fs3 : t3 ( )
Fs4 : t4 ( )
Fs5 : t5 ( )

N

Observe that for k = 2, there is no set of over-supplied school in M1. The most
efficient stable assignment is starred. Observe in M1 that if t2 is assigned to school
s1 then student t6 is blocking at s1. The proof of inequality (3.50) is in two steps.

Step 1 :

usDA
2

Stab (M1)

usDA
2

Stab (M1) + usDA
2

¬Stab(M1)
=

1

2
.

The unique undominated strategy in DA2 for students t1 and t2 is to reveal
truthfully Q1 := P1 and Q2 := P2 as both t1 and t2 have a safe set covering
their two preferred schools. The dominant strategy for t3, t4 and t5 is to de-
clare their favorite school first as each of these students has highest priority
at her favorite school. For student t6, any strategy Q6 revealing two of her
four acceptable schools without re-rankings is US. There are 6 such strategies:

Q1
6 : s1 s3

Q2
6 : s1 s4

Q3
6 : s1 s5

Q4
6 : s3 s4

Q5
6 : s3 s5

Q6
6 : s4 s5

and hence 6 US profiles (Q1, Q2, Q3, Q4, Q5, Q
x
6) in DA2. One can easily see

that strategies Q4
6, Q

5
6 and Q6

6 lead to unstable outcomes as t6 does not declare
s1 and consequently t2 is assigned to s1, which makes t6 blocking at s1. The
three other undominated strategies of t6 lead to stable outcomes, the desired
result.

Step 2 :

usBOS
2

Stab (M1)

usBOS
2

Stab (M1) + usBOS
2

¬Stab(M1)
>

1

2
.

For student t1, any undominated strategy Q1 in BOS2 is such that either
Q1(1) = s2, or Q1(1) 6= s2. When Q1(1) = s2, by Lemma 18, the only US is
the truthful revelation Q1 : s2 s1. On the other hand, when Q1(1) 6= s2 in
a US, Q1(1) = s1 and the two possible US are Q1 : s1 and Q1 : s1 s2. As a
result, student t1 declares school s1 to be her favorite in at least half of the
US profiles in BOS2.22

22This holds even if Q1 : s1 and Q1 : s1 s2 are viewed as equivalent strategies.
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We show that

1. any US profile for which t1 declare school s1 as her favorite school lead
to a stable outcome.

2. there exists US profile Q∗ for which Q∗
1 : s2 s1 and Q∗ leads to a stable

outcome.

As student t1 declare school s1 to be her favorite in at least half of the US
profiles in BOS2, (1) and (2) imply the desired result. We prove these claims
in turn.

1. By Lemma 18, students t3, t4 and t5 declare their favorite school first
in any undominated strategy of BOS2 and are assigned to this school
because their favorite school is SIF.

By Lemma 18, any undominated strategies Q2 of t2 is such that either

• Q′
2 = P2, or

• Q′
2(1) = s2.

In both cases, if student t1 declares s1 to be her favorite, student t2 is
assigned to s2. Indeed, except for t2, only student t1 declares s2.

Finally, the declaration of student t6 does not influence the outcome as all
acceptable schools of t6 are assigned in the first step of BOS2 to a student
declaring this school first (this school is SIF for the student declaring it
first).

This shows that when student t1 declare s1 to be her favorite, all US
profile lead to the most efficient stable assignment.

2. The following profile Q∗ is such that Q∗
1 : s2 s1. Furthermore, Q∗ is US

in BOSk by Lemma 18 and leads to the most efficient stable assignment.

Q∗
1 : s2 s1

Q∗
2 : s2

Q∗
3 : s3

Q∗
4 : s4

Q∗
5 : s5

Q∗
6 : s3 s4
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Chapter 4

Disambiguation of Ellsberg equilibria

in 2×2 normal form games

(Joint with Frank Riedel)

4.1 Introduction

The presence of ambiguity in strategic interactions has recently received increas-
ing attention. There have been attempts to allow for ambiguous acts or beliefs
in games. For complete information normal form games, two strands of literature
can be distinguished. The first strand, which has been introduced by Lo (1996),
Marinacci (2000) and Eichberger and Kelsey (2000), considers subjective ambiguity.
Ambiguity is introduced in the beliefs players hold about the strategies adopted by
their opponents. This strand extends the belief interpretation of Nash equilibria
by allowing for equilibria in ambiguous beliefs. A disadvantage of these equilib-
ria is that they leave unanswered the question of which strategy profile is played
in equilibrium. The second strand, introduced more recently by Riedel and Sass
(2013), considers objective ambiguity. The set of available strategies is expanded to
ambiguous randomization strategies – called Ellsberg strategies – which are convex
sets in the space of mixed strategies. Players may therefore render their strategy
objectively ambiguous. Riedel and Sass (2013) call such an extended game an Ells-
berg game. The solution concept proposed is the Ellsberg equilibrium: players play
a best response to the Ellsberg strategy of their opponent. As a consequence, the
Ellsberg equilibrium is a more general solution concept than the Nash equilibrium.

In Ellsberg games, existence of Ellsberg equilibria follows from the existence of
Nash equilibria. Riedel and Sass (2013) have shown that in addition to the Nash
equilibria, new Ellsberg equilibria may arise in which players use proper Ellsberg
strategies. Interestingly, in games with at least three players, some of these new
equilibria yield outcomes that cannot be reached under Nash equilibria. In other
words, their solution concept expands the support of the outcomes. Riedel and Sass
(2013) show this last point by means of an example taken from Greenberg (2000).
In the example, two small countries decide for themselves whether to engage in a

183
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war against each other, or to stay at peace. A superpower tries to negotiate for
peace by threatening to punish one of them in case war breaks out. Being unable
to identify which country is responsible when war breaks out, the superpower’s best
reply is to punish one of the two countries picked at random with probability one
half. As a result, the only Nash equilibrium has the small countries engage in war.
If the superpower had the possibility to “remain silent” and could be sufficiently
ambiguous about which country it would punish, a new Ellsberg equilibrium would
appear, with peace as the unique outcome. Because the two small countries are
pessimistic in the face of ambiguity, each country assigns a high probability to being
punished in case of war, and hence do not engage in a war. Greenberg argues that
such outcome would be more realistic.

We provide an alternative interpretation for Ellsberg equilibria. Ellsberg equi-
libria generalize mixed strategy equilibria. Mixed strategies play a central role in
game theory. Without mixing, it would for instance be impossible to assign values
to zero-sum games or to find Nash equilibria in more general strategic interactions.

The classic interpretation of a mixed strategy was introduced by John von Neu-
mann and relies on the use of an objective randomization device. Riedel and Sass
(2013) put forward a direct generalization of von Neumann’s idea to ambiguous
strategies by allowing players to use Ellsberg urns with given parameters. That is,
players base their actions on the outcome of an Ellsberg urn experiment where the
probabilities are only known up to some bounds. While such a construction makes
perfect sense in theory, one might wonder whether it would be implementable in
actual games.

Even in its classic form (i.e. not allowing for ambiguity and the use of Ellsberg
urns), the objective randomization device interpretation has been questioned and
criticized. While deliberate use of a random device makes sense in a strictly com-
petitive game (Neumann, 1928), it might be more questionable in more cooperative
situations like a coordination game (Schelling, 1980).

There exists however an interesting alternative interpretation of mixed strategies.
Harsanyi (1973) has shown that mixed strategy equilibria may be viewed as limits
of pure strategy equilibria in a slightly disturbed game where players have private
information about their payoffs. In this paper, we show how one can purify, or at
least disambiguate, Ellsberg equilibria in the spirit of Harsanyi’s approach. We show
that Ellsberg equilibria can be viewed as limits of equilibria in slightly disturbed
games where the disturbances are ambiguous. The Disambiguation Theorem we
prove is an extension of Harsanyi’s Purification Theorem.

We confine our analysis to two-players games with two actions for each player.
We identify one class of games where one can purify the Ellsberg equilibria. As
in Harsanyi (1973), the players use pure strategies of a threshold type in the dis-
turbed version of the game. From the perspective of an outside observer, these
actions induce, in the limit, the same set of probability distributions as the Ellsberg
equilibrium.

For the games outside this class, we disambiguate the Ellsberg equilibria in the
following way. In the disturbed games, players best reply using their two pure
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strategies and their maxmin strategy. The maxmin strategy plays a key role in
Ellsberg games as it allows players to hedge against Knightian uncertainty. The
appearance of such maxmin strategies is therefore natural in our context. Again, we
can show that from the perspective of an outside observer, the induced distributions
of actions coincide in the limit with the distributions of the Ellsberg equilibrium.

We draw the reader’s attention to the limitations of the Disambiguation Theorem
we prove. It is less general than Harsanyi’s theorem in two ways. First, its scope is
limited to 2×2 normal form games, whereas Harsanyi’s theorem is valid for all finite
n-player non-cooperative games. Harsanyi’s technique cannot be adapted to the case
of multiple priors we study because it relies on smoothness of the payoff functions,
which is lost when one uses a multiple prior representation for preferences. Second,
in our setting, the payoffs associated to a given strategy are subject to identical
disturbances, whereas disturbances are independent in Harsanyi’s setting.

The paper is organized in three parts. In section 4.2, we introduce the definitions
and notation. In section 4.3, we present and prove our Disambiguation Theorem.
Finally, in section 4.4, we provide an example of disambiguation for a particular
2×2 coordination game.

4.2 Definitions and notation

We first present the basic 2×2 normal form Ellsberg game. We first describe the
ambiguous randomization strategies available to players, how these players behave
in the face of ambiguity and provide the definition of Ellsberg equilibria. Then, we
delimit the class of games considered. Finally, we describe the disturbed versions
of the basic game, the strategies available to players in these disturbed versions,
and we show that these strategies are perceived as Ellsberg strategies by external
observers.

4.2.1 The basic game Γ

The games we consider are 2×2 normal form games, illustrated in Figure 4.1. Basic
notation and definitions for these games are as follows:

• Let p, q ∈ [0, 1] denote the mixed strategy of player 1 and 2 respectively.

• Let the pair (p, q) ∈ [0, 1]× [0, 1] denote a mixed strategy profile.

• Player i’s expected utility for the strategy profile (p, q) is Ui(p, q) with

Ui(p, q) = pqπ1
i + p(1− q)π2

i + (1− p)qπ3
i + (1− p)(1− q)π4

i .

• For player 1, strategy p is a best reply to q if U1(p, q) ≥ U1(p
′, q) for all

p′ ∈ [0, 1].

• Strategy profile (p, q) is a Nash equilibrium if p and q are mutual best replies.
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Player 1

p

Player 2
q 1-q

1-p

U

D

RL

π1
1; π

1
2

π4
1; π

4
2

π2
1; π

2
2

π3
1; π

3
2

Figure 4.1: Normal form of the basic 2×2 game Γ.

In Ellsberg games, in addition to pure and mixed strategies, players can use
ambiguous randomization strategies called Ellsberg strategies. For 2×2 games, an
Ellsberg strategy is a closed interval [a, b] in the probability space [0, 1]. If player 1
plays an Ellsberg strategy, she plays the pure strategy U with a probability inside
[a, b], but the exact point in that interval is objectively ambiguous to player 2 and
herself. It is as-if the player uses an Ellsberg urn – an ambiguous randomization
device – to decide on the action to take.

• Player 1’s set of Ellsberg strategies is E1 := {[p1, p2] | 0 ≤ p1 ≤ p2 ≤ 1}
with generic element e1 := [p1, p2]. Analogously, for player 2 we have E2 :=
{[q1, q2] | 0 ≤ q1 ≤ q2 ≤ 1} with generic element e2 := [q1, q2].

Observe that mixed strategies belong to the set of Ellsberg strategies. The
Ellsberg strategy [p1, p2] is a proper Ellsberg strategy if the interval is non-
degenerate: p1 < p2.

• Let the pair e := (e1, e2) =
(
[p1, p2], [q1, q2]

)
∈ E1 × E2 denote an Ellsberg

strategy profile.

The decision making of agents confronted with ambiguous outcomes depends on
their attitudes with respect to ambiguity. Some empirical evidence summarized in
Camerer and Weber (1992) suggests that agents are ambiguity averse, i.e. agents are
pessimistic in the face of multiple priors. In decision theory, Gilboa and Schmeidler
(1989) have shown that ambiguity averse agents evaluate ambiguous outcomes by
considering the worst point in their set of priors. Their decision rule is therefore of
the maxmin type. More recently, Gajdos et al. (2008) have axiomatized the minimal
expected utility evaluation of ambiguous outcomes for strategic settings.

We assume players are ambiguity averse. Given the result of Gilboa and Schmei-
dler (1989), players expected utility is therefore computed based on the worst point
in the interval.

• Player 1’s expected utility for the strategy profile (e1, e2) is:

U1(e1, e2) = min
p∈e1,q∈e2

U1(p, q)

By the linearity of U1(p, q), we have:

U1

(
p, [q1, q2]

)
= min

(
U1(p, q1), U1(p, q2)

)
(4.1)



4.2. DEFINITIONS AND NOTATION 187

• For player 1, strategy e1 is a best reply to e2 if U1(e1, e2) ≥ U1(e
′
1, e2) for all

e′1 ∈ E1.

• Strategy profile e = (e1, e2) is an Ellsberg equilibrium if e1 and e2 are mutual
best replies.

• The equilibrium e = (e1, e2) is a proper Ellsberg equilibrium if both equilib-
rium strategies are proper Ellsberg strategies. It is a quasi-proper Ellsberg
equilibrium if only one equilibrium strategy is a proper Ellsberg strategy and
the other strategy is a mixed strategy.

4.2.2 The class of games considered

We restrict our attention to 2×2 normal form games satisfying two restrictions.
First, we assume that no player has a weakly dominant strategy. As shown by
Harsanyi (1973), games with weakly dominant strategies admit Nash equilibria that
cannot be purified. Discarding weakly dominant strategies rules out games that are
Row Dominant for player 1 and games that are Column Dominant for player 2.

Definition 29 (Row Dominant).
Player i’s payoffs in Γ are row dominant if (π1

i − π3
i )(π

2
i − π4

i ) ≥ 0.

Definition 30 (Column Dominant).
Player i’s payoffs in Γ are column dominant if (π1

i − π2
i )(π

3
i − π4

i ) ≥ 0.

The introduction of the second restriction requires some additional definitions.
Riedel and Sass (2013) show that two types of mixed strategies play an impor-
tant role for (quasi-) proper Ellsberg equilibria. These strategies are central in our
disambiguation result.

Definition 31 (Indifference Strategy).
Strategy p∗ is an indifference strategy for player 1 if:

U2(q, p
∗) = U2(q

′, p∗) for all q, q′ ∈ [0, 1].

Strategy q∗ is an indifference strategy for player 2 if:

U1(p, q
∗) = U1(p

′, q∗) for all p, p′ ∈ [0, 1].

In words, playing your indifference strategy makes your opponent indifferent
between all her mixed strategies q. By definition, the pair (p∗, q∗) constitutes a
Nash equilibrium in mixed strategies. As shown in Lemma 22, all games satisfying
No weakly dominant strategy have a unique equilibrium in proper mixed strategies.
Therefore, indifference strategies p∗ and q∗ exist and are unique. Next, we define
maxmin strategies.

Definition 32 (Maxmin Strategy).
Strategy p̄ is a maxmin strategy for player 1 if:

p̄ = arg max
p∈[0,1]

min
q∈[0,1]

U1(p, q).
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Strategy q̄ is a maxmin strategy for player 2 if:

q̄ = arg max
q∈[0,1]

min
p∈[0,1]

U2(q, p).

In words, playing your maxmin strategy guarantees you the highest payoff if your
opponent aims at minimizing your payoff and anticipates your strategy correctly. As
shown by von Neumann and Morgenstern, maxmin strategies exist in 2×2 games –
they are unique for the games we consider – and the maxmin stategy coincides with
the indifference strategy in zero-sum games.

The maxmin strategy is a proper mixed strategy for the subset of games char-
acterized in statements 2 and 3 of Lemma 22. For these games, a player using her
maxmin strategy is “immunized” against her opponent’s strategy. This implies that
her maxmin strategy makes her indifferent between all her opponent’s strategies.
Such a strategy therefore yields a safe expected payoff.

Lemma 22.
Any game Γ with no weakly dominant strategies has the following properties.

1. Indifference strategies p∗ and q∗ are unique, maxmin strategies p̄ and q̄ are
unique and p∗, q∗ ∈ (0, 1).

2. If player 1’s payoffs are not Column Dominant in game Γ, then p̄ ∈ (0, 1) and
U1(p̄, q) = U1(p̄, q

′) for all q, q′ ∈ [0, 1].

3. If player 2’s payoffs are not Row Dominant in game Γ, then q̄ ∈ (0, 1) and
U2(q̄, p) = U2(q̄, p

′) for all p, p′ ∈ [0, 1].

Proof. See Appendix 4.6.1. �

Riedel and Sass (2013) show that for games in which indifference and maxmin
strategies coincide, a particular type of Ellsberg equilibria arises for which the in-
difference strategy belongs to the interior of the Ellsberg strategy. This type of
Ellsberg equilibria can not be disambiguated. This should not be seen as a problem
however because these equilibria are non-robust.1 Our second restriction rules out
these games.2

Definition 33 (Class of games Γ).
A 2×2 normal form game Γ belongs to the class Γ if no player has a weakly dominant
strategy and for each player, the indifference and maxmin strategies do not coincide.

As we show in Lemma 23, for all (quasi-) proper Ellsberg equilibria of games
in Γ and for each player, the indifference strategy lies at an extreme point of the
equilibrium Ellsberg strategy.

1Slight perturbations to the payoffs destroy these equilibria.
2In terms of payoffs, p∗ 6= p̄ is equivalent to π4
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Figure 4.2: Γ1 is a game of class I for which p∗ = q∗ = 2
3

and p̄ = q̄ = 0. Γ2 is a
game of class II for which p∗ = 1

2
, p̄ = 1

3
, q∗ = 1

3
and q̄ = 1

2
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Lemma 23.
For all Γ ∈ Γ, if

(
[p1, p2], [q1, q2]

)
is a (quasi-) proper Ellsberg equilibrium, then

p∗ ∈ {p1, p2} and q∗ ∈ {q1, q2}.

Proof. See Appendix 4.6.2. �

The interpretation of our Disambiguation Theorem is different depending on the
class to which the game belongs. We divide our family of games into two classes I
and II, which are illustrated in Figure 4.2.

Definition 34 (Row and column dominance).
Consider any Γ ∈ Γ. If player 1’s payoffs are Column Dominant and player 2’s
payoffs are Row Dominant, then Γ belongs to class I, otherwise Γ belongs to class
II.

4.2.3 The disturbed games Γ∗(ǫ)

For any basic game Γ ∈ Γ, we define a parametric family of disturbed games whose
generic member Γ∗(ǫ) is shown in Figure 4.3. Payoffs in Γ∗(ǫ) are affected by the
realization of ambiguous disturbances. The size of the disturbances is parameter-
ized by ǫ ≥ 0. When ǫ is zero, the disturbed game is equivalent to the basic game.
The ambiguous random variables r and t are private information of player 1 and 2
respectively. Their common support is [−1, 1]. We emphasize that the disturbances
in Harsanyi (1973) are payoff-specific, which is not the case in our framework. For
simplicity, we require the disturbance to be strategy-specific: the payoffs of out-
comes associated to the same pure strategy are subject to identical disturbances.
As disturbances are strategy-specific, they enter the evaluation of strategy profiles
as an additional term independent of the opponent’s strategy:

U1

(
p, [q1, q2], ǫr

)
= U1

(
p, [q1, q2]

)
+ pǫr, (4.2)

U2

(
q, [p1, p2], ǫt

)
= U2

(
q, [p1, p2]

)
+ qǫt. (4.3)

Observe that when maxmin strategies yield a safe payoff in the basic game, they
keep this property in the disturbed games:

U1

(
p̄, [q1, q2], ǫr

)
= U1

(
p̄, [q′1, q

′
2], ǫr

)
for all [q1, q2], [q

′
1, q

′
2] ∈ E2,

U2

(
q̄, [p1, p2], ǫt

)
= U2

(
q̄, [p′1, p

′
2], ǫt

)
for all [p1, p2], [p

′
1, p

′
2] ∈ E1.
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Figure 4.3: The normal form of the disturbed game Γ∗(ǫ) associated with the basic
game Γ. The realization of the disturbances r and t are the private information of
player 1 and 2, respectively.

Unlike in Harsanyi (1973), the density fr of the random variable r over her
support [−1, 1] is unknown. Players only have partial information about the density
fr. They only know the domain Pr of fr. The domain Pr summarizes all of the
information available to players about the density fr. We define Pr to be a ball in
the set of densities around a known basic density f br . The basic density f br belongs
to the set F of measurable densities with full support on [−1, 1].

Pr :=
{
f ∈ F

f br (x)(1− kr) ≤ f(x) ≤ f br (x)(1 + kr) for all x ∈ [−1, 1]
}
.

The parameter kr ∈ [0, 1] can be interpreted as the radius of the ball since kr defines
the maximal deviation from the basic density. It measures the level of ambiguity
associated with the domain Pr. When kr = 0, density fr is known – fr = f br –
and there is no ambiguity. The ambiguity is maximal for kr = 1. At this value,
not all elements f ∈ Pr have full support. This way of defining a domain from a
basic density is a form of ǫ-contamination, as defined in the literature on ambiguous
variables (see Huber, P. (1981), Eichberger and Kelsey (2000) or Maccheroni et al.
(2006)). Analogously, the random variable t has unknown density ft ∈ Pt and Pt is
characterized by the basic density f bt and the ambiguity parameter kt ∈ [0, 1].

Strategies in the disturbed game Γ∗(ǫ) are functions from the space of possible
realizations of the disturbances to the set of mixed strategies.

• Let pb : [−1, 1] → [0, 1] be a generic strategy for player 1 in the disturbed
game. For player 1, the set of strategies in the disturbed game is denoted by
S1 and contains only measurable functions pb. Analogously, a generic strategy
for player 2 in the disturbed game is qb ∈ S2.

How do players perceive the strategy of their opponent in the disturbed game?
Suppose player 2 anticipates correctly the strategy pb of player 1. Player 2 ignores
the realization of r but knows the domain Pr in which fr lies. For each density
f ∈ Pr of the random variable r, strategy pb implies that pure strategy U is played
with a probability p. The probability of playing U is minimal for the density in Pr
that puts maximal weight on the realization of r for which strategy pb prescribes low
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values of p. Let this minimal probability be denoted by pmin. Conversely, a maximal
probability pmax is implied by the density in Pr that puts maximal weight on the
realization of r for which strategy pb prescribes high values of p. As Lemma 24 shows,
all probabilities p ∈ [pmin, pmax] result from some density in Pr. Therefore, when
player 2 believes that player 1 plays pb, player 2 anticipates that the probability that
player 1 uses strategy U lies in some interval of probabilities [pmin, pmax]. In other
words, player 2 perceives player 1’s strategy as the Ellsberg strategy [pmin, pmax]. In
our terminology, this Ellsberg strategy is induced by the strategy pb. Observe that
if kr = 0, then pmin = pmax and the induced strategy is a mixed strategy.

Lemma 24.
Any strategy pb ∈ S1 induces an Ellsberg strategy

[
pmin, pmax

]
⊆ [0, 1] defined by:

pmin = min
f∈Pr

∫ 1

−1

pb(r)f(r)dr and pmax = max
f∈Pr

∫ 1

−1

pb(r)f(r)dr. (4.4)

Proof. See Appendix 4.6.3. �

Equivalently, any strategy qb ∈ S2 induces an Ellsberg strategy
[
qmin, qmax

]
. A

direct consequence of Lemma 24 and equations (4.2) and (4.3) is the following: for
player 2, the expected utility of playing q when player 1 uses the strategy pb inducing[
pmin, pmax

]
is given by:

U2(q, p
b, ǫt) = U2

(
q, [pmin, pmax]

)
+ qǫt. (4.5)

The equivalent equation for player 1 is:

U1(p, q
b, ǫr) = U1

(
p, [qmin, qmax]

)
+ pǫr. (4.6)

For brevity, we often refer to strategies pb and qb by the Ellsberg strategies they
induce, respectively

[
pmin, pmax

]
and

[
qmin, qmax

]
.

We now define best replies and equilibria in the disturbed games.

• Strategy pb is a best reply to strategy qb inducing
[
qmin, qmax

]
if we have

U1(p
b, [qmin, qmax

]
, ǫr) ≥ U1(p

b′ , [qmin, qmax
]
, ǫr) for all r ∈ [−1, 1] and all pb

′

∈
S1.

• The profile (pb, qb) is an equilibrium in the disturbed game Γ∗(ǫ) if pb and qb

are mutual best-replies. The corresponding induced Ellsberg equilibrium is
written e(ǫ) =

(
[pmin, pmax], [qmin, qmax]

)
.

Two categories of strategies in disturbed games are focal best replies, namely
pure and maxmin strategies. These strategies are monotone in the realization of the
ambiguous variable and are based on threshold values for r and t.

Definition 35 (Pure and maxmin strategies in a disturbed game).
The strategy pbpu is a pure strategy in S1

pu ⊂ S1 if there exists a single threshold
r∗ ∈ R such that:

pbpu(r) =

{
0 if r ≤ r∗,
1 if r > r∗.
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The strategy pbmm is a maxmin strategy in S1
mm ⊂ S1 if there exist two thresholds

r1, r2 ∈ R such that:

pbmm(r) =





0 if r < r1,
p̄ if r1 ≤ r ≤ r2,
1 if r > r2.

In a disturbed game, pure strategies are a special case of maxmin strategies. If
the maxmin strategy p̄ is a pure strategy of the basic game, then a maxmin strategy
in the disturbed game is pure. Pure and maxmin strategies in the disturbed game
for player 2 are defined accordingly. For brevity, we refer to maxmin strategies pbmm
or qbmm by their two thresholds (r1, r2) or (t1, t2).

4.3 The Disambiguation Theorem

This section presents and proves a disambiguation theorem for 2×2 normal form
games in Γ. This theorem is the central result of this paper. The interpretation
that our result gives to Ellsberg equilibria is contained in the definition of purifiable
and disambiguable equilibria.

Definition 36 (Purifiable and disambiguable equilibria).
Let e =

(
[p1, p2], [q1, q2]

)
be an Ellsberg equilibrium in Γ ∈ Γ.

• Equilibrium e is purifiable if for some pair (kr, kt) ∈ [0, 1]× [0, 1], there exists
a sequence of pure strategy equilibria in Γ∗(ǫ) inducing outcomes e(ǫ) with

lim
ǫ→0

e(ǫ) = e.

• Equilibrium e is disambiguable if for some pair (kr, kt) ∈ [0, 1]× [0, 1], there
exists a sequence of maxmin strategy equilibria in Γ∗(ǫ) inducing outcomes
e(ǫ) with

lim
ǫ→0

e(ǫ) = e.

Notice that purifiable equilibria are a subset of disambiguable equilibria as pure
strategies in the disturbed games are a subset of maxmin strategies.

Theorem 11 (Disambiguation of Ellsberg equilibria).
All (quasi-) proper Ellsberg equilibria in games of class I are purifiable.
All (quasi-) proper Ellsberg equilibria in games of class II are disambiguable.

In the remainder of this section, we present a proof of Theorem 11. The proof
often requires considering different cases. For clarity, we focus on the following
subset of games.

Definition 37 (Subset Γ
II−D of games of class II).

Let ΓII−D ⊂ Γ be the subset of games for which player 1’s payoffs are not Column
Dominant and player 2’s payoffs are not Row Dominant.
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For these games, maxmin strategies p̄ and q̄ are proper mixed strategies. We
focus on these games because they are the most difficult case and best illustrate
the consequences of ambiguity. At the end of this section, we discuss the small
adaptations needed to extend the proof to other types of games in Γ.

The proof is structured as follows. First, we provide sufficient conditions for a
strategy profile to be an equilibrium in a disturbed game. Second, we show how
these sufficient conditions simplify for small disturbances. For small disturbances,
there is a unique threshold per best reply that lies in the support [−1, 1]. Third, we
prove the existence of equilibria in disturbed games for small disturbances. Then,
abstracting from equilibrium conditions, we show that, for small disturbances, any
Ellsberg strategy potentially involved in an Ellsberg equilibrium of the basic game
can be induced by a unique value of the ambiguity parameter. Finally, we bring all
of these findings together to prove the theorem.

4.3.1 Sufficient conditions for an equilibrium in Γ∗(ǫ)

In Harsanyi’s Purification Theorem, best replies to the realization of the disturbances
turn out to be in pure strategies. This needs not be the case in our setting for which
the induced strategies are Ellsberg strategies. For games in Γ

II−D, on top of their
pure strategies, players best reply using their maxmin strategies p̄ and q̄. Best replies
of player 1 are monotone in r and make use of her pure strategies and her maxmin
strategy. For all games for which player 1’s payoffs are not Column Dominant,
Lemma 25 provides conditions under which a maxmin strategy is a best reply to a
strategy of player 2 inducing [qmin, qmax].

Lemma 25 (Best-Reply in maxmin strategies).
For all ǫ > 0 and all Γ ∈ Γ such that player 1’s payoffs are not Column Dominant,
strategy pb is a best reply to any [qmin, qmax] ⊆ [0, 1] if it is a maxmin strategy
pb = (r1, r2) ∈ S1

mm defined by:

ǫr′ =U1(0, qmin)− U1(1, qmin),

ǫr′′ =U1(0, qmax)− U1(1, qmax),

r1 = min(r′, r′′),

r2 = max(r′, r′′).

Proof. Take any ǫ > 0, any Γ ∈ Γ such that player 1’s payoffs are not Column
Dominant and any [qmin, qmax] ⊆ [0, 1]. Given equations (4.1) and (4.2), we have

U1

(
p, [qmin, qmax], ǫr

)
= min

(
U1(p, qmin, ǫr), U1(p, qmax, ǫr)

)

= min
(
U1(p, qmin) + pǫr, U1(p, qmax) + pǫr

)

where U1(p, q, ǫr) is linear in p since U1(p, q) is linear in p. Let q1 := qmin and
q2 := qmax if r1 = r′ and q1 := qmax and q2 := qmin otherwise. By definition of r1
and r2 we have

U1(0, q
1) + 0ǫr1 = U1(1, q

1) + 1ǫr1 and U1(0, q
2) + 0ǫr2 = U1(1, q

2) + 1ǫr2.
Remembering that r1 ≤ r2, these definitions imply
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• U1(1, q
1) + 1ǫr < U1(0, q

1) + 0ǫr for all r < r1,

• U1(1, q
2) + 1ǫr < U1(0, q

2) + 0ǫr for all r < r1.

The last two inequalities imply that for all r < r1, both U1(p, q
1, ǫr) and U1(p, q

2, ǫr)
are strictly decreasing in p because they both are linear in p. Therefore the unique
best reply when r < r1 is to take p = 0. The same definitions also imply that

• U1(1, q
1) + 1ǫr > U1(0, q

1) + 0ǫr for all r > r2,

• U1(1, q
2) + 1ǫr > U1(0, q

2) + 0ǫr for all r > r2.

The last two inequalities imply that for all r > r2, both U1(p, q
1, ǫr) and U1(p, q

2, ǫr)
are strictly increasing in p. Therefore the unique best reply when r > r2 is to take
p = 1. Finally we have

• U1(1, q
1) + 1ǫr < U1(0, q

1) + 0ǫr for all r with r1 < r < r2,

• U1(1, q
2) + 1ǫr > U1(0, q

2) + 0ǫr for all r with r1 < r < r2.

For those intermediate values of r, U1(p, q
1, ǫr) is strictly decreasing in p while

U1(p, q
2, ǫr) is strictly increasing in p. By definition of p̄, U1(p, q

1, ǫr) and U1(p, q
2, ǫr)

cross in p = p̄. By Lemma 22, p̄ is unique and belongs to (0, 1) since player 1’s
payoffs are not Column Dominant. The unique best reply is to take p = p̄. Finally,
when r = r1 or r = r2, either U1(p, qmin, ǫr) or U1(p, qmax, ǫr) is constant in p. A
(non-unique) best reply is then p = p̄. Notice that this proof also covers the case
qmin = qmax. �

For all games for which player 2’s payoffs are not Row Dominant, parallel con-
ditions guarantee that a maxmin strategy of player 2 is a best reply to a strategy of
player 1 inducing [pmin, pmax].

Thresholds r1 and r2 defined above belong to R. The exact values taken by those
thresholds matter for pbmm only as long as they belong to the support [−1, 1]. For
example, (r1, r2) = (0, 2) induces the same reactions to the disturbances realization
as (r′1, r

′
2) = (0, 4), since 2 and 4 do not belong to the support.

Lemma 26 provides sufficient conditions for the strategy profile
(
(r1, r2), (t1, t2)

)

to be an equilibrium in the disturbed game.

Lemma 26 (Sufficient conditions for equilibrium in Γ∗(ǫ)).
For all ǫ > 0, Γ ∈ Γ

II−D and (kr, kt) ∈ [0, 1]× [0, 1], the profile of maxmin strategies(
(r1, r2), (t1, t2)

)
∈ S1

mm×S2
mm is an equilibrium in Γ∗(ǫ) if equations (4.7) to (4.14)

hold:3

ǫr′ = U1(0, qmin)− U1(1, qmin), ǫr′′ = U1(0, qmax)− U1(1, qmax), (4.7)

ǫt′ = U2(0, pmin)− U2(1, pmin), ǫt′′ = U2(0, pmax)− U2(1, pmax), (4.8)

3Equations (4.11) to (4.14) correspond to the case for which all thresholds belong to the support.
If it was not the case, the expression for these integrals should be modified. Any threshold outside
the support must be replaced by the nearest point in the support. These modifications are necessary
for equations (4.11) to (4.14) to correspond to equation (4.4).
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r1 = min(r′, r′′), r2 = max(r′, r′′), (4.9)

t1 = min(t′, t′′), t2 = max(t′, t′′), (4.10)

pmin = min
f∈Pr

∫ r1

−1

0f(r)dr +

∫ r2

r1

p̄f(r)dr +

∫ 1

r2

1f(r)dr, (4.11)

pmax = max
f∈Pr

∫ r1

−1

0f(r)dr +

∫ r2

r1

p̄f(r)dr +

∫ 1

r2

1f(r)dr, (4.12)

qmin = min
f∈Pt

∫ t1

−1

0f(t)dt+

∫ t2

t1

q̄f(t)dt+

∫ 1

t2

1f(t)dt, (4.13)

qmax = max
f∈Pt

∫ t1

−1

0f(t)dt+

∫ t2

t1

q̄f(t)dt+

∫ 1

t2

1f(t)dt. (4.14)

Proof. Take any ǫ > 0, any Γ ∈ Γ
II−D, any (kr, kt) ∈ [0, 1] × [0, 1] and any profile

of maxmin strategies
(
(r1, r2), (t1, t2)

)
∈ S1

mm × S2
mm for which equations (4.7) to

(4.14) hold. From Lemma 24, the extreme points of the induced Ellsberg strategies
[pmin, pmax] and [qmin, qmax] of any profile

(
(r1, r2), (t1, t2)

)
are given by equations

(4.11) to (4.14). As Γ ∈ Γ
II−D, we have that player 1’s payoffs are not Column

Dominant. From Lemma 25, the best-reply of player 1 to [qmin, qmax] is to use a
strategy (r1, r2) whose thresholds r1 and r2 are defined by equations (4.7) and (4.9).
Accordingly, the best-reply for player 2 to [pmin, pmax] is a maxmin strategy (t1, t2),
whose thresholds t1 and t2 are defined by equations (4.8) and (4.10). Therefore,
if all equations hold, strategies (r1, r2) and (t1, t2) are mutual best replies and the
profile constitutes an equilibrium in Γ∗(ǫ). �

4.3.2 Simplified conditions for small disturbances

In this subsection we show how the previous conditions simplify when the size of
disturances ǫ is sufficiently small. These simpler conditions are given in Lemma 30.
Intermediary lemmas and definitions are necessary for proving Lemma 30. Lemmas
27 to 29 study the conditions on induced Ellsberg strategies under which the thresh-
olds generated by the strategies lie in the support. The lemmas also identify some
properties of the induced Ellsberg strategies when the thresholds lie in the support.
First, Lemma 27 describes the interval of probabilities in which the extreme points
of the induced Ellsberg strategy must lie in order for their associated threshold to
be in the support. New notations are necessary for establishing this lemma:

• The equilibrium conditions given in Lemma 26 link thresholds t1 and t2 of
player 2’s strategy to the two extreme points of player 1’s induced Ellsberg
strategy [pmin, pmax]. Hence there exists an interval

[
p−(ǫ), p+(ǫ)

]
⊂ R, inside

which pmin and pmax must lie in order for their associated thresholds t1 and t2
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to be in [−1, 1].4

p−(ǫ) := min

{
p ∈ R


1

ǫ

(
U2(0, p)− U2(1, p)

)
∈ [−1, 1]

}
,

p+(ǫ) := max

{
p ∈ R


1

ǫ

(
U2(0, p)− U2(1, p)

)
∈ [−1, 1]

}
.

Similarly, we define for player 2 the interval
[
q−(ǫ), q+(ǫ)

]
.

q−(ǫ) := min

{
q ∈ R


1

ǫ

(
U1(0, q)− U1(1, q)

)
∈ [−1, 1]

}
,

q+(ǫ) := max

{
q ∈ R


1

ǫ

(
U1(0, q)− U1(1, q)

)
∈ [−1, 1]

}
.

Lemma 27 shows that for all ǫ, the indifference strategy p∗ lies in the interval(
p−(ǫ), p+(ǫ)

)
and q∗ lies in

(
q−(ǫ), q+(ǫ)

)
. Furthermore, those intervals collapse on

p∗ and q∗ when ǫ→ 0.

Lemma 27.
For all ǫ > 0 and Γ ∈ Γ we have p−(ǫ) < p∗ < p+(ǫ) and q−(ǫ) < q∗ < q+(ǫ).
Furthermore:

lim
ǫ→0

p−(ǫ) = lim
ǫ→0

p+(ǫ) = p∗ and lim
ǫ→0

q−(ǫ) = lim
ǫ→0

q+(ǫ) = q∗.

Proof. Take any ǫ > 0 and any Γ ∈ Γ. We focus on proving this for the interval(
p−(ǫ), p+(ǫ)

)
, the reasoning is identical for

(
q+(ǫ), q−(ǫ)

)
. The expression

1

ǫ

(
U2(0, p)− U2(1, p)

)

returning the thresholds on t is linear in p. As Γ ∈ Γ, player 2 does not have a weakly
dominant strategy and therefore this expression is strictly monotone in p. Therefore
p−(ǫ) and p+(ǫ) are finite and hence exist. By definition of p∗, this expression equal
0 for p = p∗. Therefore we have p−(ǫ) < p∗ < p+(ǫ) by the strict monotonicity of
the above linear expression.

The difference U2(0, p)−U2(1, p) is independent of ǫ. As a result, for any p 6= p∗

the smaller ǫ, the larger
 1
ǫ

(
U2(0, p)−U2(1, p)

). Hence, for any p 6= p∗, there exists
an ǫp such that for all ǫ < ǫp, we have 1

ǫ

(
U2(0, p)−U2(1, p)

)
/∈ [−1, 1]. Therefore, the

smaller ǫ, the closer p−(ǫ) and p+(ǫ) are to p∗. In the limit, the interval [p−(ǫ), p+(ǫ)]
collapse on p∗. �

Lemmas 28 and 29 provide bounds around the extreme points of the induced
Ellsberg strategies when thresholds lie in the interior of the support and ambiguity
is strictly positive. If the domain Pr contains a strictly positive amount of ambiguity,
Lemma 28 shows that the induced Ellsberg strategy cannot degenerate into a mixed
strategy when a threshold lies in the interior of the support. If one extreme point
of the induced Ellsberg strategy for player 1 equals p, the other extreme point lies
outside a non-degenerate interval (pℓ, pu) around p. New notations are necessary for
establishing Lemma 28.

4As shown in the proof of Lemma 27, the extreme points of the interval
[
p−(ǫ), p+(ǫ)

]
exist.
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• As shown in Lemma 25, player 1 best replies to any realization of r by playing a
strategy in {0, p̄, 1}. Equivalently, player 2’s best reply to t lies in {0, q̄, 1}. For
small disturbances, at most two of the three strategies in those sets are used in
equilibrium. In the absence of ambiguity, only pure strategies are used. In the
presence of ambiguity, the payoff structure determines for each player which
two strategies among these three strategies are used in equilibrium. These two
strategies are referred to as A and B for player 1 and C and D for player 2.
Let A,B ∈ {0, p̄, 1} with A < B and C,D ∈ {0, q̄, 1} with C < D be such
that:

A := 0 and B := 1 if kt = 0,

A := 0 and B := p̄ if kt > 0 and p∗ ∈ (0, p̄),

A := p̄ and B := 1 if kt > 0 and p∗ ∈ (p̄, 1),

C := 0 and D := 1 if kr = 0,

C := 0 and D := q̄ if kr > 0 and q∗ ∈ (0, q̄),

C := q̄ and D := 1 if kr > 0 and q∗ ∈ (q̄, 1).

The maxmin strategy of one player is never used when the ambiguity about her
opponent’s payoffs is zero. For example, if kr = 0 then the induced Ellsberg
strategy of player 1 is a mixed strategy and player 2 best replies using pure
strategies.

• Let function pmin : R2 → [0, 1] : (r1, r2) → pmin(r1, r2) be defined by equation
(4.11). Accordingly, functions pmax, qmin and qmax are defined by equations
(4.12), (4.13) and (4.14) respectively.

Lemma 28.
For all Γ ∈ Γ

II−D, kr ∈ (0, 1] and p ∈ (A,B), there exist unique pℓ and pu ∈ [0, 1]
with pℓ < p < pu such that

• for all (r1, r2) ∈ S1
mm with pmax(r1, r2) = p we have pmin(r1, r2) ≤ pℓ;

and at least for one such (r1, r2) we have pmin(r1, r2) = pℓ,

• for all (r1, r2) ∈ S1
mm with pmin(r1, r2) = p, pmax(r1, r2) ≥ pu,

and at least for one such (r1, r2) we have pmax(r1, r2) = pu,

Accordingly, for all kt ∈ (0, 1] and q ∈ (C,D), there exist qℓ, qu ∈ [0, 1] with equiva-
lent properties.

Proof. Take any Γ ∈ Γ
II−D, any kr ∈ (0, 1] and any p ∈ (A,B). We focus on proving

the existence of such pℓ and pu. The proof for qℓ and qu follows the same reasoning.
We define the following sets:

Smax(p) :=
{
(r1, r2) ∈ S1

mm

pmax(r1, r2) = p and r1, r2 ∈ [−1, 1]
}
,

Smin(p) :=
{
(r1, r2) ∈ S1

mm

pmin(r1, r2) = p and r1, r2 ∈ [−1, 1]
}
.

Smax(p) is a subset of the maxmin strategies whose induced Ellsberg strategies have
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p as their maximal point. We show below this set is non-empty. The restriction
r1, r2 ∈ [−1, 1] implies that Smax(p) and Smin(p) are closed sets.

We define pℓ from the set Smax(p):

pℓ := max
(r1,r2)∈Smax(p)

pmin(r1, r2).

As the domain of images of function pmin is [0, 1] and the set Smax(p) is non-empty
and closed, pℓ is well defined. The definitions of pℓ and Smax(p) imply that pℓ is
such that:

(i) for all (r1, r2) ∈ Smax(p) we have pmax(r1, r2) = p and pmin(r1, r2) ≤ pℓ; and at
least for one such (r1, r2) we have pmin(r1, r2) = pℓ, and

(ii) there is no p′ 6= pℓ with the previous properties.

We next show that pℓ < p. As Γ ∈ Γ
II−D we have p̄ ∈ (A,B), and hence two cases

can arise:

• Case 1: p∗ > p̄. This case is such that A = p̄ and B = 1 and by assumption
we have p ∈ (p̄, 1). Let rL2 and rH2 be implicitly defined by

pmax(−1, rH2 ) = p and pmax(r
L
2 , r

L
2 ) = p.

We show that for all (r1, r2) ∈ Smax(p), we have −1 < rL2 ≤ r2 ≤ rH2 < 1.
Observe this implies that Smax(p) is a non-empty set.

– First we show −1 < rL2 < 1.

For all kr ∈ (0, 1], because of its integral functional form, the expression
of pmax(x, x) is continuous in x. Furthermore, it is decreasing in x for x ∈
[−1, 1) as maxmin strategies are increasing in r. Since pmax(−1,−1) = 1,
pmax(1, 1) = 0 and by assumption p ∈ (p̄, 1), we therefore have −1 <
rL2 < 1.

– Second we show −1 < rH2 < 1.

For all kr ∈ (0, 1], the expression of pmax(−1, x) is continuous in x and
decreasing in x for x ∈ [−1, 1). Since pmax(−1,−1) = 1, pmax(−1, 1) = p̄
and by assumption p ∈ (p̄, 1), we therefore have −1 < rH2 < 1.

– Then we show that rL2 < rH2 .

Assume instead that rL2 ≥ rH2 . As by definition pmax(−1, rH2 ) = p, we
have pmax(r

H
2 , r

H
2 ) < p as for all kr ∈ (0, 1] and r1, r2 ∈ [−1, 1), pmax is a

strictly decreasing function of both r1 and r2 and we showed −1 < rH2 .
As rL2 ≥ rH2 the same reasoning implies pmax(r

L
2 , r

L
2 ) ≤ pmax(r

H
2 , r

H
2 ) < p,

contradiction the definition of rL2 .

– Finally we show that for all (r1, r2) ∈ Smax(p) we have rL2 ≤ r2 ≤ rH2 .

We focus on showing r2 ≤ rH2 , the proof that rL2 ≤ r2 follows similar
lines. Assume instead for some (r1, r2) ∈ Smax(p) that r2 > rH2 . By the
definition of Smax(p) we have −1 ≤ r1. As pmax is strictly decreasing in its
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argument, this implies that pmax(r1, r2) ≤ pmax(−1, r2). As we assumed
r2 > rH2 , the same reasoning implies pmax(−1, r2) < pmax(−1, rH2 ) = p.
Together we have pmax(r1, r2) < p, implying that (r1, r2) /∈ Smax(p), a
contradiction.

• Case 2: p∗ < p̄. This second case is such that A = 0 and B = p̄ and
by assumption we have p ∈ (0, p̄). Let rL1 and rH1 be implicitly defined by
pmax(r

H
1 , 1) = p and pmax(r

L
1 , r

L
1 ) = p. The proof showing that for all (r1, r2) ∈

Smax(p), we have −1 < rL1 ≤ r1 ≤ rH1 < 1 is omitted as it follows the lines of
that given for case 1.

Together, either there exist rL1 and rH1 such that for all (r1, r2) ∈ Smax(p) we have
−1 < rL1 ≤ r1 ≤ rH1 < 1 or there exist rL2 and rH2 such that for all (r1, r2) ∈ Smax(p)
we have −1 < rL2 ≤ r2 ≤ rH2 < 1. This implies min(| r1 |, | r2 |) < 1.

From there, as kr > 0 we have for all (r1, r2) ∈ Smax(p) that

pmin(r1, r2) < pmax(r1, r2)

because

(i) pmin(r1, r2) = pmax(r1, r2) when kr = 0 and,

(ii) for all (r1, r2) with min(| r1 |, | r2 |) < 1, pmax is a strictly increasing function
of kr at all kr ∈ [0, 1) while pmin is a strictly decreasing function of kr.

This proves that pℓ < p.
There remains to show that pℓ has the same properties for all (r1, r2) ∈ S1

mm.
As the support of r is [−1, 1], for any (r1, r2) ∈ S1

mm with pmax(r1, r2) = p such
that (r1, r2) /∈ Smax(p), there exists (r′1, r

′
2) ∈ Smax(p) inducing the same Ellsberg

strategy as (r1, r2). Therefore pℓ has the desired properties.
We define then pu from the set Smin(p):

pu := min
(r1,r2)∈Smin(p)

pmax(r1, r2).

An analog reasoning proves that pu has the desired properties. �

Lemma 29 shows that the interval (pℓ, pu) around p defined in the previous lemma
evolves monotonically with p.

Lemma 29.
Take any Γ ∈ Γ

II−D.

• For all kr ∈ (0, 1), p ∈ (A,B) and p′ ∈ (pℓ, p) we have

p′
ℓ
< pℓ < p′ < p < p′

u
< pu.

• For all kt ∈ (0, 1), q ∈ (C,D) and q′ ∈ (qℓ, q) we have

q′
ℓ
< qℓ < q′ < q < q′

u
< qu.
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Table 4.1: Four types of (quasi)-proper Ellsberg equilibria
(
[p1, p2], [q1, q2]

)
in func-

tion of the extreme point occupied by the indifference strategy of each player. For
quasi-proper Ellsberg equilibria, the extreme points of one player are equal and those
equilibria belong to two of the above-defined types. The mixed strategy equilibrium
(p∗, q∗) belongs to all four.

q∗ = q1 q∗ = q2
p∗ = p1 type 1 type 2
p∗ = p2 type 3 type 4

Proof. We focus on proving the first claim. The proof is based on the properties of
functions pmin and pmax. Those functions are continuous in both their arguments
r1 and r2. Furthermore, they are non-increasing in both arguments and strictly
decreasing as soon as these arguments belong to [−1, 1).

Take any Γ ∈ Γ
II−D, any kr ∈ (0, 1), any p ∈ (A,B) and any p′ ∈ (pℓ, p). From

Lemma 28, we have that p′ℓ < pℓ < p′u. We show by contradiction that p′u < pu,
p < p′u and p′ℓ < pℓ.

Assume first pu ≤ p′u. This implies by definition of p′u that there does not exist
(r1, r2) with pmin(r1, r2) = p′ and pmax(r1, r2) < pu. Take (r′1, r

′
2) with pmin(r

′
1, r

′
2) =

p and pmax(r
′
1, r

′
2) = pu. By definition of pu, this (r′1, r

′
2) exists and has at least one

threshold in the interior of the support. By continuity and non-increasingness of
pmin, there exists (r1, r2) with r1 > r′1 and r2 > r′2 such that pmin(r1, r2) = p′. Since
p ∈ (A,B), we have either r′1 ∈ (−1, 1) or r′2 ∈ (−1, 1).5 By the properties of pmax,
we have pmax(r1, r2) < pmax(r

′
1, r

′
2) = pu, a contradiction.

Assume then that p′u ≤ p. This implies by definition of p′u that there ex-
ists (r1, r2) with pmin(r1, r2) = p′ and pmax(r1, r2) ≤ p. By continuity and non-
increasingness of pmax, there exists (r′1, r

′
2) with r′1 ≤ r1 and r′2 ≤ r2 such that

pmax(r
′
1, r

′
2) = p. By the properties of pmin, we have pmin(r

′
1, r

′
2) ≥ pmin(r1, r2) = p′,

a contradiction to the definition of pℓ since pℓ < p′.
Assume finally that pℓ ≤ p′ℓ. This implies by definition of p′ℓ that there ex-

ists (r1, r2) with pmax(r1, r2) = p′ and pmin(r1, r2) ≥ pℓ. By continuity and non-
increasingness of pmax, there exists (r′1, r

′
2) with r′1 < r1 and r′2 < r2 such that

pmax(r
′
1, r

′
2) = p. By the properties of pmin, we have pmin(r

′
1, r

′
2) > pmin(r1, r2) ≥ pℓ,

which contradicts the definition of pℓ. �

When only one of the two thresholds lies in the interior of the support, we denote
this threshold r∗ for player 1 and t∗ for player 2. The equilibrium conditions simplify.
Nevertheless, their expressions will depend on the type of equilibrium we consider.
Lemma 23 shows that for both players the indifference strategy is an extreme point of
Ellsberg strategies in any (quasi)-proper Ellsberg equilibrium. The expression of the
conditions depends on whether this extreme point is the maximum or the minimum.
The four different types of (quasi-) proper Ellsberg equilibria are presented in Table
4.1.

5See proof of Lemma 28.
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Riedel and Sass (2013) present results linking the payoff structure with the ex-
treme points occupied by the indifference strategy of each player. As all proper
Ellsberg equilibria of a game belong to the same type, these types naturally define
subsets of games. We denote Γ

D−4 ⊂ Γ
II−D the subset of games in Γ

II−D having
proper Ellsberg equilibria of type 4. For the rest of the proof, we concentrate ex-
clusively on equilibria of type 4, which are illustrated in the example developed in
section 4.4. The proof presented is easily adapted for the other types.

In Lemma 30, we give simplified sufficient conditions for a profile of maxmin
strategies to constitute an equilibrium in slightly disturbed games.

Lemma 30 (Simplified equilibrium conditions in slightly disturbed games).
For all Γ ∈ Γ

D−4 and (kr, kt) ∈ [0, 1] × [0, 1], there exists ǫ > 0 such that for all
ǫ < ǫ, if the profile of maxmin strategies

(
(r1, r2), (t1, t2)

)
satisfies conditions (4.15)

to (4.18) and equations (4.19) to (4.22), then it is an equilibrium in Γ∗(ǫ).

if p∗ < p̄ : r∗ := min(r1, r2) ∈ [−1, 1] and if r1 < r2 : max(r1, r2) ≥ 1, (4.15)

if p∗ > p̄ : r∗ := max(r1, r2) ∈ [−1, 1] and if r1 < r2 : min(r1, r2) ≤ −1, (4.16)

if q∗ < q̄ : t∗ := min(t1, t2) ∈ [−1, 1] and if t1 < t2 : max(t1, t2) ≥ 1, (4.17)

if q∗ > q̄ : t∗ := max(t1, t2) ∈ [−1, 1] and if t1 < t2 : min(t1, t2) ≤ −1, (4.18)

ǫr∗ = U1(0, qmax)− U1(1, qmax), (4.19)

ǫt∗ = U2(0, pmax)− U2(1, pmax), (4.20)

pmax = max
f∈Pr

∫ r∗

−1

Af(r)dr +

∫ 1

r∗
Bf(r)dr, (4.21)

qmax = max
f∈Pt

∫ t∗

−1

Cf(t)dt+

∫ 1

t∗
Df(t)dt. (4.22)

Proof. We show that such maxmin strategies (r1, r2) and (t1, t2) are mutual best
replies. Take any Γ ∈ Γ

D−4. Lemma 26 gives sufficient conditions for such profile
to be an equilibrium. In these conditions, the following additional four equations
complement equations (4.19) to (4.22):

ǫr′ = U1(0, qmin)− U1(1, qmin),

ǫt′ = U2(0, pmin)− U2(1, pmin),

pmin = min
f∈Pr

∫ r∗

−1

Af(r)dr +

∫ 1

r∗
Bf(r)dr,

qmin = min
f∈Pt

∫ t∗

−1

Cf(t)dt+

∫ 1

t∗
Df(t)dt.

We show there exists ǫ > 0 such that for all ǫ < ǫ, if
(
(r1, r2), (t1, t2)

)
satisfy

conditions (4.15) to (4.18), then r′ /∈ [−1, 1] and t′ /∈ [−1, 1] and hence those four
additional equations are irrelevant for the profile to be an equilibrium.

By definition of A and B we have p∗ ∈ (A,B). By Lemma 27, there exists
ǫ1 > 0 such that for all ǫ < ǫ1 we have

[
p−(ǫ), p+(ǫ)

]
⊂ (A,B). Accordingly,

we have q∗ ∈ (C,D) and there exists ǫ2 > 0 such that for all ǫ < ǫ2 we have
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[
q−(ǫ), q+(ǫ)

]
⊂ (C,D). As

(
(r1, r2), (t1, t2)

)
satisfies conditions (4.15) to (4.18) we

have r∗ ∈ [−1, 1] and t∗ ∈ [−1, 1] and hence two cases must be considered.

Case 1: |r∗| = 1 or |t∗| = 1.

Taking ǫ = min(ǫ1, ǫ2) we derive a contradiction for this case. Assume that
|t∗| = 1. Conditions (4.17) and (4.18) imply that min(| t1 |, | t2 |) ≥ 1. The maxmin
strategy (t1, t2) is such that qb(t) is the same for all t ∈ [−1, 1] with qb(t) ∈ {C,D}
and therefore qmin = qmax ∈ {C,D}. As for all ǫ < ǫ we have

[
q−(ǫ), q+(ǫ)

]
⊂ (C,D),

this implies that either r∗ /∈ [−1, 1], which violates condition (4.15) or (4.16), or
equation (4.19) does not hold.

Case 2: |r∗| < 1 or |t∗| < 1.

Proving that (r1, r2) and (t1, t2) are mutual best replies boils down to showing
that

(i) r′ and t′ are not in the support and,

(ii) the relative size of r∗ and r′ makes it optimal for player 1 to react to r using
strategies A and B, as well as it is optimal for player 2 to react to t using C
and D given the relative size of t∗ and t′.

If (i) and (ii) hold, then equations (4.19) to (4.22) are a simplification of equations
(4.7) to (4.14) and the strategies are mutual best replies. Two subcases must be
considered

• Subcase 2.1: kr > 0 and kt > 0.

The profile of maxmin strategies
(
(r1, r2), (t1, t2)

)
induces proper Ellsberg

strategies since thresholds r∗ and t∗ lie in the interior of [−1, 1].6 Player 1’s
proper Ellsberg strategy has two different extreme points pmax and pmin which
induce two different thresholds t∗ and t′ for player 2. Accordingly we have
qmax 6= pmin and hence t∗ 6= t′.

We show here (i), that is r′ and t′ are not in the support. Given kr > 0 and
kt > 0, by Lemma 28 and Lemma 29 there exist pL, pU ∈ (A,B) and qL,
qU ∈ (C,D) such that

pℓL ≤ pℓU < pL < p∗ < pU < puL ≤ puU ,

qℓL ≤ qℓU < qL < q∗ < qU < quL ≤ quU .

such that if pmax ∈ [pL, pU ], then pmin /∈ [pL, pU ] and if qmax ∈ [qL, qU ], then
qmin /∈ [qL, qU ]. We prove the existence of such pL and pU . As p∗ ∈ (A,B),
given kr > 0, Lemma 28 shows there exists p∗ℓ and p∗u with p∗ℓ < p∗ < p∗u

6This statement holds as well when kr = 1 or kt = 1 as pmax ∈ (A,B) and qmax ∈ (C,D),
implying respectively that pmin ∈ {A,B} or qmin ∈ {C,D}.
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such that if pmax = p∗, then pmin ≤ p∗ℓ and if pmin = p∗, then pmax ≥ p∗u.
Take any pL ∈ (p∗ℓ, p∗). By Lemma 29, we have p∗ < puL. Take pU such that
p∗ < pU < puL. By Lemma 29 we have pℓL < pℓU < pL < p∗ < pU < puL < puU ,
hence the desired property for [pL, pU ].

7

Let ǫ′ > 0 be such that ǫ′ ≤ ǫ1 and for all ǫ < ǫ′ we have
[
p−(ǫ), p+(ǫ)

]
⊂

(pL, pU). By Lemma 27, this ǫ′ exists since
[
p−(ǫ), p+(ǫ)

]
tends to [p∗, p∗] as

ǫ→ 0. The same reasoning proves the existence of an ǫ′′ > 0 such that ǫ′′ ≤ ǫ2
and for all ǫ < ǫ′′ we have

[
q−(ǫ), q+(ǫ)

]
⊂ (qL, qU). Take ǫ = min(ǫ′, ǫ′′).

By the construction of ǫ, for all ǫ < ǫ conditions (4.15) and (4.16) combined
with equation (4.19) imply that qmax ∈

[
q−(ǫ), q+(ǫ)

]
⊂ [qL, qU ] and hence

qmin /∈ [qL, qU ], therefore qmin /∈
[
q−(ǫ), q+(ǫ)

]
, implying r′ /∈ [−1, 1]. A parallel

reasoning shows t′ /∈ [−1, 1].

We turn to proving (ii). We focus on showing that the relative sizes of t∗

and t′ make it optimal for player 2 to react to t using strategies C and D. A
parallel argument demonstrates that player 1 best replies using A and B. As
Γ ∈ Γ

D−4 we have p̄ ∈ (A,B), and hence two subcases can arise:

– Subcase 2.1.1: q̄ < q∗.

Assume for a moment that the difference U2(0, p)− U2(1, p) is a strictly
increasing function of p. As pmin < pmax, this assumption implies that for
a given ǫ we have t′ < t∗ and hence t1 = t′ and t2 = t∗. As t∗ ∈ [−1, 1] and
t′ /∈ [−1, 1], we have t1 < −1. By definition, when q̄ < q∗, we have C = q̄
and D = 1. It is hence optimal for player 2 to react to the realization of
t using C and D, as shown in the proof of Lemma 25.

There remains to show that the difference U2(0, p)−U2(1, p) is a strictly
increasing function of p. The difference U2(0, p) − U2(1, p) is linear in
p and can not be constant since weakly dominant strategies are ruled
out. By definition, any game Γ ∈ Γ

D−4 has proper Ellsberg equilibria
e =

(
[p1, p2], [q1, q2]

)
of type 4, for which p2 = p∗ and hence p1 < p∗. In

order for [q1, q2] to be a best reply to [p1, p2], we must have q∗ ∈ {q1, q2}
as shown in Lemma 23. For q∗ ∈ {q1, q2}, we must have

U2(q, p1) > U2(q, p
∗) for all q ∈ (q̄, 1].

In effect, remember that the definition of p∗ implies that U2(0, p
∗) −

U2(1, p
∗) = 0 and hence U2(q, p

∗) is constant in q. The definition of q̄
implies U2(q̄, p

∗) = U2(q̄, p1). If we had instead for all q ∈ (q̄, 1] that
U2(q, p1) < U2(q, p

∗), then U2(q, p1) is strictly decreasing in q and the
best reply for the ambiguity averse player 2 to [p1, p

∗] would be some
[q1, q2] ⊂ [0, q̄], contradicting Lemma 23 since q̄ < q∗. As U2(q̄, p

∗) =
U2(q̄, p1) and U2(1, p1) > U2(1, p

∗), we have U2(0, p1) < U2(0, p
∗). Last

two inequalities imply U2(0, p1) − U2(1, p1) < U2(0, p
∗) − U2(1, p

∗) and

7Weak inequalities pℓL ≤ pℓU and puL ≤ puU come from the case kr = 1. For such value of kr, we
have pℓL = pℓU = A and puL = puU = B, as shown in the proof of Lemma 33.
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by linearity of U2(q, p) in p, the difference U2(0, p)− U2(1, p) is a strictly
increasing function of p as p1 < p∗.

– Subcase 2.1.2: q∗ < q̄.

The argument follow the same line as for the previous case. The major
difference is that U2(0, p)−U2(1, p) must now be strictly decreasing func-
tion of p. As pmin < pmax, this implies that for a given ǫ we have t∗ < t′

and hence t1 = t∗ and t2 = t′. As t∗ ∈ [−1, 1] and t′ /∈ [−1, 1], we have
t2 > 1. By definition, when q̄ < q∗, we have C = 0 and D = q̄. It is
hence optimal for player 2 to react to the realization of t using C and D.

Statement (ii) holds as for each of the above subcases, conditions (4.17) and
(4.18) pick t∗ among t1 and t2 consistently with the particular game considered
and ensure that t′ is outside the support with the appropriate relative size with
respect to t∗.

• Subcase 2.1: kr = 0 or kt = 0.

We consider only kr = 0, without loss of generality. This implies that C = 0
and D = 1, pmin = pmax and t′ = t∗. Both t′ and t∗ belong to the interior of
the support. The induced Ellsberg profile is quasi-proper. Except for these
differences, the argument given above to prove (i) and (ii) carries on to this
subcase.

�

4.3.3 Existence of equilibria

Showing existence of equilibria in the disturbed game is much easier for small dis-
turbances. The simplified conditions of Lemma 30 are such that only one threshold
per strategy is constrained. The other threshold can be picked arbitrarily provided
it lies outside the support and has the appropriate sign.

Lemma 31 (Existence of equilibria in disturbed games).
For all Γ ∈ Γ

D−4 and (kr, kt) ∈ [0, 1] × [0, 1], there exists ǫ > 0 such that for all
ǫ < ǫ, equilibria exist in Γ∗(ǫ).

Proof. Using the Intermediate Value Theorem, we show the existence of a profile of
thresholds (r∗, t∗) satisfying equations (4.19) to (4.22). If it exists, then it is easy to
see that there always exists a strategy profile

(
(r1, r2), (t1, t2)

)
that, together with

(r∗, t∗), satisfies conditions (4.15) to (4.18). Such strategy profile
(
(r1, r2), (t1, t2)

)

satisfies the conditions of Lemma 30 for small ǫ. This proves the existence of equi-
libria in slightly disturbed games.

There remains to show the existence of a profile of thresholds (r∗, t∗) satisfying
equations (4.19) to (4.22). Take any Γ ∈ Γ

D−4 and any (kr, kt) ∈ [0, 1]× [0, 1]. We
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define the four functions hr, ht, hp and hq:

hr :[q
−(ǫ), q+(ǫ)] → [−1, 1] : q → hr(q) :=

1

ǫ

(
U1(0, q)− U1(1, q)

)
,

ht :[p
−(ǫ), p+(ǫ)] → [−1, 1] : p→ ht(p) :=

1

ǫ

(
U2(0, p)− U2(1, p)

)
,

hp :[−1, 1] → [A,B] : r → hp(r) := max
f∈Pr

∫ r

−1

Af(r)dr +

∫ 1

r

Bf(r)dr,

hq :[−1, 1] → [C,D] : t→ hq(t) := max
f∈Pt

∫ t

−1

Cf(t)dt+

∫ 1

t

Df(t)dt.

Those four functions are all strictly monotone and continuous. By the definition of
p−(ǫ), p+(ǫ), q−(ǫ) and q+(ǫ), the domain of images of hr and ht is [−1, 1] and hence
all four functions are surjective. The strict monotonicity of these functions imply
they are injective. Being all bijective (surjective and injective), they admit inverse
functions h−1

r , h−1
t , h−1

p , h−1
q which are strictly monotone and continuous.8

Based on these four functions, we define two composite functions g1 and g2:

g1 :[A,B] → [q−(ǫ), q+(ǫ)] : p→ g1(p) := h−1
r ◦ h−1

p (p) = (hp ◦ hr)
−1(p),

g2 :[C,D] → [p−(ǫ), p+(ǫ)] : q → g2(q) := h−1
t ◦ h−1

q (q) = (hq ◦ ht)
−1(q).

Being composite functions of strictly monotone and continuous functions, g1 and g2
inherit those properties.

By Lemma 27, there exists ǫ′ > 0 such that for all ǫ < ǫ′ we have [p−(ǫ), p+(ǫ)] ⊂
(A,B) and [q−(ǫ), q+(ǫ)] ⊂ (C,D). Those two composite functions are then used to
define the continuous mapping τ :

τ : [A,B] → [p−(ǫ), p+(ǫ)] : p→ τ(p) := g2 ◦ g1(p).

We have therefore that for all ǫ < ǫ′, τ is a continuous mapping from [A,B] →
[p−(ǫ), p+(ǫ)] ⊂ (A,B). By the Intermediary Value Theorem, it has a fixed point
p̂ ∈ [p−(ǫ), p+(ǫ)]. This fixed point is associated to q̂ = g1(p̂) as well as r̂ = hr(q̂) and
t̂ = ht(p̂). By construction, these r̂, t̂, p̂ and q̂ satisfy equations (4.19) to (4.22) in
Lemma 30. Let ǫ′′ be taken from the statement of Lemma 30. Taking ǫ = min(ǫ′, ǫ′′)
completes the proof. �

4.3.4 The limit of the sequence of equilibria

There remains to prove that, when the disturbance size vanishes, the Ellsberg equi-
librium induced in the disturbed game tends to the equilibrium in the initial game.
By Lemma 27 and Lemma 30, slightly disturbed games admit equilibria inducing

8The strict monotonicity of hp and hq is only valid as long as kr < 1 and kt < 1. When kr = 1
(kt = 1), function hp (hq) is not injective. This is not a problem for our purpose as these functions
are injective and surjective on a smaller domain. For example, when kr = 1, function hp is bijective
on [r̂, 1] ⊂ [−1, 1] defined in the proof of Lemma 33. The definition of probabilities p−(ǫ) and p+(ǫ)
must be adapted such that hr has the appropriate domain of image [r̂, 1]. On this basis a similar
mapping can be constructed.
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Ellsberg strategies with an extreme point close to the indifference strategy. Further-
more, as the disturbance size vanishes, the extreme point tends to the indifference
strategy. We show in Lemma 32 that, for each particular level of ambiguity, a unique
threshold’s value induces such an extreme point. Then, given the other extreme
point of the equilibrium Ellsberg strategy in the basic game, Lemma 33 shows there
exists an appropriate level of ambiguity for the induced Ellsberg strategy to repro-
duce the equilibrium in the basic game. More precisely, abstracting from equilibrium
conditions, any Ellsberg strategy can be induced for a unique value of the ambiguity
parameter. We introduce new notations that are useful for small disturbances:

pmin(r
∗) := min

f∈Pr

∫ r∗

−1

Af(r)dr +

∫ 1

r∗
Bf(r)dr, (4.23)

pmax(r
∗) := max

f∈Pr

∫ r∗

−1

Af(r)dr +

∫ 1

r∗
Bf(r)dr, (4.24)

qmin(t
∗) := min

f∈Pt

∫ t∗

−1

Cf(t)dt+

∫ 1

t∗
Df(t)dt, (4.25)

qmax(t
∗) := max

f∈Pt

∫ t∗

−1

Cf(t)dt+

∫ 1

t∗
Df(t)dt. (4.26)

Abstracting from equilibrium conditions, Lemma 32 shows that for any given kr,
there exists a unique threshold r∗ for which the induced Ellsberg strategy has the
desired value for one of the two extreme points.

Lemma 32 (Uniqueness of r∗).
Consider any Γ ∈ Γ and (kr, kt) ∈ [0, 1]× [0, 1].

• For all p ∈ (A,B), there is a unique r∗ ∈ (−1, 1) such that pmin(r
∗) = p.

• For all p ∈ (A,B), there is a unique r∗
′

∈ (−1, 1) such that pmax(r
∗′) = p.

For all q ∈ (C,D), equivalent t∗ and t∗
′

are also unique.

Proof. We prove only the existence and uniqueness of r∗. Function pmin is continuous
and weakly decreasing in r∗.9 Furthemore, pmin(−1) = B and pmin(1) = A. By
continuity, there exists hence r∗ ∈ (−1, 1) such that pmin(r

∗) = p. We prove now
uniqueness.

For all kr ∈ [0, 1), all f ∈ Pr have full support. Function pmin is therefore strictly
decreasing for all r ∈ [−1, 1], which entails uniqueness of r∗.

For the case kr = 1, let RA := {r ∈ [−1, 1]|pmin(r) = A} and let r̂ := min{r ∈
RA}. This r̂ exists since the set RA is a non-degenerate closed interval. Uniqueness
of r∗ is ensured since p > A and for all r ∈ [−1, r̂), function pmin is strictly decreasing
in r. �

Lemma 33 (All equilibrium Ellsberg strategies can be induced).
Consider any Γ ∈ Γ.

9Function pmin is strictly decreasing in r∗ when kr < 1.
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1. For all p1 ∈ (A,B) and all p2 ∈ [p1, B], there exists a unique kr ∈ [0, 1] such
that for some r∗ ∈ [−1, 1] we have pmin(r

∗) = p1 and pmax(r
∗) = p2.

2. For all p2 ∈ (A,B) and all p1 ∈ [A, p2], there exists a unique k′r ∈ [0, 1] such
that for some r∗′ ∈ [−1, 1] we have pmin(r

∗′) = p1 and pmax(r
∗′) = p2.

Equivalent statements hold true for player 2.

Proof. We prove only the first of the two claims.
By Lemma 32, for all p1 ∈ (A,B) and all kr ∈ [0, 1], there exists a unique r∗ ∈ (−1, 1)
such that pmin(r

∗) = p1. Let F : [0, 1] → [−1, 1] : kr → F (kr) be the function
pointing, for each value of kr ∈ [0, 1], to the particular r∗ inducing pmin(r

∗) = p1
and hence F (kr) = r∗. From equation (4.23), function F is continuous and strictly
decreasing in kr as p1 ∈ (A,B).

As F is continuous, the composite function pmax ◦ F : [0, 1] → [p1, b] : kr →
pmax

(
F (kr)

)
is continuous and strictly increasing in kr as p1 ∈ (A,B). The first claim

we need to prove follows then from the fact that pmax
(
F (0)

)
= pmin

(
F (0)

)
= p1 and

pmax
(
F (1)

)
= B.

The equality pmax
(
F (1)

)
= B follows from the definition of the domain Pr. For

kr = 1, some f ∈ Pr do not have full support anymore and there exists a unique
r̂ ∈ (−1, 1) such that:

max
f∈Pr

∫ r̂

−1

f(r)dr = 1 and min
f∈Pr

∫ r̂

−1

f(r)dr = 0.

This r̂ is implicitly defined by
∫ r̂
−1
f br (r)dr =

1
2
. As a result, if pmin = p1 < 1, then

r∗ < r̂ and pmax = B. In effect, when kr = 1, for all r ∈ (−1, 1) either pmin(r) = A
or pmax(r) = B. �

We emphasize again that we did not require in Lemmas 32 and 33 that threshold
r∗ corresponds to any kind of best reply. Moreover the previous lemmas holds true
independently of the value taken by ǫ.

4.3.5 Proof of the theorem

We rephrase here Theorem 11 for Γ ∈ Γ
D−4. The proof given covers a particular

subset of games but similar proofs can easily be constructed to extend the proof to
the full family of games Γ.

Theorem 1 (Disambiguation of equilibria in Γ ∈ Γ
D−4).

For all Γ ∈ Γ
D−4 and all (quasi-) proper Ellsberg equilibrium e =

(
[p1, p2], [q1, q2]

)
in

Γ, there exists a unique pair (kr, kt) ∈ [0, 1]× [0, 1] for which there exists a sequence
of Ellsberg strategy profiles {e(ǫ)} induced by equilibria in Γ∗(ǫ) with

lim
ǫ→0

e(ǫ) = e.

Proof. Take any Γ ∈ Γ
D−4. Let {Γ∗(ǫt)}∞t=1 be a sequence of disturbed games for

which ǫt := 1
t

for all t ∈ N. This sequence is defined such that limt→∞ Γ∗(ǫt) = Γ. By
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Lemma 31, for all (kr, kt) ∈ [0, 1]×[0, 1] there exists ǫ > 0 such that for all ǫ < ǫ there
exist equilibria in maxmin strategies in the disturbed game. Let T be the smallest
t ∈ N such that ǫt < ǫ. There exists hence a sequence of equilibria {e(ǫt)}∞t=T , one
for each disturbed game in {Γ∗(ǫt)}∞t=T , for which ǫt → 0 when t → ∞. From now
on, this sequence is denoted {e(ǫ)}. There remains to show that for all (quasi-)
proper Ellsberg equilibrium e in Γ, there exists (kr, kt) ∈ [0, 1]× [0, 1] such that this
sequence has the right limit.

By the definition of Γ
D−4, we have for all (quasi-) proper Ellsberg equilibria

e =
(
[p1, p2], [q1, q2]

)
that p2 = p∗ and q2 = q∗. Riedel and Sass (2013) have shown for

such games that e is a (quasi-) proper Ellsberg equilibrium if and only if A ≤ p1 ≤ p∗

and C ≤ q1 ≤ p∗. Consider any p1 and q1 satisfying those constraints.
Take any (quasi-) proper Ellsberg equilibria e =

(
[p1, p2], [q1, q2]

)
for game Γ.

Let kr ∈ [0, 1] be such that for some r∗ ∈ [−1, 1], we have pmin(r
∗) = p1 and

pmax(r
∗) = p2. Let kt ∈ [0, 1] be such that for some t∗ ∈ [−1, 1], we have qmin(t

∗) = q1
and qmax(t

∗) = q2. By Lemma 33, the pair (kr, kt) ∈ [0, 1]×[0, 1] exists and is unique.
By Lemma 32, the associated pair (r∗, t∗) is also unique.

By Lemmas 27 and 30, there exists a sequence of Ellsberg strategy profiles
e(ǫ) =

(
[pmin(ǫ), pmax(ǫ)], [qmin(ǫ), qmax(ǫ)]

)
induced by equilibria in the sequence

of disturbed games such that

lim
ǫ→0

pmax(ǫ) = p∗, and

lim
ǫ→0

qmax(ǫ) = q∗.

By Lemma 32, this can only be the case if the sequence of thresholds {(r∗(ǫ), t∗(ǫ))}
associated to the sequence of maxmin strategies equilibria by conditions (4.15) to
(4.18) is such that

lim
ǫ→0

{(r∗(ǫ), t∗(ǫ))} = (r∗, t∗).

By the construction of (kr, kt), this implies

lim
ǫ→0

pmin(ǫ) = p1, and

lim
ǫ→0

qmin(ǫ) = q1.

This shows limǫ→0 e(ǫ) = e and the equilibrium is disambiguable.
�

4.3.6 Adapting the proof for other games in Γ

The proof presented was designed for games in Γ
D−4. It did not cover games of class

I nor some games in class II. We do not provide here a proof for those games but
discuss shortly what parts of the proof need to be adatped.

Extending the proof to games in Γ
II−D that do not belong to Γ

D−4 is easy. The
unique adaptations relates to the extreme point occupied by the indifference strategy
in the equilibrium Ellsberg strategy. These extreme points are given in Table 4.1.



4.4. AN EXAMPLE OF DISAMBIGUATION 209

p

q 1-q

1-p

U

D

RL

0, 0

0, 01, 2

2, 1

Γ3

Figure 4.4: Symmetric “Battle of the Sexes” game Γ3 ∈ Γ
D−4 for which p∗ = 2

3
,

p̄ = 1
3
, q∗ = 2

3
and q̄ = 1

3
.

Games of class I are such that their disturbed versions admit equilibria in pure
strategies. The conditions under which a pure strategy in the disturbed game is a
best reply are given in Appendix 4.6.4. These conditions rely on a unique threshold
and only pure strategies of the basic games are used. As a result, equilibrium
conditions are simpler than expressed in Lemma 26. The only difficulty is to select
the appropriate threshold among the two thresholds implied by the induced Ellsberg
strategies. The selection procedure is given in Lemma 34 (see Appendix 4.6.4).
There is no need to search for simpler conditions for small disturbances as only one
threshold defines a pure strategy in the disturbed game. The proof of existence of
equilibrium follows exactly the same lines. The major difference is that A and B
are replaced respectively by 0 and 1 (and so are C and D).

Games of class II that do not belong to Γ
II−D are hybrid in the sense that the

best reply of one player is a pure strategy whereas the one of the other is a maxmin
strategy. As a result, the proof for this case will borrow elements from the proof for
games of class I and games in Γ

II−D.

4.4 An example of disambiguation

In this section, we illustrate the disambiguation of proper Ellsberg equilibria in the
symmetric game Γ3 ∈ Γ

D−4 of the type “Battle of the sexes”, illustrated in Figure
4.4. For this game, the expected utilities are given by:

U1(p, q) = 2p+ q(1− 3p),

U2(q, p) = 2q + p(1− 3q).

The indifference strategies are p∗ = q∗ = 2
3

and the maxmin strategies are p̄ = q̄ = 1
3
,

which confirms that Γ3 belongs to Γ
D−4. Riedel and Sass (2013) have shown that

for this coordination game, the set of Ellsberg equilibrium is
{(

[p1,
2
3
], [q1,

2
3
]
)1

3
≤

p1, q1

}
.10

10Our game Γ3 belongs to the set of games Riedel and Sass (2013) cover if one inverses the two
columns. Therefore, Γ3 is such that p̄ ≤ p∗ and (1 − q)∗ ≤ (1− q).
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ǫr2 = ǫr∗

p
0 1

U1

b

b

bb

p∗p̄

ǫr1

U1(p, qmin)

U1(p, qmax)

Figure 4.5: Thresholds value r1 and r2 for a given Ellsberg strategy [qmin, qmax].

4.4.1 Equilibria in a disturbed game

Consider the disturbed game Γ∗(ǫ) obtained by attaching disturbances ǫr and ǫt to
the payoffs associated to the pure strategies U and L respectively. The realization of
the disturbances is private information. The domains Pr and Pt, in which the prob-
ability distributions of the ambiguous variables r and t lie, are common knowledge.
Let their basic densities f br and f bt be the uniform densities on [−1, 1]:

Pr :=

{
f ∈ F


1− kr

2
≤ f(x) ≤

1 + kr
2

for all x ∈ [−1, 1]

}
,

Pt :=

{
f ∈ F


1− kt

2
≤ f(x) ≤

1 + kt
2

for all x ∈ [−1, 1]

}
.

We compute equilibrium strategies in the disturbed game, as a function of the
ambiguity parameters kr and kt. As shown in Lemma 24, the strategy picked by
player 2 will appear to player 1 as an Ellsberg strategy [qmin, qmax]. By Lemma 25,
her best reply to [qmin, qmax] is a maxmin strategy characterized by two thresholds
r1 and r2. These two thresholds are illustrated in Figure 4.5. As shown in Lemma
30, for sufficiently small ǫ, a unique threshold value lies in the support of r. This
threshold r∗ is the one associated with qmax, because q∗ = 2

3
is the upper bound of

the equilibrium Ellsberg strategy of player 2. The best reply to [qmin, qmax] is a pure
strategy whose threshold r∗ is obtained in equation (4.27). For player 2, the best
reply to [pmin, pmax] is a pure strategy whose threshold t∗ is obtained in equation
(4.28).

ǫr∗ = U1(0, qmax)− U1(1, qmax) = 3qmax − 2, (4.27)

ǫt∗ = U2(0, pmax)− U2(1, pmax) = 3pmax − 2. (4.28)

Thresholds r∗ and t∗ completely characterize the equilibrium strategies of the players
for small disturbances. Our objective is therefore to compute their values as a
function of the parameters of the game.
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By simplifying equation (4.14) in Lemma 26, we have:11

qmax = max
f∈Pt

∫ t∗

−1

1

3
f(t)dt+

∫ 1

t∗
1f(t)dt

=

(
1− (1− t∗)

1 + kt
2

)
1

3
+ (1− t∗)

1 + kt
2

1

=
1

3

(
2− t∗(1 + kt) + kt

)

Similarly, we obtain for pmax:

pmax = max
f∈Pr

∫ r∗

−1

1

3
f(r)dr +

∫ 1

r∗
1f(r)dr =

1

3

(
2− r∗(1 + kr) + kr

)

Replacing in equations (4.27) and (4.28), the values of qmax and pmax found above,
we obtain a system of two equations:

{
ǫr∗ = kt − t∗(1 + kt),
ǫt∗ = kr − r∗(1 + kr).

Solving this system yields:
{
r∗ = ǫkt−kr(1+kt)

ǫ2−(1+kr)(1+kt)
,

t∗ = ǫkr−kt(1+kr)
ǫ2−(1+kt)(1+kr)

.

This last system of equations characterizes for small ǫ the equilibrium strategies in
the disturbed game, as a function of the size of the disturbance ǫ and the ambiguity
parameters kr and kt. When the disturbance ǫ tends to 0, we have:

lim
ǫ→0

r∗ =
kr

1 + kr
, (4.29)

lim
ǫ→0

t∗ =
kt

1 + kt
. (4.30)

4.4.2 The sequence of equilibria

The equilibrium strategy of player 2, characterized by t∗, is perceived by player 1
as an Ellsberg strategy [qmin, qmax]. Alternatively, player 2 perceives the strategy
of player 1 characterized by r∗ as an Ellsberg strategy [pmin, pmax]. We computed
above that:

qmax =
1

3

(
2− t∗(1 + kt) + kt

)
, (4.31)

pmax =
1

3

(
2− r∗(1 + kr) + kr

)
. (4.32)

11The second expression is valid when t∗ has a positive value, which is verified for small ǫ by
equation (4.30).
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Similarly, we derive:

qmin =
1

3

(
2− t∗(1− kt)− kt

)
, (4.33)

pmin =
1

3

(
2− r∗(1− kr)− kr

)
. (4.34)

Replacing in equations (4.31) to (4.34) variables t∗ and r∗ by their values allows to
compute the sequence {e(ǫ)} of induced Ellsberg strategy profiles in the disturbed
game Γ∗(ǫ). Theorem 11 proved that for all proper equilibria e of Γ, we can find a
pair (kr, kt) ∈ [0, 1]× [0, 1] such that limǫ→0{e(ǫ)} = e. Replacing r∗ and t∗ by their
value in the limit, we obtain:

lim
ǫ→0

(
[pmin, pmax], [qmin, qmax]

)
=

([
2

3

1

1 + kr
,
2

3

]
,

[
2

3

1

1 + kt
,
2

3

])
(4.35)

Remember that all proper Ellsberg equilibrium of this game are of the form e =(
[p1,

2
3
], [q1,

2
3
]
)

with 1
3
≤ p1, q1. For kr = 0, we have pmin = 2

3
and for kr = 1, we

have pmin = 1
3
. Since function pmin is strictly monotone in kr between these two

bounds, and since the same is true for function qmin and kt, any Ellsberg equilibrium
in Γ3 can be disambiguated for a unique pair (kr, kt).

4.5 Concluding Remarks

Riedel and Sass (2013) have introduced Ellsberg games and proposed a solution
concept that they call Ellsberg equilibrium. It is a coarsening of Nash equilibrium.
Any Nash equilibrium is an Ellsberg equilibrium but the converse does not hold:
(quasi-) proper Ellsberg equilibria are not Nash equilibria. For the class of 2×2
normal form games that we consider, Harsanyi (1973) has shown that all Nash
equilibria in mixed strategies can be purified. Our Disambiguation Theorem shows
that all (quasi-) proper Ellsberg equilibria can be disambiguated. Moreover, for
games of class I, all (quasi-) proper Ellsberg equilibria can be purified. In that
sense, our result extends that of Harsanyi.

Generalizing our theorem beyond 2×2 normal games can unfortunately not be
done using the mathematical technique of Harsanyi. In effect, ambiguity averse
players perform non-smooth evaluations of ambiguous outcomes. We can neverthe-
less see no fundamental reason why this generalization could not be performed, even
though some challenging obstacles need to be overcome.

4.6 Appendix

4.6.1 Proof of Lemma 22

Proof. A proof of claim 1 can be found in Fudenberg and Maskin (1991). We prove
claim 2: if player 1’s payoffs are not Column Dominant in game Γ then p̄ ∈ (0, 1)



4.6. APPENDIX 213

and U1(p̄, q) = U1(p̄, q
′) for all q, q′ ∈ [0, 1].

Geometrically, given the strategy q chosen by player 2, the expected utility
U q
1 (p) := U1(p, q) defines a line in [0, 1] × R. If we allow the domain of q to be

R, this line is defined in R2. The family of such lines {U q
1 (p)}q∈[0,1] has the property

of Unique Intersection.

Property 1 (Unique Intersection).
Let {U q

1 (p)}q∈[0,1] be a family of lines defined in R2. The family has the property of
unique intersection if there exists a point (p̃, u1) ∈ R2 at which all members of the
family intersect.

This unique intersection (p̃, u1) is hence such that for all q ∈ [0, 1], the point
(p̃, u1) ∈ U q

1 (p).
We show now that family {U q

1 (p)}q∈[0,1] has a unique intersection (p̃, u1). Player
1’s expected utility can be rewritten:

U1(p, q) = π4
1 + q

(
(π3

1 − π4
1) + p(π1

1 − π2
1 − π3

1 + π4
1)
)
+ p(π2

1 − π4
1).

The value p̃ at which an intersection takes place is therefore the solution of the
following equation:

(π3
1 − π4

1) + p̃(π1
1 − π2

1 − π3
1 + π4

1) = 0.
As there are no weakly dominant strategies in Γ, player 1’s payoff are not Row
Dominant and hence two cases can arise.

• Case A: π1
1 > π3

1 and π2
1 < π4

1 .

The solution p̃ of last equation belongs to (0, 1) if either π1
1 > π2

1 and π3
1 < π4

1

or π1
1 < π2

1 and π3
1 > π4

1. This means p̃ ∈ (0, 1) if player 1’s payoff are not
Column Dominant. Therefore the factor π1

1 − π2
1 − π3

1 + π4
1 is different from

zero. As a result the solution p̃ is unique.

• Case B: π1
1 < π3

1 and π2
1 > π4

1

A parallel argument can be made to show p̃ ∈ (0, 1) and is unique.

We now prove for games with p̃ ∈ (0, 1) that this intersection is the maxmin
strategy, that is p̃ = p̄. By definition of indifference strategy q∗, we have for all p ∈
[0, 1] that U1(p, q

∗) = U1(p̃, q
∗) = u1 and hence U q∗

1 (p) is flat: U1(0, q
∗)−U1(1, q

∗) =
0. As player 1 has no weakly dominant strategy, the difference U1(0, q) − U1(1, q)
is strictly monotone in q. This implies q∗ is the only value for which U q

1 (p) is flat.
We showed that q∗ ∈ (0, 1), implying there exist hence q′ and q′′ in [0, 1] such that
q′ < q∗ < q′′. By strict monotonicity of the difference U1(0, q) − U1(1, q), we have

that among the two lines U q′

1 (p) and U q′′

1 (p), one is strictly increasing and the other
strictly decreasing. Therefore, as p̃ ∈ (0, 1), for any p ∈ [0, 1] with p 6= p̃ there exists
q ∈ [0, 1] with q 6= q∗ such that U q

1 (p) < U q
1 (p̃). The maxmin strategy p̄ is hence

at the intersection p̃. This completes the proof as we showed that utility in p̃ is
independent of q. The proof of claim 3 is done using the same argument.

�
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4.6.2 Proof of Lemma 23

Proof. We assume without loss of generality that p1 < p2. First, we show q∗ ∈
{q1, q2}. As shown in Lemma 22, for all Γ ∈ Γ, we have that q∗ ∈ (0, 1) and is
unique. The Ellsberg strategy [p1, p2] is a best reply to [q1, q2], if and only if we have
for all p ∈ [p1, p2] there exists no p′ ∈ [0, 1] such that U1

(
p′, [q1, q2]

)
> U1

(
p, [q1, q2]

)
.

Being ambiguity averse, player 1 must be indifferent between all mixed strategies
inside the Ellsberg strategy [p1, p2] she plays. Formally, for all p, p′ ∈ [p1, p2] we have

U1

(
p′, [q1, q2]

)
= U1

(
p, [q1, q2]

)
.

As U1

(
p, [q1, q2]

)
= min

(
U1(p, q1), U1(p, q2)

)
(equation (4.1)), we must have either

• U1(p, q1) is constant (implying q1 = q∗) and U1(p, q1) ≤ U1(p, q2) for all p ∈
[p1, p2], or

• U1(p, q2) is constant (implying q2 = q∗) and U1(p, q2) ≤ U1(p, q1) for all p ∈
[p1, p2].

Therefore we have q∗ ∈ {q1, q2}.
Second, we show p∗ ∈ {p1, p2}. If [q1, q2] is a proper Ellsberg strategy, then the

reasoning above proves it. We show it holds as well if the equilibrium is quasi-
proper, that is q1 = q2. From the previous reasoning, this implies q1 = q2 = q∗. The
Ellsberg strategy q∗ is a best reply to [p1, p2], if and only if there exists no q′ ∈ [0, 1]
such that U2

(
q′, [p1, p2]

)
> U2

(
q∗, [p1, p2]

)
. Remember we have U2

(
q, [p1, p2]

)
=

min
(
U2(q, p1), U2(q, p2)

)
. Function U2(q, p) is linear in q. We show that if p∗ /∈

{p1, p2}, we have a contradiction.

• If U2(q, [p1, p2]) is strictly increasing in q on [0, 1], then best reply is q1 = q2 = 1,
and since q∗ 6= 1 for all Γ ∈ Γ, we have a contradiction.

• If U2(q, [p1, p2]) is strictly decreasing in q on [0, 1], then best reply is q1 = q2 =
0, and since q∗ 6= 0, we have another contradiction.

• If U2(q, [p1, p2]) is strictly increasing in q on one portion of [0, 1] and stricly
decreasing on the other, then the best reply is q̄. In effect, by the property of
Unique Intersection, U2(q, p1) and U2(q, p2) must then intersect in (q̄, u2) and
U2(q, [p1, p2]) has maximal value for q = q̄. As for all Γ ∈ Γ, q∗ 6= q̄, we have
yet another contradiction.

The only possibility for q∗ to belong to best replies is that either U2(q, p1) or U2(q, p2)
is constant in q, which implies p∗ ∈ {p1, p2}. �

4.6.3 Proof of Lemma 24

Proof. We show that for all p ∈ [pmin, pmax], there exists a density f ∈ Pr such that

p =

∫ 1

−1

pb(r)f(r)dr.
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The domain Pr is convex. This means that for all f1, f2 ∈ Pr, distribution f3 defined
as f3(r) := λf1(r)+(1−λ)f2(r) belongs to Pr. The mapping

∫ 1

−1
pb(r)f(r)dr is linear

in f . As the image of a convex set through a linear mapping is a convex set, the
image of Pr through this mapping is convex. In the real line, a convex set is an
interval. As Pr is closed, so must be its image

[
pmin, pmax

]
. �

4.6.4 Best replies in disturbed game

For all Γ ∈ Γ such that player 1’s payoffs are Column Dominant, the following
lemma provides conditions under which a pure strategy of player 1 is a best reply
to a strategy of player 2 inducing [qmin, qmax].

12

Lemma 34 (Best-Reply in pure strategy).
For all ǫ > 0 and all Γ ∈ Γ such that player 1’s payoffs are Column Dominant,
the strategy pb is a best reply to any [qmin, qmax] ⊆ [0, 1] if it is a pure strategy
pb = r∗ ∈ S1

pu defined by:

ǫr′ = U1(0, qmin)− U1(1, qmin),

ǫr′′ = U1(0, qmax)− U1(1, qmax),

r∗ =

{
max(r′, r′′) if |π3

1 − π4
1| ≤ |π1

1 − π2
1 |,

min(r′, r′′) otherwise.

Proof. The proof is only provided for the conditions on player 1’s payoffs leading to
r∗ = max(r′, r′′). Those conditions ensure that the solution to equation (π3

1 − π4
1) +

p(π1
1 − π2

1 − π3
1 + π4

1) = 0, which yields the unique intersection p̃, is non-positive.
Therefore the relevant threshold among r′ and r′′ is the largest one.13

Take any ǫ > 0, any [qmin, qmax] ⊆ [0, 1] and any Γ ∈ Γ such that

• player 1’s payoffs are Column Dominant, and

• the solution to equation (π3
1 − π4

1) + p(π1
1 − π2

1 − π3
1 + π4

1) = 0 is non-positive.

Given equations (4.1) and (4.2), we have

U1

(
p, [qmin, qmax], ǫr

)
= min

(
U1(p, qmin, ǫr), U1(p, qmax, ǫr)

)

= min
(
U1(p, qmin) + pǫr, U1(p, qmax) + pǫr

)

where U1(p, q, ǫr) is linear in p since U1(p, q) is linear in p. For the considered Γ, p̄
is not a proper mixed strategy and the unique intersection of U1(p, q1) and U1(p, q2)
is in (p̃, u1) with p̃ ≤ 0. Therefore, if qmin 6= qmax, we have two possible cases:

12In Lemma 34, the conditions under which the expression max(r′, r′′) is used for r∗ are such
that the solution p of the implicit equation U1(p, 0) = U1(p, 1) is non-positive. The conditions
under which the expression min(r′, r′′) is used for r∗ are such that the solution p of the implicit
equation U1(p, 0) = U1(p, 1) is equal or larger than 1.

13If qmin = qmax then r∗ = r′ = r′′. But if qmin < qmax, two cases can arise: either U1(p, qmin) <
U1(p, qmax) for all p ∈ (0, 1] or U1(p, qmin) > U1(p, qmax) for all p ∈ (0, 1]. Assume that the game
Γ is such that the first of these two cases arises. The relevant threshold r∗ is therefore r′ associated
to qmin. Under the payoff conditions leading to r∗ = max(r′, r′′), U1(p, qmin) and U1(p, qmax)
are two straight lines which cross at p̃ ≤ 0. As a result, we have U1(0, qmin) − U1(1, qmin) >
U1(0, qmax)− U1(1, qmax). The other case leads to the same conclusion.
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• Case A: U1(p, qmin) > U1(p, qmax) for all p ∈ (0, 1),

• Case B: U1(p, qmin) < U1(p, qmax) for all p ∈ (0, 1).

Let q̂ := qmax if we are in case A and q̂ := qmin if we are in case B. The mixed
strategy q̂ ∈ {qmin, qmax} is the one associated with the minimal utility for player 1,
the one she takes into account in front of ambiguity. We have hence

U1

(
p, [qmin, qmax], ǫr

)
= U1(p, q̂) + pǫr.

From the definition of q̂ and the definition of r∗ in the statement of the lemma, we
have ǫr∗ = U1(0, q̂)−U1(1, q̂), which can be rewritten U1(0, q̂)+0ǫr∗ = U1(1, q̂)+1ǫr∗

implying that:

1. U1(0, q̂) + 0ǫr > U1(1, q̂) + 1ǫr for all r < r∗,

2. U1(0, q̂) + 0ǫr < U1(1, q̂) + 1ǫr for all r > r∗.

As U1(p, q̂) + pǫr is a linear function of p, the best reply to all r < r∗ is p = 0 and
the best reply to all r > r∗ is p = 1. If r = r∗ then U1(p, q̂) + pǫr is a constant and
any p ∈ [0, 1] is a best reply, and in particular p = 0. �

For all Γ ∈ Γ such that player 2’s payoffs are Row Dominant, there exists similar
conditions under which a pure strategy of player 2 is a best reply to a strategy of
player 1 inducing [pmin, pmax].

14

14For for all Γ ∈ Γ such that player 2’s payoffs are Row Dominant, those conditions are obtained
for pure strategies of player 2 by replacing π1

1 by π1
2 , π

4
1 by π4

2 , π
2
1 by π3

2 and π3
1 by π2

2 .
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