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Abstract

Riedel and Sass (2013) study complete information normal form
games in which ambiguity averse players use ambiguous randomiza-
tion strategies, in addition to pure and mixed strategies. The solution
concept they propose, the Ellsberg equilibrium, is a coarsening of the
classical Nash equilibrium. We provide a foundation of the new equi-
librium concept in the spirit of Harsanyi. We prove an extension of
the Purification Theorem for 2x2 normal form games. Our result im-
plies that any Ellsberg equilibrium of such game is the limit case of
a mixed strategy equilibrium in a disturbed version of the game for
which payoffs are ambiguously disturbed.
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1 Introduction

The presence of ambiguity in strategic interactions has recently received in-
creasing attention. There have been attempts to allow for ambiguous acts or
beliefs in games. For complete information normal form games, two strands of
literature can be distinguished. The first strand, which has been introduced
by Lo (1996), Marinacci (2000) and Eichberger and Kelsey (2000), consid-
ers subjective ambiguity. Ambiguity is introduced in the beliefs players hold
about the strategies adopted by their opponents. This strand extends the
belief interpretation of Nash equilibria by allowing for equilibria in ambigu-
ous beliefs. A disadvantage of these equilibria is that they leave unanswered
the question of which strategy profile is played in equilibrium. The second
strand, introduced more recently by Riedel and Sass (2013), considers ob-
jective ambiguity. The set of available strategies is expanded to ambiguous
randomization strategies – called Ellsberg strategies – which are convex sets
in the space of mixed strategies. Players may therefore render their strategy
objectively ambiguous. Riedel and Sass (2013) call such an extended game
an Ellsberg game. The solution concept proposed is the Ellsberg equilibrium:
players play a best response to the Ellsberg strategy of their opponent. As
a consequence, the Ellsberg equilibrium is a more general solution concept
than the Nash equilibrium.

In Ellsberg games, existence of Ellsberg equilibria follows from the exis-
tence of Nash equilibria. Riedel and Sass (2013) have shown that in addition
to the Nash equilibria, new Ellsberg equilibria may arise in which players use
proper Ellsberg strategies. Interestingly, in games with at least three players,
some of these new equilibria yield outcomes that cannot be reached under
Nash equilibria. In other words, their solution concept expands the support
of the outcomes. Riedel and Sass (2013) show this last point by means of an
example taken from Greenberg (2000). In the example, two small countries
decide for themselves whether to engage in a war against each other, or to
stay at peace. A superpower tries to negotiate for peace by threatening to
punish one of them in case war breaks out. Being unable to identify which
country is responsible when war breaks out, the superpower’s best reply is
to punish one of the two countries picked at random with probability one
half. As a result, the only Nash equilibrium has the small countries engage
in war. If the superpower had the possibility to “remain silent” and could be
sufficiently ambiguous about which country it would punish, a new Ellsberg
equilibrium would appear, with peace as the unique outcome. Because the
two small countries are pessimistic in the face of ambiguity, each country
assigns a high probability to being punished in case of war, and hence do
not engage in a war. Greenberg argues that such outcome would be more
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realistic.
We provide an alternative interpretation for Ellsberg equilibria. Ellsberg

equilibria generalize mixed strategy equilibria. Mixed strategies play a cen-
tral role in game theory. Without mixing, it would for instance be impossible
to assign values to zero-sum games or to find Nash equilibria in more general
strategic interactions.

The classic interpretation of a mixed strategy was introduced by John
von Neumann and relies on the use of an objective randomization device.
Riedel and Sass (2013) put forward a direct generalization of von Neumann’s
idea to ambiguous strategies by allowing players to use Ellsberg urns with
given parameters. That is, players base their actions on the outcome of an
Ellsberg urn experiment where the probabilities are only known up to some
bounds. While such a construction makes perfect sense in theory, one might
wonder whether it would be implementable in actual games.

Even in its classic form (i.e. not allowing for ambiguity and the use of
Ellsberg urns), the objective randomization device interpretation has been
questioned and criticized. While deliberate use of a random device makes
sense in a strictly competitive game (Neumann, 1928), it might be more ques-
tionable in more cooperative situations like a coordination game (Schelling,
1980).

There exists however an interesting alternative interpretation of mixed
strategies. Harsanyi (1973) has shown that mixed strategy equilibria may be
viewed as limits of pure strategy equilibria in a slightly disturbed game where
players have private information about their payoffs. In this paper, we show
how one can purify, or at least disambiguate, Ellsberg equilibria in the spirit
of Harsanyi’s approach. We show that Ellsberg equilibria can be viewed
as limits of equilibria in slightly disturbed games where the disturbances
are ambiguous. The Disambiguation Theorem we prove is an extension of
Harsanyi’s Purification Theorem.

We confine our analysis to two-players games with two actions for each
player. We identify one class of games where one can purify the Ellsberg equi-
libria. As in Harsanyi (1973), the players use pure strategies of a threshold
type in the disturbed version of the game. From the perspective of an out-
side observer, these actions induce, in the limit, the same set of probability
distributions as the Ellsberg equilibrium.

For the games outside this class, we disambiguate the Ellsberg equilibria
in the following way. In the disturbed games, players best reply using their
two pure strategies and their maxmin strategy. The maxmin strategy plays
a key role in Ellsberg games as it allows players to hedge against Knightian
uncertainty. The appearance of such maxmin strategies is therefore natural
in our context. Again, we can show that from the perspective of an outside
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observer, the induced distributions of actions coincide in the limit with the
distributions of the Ellsberg equilibrium.

We draw the reader’s attention to the limitations of the Disambiguation
Theorem we prove. It is less general than Harsanyi’s theorem in two ways.
First, its scope is limited to 2×2 normal form games, whereas Harsanyi’s
theorem is valid for all finite n-player non-cooperative games. Harsanyi’s
technique cannot be adapted to the case of multiple priors we study because
it relies on smoothness of the payoff functions, which is lost when one uses
a multiple prior representation for preferences. Second, in our setting, the
payoffs associated to a given strategy are subject to identical disturbances,
whereas disturbances are independent in Harsanyi’s setting.

The paper is organized in three parts. In section 2, we introduce the defi-
nitions and notation. In section 3, we present and prove our Disambiguation
Theorem. Finally, in section 4, we provide an example of disambiguation for
a particular 2×2 coordination game.

2 Definitions and notation

We first present the basic 2×2 normal form Ellsberg game. We first describe
the ambiguous randomization strategies available to players, how these play-
ers behave in the face of ambiguity and provide the definition of Ellsberg
equilibria. Then, we delimit the class of games considered. Finally, we de-
scribe the disturbed versions of the basic game, the strategies available to
players in these disturbed versions, and we show that these strategies are
perceived as Ellsberg strategies by external observers.

2.1 The basic game Γ

The games we consider are 2×2 normal form games, illustrated in Figure 1.
Basic notation and definitions for these games are as follows:

• Let p, q ∈ [0, 1] denote the mixed strategy of player 1 and 2 respectively.

• Let the pair (p, q) ∈ [0, 1]× [0, 1] denote a mixed strategy profile.

• Player i’s expected utility for the strategy profile (p, q) is Ui(p, q) with
Ui(p, q) = pqπ1

i + p(1− q)π2
i + (1− p)qπ3

i + (1− p)(1− q)π4
i .

• For player 1, strategy p is a best reply to q if U1(p, q) ≥ U1(p
′, q) for all

p′ ∈ [0, 1].
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Figure 1: Normal form of the basic 2×2 game Γ.

• Strategy profile (p, q) is a Nash equilibrium if p and q are mutual best
replies.

In Ellsberg games, in addition to pure and mixed strategies, players can
use ambiguous randomization strategies called Ellsberg strategies. For 2×2
games, an Ellsberg strategy is a closed interval [a, b] in the probability space
[0, 1]. If player 1 plays an Ellsberg strategy, she plays the pure strategy U with
a probability inside [a, b], but the exact point in that interval is objectively
ambiguous to player 2 and herself. It is as-if the player uses an Ellsberg urn
– an ambiguous randomization device – to decide on the action to take.

• Player 1’s set of Ellsberg strategies is E1 := {[p1, p2] | 0 ≤ p1 ≤ p2 ≤ 1}
with generic element e1 := [p1, p2]. Analogously, for player 2 we have
E2 := {[q1, q2] | 0 ≤ q1 ≤ q2 ≤ 1} with generic element e2 := [q1, q2].

Observe that mixed strategies belong to the set of Ellsberg strategies.
The Ellsberg strategy [p1, p2] is a proper Ellsberg strategy if the interval
is non-degenerate: p1 < p2.

• Let the pair e := (e1, e2) =
(
[p1, p2], [q1, q2]

)
∈ E1 × E2 denote an

Ellsberg strategy profile.

The decision making of agents confronted with ambiguous outcomes de-
pends on their attitudes with respect to ambiguity. Some empirical evidence
summarized in Camerer and Weber (1992) suggests that agents are ambi-
guity averse, i.e. agents are pessimistic in the face of multiple priors. In
decision theory, Gilboa and Schmeidler (1989) have shown that ambiguity
averse agents evaluate ambiguous outcomes by considering the worst point
in their set of priors. Their decision rule is therefore of the maxmin type.
More recently, Gajdos et al. (2008) have axiomatized the minimal expected
utility evaluation of ambiguous outcomes for strategic settings.
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We assume players are ambiguity averse. Given the result of Gilboa and
Schmeidler (1989), players expected utility is therefore computed based on
the worst point in the interval.

• Player 1’s expected utility for the strategy profile (e1, e2) is:

U1(e1, e2) = min
p∈e1,q∈e2

U1(p, q)

By the linearity of U1(p, q), we have:

U1

(
p, [q1, q2]

)
= min

(
U1(p, q1), U1(p, q2)

)
(1)

• For player 1, strategy e1 is a best reply to e2 if U1(e1, e2) ≥ U1(e
′
1, e2)

for all e′1 ∈ E1.

• Strategy profile e = (e1, e2) is an Ellsberg equilibrium if e1 and e2 are
mutual best replies.

• The equilibrium e = (e1, e2) is a proper Ellsberg equilibrium if both
equilibrium strategies are proper Ellsberg strategies. It is a quasi-
proper Ellsberg equilibrium if only one equilibrium strategy is a proper
Ellsberg strategy and the other strategy is a mixed strategy.

2.2 The class of games considered

We restrict our attention to 2×2 normal form games satisfying two restric-
tions. First, we assume that no player has a weakly dominant strategy. As
shown by Harsanyi (1973), games with weakly dominant strategies admit
Nash equilibria that cannot be purified. Discarding weakly dominant strate-
gies rules out games that are Row Dominant for player 1 and games that are
Column Dominant for player 2.

Definition 1 (Row Dominant).
Player i’s payoffs in Γ are row dominant if (π1

i − π3
i )(π

2
i − π4

i ) ≥ 0.

Definition 2 (Column Dominant).
Player i’s payoffs in Γ are column dominant if (π1

i − π2
i )(π

3
i − π4

i ) ≥ 0.

The introduction of the second restriction requires some additional defi-
nitions. Riedel and Sass (2013) show that two types of mixed strategies play
an important role for (quasi-) proper Ellsberg equilibria. These strategies
are central in our disambiguation result.
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Definition 3 (Indifference Strategy).
Strategy p∗ is an indifference strategy for player 1 if:

U2(q, p
∗) = U2(q

′, p∗) for all q, q′ ∈ [0, 1].

Strategy q∗ is an indifference strategy for player 2 if:

U1(p, q
∗) = U1(p

′, q∗) for all p, p′ ∈ [0, 1].

In words, playing your indifference strategy makes your opponent indif-
ferent between all her mixed strategies q. By definition, the pair (p∗, q∗)
constitutes a Nash equilibrium in mixed strategies. As shown in Lemma 1,
all games satisfying No weakly dominant strategy have a unique equilibrium
in proper mixed strategies. Therefore, indifference strategies p∗ and q∗ exist
and are unique. Next, we define maxmin strategies.

Definition 4 (Maxmin Strategy).
Strategy p̄ is a maxmin strategy for player 1 if:

p̄ = arg max
p∈[0,1]

min
q∈[0,1]

U1(p, q).

Strategy q̄ is a maxmin strategy for player 2 if:

q̄ = arg max
q∈[0,1]

min
p∈[0,1]

U2(q, p).

In words, playing your maxmin strategy guarantees you the highest payoff
if your opponent aims at minimizing your payoff and anticipates your strategy
correctly. As shown by von Neumann and Morgenstern, maxmin strategies
exist in 2×2 games – they are unique for the games we consider – and the
maxmin stategy coincides with the indifference strategy in zero-sum games.

The maxmin strategy is a proper mixed strategy for the subset of games
characterized in statements 2 and 3 of Lemma 1. For these games, a player
using her maxmin strategy is “immunized” against her opponent’s strategy.
This implies that her maxmin strategy makes her indifferent between all her
opponent’s strategies. Such a strategy therefore yields a safe expected payoff.

Lemma 1.
Any game Γ with no weakly dominant strategies has the following properties.

1. Indifference strategies p∗ and q∗ are unique, maxmin strategies p̄ and q̄
are unique and p∗, q∗ ∈ (0, 1).

2. If player 1’s payoffs are not Column Dominant in game Γ, then p̄ ∈
(0, 1) and U1(p̄, q) = U1(p̄, q

′) for all q, q′ ∈ [0, 1].

7



3. If player 2’s payoffs are not Row Dominant in game Γ, then q̄ ∈ (0, 1)
and U2(q̄, p) = U2(q̄, p

′) for all p, p′ ∈ [0, 1].

Proof. See Appendix A.1. ■

Riedel and Sass (2013) show that for games in which indifference and
maxmin strategies coincide, a particular type of Ellsberg equilibria arises for
which the indifference strategy belongs to the interior of the Ellsberg strategy.
This type of Ellsberg equilibria can not be disambiguated. This should not
be seen as a problem however because these equilibria are non-robust.1 Our
second restriction rules out these games.2

Definition 5 (Class of games Γ).
A 2×2 normal form game Γ belongs to the class Γ if no player has a weakly
dominant strategy and for each player, the indifference and maxmin strategies
do not coincide.

As we show in Lemma 2, for all (quasi-) proper Ellsberg equilibria of
games in Γ and for each player, the indifference strategy lies at an extreme
point of the equilibrium Ellsberg strategy.

Lemma 2.
For all Γ ∈ Γ, if

(
[p1, p2], [q1, q2]

)
is a (quasi-) proper Ellsberg equilibrium,

then p∗ ∈ {p1, p2} and q∗ ∈ {q1, q2}.

Proof. See Appendix A.2. ■

The interpretation of our Disambiguation Theorem is different depending
on the class to which the game belongs. We divide our family of games into
two classes I and II, which are illustrated in Figure 2.

Definition 6 (Row and column dominance).
Consider any Γ ∈ Γ. If player 1’s payoffs are Column Dominant and player
2’s payoffs are Row Dominant, then Γ belongs to class I, otherwise Γ belongs
to class II.

1Slight perturbations to the payoffs destroy these equilibria.
2In terms of payoffs, p∗ ̸= p̄ is equivalent to

π4
2−π3

2

π4
2−π3

2+π1
2−π2

2
̸= π4

1−π3
1

π4
1−π3

1+π1
1−π2

1
and q∗ ̸= q̄

is equivalent to
π4
1−π2

1

π4
1−π2

1+π1
1−π3

1
̸= π4

2−π2
2

π4
2−π2

2+π1
2−π3

2
.
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2.3 The disturbed games Γ∗(ϵ)

For any basic game Γ ∈ Γ, we define a parametric family of disturbed games
whose generic member Γ∗(ϵ) is shown in Figure 3. Payoffs in Γ∗(ϵ) are affected
by the realization of ambiguous disturbances. The size of the disturbances is
parameterized by ϵ ≥ 0. When ϵ is zero, the disturbed game is equivalent to
the basic game. The ambiguous random variables r and t are private infor-
mation of player 1 and 2 respectively. Their common support is [−1, 1]. We
emphasize that the disturbances in Harsanyi (1973) are payoff-specific, which
is not the case in our framework. For simplicity, we require the disturbance
to be strategy-specific: the payoffs of outcomes associated to the same pure
strategy are subject to identical disturbances. As disturbances are strategy-
specific, they enter the evaluation of strategy profiles as an additional term
independent of the opponent’s strategy:

U1

(
p, [q1, q2], ϵr

)
= U1

(
p, [q1, q2]

)
+ pϵr, (2)

U2

(
q, [p1, p2], ϵt

)
= U2

(
q, [p1, p2]

)
+ qϵt. (3)

Observe that when maxmin strategies yield a safe payoff in the basic game,
they keep this property in the disturbed games:

U1

(
p̄, [q1, q2], ϵr

)
= U1

(
p̄, [q′1, q

′
2], ϵr

)
for all [q1, q2], [q

′
1, q

′
2] ∈ E2,

U2

(
q̄, [p1, p2], ϵt

)
= U2

(
q̄, [p′1, p

′
2], ϵt

)
for all [p1, p2], [p

′
1, p

′
2] ∈ E1.

Unlike in Harsanyi (1973), the density fr of the random variable r over her
support [−1, 1] is unknown. Players only have partial information about the
density fr. They only know the domain Pr of fr. The domain Pr summarizes
all of the information available to players about the density fr. We define Pr

to be a ball in the set of densities around a known basic density f b
r . The basic

density f b
r belongs to the set F of measurable densities with full support on

[−1, 1].

Pr :=
{
f ∈ F

f b
r (x)(1− kr) ≤ f(x) ≤ f b

r (x)(1 + kr) for all x ∈ [−1, 1]
}
.
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Figure 3: The normal form of the disturbed game Γ∗(ϵ) associated with the
basic game Γ. The realization of the disturbances r and t are the private
information of player 1 and 2, respectively.

The parameter kr ∈ [0, 1] can be interpreted as the radius of the ball since
kr defines the maximal deviation from the basic density. It measures the
level of ambiguity associated with the domain Pr. When kr = 0, density fr
is known – fr = f b

r – and there is no ambiguity. The ambiguity is maximal
for kr = 1. At this value, not all elements f ∈ Pr have full support. This
way of defining a domain from a basic density is a form of ϵ-contamination,
as defined in the literature on ambiguous variables (see Huber, P. (1981),
Eichberger and Kelsey (2000) or Maccheroni et al. (2006)). Analogously, the
random variable t has unknown density ft ∈ Pt and Pt is characterized by
the basic density f b

t and the ambiguity parameter kt ∈ [0, 1].
Strategies in the disturbed game Γ∗(ϵ) are functions from the space of

possible realizations of the disturbances to the set of mixed strategies.

• Let pb : [−1, 1] → [0, 1] be a generic strategy for player 1 in the dis-
turbed game. For player 1, the set of strategies in the disturbed game is
denoted by S1 and contains only measurable functions pb. Analogously,
a generic strategy for player 2 in the disturbed game is qb ∈ S2.

How do players perceive the strategy of their opponent in the disturbed
game? Suppose player 2 anticipates correctly the strategy pb of player 1.
Player 2 ignores the realization of r but knows the domain Pr in which fr lies.
For each density f ∈ Pr of the random variable r, strategy pb implies that
pure strategy U is played with a probability p. The probability of playing U is
minimal for the density in Pr that puts maximal weight on the realization of r
for which strategy pb prescribes low values of p. Let this minimal probability
be denoted by pmin. Conversely, a maximal probability pmax is implied by
the density in Pr that puts maximal weight on the realization of r for which
strategy pb prescribes high values of p. As Lemma 3 shows, all probabilities
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p ∈ [pmin, pmax] result from some density in Pr. Therefore, when player 2
believes that player 1 plays pb, player 2 anticipates that the probability that
player 1 uses strategy U lies in some interval of probabilities [pmin, pmax]. In
other words, player 2 perceives player 1’s strategy as the Ellsberg strategy
[pmin, pmax]. In our terminology, this Ellsberg strategy is induced by the
strategy pb. Observe that if kr = 0, then pmin = pmax and the induced
strategy is a mixed strategy.

Lemma 3.
Any strategy pb ∈ S1 induces an Ellsberg strategy

[
pmin, pmax

]
⊆ [0, 1] defined

by:

pmin = min
f∈Pr

∫ 1

−1

pb(r)f(r)dr and pmax = max
f∈Pr

∫ 1

−1

pb(r)f(r)dr. (4)

Proof. See Appendix A.3. ■

Equivalently, any strategy qb ∈ S2 induces an Ellsberg strategy
[
qmin, qmax

]
.

A direct consequence of Lemma 3 and equations (2) and (3) is the following:
for player 2, the expected utility of playing q when player 1 uses the strategy
pb inducing

[
pmin, pmax

]
is given by:

U2(q, p
b, ϵt) = U2

(
q, [pmin, pmax]

)
+ qϵt. (5)

The equivalent equation for player 1 is:

U1(p, q
b, ϵr) = U1

(
p, [qmin, qmax]

)
+ pϵr. (6)

For brevity, we often refer to strategies pb and qb by the Ellsberg strategies
they induce, respectively

[
pmin, pmax

]
and

[
qmin, qmax

]
.

We now define best replies and equilibria in the disturbed games.

• Strategy pb is a best reply to strategy qb inducing
[
qmin, qmax

]
if we

have U1(p
b, [qmin, qmax

]
, ϵr) ≥ U1(p

b′ , [qmin, qmax

]
, ϵr) for all r ∈ [−1, 1]

and all pb
′ ∈ S1.

• The profile (pb, qb) is an equilibrium in the disturbed game Γ∗(ϵ) if pb

and qb are mutual best-replies. The corresponding induced Ellsberg
equilibrium is written e(ϵ) =

(
[pmin, pmax], [qmin, qmax]

)
.

Two categories of strategies in disturbed games are focal best replies,
namely pure and maxmin strategies. These strategies are monotone in the
realization of the ambiguous variable and are based on threshold values for
r and t.
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Definition 7 (Pure and maxmin strategies in a disturbed game).
The strategy pbpu is a pure strategy in S1

pu ⊂ S1 if there exists a single
threshold r∗ ∈ R such that:

pbpu(r) =

{
0 if r ≤ r∗,
1 if r > r∗.

The strategy pbmm is a maxmin strategy in S1
mm ⊂ S1 if there exist two

thresholds r1, r2 ∈ R such that:

pbmm(r) =


0 if r < r1,
p̄ if r1 ≤ r ≤ r2,
1 if r > r2.

In a disturbed game, pure strategies are a special case of maxmin strate-
gies. If the maxmin strategy p̄ is a pure strategy of the basic game, then a
maxmin strategy in the disturbed game is pure. Pure and maxmin strategies
in the disturbed game for player 2 are defined accordingly. For brevity, we
refer to maxmin strategies pbmm or qbmm by their two thresholds (r1, r2) or
(t1, t2).

3 The Disambiguation Theorem

This section presents and proves a disambiguation theorem for 2×2 normal
form games in Γ. This theorem is the central result of this paper. The
interpretation that our result gives to Ellsberg equilibria is contained in the
definition of purifiable and disambiguable equilibria.

Definition 8 (Purifiable and disambiguable equilibria).
Let e =

(
[p1, p2], [q1, q2]

)
be an Ellsberg equilibrium in Γ ∈ Γ.

• Equilibrium e is purifiable if for some pair (kr, kt) ∈ [0, 1] × [0, 1],
there exists a sequence of pure strategy equilibria in Γ∗(ϵ) inducing
outcomes e(ϵ) with

lim
ϵ→0

e(ϵ) = e.

• Equilibrium e is disambiguable if for some pair (kr, kt) ∈ [0, 1]×[0, 1],
there exists a sequence of maxmin strategy equilibria in Γ∗(ϵ) inducing
outcomes e(ϵ) with

lim
ϵ→0

e(ϵ) = e.

12



Notice that purifiable equilibria are a subset of disambiguable equilibria
as pure strategies in the disturbed games are a subset of maxmin strategies.

Theorem 1 (Disambiguation of Ellsberg equilibria).
All (quasi-) proper Ellsberg equilibria in games of class I are purifiable.
All (quasi-) proper Ellsberg equilibria in games of class II are disambiguable.

In the remainder of this section, we present a proof of Theorem 1. The
proof often requires considering different cases. For clarity, we focus on the
following subset of games.

Definition 9 (Subset ΓII−D of games of class II).
Let ΓII−D ⊂ Γ be the subset of games for which player 1’s payoffs are not
Column Dominant and player 2’s payoffs are not Row Dominant.

For these games, maxmin strategies p̄ and q̄ are proper mixed strategies.
We focus on these games because they are the most difficult case and best
illustrate the consequences of ambiguity. At the end of this section, we discuss
the small adaptations needed to extend the proof to other types of games in
Γ.

The proof is structured as follows. First, we provide sufficient conditions
for a strategy profile to be an equilibrium in a disturbed game. Second,
we show how these sufficient conditions simplify for small disturbances. For
small disturbances, there is a unique threshold per best reply that lies in
the support [−1, 1]. Third, we prove the existence of equilibria in disturbed
games for small disturbances. Then, abstracting from equilibrium condi-
tions, we show that, for small disturbances, any Ellsberg strategy potentially
involved in an Ellsberg equilibrium of the basic game can be induced by
a unique value of the ambiguity parameter. Finally, we bring all of these
findings together to prove the theorem.

3.1 Sufficient conditions for an equilibrium in Γ∗(ϵ)

In Harsanyi’s Purification Theorem, best replies to the realization of the
disturbances turn out to be in pure strategies. This needs not be the case
in our setting for which the induced strategies are Ellsberg strategies. For
games in ΓII−D, on top of their pure strategies, players best reply using their
maxmin strategies p̄ and q̄. Best replies of player 1 are monotone in r and
make use of her pure strategies and her maxmin strategy. For all games
for which player 1’s payoffs are not Column Dominant, Lemma 4 provides
conditions under which a maxmin strategy is a best reply to a strategy of
player 2 inducing [qmin, qmax].
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Lemma 4 (Best-Reply in maxmin strategies).
For all ϵ > 0 and all Γ ∈ Γ such that player 1’s payoffs are not Column
Dominant, strategy pb is a best reply to any [qmin, qmax] ⊆ [0, 1] if it is a
maxmin strategy pb = (r1, r2) ∈ S1

mm defined by:

ϵr′ =U1(0, qmin)− U1(1, qmin),

ϵr′′ =U1(0, qmax)− U1(1, qmax),

r1 = min(r′, r′′),

r2 = max(r′, r′′).

Proof. Take any ϵ > 0, any Γ ∈ Γ such that player 1’s payoffs are not Column
Dominant and any [qmin, qmax] ⊆ [0, 1]. Given equations (1) and (2), we have

U1

(
p, [qmin, qmax], ϵr

)
= min

(
U1(p, qmin, ϵr), U1(p, qmax, ϵr)

)
= min

(
U1(p, qmin) + pϵr, U1(p, qmax) + pϵr

)
where U1(p, q, ϵr) is linear in p since U1(p, q) is linear in p. Let q1 := qmin and
q2 := qmax if r1 = r′ and q1 := qmax and q2 := qmin otherwise. By definition
of r1 and r2 we have

U1(0, q
1) + 0ϵr1 = U1(1, q

1) + 1ϵr1 and U1(0, q
2) + 0ϵr2 = U1(1, q

2) + 1ϵr2.

Remembering that r1 ≤ r2, these definitions imply

• U1(1, q
1) + 1ϵr < U1(0, q

1) + 0ϵr for all r < r1,

• U1(1, q
2) + 1ϵr < U1(0, q

2) + 0ϵr for all r < r1.

The last two inequalities imply that for all r < r1, both U1(p, q
1, ϵr) and

U1(p, q
2, ϵr) are strictly decreasing in p because they both are linear in p.

Therefore the unique best reply when r < r1 is to take p = 0. The same
definitions also imply that

• U1(1, q
1) + 1ϵr > U1(0, q

1) + 0ϵr for all r > r2,

• U1(1, q
2) + 1ϵr > U1(0, q

2) + 0ϵr for all r > r2.

The last two inequalities imply that for all r > r2, both U1(p, q
1, ϵr) and

U1(p, q
2, ϵr) are strictly increasing in p. Therefore the unique best reply

when r > r2 is to take p = 1. Finally we have

• U1(1, q
1) + 1ϵr < U1(0, q

1) + 0ϵr for all r with r1 < r < r2,

• U1(1, q
2) + 1ϵr > U1(0, q

2) + 0ϵr for all r with r1 < r < r2.
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For those intermediate values of r, U1(p, q
1, ϵr) is strictly decreasing in p

while U1(p, q
2, ϵr) is strictly increasing in p. By definition of p̄, U1(p, q

1, ϵr)
and U1(p, q

2, ϵr) cross in p = p̄. By Lemma 1, p̄ is unique and belongs to
(0, 1) since player 1’s payoffs are not Column Dominant. The unique best
reply is to take p = p̄. Finally, when r = r1 or r = r2, either U1(p, qmin, ϵr)
or U1(p, qmax, ϵr) is constant in p. A (non-unique) best reply is then p = p̄.
Notice that this proof also covers the case qmin = qmax. ■

For all games for which player 2’s payoffs are not Row Dominant, parallel
conditions guarantee that a maxmin strategy of player 2 is a best reply to a
strategy of player 1 inducing [pmin, pmax].

Thresholds r1 and r2 defined above belong to R. The exact values taken by
those thresholds matter for pbmm only as long as they belong to the support
[−1, 1]. For example, (r1, r2) = (0, 2) induces the same reactions to the
disturbances realization as (r′1, r

′
2) = (0, 4), since 2 and 4 do not belong to

the support.
Lemma 5 provides sufficient conditions for the strategy profile

(
(r1, r2), (t1, t2)

)
to be an equilibrium in the disturbed game.

Lemma 5 (Sufficient conditions for equilibrium in Γ∗(ϵ)).
For all ϵ > 0, Γ ∈ ΓII−D and (kr, kt) ∈ [0, 1] × [0, 1], the profile of maxmin
strategies

(
(r1, r2), (t1, t2)

)
∈ S1

mm × S2
mm is an equilibrium in Γ∗(ϵ) if equa-

tions (7) to (14) hold:3

ϵr′ = U1(0, qmin)− U1(1, qmin), ϵr′′ = U1(0, qmax)− U1(1, qmax), (7)

ϵt′ = U2(0, pmin)− U2(1, pmin), ϵt′′ = U2(0, pmax)− U2(1, pmax), (8)

r1 = min(r′, r′′), r2 = max(r′, r′′), (9)

t1 = min(t′, t′′), t2 = max(t′, t′′), (10)

3Equations (11) to (14) correspond to the case for which all thresholds belong to the
support. If it was not the case, the expression for these integrals should be modified. Any
threshold outside the support must be replaced by the nearest point in the support. These
modifications are necessary for equations (11) to (14) to correspond to equation (4).
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pmin = min
f∈Pr

∫ r1

−1

0f(r)dr +

∫ r2

r1

p̄f(r)dr +

∫ 1

r2

1f(r)dr, (11)

pmax = max
f∈Pr

∫ r1

−1

0f(r)dr +

∫ r2

r1

p̄f(r)dr +

∫ 1

r2

1f(r)dr, (12)

qmin = min
f∈Pt

∫ t1

−1

0f(t)dt+

∫ t2

t1

q̄f(t)dt+

∫ 1

t2

1f(t)dt, (13)

qmax = max
f∈Pt

∫ t1

−1

0f(t)dt+

∫ t2

t1

q̄f(t)dt+

∫ 1

t2

1f(t)dt. (14)

Proof. Take any ϵ > 0, any Γ ∈ ΓII−D, any (kr, kt) ∈ [0, 1] × [0, 1] and
any profile of maxmin strategies

(
(r1, r2), (t1, t2)

)
∈ S1

mm × S2
mm for which

equations (7) to (14) hold. From Lemma 3, the extreme points of the induced
Ellsberg strategies [pmin, pmax] and [qmin, qmax] of any profile

(
(r1, r2), (t1, t2)

)
are given by equations (11) to (14). As Γ ∈ ΓII−D, we have that player 1’s
payoffs are not Column Dominant. From Lemma 4, the best-reply of player
1 to [qmin, qmax] is to use a strategy (r1, r2) whose thresholds r1 and r2 are
defined by equations (7) and (9). Accordingly, the best-reply for player 2
to [pmin, pmax] is a maxmin strategy (t1, t2), whose thresholds t1 and t2 are
defined by equations (8) and (10). Therefore, if all equations hold, strategies
(r1, r2) and (t1, t2) are mutual best replies and the profile constitutes an
equilibrium in Γ∗(ϵ). ■

3.2 Simplified conditions for small disturbances

In this subsection we show how the previous conditions simplify when the
size of disturances ϵ is sufficiently small. These simpler conditions are given
in Lemma 9. Intermediary lemmas and definitions are necessary for proving
Lemma 9. Lemmas 6 to 8 study the conditions on induced Ellsberg strategies
under which the thresholds generated by the strategies lie in the support. The
lemmas also identify some properties of the induced Ellsberg strategies when
the thresholds lie in the support. First, Lemma 6 describes the interval of
probabilities in which the extreme points of the induced Ellsberg strategy
must lie in order for their associated threshold to be in the support. New
notations are necessary for establishing this lemma:

• The equilibrium conditions given in Lemma 5 link thresholds t1 and
t2 of player 2’s strategy to the two extreme points of player 1’s in-
duced Ellsberg strategy [pmin, pmax]. Hence there exists an interval[
p−(ϵ), p+(ϵ)

]
⊂ R, inside which pmin and pmax must lie in order for
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their associated thresholds t1 and t2 to be in [−1, 1].4

p−(ϵ) := min

{
p ∈ R

 1

ϵ

(
U2(0, p)− U2(1, p)

)
∈ [−1, 1]

}
,

p+(ϵ) := max

{
p ∈ R

 1

ϵ

(
U2(0, p)− U2(1, p)

)
∈ [−1, 1]

}
.

Similarly, we define for player 2 the interval
[
q−(ϵ), q+(ϵ)

]
.

q−(ϵ) := min

{
q ∈ R

 1

ϵ

(
U1(0, q)− U1(1, q)

)
∈ [−1, 1]

}
,

q+(ϵ) := max

{
q ∈ R

 1

ϵ

(
U1(0, q)− U1(1, q)

)
∈ [−1, 1]

}
.

Lemma 6 shows that for all ϵ, the indifference strategy p∗ lies in the inter-
val
(
p−(ϵ), p+(ϵ)

)
and q∗ lies in

(
q−(ϵ), q+(ϵ)

)
. Furthermore, those intervals

collapse on p∗ and q∗ when ϵ → 0.

Lemma 6.
For all ϵ > 0 and Γ ∈ Γ we have p−(ϵ) < p∗ < p+(ϵ) and q−(ϵ) < q∗ < q+(ϵ).
Furthermore:

lim
ϵ→0

p−(ϵ) = lim
ϵ→0

p+(ϵ) = p∗ and lim
ϵ→0

q−(ϵ) = lim
ϵ→0

q+(ϵ) = q∗.

Proof. Take any ϵ > 0 and any Γ ∈ Γ. We focus on proving this for the
interval

(
p−(ϵ), p+(ϵ)

)
, the reasoning is identical for

(
q+(ϵ), q−(ϵ)

)
. The ex-

pression

1

ϵ

(
U2(0, p)− U2(1, p)

)
returning the thresholds on t is linear in p. As Γ ∈ Γ, player 2 does not have a
weakly dominant strategy and therefore this expression is strictly monotone
in p. Therefore p−(ϵ) and p+(ϵ) are finite and hence exist. By definition of
p∗, this expression equal 0 for p = p∗. Therefore we have p−(ϵ) < p∗ < p+(ϵ)
by the strict monotonicity of the above linear expression.

The difference U2(0, p) − U2(1, p) is independent of ϵ. As a result, for
any p ̸= p∗ the smaller ϵ, the larger

1
ϵ

(
U2(0, p) − U2(1, p)

). Hence, for
any p ̸= p∗, there exists an ϵp such that for all ϵ < ϵp, we have 1

ϵ

(
U2(0, p) −

U2(1, p)
)
/∈ [−1, 1]. Therefore, the smaller ϵ, the closer p−(ϵ) and p+(ϵ) are

to p∗. In the limit, the interval [p−(ϵ), p+(ϵ)] collapse on p∗. ■
4As shown in the proof of Lemma 6, the extreme points of the interval

[
p−(ϵ), p+(ϵ)

]
exist.
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Lemmas 7 and 8 provide bounds around the extreme points of the in-
duced Ellsberg strategies when thresholds lie in the interior of the support
and ambiguity is strictly positive. If the domain Pr contains a strictly posi-
tive amount of ambiguity, Lemma 7 shows that the induced Ellsberg strategy
cannot degenerate into a mixed strategy when a threshold lies in the interior
of the support. If one extreme point of the induced Ellsberg strategy for
player 1 equals p, the other extreme point lies outside a non-degenerate in-
terval (pl, pu) around p. New notations are necessary for establishing Lemma
7.

• As shown in Lemma 4, player 1 best replies to any realization of r
by playing a strategy in {0, p̄, 1}. Equivalently, player 2’s best reply
to t lies in {0, q̄, 1}. For small disturbances, at most two of the three
strategies in those sets are used in equilibrium. In the absence of ambi-
guity, only pure strategies are used. In the presence of ambiguity, the
payoff structure determines for each player which two strategies among
these three strategies are used in equilibrium. These two strategies are
referred to as A and B for player 1 and C and D for player 2. Let
A,B ∈ {0, p̄, 1} with A < B and C,D ∈ {0, q̄, 1} with C < D be such
that:

A := 0 and B := 1 if kt = 0,

A := 0 and B := p̄ if kt > 0 and p∗ ∈ (0, p̄),

A := p̄ and B := 1 if kt > 0 and p∗ ∈ (p̄, 1),

C := 0 and D := 1 if kr = 0,

C := 0 and D := q̄ if kr > 0 and q∗ ∈ (0, q̄),

C := q̄ and D := 1 if kr > 0 and q∗ ∈ (q̄, 1).

The maxmin strategy of one player is never used when the ambiguity
about her opponent’s payoffs is zero. For example, if kr = 0 then the
induced Ellsberg strategy of player 1 is a mixed strategy and player 2
best replies using pure strategies.

• Let function pmin : R2 → [0, 1] : (r1, r2) → pmin(r1, r2) be defined by
equation (11). Accordingly, functions pmax, qmin and qmax are defined
by equations (12), (13) and (14) respectively.

Lemma 7.
For all Γ ∈ ΓII−D, kr ∈ (0, 1] and p ∈ (A,B), there exist unique pl and
pu ∈ [0, 1] with pl < p < pu such that
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• for all (r1, r2) ∈ S1
mm with pmax(r1, r2) = p we have pmin(r1, r2) ≤ pl;

and at least for one such (r1, r2) we have pmin(r1, r2) = pl,

• for all (r1, r2) ∈ S1
mm with pmin(r1, r2) = p, pmax(r1, r2) ≥ pu,

and at least for one such (r1, r2) we have pmax(r1, r2) = pu,

Accordingly, for all kt ∈ (0, 1] and q ∈ (C,D), there exist ql, qu ∈ [0, 1] with
equivalent properties.

Proof. Take any Γ ∈ ΓII−D, any kr ∈ (0, 1] and any p ∈ (A,B). We focus on
proving the existence of such pl and pu. The proof for ql and qu follows the
same reasoning. We define the following sets:

Smax(p) :=
{
(r1, r2) ∈ S1

mm

pmax(r1, r2) = p and r1, r2 ∈ [−1, 1]
}
,

Smin(p) :=
{
(r1, r2) ∈ S1

mm

pmin(r1, r2) = p and r1, r2 ∈ [−1, 1]
}
.

Smax(p) is a subset of the maxmin strategies whose induced Ellsberg strate-
gies have p as their maximal point. We show below this set is non-empty.
The restriction r1, r2 ∈ [−1, 1] implies that Smax(p) and Smin(p) are closed
sets.

We define pl from the set Smax(p):

pl := max
(r1,r2)∈Smax(p)

pmin(r1, r2).

As the domain of images of function pmin is [0, 1] and the set Smax(p) is non-
empty and closed, pl is well defined. The definitions of pl and Smax(p) imply
that pl is such that:

(i) for all (r1, r2) ∈ Smax(p) we have pmax(r1, r2) = p and pmin(r1, r2) ≤ pl;
and at least for one such (r1, r2) we have pmin(r1, r2) = pl, and

(ii) there is no p′ ̸= pl with the previous properties.

We next show that pl < p. As Γ ∈ ΓII−D we have p̄ ∈ (A,B), and hence two
cases can arise:

• Case 1: p∗ > p̄. This case is such that A = p̄ and B = 1 and by
assumption we have p ∈ (p̄, 1). Let rL2 and rH2 be implicitly defined by

pmax(−1, rH2 ) = p and pmax(r
L
2 , r

L
2 ) = p.

We show that for all (r1, r2) ∈ Smax(p), we have −1 < rL2 ≤ r2 ≤ rH2 <
1. Observe this implies that Smax(p) is a non-empty set.
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– First we show −1 < rL2 < 1.

For all kr ∈ (0, 1], because of its integral functional form, the
expression of pmax(x, x) is continuous in x. Furthermore, it is
decreasing in x for x ∈ [−1, 1) as maxmin strategies are increasing
in r. Since pmax(−1,−1) = 1, pmax(1, 1) = 0 and by assumption
p ∈ (p̄, 1), we therefore have −1 < rL2 < 1.

– Second we show −1 < rH2 < 1.

For all kr ∈ (0, 1], the expression of pmax(−1, x) is continuous in
x and decreasing in x for x ∈ [−1, 1). Since pmax(−1,−1) = 1,
pmax(−1, 1) = p̄ and by assumption p ∈ (p̄, 1), we therefore have
−1 < rH2 < 1.

– Then we show that rL2 < rH2 .

Assume instead that rL2 ≥ rH2 . As by definition pmax(−1, rH2 ) =
p, we have pmax(r

H
2 , r

H
2 ) < p as for all kr ∈ (0, 1] and r1, r2 ∈

[−1, 1), pmax is a strictly decreasing function of both r1 and r2
and we showed −1 < rH2 . As r

L
2 ≥ rH2 the same reasoning implies

pmax(r
L
2 , r

L
2 ) ≤ pmax(r

H
2 , r

H
2 ) < p, contradiction the definition of

rL2 .

– Finally we show that for all (r1, r2) ∈ Smax(p) we have rL2 ≤ r2 ≤
rH2 .

We focus on showing r2 ≤ rH2 , the proof that rL2 ≤ r2 follows
similar lines. Assume instead for some (r1, r2) ∈ Smax(p) that
r2 > rH2 . By the definition of Smax(p) we have −1 ≤ r1. As pmax is
strictly decreasing in its argument, this implies that pmax(r1, r2) ≤
pmax(−1, r2). As we assumed r2 > rH2 , the same reasoning implies
pmax(−1, r2) < pmax(−1, rH2 ) = p. Together we have pmax(r1, r2) <
p, implying that (r1, r2) /∈ Smax(p), a contradiction.

• Case 2: p∗ < p̄. This second case is such that A = 0 and B = p̄ and
by assumption we have p ∈ (0, p̄). Let rL1 and rH1 be implicitly defined
by pmax(r

H
1 , 1) = p and pmax(r

L
1 , r

L
1 ) = p. The proof showing that for

all (r1, r2) ∈ Smax(p), we have −1 < rL1 ≤ r1 ≤ rH1 < 1 is omitted as it
follows the lines of that given for case 1.

Together, either there exist rL1 and rH1 such that for all (r1, r2) ∈ Smax(p)
we have −1 < rL1 ≤ r1 ≤ rH1 < 1 or there exist rL2 and rH2 such that for
all (r1, r2) ∈ Smax(p) we have −1 < rL2 ≤ r2 ≤ rH2 < 1. This implies
min(| r1 |, | r2 |) < 1.

From there, as kr > 0 we have for all (r1, r2) ∈ Smax(p) that

pmin(r1, r2) < pmax(r1, r2)
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because

(i) pmin(r1, r2) = pmax(r1, r2) when kr = 0 and,

(ii) for all (r1, r2) with min(| r1 |, | r2 |) < 1, pmax is a strictly increasing
function of kr at all kr ∈ [0, 1) while pmin is a strictly decreasing function
of kr.

This proves that pl < p.
There remains to show that pl has the same properties for all (r1, r2) ∈

S1
mm. As the support of r is [−1, 1], for any (r1, r2) ∈ S1

mm with pmax(r1, r2) =
p such that (r1, r2) /∈ Smax(p), there exists (r′1, r

′
2) ∈ Smax(p) inducing the

same Ellsberg strategy as (r1, r2). Therefore pl has the desired properties.
We define then pu from the set Smin(p):

pu := min
(r1,r2)∈Smin(p)

pmax(r1, r2).

An analog reasoning proves that pu has the desired properties. ■

Lemma 8 shows that the interval (pl, pu) around p defined in the previous
lemma evolves monotonically with p.

Lemma 8.
Take any Γ ∈ ΓII−D.

• For all kr ∈ (0, 1), p ∈ (A,B) and p′ ∈ (pl, p) we have

p′
l
< pl < p′ < p < p′

u
< pu.

• For all kt ∈ (0, 1), q ∈ (C,D) and q′ ∈ (ql, q) we have

q′
l
< ql < q′ < q < q′

u
< qu.

Proof. We focus on proving the first claim. The proof is based on the prop-
erties of functions pmin and pmax. Those functions are continuous in both
their arguments r1 and r2. Furthermore, they are non-increasing in both ar-
guments and strictly decreasing as soon as these arguments belong to [−1, 1).

Take any Γ ∈ ΓII−D, any kr ∈ (0, 1), any p ∈ (A,B) and any p′ ∈ (pl, p).
From Lemma 7, we have that p′l < pl < p′u. We show by contradiction that
p′u < pu, p < p′u and p′l < pl.

Assume first pu ≤ p′u. This implies by definition of p′u that there does not
exist (r1, r2) with pmin(r1, r2) = p′ and pmax(r1, r2) < pu. Take (r′1, r

′
2) with

pmin(r
′
1, r

′
2) = p and pmax(r

′
1, r

′
2) = pu. By definition of pu, this (r′1, r

′
2) exists
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q∗ = q1 q∗ = q2
p∗ = p1 type 1 type 2
p∗ = p2 type 3 type 4

Table 1: Four types of (quasi)-proper Ellsberg equilibria
(
[p1, p2], [q1, q2]

)
in

function of the extreme point occupied by the indifference strategy of each
player. For quasi-proper Ellsberg equilibria, the extreme points of one player
are equal and those equilibria belong to two of the above-defined types. The
mixed strategy equilibrium (p∗, q∗) belongs to all four.

and has at least one threshold in the interior of the support. By continuity
and non-increasingness of pmin, there exists (r1, r2) with r1 > r′1 and r2 > r′2
such that pmin(r1, r2) = p′. Since p ∈ (A,B), we have either r′1 ∈ (−1, 1) or
r′2 ∈ (−1, 1).5 By the properties of pmax, we have pmax(r1, r2) < pmax(r

′
1, r

′
2) =

pu, a contradiction.
Assume then that p′u ≤ p. This implies by definition of p′u that there

exists (r1, r2) with pmin(r1, r2) = p′ and pmax(r1, r2) ≤ p. By continuity and
non-increasingness of pmax, there exists (r′1, r

′
2) with r′1 ≤ r1 and r′2 ≤ r2

such that pmax(r
′
1, r

′
2) = p. By the properties of pmin, we have pmin(r

′
1, r

′
2) ≥

pmin(r1, r2) = p′, a contradiction to the definition of pl since pl < p′.
Assume finally that pl ≤ p′l. This implies by definition of p′l that there

exists (r1, r2) with pmax(r1, r2) = p′ and pmin(r1, r2) ≥ pl. By continuity and
non-increasingness of pmax, there exists (r′1, r

′
2) with r′1 < r1 and r′2 < r2

such that pmax(r
′
1, r

′
2) = p. By the properties of pmin, we have pmin(r

′
1, r

′
2) >

pmin(r1, r2) ≥ pl, which contradicts the definition of pl. ■

When only one of the two thresholds lies in the interior of the support,
we denote this threshold r∗ for player 1 and t∗ for player 2. The equilibrium
conditions simplify. Nevertheless, their expressions will depend on the type
of equilibrium we consider. Lemma 2 shows that for both players the indiffer-
ence strategy is an extreme point of Ellsberg strategies in any (quasi)-proper
Ellsberg equilibrium. The expression of the conditions depends on whether
this extreme point is the maximum or the minimum. The four different types
of (quasi-) proper Ellsberg equilibria are presented in Table 1.

Riedel and Sass (2013) present results linking the payoff structure with
the extreme points occupied by the indifference strategy of each player. As
all proper Ellsberg equilibria of a game belong to the same type, these types
naturally define subsets of games. We denote ΓD−4 ⊂ ΓII−D the subset of
games in ΓII−D having proper Ellsberg equilibria of type 4. For the rest

5See proof of Lemma 7.
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of the proof, we concentrate exclusively on equilibria of type 4, which are
illustrated in the example developed in section 4. The proof presented is
easily adapted for the other types.

In Lemma 9, we give simplified sufficient conditions for a profile of maxmin
strategies to constitute an equilibrium in slightly disturbed games.

Lemma 9 (Simplified equilibrium conditions in slightly disturbed games).
For all Γ ∈ ΓD−4 and (kr, kt) ∈ [0, 1] × [0, 1], there exists ϵ > 0 such that
for all ϵ < ϵ, if the profile of maxmin strategies

(
(r1, r2), (t1, t2)

)
satisfies

conditions (15) to (18) and equations (19) to (22), then it is an equilibrium
in Γ∗(ϵ).

if p∗ < p̄ : r∗ := min(r1, r2) ∈ [−1, 1] and if r1 < r2 : max(r1, r2) ≥ 1,

(15)

if p∗ > p̄ : r∗ := max(r1, r2) ∈ [−1, 1] and if r1 < r2 : min(r1, r2) ≤ −1,

(16)

if q∗ < q̄ : t∗ := min(t1, t2) ∈ [−1, 1] and if t1 < t2 : max(t1, t2) ≥ 1,

(17)

if q∗ > q̄ : t∗ := max(t1, t2) ∈ [−1, 1] and if t1 < t2 : min(t1, t2) ≤ −1,

(18)

ϵr∗ = U1(0, qmax)− U1(1, qmax), (19)

ϵt∗ = U2(0, pmax)− U2(1, pmax), (20)

pmax = max
f∈Pr

∫ r∗

−1

Af(r)dr +

∫ 1

r∗
Bf(r)dr, (21)

qmax = max
f∈Pt

∫ t∗

−1

Cf(t)dt+

∫ 1

t∗
Df(t)dt. (22)

Proof. We show that such maxmin strategies (r1, r2) and (t1, t2) are mutual
best replies. Take any Γ ∈ ΓD−4. Lemma 5 gives sufficient conditions for
such profile to be an equilibrium. In these conditions, the following additional
four equations complement equations (19) to (22):

ϵr′ = U1(0, qmin)− U1(1, qmin),

ϵt′ = U2(0, pmin)− U2(1, pmin),

pmin = min
f∈Pr

∫ r∗

−1

Af(r)dr +

∫ 1

r∗
Bf(r)dr,

qmin = min
f∈Pt

∫ t∗

−1

Cf(t)dt+

∫ 1

t∗
Df(t)dt.
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We show there exists ϵ > 0 such that for all ϵ < ϵ, if
(
(r1, r2), (t1, t2)

)
sat-

isfy conditions (15) to (18), then r′ /∈ [−1, 1] and t′ /∈ [−1, 1] and hence those
four additional equations are irrelevant for the profile to be an equilibrium.

By definition of A and B we have p∗ ∈ (A,B). By Lemma 6, there exists
ϵ1 > 0 such that for all ϵ < ϵ1 we have

[
p−(ϵ), p+(ϵ)

]
⊂ (A,B). Accordingly,

we have q∗ ∈ (C,D) and there exists ϵ2 > 0 such that for all ϵ < ϵ2 we have[
q−(ϵ), q+(ϵ)

]
⊂ (C,D). As

(
(r1, r2), (t1, t2)

)
satisfies conditions (15) to (18)

we have r∗ ∈ [−1, 1] and t∗ ∈ [−1, 1] and hence two cases must be considered.

Case 1: |r∗| = 1 or |t∗| = 1.

Taking ϵ = min(ϵ1, ϵ2) we derive a contradiction for this case. Assume
that |t∗| = 1. Conditions (17) and (18) imply that min(| t1 |, | t2 |) ≥ 1. The
maxmin strategy (t1, t2) is such that qb(t) is the same for all t ∈ [−1, 1] with
qb(t) ∈ {C,D} and therefore qmin = qmax ∈ {C,D}. As for all ϵ < ϵ we have[
q−(ϵ), q+(ϵ)

]
⊂ (C,D), this implies that either r∗ /∈ [−1, 1], which violates

condition (15) or (16), or equation (19) does not hold.

Case 2: |r∗| < 1 or |t∗| < 1.

Proving that (r1, r2) and (t1, t2) are mutual best replies boils down to
showing that

(i) r′ and t′ are not in the support and,

(ii) the relative size of r∗ and r′ makes it optimal for player 1 to react to r
using strategies A and B, as well as it is optimal for player 2 to react
to t using C and D given the relative size of t∗ and t′.

If (i) and (ii) hold, then equations (19) to (22) are a simplification of equations
(7) to (14) and the strategies are mutual best replies. Two subcases must be
considered

• Subcase 2.1: kr > 0 and kt > 0.

The profile of maxmin strategies
(
(r1, r2), (t1, t2)

)
induces proper Ells-

berg strategies since thresholds r∗ and t∗ lie in the interior of [−1, 1].6

Player 1’s proper Ellsberg strategy has two different extreme points
pmax and pmin which induce two different thresholds t∗ and t′ for player
2. Accordingly we have qmax ̸= pmin and hence t∗ ̸= t′.

6This statement holds as well when kr = 1 or kt = 1 as pmax ∈ (A,B) and qmax ∈
(C,D), implying respectively that pmin ∈ {A,B} or qmin ∈ {C,D}.
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We show here (i), that is r′ and t′ are not in the support. Given kr > 0
and kt > 0, by Lemma 7 and Lemma 8 there exist pL, pU ∈ (A,B) and
qL, qU ∈ (C,D) such that

plL ≤ plU < pL < p∗ < pU < puL ≤ puU ,

qlL ≤ qlU < qL < q∗ < qU < quL ≤ quU .

such that if pmax ∈ [pL, pU ], then pmin /∈ [pL, pU ] and if qmax ∈ [qL, qU ],
then qmin /∈ [qL, qU ]. We prove the existence of such pL and pU . As
p∗ ∈ (A,B), given kr > 0, Lemma 7 shows there exists p∗l and p∗u

with p∗l < p∗ < p∗u such that if pmax = p∗, then pmin ≤ p∗l and if
pmin = p∗, then pmax ≥ p∗u. Take any pL ∈ (p∗l, p∗). By Lemma 8, we
have p∗ < puL. Take pU such that p∗ < pU < puL. By Lemma 8 we have
plL < plU < pL < p∗ < pU < puL < puU , hence the desired property for
[pL, pU ].

7

Let ϵ′ > 0 be such that ϵ′ ≤ ϵ1 and for all ϵ < ϵ′ we have
[
p−(ϵ), p+(ϵ)

]
⊂

(pL, pU). By Lemma 6, this ϵ′ exists since
[
p−(ϵ), p+(ϵ)

]
tends to [p∗, p∗]

as ϵ → 0. The same reasoning proves the existence of an ϵ′′ > 0 such
that ϵ′′ ≤ ϵ2 and for all ϵ < ϵ′′ we have

[
q−(ϵ), q+(ϵ)

]
⊂ (qL, qU). Take

ϵ = min(ϵ′, ϵ′′).

By the construction of ϵ, for all ϵ < ϵ conditions (15) and (16) combined
with equation (19) imply that qmax ∈

[
q−(ϵ), q+(ϵ)

]
⊂ [qL, qU ] and

hence qmin /∈ [qL, qU ], therefore qmin /∈
[
q−(ϵ), q+(ϵ)

]
, implying r′ /∈

[−1, 1]. A parallel reasoning shows t′ /∈ [−1, 1].

We turn to proving (ii). We focus on showing that the relative sizes
of t∗ and t′ make it optimal for player 2 to react to t using strategies
C and D. A parallel argument demonstrates that player 1 best replies
using A and B. As Γ ∈ ΓD−4 we have p̄ ∈ (A,B), and hence two
subcases can arise:

– Subcase 2.1.1: q̄ < q∗.

Assume for a moment that the difference U2(0, p) − U2(1, p) is a
strictly increasing function of p. As pmin < pmax, this assumption
implies that for a given ϵ we have t′ < t∗ and hence t1 = t′ and
t2 = t∗. As t∗ ∈ [−1, 1] and t′ /∈ [−1, 1], we have t1 < −1. By
definition, when q̄ < q∗, we have C = q̄ and D = 1. It is hence
optimal for player 2 to react to the realization of t using C and
D, as shown in the proof of Lemma 4.

7Weak inequalities plL ≤ plU and puL ≤ puU come from the case kr = 1. For such value
of kr, we have plL = plU = A and puL = puU = B, as shown in the proof of Lemma 12.
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There remains to show that the difference U2(0, p)− U2(1, p) is a
strictly increasing function of p. The difference U2(0, p)−U2(1, p)
is linear in p and can not be constant since weakly dominant
strategies are ruled out. By definition, any game Γ ∈ ΓD−4 has
proper Ellsberg equilibria e =

(
[p1, p2], [q1, q2]

)
of type 4, for which

p2 = p∗ and hence p1 < p∗. In order for [q1, q2] to be a best reply
to [p1, p2], we must have q∗ ∈ {q1, q2} as shown in Lemma 2. For
q∗ ∈ {q1, q2}, we must have

U2(q, p1) > U2(q, p
∗) for all q ∈ (q̄, 1].

In effect, remember that the definition of p∗ implies that U2(0, p
∗)−

U2(1, p
∗) = 0 and hence U2(q, p

∗) is constant in q. The defini-
tion of q̄ implies U2(q̄, p

∗) = U2(q̄, p1). If we had instead for all
q ∈ (q̄, 1] that U2(q, p1) < U2(q, p

∗), then U2(q, p1) is strictly de-
creasing in q and the best reply for the ambiguity averse player 2
to [p1, p

∗] would be some [q1, q2] ⊂ [0, q̄], contradicting Lemma 2
since q̄ < q∗. As U2(q̄, p

∗) = U2(q̄, p1) and U2(1, p1) > U2(1, p
∗), we

have U2(0, p1) < U2(0, p
∗). Last two inequalities imply U2(0, p1)−

U2(1, p1) < U2(0, p
∗) − U2(1, p

∗) and by linearity of U2(q, p) in p,
the difference U2(0, p) − U2(1, p) is a strictly increasing function
of p as p1 < p∗.

– Subcase 2.1.2: q∗ < q̄.

The argument follow the same line as for the previous case. The
major difference is that U2(0, p) − U2(1, p) must now be strictly
decreasing function of p. As pmin < pmax, this implies that for
a given ϵ we have t∗ < t′ and hence t1 = t∗ and t2 = t′. As
t∗ ∈ [−1, 1] and t′ /∈ [−1, 1], we have t2 > 1. By definition, when
q̄ < q∗, we have C = 0 and D = q̄. It is hence optimal for player
2 to react to the realization of t using C and D.

Statement (ii) holds as for each of the above subcases, conditions (17)
and (18) pick t∗ among t1 and t2 consistently with the particular game
considered and ensure that t′ is outside the support with the appropri-
ate relative size with respect to t∗.

• Subcase 2.1: kr = 0 or kt = 0.

We consider only kr = 0, without loss of generality. This implies that
C = 0 and D = 1, pmin = pmax and t′ = t∗. Both t′ and t∗ belong to the
interior of the support. The induced Ellsberg profile is quasi-proper.
Except for these differences, the argument given above to prove (i) and
(ii) carries on to this subcase.

26



■

3.3 Existence of equilibria

Showing existence of equilibria in the disturbed game is much easier for small
disturbances. The simplified conditions of Lemma 9 are such that only one
threshold per strategy is constrained. The other threshold can be picked
arbitrarily provided it lies outside the support and has the appropriate sign.

Lemma 10 (Existence of equilibria in disturbed games).
For all Γ ∈ ΓD−4 and (kr, kt) ∈ [0, 1]× [0, 1], there exists ϵ > 0 such that for
all ϵ < ϵ, equilibria exist in Γ∗(ϵ).

Proof. Using the Intermediate Value Theorem, we show the existence of a
profile of thresholds (r∗, t∗) satisfying equations (19) to (22). If it exists, then
it is easy to see that there always exists a strategy profile

(
(r1, r2), (t1, t2)

)
that, together with (r∗, t∗), satisfies conditions (15) to (18). Such strategy
profile

(
(r1, r2), (t1, t2)

)
satisfies the conditions of Lemma 9 for small ϵ. This

proves the existence of equilibria in slightly disturbed games.
There remains to show the existence of a profile of thresholds (r∗, t∗)

satisfying equations (19) to (22). Take any Γ ∈ ΓD−4 and any (kr, kt) ∈
[0, 1]× [0, 1]. We define the four functions hr, ht, hp and hq:

hr :[q
−(ϵ), q+(ϵ)] → [−1, 1] : q → hr(q) :=

1

ϵ

(
U1(0, q)− U1(1, q)

)
,

ht :[p
−(ϵ), p+(ϵ)] → [−1, 1] : p → ht(p) :=

1

ϵ

(
U2(0, p)− U2(1, p)

)
,

hp :[−1, 1] → [A,B] : r → hp(r) := max
f∈Pr

∫ r

−1

Af(r)dr +

∫ 1

r

Bf(r)dr,

hq :[−1, 1] → [C,D] : t → hq(t) := max
f∈Pt

∫ t

−1

Cf(t)dt+

∫ 1

t

Df(t)dt.

Those four functions are all strictly monotone and continuous. By the defi-
nition of p−(ϵ), p+(ϵ), q−(ϵ) and q+(ϵ), the domain of images of hr and ht is
[−1, 1] and hence all four functions are surjective. The strict monotonicity of
these functions imply they are injective. Being all bijective (surjective and
injective), they admit inverse functions h−1

r , h−1
t , h−1

p , h−1
q which are strictly

monotone and continuous.8

8The strict monotonicity of hp and hq is only valid as long as kr < 1 and kt < 1.
When kr = 1 (kt = 1), function hp (hq) is not injective. This is not a problem for our
purpose as these functions are injective and surjective on a smaller domain. For example,
when kr = 1, function hp is bijective on [r̂, 1] ⊂ [−1, 1] defined in the proof of Lemma
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Based on these four functions, we define two composite functions g1 and
g2:

g1 :[A,B] → [q−(ϵ), q+(ϵ)] : p → g1(p) := h−1
r ◦ h−1

p (p) = (hp ◦ hr)
−1(p),

g2 :[C,D] → [p−(ϵ), p+(ϵ)] : q → g2(q) := h−1
t ◦ h−1

q (q) = (hq ◦ ht)
−1(q).

Being composite functions of strictly monotone and continuous functions, g1
and g2 inherit those properties.

By Lemma 6, there exists ϵ′ > 0 such that for all ϵ < ϵ′ we have
[p−(ϵ), p+(ϵ)] ⊂ (A,B) and [q−(ϵ), q+(ϵ)] ⊂ (C,D). Those two composite
functions are then used to define the continuous mapping τ :

τ : [A,B] → [p−(ϵ), p+(ϵ)] : p → τ(p) := g2 ◦ g1(p).

We have therefore that for all ϵ < ϵ′, τ is a continuous mapping from [A,B] →
[p−(ϵ), p+(ϵ)] ⊂ (A,B). By the Intermediary Value Theorem, it has a fixed
point p̂ ∈ [p−(ϵ), p+(ϵ)]. This fixed point is associated to q̂ = g1(p̂) as well as
r̂ = hr(q̂) and t̂ = ht(p̂). By construction, these r̂, t̂, p̂ and q̂ satisfy equations
(19) to (22) in Lemma 9. Let ϵ′′ be taken from the statement of Lemma 9.
Taking ϵ = min(ϵ′, ϵ′′) completes the proof. ■

3.4 The limit of the sequence of equilibria

There remains to prove that, when the disturbance size vanishes, the Ells-
berg equilibrium induced in the disturbed game tends to the equilibrium
in the initial game. By Lemma 6 and Lemma 9, slightly disturbed games
admit equilibria inducing Ellsberg strategies with an extreme point close to
the indifference strategy. Furthermore, as the disturbance size vanishes, the
extreme point tends to the indifference strategy. We show in Lemma 11 that,
for each particular level of ambiguity, a unique threshold’s value induces such
an extreme point. Then, given the other extreme point of the equilibrium
Ellsberg strategy in the basic game, Lemma 12 shows there exists an appro-
priate level of ambiguity for the induced Ellsberg strategy to reproduce the
equilibrium in the basic game. More precisely, abstracting from equilibrium
conditions, any Ellsberg strategy can be induced for a unique value of the
ambiguity parameter. We introduce new notations that are useful for small

12. The definition of probabilities p−(ϵ) and p+(ϵ) must be adapted such that hr has the
appropriate domain of image [r̂, 1]. On this basis a similar mapping can be constructed.
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disturbances:

pmin(r
∗) := min

f∈Pr

∫ r∗

−1

Af(r)dr +

∫ 1

r∗
Bf(r)dr, (23)

pmax(r
∗) := max

f∈Pr

∫ r∗

−1

Af(r)dr +

∫ 1

r∗
Bf(r)dr, (24)

qmin(t
∗) := min

f∈Pt

∫ t∗

−1

Cf(t)dt+

∫ 1

t∗
Df(t)dt, (25)

qmax(t
∗) := max

f∈Pt

∫ t∗

−1

Cf(t)dt+

∫ 1

t∗
Df(t)dt. (26)

Abstracting from equilibrium conditions, Lemma 11 shows that for any
given kr, there exists a unique threshold r∗ for which the induced Ellsberg
strategy has the desired value for one of the two extreme points.

Lemma 11 (Uniqueness of r∗).
Consider any Γ ∈ Γ and (kr, kt) ∈ [0, 1]× [0, 1].

• For all p ∈ (A,B), there is a unique r∗ ∈ (−1, 1) such that pmin(r
∗) = p.

• For all p ∈ (A,B), there is a unique r∗
′ ∈ (−1, 1) such that pmax(r

∗′) =
p.

For all q ∈ (C,D), equivalent t∗ and t∗
′
are also unique.

Proof. We prove only the existence and uniqueness of r∗. Function pmin

is continuous and weakly decreasing in r∗.9 Furthemore, pmin(−1) = B
and pmin(1) = A. By continuity, there exists hence r∗ ∈ (−1, 1) such that
pmin(r

∗) = p. We prove now uniqueness.
For all kr ∈ [0, 1), all f ∈ Pr have full support. Function pmin is therefore

strictly decreasing for all r ∈ [−1, 1], which entails uniqueness of r∗.
For the case kr = 1, let RA := {r ∈ [−1, 1]|pmin(r) = A} and let r̂ :=

min{r ∈ RA}. This r̂ exists since the set RA is a non-degenerate closed
interval. Uniqueness of r∗ is ensured since p > A and for all r ∈ [−1, r̂),
function pmin is strictly decreasing in r. ■

Lemma 12 (All equilibrium Ellsberg strategies can be induced).
Consider any Γ ∈ Γ.

1. For all p1 ∈ (A,B) and all p2 ∈ [p1, B], there exists a unique kr ∈ [0, 1]
such that for some r∗ ∈ [−1, 1] we have pmin(r

∗) = p1 and pmax(r
∗) =

p2.

9Function pmin is strictly decreasing in r∗ when kr < 1.
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2. For all p2 ∈ (A,B) and all p1 ∈ [A, p2], there exists a unique k′
r ∈ [0, 1]

such that for some r∗′ ∈ [−1, 1] we have pmin(r
∗′) = p1 and pmax(r

∗′) =
p2.

Equivalent statements hold true for player 2.

Proof. We prove only the first of the two claims.
By Lemma 11, for all p1 ∈ (A,B) and all kr ∈ [0, 1], there exists a unique
r∗ ∈ (−1, 1) such that pmin(r

∗) = p1. Let F : [0, 1] → [−1, 1] : kr → F (kr)
be the function pointing, for each value of kr ∈ [0, 1], to the particular r∗

inducing pmin(r
∗) = p1 and hence F (kr) = r∗. From equation (23), function

F is continuous and strictly decreasing in kr as p1 ∈ (A,B).
As F is continuous, the composite function pmax ◦ F : [0, 1] → [p1, b] :

kr → pmax

(
F (kr)

)
is continuous and strictly increasing in kr as p1 ∈ (A,B).

The first claim we need to prove follows then from the fact that pmax

(
F (0)

)
=

pmin

(
F (0)

)
= p1 and pmax

(
F (1)

)
= B.

The equality pmax

(
F (1)

)
= B follows from the definition of the domain

Pr. For kr = 1, some f ∈ Pr do not have full support anymore and there
exists a unique r̂ ∈ (−1, 1) such that:

max
f∈Pr

∫ r̂

−1

f(r)dr = 1 and min
f∈Pr

∫ r̂

−1

f(r)dr = 0.

This r̂ is implicitly defined by
∫ r̂

−1
f b
r (r)dr =

1
2
. As a result, if pmin = p1 < 1,

then r∗ < r̂ and pmax = B. In effect, when kr = 1, for all r ∈ (−1, 1) either
pmin(r) = A or pmax(r) = B. ■

We emphasize again that we did not require in Lemmas 11 and 12 that
threshold r∗ corresponds to any kind of best reply. Moreover the previous
lemmas holds true independently of the value taken by ϵ.

3.5 Proof of the theorem

We rephrase here Theorem 1 for Γ ∈ ΓD−4. The proof given covers a partic-
ular subset of games but similar proofs can easily be constructed to extend
the proof to the full family of games Γ.

Theorem 1 (Disambiguation of equilibria in Γ ∈ ΓD−4).
For all Γ ∈ ΓD−4 and all (quasi-) proper Ellsberg equilibrium e =

(
[p1, p2], [q1, q2]

)
in Γ, there exists a unique pair (kr, kt) ∈ [0, 1]× [0, 1] for which there exists
a sequence of Ellsberg strategy profiles {e(ϵ)} induced by equilibria in Γ∗(ϵ)
with

lim
ϵ→0

e(ϵ) = e.
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Proof. Take any Γ ∈ ΓD−4. Let {Γ∗(ϵt)}∞t=1 be a sequence of disturbed
games for which ϵt := 1

t
for all t ∈ N. This sequence is defined such that

limt→∞ Γ∗(ϵt) = Γ. By Lemma 10, for all (kr, kt) ∈ [0, 1]× [0, 1] there exists
ϵ > 0 such that for all ϵ < ϵ there exist equilibria in maxmin strategies in
the disturbed game. Let T be the smallest t ∈ N such that ϵt < ϵ. There
exists hence a sequence of equilibria {e(ϵt)}∞t=T , one for each disturbed game
in {Γ∗(ϵt)}∞t=T , for which ϵt → 0 when t → ∞. From now on, this sequence is
denoted {e(ϵ)}. There remains to show that for all (quasi-) proper Ellsberg
equilibrium e in Γ, there exists (kr, kt) ∈ [0, 1]× [0, 1] such that this sequence
has the right limit.

By the definition of ΓD−4, we have for all (quasi-) proper Ellsberg equi-
libria e =

(
[p1, p2], [q1, q2]

)
that p2 = p∗ and q2 = q∗. Riedel and Sass (2013)

have shown for such games that e is a (quasi-) proper Ellsberg equilibrium if
and only if A ≤ p1 ≤ p∗ and C ≤ q1 ≤ p∗. Consider any p1 and q1 satisfying
those constraints.

Take any (quasi-) proper Ellsberg equilibria e =
(
[p1, p2], [q1, q2]

)
for game

Γ. Let kr ∈ [0, 1] be such that for some r∗ ∈ [−1, 1], we have pmin(r
∗) = p1

and pmax(r
∗) = p2. Let kt ∈ [0, 1] be such that for some t∗ ∈ [−1, 1], we have

qmin(t
∗) = q1 and qmax(t

∗) = q2. By Lemma 12, the pair (kr, kt) ∈ [0, 1]×[0, 1]
exists and is unique. By Lemma 11, the associated pair (r∗, t∗) is also unique.

By Lemmas 6 and 9, there exists a sequence of Ellsberg strategy pro-
files e(ϵ) =

(
[pmin(ϵ), pmax(ϵ)], [qmin(ϵ), qmax(ϵ)]

)
induced by equilibria in the

sequence of disturbed games such that

lim
ϵ→0

pmax(ϵ) = p∗, and

lim
ϵ→0

qmax(ϵ) = q∗.

By Lemma 11, this can only be the case if the sequence of thresholds {(r∗(ϵ), t∗(ϵ))}
associated to the sequence of maxmin strategies equilibria by conditions (15)
to (18) is such that

lim
ϵ→0

{(r∗(ϵ), t∗(ϵ))} = (r∗, t∗).

By the construction of (kr, kt), this implies

lim
ϵ→0

pmin(ϵ) = p1, and

lim
ϵ→0

qmin(ϵ) = q1.

This shows limϵ→0 e(ϵ) = e and the equilibrium is disambiguable.
■
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Figure 4: Symmetric “Battle of the Sexes” game Γ3 ∈ ΓD−4 for which p∗ = 2
3
,

p̄ = 1
3
, q∗ = 2

3
and q̄ = 1

3
.

3.6 Adapting the proof for other games in Γ

The proof presented was designed for games in ΓD−4. It did not cover games
of class I nor some games in class II. We do not provide here a proof for those
games but discuss shortly what parts of the proof need to be adatped.

Extending the proof to games in ΓII−D that do not belong to ΓD−4 is
easy. The unique adaptations relates to the extreme point occupied by the
indifference strategy in the equilibrium Ellsberg strategy. These extreme
points are given in Table 1.

Games of class I are such that their disturbed versions admit equilibria in
pure strategies. The conditions under which a pure strategy in the disturbed
game is a best reply are given in Appendix A.4. These conditions rely on a
unique threshold and only pure strategies of the basic games are used. As a
result, equilibrium conditions are simpler than expressed in Lemma 5. The
only difficulty is to select the appropriate threshold among the two thresholds
implied by the induced Ellsberg strategies. The selection procedure is given
in Lemma 13 (see Appendix A.4). There is no need to search for simpler
conditions for small disturbances as only one threshold defines a pure strategy
in the disturbed game. The proof of existence of equilibrium follows exactly
the same lines. The major difference is that A and B are replaced respectively
by 0 and 1 (and so are C and D).

Games of class II that do not belong to ΓII−D are hybrid in the sense
that the best reply of one player is a pure strategy whereas the one of the
other is a maxmin strategy. As a result, the proof for this case will borrow
elements from the proof for games of class I and games in ΓII−D.

4 An example of disambiguation

In this section, we illustrate the disambiguation of proper Ellsberg equilib-
ria in the symmetric game Γ3 ∈ ΓD−4 of the type “Battle of the sexes”,
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illustrated in Figure 4. For this game, the expected utilities are given by:

U1(p, q) = 2p+ q(1− 3p),

U2(q, p) = 2q + p(1− 3q).

The indifference strategies are p∗ = q∗ = 2
3
and the maxmin strategies are

p̄ = q̄ = 1
3
, which confirms that Γ3 belongs to ΓD−4. Riedel and Sass (2013)

have shown that for this coordination game, the set of Ellsberg equilibrium

is
{(

[p1,
2
3
], [q1,

2
3
]
)1

3
≤ p1, q1

}
.10

4.1 Equilibria in a disturbed game

Consider the disturbed game Γ∗(ϵ) obtained by attaching disturbances ϵr
and ϵt to the payoffs associated to the pure strategies U and L respectively.
The realization of the disturbances is private information. The domains Pr

and Pt, in which the probability distributions of the ambiguous variables r
and t lie, are common knowledge. Let their basic densities f b

r and f b
t be the

uniform densities on [−1, 1]:

Pr :=

{
f ∈ F

1− kr
2

≤ f(x) ≤ 1 + kr
2

for all x ∈ [−1, 1]

}
,

Pt :=

{
f ∈ F

1− kt
2

≤ f(x) ≤ 1 + kt
2

for all x ∈ [−1, 1]

}
.

We compute equilibrium strategies in the disturbed game, as a function of
the ambiguity parameters kr and kt. As shown in Lemma 3, the strategy
picked by player 2 will appear to player 1 as an Ellsberg strategy [qmin, qmax].
By Lemma 4, her best reply to [qmin, qmax] is a maxmin strategy characterized
by two thresholds r1 and r2. These two thresholds are illustrated in Figure
5. As shown in Lemma 9, for sufficiently small ϵ, a unique threshold value
lies in the support of r. This threshold r∗ is the one associated with qmax,
because q∗ = 2

3
is the upper bound of the equilibrium Ellsberg strategy of

player 2. The best reply to [qmin, qmax] is a pure strategy whose threshold r∗

is obtained in equation (27). For player 2, the best reply to [pmin, pmax] is a
pure strategy whose threshold t∗ is obtained in equation (28).

ϵr∗ = U1(0, qmax)− U1(1, qmax) = 3qmax − 2, (27)

ϵt∗ = U2(0, pmax)− U2(1, pmax) = 3pmax − 2. (28)

Thresholds r∗ and t∗ completely characterize the equilibrium strategies of the
players for small disturbances. Our objective is therefore to compute their
values as a function of the parameters of the game.

10Our game Γ3 belongs to the set of games Riedel and Sass (2013) cover if one inverses
the two columns. Therefore, Γ3 is such that p̄ ≤ p∗ and (1− q)∗ ≤ (1− q).

33



ϵr2 = ϵr∗
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U1(p, qmax)

Figure 5: Thresholds value r1 and r2 for a given Ellsberg strategy [qmin, qmax].

By simplifying equation (14) in Lemma 5, we have:11

qmax = max
f∈Pt

∫ t∗

−1

1

3
f(t)dt+

∫ 1

t∗
1f(t)dt

=

(
1− (1− t∗)

1 + kt
2

)
1

3
+ (1− t∗)

1 + kt
2

1

=
1

3

(
2− t∗(1 + kt) + kt

)
Similarly, we obtain for pmax:

pmax = max
f∈Pr

∫ r∗

−1

1

3
f(r)dr +

∫ 1

r∗
1f(r)dr =

1

3

(
2− r∗(1 + kr) + kr

)
Replacing in equations (27) and (28), the values of qmax and pmax found
above, we obtain a system of two equations:{

ϵr∗ = kt − t∗(1 + kt),
ϵt∗ = kr − r∗(1 + kr).

Solving this system yields:{
r∗ = ϵkt−kr(1+kt)

ϵ2−(1+kr)(1+kt)
,

t∗ = ϵkr−kt(1+kr)
ϵ2−(1+kt)(1+kr)

.

This last system of equations characterizes for small ϵ the equilibrium strate-
gies in the disturbed game, as a function of the size of the disturbance ϵ and

11The second expression is valid when t∗ has a positive value, which is verified for small
ϵ by equation (30).
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the ambiguity parameters kr and kt. When the disturbance ϵ tends to 0, we
have:

lim
ϵ→0

r∗ =
kr

1 + kr
, (29)

lim
ϵ→0

t∗ =
kt

1 + kt
. (30)

4.2 The sequence of equilibria

The equilibrium strategy of player 2, characterized by t∗, is perceived by
player 1 as an Ellsberg strategy [qmin, qmax]. Alternatively, player 2 per-
ceives the strategy of player 1 characterized by r∗ as an Ellsberg strategy
[pmin, pmax]. We computed above that:

qmax =
1

3

(
2− t∗(1 + kt) + kt

)
, (31)

pmax =
1

3

(
2− r∗(1 + kr) + kr

)
. (32)

Similarly, we derive:

qmin =
1

3

(
2− t∗(1− kt)− kt

)
, (33)

pmin =
1

3

(
2− r∗(1− kr)− kr

)
. (34)

Replacing in equations (31) to (34) variables t∗ and r∗ by their values allows
to compute the sequence {e(ϵ)} of induced Ellsberg strategy profiles in the
disturbed game Γ∗(ϵ). Theorem 1 proved that for all proper equilibria e of
Γ, we can find a pair (kr, kt) ∈ [0, 1] × [0, 1] such that limϵ→0{e(ϵ)} = e.
Replacing r∗ and t∗ by their value in the limit, we obtain:

lim
ϵ→0

(
[pmin, pmax], [qmin, qmax]

)
=

([
2

3

1

1 + kr
,
2

3

]
,

[
2

3

1

1 + kt
,
2

3

])
(35)

Remember that all proper Ellsberg equilibrium of this game are of the form
e =

(
[p1,

2
3
], [q1,

2
3
]
)
with 1

3
≤ p1, q1. For kr = 0, we have pmin = 2

3
and for

kr = 1, we have pmin = 1
3
. Since function pmin is strictly monotone in kr

between these two bounds, and since the same is true for function qmin and
kt, any Ellsberg equilibrium in Γ3 can be disambiguated for a unique pair
(kr, kt).
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5 Concluding Remarks

Riedel and Sass (2013) have introduced Ellsberg games and proposed a so-
lution concept that they call Ellsberg equilibrium. It is a coarsening of Nash
equilibrium. Any Nash equilibrium is an Ellsberg equilibrium but the con-
verse does not hold: (quasi-) proper Ellsberg equilibria are not Nash equi-
libria. For the class of 2×2 normal form games that we consider, Harsanyi
(1973) has shown that all Nash equilibria in mixed strategies can be puri-
fied. Our Disambiguation Theorem shows that all (quasi-) proper Ellsberg
equilibria can be disambiguated. Moreover, for games of class I, all (quasi-)
proper Ellsberg equilibria can be purified. In that sense, our result extends
that of Harsanyi.

Generalizing our theorem beyond 2×2 normal games can unfortunately
not be done using the mathematical technique of Harsanyi. In effect, ambi-
guity averse players perform non-smooth evaluations of ambiguous outcomes.
We can nevertheless see no fundamental reason why this generalization could
not be performed, even though some challenging obstacles need to be over-
come.
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A Appendix

A.1 Proof of Lemma 1

Proof. A proof of claim 1 can be found in Fudenberg and Tirole (1991). We
prove claim 2: if player 1’s payoffs are not Column Dominant in game Γ then
p̄ ∈ (0, 1) and U1(p̄, q) = U1(p̄, q

′) for all q, q′ ∈ [0, 1].
Geometrically, given the strategy q chosen by player 2, the expected utility

U q
1 (p) := U1(p, q) defines a line in [0, 1] × R. If we allow the domain of q to

be R, this line is defined in R2. The family of such lines {U q
1 (p)}q∈[0,1] has

the property of Unique Intersection.

Property 1 (Unique Intersection).
Let {U q

1 (p)}q∈[0,1] be a family of lines defined in R2. The family has the
property of unique intersection if there exists a point (p̃, u1) ∈ R2 at which
all members of the family intersect.

This unique intersection (p̃, u1) is hence such that for all q ∈ [0, 1], the
point (p̃, u1) ∈ U q

1 (p).
We show now that family {U q

1 (p)}q∈[0,1] has a unique intersection (p̃, u1).
Player 1’s expected utility can be rewritten:

U1(p, q) = π4
1 + q

(
(π3

1 − π4
1) + p(π1

1 − π2
1 − π3

1 + π4
1)
)
+ p(π2

1 − π4
1).

The value p̃ at which an intersection takes place is therefore the solution of
the following equation:

(π3
1 − π4

1) + p̃(π1
1 − π2

1 − π3
1 + π4

1) = 0.

As there are no weakly dominant strategies in Γ, player 1’s payoff are not
Row Dominant and hence two cases can arise.

• Case A: π1
1 > π3

1 and π2
1 < π4

1.

The solution p̃ of last equation belongs to (0, 1) if either π1
1 > π2

1 and
π3
1 < π4

1 or π1
1 < π2

1 and π3
1 > π4

1. This means p̃ ∈ (0, 1) if player 1’s
payoff are not Column Dominant. Therefore the factor π1

1−π2
1−π3

1+π4
1

is different from zero. As a result the solution p̃ is unique.

• Case B: π1
1 < π3

1 and π2
1 > π4

1

A parallel argument can be made to show p̃ ∈ (0, 1) and is unique.

We now prove for games with p̃ ∈ (0, 1) that this intersection is the
maxmin strategy, that is p̃ = p̄. By definition of indifference strategy q∗, we
have for all p ∈ [0, 1] that U1(p, q

∗) = U1(p̃, q
∗) = u1 and hence U q∗

1 (p) is flat:
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U1(0, q
∗) − U1(1, q

∗) = 0. As player 1 has no weakly dominant strategy, the
difference U1(0, q)− U1(1, q) is strictly monotone in q. This implies q∗ is the
only value for which U q

1 (p) is flat. We showed that q∗ ∈ (0, 1), implying there
exist hence q′ and q′′ in [0, 1] such that q′ < q∗ < q′′. By strict monotonicity of

the difference U1(0, q)−U1(1, q), we have that among the two lines U q′

1 (p) and

U q′′

1 (p), one is strictly increasing and the other strictly decreasing. Therefore,
as p̃ ∈ (0, 1), for any p ∈ [0, 1] with p ̸= p̃ there exists q ∈ [0, 1] with q ̸= q∗

such that U q
1 (p) < U q

1 (p̃). The maxmin strategy p̄ is hence at the intersection
p̃. This completes the proof as we showed that utility in p̃ is independent of
q. The proof of claim 3 is done using the same argument.

■

A.2 Proof of Lemma 2

Proof. We assume without loss of generality that p1 < p2. First, we show
q∗ ∈ {q1, q2}. As shown in Lemma 1, for all Γ ∈ Γ, we have that q∗ ∈ (0, 1)
and is unique. The Ellsberg strategy [p1, p2] is a best reply to [q1, q2], if
and only if we have for all p ∈ [p1, p2] there exists no p′ ∈ [0, 1] such that
U1

(
p′, [q1, q2]

)
> U1

(
p, [q1, q2]

)
. Being ambiguity averse, player 1 must be

indifferent between all mixed strategies inside the Ellsberg strategy [p1, p2]
she plays. Formally, for all p, p′ ∈ [p1, p2] we have

U1

(
p′, [q1, q2]

)
= U1

(
p, [q1, q2]

)
.

As U1

(
p, [q1, q2]

)
= min

(
U1(p, q1), U1(p, q2)

)
(equation (1)), we must have

either

• U1(p, q1) is constant (implying q1 = q∗) and U1(p, q1) ≤ U1(p, q2) for all
p ∈ [p1, p2], or

• U1(p, q2) is constant (implying q2 = q∗) and U1(p, q2) ≤ U1(p, q1) for all
p ∈ [p1, p2].

Therefore we have q∗ ∈ {q1, q2}.
Second, we show p∗ ∈ {p1, p2}. If [q1, q2] is a proper Ellsberg strategy, then

the reasoning above proves it. We show it holds as well if the equilibrium is
quasi-proper, that is q1 = q2. From the previous reasoning, this implies q1 =
q2 = q∗. The Ellsberg strategy q∗ is a best reply to [p1, p2], if and only if there
exists no q′ ∈ [0, 1] such that U2

(
q′, [p1, p2]

)
> U2

(
q∗, [p1, p2]

)
. Remember we

have U2

(
q, [p1, p2]

)
= min

(
U2(q, p1), U2(q, p2)

)
. Function U2(q, p) is linear in

q. We show that if p∗ /∈ {p1, p2}, we have a contradiction.
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• If U2(q, [p1, p2]) is strictly increasing in q on [0, 1], then best reply is
q1 = q2 = 1, and since q∗ ̸= 1 for all Γ ∈ Γ, we have a contradiction.

• If U2(q, [p1, p2]) is strictly decreasing in q on [0, 1], then best reply is
q1 = q2 = 0, and since q∗ ̸= 0, we have another contradiction.

• If U2(q, [p1, p2]) is strictly increasing in q on one portion of [0, 1] and
stricly decreasing on the other, then the best reply is q̄. In effect, by
the property of Unique Intersection, U2(q, p1) and U2(q, p2) must then
intersect in (q̄, u2) and U2(q, [p1, p2]) has maximal value for q = q̄. As
for all Γ ∈ Γ, q∗ ̸= q̄, we have yet another contradiction.

The only possibility for q∗ to belong to best replies is that either U2(q, p1) or
U2(q, p2) is constant in q, which implies p∗ ∈ {p1, p2}. ■

A.3 Proof of Lemma 3

Proof. We show that for all p ∈ [pmin, pmax], there exists a density f ∈ Pr

such that

p =

∫ 1

−1

pb(r)f(r)dr.

The domain Pr is convex. This means that for all f1, f2 ∈ Pr, distribution
f3 defined as f3(r) := λf1(r) + (1 − λ)f2(r) belongs to Pr. The mapping∫ 1

−1
pb(r)f(r)dr is linear in f . As the image of a convex set through a linear

mapping is a convex set, the image of Pr through this mapping is convex.
In the real line, a convex set is an interval. As Pr is closed, so must be its
image

[
pmin, pmax

]
. ■

A.4 Best replies in disturbed game

For all Γ ∈ Γ such that player 1’s payoffs are Column Dominant, the following
lemma provides conditions under which a pure strategy of player 1 is a best
reply to a strategy of player 2 inducing [qmin, qmax].

12

Lemma 13 (Best-Reply in pure strategy).
For all ϵ > 0 and all Γ ∈ Γ such that player 1’s payoffs are Column Domi-
nant, the strategy pb is a best reply to any [qmin, qmax] ⊆ [0, 1] if it is a pure

12In Lemma 13, the conditions under which the expression max(r′, r′′) is used for r∗ are
such that the solution p of the implicit equation U1(p, 0) = U1(p, 1) is non-positive. The
conditions under which the expression min(r′, r′′) is used for r∗ are such that the solution
p of the implicit equation U1(p, 0) = U1(p, 1) is equal or larger than 1.
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strategy pb = r∗ ∈ S1
pu defined by:

ϵr′ = U1(0, qmin)− U1(1, qmin),

ϵr′′ = U1(0, qmax)− U1(1, qmax),

r∗ =

{
max(r′, r′′) if |π3

1 − π4
1| ≤ |π1

1 − π2
1|,

min(r′, r′′) otherwise.

Proof. The proof is only provided for the conditions on player 1’s payoffs
leading to r∗ = max(r′, r′′). Those conditions ensure that the solution to
equation (π3

1 − π4
1) + p(π1

1 − π2
1 − π3

1 + π4
1) = 0, which yields the unique

intersection p̃, is non-positive. Therefore the relevant threshold among r′

and r′′ is the largest one.13

Take any ϵ > 0, any [qmin, qmax] ⊆ [0, 1] and any Γ ∈ Γ such that

• player 1’s payoffs are Column Dominant, and

• the solution to equation (π3
1 − π4

1) + p(π1
1 − π2

1 − π3
1 + π4

1) = 0 is non-
positive.

Given equations (1) and (2), we have

U1

(
p, [qmin, qmax], ϵr

)
= min

(
U1(p, qmin, ϵr), U1(p, qmax, ϵr)

)
= min

(
U1(p, qmin) + pϵr, U1(p, qmax) + pϵr

)
where U1(p, q, ϵr) is linear in p since U1(p, q) is linear in p. For the considered
Γ, p̄ is not a proper mixed strategy and the unique intersection of U1(p, q1)
and U1(p, q2) is in (p̃, u1) with p̃ ≤ 0. Therefore, if qmin ̸= qmax, we have two
possible cases:

• Case A: U1(p, qmin) > U1(p, qmax) for all p ∈ (0, 1),

• Case B: U1(p, qmin) < U1(p, qmax) for all p ∈ (0, 1).

Let q̂ := qmax if we are in case A and q̂ := qmin if we are in case B. The mixed
strategy q̂ ∈ {qmin, qmax} is the one associated with the minimal utility for
player 1, the one she takes into account in front of ambiguity. We have hence

U1

(
p, [qmin, qmax], ϵr

)
= U1(p, q̂) + pϵr.

13If qmin = qmax then r∗ = r′ = r′′. But if qmin < qmax, two cases can arise: either
U1(p, qmin) < U1(p, qmax) for all p ∈ (0, 1] or U1(p, qmin) > U1(p, qmax) for all p ∈ (0, 1].
Assume that the game Γ is such that the first of these two cases arises. The relevant
threshold r∗ is therefore r′ associated to qmin. Under the payoff conditions leading to
r∗ = max(r′, r′′), U1(p, qmin) and U1(p, qmax) are two straight lines which cross at p̃ ≤ 0.
As a result, we have U1(0, qmin)−U1(1, qmin) > U1(0, qmax)−U1(1, qmax). The other case
leads to the same conclusion.
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From the definition of q̂ and the definition of r∗ in the statement of the lemma,
we have ϵr∗ = U1(0, q̂) − U1(1, q̂), which can be rewritten U1(0, q̂) + 0ϵr∗ =
U1(1, q̂) + 1ϵr∗ implying that:

1. U1(0, q̂) + 0ϵr > U1(1, q̂) + 1ϵr for all r < r∗,

2. U1(0, q̂) + 0ϵr < U1(1, q̂) + 1ϵr for all r > r∗.

As U1(p, q̂)+ pϵr is a linear function of p, the best reply to all r < r∗ is p = 0
and the best reply to all r > r∗ is p = 1. If r = r∗ then U1(p, q̂) + pϵr is a
constant and any p ∈ [0, 1] is a best reply, and in particular p = 0. ■

For all Γ ∈ Γ such that player 2’s payoffs are Row Dominant, there exists
similar conditions under which a pure strategy of player 2 is a best reply to
a strategy of player 1 inducing [pmin, pmax].

14

14For for all Γ ∈ Γ such that player 2’s payoffs are Row Dominant, those conditions are
obtained for pure strategies of player 2 by replacing π1

1 by π1
2 , π

4
1 by π4

2 , π
2
1 by π3

2 and π3
1

by π2
2 .
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