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Abstract

We consider a model of stochastic evolution under general noisy best response
protocols, allowing the probabilities of suboptimal choices to depend on their payoff
consequences. Our analysis focuses on behavior in the small noise double limit: we
first take the noise level in agents’ decisions to zero, and then take the population
size to infinity. We show that in this double limit, escape from and transitions be-
tween equilibria can be described in terms of solutions to continuous optimal control
problems. These are used in turn to characterize the asymptotics of the the stationary
distribution, and so to determine the stochastically stable states. The control problems
are tractable in certain interesting cases, allowing analytical descriptions of the escape
dynamics and long run behavior of the stochastic evolutionary process.

1. Introduction

Evolutionary game theory studies the behavior of strategically interacting agents
whose decisions are based on simple myopic rules. Together, a game, a decision rule,
and a population size define a stochastic aggregate behavior process on the set of pop-
ulation states. How one should analyze this process depends on the time span of inter-
est. Over short to moderate time spans, the process typically settles on a small set of
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population states, most often near a Nash equilibrium of the underlying game. If agents
sometimes choose suboptimal strategies, then over longer time spans, transitions between
equilibria are inevitable, with some occurring more readily than others. This variation
in the difficulties of transitions ensures that a single equilibrium—the stochastically sta-
ble equilibrium—will be played in a large proportion of periods over long enough time
spans. Thus noise in individuals’ decisions can generate unique predictions of play for
interactions of long duration.1

While stochastic stability analysis is valued for its conclusions about equilibrium selec-
tion, the intermediate steps of this analysis are themselves of direct interest. The first step,
which identifies equilibria and other recurrent classes of the aggregate behavior process,
can be viewed as a part of a large literature on the convergence and nonconvergence of
disequilibrium learning processes to Nash equilibrium.2 The next step assesses the likeli-
hoods of escapes from and transitions among equilibria and other recurrent classes. The
questions of how an established equilibrium is upset, and which (if any) new equilibrium
is likely to arise, seem themselves to be of general import. But to date, the question of
equilibrium breakdown has not attracted much attention in the game theory literature.3

Most work on stochastic stability follows Kandori et al. (1993) by considering the
best response with mutations (BRM) model, in which the probability of a suboptimal
choice is independent of its payoff consequences.4 This model eases the determination of
stochastically stable states, as the difficulty of transiting from one equilibrium to another
can be determined by counting the number of mutations needed for the transition to occur.

Of course, this simplicity of analysis owes to a polar stance on the nature of suboptimal
choices. In some applications, it may be more realistic to suppose that the probability of
a suboptimal choice depends on its payoff consequences, as in the logit model of Blume
(1993, 2003), and the probit model of Myatt and Wallace (2003). When mistake probabilities
are payoff-dependent, the probability of a transition between equilibria becomes more
difficult to assess, depending now not only on the number of suboptimal choices required,
but also on the unlikeliness of each such choice. As a consequence, general results on
transitions between equilibria and stochastic stability are only available for two-strategy
games.5

1Stochastic stability analysis was introduced to game theory by Foster and Young (1990), Kandori et al.
(1993), and Young (1993), and since these early contributions has developed into a substantial literature.
For surveys, see Young (1998) and Sandholm (2010b, Ch. 11–12).

2See, for instance, Young (2004) and Sandholm (2010b).
3The final step in stochastic stability analysis uses graph-theoretic methods to distill the analysis of

transitions between equilibria into a characterization of the limiting stationary distribution of the process.
See the references above, Freidlin and Wentzell (1998), Catoni (1999), or Section 6.2 below.

4Kandori and Rob (1995, 1998) and Ellison (2000) provide key contributions to this approach.
5Blume (2003) and Sandholm (2007, 2010a) study stochastic stability in two-strategy games using birth-
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In this paper, we consider a model of stochastic evolution under general noisy best
response protocols. To contend with the complications raised by the sensitivity of mistakes
to payoffs, we study behavior in the small noise double limit, first taking the noise level in
agents’ decisions to zero, as in the works referenced above, and then taking the population
size to infinity. We thereby evaluate the small noise limit when the population size is large.

We show that in this double limit, transitions between equilibria can be described in
terms of solutions to continuous optimal control problems. By combining this analysis
with standard graph-theoretic techniques, we characterize the asymptotics of the station-
ary distribution and the stochastically stable states. In a companion paper, Sandholm and
Staudigl (2014), we show that the control problems derived here can be solved analyti-
cally in interesting classes of examples. To our knowledge, these papers are the first to
provide tractable analyses of transition dynamics and stochastic stability when mistake
probabilities depend on payoff consequences and agents choose among more than two
strategies.

We consider stochastic evolution in a population of size N. The population recurrently
plays an n-strategy population game FN, which specifies the payoffs to each strategy as
a function of the population state. In each period, a randomly chosen agent receives an
opportunity to switch strategies. The agent’s choice is governed by a noisy best response
protocol ση with noise level η, which places most probability on strategies that are currently
optimal, but places positive probability on every strategy.

We assume that for any given vector of payoffs, the probability with which a given
strategy is chosen vanishes at a well-defined rate as the noise level approaches zero. This
rate, called the strategy’s unlikelihood, is positive if and only if the strategy is suboptimal,
and is assumed to depend continuously on the vector of payoffs. For instance, under the
logit choice model, a strategy’s unlikelihood is the difference between its current payoff

and the current optimal payoff.6

A population game FN and a protocol ση generate a stochastic evolutionary process
XN,η. In Section 3, we use standard techniques to evaluate the behavior of this process as
the noise level η approaches zero. We start by introducing a discrete best response dynamic,
which describes the possible paths of play when only optimal strategies are chosen. The
recurrent classes of this dynamic are the minimal sets of states from which the dynamic
cannot escape.

death chain methods. Staudigl (2012) studies the case of two-population random matching in 2x2 normal
form games. Results are also available for certain specific combinations of games and choice protocols,
most notably potential games under logit choice: see Blume (1993, 1997), Alós-Ferrer and Netzer (2010),
and Sandholm (2010b, Sec. 11.5).

6See Section 2.2. The continuity assumption rules out the BRM model, in which unlikelihood functions
are indicator functions. We discuss this model in Section 7.2.
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To evaluate the probabilities of transitions between recurrent classes in the small noise
limit, we define the cost of a path as the sum of the unlikelihoods associated with the
changes in strategy along the path. Thus a path’s cost is the exponential rate of decay of
its probability as the noise level vanishes.

According to a well-known principle from the theory of large deviations, the proba-
bility of a transition between equilibria should be governed by the minimum cost path
that effects the transition. These transition costs, if they can be determined, provide the in-
puts to a graph-theoretic analysis—the construction of certain trees on the set of recurrent
classes—that characterizes the behavior of the stationary distribution in the small-noise
limit, and so determines the stochastically stable states.

Solving these minimum cost path problems is computationally intensive if the number
of agents is not small. In the case of the BRM model, this difficulty is mitigated by the fact
that all mistakes are equally likely, so that the cost of a path is determined by its length.
But when probabilities of mistakes depend on their consequences, this simplification is
no longer available.

We overcome this difficulty by considering the small noise double limit: after taking
the noise level η to zero, we take the population size N to infinity. We prove that as
N grows large, the discrete path cost minimization problem converges to a continuous
optimal control problem on the simplex. Although this problem is not smooth, it has a
simple enough structure to be tractable even when the state space is multidimensional.
To demonstrate this point, our companion paper provides a complete analysis of large
deviations and stochastic stability for a range of three-strategy coordination games under
the logit choice rule.

While work in stochastic evolutionary game theory typically focuses on stochastic
stability and equilibrium selection, we feel that the dynamics of transitions between
equilibria are themselves of inherent interest. Just as theories of disequilibrium learning
offer explanations of how and when equilibrium play may arise, models of transition
dynamics suggest how equilibrium is likely to break down. The importance of this
question has been recognized in macroeconomics, where techniques from large deviations
theory have been used to address this possibility in a variety of applications; see Cho
et al. (2002), Williams (2009), and the references therein. The present paper addresses
this question in an environment where the stochastic process arises endogenously as a
description of the aggregate behavior of a population of strategically interacting agents.

A number of earlier papers on stochastic evolution have considered small noise double
limits. Binmore et al. (1995) and Binmore and Samuelson (1997) (see also Sandholm (2012))
analyze models of imitation with mutations, focusing on two-strategy games; see Section
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7.3 for a discussion. Fudenberg and Imhof (2006, 2008) extend these analyses to the
many-strategy case. The key insight of the latter papers is that under imitation with
mutations, the stochastic evolutionary process is nearly always at vertices or on edges
of the simplex. Because of this, transitions between equilibria can be analyzed as one-
dimensional problems using birth-death chain methods. In the noisy best response models
studied here, the least costly transition between a pair of equilibria need not follow an
edge of the simplex, a point illustrated explicitly in our companion paper.

Turning to noisy best response models, Kandori and Rob (1995, 1998) and Ellison
(2000) analyze stochastic evolution under the BRM rule in the small noise double limit,
as we discuss in Section 7.2. Blume (2003) and Sandholm (2010a) use birth-death chain
techniques to study this limit in two-strategy games when mistake probabilities are payoff

dependent. In the work closest to the present one, Staudigl (2012) studies the small noise
double limit when two populations are matched to play 2x2 coordination games. The
analysis uses optimal control methods to evaluate the probabilities of transitions between
equilibria. It takes advantage of the fact that each population’s state variable is scalar, and
only affects the payoffs of members of the opposing population; this causes the control
problem to retain a one-dimensional flavor absent from the general case.

The paper proceeds as follows. Section 2 introduces our class of stochastic evolutionary
processes. Section 3 reviews stochastic stability in the small noise limit for the present
context. The following three sections study the small noise double limit. Section 4 provides
definitions, Section 5 presents the main technical results on the convergence of exit and
transition costs, and Section 6 gives the consequences for escape from equilibrium, limiting
stationary distributions, and stochastic stability. Section 7 offers concluding discussion.
Proofs are presented in the Appendix.

2. The Model

2.1 Finite-population games

We consider games in which agents from a population of size N choose strategies from
the common finite strategy set S. The population’s aggregate behavior is described by a
population state x, an element of the simplex X = {x ∈ Rn

+ :
∑n

i=1 xi = 1}, or more specifically,
the grid X N = X ∩ 1

NZ
n = {x ∈ X : Nx ∈ Zn

}. The standard basis vector ei ∈ X ⊂ Rn

represents the pure population state at which all agents play strategy i. States that are not
pure are called mixed population states.

We identify a finite-population game with its payoff function FN : X N
→ Rn, where
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FN
i (x) ∈ R is the payoff to strategy i when the population state is x ∈ X N. Only the values

that the function FN
i takes on the set X N

i = {x ∈ X N : xi > 0} are meaningful, since at the
remaining states in X N strategy i is unplayed.

Example 2.1. Suppose that N ≥ 2 agents are matched to play a symmetric two-player
normal form game A ∈ Rn×n. If self-matching is not allowed, then payoffs take the form

(1) FN
i (x) = 1

N−1 e′iA(Nx − ei) = (Ax)i + 1
N−1 ((Ax)i − Aii). _

In a finite-population game, an agent who switches from strategy i to strategy j when
the state is x changes the state to the adjacent state y = x + 1

N (e j − ei). Thus at any given
population state, players playing different strategies face slightly different incentives. To
account for this, we use the clever payoff function FN

i→· : X N
i → R

n to denote the payoff

opportunities faced by i players at each state x ∈ X N
i . The jth component of the vector

FN
i→·(x) is thus

(2) FN
i→ j(x) = FN

j (x + 1
N (e j − ei)).

Clever payoffs allow one to describe Nash equilibria of finite-population games in a
simple way. The pure best response correspondence for strategy i ∈ S in finite-population
game FN is denoted by bN

i : X N
i ⇒ S, and is defined by

(3) bN
i (x) = argmax

j∈S
FN

i→ j(x).

State x ∈ X N is a Nash equilibrium of FN if no agent can obtain a higher payoff by switching
strategies: that is, if i ∈ bN

i (x) whenever xi > 0.

Example 2.2. The normal form game A ∈ Rn×n is a coordination game if Aii > A ji for all
distinct i, j ∈ S, so that if one’s match partner plays i, one is best off playing i oneself.
If FN is the population game obtained by matching in A without self-matching, then the
Nash equilibria of FN are precisely the pure population states. Thus finite-population
matching differs from continuous-population matching, under which the Nash equilibria
of the population game correspond to the pure and mixed symmetric Nash equilibria of
A.

To see that no mixed population state of FN can be Nash, suppose that x ∈ X N
i ∩ X N

j is
a Nash equilibrium. Then

FN
i (x) ≥ FN

j (x + 1
N (e j − ei)) and FN

j (x) ≥ FN
i (x + 1

N (ei − e j)),
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which with (1) is equivalent to

(4) Ne′iAx − Aii ≥ Ne′jAx − A ji and Ne′jAx − A j j ≥ Ne′iAx − Ai j.

Summing these inequalities and rearranging yields (Aii−A ji)+(A j j−Ai j) ≤ 0, contradicting
that A is a coordination game. Furthermore, pure state ei is a Nash equilibrium if FN

i (x) ≥
FN

j (x + 1
N (e j − ei)) for j , i, which from (4) is true if and only if Aii > A ji, as assumed. _

It is convenient to assume that revising agents make decisions by considering clever
payoffs, as it ensures that all agents are content if and only if the current state is a Nash
equilibrium. The previous example shows that in a coordination game, such a state must
be pure. While the use of clever payoffs simplifies the finite population dynamics, it does
not affect our results on large population limits in an essential way.

2.2 Noisy best response protocols and unlikelihood functions

In our model of stochastic evolution, agents occasionally receive opportunities to
switch strategies. Upon receiving a revision opportunity, an agent selects a strategy by
employing a noisy best response protocol ση : Rn

→ int(X) with noise level η > 0, a function
that maps vectors of payoffs to probabilities of choosing each strategy.

To justify its name, the protocol ση should recommend optimal strategies with high
probability when the noise level is small:

(P1) j < argmax
k∈S

πk ⇒ lim
η→0

σηj (π) = 0.

Condition (P1) implies that a unique optimal strategy is assigned a probability that ap-
proaches one as the noise level vanishes. For simplicity, we also require that when there
are multiple optimal strategies, each retains positive probability in the small noise limit:

(P2) j ∈ argmax
k∈S

πk ⇒ lim
η→0

σηj (π) > 0.

To analyze large deviations and stochastic stability, we must impose regularity con-
ditions on the rates at which the probabilities of choosing suboptimal strategies vanish
as the noise level η approaches zero. To do so, we introduce the unlikelihood function
Υ : Rn

→ Rn
+, defined by

(5) Υ j(π) = − lim
η→0

η log σηj (π).
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This definition can be expressed equivalently as

σηj (π) = exp
(
−η−1(Υ j(π) + o(1))

)
.

Either way, the unlikelihood Υ j(π) represents the rate of decay of the probability that
strategy j is chosen as η approaches zero.7

We maintain the following assumptions throughout the paper:

The limit in (5) exists for all π ∈ Rn.(U1)

Υ is continuous.(U2)

Υ j(π) = 0 if and only if j ∈ argmaxk∈S πk.(U3)

Note that the “if” direction of condition (U3) is implied by condition (P2), and that
condition (U1) and the “only if” direction of condition (U3) refine condition (P1).

We proceed with three examples that satisfy the conditions above.

Example 2.3. Logit choice. The logit choice protocol with noise level η, introduced to evolu-
tionary game theory by Blume (1993), is defined by

σηj (π) =
exp(η−1π j)∑

k∈S exp(η−1πk)
.

It is well known that this protocol can be derived from an additive random utility model
with extreme-value distributed shocks, or from a model of choice among mixed strategies
with control costs given by an entropy function.8 It is easy to verify that this protocol
satisfies conditions (U1)–(U3) with piecewise linear unlikelihood function

Υ j(π) = max
k∈S

πk − π j. _

Example 2.4. Random utility with averaged shocks. Consider an additive random utility
model in which the payoff vector π is perturbed by adding the sample average ε̄m of an
i.i.d. sequence {ε`}m`=1 of random vectors, where the n components of ε` are drawn from a
continuous distribution with unbounded convex support and whose moment generating

7Blume (2003) and Sandholm (2010a) place assumptions on the rates of decay of choice probabilities in
the context of two-strategy games. Unlikelihood functions for choice problems with many alternatives are
introduced by Dokumacı and Sandholm (2011); see Example 2.4 below.

8See Anderson et al. (1992) or Hofbauer and Sandholm (2002).
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function exists. Writing η for 1
m , we obtain the protocol

σηj (π) = P

(
j ∈ argmax

k∈S
(πk + ε̄m

k )
)

Dokumacı and Sandholm (2011) show that the limit (5) exists for each π ∈ Rn, and
characterize the function Υ in terms of the Cramér transform of ε`. They also show that Υ j

is nonincreasing in π j, nondecreasing in πk for k , j, and convex (and hence continuous)
in π. _

Example 2.5. Probit choice. Following Myatt and Wallace (2003), consider an additive
random utility model in which the payoff vector π is perturbed by a multivariate normal
random vector whose components are independent with common variance η. Since the
average of independent normal random variables is normal, the probit choice model is a
special case of Example 2.4. Dokumacı and Sandholm (2011) provide an explicit, piecewise
quadratic expression for the unlikelihood function Υ. _

The only parameterized protocol commonly considered in the literature that does not
satisfy our assumptions is the best response with mutations (BRM) protocol of Kandori
et al. (1993), the focus of much of the literature to date.9 Under this protocol, any subop-
timal strategy has unlikelihood 1, and a unique optimal strategy has unlikelihood 0, so
condition (U2) must fail.10 We discuss the BRM protocol in Section 7.2.

2.3 The stochastic evolutionary process

A population game FN and a revision protocol ση define a stochastic evolutionary
process. The process runs in discrete time, with each period taking 1

N units of clock time.
During each period, a single agent is chosen at random from the population. This

agent updates his strategy by applying the noisy best response protocol ση. As discussed
in Section 2.1, we assume that agents are clever, so that an i player evaluates payoffs using
the clever payoff vector FN

i→·(x) defined in (2).
This procedure described above generates a Markov chain XN,η = {XN,η

k }
∞

k=0 on the state
space X N. The index k denotes the number of revision opportunities that have occurred
to date, and corresponds to k

N units of clock time. The transition probabilities PN,η
x,y for the

9See especially Kandori and Rob (1995, 1998) and Ellison (2000).
10There is more than one way to specify choice probabilities under the BRM protocol at payoff vectors

with multiple optimal strategies—see Sandholm (2010a).

–9–



process XN,η are given by

(6) PN,η
x,y ≡ P

(
XN,η

k+1 = y
∣∣∣ XN,η

k = x
)

=


xi σ

η
j (F

N
i→·(x)) if y = x + 1

N (e j − ei), j , i∑n
i=1 xi σ

η
i (FN

i→·(x)) if y = x,

0 otherwise.

A realization of the process XN,η over its first `N < ∞ periods is described by a path
through X N of length `N, a sequence φN = {φN

k }
`N

k=0 in which successive states either are
identical or are adjacent in X N. Since each period lasts 1

N time units, the duration of this
path in clock time is TN = `N/N.

Since revising agents are chosen at random and play each strategy in S with positive
probability, the Markov chain XN,η is irreducible and aperiodic, and so admits a unique
stationary distribution, µN,η. It is well known that the stationary distribution is the limiting
distribution of the Markov chain, as well as its limiting empirical distribution along almost
every sample path.

3. The Small Noise Limit

We now consider the behavior of the stochastic process XN,η as the noise level η ap-
proaches zero, proceeding from short run through very long run behavior. Over short
to medium time scales, XN,η is nearly a discrete best response process. We introduce this
best response process and its recurrent classes in Section 3.1. Over longer periods, runs of
suboptimal choices occasionally occur, leading to transitions between the recurrent classes
of the best response process. We consider these in Sections 3.2 and 3.3. Finally, over very
long time spans, XN,η spends the vast majority of periods at the stochastically stable states,
which we define in Section 3.4. Most of the ideas presented in this section can be found
in the evolutionary game literature, though not always in an explicit form.

3.1 The discrete best response dynamic and its recurrent classes

In the literature on stochastic evolution in games, the Markov chain XN,η is typically
viewed as a perturbed version of some “unperturbed” process XN,0 based on exact best
responses. To define the latter process as a Markov chain, one must specify the probability
which which each best response is chosen when more than one exists. Here we take a
more general approach, defining XN,0 not as a Markov chain, but by way of a difference
inclusion—in other words, using set-valued deterministic dynamics.

–10–



Fix a population size N and a game FN. Suppose that during each discrete time period,
a single agent is chosen from the population, and that he selects a strategy that is optimal
given the current population state and his current strategy. If the current state is x ∈ X N,
then the set of increments in the state that are possible under this procedure is 1

N VN(x),
where

(7) VN(x) = {e j − ei : i ∈ s(x) and j ∈ bN
i (x)},

and where s(x) = {i ∈ S : xi > 0} denotes the support of state x. The paths through X N that
can arise under this procedure are the solutions to the difference inclusion

(DBR) xN
k+1 − xN

k ∈
1
N

VN(xN
k ).

We call (DBR) the discrete best response dynamic.
We call the set KN

⊆ X N strongly invariant under (DBR) if no solution to (DBR) starting
in KN ever leaves KN. A set that is minimal with respect to this property is called a recurrent
class of (DBR). We denote the collection of such recurrent classes by K N.11

Example 3.1. Let FN be defined by random matching in the normal form coordination
game A as in Example 2.2, so that the Nash equilibria of FN are the pure states. Suppose in
addition that A has the marginal bandwagon property of Kandori and Rob (1998): Aii −Aik >

A ji − A jk for all i, j, k ∈ S with i < { j, k}. This property requires that when some agent
switches to strategy i from any other strategy k, current strategy i players benefit most. An
easy calculation shows that in games with this property, i ∈ bN

i (x) implies that i ∈ bN
k (x) for

all k ∈ s(x); this is a consequence of the fact that a strategy i player has one less opponent
playing strategy i than a strategy k , i player.

Now suppose that state x ∈ X N is not a Nash equilibrium. Then there are distinct
strategies i and j such that j ∈ s(x) ( j is in use) and i ∈ bN

j (x) (i is optimal for agents playing
j), so that a step from x to y = x + 1

N (ei − e j) is allowed under (DBR). Since i ∈ bN
j (x) is

equivalent to i ∈ bN
i (x + 1

N (ei − e j)), the marginal bandwagon property (specifically, the
claim ending the previous paragraph) implies that i ∈ bN

k (y) for all k ∈ s(y). Repeating
this argument shows that any path from y along which the number of strategy i players
increases until pure state ei is reached is a solution to (DBR). We conclude that the recurrent

11One can represent the solutions and the recurrent classes of (DBR) using a suitably chosen Markov
chain XN,∗. Define XN,∗ by supposing that during each period, a randomly chosen agent receives a revision
opportunity and switches to a best response, choosing each with equal probability (or, more generally, with
any positive probability). Then a finite-length path is a solution to (DBR) if and only if it has positive
probability under XN,∗, and the recurrent classes of (DBR) as defined above are the recurrent classes of XN,∗.
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classes of (DBR) correspond to the pure states, K N = {{e1}, . . . , {en}}, as shown by Kandori
and Rob (1998).12 _

Example 3.2. Again let FN be defined by random matching in the normal form coordination
game A. If x ∈ XN is not Nash, there is a strategy j in the support of x satisfying j < bN

j (x).
Lemma A.1 in Appendix A.1 shows that in this case, there is a solution to (DBR) starting
from x along which the number of j players decreases until j is unused.

Now suppose further that in game FN, switching to an unused strategy is never optimal:
j ∈ bN

i (x) implies that x j > 0. In this case, applying Lemma A.1 inductively shows that from
every state x ∈ XN, there is a solution to (DBR) that terminates at a pure state, implying
that K N = {{e1}, . . . , {en}}. _

We conjecture that the set of recurrent classes of (DBR) is K N = {{e1}, . . . , {en}} for any
coordination game as defined in Example 2.2. Example 4.1 establishes a version of this
claim for the large population limit.

3.2 Step costs and path costs

When the noise level η is small, the process XN,η will linger in recurrent classes, but
will occasionally transit between them. We now work toward describing the probabilities
of these transitions in the small noise limit.

To begin, we define the cost of a step from x ∈ X N to y ∈ X N by

(8) cN
x,y = − lim

η→0
η log PN,η

x,y .

with the convention that −log 0 = +∞. Thus cN
x,y is the exponential rate of decay of the

probability of a step from x to y as η approaches 0. Using definitions (5) and (6), we can
represent step costs in terms of the game’s payoff function and the protocol’s unlikelihood
function:

(9) cN
x,y =


Υ j(FN

i→·(x)) if y = x + 1
N (e j − ei) and j , i,

min
i∈s(x)

Υi(FN
i→·(x)) if y = x, and

+∞ otherwise.

The important case in (9) is the first one, which says that the cost of a step in which an
i player switches to strategy j is the unlikelihood of strategy j given i’s current payoff

12Unlike our model, the model of Kandori and Rob (1995, 1998) allows multiple revisions during each
period; see also footnote 19 below.
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opportunities.13 By virtue of (9) and condition (U3), a step has cost zero if and only if it is
feasible under the discrete best response dynamic:

(10) cN
x,y = 0 ⇔ y − x ∈ VN(x).

The cost of path φN = {φN
k }
`N

k=0 of length `N < ∞ is the sum of the costs of its steps:

(11) cN(φN) =

`N
−1∑

k=0

cN
φN

k ,φ
N
k+1
.

Definitions (6) and (9) imply that the cost of a path is the rate at which the probability of
following this path decays as the noise level vanishes: for fixed N, we have

P
(
XN,η

k = φN
k , k = 0, . . . , `N

∣∣∣ XN,η
0 = φN

0

)
=

`N
−1∏

k=0

PN,η
φN

k ,φ
N
k+1
≈ exp(−η−1cN(φN)).

where ≈ refers to the order of magnitude in η as η approaches zero. By statement (10),
path φN has cost zero if and only if it is a solution to (DBR).

3.3 Exit costs and transition costs

We now consider escape from and transitions between recurrent classes. Let KN
∈ K N

be a recurrent class of (DBR), and let ΞN
⊂ X N be a set of states. We define ΦN(KN,ΞN) to

be the set of finite-length paths through X N with initial state in KN and terminal state in
ΞN, so that

(12) CN(KN,ΞN) = min{cN(φN) : φN
∈ ΦN(KN,ΞN)}

is the minimal cost of a path from KN to ΞN.
If ΞN is a union of recurrent classes from K N, we define the weak basin of attraction of

ΞN, denoted W N(ΞN), to be the set of states in X N from which there is a zero-cost path
that terminates at a state in ΞN. Notice that by definition,

CN(KN,ΞN) = CN(KN,W N(ΞN)).

We also define ΩN(KN,W N(ΞN)) ⊆ W N(ΞN) to be the set of terminal states of cost mini-
13The second case of (9) indicates that at a state where no agent is playing a best response, staying still

is costly. Since staying still does not facilitate transitions between recurrent classes, this possibility is not
realized on minimum cost paths, but we must account for it carefully in what follows—see Section 4.3.2.
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mizing paths from KN to W N(ΞN) that do not hit W N(ΞN) until their final step.
Two specifications of the target set ΞN are of particular interest. First, let

(13) K̃N =
⋃

LN∈K Nr{KN}

LN

be the union of the recurrent classes other than KN. We call CN(KN, K̃N) the cost of exit
from KN.14 Proposition 3.3 provides an interpretation of this quantity. Here τN,η(ΞN) =

min{k : XN,η
k ∈ ΞN

} denotes the time at which the process XN,η first hits ΞN.

Proposition 3.3. Suppose that XN,η
0 = xN

∈ KN for all η. Then

(i) lim
η→0

η logEτN,η(K̃N) = lim
η→0

η logEτN,η(W N(K̃N)) = CN(KN, K̃N);

(ii) lim
η→0

η logP(XN,η
τN,η(W N(K̃N))

= y) = 0 if and only if y ∈ ΩN(KN,W N(K̃N)).

Part (i) of the proposition shows that when η is small, the expected time required for the
process to escape from KN to another recurrent class is of order exp(η−1CN(KN, K̃N)). Part (ii)
shows that the the states in W N(K̃N) most likely to be reached first are the terminal states
of cost minimizing paths from KN to W N(K̃N). Both parts follow by standard arguments
from Proposition 4.2 of Catoni (1999), which provides a discrete-state analogue of the
Freidlin and Wentzell (1998) theory.

Proposition 3.3 concerns behavior within the strong basin of attraction of KN, the set of
states S N(KN) = X N rW N(K̃N) ⊆ W N(KN) from which there is no zero-cost path to any
other recurrent class. But to understand the global behavior of the process, we must also
consider transitions from KN to each other individual recurrent class in K N.

When LN
∈ K N, we call CN(KN,LN) the cost of a transition from KN to LN. Intuitively,

CN(KN,LN) describes the likely order of magnitude of the time until ΞN is reached. But
while the analogue of Proposition 3.3(ii) on the likely points of entry into W (LN) is true,
the analogue of Proposition 3.3(i) on the expected hitting time of LN is false in general,
since this expectation may be driven by a low probability of becoming stuck in some third
recurrent class.15

3.4 Stationary distribution asymptotics and stochastic stability

The transition costs CN(KN,LN) are the basic ingredient in Freidlin and Wentzell’s
(1998) graph-theoretic characterization of limiting stationary distributions and stochastic

14Thus the cost of exit from KN corresponds to the radius of KN as defined by Ellison (2000).
15This is the reason for the correction term appearing in Proposition 4.2 of Catoni (1999). See Freidlin and

Wentzell (1998, p. 197–198) for a clear discussion of this point.
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stability. According to this characterization, there is a function ∆rN : X N
→ R+, defined in

terms of the aggregate costs of certain graphs on X N, such that

(14) − lim
η→0

η logµN,η(x) = ∆rN(x) for all x ∈ X N.

Thus ∆rN(x) describes the exponential rate of decay of the stationary distribution weight
on x as η approaches zero.

We call state x ∈ X N stochastically stable in the small noise limit if as η approaches 0, its
stationary distribution weight µN,η(x) does not vanish at an exponential rate.16 By virtue of
(14), state x is stochastically stable in this sense if and only if ∆rN(x) = 0. Since these ideas
are well known in evolutionary game theory,17 we postpone the detailed presentation
until Section 6.2.

4. The Small Noise Double Limit

The exit costs and transition costs introduced in Section 3.3, defined in terms of min-
imum cost paths between sets of states in X N, describe the transitions of the process XN,η

between recurrent classes when the noise level η is small. When step costs depend on
payoffs, finding these minimum cost paths is a challenging computational problem.

We contend with this difficulty by taking a second limit: after taking the noise level
η to 0, we take the population size N to infinity, thus evaluating behavior in the small
noise limit when the population size is large. In the remainder of this paper, we show
how one can evaluate this double limit by approximating the discrete constructions from
the previous section by continuous ones. In particular, taking the second limit here turns
the path cost minimization problem (12) into an optimal control problem. Although this
problem is nonsmooth and multidimensional, it is nevertheless simple enough to admit
analytical solutions in interesting cases.

4.1 Limits of finite-population games

To consider large population limits, we must specify a notion of convergence for
sequences {FN

}
∞

N=N0
of finite-population games. If such a sequence converges, its limit is

a (continuous) population game, F : X → Rn, which we take to be a continuous function

16Explicitly, this means that for all δ > 0 there is an η0 > 0 such that for all η < η0, µN,η(x) > exp(−ηδ). This
definition of stochastic stability is slightly less demanding than the one appearing in Kandori et al. (1993)
and Young (1993); Sandholm (2010b, Sec. 12.A.5) explains this distinction in detail.

17See Young (1993, 1998), Kandori and Rob (1995), and Sandholm (2010b, Section 12.A).
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from the compact set X to R. The pure and mixed best response correspondences for the
population game F are denoted by b : X⇒ S and B : X⇒ X, and are defined by

b(x) = argmax
i∈S

Fi(x) and B(x) = {y ∈ X : supp(y) ⊆ b(x)} = argmax
y∈X

y′F(x).

State x is a Nash equilibrium of F if i ∈ b(x) whenever xi > 0, or, equivalently, if x ∈ B(x).
The notion of convergence we employ for the sequence {FN

}
∞

N=N0
is uniform conver-

gence, which asks that

(15) lim
N→∞

max
x∈X N

∣∣∣FN(x) − F(x)
∣∣∣ = 0,

where | · | denotes the `1 norm on Rn. It is easy to verify that under this notion of con-
vergence, the Nash equilibrium correspondences for finite-population games are “upper
hemicontinuous at infinity”: if the sequence of games {FN

} converges to F, the sequence
of states {xN

} converges to x, and if each xN is a Nash equilibrium of the corresponding FN,
then x is a Nash equilibrium of F.

When agents are matched to play a symmetric two-player normal form game A ∈
Rn×n (Example 2.1), it is easy to verify that uniform convergence obtains with the limit
game given by F(x) = Ax. It is also easy to verify that if a sequence of population
games converges uniformly, then the clever payoff functions associated with that game
all converge uniformly to the same limit.

4.2 The complete best response dynamic and limiting recurrent classes

The solutions of the discrete best response dynamic (DBR) are the paths through X N

that can be traversed at zero cost. To define the analogous dynamic for the large population
limit, let S(x) = {y ∈ X : s(y) ⊆ s(x)} be the set of states whose supports are contained in the
support of x. Then the complete best response dynamic is the differential inclusion

ẋ ∈ B(x) − S(x)(CBR)

= {β − α : β ∈ B(x), α ∈ S(x)}

= conv({e j − ei | i ∈ s(x), j ∈ b(x)}).

Comparing the final expression above to definition (7), we see that (CBR) is the continuous-
time analogue of the discrete best response dynamic (DBR), obtained by taking the large
N limit of (DBR) and convexifying the result. We will soon see that solutions to (CBR)
correspond to zero-cost continuous paths under our limiting path cost function.

–16–



e1

e2 e3

x B(x)–x
B(x)–S(x)

Figure 1: The dynamics (BR) and (CBR) and in a three-strategy game from a state x with b(x) = {1}.

For intuition, we contrast (CBR) with the standard model of best response strategy
revision in a large population—the best response dynamic of Gilboa and Matsui (1991):

(BR) ẋ ∈ B(x) − x.

To obtain (BR) as the limit of finite-population dynamics, one assumes that in each discrete
time period, an agent is chosen at random from the population and then updates to a best
response. As the population size grows large, the law of large numbers ensures that the
rates at which the various strategies are abandoned are proportional to the prevalences of
the strategies in the population, generating the −x outflow term in (BR).18 Thus at states
where the best response is unique, (BR) specifies a single vector of motion, as shown in
Figure 1 at a state at which the unique best response is strategy 1. Under (DBR), there
is no presumption that revision opportunities are assigned at random. Thus, in the large
population limit (CBR), the strategies present in the population can be abandoned at any
relative rates, leading to the −S(x) outflow term in (CBR). In Figure 1, the set of vectors of
motion under (CBR) is the convex hull of the vectors e1 − e2, e1 − e3, and 0.19

In the classes of coordination games considered in Examples 3.1 and 3.2, the set K N of
recurrent classes of the discrete best response dynamic (DBR) is equal to K = {{e1}, . . . , {en}}

18See Roth and Sandholm (2013) for a formal limit result.
19Kandori and Rob (1995, 1998) consider a discrete-time best response dynamic in which any subset of

the players may revise during any period; for instance, the entire population may switch to a current best
response simultaneously. Figure 1 of Kandori and Rob (1995), used to illustrate this discrete-time dynamic,
resembles Figure 1 above, but the processes these figures represent are different.
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for every population size. We now show that in any coordination game, we can view this
K as the set of “recurrent classes” of the complete best response dynamic (CBR).

Example 4.1. Consider the continuous population game F(x) = Ax generated by a coordi-
nation game A (Example 2.2). Since each pure state ei is a strict equilibrium, the unique
solution to (CBR) starting at ei is the stationary trajectory. At any state ξ in the best
response region Bi = {x ∈ X : (Ax)i ≥ (Ax) j for all j ∈ S}, the vector ei − ξ, which points
directly from ξ to ei, is a feasible direction of motion under the best response dynamic
(BR). Since Bi is convex and contains ei, motion can continue toward ei indefinitely: the
trajectory {xt}t≥0, defined by xt = e−tξ+ (1−e−t)ei, is a solution to (BR), and hence a solution
to (CBR). Thus for any coordination game F(x) = Ax, starting from any initial condition
ξ ∈ X, there is solution to (CBR) that converges to a pure, and hence stationary, population
state. _

More generally, the exact positions of the recurrent classes of the discrete best response
dynamic (DBR) will vary with the population size. To allow for this, we assume that there
is a set K = {K1, . . . ,Kκ} of disjoint closed subsets of X called limiting recurrent classes. To
justify this name, we require that for some constant d > 0 and all large enough population
sizes N, the dynamic (DBR) has κ recurrent classes, K N = {KN

1 , . . . ,K
N
κ }, and that

(16) dist(KN
i ,Ki) ≤

d
N

for all i ∈ {1, . . . , κ},

where dist(KN
i ,Ki) denotes the Hausdorff distance between KN

i and Ki.20

4.3 Costs of continuous paths

To evaluate stochastic stability in the small noise double limit, we need to determine
the costs CN(KN,ΞN), defined by the discrete cost minimization problems (12) on X N, for
large values of N. To prepare for our continuous approximation of these problems, we
now introduce a definition of costs for continuous paths through the simplex X.

4.3.1 Discrete paths, derivatives, and interpolations

Let φN = {φN
k }
`N

k=0 be a path for the N-agent process. Since each period of this process
takes 1

N units of clock time, we define

(17) φ̇N
k = N(φN

k+1 − φ
N
k )

20That is, dist(KN
i ,Ki) = max

{
max
x∈KN

i

min
y∈Ki
|x − y|,max

y∈Ki
min
x∈KN

i

|x − y|
}
.

–18–



to be the discrete right derivative of path φN at time k. Let ıN(k) ∈ S and N(k) ∈ S
denote the pre- and post-revision strategies of the agent who revises in period k. Then
φN

k+1 = φN
k + 1

N (e N(k) − eıN(k)), and hence

(18) φ̇N
k = e N(k) − eıN(k).

Note that if ıN(k) = N(k), so that the revising agent does not switch strategies, then φ̇N
k = 0.

Each discrete path {φN
k }
`N

k=0 induces a continuous path {φ(N)
t }t∈[0,`N/N] via piecewise affine

interpolation:

(19) φ(N)
t = φN

bNtc + (Nt − bNtc)(φN
bNtc+1 − φ

N
bNtc).

This definition too accounts for each period in the N-agent process lasting 1
N units of clock

time. Evidently, the derivative φ̇(N) of this process agrees with the discrete derivative φ̇N

defined in (17), in the sense that

(20) φ̇(N)
t = φ̇N

bNtc whenever Nt < Z.

Speed of motion along a continuous path {φt}t∈[0,T] is measured most naturally by
evaluating the `1 norm |φ̇t| =

∑
i∈S |(φ̇t)i| of φ̇t ∈ TX ≡ {z ∈ Rn :

∑
i∈S zi = 0}, as this norm

makes it easy to separate the contributions of strategies that are gaining players from those
of strategies that are losing players. If for z ∈ Rn we define [z]+ ∈ Rn

+ and [z]− ∈ Rn
+ by

([z]+)i = [zi]+ and ([z]−)i = [zi]−, then by virtue of equations (18) and (20), any interpolated
path φ(N) satisfies the following bound on its speed:

(21)
∣∣∣[φ̇(N)

t ]+

∣∣∣ ≡ ∣∣∣[φ̇(N)
t ]−

∣∣∣ ≤ 1, and thus
∣∣∣φ̇(N)

t

∣∣∣ ≤ 2.

4.3.2 Costs of continuous paths

To work toward our definition of the cost of a continuous path, we now express the
path cost function (11) in a more suggestive form. Let 〈·, ·〉 denote the standard inner
product on Rn, and let φN = {φN

k }
`N

k=0 be a discrete path. If N(k) , ıN(k), then definitions (9)
and (17) imply that the cost of step k is

(22) cN
φN

k ,φ
N
k+1

= Υ N(k)(FN
ıN(k)→·(φ

N
k )) = 〈Υ(FN

ıN(k)→·(φ
N
k )), [φ̇N

k ]+〉.

If N(k) = ıN(k), so that the revising agent does not switch strategies, then φ̇N
k equals

0; thus the rightmost expression of (22) evaluates to 0 for such null steps. This disagrees
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with the second case of (9) when there is no best response to φN
k is in its support. Since

this discrepancy only arises when a path lingers at some such state, it is inconsequential
when determining the minimal cost of a path between subsets of X N, as there is always a
least cost path that does not linger at all.

Summing up the step costs, the cost (11) of a discrete path φN without null steps can
be expressed as

(23) cN(φN) =

`N
−1∑

k=0

cN
φN

k ,φ
N
k+1

=

`N
−1∑

k=0

〈Υ(FN
ıN(k)→·(φ

N
k )), [φ̇N

k ]+〉.

Now let φ : [0,T]→ X be absolutely continuous and non-pausing, meaning that |φ̇t| , 0 for
almost all t ∈ [0,T]. Since FN

i→· ≈ F for large N, the form of the path costs in (23) suggests
that the cost of φ should be defined as

(24) c(φ) =

∫ T

0
〈Υ(F(φt)), [φ̇t]+〉dt.

This derivation is informal; the formal justification of definition (24) is provided by the
approximation results to follow.

While the discrete path cost function (23) only concerns paths with discrete derivatives
of the basic form φ̇N

k = e N(k) − eıN(k), definition (24) allows any absolutely continuous path
with derivatives φ̇t in Z = conv({e j − ei : i, j ∈ S}), or indeed in the tangent space TX. This
extension combines two new ingredients. First, allowing φ̇t to be the weighted average of
a number of vectors e j − ei makes it possible to approximate the cost of a continuous path
by the costs of rapidly oscillating discrete paths, a point we discuss further in Section 5.3.
Second, by virtue of the linear homogeneity of the integrand of (24) in φ̇t, the cost of a
continuous path is independent of the speed at which it is traversed.

Finally, we observe that a non-pausing absolutely continuous path φ has zero cost
under (24) if and only if it is a solution of the complete best response dynamic (CBR).

5. The Convergence Theorem

In Section 3.3, we defined the minimal cost CN(KN,ΞN) of a discrete path from recurrent
class KN

∈ K N to set ΞN
⊂ X N. We now consider a sequence of such problems, where the

recurrent classes KN converge to the limiting recurrent class K ∈ K as in condition (16),
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and where the target sets ΞN
⊂ X N converge to a closed set Ξ ⊂ X in the same sense:

(25) dist(ΞN,Ξ) ≤
d
N

for some d > 0 and all N large enough.
Let Φ(K,Ξ) be the set of absolutely continuous paths of arbitrary duration through X

from K to Ξ, and define

(26) C(K,Ξ) = min{c(φ) : φ ∈ Φ(K,Ξ)}

to be the minimal cost of a continuous path from K to Ξ. Our aim in this section is to show
that the normalized optimal values of the discrete problems converge to the optimal value
of the continuous problem:

(27) lim
N→∞

1
N

CN(KN,ΞN) = C(K,Ξ).

This conclusion will justify the definition (24) of the cost of a non-pausing absolutely
continuous path, and will provide the tool needed to evaluate exit times, stationary
distribution asymptotics, and stochastic stability in the large population double limit.

5.1 Assumptions

We prove our results under two assumptions about the minimum cost path problems
(12) and (26). To state the first assumption, we recall that the duration TN = `N/N of the
discrete path {φN

k }
`N

k=0 is the number of units of clock time it entails.

Assumption 1. There exists a constant T̄ < ∞ such that for all KN
∈ K N, ΞN

⊂ X N, and N,
there is a path of duration at most T̄ that achieves the minimum in (12).

Since state space X N is finite, cost-minimizing paths between subsets of ΞN can always
be assumed to have finite length. Assumption 1 imposes a uniform bound on the amount
of clock time that these optimal paths require. It thus requires that cost-minimizing paths
not become extremely convoluted as the population size grows large, as might be possible
if despite the uniform convergence of payoff functions in (15), the step costs cN

x,y defined
in (9) became highly irregular functions of the current population state.

To introduce our assumption for the continuous problem (26), we need some additional
definitions. Let φ : [0,T]→ X be a continuous path. We call φ monotone if we can express
the strategy set S as the disjoint union S+ ∪ S−, with φ j nondecreasing for j ∈ S+ and φi
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nonincreasing for i ∈ S−. If M is a positive integer, we say that φ is M-piecewise monotone if
its domain [0,T] can be partitioned into M subintervals such that φ is monotone on each;
if this is true for some M, we say that φ is piecewise monotone. Monotonicity and piecewise
monotonicity for discrete paths are defined analogously.

In addition, we say that piecewise monotone path φ obeys the speed limit if

(28)
∣∣∣[φ̇t]+

∣∣∣ ≡ ∣∣∣[φ̇t]−
∣∣∣ ≤ 1, and thus

∣∣∣φ̇t

∣∣∣ ≤ 2 for almost all t ∈ [0,T].

Equivalently, φ obeys the speed limit if φ̇t ∈ Z = conv({e j − ei : i, j ∈ S}) for almost all t. If
the inequalities in (28) bind, then φ is said to move at full speed. By the linear homogeneity
of the integrand of cost function (24), there is no loss if the minimum in (26) is taken over
paths in Φ(K,Ξ) that obey the speed limit, or over paths in Φ(K,Ξ) that move at full speed.

Assumption 2. There exist constants T̃ < ∞ and M̃ < ∞ such that for all K ∈ K and
Ξ ∈ K ∪ {

{x}
}

x∈X, there is an M̃-piecewise monotone, full speed path of duration at most T̃
that achieves the minimum in (26).

Since the state space X is compact and the integrand of the cost function is (24) contin-
uous, and since we may work with the compact, convex set of controls Z, it is reasonable
to expect the minimum in (26) to be achieved by some finite-duration path. Piecewise
monotonicity is a mild regularity condition on the form of the minimizer. In practice,
one applies the results developed below by explicitly solving control problem (26) (see
Sandholm and Staudigl (2014)). In so doing, one verifies Assumption 2 directly.

In order to appeal to Assumption 2, we assume in what follows that the target set Ξ is
either a limiting recurrent class or a singleton.21

5.2 The lower bound

To establish the convergence claim in (27), we must show that C(K,Ξ) provides both a
lower and an upper bound on the limiting behavior of 1

N CN(KN,ΞN).
The key to obtaining the lower bound is to show that if the normalized costs 1

N cN(φN)
of a sequence of discrete paths of bounded durations converge, then the costs c(φ(N)) of
the corresponding linear interpolations converge to the same limit. This is the content of
the following proposition. Its proof, which is based on continuity arguments, is presented
in Appendix A.2.

21For the results to follow that only concern recurrent classes, it is enough in Assumption 2 to consider
target sets in K . Singleton target sets are needed in Theorem 6.3 to derive the asymptotics of the stationary
distribution on the entire state space, rather than just its asymptotics on the recurrent classes.
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Proposition 5.1. Let {φN
}
∞

N=N0
be a sequence of paths with durations at most T̄ and whose costs

satisfy lim
N→∞

1
N cN(φN) = C∗. Then the corresponding sequence {φ(N)

}
∞

N=N0
of linear interpolations

satisfies lim
N→∞

c(φ(N)) = C∗.

Now consider a sequence (or, if necessary, a subsequence) of optimal discrete paths
φN
∈ ΦN(KN,ΞN) for problem (12) with durations TN

≤ T̄ (cf. Assumption 1) and whose
costs converge to C∗. By Proposition 5.1, the costs of their linear interpolations φ(N)

∈

Φ(KN,ΞN) also converge to C∗. We can extend these to paths in Φ(K,Ξ) by adding subpaths
linking K to φ(N)

0 ∈ KN and φ(N)
TN ∈ LN to L. Conditions (16) and (25) imply that this can

be done at negligible cost. This argument yields the following result, whose proof is
presented in Appendix A.3.

Proposition 5.2. lim inf
N→∞

1
N CN(KN,ΞN) ≥ C(K,Ξ).

5.3 The upper bound

The key to obtaining the upper bound is to show that given a continuous path φ with
cost c(φ), we can find a sequence of discrete paths {φN

}whose normalized costs approach
c(φ). The natural approach to this problem is to define each φN as a suitable discrete
approximation of φ, and then to use continuity arguments to establish the convergence of
normalized costs. But unlike the argument behind Proposition 5.1, the cost convergence
argument here is not straightforward. The earlier argument took advantage of the fact
that every discrete path induces a continuous path via linear interpolation. Here, the
discrete approximation of the continuous path must be constructed explicitly.

Moreover, there are limits to what a discrete approximation can achieve. As definitions
(23) and (24) state, a path’s cost depends its derivatives at each point of time; these
derivatives specify the sequence of revisions that occur over the course of the path.
However, one cannot always construct discrete approximations φN whose derivatives
approximate those of the continuous path φ.

As an illustration, consider Figure 2(i), which presents a continuous path φ through
X from vertex e1 to the barycenter ( 1

3 ,
1
3 ,

1
3 ). As this path is followed, the state moves in

direction 1
2 (e2 + e3) − e1: the mass playing strategy 1 falls over time, while the masses

playing strategies 2 and 3 rise at equal rates. But discrete paths through X N are unable
to move in this direction. At best, they can alternate between increments 1

N (e2 − e1) (i.e.,
switches by a single agent from 1 to 2) and 1

N (e3 − e1). The states in the resulting discrete
paths are all close to states in φ. But the alternation of increments needed to stay close to
φ prevents the derivatives of the discrete paths from converging as N grows large.
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(i) A continuous path through X (ii) A discrete path through X N (N = 30)

Figure 2: Discrete approximation of continuous paths.

As we now show, it is possible to overcome this difficulty so long as pathφ is piecewise
monotone.22 Proposition 5.3 shows that if φ is monotone and moves at full speed, then
we can find discrete paths φN that are also monotone and that closely approximate φ, in
that φN is within 2n

N of φ in the uniform norm.

Proposition 5.3. Suppose φ = {φt}t∈[0,T] is monotone and moves at full speed. If N ≥ 1
T , there is

an sN
∈ [0, 1

N ) and a feasible monotone path φN = {φN
k }
`N

k=0, `N =
⌊
N(T − sN)

⌋
, satisfying

(29) max
0≤k≤`N

∣∣∣∣φN
k − φsN+ k

N

∣∣∣∣ ≤ 2n
N
.

A constructive proof of this proposition is presented in Appendix A.4.
Next, Proposition 5.4 shows that the normalized costs of the discrete paths so con-

structed converge to the cost of the original path φ.

Proposition 5.4. Suppose that the path {φt}t∈[0,T] is monotone and moves at full speed, and that the
paths {{φN

k }
`N

k=0}
∞

N=N0
are monotone and approximate φ in the sense of (29). Then lim

N→∞
1
N cN(φN) = c(φ).

The proof of Proposition 5.4 is presented in Appendix A.5, but we explain the logic of
the proof here. By equation (23) and definition (17) of φ̇N, we can express the normalized

22As an aside, we note that the continuous and discrete paths in Figure 2 are both monotone with S+ = {2, 3}
and S− = {1}.
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cost of path φN as

(30)
1
N

cN(φN) =

`N
−1∑

k=0

〈Υ(FN
ıN(k)→·(φ

N
k )), [φN

k+1 − φ
N
k ]+〉.

Because path φN is monotone, the second term in the inner product telescopes:

(31) [φN
b − φ

N
a ]+ =

b−1∑
k=a

[φN
k+1 − φ

N
k ]+

This property allows us to approximate (30) by a sum with only O(
√

N) summands,
each of which corresponds to O(

√
N) terms in the original expression. This sum can be

approximated in turn by replacing values of φN with values of φ. Doing so yields a
Riemann-Stieltjes sum (cf. (56)) whose integrator φ is monotone. Since there are O(

√
N)

rather than O(N) summands, the O( 1
N ) bound in (29) ensures that replacingφN withφ leads

to an approximation of 1
N cN(φN) that is asymptotically correct.23 But since the number of

summands still grows without bound in N, the Riemann-Stieltjes sums converge as N
grows large; their limit is the integral that defines c(φ).

By Assumption 2, there is a full speed, piecewise monotone optimal path φ ∈ Φ(K,Ξ)
for problem (26). By Propositions 5.3 and 5.4, there are monotone discrete approximations
of each monotone segment of φ with total cost close to c(φ). To construct a path φN

∈

Φ(KN,ΞN), we patch together these monotone discrete approximations, and also add
segments from KN to φ0 ∈ K and from φT ∈ Ξ to ΞN. As before, conditions (16) and (25)
ensure that this can be done at negligible cost. This argument yields the following upper
bound, whose proof is presented in Appendix A.6.

Proposition 5.5. lim sup
N→∞

1
N CN(KN,ΞN) ≤ C(K,Ξ).

Together, Propositions 5.2 and 5.5 establish the convergence of minimal path costs.

Theorem 5.6 (Convergence theorem). lim
N→∞

1
N CN(KN,ΞN) = C(K,Ξ).

6. Consequences

We now use the convergence theorem to characterize exit times, stationary distribution
asymptotics, and stochastic stability in the small noise double limit. These characteriza-

23One can make an equivalent point in terms of derivatives: while φ̇N does not converge to φ̇, the local
averages of φ̇N over time intervals of length O(

√
N) converge to the corresponding local averages of φ̇.

Compare Figure 2.
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tions are stated in terms of solutions to the continuous control problems (26). As these
problems are tractable in certain interesting cases, the results here allow one to obtain
explicit descriptions of the long run behavior of the stochastic evolutionary processes.

6.1 Expected exit times and exit locations

Given a recurrent class KN
∈ K N, equation (13) defined K̃N as the union of the recurrent

classes in K N other than KN. Thus if the process XN,η starts in KN, then EτN,η(K̃N) is the
expected time until it reaches another recurrent class.

To characterize this expected waiting time, we let K be the limiting recurrent class
corresponding to KN (cf. equation (16)), and define

K̃ =
⋃

L∈K r{K}
L

to be the union of the limiting recurrent classes other than K. Combining Proposition 3.3(i)
and Theorem 5.6 immediately yields the following result.

Corollary 6.1. Let XN,η
0 = xN

∈ KN for all η > 0 and N ≥ N0. Then

lim
N→∞

lim
η→0

η

N
logEτN,η(K̃N) = C(K, K̃).

In words, Corollary 6.1 says that when N is sufficiently large, the exponential growth rate
of the expected waiting time EτN,η(K̃N) as η−1 vanishes is approximately N C(K, K̃). This
quantity can be evaluated explicitly by solving control problem (26).

Turning to exit locations, Proposition 3.3(ii) showed that in the small noise limit, the
exit point of XN,η from the strong basin of attraction S N(KN) = X NrW N(K̃N) is very likely to
be the terminal state of a minimum cost path from KN toW N(K̃N). Although the statements
of the main results in Section 5 focus on costs, their proofs establish that optimal discrete
paths can be approximated arbitrarily well by nearly optimal continuous paths, and vice
versa. It follows that the likely exit points of XN,η from S N(KN) can be approximated by
the terminal points of the optimal solutions of the appropriate control problems (26).

6.2 Stationary distribution asymptotics and stochastic stability

6.2.1 The small noise limit

To state our results on stationary distribution asymptotics and stochastic stability in
the small noise double limit, we first review the well-known results for the small noise
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limit alluded to in Section 3.4. The analysis, which follows Freidlin and Wentzell (1998),
is cast in terms of graphs on the set of recurrent classes K N.

A tree on K N with root KN, sometimes called a KN-tree, is a directed graph on K N

with no outgoing edges from KN, exactly one outgoing edge from each LN , KN, and a
unique path though K N from each LN , KN to KN. Denote a typical KN-tree by τKN , and
let TKN denote the set of KN-trees. The cost of tree τKN on K N is the sum of the costs of the
transitions over its edges:

(32) CN(τKN ) =
∑

(LN ,L̂N)∈τKN

CN(LN, L̂N).

Let RN : K N
→ R+ assign each recurrent class KN

∈ K N the minimal cost of a KN-tree:

RN(KN) = min
τKN∈TKN

CN(τKN ).

Then define the function rN : X N
→ R+ by

(33) rN(x) = min
KN∈K N

(
RN(KN) + CN(KN, {x})

)
.

If x is in recurrent class KN, then rN(x) = RN(KN). Otherwise, rN(x) is the sum of the cost of
some KN-tree and the cost of a path from KN to x.24 Finally, let ∆rN : K N

→ R be a version
of rN whose values have been shifted to have minimum 0:

∆rN(x) = rN(x) −min
y∈X N

rN(y).

Proposition 6.2 shows that the function ∆rN describes the exponential rates of decay
of the the stationary distribution weights µN,η(x) in the small noise limit. It is an easy
consequence of Proposition 4.1 of Catoni (1999).

Proposition 6.2. The stationary distributions µN,η satisfy

(14) − lim
η→0

η logµN,η(x) = ∆rN(x) for all x ∈ X N.

6.2.2 The small noise double limit

To describe the asymptotics of the stationary distribution in the small noise double
limit, we repeat the construction above using the set of limit recurrent classes K and the

24State x need not be in the weak basin of the recurrent class that yields the minimum in (33).
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limit costs C. Denote a typical K-tree on the set of limiting recurrent classes K by τK, and
let TK denote the set of K-trees. Define the cost of tree τK by

C(τK) =
∑

(L,L̂)∈τK

C(L, L̂).

Then define the functions R : K → R+, r : X→ R+, and ∆r : X→ R by

R(K) = min
τK∈TK

C(τK), r(x) = min
K∈K

(R(K) + C(K, {x})) , and ∆r(x) = r(x) −min
y∈X

r(y).

Theorem 6.3 describes the asymptotics of the stationary distributions µN,η in the small
noise double limit.

Theorem 6.3. The stationary distributions µN,η satisfy

lim
N→∞

lim
η→0

max
x∈X N

∣∣∣− η
N logµN,η(x) − ∆r(x)

∣∣∣ = 0.

In words, the theorem says that when N is sufficiently large, the exponential rate of decay
of µN,η(x) as η−1 approaches infinity is approximately N∆r(x).

A weaker version of Theorem 6.3, one that did not require uniformity of the large
N limit in x, would follow directly from Theorem 5.6 and Proposition 6.2.25 In order to
prove Theorem 6.3 as stated, we need to show that the limit in Theorem 5.6 is uniform
over all choices of the target set Ξ ∈ K ∪ {

{x}
}

x∈X (cf. Assumption 2). We accomplish
this in Appendix A.7 by bounding the rate of convergence in the results from Section 5
independently of the specific paths and target sets under consideration. This uniform con-
vergence in these earlier results directly yields the uniform asymptotics for the stationary
distributions.

In view of Theorem 6.3, we call state x ∈ X stochastically stable in the small noise double
limit if for any open set O ⊂ X containing x, probability mass µN,η(O) does not vanish
at an exponential rate in η once N is large enough.26 Theorem 6.3 implies that state x is
stochastically stable in the small noise double limit if and only if ∆r(x) = 0.27

25In fact, since the number of recurrent classes is finite, a version of the theorem that focused only on
these would also follow directly from Theorem 5.6.

26Logically: ∀ δ > 0 ∀O ∈ O(X, x) ∃N0 ∈N ∀N > N0 ∃ η0 > 0 ∀ η < η0 µN,η(O) > exp(−ηδ), where O(X, x)
denotes the set of open subsets of X containing x.

27This characterization remains true under a more demanding definition of stochastic stability, requiring
that for every δ > 0, there exist an O ∈ O(X, x) such that (leaving the quantifiers on N and η in place)
µN,η(y) > exp(−ηδ) for every y ∈ O ∩ X N.
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7. Discussion

7.1 Solving the optimal control problems

It is well known that for a fixed population size N, as the noise level η approaches
zero, the long run behavior of the process XN,η can be described in terms of solutions
to path cost minimization problems on the discrete set X N. The results in this paper
show that after taking a second limit in the population size, the long run behavior of
XN,η can be described in terms of solutions of continuous optimal control problems on the
simplex X. The value of these results lies in the fact that while the discrete optimization
problems are computationally intensive once N is not small, the continuous problems can
be approached analytically.

This is the topic of our companion paper, Sandholm and Staudigl (2014), which applies
the results developed here to study the evolution of play under the logit choice rule
in certain three-strategy coordination games. Using dynamic programming methods
developed by Boltyanskii (1966) and Piccoli and Sussmann (2000), we explicitly compute
both the optimal exit paths from the basins of each pure Nash equilibrium and the optimal
transition paths between these equilibria. Combined with the results here, these analyses
of the optimal control problems provide us with full descriptions of the long run behavior
of the stochastic evolutionary process. While the companion paper focuses on a particular
class of games and choice rule, the properties of the optimal control problems that make
them amenable to analysis hold more generally.

7.2 The best response with mutations model

Most work on long run behavior in stochastic evolutionary models has focused on
the BRM protocol of Kandori et al. (1993), under which every suboptimal choice has
unlikelihood 1. Because the unlikelihood function is an indicator function for suboptimal
actions, the cost of a path in the small noise limit equals the number of suboptimal choices
it entails. Taking the second limit in the population size, and considering any path along
which all switches are to suboptimal strategies, this number of mutations is proportional
to the path’s `1 length. In many interesting examples, the resulting least-cost paths can be
found by direct inspection: see especially Kandori and Rob (1995, 1998).

Since the BRM protocol has a discontinuous unlikelihood function, it falls outside the
direct purview of our analysis.28 The simplicity of the unlikelihood function suggests

28Evaluating the cost of exiting the best response region of a strict equilibrium is an exception to this rule,
since within a best response region the BRM protocol’s unlikelihood function is constant.
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that analogues of our results could be established for this case. Even so, the discontinuity
of unlikelihood means that the relevant optimal control problems have discontinuous
running costs, making them less amenable to analysis. Thus in the case of the BRM
model, there is limited advantage in applying the analytical approach developed here.

7.3 Orders of limits

This paper investigates long run behavior in stochastic evolutionary models in the
small noise double limit, taking η to zero before taking N to infinity. This order of limits
emphasizes the consequences of the rareness of mistakes for long run play.

Following work by Binmore and Samuelson (1997) and Sandholm (2010a) on the two-
strategy case, one can instead investigate the averaging effects of large population sizes
on long run play by focusing on the large population limit, either by itself, or followed by
the small noise limit. With just two strategies, birth-death chain methods can be used to
carry this analysis to its completion. To obtain results in more general environments, one
needs to use more sophisticated tools from the theory of sample path large deviations.
For recent progress in this direction, see Benaı̈m et al. (2014).

It is natural to ask whether the conclusions about long run play are independent of the
order in which the limits in η and N are taken, so that the force driving the large deviations
analysis does not change the form our predictions takes. In the case of two-strategy games,
for which birth-death chain methods are available, the effects of orders of limits on the
limiting stationary distribution and stochastic stability are well understood. In the case of
imitative dynamics with mutations, Binmore and Samuelson (1997) show that reversing
the order of limits can alter the set of stochastically stable states in Hawk-Dove games,
although Sandholm (2012) shows that this dependence can be eliminated by vanishingly
small changes in the specification of the model. For noisy best response rules, Sandholm
(2010a) shows that the asymptotic behavior of the stationary distributions, and hence the
identity of the stochastically stable states, is the same for both orders of limits. Whether
these conclusions extend to games with more than two strategies is an intriguing open
question.

A. Appendix

A.1 Statement and proof of Lemma A.1

The analysis of Example 3.2 requires the following lemma.
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Lemma A.1. Let FN be a finite-population game defined by random matching in normal form
coordination game A. Let x ∈ XN

j satisfy x j > 0 and j < bN
j (x). Then there is a solution to (DBR)

that begins at x and reaches a state at which j is unused in Nx j steps.

Proof. We construct a solution to (DBR) as follows. The initial state is x0 = x. We choose
i1
∈ bN

j (x0) to be a best response for a j player at this state, and then advance in increments
1
N (ei1 − e j) until reaching a state x1 = x0 + d1(ei1 − e j) where either j is unused or i1 < bN

j (x0).
In the latter case, we choose i2

∈ bN
j (x1) and continue the procedure until reaching a state

xC at which j is unused.
To prove the lemma, it is enough to show that upon reaching state xc, c < C, the best

response ic+1
∈ bN

j (xc) cannot be j itself. To do so, recall from definition (3) that ic
∈ bN

j (xc−1)
means that FN

j→ic(x
c) ≥ FN

j→k(x
c−1) for all k ∈ S, or equivalently, by (1) and (2),

(34)
N

N − 1
(eic − ek)′Axc−1

−
1

N − 1
(eic − ek)′Ae j ≥ 0 for all k ∈ S.

By construction,

xc = xc−1 + dc(eic − e j) for some dc > 0,(35)

Since ic+1
∈ bN

j (xc),

N
N − 1

(eic+1 − ek)′Axc
−

1
N − 1

(eic+1 − ek)′Ae j ≥ 0 for all k ∈ S,(36)

and since ic < bN
j (xc), the inequality in (36) is strict when k = ic. Combining (34) (with

k = ic+1) and the strict version of (36) (with k = ic) with (35) yields

(37) (eic − eic+1)′A(eic − e j) < 0.

Since A is a coordination game, we conclude that ic+1 , j, as we aimed to show. �

A few additional steps show that the sequence of best responses {i1, . . . , iC
} is nonre-

peating, and hence that C < n. Suppose to the contrary that two elements of the sequence
are the same; for definiteness, let i1 = iC. Then

(38)
C−1∑
c=1

(eic − eic+1)′Ae j = 0.
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Summing (37) over c ∈ {1, . . . ,C − 1} and substituting (38) yields

C−1∑
c=1

(eic − eic+1)′Aeic < 0,

again contradicting that A is a coordination game.

A.2 Proof of Proposition 5.1

Fix ε > 0. Since F and Υ are continuous, Υ is uniformly continuous on F(X), so we can
choose δ > 0 so that

(39) |π − π̂| < δ implies that
∣∣∣Υ j(π) − Υ j(π̂)

∣∣∣ < ε for all π, π̂ ∈ F(X) and j ∈ S.

Moreover, since {FN
} is uniformly convergent, F uniformly continuous, and each φ(N) is

Lipschitz continuous with Lipschitz constant 2 (by (21)), we can choose N0 so that

N ≥ N0 implies that
∣∣∣FN

i→·(x) − F(x)
∣∣∣ < δ for all x ∈ XN

i and i ∈ S, and(40)

N ≥ N0 implies that
∣∣∣F(φ(N)

t ) − F(φ(N)
s )

∣∣∣ < δ whenever |t − s| ≤ 1
N .(41)

It follows that for N ≥ N0, there exist αN and βN with |αN
| < ε and |βN

| < ε such that

1
N

cN(φN) =
1
N

`N
−1∑

k=0

〈Υ(FN
ıN(k)→·(φ

N
k )), [φ̇N

k ]+〉

=
1
N

`N
−1∑

k=0

〈Υ(F(φ(N)
k
N

)), [φ̇N
k ]+〉 + α

N `
N

N

=

∫ TN

0
〈Υ(F(φ(N)

bNtc
N

)), [φ̇(N)
t ]+〉dt + αNTN

=

∫ TN

0
〈Υ(F(φ(N)

t )), [φ̇(N)
t ]+〉dt + (αN + βN)TN

= c(φ(N)) + (αN + βN)TN.(42)

The first equality is (23), the second follows from (39), (40), and (19), the third from (19)
and (20), and the fourth from (39), (41), and (21). Since ε > 0 was chosen arbitrarily and
the TN are bounded, the proposition follows. �
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A.3 Proof of Proposition 5.2

By Assumption 1, there are paths φN = {φN
k }
`N

k=0 ∈ ΦN(KN,ΞN) of durations TN = `N/N <

T̄ < ∞ that are optimal in problem (12), so that CN(KN,ΞN) = cN(φN). Let C∗ be the liminf
of 1

N cN(φN). There is a subsequence along which 1
N cN(φN) converges to C∗, which we take

without loss of generality to be the entire sequence.
For each φN, we construct a corresponding continuous path φ[N]

∈ Φ(K,Ξ) by concate-
nating three subpaths: a subpath φ[N],0 from a point in Ki to φN

0 , the linear interpolation
φ(N) defined in (19), which leads from φN

0 to φN
`N , and a subpath φ[N],1 from φN

`N to a point
in K j.

To construct φ[N],0, recall from condition (16) that since φN
0 ∈ KN

i , there is an x[N]
0 ∈ Ki

such that
∣∣∣φN

0 − x(N)
0

∣∣∣ ≤ d
N . Define {φ[N],0

t }t∈[0,1] by φ[N],0
t = (1− t)x[N]

0 + tφN
0 . Then letting b < ∞

be the maximum of the continuous function Υ ◦ F on the compact set X, we have that

c(φ[N],0) =

∫ 1

0
〈Υ(F(φ[N],0

t )), [φ̇[N],0
t ]+〉dt ≤

bd
N
.

Subpath φ[N],1 is constructed analogously and satisfies the same bound.
Now fix ε > 0. The previous argument and equation (42) imply that for all N large

enough, we have

(43) c(φ[N]) ≤ c(φ(N)) +
2bd
N
≤

1
N

cN(φN) + 2εT̄ +
2bd
N
.

Since ε was arbitrary, we conclude that lim
N→∞

c(φ[N]) ≤ lim
N→∞

1
N cN(φN) = C∗, and hence that

C(K,Ξ) ≤ C∗. �

A.4 Proof of Proposition 5.3

Fix N, and write n+ = #S+ and n− = #S−. To prove the proposition, we construct for all
N large enough a monotone path φN that satisfies

max
k

∑
j∈S+

∣∣∣∣φN
k, j − φsN+ k

N , j

∣∣∣∣ ≤ 2n+

N
and max

k

∑
i∈S−

∣∣∣∣φN
k,i − φsN+ k

N ,i

∣∣∣∣ ≤ 2n−
N
.

Summing these inequalities yields inequality (29).
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Because φ is monotone and moves at full speed, there is a time sN
∈ [0, 1

N ) at which

(44)
∑
j∈S+

φsN , j ∈
1
N
Z, and hence

∑
i∈S−

φsN ,i ∈
1
N
Z.

This is the sN introduced in the statement of the theorem. To minimize notation in what
follows we will take sN to be 0.

The point in the simplex X that maximizes the minimum `1 distance from all vertices
is the barycenter, which is `1 distance 2(n−1)

n from every vertex. This and (44) imply that
there is a φN

0 ∈ X N such that∑
j∈S+

φ0, j =
∑
j∈S+

φN
0, j,

∑
i∈S−

φ0,i =
∑
i∈S−

φN
0,i, and(45)

∑
i∈S

[φ0,i − φ
N
0,i]+ =

∑
i∈S

[φ0,i − φ
N
0,i]− =

n − 1
n
·

1
N
.

This is the base of our inductive argument. The inductive step says that if∑
j∈S+

∣∣∣∣φ k
N , j
− φN

k, j

∣∣∣∣ ≤ 2n+

N
and

∑
i∈S−

∣∣∣∣φ k
N ,i
− φN

k,i

∣∣∣∣ ≤ 2n−
N
,

then we can choose φN
k+1 = φN

k + 1
N (e j − ei) with j ∈ S+ and i ∈ S− so that∑

j∈S+

∣∣∣∣φ k+1
N , j − φ

N
k+1, j

∣∣∣∣ ≤ 2n+

N
, and

∑
i∈S−

∣∣∣∣φ k+1
N ,i − φ

N
k+1,i

∣∣∣∣ ≤ 2n−
N
.

Note that this procedure ensures that φN is also monotone, with the same partition S =

S+ ∪ S− as φ.
Let x = φ k

N
, y = φ k+1

N
, and x = φN

k , be given, with y = φN
k+1 to be determined. Our

analysis focuses on strategies in S+. Monotonicity and the fact that φ moves at full speed
imply that

(46) y − x = z for some z with z j ≥ 0 for j ∈ S+ and
∑
j∈S+

z j =
1
N
.

This and the fact that y = x + 1
N (e j − ei) for some j ∈ S+ and i ∈ S− imply that

(47)
∑
j∈S+

[
y j − y j

]
+
≤

1
N

+
∑
j∈S+

[
x j − x j

]
+
.
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Furthermore,

Lemma A.2. If

(48)
∑
j∈S+

[x j − x j]+ ≥
1
N

(n+ − 1),

then y can be chosen so that
∑
j∈S+

[y j − y j]+ ≤

∑
j∈S+

[x j − x j]+.

To prove the lemma, recall from (45) thatφ0 andφN
0 place equal total mass on strategies

in S+. Thus, since φ and φN move at full speed and are monotone with respect to the same
partition S = S+∪S−, it follows that this equality is maintained at all corresponding points
on paths φ and φN. In particular, we have

(49) 0 =
∑
j∈S+

(
x j − x j

)
=

∑
j∈S+

[
x j − x j

]
+
−

∑
j∈S+

[
x j − x j

]
−
.

Thus, there are at most n+ − 1 strategies j ∈ S+ for which x j − x j > 0. Consequently, (48)
implies that there is at least one strategy j∗ ∈ S+ with

(50) x j∗ − x j∗ ≥
1
N .

If we choose y = x + 1
N (e j∗ − ei) (for any i ∈ S−), then applying (50) and (46) shows that∑

j∈S+

[
y j − y j

]
+

= [x j∗ + z j∗ − (x j∗ + 1
N )]+ +

∑
j∈S+r{ j∗}

[x j + z j − x j]+

≤ x j∗ + z j∗ − (x j∗ + 1
N ) +

∑
j∈S+r{ j∗}

(
[x j − x j]+ + z j

)
=

∑
j∈S+

([
x j − x j

]
+

+ z j

)
−

1
N

=
∑
j∈S+

[
x j − x j

]
+
,

proving the lemma.
Together, equation (47) and Lemma A.2 imply that

∑
j∈S+

[
y j − y j

]
+
≤ max

n+

N
,
∑
j∈S+

[
x j − x j

]
+

 .
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Applying (49) to both sides of this inequality, and then summing the resulting inequality
and the original one yields

∑
j∈S+

∣∣∣y j − y j

∣∣∣ ≤ max

2n+

N
,
∑
j∈S+

∣∣∣x j − x j

∣∣∣ .
This establishes the part of the inductive step concerning S+; a similar argument proves
the part concerning S−. This completes the proof of the proposition. �

A.5 Proof of Proposition 5.4

Fix ε > 0. Choose δ > 0 so that (39) holds, and then choose N0 so that (40) and

(51) N ≥ N0 implies that
∣∣∣∣F(φ k

N
) − F(φN

k )
∣∣∣∣ < δ for all k ∈ {0, . . . , bNTc}

hold; the latter is possible because F is uniformly continuous and because φN converges
uniformly to φ, as described in (29); as in the proof of Proposition 5.3, we minimize
notation by taking sN to equal 0.

By the triangle inequality,

(52)
∣∣∣∣Υ j(FN

i→·(φ
N
k )) − Υ j(F(φ k

N
))
∣∣∣∣ ≤ ∣∣∣Υ j(FN

i→·(φ
N
k )) − Υ j(F(φN

k ))
∣∣∣ + ∣∣∣∣Υ j(F(φN

k )) − Υ j(F(φ k
N

))
∣∣∣∣ .

Thus if N ≥ N0, there exists αN with |αN
| < ε such that

1
N

cN(φN) =

`N
−1∑

k=0

〈Υ(FN
ıN(k)→·(φ

N
k )), [φN

k+1 − φ
N
k ]+〉

=

`N
−1∑

k=0

〈Υ(F(φ k
N

)), [φN
k+1 − φ

N
k ]+〉 + 2αNTN.(53)

The first equality here is (30), and the second follows from (39), (40), (51), and (52).
Now let LN = b

√
Nc and let MN = bNTc /LN, so that

(54) lim
N→∞

MN = ∞ and lim
N→∞

MN

N
= 0.

Also, choose τ > 0 so that

(55) |t − s| ≤ 2τ implies that
∣∣∣F(φt) − F(φs)

∣∣∣ < δ.
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Then continuing from (53), considering N ≥ N0 large enough that LN/N ≤ τ, and taking
MN to be an integer for notational convenience only, there exist βN with |βN

| < ε and a
constant b > 0 whose value depends on the maximum of Υ ◦ F on X such that

1
N

cN(φN) =

MN
−1∑

m=0

LN
−1∑

k=0

〈Υ(F(φmLN )), [φN
mLN+k+1 − φ

N
mLN+k]+〉 + (2αN + βN)TN

=

MN
−1∑

m=0

〈Υ(F(φmLN )), [φN
(m+1)LN − φ

N
mLN ]+〉 + (2αN + βN)TN

=

MN
−1∑

m=0

〈Υ(F(φmLN )), [φ (m+1)LN
N
− φmLN

N
]+〉 + (2αN + βN)TN +

bTN

√
N
.(56)

The first equality uses (55) and (39), the second uses the monotonicity of φN, and the third
uses the boundedness of Υ ◦ F on X and the O( 1

N ) convergence of φN to φ specified in (29).
The limits in (54) and the monotonicity of φ imply that as N approaches infinity, and

the Riemann-Stieltjes sum in (56) converges to a Riemann integral. (To be more precise,
writing the inner product in the initial term of (56) as a sum and then reversing the order
of summation yields a sum of n Riemann-Stieltjes sums, which converges to a sum of n
Riemann integrals.) Accounting explicitly for the approximation error, there exist γN with
|γN
| < ε such that for large enough N,

1
N

cN(φN) =

∫ T

0
〈Υ(F(φt)), [φ̇t]+〉dt + (2αN + βN + γN)TN +

bTN

√
N

= c(φ) + (2αN + βN + γN)TN +
bTN

√
N
.(57)

Since TN
≤ T (see the statement of Proposition 5.3), the last summand vanishes as N grows

large. Thus since ε was arbitrary, we conclude that lim
N→∞

1
N cN(φN) = c(φ). �

A.6 Proof of Proposition 5.5

By Assumption 2, there is a continuous, piecewise monotone path φ = {φt}t∈[0,T] ∈

Φ(K,Ξ) with cost c(φ) = C(K,Ξ). As noted in Section 5.1, we can assume that path φ

moves at full speed, as in (28) with the inequalities binding. Fix ε > 0. We will construct a
sequence of discrete paths with φN

∈ ΦN(KN,ΞN) whose normalized costs converge to the
sum of c(φ) and terms that vanish with ε.

As φ is piecewise monotone, there is an M < ∞ and times 0 = T0 < T1 < . . . < TM = T
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such that φ is monotone on each subinterval [Tm−1,Tm]. The discrete path φN is the
concatenation of 2M + 1 subpaths: ψN,0, φN,1, ψN,1, φN,2, . . . , φN,M, ψN,M. For m ∈ {1, . . . ,M},
subpath φN,m is the discrete approximation of φ|[Tm−1,Tm] constructed in Proposition 5.3;
the length of this subpath is `N,m =

⌊
N(Tm − Tm−1 − sN,m)

⌋
, where sN,m

∈ [0, 1
N ) too is from

Proposition 5.3.
For m ∈ {1, . . . ,M − 1}, subpath ψN,m must begin at node φN,m

`N,m and end at node φN,m+1
0 .

We focus for notational convenience on m = 1, although the bound we establish next
applies for all m ∈ {1, . . . ,M− 1}. Define ŝN,1 by T1 − ŝN,1 = sN,1 + `N,1

N . Then ŝN,1
∈ [0, 1

N ), and
we can bound the distance between φN,1

`N,1 and end at node φN,2
0 as follows:

(58)
∣∣∣φN,1
`N,1 − φ

N,2
0

∣∣∣ ≤ ∣∣∣φN,1
`N,1 − φT1−ŝN,1

∣∣∣+ ∣∣∣φT1−ŝN,1 − φT1+sN,2

∣∣∣+ ∣∣∣φT1+sN,2 − φN,2
0

∣∣∣ ≤ 2n
N

+
4
N

+
2n
N
.

The bounds on the first and third terms are from Proposition 5.3, and the bound on the
second term follow from the fact that ŝN,1 and sN,2 are less than 1

N and the speed bound
(28) on φ.

The initial subpath ψN,0 begins at a state in KN and ends at φN,1
0 , and the final subpath

ψN,M begins at φN,M
`N,M and ends at a state in ΞN. Focusing for convenience on the former,

note that since φ0 ∈ K, condition (16) ensures that we can choose φN,0
0 = xN

∈ KN with∣∣∣φN,0
0 − φ0

∣∣∣ ≤ d
N . We therefore have

∣∣∣xN
− φN,1

0

∣∣∣ ≤ ∣∣∣xN
0 − φ0

∣∣∣ +
∣∣∣φ0 − φsN,1

∣∣∣ +
∣∣∣φsN,1 − φN,1

0

∣∣∣ ≤ d
N

+
2
N

+
2n
N
.(59)

The bound on the second term follows from the fact that sN,1
≤

1
N and from the speed

bound (28), and the bound on the third term follows from Proposition 5.3.
Observe that given any distinct x , y ∈ X N, there is a state x̂ adjacent to x such that

|x̂ − y | = |x − y | − 2
N . These observations and inequalities (58) and (59) imply that each

subpath ψN,m, m ∈ {1, . . . ,M − 1} can be constructed to have length no greater than 2n + 2,
and that subpaths ψN,0 and ψN,M can each be constructed to have length no greater than
1
2 (d + 2 + 2n).

As before, let b < ∞ be the maximum of the continuous function Υ ◦ F on the compact
set X. Since each FN

i→· converges uniformly to F, for all N large enough the maximum cost
of a feasible step in the Nth process is at most 2b. This fact and the arguments from the
previous paragraph show that for such N, the total cost of the subpaths ψN,m satisfies

(60)
M∑

m=0

cN(ψN,m) ≤ 2b
(
(M − 1)(2n + 2) + (d + 2 + 2n)

)
≤ 2b (3nM + d).
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Since for each N the total duration of subpaths φN,1, . . . φN,M is less than T, inequalities
(57) and (60) imply that for all N large enough,

(61)
1
N

cN(φN) ≤ c(φ) + 4εT +
bT
√

N
+

2b (3nM + d)
N

.

Since ε was arbitrary, it follows that

lim
N→∞

1
N

cN(φN) ≤ c(φ),

and thus that

lim sup
N→∞

1
N

CN(KN,ΞN) ≤ C(K,Ξ). �

A.7 Proof of Theorem 6.3

Fix ε > 0. We need to show that for all large enough N,

lim
η→0

max
x∈X N

∣∣∣− η
N logµN,η(x) − ∆r(x)

∣∣∣ < ε.
By Proposition 6.2, it is enough to show that for all large enough N,

(62) max
x∈X N

∣∣∣∣∣ 1
N

∆rN(x) − ∆r(x)
∣∣∣∣∣ < ε.

In fact, it is enough to show that for all large enough N,

(63) max
x∈X N

∣∣∣∣∣ 1
N

rN(x) − r(x)
∣∣∣∣∣ < ε,

since this uniform convergence of rN to r implies that the minimum of rN converges to the
minimum of r, and together these imply (62).

Combining the definitions of rN, RN, and CN yields

(64) rN(x) = min
KN∈K N

 min
τKN∈TKN

∑
(LN ,L̂N)∈τKN

CN(LN, L̂N) + CN(KN, {x})

 ,
and r(x) can be expressed analogously. Now fix a population size N and a state x ∈ X N. For
this fixed x, there are κ2 transition costs that need to be found to evaluate (64): specifically,
there are κ2

− κ terms of the form CN(LN, L̂N), where (LN, L̂N) is an ordered pair of distinct
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recurrent classes, and there are κ terms of the form CN(KN, {x}). Since κ2 is finite, the
convergence of these costs guaranteed by Theorem 5.6 is uniform: there is an N0 such that
for all N ≥ N0 and all choices of recurrent classes,∣∣∣∣∣ 1

N
CN(LN, L̂N) − C(L, L̂)

∣∣∣∣∣ < ε
κ

and∣∣∣∣∣ 1
N

CN(KN, {x}) − C(K, {x})
∣∣∣∣∣ < ε

κ
if x ∈ X N.(65)

Thus | 1N rN(x) − r(x)| < ε, and hence limN→∞
1
N rN(x) = r(x), where the limit is taken over N

such that x ∈ X N.
In order to establish (63), we must show that the limit just obtained holds uniformly

over x. By the previous logic, this would follow if we could show that convergence of
1
N CN(KN, {x}) to C(K, {x}) were uniform in x. To see that this is so, note that by inequalities
(43) and (61), the choice of N0 needed to ensure inequality (65) for all N ≥ N0 can be
determined as a function of the following constants: d (from condition (16)), T̄ (from
Assumption 1), b (the maximum of Υ ◦ F on X), M̃ and T̃ (since Assumption 2 requires
that M = M(x) and T = T(x) from inequality (61) satisfy M(x) ≤ M̃ and T(x) ≤ T̃ for all
x), and n (the number of strategies). Since none of these constants depend on x, we can
indeed choose N0 so that (65) holds for all N ≥ N0 and for all x ∈ X N simultaneously. This
establishes (63), and so completes the proof of the theorem. �
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