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Abstract: Cognitive models are – due to their computational nature – useful for the
development and improvement of artificial cognitive systems. However, if two models perform
equally well on the existent data, comparing them directly can permit us to select the more
appropriate one. One way of comparing to models is to perform an in-depth analysis of their
predictions. In this study, we compared the predictions of two similar cognitive models of spatial
language comprehension using the Parameter Space Partitioning (PSP) algorithm proposed by
Pitt, Kim, Navarro, and Myung (2006).

Keywords: Spatial Language, Cognitive Modeling, Parameter Space Partitioning

1. INTRODUCTION

Humans should be able to interact with technical systems
as intuitively as possible. An intuitive way of interaction
between humans and technical systems is by means of
natural language. If technical systems were able to under-
stand and generate natural language, humans could easily
interact with them. In order to enable technical systems
to use natural language it is crucial to understand how
humans use language. Insights into linguistic processes and
representations could then be used for technical replication
of natural language processing. Here, it is helpful if the lin-
guistic theories that should be implemented are precisely
formulated, for instance as a computational model.

Computational models of human language processing are
one specific example of the general endeavor to investigate
human cognition with the help of computational modeling,
also called cognitive modeling. A cognitive model aims
to precisely formulate the assumed processes and mecha-
nisms of human cognition. Once a model has been formu-
lated, it can be implemented and assessed with empirical
data to test whether the model reflects human cognition
(both qualitatively and quantitatively). Cognitive model-
ing started in the 1960s and shows many facets nowadays
(for recent overviews see McClelland, 2009; Shiffrin, 2010;
Sun, 2008). Cognitive models can accommodate a wide
variety of cognitive and behavioral processes in humans
(e.g., visual attention: Bundesen & Habekost, 2008; work-
ing memory: Miyake & Shah, 1999; emotion: Marsella,
Gratch, & Petta, 2010; analogy-making: French, 2002).
Apart from different approaches to model cognition (e.g.,
symbolic models, neural networks, dynamical systems),
cognitive architectures also exist (e.g., ACT-R: Anderson
et al., 2004, SOAR: Laird, Newell, & Rosenbloom, 1987).

Instead of focusing on an isolated part of human cogni-
tion, cognitive architectures strive to accommodate the
processes (from stimulus perception to a motor response)
implicated in completing a specific task.

Linguists have formalized their theories as computational
models since the 1980s (e.g., Elman, 1990; McClelland
& Elman, 1986) and computational modeling is still an
active research area in linguistics (e.g., Crocker, Knoe-
ferle, & Mayberry, 2010; Kukona & Tabor, 2011; Smith,
Monaghan, & Huettig, 2013; see Crocker, 2010, for an
overview). Recent computational models that were devel-
oped to investigate human language processing reflect the
state-of-the-art in linguistic research. Due to their com-
putational nature they can be implemented into technical
systems and ideally enable these technical systems to use
natural language in a human-like manner.

In the domain of spatial language, we have proposed a
cognitive model that integrates recent empirical findings
into an existing model (Kluth, Burigo, & Knoeferle, 2016).
This model had been inspired by the AVS model (Regier
& Carlson, 2001) , a model which had been developed
to accommodate results from acceptability rating studies
(how good is the fit between a spatial term such as “above”
and an object depiction). The AVS model accommodates
these acceptability ratings as a shift in attention between
two objects. In the AVS model, the shift of attention is
assumed to occur from a reference object to a to-be-located
object (as theorized by Logan, 1995 and Logan & Sadler,
1996). This directionality, however, conflicts with recent
findings of a shift of (visual) attention in the opposite
direction (from the LO to the RO, see Burigo & Knoeferle,
2015; Franconeri, Scimeca, Roth, Helseth, & Kahn, 2012;
Roth & Franconeri, 2012). Accordingly, we have proposed



the reversed AVS (rAVS) model that reverses the direction
of the attentional shift in the AVS model based on these
empirical findings. As most cognitive models, both the
AVS model and the rAVS model use free parameters to
closely fit empirical data (e.g., to adapt their output to
individual differences or noise). The two models provide
a comparable fit on the data from Regier and Carlson
(2001), and this despite the fact that they implement the
attentional shift in different ways (see Kluth et al., 2016).

Having two different models that perform equally well on
the existing data, the question arises whether one of the
models better reflects the human use of spatial language.
Selecting one among two or more competing cognitive
models is a question that can be addressed by several
different methods (for reviews see, e.g., Myung, Tang, &
Pitt, 2010; Shiffrin, Lee, Kim, & Wagenmakers, 2008).
Providing a good fit to empirical data is a necessary feature
of a good model but not the only one. Apart from that a
good cognitive model is also as simple as possible (Van-
dekerckhove, Matzke, & Wagenmakers, 2015), generalizes
well to unseen data (Pitt & Myung, 2002), and makes dis-
tinct predictions (Roberts & Pashler, 2000). Roberts and
Pashler (2000) discuss the use of goodness-of-fit measures
for the assessment of computational models and suggest:
“A better way to test a theory with free parameters is
to determine how the theory constrains possible outcomes
(i.e., what it predicts) [...]” (Roberts & Pashler, 2000,
p. 358). A model with few predictions can then be falsified
by providing empirical data that conflict with the model’s
predictions. However, if a model generates numerous pre-
dictions, its fit to any empirical data is less impressive
(Roberts & Pashler, 2000).

In this contribution, we analyze whether the AVS model
and the rAVS model make different predictions for stimuli
that have not yet been tested. In doing so, we assess the
predictive ability of the models as suggested by Roberts
and Pashler (2000). Moreover, if the two models predict
different outcomes, we could run an empirical study that
tests these distinct predictions. Such a test would permit
us to see which of the model predictions are supported
by the empirical results. The models supported by the
test data would then be selected as a more appropriate
approximation of how humans process spatial language.

Based on the mechanisms of the models, we designed
stimuli for which we hypothesized that the models predict
different outcomes. However, our hypothesized predictions
may not be the only output that the models are able
to generate. Given the range and the interaction of the
models’ parameters, the models might produce output
that conflict with our hypothesized predictions. To analyze
the range of possible predictions, we applied the Parameter
Space Partitioning (PSP) algorithm proposed by Pitt et
al. (2006). The results of the PSP analysis can be used
to see what qualitative data patterns the models are able
to generate. These results in turn can inform an empir-
ical study that could provide data on which the models
perform differently and thus could be distinguished.

2. THE MODELS

To discuss the different predictions of the AVS model and
the rAVS model, we will first briefly introduce the two
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(a) In the AVS model, vectors
point from the RO to the LO
and are weighted with atten-
tion (red). The sum D of these
vectors is compared to a ref-
erence direction (dashed) and
yields the deviation δ.
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(b) In the rAVS model, one
vector points from the LO to
one point E on the line that
connects point F with point C
(depending on the relative dis-
tance of the LO). This vector
D is compared to a reference
direction (dashed) and yields
the deviation δ.

Fig. 1. Schematized steps of (a) the AVS model and (b)
the rAVS model.

models. A more detailed description of the two models
can be found in Regier and Carlson (2001) and Kluth et
al. (2016). Both models compute an acceptability rating
of a spatial preposition – given the location and shape of
a reference object (RO), the location of a located object
(LO), and the spatial preposition. In one example context
of house-hold robotics, a possible utterance that contains
spatial language is the following: “Robot, bring me my key.
It is to the left of the phone.” Here, the spatial preposition
“to the left of” describes the location of the key (the
located object, LO) relative to the phone (the reference
object, RO). Where should the robot look first for the
key? Probably, a good start would be the location “to the
left of the phone”. The AVS model and the rAVS model
are able to compute acceptability ratings for all possible
locations around the RO. To this end, both models rely on
the angular deviation δ of a direction D from a reference
direction (e.g., canonical upright: if the LO is directly
above the RO, the angular deviation δ would be zero). If
the angular deviation δ is high, a low acceptability rating
is returned (and vice versa). The direction D that results
from the relative placement of the two objects is computed
differently in the two models.

2.1 The AVS model

In the AVS model, the direction D is the weighted sum of
a population of vectors that point from every point of the
RO to the LO (see Figure 1a). This sum is weighted with
attention, where attention is defined as an exponential
decay function which is highest at the focal point F
(point on top of the RO that is vertically aligned with
the LO). The distance of the LO from the RO affects
the distribution of attention: A nearby LO results in a
narrow distribution of attention (i.e., a large decline of
attention from point F) whereas a distant LO gives a broad
distribution of a attention (i.e., a small decline of attention
from point F).

2.2 The rAVS model

In the reversed AVS (rAVS) model, the relative placement
of the LO and the RO is used differently to obtain the



direction D that is compared to a reference direction. To
integrate recent findings about shifts of attention during
spatial language comprehension (see Kluth et al., 2016,
for details), the direction of the vectors is reversed in the
rAVS model: Instead of pointing from the RO to the LO,
the vectors are pointing from the LO to the RO. Since
the LO is simplified as a single point in the AVS model
and the rAVS model tries to stay as similar as possible to
the AVS model, this change results in a vector sum that
consists of a single vector only (see Figure 1b). The end
point E of this vector lies always on the line that connects
the point F (the same point as the focal point in the AVS
model) with the point C (the center-of-mass of the RO).
The relative distance of the LO to the RO determines the
end point E: If the LO is close to the RO, E is close to F ,
if the LO is far from the LO, E is close to C. Here, relative
distance is defined as the distance of the LO to the RO
divided by both the width and the height of the RO.

3. PREDICTIONS

We have shown that the two models (the AVS model and
the rAVS model) accommodate the existing results equally
well (see Kluth et al., 2016). In order to assess whether
any of the models reflects human use of spatial language
more than the other, we follow the reasoning of Roberts
and Pashler (2000) and “[d]etermine the predictions [of
the models] [u]sing intuition, experience, and trial and
error[...]”(Roberts & Pashler, 2000, p 363-364). Based on
the mechanisms of the models, we found two types of
configurations of an RO and an LO for which the models
seem to predict qualitatively different ratings. We will first
discuss these stimuli and why we hypothesize the models
predict different ratings for them. Because both models
comprise four free parameters, the models might produce
predictions different from our hypotheses. This is why
we subsequently apply the parameter space partitioning
(PSP) algorithm (Pitt et al., 2006) that helps us to see
whether our intuitive predictions reflect the output that
the models are actually able to compute.

Asymmetrical Objects The first prediction is based on
the representation of asymmetrical ROs (see Figures 2a
and 2b). Consider, for example, the two LOs shown in
Figure 2a (represented by black dots and placed with equal
horizontal distance from the center-of-mass × of the RO):
the AVS model would produce a higher rating for the LO
placed on the left of the center-of-mass of the RO than for
the LO placed on the right of the center-of-mass. This is
because the AVS model represents every single point of the
RO with one vector and the asymmetrical RO has more
points below the left than the right LO. Thus, the vector
sum consists of more vectors with lower deviation from the
reference direction for the left LO compared to the right
LO. This should yield an overall direction D that has a
lower deviation δ (leading to a higher rating) for the left
LO compared to the right LO.

Instead of representing all points of the RO, by contrast,
the computation of the rAVS model is mainly based on
the center-of-mass of the RO. Due to the same horizontal
distance to the center-of-mass, the rAVS model computes
basically the same deviation for both LOs in Figure 2a.
Therefore, the rAVS model predicts the same rating for
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Fig. 2. Displays for which the AVS model and the rAVS
model seem to predict different ratings. LOs are
displayed as black dots, center-of-mass of the ROs in
(a) and (b) are displayed as ×. The LOs in (a) and (b)
have the same horizontal distance d from the center-
of-mass of the RO. The height of the RO in (d) is six
times the height h of the RO in (c).

both LOs in Figure 2a. For both models, the same reason-
ing applies for the two LOs in Figure 2b.

Relative Distance The second prediction concerns the
implementation of the distance between the LO and the
RO in the models. The rAVS model explicitly uses relative
distance for its computation, where relative distance is
computed as the absolute distance divided by both the
width and the height of the RO. Given two LOs with
the same absolute distance but different relative distances
from the RO, the rAVS model predicts higher ratings for
the LO with the lower relative distance than for the LO
with the higher relative distance. In Figures 2c and 2d, the
rAVS model would rate the LO above the “thin” rectangle
(Figure 2c) lower in acceptability than the LO above the
“tall” rectangle (Figure 2d).

In the AVS model, by contrast, the absolute distance
influences the attentional distribution. The width and
height of the RO are incorporated in the vector sum.
The vector sum depends on the attentional distribution
that is additionally controlled by a free parameter. This
parameter provides flexibility for the vector sum: On the
one hand, a narrow distribution of attention might result
in an equal representation of the “thin” and the “tall”
rectangle (the lower part of the “tall” rectangle only
receives a negligible amount of attention and does not
change the final directionD). On the other hand, a broader
distribution of attention might change the final direction



D through the additional vectors for the “tall” rectangle.
Therefore, the prediction of the AVS model in this case is
unclear.

4. METHOD: PARAMETER SPACE PARTITIONING

Both models have four parameters that interact in a com-
plex way, making it hard to understand in a principle-
based manner the model predictions for different RO-
LO configurations. The parameter space partitioning al-
gorithm (PSP) proposed by Pitt et al. (2006) helped us
to investigate whether the two models actually predict
different rating patterns for the specific RO-LO configu-
rations shown in Figures 2a-2d and whether the models
also compute ratings that do not follow our hypothesized
predictions.

The PSP algorithm is a Markov Chain Monte Carlo
(MCMC) based method that searches in the parameter
space of the models for regions of patterns that are
qualitatively different and also estimates the volumes of
these pattern regions. With these volumes it is possible to
see what qualitative patterns the model is able to generate
(i.e., what the model predicts) and which volume in the
parameter space is occupied by these patterns. The volume
can be interpreted as the importance of the predictions
for the model: The larger the volume of a pattern, the
more important this prediction is for the model. A pattern
with a large volume means that the model generates the
same qualitative pattern throughout a substantial range
of parameter settings.

In our study, we coded qualitative patterns in the following
way: We code the comparison of two LOs in one digit. If
the ratings for two compared LOs do not differ by more
than an equality threshold t, we code this as a ‘0’. If the
first LO has a higher rating than the second one, we code
this as a ‘1’. If the second LO has a higher rating than
the first one, we code this as a ‘-1’. We compared ratings
for the two LOs above the asymmetrical “C” (Figure 2a),
resulting in a first code. We next compared ratings for the
two LOs above the asymmetrical “L” (Figure 2b), resulting
in a second code. Finally, we compared ratings for the LO
above the “thin” rectangle (Figure 2c) to ratings for the
LO above the “tall” rectangle (Figure 2d), resulting in
a third code. Accordingly, we obtain a three-digit code.
Applying this coding to our hypothesized predictions de-
scribed above, the rAVS model should generate the pattern
‘00-1’ (no differences for the LOs above the asymmetrical
objects and a lower rating for the relatively far LO above
the “thin” rectangle compared to the relatively close LO
above the “tall” rectangle). The AVS model should gen-
erate the pattern ‘11?’ (higher ratings for the LOs with
more mass below them and an unclear prediction for the
condition in which the relative distance is manipulated).

But when should two ratings be considered equal? In the
studies reported by Regier and Carlson (2001), a difference
in mean ratings of 0.17 (exp. 1), 0.2 (exp. 2), 0.3 (exp. 4), or
0.7 (exp. 6) was needed to reach significance. In the study
conducted by Carlson-Radvansky, Covey, and Lattanzi
(1999) this difference was 0.3. In the study by Hörberg
(2008) a difference of 0.57 was required. Experiment 2 by
Burigo, Coventry, Cangelosi, and Lynott (in press) needed
differences of 0.27, 0.34, 0.36, 0.43 to reach significance.

Although all these studies investigated different effects
on the acceptability of spatial prepositions and also used
slightly different rating scales, these values provide hints at
the magnitude for the equality threshold t. Based on these
values, we used the following three equality thresholds t
for our PSP analysis: 0.1, 0.5 and 1.0.

To conduct the PSP analysis, we used the MATLAB imple-
mentation of the PSP algorithm made available by Pitt
et al. (2006) 1 together with the C++ implementation of
the rAVS and the AVS model available at Kluth (2016).
We constrained the boundaries of the parameter space as
reported in Kluth et al. (2016).

5. RESULTS

The results of the PSP analysis separately for each value of
t are shown in Figure 3. Plotted are mean relative volume
estimates of three PSP runs.

rAVS Throughout all ts, the rAVS model generates only
2 out of 27 theoretically possible patterns: ‘000’ and ‘00-1’.
With a larger threshold t the volume of pattern ‘000’
increases while the volume of pattern ‘00-1’ decreases.
This is reasonable: If the difference d of two ratings lies
between two equality thresholds (say, d = −0.7), this
difference is either coded as a ‘-1’ for t = 0.5 or as a ‘0’
for t = 1.0. The PSP analysis confirms the hypothesized
predictions described earlier: For all parameter settings,
the LOs above the two asymmetrical objects were rated
equally by the rAVS model (the first two digits in the
patterns are always ‘0’). For most parameter settings, the
LO above the “thin” rectangle is rated lower than the LO
above the “tall” rectangle (the last digit of the pattern is
‘-1’). However, there exist parameter settings for which
the rAVS model predicts no differences in ratings for these
two LOs.

AVS The AVS model generates a greater range of
qualitative patterns. For t = 0.1 (Figure 3a) and t = 0.5
(Figure 3b), it generates 7 out of 27 theoretically possible
patterns. Interestingly, the pattern we predicted earlier
(‘11?’) is not generated by the model (for none of the
values of t). Moreover, for t = 0.1, large proportions of
the parameter space yield patterns that conflict with our
hypothesized predictions (‘10-1’, ‘1-10’, ‘1-1-1’). There
is no intuitive explanation why the AVS model should
predict different directions for the differences in ratings
for the LOs above the asymmetrical objects (‘1’ vs ‘-1’).
Due to its flexibility, the vector sum incorporated in the
AVS model seems to generate a wide range of ratings.

If the equality threshold t is set to 0.5, the AVS model
still generates the same seven patterns (Figure 3b). The
proportions of the parameter space in which the model
generates these patterns, however, have changed. Mostly,
the AVS model now generates the same patterns as the
rAVS model, but in a different proportion. Roughly half
of the parameter space generates ‘00-1’ and almost 40 %
generates ‘000’.

1 This implementation is available at
http://faculty.psy.ohio-state.edu/myung/personal/psp.html.
We slightly changed the implementation to be able to use it with
GNU Octave (Eaton, Bateman, Hauberg, & Wehbring, 2014).
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Fig. 3. Results of the PSP analysis: Proportions of volume
that each pattern occupies in the parameter space.
Patterns that were not generated are not shown.
Two generated ratings were considered equal if they
differed by less than (a) 0.1 (b) 0.5 (c) 1.0.

For t = 1.0, the proportion of these two patterns switches.
Now, a greater set of parameter settings generates ‘000’
(more than 60 %) whereas the pattern ‘00-1’ is generated
in less than 40 % of the parameter space. The AVS model
still generates a third pattern (‘0-10’), but this pattern
only occupies a small volume in the parameter space.

5.1 Discussion

The PSP analysis confirms the hypothesized predictions
for the rAVS model: the LOs above the asymmetrical
objects receive the same ratings and – for most parameter

settings – the LO above the “thin” rectangle is rated
lower than the LO above the “tall” rectangle. For the
AVS model, the PSP results uncover a greater range of
output for the same input compared with the output
range of the rAVS model. However, the AVS model does
not generate our hypothesized prediction ‘11?’. Arguably,
the predictions of the AVS model are harder to grasp
intuitively.

The rAVS model generates more distinct predictions, as
it only produces 2 out of 27 possible data patterns (in
contrast to the AVS model that computes 7 out of 27
patterns). If humans produce the patterns predicted by
the rAVS model, this would provide more support for the
rAVS model than for the AVS model (Roberts & Pashler,
2000). This is because the AVS model produces a greater
range of predictions and is thus more difficult to falsify.

For t = 1.0, both models are able to generate the two
patterns ‘000’ and ‘00-1’, i.e., both models predict the
same qualitative patterns. If humans also generate either
of these patterns, both models should fit these empirical
data quite well. Accordingly, conducting a study with the
stimuli used for the PSP analyis might not provide data
that can distinguish the two models. The rAVS model,
however, more often predicts ‘00-1’ than ‘000’, whereas
the AVS model more often predicts ‘000’ than ‘00-1’. So,
there is a trend in these predictions that might show up in
empirical data and thus would slightly support one of the
models over the other.

6. CONCLUSION

The interaction of humans with technical systems would
be facilitated if the technical systems were able to inter-
pret and generate natural language. To implement natural
language into technical systems, cognitive models of lan-
guage could prove useful. Recent cognitive models reflect
the state-of-the-art in linguistics while being thoroughly
assessed with empirical data. In this contribution, we
investigated the parameter space of two similar cognitive
models of spatial language understanding (the AVS model,
Regier & Carlson, 2001, and the rAVS model, Kluth et
al., 2016). Since the two models cannot be distinguished
on the existing data, we analyzed the predictions of the
models to see whether any of the models better accounts
for human comprehension of spatial language. Following
Roberts and Pashler (2000), a good model of human cog-
nition should constrain the range of predictions. Based on
the mechanisms of the models we identified stimuli on
which we hypothesized they predict different outcomes.
We then applied the PSP algorithm (Pitt et al., 2006) to
see whether the models follow our hypotheses. The PSP
analysis confirmed the hypotheses for the rAVS model. For
the AVS model, however, our hypotheses were not con-
firmed. Arguably then, it is more difficult to translate the
mechanisms of the AVS model into testable predictions.
Moreover, the rAVS model constrains the range of possible
outcomes to a greater extent than the AVS model.
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