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Abstract

This paper examines a dynamic incumbent-entrant framework with stochastic evolution of the (in-

verse) demand, in which both the optimal timing of the investments and the capacity choices are explicitly

considered. We find that the incumbent invests earlier than the entrant and that entry deterrence is

achieved through timing rather than through overinvestment. This is because the incumbent invests

earlier and in a smaller amount compared to a scenario without potential entry. If, on the other hand,

the capacity size is exogenously given, the investment order changes and the entrant invests before the

incumbent does.

Keywords: Incumbent/Entrant, Capacity choice, Investment under Uncertainty, Oligopoly, Real-Option

Games

JEL classification: C73, D92, L13

1 Introduction

Starting with the seminal paper by Spence (1977) the choice of production capacity as an instrument for

entry deterrence has been extensively studied in the literature. In a standard two-stage set-up, where the

incumbent chooses its capacity before the potential competitor decides about entry, entry deterrence is

achieved by the incumbent through overinvestment and leads to eternal absence of the competitor from the

market. After installing a sufficiently large capacity by the incumbent, the potential entrant finds the market

not profitable enough to undertake an investment. In a dynamic setting, where the demand evolves over
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time (with a positive trend), however, it cannot be expected that potential entrants are perpetually deterred

from the market. Hence, the question arises how the investment behavior of the incumbent is affected by

the threat of entry in such a setting.

This paper considers a dynamic model where both an incumbent and an entrant have the option to acquire

once some (additional) production capacity. Both firms are free to choose the size of their installment, which

is assumed to be irreversible and is fully used in the market competition. As a first result, we find that under

general conditions the incumbent is most eager to undertake the investment first. In this way the incumbent

accomplishes that it delays the investment of the entrant and it extends its monopoly period. The entrant

reacts by waiting with investment until demand has become sufficiently large.

A second important result is that entry deterrence is not achieved via overinvestment, but via timing.

The threat of entry makes the incumbent invest sooner in order to precede investment of the entrant. Since

the incumbent’s investment increases the quantity on the market, the output price is reduced, which in turn

reduces the profitability of entering this market, and thus delays entry. Furthermore, where large parts of

the literature find that a monopolist sets a smaller capacity than a (potential) duopolist facing a threat of

entry, we find the opposite result. Since the incumbent invests early, i.e. in a market with a still relatively

small demand, it pursues a small capacity expansion. In the absence of an entry threat the monopolist would

wait for a market with a higher demand and invest in a larger capacity. In other words, when deterring

entry, timing is of greater importance than overinvesting.

A crucial aspect of these results is that the size of the investment is flexible. Considering a variant of

our model in which investment sizes are fixed, the incumbent no longer has the possibility to undertake a

small investment in a small market in order to preempt the entrant. Interestingly, we find that in such a

setting the investment order is reversed; the entrant undertakes an investment first. The reason is that in

this situation, where the investment size and thus investment costs are equal, the entrant, which does not

suffer from cannibalization, has a larger incentive to invest. Being able to choose the investment size is thus

of key importance for making preemption optimal for the incumbent.

In a competitive set-up, the total net welfare as a result of investment is smaller than in a set-up where a

social welfare optimizer chooses the investment moment and investment size. Our study implies that policies,

aiming to closen the welfare gap between these two settings, include the intention to delay investment. The

introduction of, e.g., a license would contribute to such a policy. The incurred lump-sum cost induces firms

to delay investment. Resultingly, a larger capacity is installed which, in turn, contributes to an increase in

total welfare.

The results sketched above contribute to two main streams of literature, namely to the analysis of entry

deterrence strategies and to strategic real option theory. Based on early contributions by Spence (1977)

and Dixit (1980), a rich literature has explored the rationale behind entry deterrence in two-stage games

under a variety of assumptions about the mode of post-entry competition between firms. Whereas most of

this literature is based on deterministic models, Perrakis and Walskett (1983) show that key insights about
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optimality of deterrence respectively accommodation might change qualitatively if it is assumed that demand

is stochastic and uncertain for the firms at the time of investment. In more recent contributions to this stream

of literature Maskin (1999) and Swinney et al. (2011) highlight that high demand uncertainty makes entry

deterrence less attractive and fosters the use of accommodation strategies by incumbents. Robles (2011)

develops a two-period game where demand is deterministic and increasing between the two periods. He

characterizes conditions under which incumbents build capacities, which are partly idle in the first period,

in order to deter other firms from the market. Our main contribution relative to these papers is not only

that we address the role of investment timing for potential entry deterrence, but also that we consider a

stochastically evolving market environment.

Early dynamic models of entry deterrence, like Spence (1979) or Fudenberg and Tirole (1983), focused

on the dynamics of (irreversible) capacity build-up in static market environments, if investment is bounded

from above. A key insight in this literature is that, in addition to equilibria which essentially correspond to

a Stackelberg equilibrium with the incumbent as leader, there exist Markov-perfect equilibria in which the

incumbent can strategically deter the follower from investing, thereby weakening competition. This is due

to the initial asymmetry and the dynamic build-up of capacity. More recently Boyer et al. (2004) studied

entry deterrence in a dynamic setting with price competition and a stochastically evolving willingness to

pay consumers. They assume that firms can invest repeatedly, where the size of each investment is fixed,

and point out that in such a setting an important effect of investment is the delay of the competitor’s

investment. It is shown that different types of equilibria might arise in such a setting. In spite of the

usual logic associated with preemption under price competition, in some of these equilibria, firms acquire

positive rents. Concerning the timing of investment Boyer et al. (2004) show that in their setting (under

certain conditions) the incentives for preemption are smaller for the incumbent than for the challenger with

lower capacity. A similar setting with Cournot competition is studied in Boyer et al. (2012). It is shown

that competition induces too early first investment relative to the social optimum and that the smaller firm

invests first. The market environment considered in Boyer et al. (2004, 2012) is closely related to our setup.

However, the assumption of fixed investment units crucially distinguishes these studies from our approach,

where both timing and investment size are chosen by the firms. We find that the endogeneity of investment

size is crucial and leads to qualitatively different insights compared to settings with fixed investment size.

Also, due to the consideration of Cournot competition, investment in Boyer et al. (2012) has considerably

less commitment power compared to the setup we consider. A main focus of Boyer et al. (2004, 2012), as

well as of recent studies by Besanko and Doraszelski (2004) and Besanko et al. (2010) dealing with (partly)

reversible capacity investments in oligopolistic markets with stochastically evolving demand, is the long run

industry structure that emerges. Considering only one investment option for each firm, our paper does not

address this issue, but rather focuses on entry deterrence in the early phase of an industry with evolving

demand. Steg (2012) considers a dynamic oligopoly setting with stochastically evolving demand, in which

timing is endogeneous and investment size is fully flexible. Analyzing Open-Loop Nash Equilibria of the
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game he shows that investment is always done by the smallest firm in the market. Our paper obtains that

in Markov-Perfect-Equilbira this conclusion of Steg (2012) no longer holds.

The main insight of our analysis that the incumbent invests prior to the entrant can be seen to follow the

logic to ”eat your own lunch before someone else does” (Deutschman, (1994)). This logic has been, among

others, explored in Nault and Vandenbosch (1996) in the framework of a model, where firms endogenously

choose the time to launch a new product generation. Apart from the fact that their paper does not explicitly

deal with capacity investment, the key difference to our approach is that the type of expansion as such is

fixed and the size of the expansion cannot be chosen by the firms.

Our paper extends, in the second place, the literature on strategic real option models, where firms have

to decide about investing in a stochastic oligopolistic environment. Early work includes Smets (1991) and

Grenadier (1996). Like most of the papers in this field, the investment decision only involves the timing of

investment. However, we study a problem where firms are free to choose their capacity levels as well. Within

a strategic real options framework, investment decisions involving both capacity choice and timing have first

been considered by Huisman and Kort (2015). They study this problem for two symmetric entrants on a

new market. Our paper differs from their analysis by considering an incumbent-entrant framework, in which

one of the players has an initial capacity.

Consistent with the existing literature on real options games we consider a setting where each firm has

a single investment option. This assumption corresponds to a scenario in which investment is lumpy and

allows us to derive explicit characterizations of both the timing and the size of investment in equilibrium.

Whereas our analysis is already innovative also from a technical perspective, fully characterizing the timing

and size of several lumpy investments in such a setting seems infeasible.

This paper is organized in the following way. Section 2 explains the model and discusses its assumptions.

Section 3.1 looks at the case of exogenous firms roles, i.e. an individual firm knows beforehand whether it

will be the first or second investor. Then the other firm can choose to invest at the same time or later. This

is followed by Section 3.2 studying the game when endogenizing investment roles, i.e. both firms are allowed

to become the first investor. Section 3.3 then studies the case of a fixed investment size. Section 4 focuses

on the size of the incumbent’s investment relative to that of the entrant and to an incumbent’s investment

without entry threat. Robustness checks are performed in Section 5 and Section 6 considers the problem

from the point of view of the social planner. The paper is concluded in Section 7. Three appendices provide

all proofs as well as numerical robustness checks and analyses of model extensions.

2 The Model

Consider an industry setting with two firms. One firm is actively producing and the other firm is a potential

entrant. The first firm is the incumbent and is denoted as firm I. The potential entrant is denoted as firm E.

Both firms have a one-off investment opportunity. For firm I this means an expansion of its current capacity
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and for the entrant an investment means starting up production and entering this market. Both firms are

assumed to be rational, risk neutral and value maximizing. The inverse demand function on this market is

multiplicative1 and equals

p(t) = x(t)(1− ηQ(t)),

where p(t) is the output price, Q(t) equals the total aggregate quantity made available at time t and η is a

fixed price sensitivity parameter. The exogenous shock process x(t) follows a geometric Brownian motion,

i.e.

dx(t) = αx(t)dt+ σxdz(t).

Here α and σ > 0 are the trend and volatility parameters and z(t) is a Wiener process.2 Although from

an economic perspective the consideration of an expanding market (i.e. α > 0) seems most relevant in our

framework, formally no assumption about the sign of α is required to carry out our analysis. Discounting

takes place under a fixed positive rate r > α. The investment costs are linearly related to the investment

size, where the marginal cost parameter equals δ. The inverse demand function is chosen to be in line with

Huisman and Kort (2015), giving a linear relation between the production size and the output price. This

relation is also used by e.g. Pindyck (1988), He and Pindyck (1992), Aguerrevere (2003) and Wu (2007). As

of now, the denotation of time t shall be omitted to simplify notation. In this model firms are committed

to produce the amount their capacity allows. This assumption is widely used in the literature on capacity

constrained oligopolies (e.g. Deneckere et al. (1997), Chod and Rudi (2005), Anand and Girotra (2007),

Goyal and Netessine (2007) and Huisman and Kort (2015)). For example, Goyal and Netessine (2007) argue

that firms may find it difficult to produce below capacity due to fixed costs associated with, for example,

labor, commitments to suppliers, and production ramp-up.

The investment comprises two decisions: timing and capacity size. The game is solved backwards, first

determining the reaction curve of the firm investing last and then determining the optimal strategy of the

firm that invests first. In this way all subgame perfect equilibria are determined.3

Initial capacity size

The incumbent is currently active on the market with initial capacity q1I . In principle, the parameter q1I

can take any value. However, in parts of the following analysis we will consider scenarios where the size of

initial capital is determined according to the optimal investment level of the incumbent under the assumption

1In Section 5.2 the robustness of our results will be tested by analyzing a different demand function.
2Throughout the paper we will refer to the current value of the process x(t) as X.
3Since a rigorous formulation of the Markovian strategy profiles corresponding to the equilibria characterized in this paper

induces a heavy notational and technical load without providing additional economic insights, we refrain from presenting them

here. Riedel and Steg (2014) provide an approach for a rigorous foundation of preemption-type equilibria in stochastic timing

games based on the original ideas of extended mixed strategies by Fudenberg and Tirole (1985). This approach could be applied

to formulate strategy profiles underlying our equilibria.

5



that no future investment will be made by any firm.4 We refer to such an initial capacity as the myopic

investment level qmyop
1I . Straightforward calculations (see Huisman and Kort (2015)) give

qmyop
1I =

1

η(β + 1)
.

In any case, we analyze equilibria with q1I ≤ qmyop
1I , since it is unreasonable to assume any larger initial

capacity.

3 Equilibrium Analysis

In this section we characterize the investment behavior in the unique subgame perfect equilibrium of the

game described above. Employing the standard terminology in timing games (see, e.g., Fudenberg and

Tirole (1985)), the first investor is called the leader and the second investor is called the follower. As a

first step in our analysis, the next section derives optimal size and timing of investments of the two firms if

investment roles are given, i.e. it is ex-ante determined which of the two firms invests first. We first derive

the optimal decisions of the follower. Next, the leader’s strategies are studied. Section 3.2 considers the case

of endogenous firm roles, where both firms are allowed to invest first. In this part, the results about optimal

behavior and the corresponding value functions of the two firms under fixed investment roles are employed

to determine which of the firms will be the investment leader. Finally, in the last part of this section we

contrast the obtained results with equilibrium behavior in a setting where the size of investment is fixed.

3.1 Exogenous firm roles

Assuming that the sequence of investments is fixed, we denote the following firm as firm F and similarly, the

leading firm as firm L. The follower’s and leader’s initial capacities are denoted by q1F and q1L respectively.

Capacity expansion is done by installing additional quantities q2F and q2L. We distinguish between two

cases. First, the incumbent takes the role of the leader and the entrant takes the role of the follower, with

q1L = q1I , q1F = 0, q2L = q2I and q2F = qE . Second, the entrant undertakes an investment before the

incumbent expands and we have q1L = 0, q1F = q1I , q2L = qE and q2F = q2I . In this section, both cases

are analyzed simultaneously.

Follower’s decision

Consider the situation where one firm, the leader, has already invested. Suppose the market has grown

sufficiently large for the follower to undertake an investment, i.e. the current value of the process x is

4Implicitly we thereby assume that the monopoly investment trigger has been reached in the past inducing the positive

investment by the firm.
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sufficiently large. One then obtains the following value function reflecting the follower’s expected payoff,

VF (X, q1L, q1F , q2L, q2F ) = E

[ ∞∫
t=0

(q1F + q2F )p(t)e
−rtdt− δq2F

∣∣∣ x(0) = X

]

=
X

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))− δq2F .

The follower’s value function consists of two terms. The expected discounted cash inflow stream resulting

from selling goods on the market is reflected by the first term. The involved costs, when making the

investment, are captured by the second term. The optimal size of the investment, qopt2F , is found by optimizing

the value function.

To determine the optimal moment of investment we derive the investment threshold X∗
F (q1L, q1F , q2L).

Investment takes place at the moment the stochastic process x reaches this level for the first time (see, e.g.,

Dixit and Pindyck (1994)). Thereto, one first needs the value function of the follower before it invests.

Standard calculations presented in the appendix show that

VF (X, q1L, q1F , q2L) =
δ

β − 1

(
X

X∗
F

)β

qopt2F (X∗
F , q1L, q1F , q2L) +

X

r − α
q1F (1− η(q1L + q1F + q2L)),

where

β =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2

+
2r

σ2
. (1)

Due to the assumption that r > α we have β > 1. The value function FF consists of two terms. The second

term represents the current profit stream. In case the incumbent is follower, this stream is positive with

q1F = q1I . When the entrant is the follower one has q1F = 0 leading to zero current profits. The first term

is the current value of the option to invest.

The following proposition characterizes the follower’s optimal investment strategy.

Proposition 1 For small current values X of the stochastic demand process the follower waits until the

process x(t) reaches the investment trigger X∗
F to install q∗2F and for X ≥ X∗

F the firm invests immediately.

As a result, the follower’s value function is given by

VF (X, q1L, q1F , q2L) =

⎧⎪⎨
⎪⎩

δ
β−1

(
X
X∗

F

)β

q∗2F + X
r−αq1F (1− η(q1L + q1F + q2L)) if X < X∗

F ,

X
r−α (q1F + qopt2F )(1− η(q1L + q1F + q2L + qopt2F ))− δq2F if X ≥ X∗

F ,

(2)

where the optimal capacity level for the follower qopt2F and the investment trigger X∗
F are defined by

qopt2F (X, q1L, q1F , q2L) =
1

2η

(
1− η(q1L + 2q1F + q2L)− δ(r − α)

X

)
, (3)

X∗
F (q1L, q1F , q2L) =

β + 1

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L)
. (4)

The follower’s capacity in case the follower invests at the investment trigger equals

q∗2F = qopt2F (X∗
F , q1L, q1F , q2L) =

1− η(q1L + 2q1F + q2L)

η(β + 1)
. (5)
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Leader’s decision

As can be inferred from equation (4), there is a positive relation between the leader’s investment quantity

q2L and the follower’s investment threshold. The leader can thus delay the follower’s investment by setting

q2L in such a way that the follower’s trigger X∗
F exceeds the current value of x. To that extend, there exists

a q̂2L such that for q2L > q̂2L it holds that X < X∗
F . From equation (4) one obtains

q̂2L(X, q1L, q1F ) =
1

η

[
1− η(q1L + 2q1F )− δ(β + 1)(r − α)

(β − 1)X

]
.

For q2L > q̂2L the follower invests later, which means that by choosing a sufficiently high investment q2L

the leader can delay the investment of the follower. In case the incumbent is the leader, we have that the

incumbent is a monopolist as long as X < X∗
F , and as soon as x hits X∗

F a duopoly arises, since at that

point the entrant undertakes an investment. Hence, this strategy of the incumbent corresponds to entry

deterrence. If the leader chooses q2L ≤ q̂2L then the follower’s investment occurs immediately and the

follower chooses a capacity given by (5). In case the incumbent is the leader such behavior corresponds to

an entry accommodation strategy. Without specifying whether the leader is the incumbent or the entrant

we refer to the leader’s choice of q2L > q̂2L as delaying the follower and to the opposite case of q2L ≤ q̂2L as

inducing immediate follower investment. In what follows, the implication of both strategies are examined

and then the leader’s payoffs under these strategies are compared.

Delaying the follower

Straightforward calculations yield that the value function of the leader under this strategy, denoted by

V det
L (X, q1L, q1F , q2L), is given by5

V det
L = E

[∫ tF

t=0

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L))e
−rtdt

+

∫ ∞

t=tF

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L + q∗2F ))e
−rtdt

∣∣∣x(0) = X

]
− δq2L

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L)− ηq∗2F (q1L + q2L)

X∗
F

r − α

(
X

X∗
F

)β

− δq2L

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L))− δ

β − 1
(q1L + q2L)

(
X

X∗
F

)β

− δq2L.

This value function consists of three parts. The first integral denotes the expected discounted revenue

stream obtained by the leader before the follower has invested. Then, at the (stochastic) time tF ≥ 0 the

follower decides to make an investment, where, tF = inf{t ≥ 0 | x(t) ≥ X∗
F }, and the second integral reflects

the leader’s expected discounted revenue stream from that moment on. The third term is the investment

5Since, as we will show later, in equilibrium the incumbent becomes the leader, we prefer to comply the denotation associated

with this strategy with the deterrence strategy and we will hence use det to signify the strategy where the leader delays the

follower’s investment. In slight abuse of notation we will, in what follows, express the leader’s value function sometimes as an

explicit function of the second investment of the leader, q2L. Whenever no such argument is given the value function under the

optimal choice of q2L is considered.
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outlay. The expression in the last line can then by interpreted as the expected revenue stream in case the

follower will never invest minus the (negative) adjustment of the cash flow stream from the moment the

second firm makes an investment, followed by the investment costs. The second term includes the stochastic

discount factor E [e−rtF ] =
(

X
X∗

F

)β

, where again tF is the time of investment of the follower.

Recalling that q̂2L(X, q1L, q1F ) denotes the minimal investment size of the leader to make the follower

invest later, the optimal investment size under this strategy is given by

qdetL (X, q1L, q1F ) = argmax{V det
L (X, q1L, q1F , q2L) | q2L ≥ max{0, q̂2L}}. (6)

If X is so small that qdetL (X, q1L, q1F ) = 0, no investment is made at this point. The corresponding lower

bound for X, under which investment is not considered feasible, is given by

Xdet
1 = max{X | qdetL (X, q1L, q1F ) = 0}.

Furthermore, considering the lower bound q̂2L needed to make the follower invest later, one can infer that

for some values of X the optimum does not lie in the interior of the feasible region, i.e. for some X one

has qdetL = q̂2L, leading to immediate investment by the follower. Thus, for these scenarios delaying cannot

be optimal for the leader. The following proposition, which characterizes the optimal leader strategy while

delaying the follower shows that there exists an upper bound Xdet
2 such that qdetL > q̂2L if and only if

X < Xdet
2 . For X ≥ Xdet

2 it would be too costly for the leader to delay the follower’s investment, since

demand is so large that the incentive for the follower to invest at the same time as the leader is very high.

Proposition 2 There exist unique values 0 < Xdet
1 (q1L, q1F ) < Xdet

2 (q1L, q1F ) such that qdetL (X, q1L, q1F ) >

max{0, q̂2L(X, q1L, q1F )} if and only if X ∈ (Xdet
1 , Xdet

2 ). Furthermore, for sufficiently small q1L there exists

a pair (qdet∗L , Xdet
L ) with Xdet

L ∈ (Xdet
1 , Xdet

2 ) satisfying qdet∗L = qdetL (Xdet
L , q1L, q1F ) and

Xdet
L =

β

β − 1

δ(r − α)

1− 2ηq1L − ηq1F − ηqdet∗L

, (7)

such that under the delaying follower investment strategy,

(i) for X ≥ Xdet
L the leader immediately invests qdetL (X, q1L, q1F ) and the value function of the leader is

given by

V det
L (X, q1L, q1F ) =

X

r − α
(q1L+qdetL )(1−η(q1L+q1F +qdetL ))− δ

β − 1
(q1L+qdetL )

(
X

X∗
F

)β

−δqdetL ; (8)

(ii) for X < Xdet
L the leader invests qdet∗L at the moment x reaches the investment threshold value Xdet

L .

The value function before investment is given by

F det
L (X, q1L, q1F ) =

X

r − α
q1L(1− η(q1L + q1F )) +

(
X

Xdet
L

)β δqdet∗L

β − 1
− (q1L + qdet∗L )

(
X
X∗

F

)β δ

β − 1
. (9)

The intuition for the observation, that a thresholdXdet
L , at which the leader invests, exists only if the initial

capacity size of the leader is sufficiently small, is straightforward. In case the initial capacity of the leader is
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large, it is optimal for the leader to abstain from any further investment, since this also blocks any further

investment of the follower6 and allows the leader to sell the quantity corresponding to its current capacity at

a larger price. Although the proof of Proposition 2 assumes that q1L is small, numerical analysis indicates

that the range of values of q1L, for which the threshold Xdet
L exists and the leader therefore eventually invests,

is typically of substantial size. Clearly, the assumption of fixed investment roles is crucial for the observation

that the leader can block the follower by not investing. With endogenous investment roles delaying own

investment does not block investments of the competitor and hence preemption is a crucial issue. This is

analyzed in Section 3.2.

Inducing immediate follower investment

If the leader chooses a capacity below q̂2L(X, q1L, q1F ), it induces immediate investment by the follower

but nevertheless acts as Stackelberg capacity leader. The value function contains two terms, the expected

discounted revenue stream resulting from investment and the investment cost,7

V acc
L (X, q1L, q1F , q2L) = E

[∫ ∞

t=0

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L + qopt2F ))e−rtdt
∣∣∣x(0) = X

]
− δq2L

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L + qopt2F ))− δq2L.

The firm chooses its capacity qaccL (X, q1L, q1F ) in such a way that it optimizes V acc
L (X, q1L, q1F , q2L),

given the restriction qaccL ≤ q̂2L. The latter makes that this strategy is restricted to a certain region of

x. When the shock process attains a relatively large value, the optimal quantity qaccL meets the restriction

qaccL ≤ q̂2L. However, for small values of x, the market is too small for two firms to invest at the same

time and one observes that qaccL > q̂2L. Therefore, there exists a Xacc
0 (q1L, q1F ) such that for X < Xacc

0

simultaneous investment will not occur, since the optimal investment of the leader is sufficiently large to

delay the follower’s investment.8 Furthermore, similarly to when delaying the follower, making the follower

investment immediately requires that the optimal investment level qaccL is strictly positive. We obtain from

the first order condition of maximizing V acc
L the investment level

qaccL (X, q1L) =
1

2η

[
1− 2ηq1L − δ(r − α)

X

]
. (10)

The optimal investment size of the leader does not depend on the initial capacity of the follower. In fact it

corresponds to the Stackelberg leader capacity level, where it turns out that the Stackelberg leader quantity

equals the quantity of the monopolist. The following proposition presents the inducing immediate follower

investment strategy.

Proposition 3 The inducing immediate follower investment strategy is feasible for X > Xacc
1 , where

Xacc
1 = max

{
β + 3

β − 1

δ(r − α)

1− 4ηq1F
,

δ(r − α)

1− 2ηq1L

}
. (11)

6Note that we are in the exogenous firm roles case where the follower is only allowed to invest after the leader has chosen to

do so.
7The superscript acc refers to the accommodation strategy that arises here, when the investment leader is the incumbent.
8Note that investing qaccL = q̂2L is never optimal: V acc

L (q̂2L) = V det
L (q̂2L) < V det

L (qdetL ).
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Furthermore, for sufficiently small q1L there exists a pair (qacc∗L , Xacc
L ) with Xacc

L > δ(r−α)
1−2ηq1L

satisfying

qacc∗L = qaccL (Xacc
L , q1L) and

Xacc
L =

δ(r − α)β

β − 1

qacc∗L − q1L
(qacc∗L − q1L)(1− ηq1L)− ηqacc∗L (qacc∗L + q1L)

, (12)

such that under the inducing immediate follower investment strategy

(i) for X ≥ Xacc
L the leader immediately invests qaccL (X, q1L, q1F ) and the value function of the leader is

given by

V acc
L (X, q1L, q1F ) =

X

r − α
1
2 (q1L + qaccL )(1− η(q1L + qaccL ))− 1

2δ(q
acc
L − q1L); (13)

(ii) for X < Xacc
L the leader invests qacc∗L at the moment x reaches the investment threshold value Xacc

L .

The value function before investment is given by

F acc
L (X, q1L, q1F ) =

X

r − α
q1L(1− η(q1L + q1F )) +

(
X

Xacc
L

)β δqacc∗L

β − 1
. (14)

Optimal leader strategy

The characterization of the leader’s optimal behavior under the delaying follower investment respectively

inducing immediate follower investment strategy, allows us to derive the optimal strategy of the leader.

Proposition 4 There is an interval of positive length [Xacc
1 , Xdet

2 ] on which both the delaying follower in-

vestment strategy and the inducing immediate follower investment strategy are feasible for the leader. For

X < Xacc
1 the leader delays the follower’s investment and for X > Xdet

2 the firms invest simultaneously.

Moreover, there exists an X̂ ∈ (Xacc
1 , Xdet

2 ) such that the delaying follower investment strategy is always

optimal for X < X̂.

Extensive numerical exploration shows that the threshold X̂ is unique and therefore separates the parts

of the state-space where the delaying follower investment strategy respectively inducing immediate follower

investment strategy is optimal, i.e. there exists a X̂ ∈ (Xacc
1 , Xdet

2 ) such that for X < X̂ it is optimal for

the leader to delay the follower’s investment, whereas inducing immediate investment is optimal for X ≥ X̂.

Furthermore, we find that X̂ > max{Xdet
L , Xacc

L }, which implies that the leader optimally waits in the region

0 ≤ X < Xdet
L and invests qdetL (X, q1L, q1F ) in the region Xdet

L ≤ X < X̂, thereby delaying investment by the

follower. For X ≥ X̂ it is optimal for the leader to immediately invest qaccL (X, q1L, q1F ), which triggers an

immediate investment of the follower. Figure 1 illustrates these findings.9 The value function of the leader

is therefore given by

VL(X, q1L, q1F ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
F det
L (X, q1L, q1F ) if X ∈ (0, Xdet

L ),

V det
L (X, q1L, q1F ) if X ∈ [Xdet

L , X̂),

V acc
L (X, q1L, q1F ) if X ∈ [X̂,∞).

(15)

9All examples in this paper use the following parametrization: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, δ = 1000, q1I = 1
η(β+1)

.

11



V L
det

V L
acc

X

V L
det ,V L

acc

X1
det X2

detX1
acc X
�

Figure 1: The leader’s value functions while delaying the follower (solid) and while inducing immediate

follower investment (dashed).

Assuming x(0) to be sufficiently small, our analysis implies that for exogenous firm roles the leader waits

until x(t) reaches Xdet
L and invests. Then the follower waits until x(t) reaches X∗

F , at which point in time

the follower invests.

3.2 Endogenous firm roles

Based on the results of the previous section we can now examine the equilibrium behavior if the investment

order is not fixed ex-ante and both firms are allowed to invest first. To characterize the firms’ optimal

behavior we need to consider the value functions of a firm if it acts as leader respectively follower. Figure 2a

shows the two value functions for a firm depending on the current value X of the state variable. The solid

curve corresponds to the outcome if the considered firm takes the leader role, where the payoff of immediate

investment is depicted. If the firm takes the position of the follower, one arrives at the dashed curve,

corresponding to (2). For small values of X investment is not profitable. Then no firm wants to invest

first, which is why the follower curve lies above the leader curve. For larger values, though, each firm wants

to be the first investor. The curves are qualitatively similar for the incumbent and the entrant firm. This

means that when X is large enough both firms prefer to become the leader. To prevent that the competitor

undertakes an investment first, thereby making the firm end up with the follower value instead of the higher

leader value, it is best to preempt the other firm by making an investment just a bit earlier. As this strategy

is optimal to both firms, investment is made as early as possible, provided the leader’s payoff exceeds the

follower’s payoff. Hence, assuming that the initial value of the process x(t) is smaller than XP , as given in

Figure 2a, the first moment for a firm to invest, that is, when investment as a leader becomes worth-while,

is at the lowest value of X for which the leader curve no longer yields a smaller value than the follower

curve. This point is called the preemption point XP . Formally, the preemption points of the incumbent and

12
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(b) Preemption points XPI (solid) and XPE (dashed) with

free capacity choice for different values of q1I .

Figure 2: Preemption points.

entrant are defined in the following way,

XPI = min{X > 0 | V det
L (X, q1I , 0) = VF (X, 0, q1I , q

det
L (X, 0, q1I))},

XPE = min{X > 0 | V det
L (X, 0, q1I) = VF (X, q1I , 0, q

det
L (X, q1I , 0))}.

Since q1I > 0, the two firms are asymmetric and therefore their preemption points do not coincide. Clearly,

for a firm, of which its preemption point is below that of the competitor, it can never be an equilibrium

strategy to choose an investment trigger above the competitor’s preemption point. If the firm would choose

such a large trigger the opponent’s best response would imply that the firm ends up as follower, and therefore

with a smaller value compared to what it can gain as leader (see Figure 2a). If, furthermore, the optimal

trigger Xdet
L under the delaying follower investment strategy of that firm is larger than the opponent’s

preemption point, then the firm has no incentives to invest before the opponent’s preemption point is

reached. In such a situation it constitutes equilibrium behavior for the firm with the lower preemption point

to set its investment trigger to the opponent’s preemption point and to invest an amount which delays the

opponent’s investment. Following its optimal strategy the opponent chooses the follower’s investment trigger

and invests once this trigger is reached. Such an equilibrium is referred to as a preemption equilibrium and

the following proposition shows that at least for appropriate initial capacity of the incumbent no other types

of subgame-perfect equilibria exist in the considered game.

Proposition 5 Assume that the initial capacity of the incumbent is sufficiently close to qmyop
1I . Then,

preemptive investment constitutes a unique subgame perfect Nash equilibrium.

In order to clarify which firm acts as leader in the preemption equilibrium, we depict in Figure 2b the

preemption points of the incumbent and the entrant for values of q1I in the entire relevant range [0, qmyop
1I ].
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It can be clearly seen that the preemption point of the incumbent is below that of the entrant. Furthermore,

it is easy to check that the leader’s investment trigger under the delaying follower investment strategy, if it is

finite, is generically much larger than the entrant’s preemption point (see also Lemma 1 in Appendix A).10

Together, these two observations establish that the incumbent acts as leader in the preemption equilibrium.

Hence, for a sufficiently small value of x(0) it is optimal for the incumbent to wait initially and to invest the

amount qdetL just as the process x reaches the preemption point of the entrant. The investment is chosen in

a way to delay the investment of the entrant and therefore it is an instrument of entry deterrence. Using

this strategy the incumbent can delay the entry of its opponent till the trigger X∗
F (q1I , 0, q2I) is reached by

x(t).

Example 1 Considering, as an illustrative example, the case q1I = qmyop
1I , which under our default parametriza-

tion yields q1I = 2.37, we obtain XPI = 134 and XPE = 167. This means that for X < 134 both firms prefer

to wait, for 134 ≤ X < 167 the incumbent prefers to be leader and the entrant prefers to wait and for X ≥ 167

both want to invest. The investment trigger Xdet
LI is not finite in this situation since the incumbent would

not undertake an investment in the case of exogenous firm roles (see Lemma 1 in the Appendix). Hence,

the only reason the incumbent invests at X = XPE = 167 is strategic. Due to its investment the entrant’s

investment trigger is set to X∗
F = 208 and till x(t) reaches this level the incumbent stays a monopolist.

To understand this result one must realize that any investment reduces the output price, since this price

is negatively related with the total market output. Investment by the entrant thus reduces the incumbent’s

value. It is then better for the incumbent to cannibalize than let the entrant reduce the price. To do so, the

incumbent installs a small capacity level: small in order not to make the cannibalization effect too large,

but large enough to delay investment of the entrant. To conclude, the incumbent installs a small additional

capacity with the aim to protect its demand, and to prolong the period where it can profit from its monopoly

position. The entrant will invest later when demand is higher so it can set a larger quantity on the market.

This leads to the result that the incumbent invests first and expands to delay a large investment by the

entrant. The latter waits until the state variable hits the follower’s investment threshold.

3.3 Fixed Capacity

In order to highlight the importance of the endogenous choice of investment size for our main finding that the

incumbent invests prior to the entrant, in this section, we consider a scenario where the size of investment

is fixed. Apart from improving our understanding of the role of endogenous investment size, the main

motivation for considering a scenario with fixed investment is that for industries where expansion has to

be typically carried out in fixed units, for example the establishment of an additional laboratory in the

pharmaceutical industry, the assumption of a fixed investment size seems more appropriate than that of

10As elaborated in Section 5.1 these two inequalities do not depend on the particular parametrization of the model chosen

here but stay intact over a large range of relevant parameter settings.
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Figure 3: Preemption triggers XPI (solid) and XPE (dashed) with fixed capacity for different values of q1I

with K = 2.5.

complete flexibility in the size of investment. This section shows that whether investment size is exogenous

or endogenous is indeed crucial for the emerging investment order.

Consider the model presented above, but assume investment size is fixed such that q2I = qE = K. The

incumbent’s value functions as leader (under the deterrence strategy) and follower are then similar to what

was found previously,

V det
LI (X, q1I , 0,K) =

X

r − α
(q1I +K)(1− η(q1I +K))− X∗

FE

r − α
ηK(q1I +K)

(
X

X∗
FE

)β

− δK,

VFI(X, q1I , 0,K) =
X

r − α
(q1I +K)(1− η(q1I + 2K))− δK,

FFI(X, q1I , 0,K) = Adet
FIX

β +
X

r − α
q1I(1− η(q1I +K)),

where X∗
FE = β

β−1
δ(r−α)

1−η(q1I+2K) and X∗
FI(q1I , 0,K) = β

β−1
δ(r−α)

1−2η(q1I+K) are the investment triggers of the

entrant and the incumbent as follower, and Adet
FI (q1I , 0,K) = δK

β−1 (X
∗
FI)

−β
. In a similar way one can

determine the value functions of the entrant.

Next, one can calculate the preemption points. In Section 3.2 it was shown that under endogenous choice

of the investment size the incumbent invests first, where it expands by an adequate amount such that the

entrant’s investment is temporarily hold off. Figure 3 shows the preemption points for the model presented

in this section, i.e. where investment size is fixed. The relative position of the curves has changed compared

to Figure 2b, which depicts the case with endogenous investment size: the entrant’s curve now lies below

the incumbent’s curve, signifying that in this model the entrant precedes the incumbent in undertaking an

investment. Thus, the entrant takes the leader role and the incumbent becomes follower.

If firms are free to choose the size of their installment, the incumbent has the largest incentive to invest

first, for it can undertake a small investment in order to delay a large investment by the entrant. When fixing

capacity for both firms at an equal level, this no longer applies: since capacity size is fixed, the incumbent

cannot make a small investment to delay a large investment by the follower. Then the incentive to invest is

higher for the entrant, since it does not suffer from cannibalization. As a result, the incumbent is more eager
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Figure 4: Preemption triggers XPI (solid) and XPE (dashed) with fixed capacity for different values of K

with q1I = qmyop
1I .

to delay its own investment and the entrant is the investment leader. Figure 4 shows that the observation

that the entrant invests first when capacity size is fixed, is robust with respect to changes in the size of

investment K.

4 Overinvestment and Market Leadership

4.1 Overinvestment

In the literature on entry deterrence incumbents mainly deter entrants by means of overinvestment (e.g.,

Spence (1979) and Dixit (1980)). That is, by building large capacities on the market, it becomes unprofitable

for other firms to enter this market. Static entry deterrence models suggest that, apart from cases where

markets are blocked (e.g. due to high entry costs), the quantity put on the market under an entry threat

exceeds the amount that would be optimal for the firm in case that there is no potential entrant. This section

investigates whether this notion of overinvestment also applies in the dynamic stochastic market framework

presented in Section 3.

Overinvestment is defined as the difference between the quantity an incumbent sets on the market when

there exists a threat of entry and the quantity it would set when this threat would not be present. In other

words, the incumbent’s expansion in the duopoly setting as presented in the previous section is compared

to the incumbent’s expansion in case it is a monopolist forever. To this end, the monopolist’s model is

presented and analyzed.

The value function of the monopolist, at the moment of investment, is given by

VM (X, q1) = E

[∫ ∞

0

(q1 + q2)X(t)(1− η(q1 + q2))e
−rtdt

∣∣∣ x(0) = X

]
− δq2

=
X

r − α
(q1 + q2)(1− η(q1 + q2))− δq2,
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With Entry Threat Without Entry Threat

Trigger Expansion Trigger Expansion

q1I XPE qdet∗L Xmon
L qmon∗

2

0 123 1.59 152 2.37

0.5 129 1.26 169 2.13

1 136 0.97 190 1.90

1.5 145 0.71 217 1.66

2 157 0.48 254 1.42

2.5 171 0.29 304 1.19

Table 1: Expansions made by the incumbent with and without entry threat for different values of q1I .

in which q1 is the initial capacity and q2 corresponds to the capacity acquired by investment. Maximizing

the monopolist’s value function leads to the optimal capacity expansion size,

qmon
2 (X, q1) = max

{
1

2η

(
1− 2ηq1 − δ(r − α)

X

)
, 0

}
.

Hence, one obtains,

VM (X, q1) =

⎧⎪⎨
⎪⎩

X
r−αq1(1− ηq1) +

(
X
X∗

M

)β
δ

β−1q
mon∗
2 if X < X∗

M ,

(X(1−2ηq1)−δ(r−α))2

4η(r−α)X + Xq1(1−ηq1)
r−α if X ≥ X∗

M ,

where β is defined as in (1). The optimal moment of expansion is defined as the value of x for which the

option to wait no longer yields a larger value than immediate investment. Standard analysis shows that for

the expansion the optimal threshold and size equal

X∗
M =

β + 1

β − 1

δ(r − α)

1− 2ηq1
,

qmon∗
2 =

1− 2ηq1
η(β + 1)

.

To measure overinvestment, the difference between qdet∗L and qmon∗
2 needs to be considered. Table 1

illustrates this difference for our standard parameter setting. In this table, the optimal investment moment

and the optimal investment size are given for different values of the initial investment size, both with (first

pair of columns) and without (second pair of columns) threat of an entrant. Overinvestment would occur

if qdet∗L > qmon∗
2 . However, the table illustrates the opposite. To explain this, one must realize that the

investment threshold values of the monopolist are higher than the ones of the incumbent in a duopoly

setting. The incumbent, by all force, prefers to keep its monopoly position as long as possible and thereto

it delays investment of the entrant by preempting the entrant’s preferred investment moment. This leads

to an investment in a market that is still small at the moment of investment. For this reason the capacity

investment of the firm is small as well. The monopolist, however, has the flexibility to wait for a price that
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Incumbent (Leader) Entrant (Follower)

q1I Trigger Total Capac. Trigger Capacity

0 123 1.59 180 1.99

0.5 129 1.76 185 1.95

1 136 1.97 190 1.90

1.5 145 2.21 195 1.85

2 157 2.48 202 1.78

2.5 171 2.79 211 1.71

Table 2: Total capacities of the incumbent and the entrant for different values of q1I .

has grown to a considerable level before investing. We conclude that, under consideration of endogenous

timing as well as endogenous investment size, entry deterrence is not so much about the size but more about

the timing of the investment.

4.2 Market leadership

When studying industry evolution and entry deterrence, a crucial issue is the question under which circum-

stances early incumbents in an industry are able to maintain their market leadership as the market grows.

This section illustrates that in our considered setting the incumbent does not necessarily maintain its market

leader position after the entrant’s investment. Intuitively, a larger initial capacity level has two contradictory

effects on the expansions. First, a larger initial capacity, makes the expansion size decrease, for the cannibal-

ization effect is larger for the firm already owning a larger capital stock. Second, since investment is delayed,

a larger market is observed at the moment of investment, which gives an incentive to increase investment

size. The former effect, however, is dominant and one observes that a larger initial capacity makes the size

of the expansion decrease, see e.g. Table 1. The incumbent’s total capacity, however, increases when the

initial market’s output size is larger.

Table 2 shows the final capacity level of the incumbent firm (third column) and the entrant (fifth column).

As one can observe, for a small initial capacity level the entrant becomes the market leader. However, when

the incumbent starts with a sufficiently large capacity level, it keeps its position as market leader after the

second firm’s entry. Market leadership thus depends on the initial market size.

In a framework with two potential entrants, i.e. no firm prossesses an initial capacity, Huisman and Kort

(2015) point out that market leadership is dependent on uncertainty. In particular, they show that for

large demand uncertainty the first investor becomes market leader, while the second investor will invest

in a larger capacity when the demand uncertainty is low. Combining this with our findings, implies that

market leadership depends on both initial capacity and demand uncertainty. Denote by qML
1I the value of

the initial capacity for which the total incumbent’s capacity equals the amount set by the entrant. As
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illustrated in Figure 5, qML
1I decreases when uncertainty increases. Larger uncertainty makes the incumbent

delay investment, which results in a larger expansion investment, making it market leader for smaller values

of q1I relative to the case of smaller uncertainty. In this figure one can clearly observe for which combinations

of the initial capacity level and the uncertainty level the incumbent is market leader and in which region the

entrant becomes market leader. In a very uncertain economic environment, the incumbent always becomes

market leader. However, for small uncertainty levels a certain range q1I ∈ [0, qML
1I ) exists for which the

entrant ends up with the largest market share.

5 Robustness

In this section two types of robustness checks are performed in order to verify the validity of our results.

First, the effects of changes of parameter values is studied. It is shown that the investment order remains

the same for a large range of parameter values. Second, we impose a different demand structure and show

that also this does not change our qualitative conclusions.

5.1 Parameter variations

In order to inspect the effect of changes in parameter values on the investment order, the difference between

the two preemption points as well as the difference between the incumbent’s investment threshold and the

entrant’s preemption trigger is shown for a variation of all parameters in Appendix B. This makes clear

that the insight that the incumbent invests first to delay the entrant’s investment is very robust. There is a

single exception, which occurs when the sensitivity of the market clearing price with respect to the supplied

quantity (η) is very small or when there is an almost negligible size of the incumbent’s initial capacity. In

such a setting the entrant’s preemption trigger might fall below the one of the incumbent. The trade-off

between the initial capacity and the sensitivity parameter is depicted in Figure 6. This figure shows the two

regions where either of the firms invest first. The curve in between depicts all values of η and q1L for which
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Figure 6: Regions where the incumbent invests first (upper right) and where the entrant invests first.

both firms’ preemption triggers are identical. We see that the incumbent invests first, except for a small

region close to both axes where the entrant is the first investor. In fact, it holds that for η · q1L > 0.01413

the incumbent is leader and the entrant invests first for η · q1L < 0.01413. Intuition behind this result is that

for the situation where η and q1L are small the cannibalization effect is small. The incentives to preempt

the entrant vanish the moment there is almost nothing to protect.

5.2 Additive demand structure

One characteristic of the multiplicative demand function, as chosen in this paper, is that the market size

is bounded. In particular, price is only positive when market quantity is lower than 1
η . In order to check

that this property of the inverse demand is not crucial for our results, we carry out the same analysis as in

XPI
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q1 I
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Figure 7: Preemption triggers XPI (solid) and XPE (dashed) under additive demand.
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Figure 8: Investment size for different values of q1I under additive demand.

Section 3 for an additive demand structure:

p(t) = x(t)− ηQ(t).

Details of the analysis are provided in Appendix C. Similar to the findings before, it is found that the

incumbent preempts the entrant and acquires a smaller capacity. For different values of the initial capacity

level, Figure 7 shows the resulting preemption triggers.11 The initial capacity level under myopic investment

equals qmyop
1I = 0.0487. In Appendix C also the sensitivity of the results with respect to parameter changes is

tested. It is confirmed that for large sets of parameter values the incumbent always undertakes an investment

first. Figure 8 shows the installed capacities of the incumbent, entrant and monopolist, illustrating that also

the results about underinvestment in the presence of an entry-threat, discussed above, remain valid. We

conclude that the results under additive demand are qualitatively the same as those under multiplicative

demand.

6 Welfare analysis

To conclude our analysis we examine how the behavior emerging in equilibrium compares to the outcome

chosen by a social planner interested in maximizing welfare. For the sake of comparability with the equilib-

rium analysis we restrict the number of investments of the social planner to the total number of investments

by both firms in the scenario with competition. Therefore, we consider a social planner that has the option

to invest twice in an existing market. It optimizes total welfare, being the sum of the total expected con-

sumer surplus and expected producer surplus. It is easy to see that in our setting from the perspective of

11The parameter values are chosen differently in this example, for a different inverse demand function requires a different

parametrization. Analogous to Boonman (2014) we set α = 0.01, r = 0.1, σ = 0.05, η = 0.5, and δ = 1.
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consumer surplus, total industry profits and welfare, it is irrelevant whether these investments are made by

the same or two different firms. The analysis is analogous to Section 3.1: first the final investment moment is

determined, together with the optimal investment size. Next the investment moment of the first investment

is determined, along with the corresponding capacity size. Concerning the final investment, the output price

after investment equals p(t) = x(t)(1− η(q0 + q1 + q2)). The total expected consumer surplus after the final

investment then equals

CS2(X, q0, q1, q2) = E

⎡
⎢⎣

∞∫
t=0

X∫
P=p(t)

D(P ) dP e−rt dt

∣∣∣∣∣ x(0) = X

⎤
⎥⎦ =

Xη(q0 + q1 + q2)
2

2(r − α)
,

where D(P ) =
1

η

(
1− P

X

)
. The expected producer surplus equals the expected discounted net revenue

stream minus the investment outlay,

PS2(X, q1, q2, q3) =
X

r − α
(q0 + q1 + q2)(1− η(q0 + q1 + q2))− δq2 − X

r − α
(q0 + q1)(1− η(q0 + q1)).

Expected welfare after the second investment is then obtained by adding the two together, leading to

W2(X, q0, q1, q2) =
X

r − α
q2(1− η(q0 + q1 +

1
2q2))− δq2.

We find that, for an equal level of q1 cq. q2I , the investment moment of the final investment equals the

investment moment of the follower, but the resulting investment size is twice as large for the case of the

social planner,

XW
2 =

β + 1

β − 1

δ(r − α)

1− η(q0 + q1)

qW2 = 2
1− η(q0 + q1)

η(β + 1)
.

In a similar way, one can determine the optimal moment of the first investment,

XW
1 =

β

β − 1

δ(r − α)

1− ηq0 − 1
2ηq

W
1

,

where the optimal investment size of the first investment qW1 is implicitly determined by solving the following

equation for q1,

1− βηq1
2(1− η(q0 + q1))

− 2

(
β

β + 1

1− η(q0 + q1)

1− ηq0 − 1
2ηq1

)β

= 0.

The maximal expected welfare before any investment is given by

WW (X, q0) =
X

r − α
q0(1− 1

2ηq0) +

(
X

XW
1

)β
δ

β − 1
qW1 +

(
X

XW
2

)β
δ

β − 1
qW2 .

and can be divided into two components. The first part, consisting of one term, reflects the accumulated

discounted welfare stream resulting from the initial capacity level. The second part consists of two terms,

reflecting the value of the investment options. Let us denote the first term as WW
0 (X, q0) and the sum of

the final two terms WW
opt(X, q0). Then we can rewrite WW (X, q0) as W

W
0 (X, q0) +WW

opt(X, q0).
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Duopoly Social Planner

q0 XP qL XF qF Qduop W duop
opt XW

1 qW1 XW
2 qW2 QW WW

opt
Wduop

opt

WW
opt

Qduop

QW

0 123 1.59 180 1.99 3.58 0.3058 135 2.84 212 3.40 6.24 0.3790 0.8069 0.5737

0.5 129 1.26 185 1.95 3.71 0.2258 142 2.70 224 3.23 6.43 0.3052 0.7397 0.5770

1 136 0.97 190 1.90 3.87 0.1647 150 2.55 236 3.06 6.61 0.2423 0.6798 0.5855

1.5 145 0.71 195 1.85 4.06 0.1179 159 2.41 250 2.89 6.80 0.1899 0.6208 0.5971

2 157 0.48 202 1.78 4.26 0.0815 169 2.27 266 2.72 6.99 0.1469 0.5551 0.6094

2.5 171 0.29 211 1.71 4.50 0.0565 180 2.13 283 2.55 7.18 0.1126 0.5020 0.6267

Table 3: Welfare implications of the initial capacity under duopoly and the social optimum.

Tabel 3 shows the investment triggers, the correspondig capacities and the resulting surpluses for both

the social planner and the duopoly. The table also shows the accumulated capacities Qduop and QW . The

first observation is that the first and second investment moment of the social planner are later than the

investment moments in the duopoly model. Moreover, the resulting capacities are larger in the case of a

welfare maximizer. So, the preemption effect combined with the cannibalization effect forces the incumbent

to invest too soon and acquire a small capacity. The entrant also invests sooner compared to the second

investment of the social planner and this is because the incumbent invests in a smaller capacity. The social

planner is more interested in larger quantities than profit maximizing firms because firms do not internalize

the additional consumer surplus generated by a capacity increase.

Table 3 can also be used to study the effect of the initial incumbent’s capacity size on the welfare. For both

the duopoly model and for the social planner model, additional welfare gained by investing drops when the

initial capacity is larger. Intuitively, the larger the old market, the lower the marginal value of an additional

unit of capital. Additionally, a larger initial capacity is equivalent to a more severe cannibalization effect.

The result that additional welfare in the duopoly is more affected by an increase in the initial capacity can

be explained by the presence of competition that marginalizes surplus as a result of protective behavior

towards the firms’ own profit. The social planner delays investment relative to the market outcome, because

it is not affected by a potential entrant’s willingness to invest soon.

The insight that under (potential) competition investment occurs too early and in too small amounts

compared to the social optimum gives rise to potential policy implications of our analysis. In particular,

policies leading to later investment by the firms, thereby inducing larger long term capacities and output

quantities would lead to a welfare improvement. Introducing a license on building capacity would, e.g.,

contribute to the desired objective. Licensing requires that upon investment the firms incur a lump-sum

cost. Since investing becomes more expensive, firms will delay their investment moment. This cost has no

direct influence on the investment amount, however, since the firms invest later, the realized investment size

will increase.
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7 Conclusions

The main message of this paper is that the interaction between timing and size of investment plays a crucial

role in the strategy of an incumbent facing the threat of entry in a dynamic market environment. Where

entry deterrence is generally understood to ward off entrants by overinvesting, we find that entry is delayed

by accelerating the investment. This induces an investment, which is smaller than that of an incumbent

in a comparable market without an entry threat. This implication of our analysis is well suited to explain

the empirical observations reported in Leach et al. (2013). These authors show that, contrary to the

predictions of the standard entry deterrence literature, the entry threat generated by the deregulation of

the U.S. telecommunication industry did not result in an increase of capacity investments by incumbents.

As the telecommunications industry in this period clearly has the characteristics of an expanding market,

it fits well with the setup of our model. Therefore, our insight that in the presence of choices about both

timing and size the incumbent’s investment should be smaller than without an entry threat, provides a clear

theoretical guidance for understanding these empirical observations. Also our result that, depending on

whether investment size is flexible or fixed, the incumbent respectively the entrant invests first, is not only

a new insight in the theoretical literature, but also gives rise to potentially testable empirical implications.

The model could be extended in different ways. In particular, it is important to examine the implications

of the existence of multiple incumbents and/or potential entrants for the main insights of our analysis.

Furthermore, the consideration of multiple investment options, although technically very challenging, is

an important further step to gain a better understanding of the evolution of industries characterized by

irreversible investments. Finally, the implications of innovating firms, either adopting new technologies or

performing R&D themselves, for capacity dynamics could be studied as an extension of the setting considered

here.
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Appendix A: Proofs

Proof of Proposition 1 The follower’s value function with respect to the shock process x can be divided

into two regions. For x sufficiently large the firm invests, that is for x ≥ X∗
F , this region is called the

stopping region. The complementary region is called the continuation region, for these values the firm waits

(see e.g. Dixit and Pindyck (1994)). In the stopping region the firm realizes the following accumulated and
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discounted expected profits VF (X, q1L, q1F , q2L, q2F ) at the investment moment,

VF = E

[∫ ∞

t=0

x(t)(q1F + q2F )(1− η(q1L + q1F + q2L + q2F )e
−rtdt

∣∣∣ x(0) = X

]
− δq2F

= (q1F + q2F )(1− η(q1L + q1F + q2L + q2F )E

[∫ ∞

t=0

x(t)e−rtdt
∣∣∣ x(0) = X

]
− δq2F

= (q1F + q2F )(1− η(q1L + q1F + q2L + q2F )

∫ ∞

t=0

x(0)e(α−r)tdt− δq2F

=
X

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F )− δq2F .

The firm chooses capacity such that it maximizes its profits, thereto,

∂VF

∂q2F
=

X

r − α
[1− η(q1L + 2q1F + q2L)− 2ηq2F )]− δ

= 0 ⇔

q2F (X, q1L, q1F , q2L) =
1

2η

[
1− η(q1L + 2q1F + q2L)− δ(r − α)

X

]
.

The second order conditions reassure us that this is indeed a maximum, −2η X
r−α < 0.

In the continuation region it is optimal for the firm the delay investment, for waiting yields a larger value

than investment. The waiting value is embodied by the option value. The function FF , following standard

real options analysis (see e.g. Dixit and Pindyck (1994)), equals the sum two terms reflecting the value of

waiting and the value of current production,

FF (X, q1L, q1F , q2L) = AFX
β +

X

r − α
q1F (1− η(q1L + q1F + q2L)),

where β is the positive root following from,

σ2β2 + (2α− σ2)β = 2r ⇔ β = 1
2 − α

σ2 +

√(
1
2 − α

σ2

)2
+ 2r

σ2 .

The investment trigger and the value of the parameter AF (q1L, q1F , q2L) can be found by applying the value

matching and smooth pasting conditions,

X

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))− δq2F = AFX

β +
X

r − α
q1F (1− η(q1L + q1F + q2L)),

1

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F )) = AFβX

β−1 +
1

r − α
q1F (1− η(q1L + q1F + q2L)).

Together they make

X

r − α
(q1F +q2F )(1−η(q1L+q1F +q2L+q2F ))

(
1− 1

β

)
− X

r − α
q1F (1−η(q1L+q1F +q2L))

(
1− 1

β

)
= δq2F ,

which leads to

XF =
β

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L + q2F )
.
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Plugging in q2F leads to

X∗
F (q1L, q1F , q1L) =

β + 1

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L)
.

Moreover,

AF (X
∗
F )

β =
X∗

F

r − α
q∗2F (1− η(q1L + 2q1F + q2L + q∗2F ))− δq∗2F

=
δq∗2F
β − 1

.

Rewring leads to equation

AF (q1L, q1F , q2L) =
δ2(r − α)

η(β − 1)2

(
1− η(q1L + 2q1F + q2L)

δ(r − α)

β − 1

β + 1

)β+1

.

�

Proof of Proposition 2 The region with respect to X where the leader delays the follower’s investment is

bounded from below and above by Xdet
1 and Xdet

2 . In this region the leader optimizes capacity at investment.

The optimal amount can be found by solving the first order condition,

∂V det
L

∂q2L
=

X

r − α
[1− η(2q1L + q1F + 2q2L)]− δ

β − 1

(
X

X∗
F

)β [
1− ηβ(q1L + q2L)

1− η(q1L + 2q1F + q2L)

]
− δ. (16)

Differentiating both the left hand side and the right hand side with respect to X leads to

∂qdetL

∂X
=

1− η(2q1L + q1F + 2qdetL )− β
β+1

(
X
X∗

F

)β−1

(1− 2ηq1F − (1 + β)η(q1L + qdetL ))

X

[
2− β

β+1

(
X
X∗

F

)β−1 (
1− 1−η(2q1F+βq1L+βqdetL )

1−η(2q1F+q1L+qdetL )

)] > 0.

The value of Xdet
2 then follows from first inserting X∗

F in the first order conditions,

∂V det
L

∂q2L
=

δ

β − 1

1− 2ηq1L + η(β − 1)q1F − 2ηq2L
1− η(q1L + 2q1F + q2L)

= 0 ⇔ qR2L =
1

2η
(1− 2ηq1L + (β − 1)ηq1F ). (17)

Hence, by plugging the latter expression into X∗
F one obtains Xdet

2 ,

Xdet
2 = X∗

F (q1L, q1F , q
R
2L) =

β + 1

β − 1

2δ(r − α)

1− (β + 3)ηq1F

The conditions determining Xdet
1 also follow from the first order conditions by setting q2L = 0. To show

that there exists a unique point Xdet
1 , it is sufficient to do the following. Define ψ(X) =

∂V det
L

∂q2L
|q2L=0, this

function dictates the first order conditions for the value of X yielding zero capacity,

ψ(X) =
X

r − α
[1− η(2q1L + q1F )]− δ

β − 1

(
β − 1

β + 1

1− ηq1L − 2ηq1F
δ(r − α)

X

)β [
1− ηβq1L

1− ηq1L − 2ηq1F

]
− δ.

Then,

ψ(0) = −δ < 0,

ψ(X∗
F ) =

δ

β − 1

1− 2ηq1L + (β − 1)ηq1F
1− ηq1L − 2ηq1F

,

ψ′(X) =
1− η(2q1L + q1F )

r − α

[
1− β

β + 1

(
X

X∗
F

∣∣∣
q2L=0

)β−1
]
+

β

β + 1

(
X

X∗
F

∣∣∣
q2L=0

)β−1
ηq1F + (β − 1)ηq1L

r − α
.
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From (17) it follows that ψ(X∗
F ) > 0. Since ψ′(X) > 0 one can conclude that, according to the Mean Value

theorem, there exists a unique Xdet
1 ∈ (0, X∗

F ) such that qdetL (Xdet
1 , q1L, q1F ) = 0.

The value before investment is similar to the one for the follower,

F det
L (X, q1L, q1F ) = Adet

L Xβ +
X

r − α
q1L(1− η(q1L + q1F )).

Applying the value matching and smooth pasting conditions gives (7) and

Adet
L = (Xdet

L )−β δqdetL

β − 1
− δ

β − 1
(q1L + qdetL ) (X∗

F )
−β

.

In order to show that for sufficiently small q1L there exists a pair (Xdet
L , qdet∗L ) satisfying (7) and the first

order condition for the leader, we insert (7) into (16). We treat the following two cases separately. First

we look as the scenario where the incumbent is the investment leader. Then, q1F = 0 and one obtains the

equivalent condition

β

(
1− 1− η(2q1L + 2q2L)

1− η(2q1L + q2L)

)
= 1− 1− η(β + 1)(q1L + q2L)

1− η(q1L + q2L)

(
β

β + 1

)β

. (18)

After rewriting this equation, one could similarly say that it is required that H(q2L) = 0, where,

H(q2L) = 1−η(q1L+q2L)−(1−η(β+1)(q1L+q2L))

(
β

β + 1

)β

+β

[
1− η(2q1L + 2q2L)

1− η(2q1L + q2L)
− 1

]
(1−η(q1L+q2L)).

Since,

H(0) = 1− ηq1L − (1− η(β + 1)q1L)

(
β

β + 1

)β

> (1− ηq1L)

(
1−

(
β

β + 1

)β
)

> 0,

H

(
1− 2ηq1L

2η

)
=

1

2
(β − 1)

((
β

β + 1

)β

− 1

)
< 0, and

∂H

∂q2L
(q2L) = −1 + (β + 1)

(
β

β + 1

)β

︸ ︷︷ ︸
<0

− βηq2L
1− η(2q1L + q2L)

[
1− η(q1L + q2L)

1− η(2q1L + q2L)
− 1

]
︸ ︷︷ ︸

>0

< 0,

it can be concluded that, according to the Mean Value Theorem, there exists a q2L on the interval
(
0, 1−2ηq1L

2η

)
,

such that H(q2L) = 0. This value is denoted by qdet∗L . Earlier we showed that qdetL in an increasing function.

Then, since 1
2η (1− 2ηq1L) = qR2L, it follows that X

det
L > Xdet

1 and Xdet
L < Xdet

2 .

In a similar way one can prove this for the scenario where the entrant is leader. Here one shows that for

q2L = 0 the function H takes a positive value, while for q2L = 1
2η < qR2L the function becomes negative. �

Proof of Proposition 3 The leader’s value function under the inducing immediate follower investment

strategy is determined in the same way as before. In this case, however, one needs to substitute the follower’s

capacity (3) to obtain equation (13). The leader chooses capacity such that it optimizes the value function,

∂V acc
L

∂q2L
=

X

2(r − α)
[1− 2η(q1L + q2L)]− 1

2
δ ⇔ qaccL (X, q1L, q1F ) =

1

2η

[
1− 2ηq1L − δ(r − α)

X

]
.
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It is easily checked that qaccL ≥ 0 if and only if 1− 2ηq1L ≥ δ(r−α)
X , i.e. if

X ≥ δ(r − α)

1− 2ηq1L
.

The second order conditions again make sure that we obtain a maximum, −2η X
r−α < 0. Solving qaccL = q̂2L

leads to the first term in equation (11), i.e.,

qaccL =
1

2η

[
1− 2ηq1L − δ(r − α)

X

]
=

1

η

[
1− 2ηq1F − ηq1L − δ(β + 1)(r − α)

(β − 1)X

]
= q̂2L

⇔

1− 4ηq1F =
δ(r − α)(β + 3)

(β − 1)X
⇔ Xacc

0 =
β + 3

β − 1

δ(r − α)

1− 4ηq1F
.

Assuming again a value function of the form

F acc
L (X, q1L, q1F ) = Aacc

L Xβ +
X

r − α
q1L(1− η(q1L + q1F ))

one can apply the value matching and smooth pasting conditions. Using q1L · q1F = 0, to simplify the term

for Xacc
L (q1L, q1F , q2L) resulting from these two conditions one ends up with (12). Moreover,

Aacc
L · (Xacc

L )β =
Xdet

L

r − α
[(q1L + qaccL )(1− η(q1L + q1F + qaccL + q∗2F ))− q1L(1− η(q1L + q1F ))]− δqaccL

=
δβ

β − 1
qaccL − δqaccL =

δqaccL

β − 1
.

To show existence of (qacc∗L , Xacc
L ) for sufficiently small q1L we insert q1L = 0 and (12) into the equation

qacc∗L = qaccL (Xacc
L , q1L). Solving for q2L gives (qacc∗L = 1

3β−1 > 0. Therefore, by continuity, we have

Xacc
L > δ(r−α)

1−2ηq1L
for sufficiently small q1L. �

Proof of Proposition 4 We observe that

Xacc
1

Xdet
2

=
β + 3

2β + 2︸ ︷︷ ︸
<1

1− (3 + β)ηq1F
1− 4ηq1F︸ ︷︷ ︸

<1

< 1,

and therefore Xacc
1 < Xdet

2 . Furthermore, for X = Xacc
1 we have by definition qaccL = q̂2L (ignoring the trivial

case where qaccL = 0) and, due to Xacc
1 < Xdet

2 , qdetL > q̂2L . Since qdetL is the maximizer of V det
L , this yields

V det
L (Xacc

1 , q1L, q1F , q
det
L ) > V det

L (Xacc
1 , q1L, q1F , q

acc
L ) = V acc

L (Xacc
1 , q1L, q1F , q

acc
L ),

where the last equality follows from the observation that at q2L = qaccL = q̂2L the value functions both

investment strategies coincide. Similarly, we obtain for X = Xdet
2

V acc
L (Xdet

1 , q1L, q1F , q
acc
L ) > V acc

L (Xdet
1 , q1L, q1F , q

det
L ) = V det

L (Xdet
1 , q1L, q1F , q

det
L ),

because qdetL = q̂2L. Since the delaying follower investment strategy is feasible for X ∈ [Xdet
1 , Xdet

2 ] and

the inducing immediate follower investment strategy for X ∈ [Xacc
1 ,∞) we conclude that for X ≤ Xacc

1

the leader optimally delays the follower’s investment and for X ≥ Xdet
2 the follower is enforced to invest

immediately. �
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Proof of Proposition 5 Existence of the preemption equilibrium follows from the arguments given in

the text. In order to show that no other subgame-perfect equilibria exist, we first note that in this type

of games, apart from preemption equilibria, potentially also sequential investment, simultaneous investment

and joint investment might arise as equilibrium behavior. Here we follow the terminology as in Pawlina

and Kort (2006). Sequential equilibria would imply that one firm is investing strictly before the preemption

point of the competitor, which has already been ruled out for this setting. The remaining two types of

equilibria involve tacit collusion among the firms. When firms decide to collude, they wait for the market to

expand, that is, wait for a larger value of X, before investment is undertaken together at the same time. One

can discriminate two types of collusion, distinguished by the order in which firms determine their capacity

size. In the first type, one firm is Stackelberg capacity leader and decides upon the amount first where

subsequently the second firm makes an immediate investment. The second investor sets its capacity after

the first firm decided upon its investment scale. This type is called simultaneous investment. The second

type, referred to as joint investment, is the category where there is no colluded investment order. Firms

simultaneously decide upon capacities, leading to a Cournot type of equilibrium. The following Lemmas 2

and 3 rule out the existence of simultaneous investment and joint investment equilibria.

Lemma 1 Assume that q1I = qmyop
1I . Then for the incumbent the leader’s investment threshold Xdet

L (qmyop
1I , 0)

does not exist. Hence, it is optimal for the incumbent to delay investment as much as possible and to invest

just before the entrant’s preemption point XPE.

Proof of Lemma 1 We rewrite equation (9) as

F det
L (X, q1L, q1F ) =

X

r − α
q1L(1− η(q1L + q1F )) +Adet

L Xβ .

Then Adet
L reflects the net gain from investment. Let Xdet

L and X∗
F be defined as in equations (7) and (4).

Let q1L = q1I = qmyop
1I = 1

η(β+1) and q1F = 0. Then,

Xdet
L

X∗
F

=
β − 1 + 1

β+1 − βηqdet2I

β − 1− (β + 1)ηqdet2I

> 1.

Furthermore,

Adet
L = (Xdet

L )−β δqdet2I

β − 1
− δ

β − 1
(qmyop

1I + qdet2I )(X∗
F )

−β

=
δ

β − 1

[
qdet2I

[(
1

Xdet
L

)β

−
(

1

X∗
F

)β
]
− qmyop

1I

(
1

X∗
F

)β
]

< 0.

This means that investment decreases the incumbent’s payoff and the incumbent would never choose this

strategy as a leader, if investment roles were exogenously determined. Hence, Xdet
L does not exist and under

endogenous investment roles it is optimal for the incumbent to delay investment as long as possible without

jeopardizing the role as leader. �
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Lemma 2 Simultaneous investment does not yield an equilibrium.

Proof of Lemma 2 For the resulting value functions, the curves in Figure 2a should be considered. Here,

the Stackelberg leader utilizes the inducing immediate follower investment strategy, denoted by acc. As a

result, the competitor receives the follower value, being smaller than the leader value. For this reason neither

of the firms would prefer to be a follower in the outcome and they would, consequently, preempt each other

in taking the leader role. This forces the firms to end up in the region where the leader delays the follower’s

investment and the sole resulting equilbrium is the preemptive equilibrium where the follower prefers to wait

rather than invest at the same time. Hence, simultaneous investment is not an equilibrium. �

Lemma 3 Joint investment does not yield and equilibrium.

Proof of Lemma 3 Let J(X, q1L, q1F , q2L, q2F ) be the firm value for joint investment, then,

J =
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L + q2F ))− δq2L.

Optimal capacities equal,

qjoin2L =
1

3η

(
1− δ(r − α)

X

)
− q1L,

qjoin2F =
1

3η

(
1− δ(r − α)

X

)
− q1F .

This leads to,

V acc
L (X, q1L, q1F , q

acc
L , q∗2F ) =

X

r − α

1

8η

(
1− δ(r − α)

X

)2

+ δq1L

J(X, q1L, q1F , q
join
2L , qjoin2F ) =

X

r − α

1

9η

(
1− δ(r − α)

X

)2

+ δq1L

Hence, it holds that V acc
L > J . This is sufficient to show that joint investment does not yield an equilibrium.

Intuition behind this result is that when firms are leader they can set a larger capacity which leads to a

higher payoff. �

This concludes the proof of the Proposition.

Appendix B: Robustness

Robustness of the preemption equilibrium

In Figures 9 and Figure 10 we show the differences in preemption points (XPE − XPI) for variations of

all model parameters in a relevant range. This is done for both q1I = qmyop
1I and q1I = 0.5. Similarly, the

difference between the leaders investment trigger under the delaying follower investment strategy under the

entrants preemption point (Xdet
L −XPE) is shown for the same parameter variations and q1I = 0.5 in Figure
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11. For q1I = qmyop
1I the investment trigger Xdet

L does not exist and hence the incumbent does not have an

incentive to invest before the entrants preemtpion point is reached (see Lemma 1 in Appendix A). These

figures confirm the claim that, apart from the hardly relevant case where η is extremely small (discussed in

Section 5.1), under all parameter variations the preemption equilibrium with the incumbent as leader exists.

Sensitivity analysis

The aim of this section is to briefly study the effect of the model parameters on the equilibrium. In this

model there are six parameters to be taken a closer look at. First of all, the sensitivity parameter η capturing

the negative relation between prices and output. The second parameter is the fixed discount rate r. Then,

the drift parameter α and the volatility parameter σ reflecting the market’s uncertainty, both present in

the geometric Brownian motion describing the state variable’s path. Subsequently, we have the marginal

investment cost δ.

η r α δ σ

XPE (q1I = qmyop
1I ) 0 + -/+ + +

qdet2I (q1I = qmyop
1I ) - +/- +/- 0 +/-

XPE (q1I fixed) + + - + +

qdet2I (q1I fixed) - - + 0 +

Table 4: Effect of an increase in parameter values on triggers and capacities

When η increases the output q2I decreases exactly canceling out the increase in η, i.e. the product η · q2I
remains constant. Similarly η · qmyop

1I and η · qE remain constant. In this way, when assuming q1I = qmyop
1I ,

neither the investment threshold Xdet
L , nor the preemption trigger are affected by an increase in η. However,

when one assumes q1I to be fixed, triggers are affected. An increase in η means an increase in ηq1I and

resultingly a decrease in the price, which, hence, makes firms delay investment. Nevertheless, the total effect

on the investment size is negative, considering the different effects. When discounting is done under a higher

rate, one values future revenues relatively less and one becomes more concerned about current profits. If the

interest rate increases, one prefers current profits to be higher and therefore delays investment. In the first

place, this increases the myopic capacity size on the initial market. In the second place, since there are two

effects that influence the optimal investment size for the expansion - i.e. delaying increases the capacity level,

but a larger old market decreases it - it is found that the change is ambiguous. For small r the installment

increases, but for relatively large r it decreases. When one fixes the initial capacity, the effect of the old

market dominantly influences the capacity leading to decreasing installments. As standard in literature, the

drift parameter has an opposite effect: a larger α makes firms invest earlier. The main line of reasoning is the

same, when the drift parameter increases. Market demand, and therefore profits, are expected to increase

more rapidly; one is then prepared to invest earlier to meet the same expectations concerning expected

34



�0.04 �0.02 0.02 0.04
Α

10

20

30

40

50

60

XPE � XPI

(a) Variation of α.

0.05 0.1 0.15 0.2 0.25
Σ

20

40

60

80

XPE � XPI

(b) Variation of σ.

500 1000 1500 2000
Δ

10

20

30

40

50

60

XPE � XPI

(c) Variation of δ.

50 100 150
Δ

1

2

3

4

5
XPE � XPI

(d) Small values of δ.

0.05 0.1 0.15
r

5

10

15

20

25

30

35

XPE � XPI

(e) Variation of r.

0.05 0.1 0.15
Η

10

20

30

40

50

60

XPE � XPI

(f) Variation of η.

Figure 9: Difference between preemption points with q1I = qmyop
1I .

35



�0.04 �0.02 0.02 0.04
Α

0.5

1.0

1.5

2.0

2.5

XPE � XPI

(a) Variation of α.

0.05 0.1 0.15 0.2 0.25
Σ

0.2

0.4

0.6

0.8

1.0

1.2

XPE � XPI

(b) Variation of σ.

1000 1500 2000
Δ

0.2

0.4

0.6

0.8

1.0

XPE � XPI

(c) Variation of δ.

0.05 0.1 0.15
r

0.2

0.4

0.6

0.8

XPE � XPI

(d) Variation of r.

0.05 0.1 0.15
Η

0.2

0.4

0.6

0.8

1.0

1.2

1.4

XPE � XPI

(e) Variation of η.

0.01 0.02 0.03 0.04
Η

�0.01

0.01

0.02

0.03

XPE � XPI

(f) Small values of η.

Figure 10: Difference between preemption points with q1I = 0.5.
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Figure 11: Difference between the incumbent’s investment triggers and the entrant’s preemption point for

q1I = 0.5.
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revenues. Nevertheless, when the initial capacity also changes under a change in parameter values,12 a

second effect comes in, similar to the analysis of η: a larger drift increases the initial capacity which leads

to a delay of the investment. The effect on the optimal capacity is similar to the effect of r when the initial

capacity is determined endogenously as qmyop
1I , but is, as expected, opposite to r when fixing it. The marginal

investment cost has a positive effect on the investment trigger. When investing becomes more expensive,

firms prefer to wait for a market where a larger output is required in order to meet the larger costs. The

optimal capacities, both when fixing the initial market size and taking it myopically, are not affected. Finally,

in a more uncertain market, i.e. a larger σ, future realizations become more important. Waiting gives more

information. This leads to the decision to wait for a higher price, in other words, the firm is only prepared

to invest for a larger value of x. This leads to an increase in the optimal capacity size. However, as in the

case of r and α, the effect is ambiguous when assuming a myopic initial market size.

Appendix C: Model Extensions

Fixed capacity

Suppose X = XPE , then one can show that

V det
LE − F det

FE =

[
X

r − α
K(1− ηK − ηq1I)− δK

]⎡
⎣1− (X∗

FE)1−β

r−α K(ηq1I + ηK) + δK
β−1 (

1
X∗

FI
)β

(X∗
FI)

1−β

r−α ηK2 + δK
β−1 (

1
X∗

FE
)β

⎤
⎦ .

One can conclude, if

f1(q1I ,K) = (1− ηq1I − 2ηK)β−1(1− ηq1I(β + 1)− ηK(β + 2))

>

f2(q1I ,K) = (1− 2ηq1I − 2ηK)β−1(1− 2ηq1I − ηK(β + 2)),

then V det
LI (XPE) > FFI(XPE) and as a result XPI < XPE .

Additive demand

Here, we first shortly summarize all the obtained propositions. Then, we will show some graphs to check

the robustness of the results.

Proposition 6 Let the current value of the stochastic demand process be denoted by X, and let the initial

production capacity be denoted by q1L and q1F respectively for the leader and the follower. Let the capacities

associated with the investments be denoted by q2L and q2F respectively for the leader and the follower. Then

the value function of the follower can be partitioned into two regions: for small X the firm waits until it

12Note that, since the initial capacity equals the myopic investment level, i.e. q1I = 1
η(β+1)

, its level depends on the other

parameter values.
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reaches the investment trigger X∗
F and for X ≥ X∗

F the firm invests immediately. As a result, the follower’s

value function V ∗
F (X, q1L, q1F , q2L, q2F ) is given by

V ∗
F =

⎧⎪⎨
⎪⎩
AFX

β + q1F

(
X

r−α − η
r (q1L + q1F + q2L)

)
if X < X∗

F ,

(q1F + q2F )
(

X
r−α − η

r (q1L + q1F + q2L + q2F )
)
− δq2F if X ≥ X∗

F ,

where the optimal capacity level for the follower q∗2F , the investment trigger X∗
F and AF are defined by

q∗2F (X, q1L, q1F , q2L) =
r

2η

(
X

r − α
− δ

)
− 1

2 (q1L + 2q1F + q2L), (19)

X∗
F (q1L, q1F , q2L) = (η(q1L + 2q1F + q2L) + δr)

β(r − α)

r(β − 2)
, (20)

AF =
η(q1L + 2q1F + q2L) + δr

η(β − 2)β(r − α)
(X∗

F )
1−β . (21)

The follower’s capacity in case the follower invests at the investment trigger equals

q∗2F (X
∗
F , q1L, q1F , q2L) =

η(q1L + 2q1F + q2L) + δr

η(β − 2)
.

Proposition 7 Let the production capacities be defined as in Proposition 6 and let the current value of

the shock process be defined as X. Then the delaying follower investment strategy leads to value function

V det
L (X, q1L, q1F , q2L),

V det
L = (q1L + q2L)

(
X

r − α
− η(q1L + q1F + q2L)

r

)
− (q1L + q2L)

η(q1L + 2q1F + q2L) + δr

r(β − 2)

(
X

X∗
F

)β

− δq2L,

where X∗
F is defined as equation (20).

For large initial values of X the leader invests immediately and chooses optimal capacity

qdetL (X, q1L, q1F ) = argmax{V det
L (X, q1L, q1F , q2L) | q2L > q̂2L}, (22)

where,

q̂2L(X, q1L, q1F ) =
r

η

[
X(β − 2)

β(r − α)
− δ

r

]
− (q1L + 2q1F ).

Delaying the follower’s investment is considered for X ∈ (Xdet
1 , Xdet

2 ), where

Xdet
1 = {X | qdet2 (X, q1L, q1F ) = 0},

Xdet
2 = {X | qdet2 (X, q1L, q1F ) = q̂2L(X, q1L, q1F )}.

For low initial values of x, that is x(0) < Xdet
L , the leader invests at the moment x reaches the invest-

ment threshold value Xdet
L . The value of the investment threshold and the associated capacity level qdetL are

determined as the solution of the set of equations determined by equation (22) and

Xdet
L (q1L, q1F , q2L) =

[η
r
(2q1L + q1F + q∗2L) + δ

] β(r − α)

β − 1
.

The value function before investment is defined as

F det
L (X, q1L, q1F , q

det
L ) = q1L

(
X

r − α
− η(q1L + q1F )

r

)
+

(
X

Xdet
L

)β δqdetL

β − 1
− (q1L + qdetL )

(
X
X∗

F

)β δ

β − 1
.
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Proposition 8 Let the production capacities be defined as in Proposition 6 and let the current value of the

shock process be defined as X. Then the inducing immediate follower investment strategy is considered for

X ∈ (Xacc
1 ,∞), where,

Xacc
1 = max

{
β(r − α)

r(β − 4)
(4ηq1F + δ), δ(r − α)

}
.

Inducing immediate follower investment leads to value function V acc
L (X, q1L, q1F , q2L),

V acc
L = (q1L + q2L)

(
X

r − α
− η(q1L + q1F + q2L + q∗2F )

r

)
− δq2L,

= (q1L + q2L)
1
2

(
X

r − α
− η(q1L + q2L)

r

)
− 1

2δ(q2L − q1L).

For large initial values of X the leader invests immediately and chooses optimal capacity

qaccL (X, q1L) =
r

2η

(
X

r − α
− δ

)
− q1L. (23)

For low values of x(0) = X, that is X < Xacc
L , the leader will invest when x reaches investment threshold

value Xacc
L . The value of the investment threshold and the associated capacity level qaccL are determined as

the solution of the set of equations determined by equation (23) and

Xacc
L (q1L, q1F , q2L) =

ηq2L(q2L + 2q1L) + δrq2L
q2L − q1L

2β(r − α)

r(β − 1)
.

The value function before investment is defined as

F acc
L (X, q1L, q1F ) = q1L

(
X

r − α
− η(q1L + q1F )

r

)
+

(
X

Xacc
L

)β δqaccL

β − 1
.

The following figures show how the preemption points change under a change in parameter values for the

model with additive demand.

40



�0.004 0.004 0.008 0.012 0.016
Α

0.005

0.010

0.015

0.020

0.025

0.030

XPE � XPI

(a) Difference between preemption points with q1I = qmyop
1I .

�0.004 0.004 0.008 0.012 0.016
Α

0.0002

0.0004

0.0006

0.0008

0.0010

XPE � XPI

(b) Difference between preemption points with q1I = 0.01.

Figure 12: Difference between preemption points for different values of α.
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Figure 13: Difference between preemption points for different values of σ.
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Figure 14: Difference between preemption points for different values of δ.
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Figure 15: Difference between preemption points for different values of r.
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Figure 16: Difference between preemption points for different values of η.
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