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Abstract

An agent wants to derive her belief over outcomes based on past observations collected in her

database (memory). There is well establish evidence in the psychology and marketing literature

that agents consistently fail (or choose not) to process all available information. An agent might

be constraint to pay attention (recall) and consider only parts of her potentially available informa-

tion due to unawareness, cognitive or psychological limitations or intentionally for effort-efficiency.

Based on this insight, we axiomatize a two-stage belief formation process in which in a first step

agents filter ((un)intentionally) the available information. In a second step individuals employ the

remaining observations to express a belief. We impose cognitively and normatively desirable prop-

erties on the filtering process. The axioms on the belief formation stage describe the relationship

between databases and their induced beliefs. The axiomatized belief induced by a filtered databases

is representable by a similarity weighted average of the estimations induced by each past attention-

grabbing observation. An appealing application is a satisficing filter that induces a filtered belief

that relies only on past experiences that are sufficiently relevant for a current problem. For the

specific situation that agents (are able to) always pay attention to all available information, our

axiomatization coincides with the axiomatization of a belief formation in Billot et al. (Economet-

rica (2005)).
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1 Introduction and Motivation

In many situations agents need to evaluate uncertain consequences of their actions. In

order to compare different potential consequences agents need to assign likelihoods to

these outcomes. How can individuals form (probabilistic) beliefs over outcomes?

Traditionally, economic theory models uncertainties in a state space representation a la

Savage (1954) and Bayes and derive a subjective prior based on observable actions of the

agent. This implicitly requires that an agent already posses a subjective prior belief, which

is expressed by her observable actions. However, the Savage and Bayesian approach does

not help an agent to find or form a prior explicitly, for instance by incorporating pieces of

information directly into a belief formation. In particular in situations in which an agent

might not be able to condense her insufficient or too complex information into a consistent

state space, their normatively appealing and convincing approach to endogenously derive

a belief is not feasible 1.

We will consider such an environment and axiomatize a belief formation that allows to

take directly into account the available information. This is strongly related to the aim

of (asymptotic) statistical inference, where from data a distribution is derived. However

in this paper we give a behavioral foundation for a belief formation in ”non-asymptotic

environments” that are characterized by heterogenous and limited information gathered in

a list or database.

The impact of data and experience on the formation of a probabilistic belief was ex-

amined initially by the axiomatization of Billot et al. (2005) (BGSS from now on). The

axiomatizations of BGSS and related ones of Eichberger and Guerdjikova (2010) (EG)

(for ambiguous multiprior beliefs) and Bleile (2014a) (B) (precision dependent cautious

beliefs) yield that a belief induced by a database is a similarity weighted average of the

estimations induced by all observed cases in the database 2. Thereby similarity weights

capture different degrees of relevance of the potentially very heterogenous information 3.

A common shortcoming of these approaches is that an agent is obliged to take into con-

sideration and account all past observations in her database. This precludes reasonable

situations in which an agent might want to neglect, does miss or just forgets some pieces of

information that would be in principle available. Our work relaxes this drawback of ”com-

pulsory” paying attention to all obtainable information. For this purpose we extend the

mentioned axiomatic approaches (in particular BGSS) by adding a component of limited

attention or consideration regarding available information.

A traditional and widely accepted assumption in economic theory is that gaining more

information is beneficial and leads to improved actions. In this way, it is usually assumed

that agents incorporate and take into account all available pieces of information 4. However,

the assumption of full attention and consideration of all available information requires that

agents are aware of it, perceive it (unbiased) and eventually are able to process it without

1For more details on the difficulties of the Savage and Bayesian approach, see e.g. Gilboa et al. (2012) and Bleile
(2014a)

2The framework is based on Case based Decision Theory and its application to prediction problems (Gilboa and
Schmeidler (1995, 2001, 2003)).

3Basically, the three axiomatizations differ in the way the estimations are made.
4In addition, it is also a key assumption in all traditional revealed preference approaches.
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any cognitive and psychological constraints 5.

The idea and concept of limited attention goes back to the seminal studies in psychology

of Miller (1956), in which he identified limited cognitive abilities in processing information

as the source of incomplete consideration, especially deficits and constraints in parallel

(simultaneous) processing of information. Since then, mounting evidence in psychology

and marketing shows that agents process and restrict attention to only a small fraction of

the overall available information and consistently fail to consider all potentially available

information due to their limited attention span (e.g. Broadbent (1958), Stigler (1961),

Pessemier (1978), Hauser and Wernerfelt (1990), Chiang et al. (1998)). Often agents

employ (implicitly) a multistage process to assign different degrees of attention to specific

pieces of information (Bettman (1979)). In an initial rough filtering or screening stage

agents pre-selects these elements that receive (or are worth to capture) full attention and

consideration. In the literature this set of ”surviving” elements is called a consideration

set (Wright and Barbour (1977), Bettmann (1979), Roberts and Lattin (1991)).

A formation of a consideration set might emerge for many reasons. Cognitive constraints

in parallel processing of information and unawareness of the presence of information (due

to complexity, size, sequential processing or search) might cause an unintentional filtering

(Miller (1956), Nedungadi (1990), Schwartz (2004)). The formation of a consideration sets

as a (unintentionally) reply to avoid cognitive overload has been also studied in economic

problems, e.g. recently Masatlioglu et al. (2012) axiomatized choices under (unintentional)

limited attention.

In contrast, a consideration set can also be the result of a purposeful strategic elim-

ination process. Agents often use (heuristic) filtering procedures to screen information

rapidly and roughly before engaging into a costly and detailed evaluation (e.g. Wright

and Barbour (1977), Gensch (1987), Nedungadi (1990), Gigerenzer et al. (1999), Hauser

(2013)). Usually, these heuristics are noncompensatory cutoff or satisficing rules that al-

low for an uncomplicated ”effort-efficient” comparison. This approach has recently gained

prominence in economics (in particular in decision theory), e.g. through the works of Lleras

et al. (2010) and Eliaz and Spiegler (2011a,b).

Another reason for the emergence of a consideration set relies on mounting evidence

from psychology showing that often non-objective criteria like value systems, subjective

motives or aversions, etc. restrict the attention of agents. Recent work has modeled

these subjective and psychological biases ranging from overwhelming temptation (Gul and

Pesendorfer (2001), Dekel and Lipman (2012)), rationalization (Cherepanov et al. (2013)),

status quo bias (Masatlioglu and Ok (2005)), routes (Apesteguia and Ballester (2013)) and

reason based choice (Lombardi (2009), De Clippel and Eliaz (2012)).

In this paper, we want to incorporate the formation of a consideration set induced by

limited attention (consideration) as an intermediate stage into a belief formation process.

In this way, our agent is not obliged to take into account all potentially available informa-

tion, but might base her belief only on (survived) filtered information in the consideration

set. In order to illustrate the basic idea and plausibility of such a two stage belief formation

process we modify the doctor example of BGSS.

5According to Simon (1959, p.272) perception and cognition intervene between subjective view and the objective real
world. In this context perception is often referred to as a ”filter”, where filtering can not only be seen as a passive, but
also as an active selection process involving exclusion of almost all that is not within the scope of attention.
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A doctor needs to evaluate different outcomes of a treatment. She has some working

experience or access to some medical database D = (c1, ..., cl), where she recorded in a case

ci = (xi, ri) the vector of characteristic of a patient i, xi ∈ X (e.g. age, gender, weight,

blood count), and the observable outcome of the treatment ri ∈ R (e.g. better, worse,

adverse effects). A new patient characterized by x enters her office and using a medical

record D, the doctor wants to derive a belief Px(D) ∈ ∆(R) over potential outcomes in R.

She might apply an empirical frequency and use only a part Dx of the database D, which

contains only cases c = (x, rc) of patients with ”identical” characteristic x compared to

the current patient:

”Frequentist”: Px(D) =

∑
c∈Dx

δrc
|Dx|

However, if the database contains not sufficiently many of these ”identical” patients x,

she might want to include also ”similar” patients. She judges the degree of similarity

between patients x and x′ by s(x, x′) ∈ R+. Further, she might induce from a case

c = (xc, rc) not only a point estimate δrc on the realized outcome, but derives a more

general estimate P c ∈ ∆(R) on likelihoods of particular (related) outcomes and forms the

belief as axiomatized in BGSS (2005) by:

”BGSS-belief”: Px(D) =

∑
c∈D s(x, xc)P

c∑
c∈D s(x, xc)

(1)

However, if the database D is long, complex or retrieved partly from her memory, the

doctor might not want or is just not able to (recall) pay attention to and take into account

all potential cases in the database D. She filters out some observations contained in D with

specific features Γ(D) ⊆ D. An intuitive example is a similarity satisficing procedure,

in which she considers only sufficiently relevant cases that surpass a threshold of similarity

s∗, i.e. Γ(D) = (c ∈ D|s(x, xc) ≥ s∗):

”Filtered-belief”: (Px ◦ Γ)(D) =

∑
c∈D 1{s(x,xc)≥s∗}s(x, xc)P c∑
c∈D 1{s(x,xc)≥s∗}s(x, xc)

(2)

The filtered belief formation based on the similarity satisficing principle (under additional

restrictions on the threshold value s∗) represents a special case of the general result we

obtain in our representation theorem in Section 5.1.

Roughly, our filtered belief formation consist of two stages, in which initially a subjective

(specific) filter process ”selects” the information that builds the consideration set. In the

second step, the agent forms her belief based on the remaining un-eliminated information

in her consideration set.

One might be tempted to interpret such a filtered belief as the belief (1) of BGSS, based

on an already (exogenously) ex-ante and independently filtered database Γ(D). However,

such an separation of filtering and belief formation would exclude plausible and appealing

filters based on similarities (as in (2)), since the similarity values are endogenously derived

in the belief formation. Moreover, in our axiomatization both stages are merged by an

axiom that focusses on the relationship between filtered databases and their induced beliefs.

The initial filtering process captures appealing and desirable psychological properties
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that are rooted in psychology and marketing literature. The main property is the well

known and accepted consideration property. It is based on the idea and evidence, that if a

case is considered in a database, i.e. is attention grabbing, then it should attract attention

also in all of its sub-databases, since it faces less competition for attention by fewer pieces

of information 6. Further, we make some assumptions on the cognitive ability of agents

and assume that an agent is able to pay attention to at least k (k ≥ 3)-many available

different pieces of information. A slightly more demanding characteristics requires that

order and frequency in which information appears in a databases does not affect the level

of attention an agent attributes to it. Basically that means that pieces of information

are per se attention grabbing and not due to their specific position or a sufficiently high

number of appearance.

The second layer of a filtered belief formation concerns the axiomatization on the be-

lief level. The normatively reasonable axioms follow the basic intuition of the axioms in

BGSS, but are modified to capture the previous filtering stage. We generalize the Concate-

nation Axiom of BGSS in order to capture the previous filtering process on the involved

databases. The original Concatenation Axiom says that a belief induced by a combination

of two databases is formed as an average of the beliefs that are induced by each of these

databases separately. We cannot directly translate this to filtered database, since con-

catenations of already filtered databases can differ enormously from the result of filtering

the concatenation of the two underlying databases (before they were filtered)7. Thus, in

order to ensure a reasonable averaging of the induced beliefs in the spirit of the axiom, we

require consistent relationships between the involved filtered databases. Another (implicit

enforced) axiom ensures that the order in which information appears is irrelevant for the

belief it induces.

As a result, our filtered belief formation can be represented as a similarity weighted

average of the estimates induced by each case that the agent actually pays attention to,

i.e. of those that survive the filtering. Hence the representation coincides with BGSS if

the agent does not filter any information, but takes into account all available information.

Apart from the appealing intuition of filtering according to similarities (as in (2)), the

filtering process can be any general arbitrary process that satisfies the required properties.

Various subjective and psychological motives, constraints, biases and justifications can be

employed as elimination criteria 8. In particular, many recently developed multi-criteria

decision procedures include elimination procedures to (implicitly) form a consideration set.

The literature varies in the kind of criteria that are employed, e.g. using (compositions of)

rationale(s) (sequentially) to eliminate alternatives (Manzini and Mariotti (2007, 2012a),

Apesteguia and Ballester (2013), Houy (2007, 2010), Houy and Tadenuma (2009), Horan

(2013)), focusing only on subjectively justifiable alternatives (Cherepanov et al. (2013),

Gerasimou (2013)), considering only alternatives belonging to un-dominated or best cate-

gor(y)ies (Manzini and Mariotti (2012b)) or considering only top N eye-catching elements

according to some exogenously given order or ranking (Salant and Rubinstein (2008)).

6This property is also implied by the appealing axiomatic rationalization theory of Cherepanov et al. (2013) (based
on specific kinds of rationales), which supports its reasonability.

7This is not the case for unfiltered databases, where the result of their combinations is directly clear.
8For instance salience, familiarity, ”roughly” identical features, heuristics, fairness, extremeness aversion, limited

memory, reference effects etc..
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Most of these approaches form consideration set in a way that can be interpreted as seek-

ing for a reasons to select (based on Shafir et al. (1993) and Tversky (1972) and more

related also in Lombardi (2009) and de Clippel and Eliaz (2012)).

Another approach to form a consideration set can be seen in a satisficing procedure

(Simon (1959) and more related Tyson (2008, 2013), Papi (2012), Manzini et al. (2013a)).

The resulting consideration set contains only these elements which surpass a (endoge-

nously) given threshold level according to some criteria. This is close to our motivating

similarity satisficing example in (2).

However, for our purpose the most interesting paper is the axiomatic rationalization

theory of Cherepanov et al. (2013), since our assumed consideration property (of the fil-

ter) is a direct consequence of their normatively and descriptively appealing rationalization

process. Modifying their justification procedure in order to cope with our other filter prop-

erties yields a corollary of our main representation result and allows for an interpretation

in terms of a ”rationalized” filtered belief.

The next section gives the general framework for the two stage filtered belief formation.

In Section 3 we introduce and discuss the properties on the filtering process. Section 4

deals with the axioms on the belief formation induced by a filtered database. The main

representation theorem and a sketch of the proof is presented in Section 5 and we derive

as a corollary the similarity satisficing belief process. The last section relates the filtering

process to the recently developed multi-criteria/stage decision procedures. In particular

we exemplarily modify the choice model of Cherepanov et al. (2013) to a filter process in

our terms. An interpretation of the resulting representation in terms of multi-similarities

is given. Section 7 concludes. All proofs can be found in the appendix.

2 The model

In this section, we introduce the case-based information framework and the basic building

blocks of our belief formation based on filtered information. Further, we introduce some

definitions and notations necessary for our approach.

2.1 Database framework

A basic case c = (x, r) consists of a description of the environment or problem x ∈ X and

an outcome r ∈ R, where X = X1 × X2 × .... × XN is a finite set of all characteristics

of the environment, in which Xj denotes the set of possible values features j can take. R

denotes a finite set of potential outcomes, R = {r1, ..., rn}
The ordered set C ⊆ X ×R consists of all m ≥ 3 basic cases, i.e. C = {c1, ..., cm}.
A database D is a sequence or list of basic cases c ∈ C. The set of databases D consisting

of L cases, i.e. D = (c1, ..., cL) where ci ∈ C for all i ≤ L, is denoted by CL and the

set of all databases by C∗ = ∪L≥1C
L, including the empty database ∅. The description

of databases as sequence of potentially identical cases allows multiple observation of an

identical case to be taken into account and treated as an additional source of information.

For a database D ∈ C∗, fD(c) denotes the relative frequency of case c ∈ C in databases D.

The concatenation of two databases D = (c1, c2, ..., cL) ∈ CL and E = (c′1, c
′
2, ..., c

′
T ) ∈ CT

(where ci, c
′
j ∈ C for all i ≤ L, j ≤ T ) is denoted by D ◦ E ∈ CL+T and is defined by
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D ◦ E := (c1, c2, ..., cL, c
′
1, c
′
2, ..., c

′
T ).

In the following we will abbreviate the concatenation or replication of L-times the identical

databases D by DL. Specifically, cL represents a database consisting of L-times case c.

For any D ∈ C∗ the diversity of a database D is given by div(D) := |{D}|, where as usual

{D} denotes the set of different cases contained in database D. So div(D) gives the number

of different cases contained in database D.

We need to translate some relations from sets to the list framework.

Definition 2.1

(i) The ∈-relation on databases is defined by c ∈ D if fD(c) > 0.

(ii) The ⊆-relation on the set of databases C∗ is defined by D ⊆ E ⇔ fD(c)|D| ≤ fE(c)|E|
for all c ∈ C. We will call such databases to be nested.

(iii) The ∩-relation on databases is given by D ∩ E = ((cmin{fD(c)|D|,fE(c)|E|})c∈C)

(iv) Two databases D and E are disjoint if for all c ∈ C: c ∈ D if and only if c 6∈ E.

The definitions are basically independent of the order of cases in the databases. Note

however that the definition of ∩-relation in (iii) is very specific, since the order of C is

transferred, i.e. by intersection a specific order (on C) is induced 9.

2.2 Filter

In the literature so far, a filter on C∗ is usually defined as a set function Γ : C∗ → C∗, such

that for all D ∈ C∗ ∅ 6= Γ(D) ⊆ D. In this way the information D is filtered independent

of the environment, additional information or prior knowledge. We call and summarize

this additional source of information as the perspective from which an agent filters. Our

definition of a filter allows different results of filtering, if the underlying perspective of

evaluation changes. Formally, our filter depends also on another database E that acts as

a perspective from which database D is filtered. A set function Γ : X × C∗ × C∗ → C∗

in which for all x ∈ X and D ⊆ E ∈ C∗, Γ(x,D,E) := ΓE(x,D) ⊆ D is called a filter on

(sub-)database D induced by (perspective) database E and given a problem x. We use the

notation ΓE(x,D) to highlight the roles of the two database. Basically the database D is

screened from the perspective of having in mind the additional information E.

2.3 Belief

For a finite set S, ∆(S) denotes the simplex of probability vectors over S and for n ∈ N
∆n denotes the simplex over the set {1, 2, ..., n}.
In the axiomatizations of BGSS, EG and Bleile (2014a), an agent will form a belief over

outcomes P (x,D) ∈ ∆(R) for a certain problem characterized by x ∈ X using her infor-

mation captured in a database D ∈ C∗, i.e. P : X × C∗ → ∆(R).

In the current approach a filtered belief is formed based only on parts of the information

captured in D and that is filtered from the perspective of richer information E ∈ C∗, i.e.

filtered belief (P ◦ Γ) : X × C∗ × C∗ → ∆(R) and (P ◦ Γ)(x,D,E) = (P ◦ ΓE)(x,D) for

D ⊆ E (with slight abuse of notation). In this sense the filtered belief (P ◦ ΓE)(x,D) is

induced by a nested pair of databases D and E and can be interpreted as the belief over

9In contrast to intersections of sets, where orderings are immaterial, intersection of databases do require some as-
sumption on resulting orderings. Alternatively, one also might keep the sequence of either database.

7



outcomes induced by database D ∈ C∗ seen through a filter that rests on perspective E

(given problem x ∈ X). Hence, a filtered belief is a two stage process of filtering followed

by a belief formation.

Technically, the filtered belief induced by the pair of nested databases D and E coincides

with the BGSS belief based on an a priori already filtered database ΓE(D) 10. However, as

discussed in the introduction, a priori filtering would separate the filter procedure and the

belief formation process that would exclude desirable applications based on endogenously

derived similarity values, like the similar satisficing behavior (as discussed in our motivating

example (equation 2)). Further, the nice axiomatization of BGSS based on relationships

between filtered database and their induced beliefs would need to be defined on filtered

databases as well, which merges both stages again. However, for our motivation and

purpose the most intuitive (and desirable) filtered belief formation is based on a single

database, i.e. the filtered belief (P ◦ Γ)(x,D,D) induced by database D.

Throughout the paper the problem x is fixed, therefore x is often suppressed in the

following, i.e. (P ◦ ΓE)(x,D) = (P ◦ ΓE)(D).

3 Filter definition and properties

Instead of defining explicitly a procedure how to filter information we are more general

and rather impose natural, well accepted and established properties in psychology and

marketing. These properties are normatively and descriptively compelling in several situa-

tions and are indeed true for many heuristics people actually use in real life to screen their

”information set”. In particular many of the recently developed multistage decision models

contain a wide variety of (endogenous and exogenous) filter procedures that satisfy our fil-

ter properties, which supports their relevance and generality (see Section 6). In this sense,

we can also interpret our filter as a choice correspondence in which elements surviving the

pre-choice process form a consideration set of acceptable and relevant information. This

(filtered) consideration set represents the underlying basis for a filtered belief formation

process.

3.1 Basic Properties of a filter

In the last section, we mentioned briefly our concept of a generalized filter. More precisely:

Definition 3.1 Filter

A set function Γ : C∗ × C∗ → C∗ is called a filter on D induced by (perspective)

database E on databases D, if for all D,E ∈ C∗ such that D ⊆ E ∈ C∗ it holds

(i) Γ(E,E) =: ΓE(E) =: Γ(E) 6= ∅ and

(ii) Γ(D,E) =: ΓE(D) = Γ(E) ∩D.

Note that by definition ΓE(D) ⊆ D holds for all D ⊆ E, but it does not imply that

ΓE(D) 6= ∅.
As mentioned already, the traditional definition of a filter considers only one database,

i.e. ∅ 6= Γ(D) ⊆ D. Our definition is based on two nested databases D ⊆ E for the filtering

ΓE(D). Thereby, we want to capture the potential differences in filtering a database D

10Basically meaning that (P ◦ ΓE)(D) = P (ΓE(D)).
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depending on varying perspectives. Whether pieces of information receive attention might

vary strongly with different perspectives of evaluations. However, our definition coincides

with the usual traditional filter for any D = E ∈ C∗, i.e. for a situation in which no

additional information than database D is available in agents’ minds.

We will discuss the three properties the definition proposes, namely the filtering, its

specific content and induced ordering.

There are many reasons, why an agent demonstrates partial attention to all available

information. Cognitive limitations and constraints in parallel processing of complex and

large information sets is often associated with an unconsciously allocation of attentional

resources (Anderson (2005) pp.72-105). This kind of cognitive unawareness can lead to a

formation of a consideration sets as well as an intentional heuristic elimination procedure

in order to explicitly simplify the information set in a cost or effort efficient way, while still

keeping the most relevant information. In addition, consideration sets are often constructed

unrelated to the objective features of the elements in their information sets, e.g. subjective

constraints, like motives, mood, rationales, value systems, biases, attitudes might affect

acceptability, attractiveness or moral justification of an object and affects its assigned

attention level. In sum, filtering a set of available information is a natural and plausible

behavior under many circumstances and for many reasons.

The nested perspective-structure in our definition of the induced filter, i.e. ΓE(D) =

Γ(E) ∩D for D ⊆ E, states that a database D is filtered from the perspective of a super-

database E. In this specific form an agent already processed and filtered out the information

in E (resulting in Γ(E)) that she deems relevant, wants to consider or is able to pay

attention to. Since an agent actually needs to process and screen only information in a sub-

database D, she will pay attention to all elements in D that already grabbed her attention

and are still in her mind, i.e. Γ(E) ∩ D. Basically D is not filtered independently but

compared with the information that is attention grabbing in E. Put differently, D is filtered

through E- colored glasses and not by inspecting elements in D in detail. However, it is

important to stress that this definition applies only to situation in which both databases are

processed ”simultaneously”. If databases are processed independently such an interwoven

filtering (from the perspective of one) is not feasible or desirable. In particular, in the

following we will introduce a (consideration) property which specifies how independently

filtered nested databases are related.

Finally, we are concerned with the ordering of the resulting filtered database, which

stems from the definition of the intersection and the ordering on C. Of course, it is restric-

tive to assume ad hoc a specific arbitrary ordering of a resulting filtered database, since

amongst other things this may depend on orders of D or/and E. However, in course of

the axiomatization of a belief formation, we would adopt the Invariance Axiom of BGSS,

which states that only the content and not the ordering of cases is important for an in-

duced belief. From that perspective any reordering of a resulting filtered database would

lead to the same induced belief, which leaves the definition and its induced ordering rather

harmless.

Moreover, the implied ΓE(D) = ΓE(π(D)) for all D ⊆ E and any reordered database π(D)

will be further generalized by the following property.

Definition 3.2 Filter order invariance
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For all L ∈ N and D ∈ CL and any permutation π on {1, .., L}, let D = (c1, .., cL) and

π(D) = (cπ(1), ..., cπ(L)). A filter Γ is order invariant, if it holds that

c ∈ Γ(D) if and only if c ∈ Γ(π(D)) 11.

Basically it states (in close relationship to BGSS Invariance Axiom for beliefs) that the

order of the cases is immaterial for the resulting filtering of the cases, i.e. only the content

of a database matters. Information should be attention grabbing per se and not due to

its specific position in the database. From a first sight the property seems to be rather

restrictive since agents appear to be able to consider all cases in the database ”simultane-

ously” without any order biases, like first impressions and recency effect (see Rubinstein

and Salant (2006)). However, if some of these effects are important, then they can be

captured by a more elaborated description of the cases. For example, its description can

include time or the order in which it was observed.

The filter order Invariance implies that in combination with the definition of intersections

of databases

ΓE(D) = Γπ
′(E)(π(D)) for all D ⊆ E and any reordered databases π(D) ⊆ π′(E), (3)

It implies the identity of beliefs induced by all possible combinations of reordered databases

π(D) and π′(E) that enter the filtering process.

A closely related property states and ensures quite naturally that if a case catches at-

tention then all other cases of this type are attention grabbing as well.

Definition 3.3 Equal treatment of information

A filter Γ on C∗ × C∗ treats information equally, if for all c ∈ D

ΓD(c) = c if and only if ΓD(cT ) = cT for all T such that cT ∈ D.

Basically, this means that all pieces of the same type are treated equally and either are

attention grabbing or not.

Another content dependent property is similarly based on the view that attention or dis-

regard is structural in a way that per se either a piece of information is eye-catching or

attention grabbing or not. Namely, the filtering process is not affected by an (sufficiently

large) amount of occurrence of a piece of information.

Definition 3.4 Filter ignorance of repeated information

A filter Γ satisfies the ignorance property if for all D ∈ C∗ it holds:

Γ(D ◦ c) ∩D = Γ(D) for all c ∈ D 12.

A repeated appearance of a case does not influence its perception in the sense that a

case attracts attention if it is relevant or outstanding in itself and not because itself or

another case appears in a specific amount. The assignment of attention to a case might be

altered only if another new case appears or all appearances of a specific case are removed

11Note, that independent of the filter definition, the property would just enforce that the content is identical. Only in
combination with our definition of a filter the ordering coincide, i.e. Γ(D) = Γ(π(D)) is implied.

12This is equivalent to: for all D ⊆ E and all c ∈ E, ΓE◦c(D) = ΓE(D).
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from the database (as induced by the consideration filter property defined below). In this

sense, additional observation of already known and evaluated cases do not alter (already

attached) attention levels.

The property finds support in Gul et al. (2012), which examines the probabilities of

choices when alternatives are duplicated. They propose, that duplicate alternatives should

be identified as observational identically and should be (in a specific sense) irrelevant for

the likelihoods with which an observational identical alternative is chosen. This can be

related to a ”pay attention”- choice in which we restrict the probabilities to pay attention

to zero or one. However, duplication of evidence might affect the composition of a filtered

consideration set in the list-framework of Rubinstein and Salant (2006) and hence violate

our property (and their partition independence property). Of course, the number of times

an element appears might have an influence on attention, for instance in a procedure that

pays attention only to the most frequent element.

3.2 Main structural properties of a filter

The two following structural properties characterize the impact of nested databases on

their induced filtered consideration set and the cognitive ability of an agent to process and

pay attention to at least a minimum amount of available information.

Consideration property

The consideration property specifies the relationship between the induced consideration

sets of nested databases in a quiet naturally way. It states, that if an agent pays attention

to a case in a database, then also her attention is drawn to this case in all its sub-databases.

This follows the idea and evidence that elements in an information set compete for attention

and need to outperform other pieces of information to be considered. If a case manages

to attract attention or is salient enough in a database then it also gains attention in a

sub-database, in which some of its rivals for attention are not anymore present. The

classical example in marketing deals with the attention an agent assigns to products in a

supermarket with a huge variety compared to a small neighborhood store. A specific jam

catching your eye standing in front of a large supermarket shelf with fifty different jams

will catch your attention also in the convenience store selling only five different sorts of

jam.

Definition 3.5 Consideration property

A filter Γ on C∗ × C∗ satisfies the consideration property, if for all D ⊆ E ∈ C∗ and

c ∈ D c ∈ Γ(E) implies c ∈ Γ(D).

From another point of view, if there is no reason (e.g. an (outstanding) piece of information)

in the larger sample E that shadows case c, i.e. c ∈ Γ(E), then it still cannot happen that

case c is shadowed by any reason (e.g. any information) in the smaller sub-database.

Apart from the ”competition for attention”-explanation the consideration property can

be motivated by the finding that with increasing complexity and size of a set agents reduce

the amount of alternatives they consider and also lower its intensity and seriousness 13.

If the complexity of a database is caused by a difficult detailed evaluation of alternatives

13See e.g. Hauser and Wernerfelt (1990) and Shugan (1980).
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involving compromising and tradeoffs, an agent might find it much harder to find reasons

why to ”choose” to consider a case. As a consequence agents might stick to only superfi-

cial analysis, where only the very important, salient or extraordinary alternatives receive

attention. With decreasing complexity of a set agents might return to a more detailed

analysis that facilitates the selection of more alternatives to be worth or justified to be

included into the consideration set.

Minimal attention span

The following property describes the cognitive ability of an agent to handle and process

information. Our minimal attention property requires that an agent considers in full detail

at least k-many (k ≥ 3) available different pieces of information. More precisely, for all

databases containing less than k many different information an agent takes into account

all pieces of information. For more complex databases an agent is free to apply filtering

techniques to process her information and neglects some pieces of information, as long as

she pays attention to at least k-many different pieces of information.

Definition 3.6 Minimal attention span

A filter is minimal attentive with k ≥ 3, if for all D ∈ C∗ such that

(i) for div(D) = l ≤ k it holds div(Γ(D)) = l and

(ii) for div(D) > k it holds div(Γ(D)) ≥ k.

From this perspective, the property induces that agents are cognitively sophisticated

enough to handle at least k-many different pieces of information completely and with

full attention. Also, agents might want to gather a certain minimal amount of information

to evaluate and act in an informed and confident way. Thus they take into account all

available information, when only few (less than k different) information is around 14.

The property combines basically two components -minimum required amount of infor-

mation and filtering in case of potential information overload - which are well supported by

empirical findings. We state it in terms of a general minimal attention span k, but for our

purpose k = 3 is sufficient and also meets empirical evidence. For example Gensch (1987)

found that screening and filtering rules may be invoked for as few as four alternatives,

but agents consider and rely on all information for less diverse information sets. In the

marketing literature Jarvis and Wilcox (1977) examined the usual size of consideration

sets and discovered that the average size of consideration sets is three to eight products,

independent of the size of the initial information set 15.

So far a minimal attention property is usually not assumed in the (choice) literature

in which usually no lower limit is given for the filtering stage unless a non-emptiness

condition. In a special case of Lleras et al. (2010) agents have no limited attention

problem for situations of binary alternative set, i.e. their agents are always able to pay

attention to both alternatives 16. However, their version does not cover any restrictions

for more general situations, as specified in our property.

14One can also think about it as in Simon (1959, p.263) based on an aspiration or satisfaction level such that at least k
cases are attracting interest or attention. If not, the level was too high and a reduction of the level leads to some search
behavior of the agent to pay attention to more available alternatives.

15Miller’ s insight (1956) that agents can process or remember at least seven case is also covered here.
16See also Masatlioglu et al. (2012), where Γ(D) ≥ 2 allows the full revelation of preferences
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The requirement of filtering a minimum amount of information constitutes a strong

constraint to identify filters as choice correspondences. We will discuss this problematic

issue in Section 6, where we interpret filtering in a choice theoretic perspective.

Definition 3.7 Admissible Filter

A filter Γ on C∗ × C∗ is called an admissible filter if it satisfies the invariance, equal

treatment, ignorance, consideration and minimal attention span property.

4 The Axioms

In this section we introduce the axioms on the stage of belief formation.

4.1 Implied Filter Invariance Axiom

As mentioned in the section before, a natural axiom for a belief process that is already

implied by the definition of intersections and the filter properties, is a version of an Invari-

ance Axiom as in BGSS for filtered databases that reads:

Filtered Invariance Axiom (already implied)

For every T ≥ 1, every database D,E ∈ C∗ with D ⊆ E. Let ΓE(D) = (c1, .., cT ) ∈
CT and for every permutation π : {1, ..., T} → {1, ..., T} and any filter ΓE(D), where

π(ΓE(D)) = (cπ(1), ..., cπ(T )) the following holds:

(P ◦ ΓE)(D) = (P ◦ π(ΓE))(D))

Basically it says that an induced belief over outcomes depends only on the content of

a filtered database and is insensitive to the sequence and order in which data arrives.

However, by our definitions of a filter any filtered databases containing the same content

have exactly the same specific ordering (according to the order on C), which makes the

invariance property superfluous, since re-orderings do not occur after filtering (see equation

(3)). In this sense the filtered Invariance Axiom is indirectly substituted by the definition

of a filter and the filter ignorance property 17.

Per se the invariance property does not allow for different impacts whether a case

appears earlier or later. However the order in which information is provided or obtained

can influence the judgment strongly and may carry information by itself. One way to

cope with these order effects is to describe the cases informative enough. E.g. if one

wants to capture the position or time of occurrence of a case in the filtered database, one

could implement this information into the description of the cases itself. Put differently,

if one challenges the consequences of an invariance property, then there must be some

criteria which distinguish the cases and taking into account these differences explicitly in

the description of the cases, may lead the agent to reconcile with such an invariance.

17We would have required the axiom directly, if our filtering process would have allowed for different orderings of
databases consisting of the same content. Technically speaking, there is no difference between restricting the filtering
process to specific orders or allowing for different orderings and requiring an Invariance Axiom for beliefs.
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4.2 Filtered Concatenation Axiom

Let Γ be a filter. For all database D,E, F ∈ C∗ such that D ◦E ⊆ F there exists λ ∈ [0, 1]

such that:

(P ◦ ΓF )(D ◦ E)) = λ(P ◦ ΓF )(D) + (1− λ)(P ◦ ΓF )(E)

where λ = 0 if and only if ΓF (D) = ∅.

In the following we will call the database which emerges from concatenation of other

databases as the combined or concatenated database, whereas the databases used for

the concatenation will be called combining or concatenating databases.

The filtered Concatenation Axiom says that a filtered belief induced by a concatenated

database is a weighted average of the filtered beliefs induced by their respective combining

databases. The axiom captures the idea that the belief based on the combination of two

databases cannot lie outside the interval spanned by the beliefs induced by each combining

database separately. Intuitively it can be interpreted in the following way (stated from an

exclusion point of view): if the information in any database induces an agent’s belief not

to exclude an outcome r, then the outcome r cannot be excluded by the belief induced by

the combination of all these databases 18. Alternatively, if a certain conclusion is reached

given two filtered databases, the same conclusion should be reached given their filtered

union.

However, in order to sustain the normative appealing interpretation of averaging (fil-

tered) beliefs, the filtered concatenation of two databases must coincide with the con-

catenation of these two filtered databases. This is achieved by employing the common

perspective F ⊇ D ◦ E according to which all involved databases are filtered, i.e. ΓF .

Otherwise it would not be in general reasonable to require the existence of such an aver-

age of beliefs, since the elements surviving the filtering process for each single database

might differ from the elements surviving the elimination of the database generated by the

combination of the two 19. In this situation, it would be implausible and unreasonable

to determine a relationship between the induced filtered beliefs. The required structure

ensures that a filtered belief induced by the concatenated database relies on information

that is also employed in the filtered beliefs induced by the single concatenating databases

and thus allows for an interwoven filtering and belief formation.

Moreover, another important reason for requiring this specific common perspective is

based on the motivation that an agent should filter from the perspective of the richest in-

formation available, which is at least the concatenated database D◦E, i.e. F ⊇ D◦E. This

is very reasonable and natural, since the agent processed already at least the information

in the concatenated database due to the fact that she actually wants to form a (filtered)

belief based on this filtered database. In this way she cannot remove (intentionally) some

(gained or experienced) information for filtering the concatenating database from a less in-

18Of course the axiom is stronger in the sense that it not only requires that the probability of such an r is positive,
but it should lie between the minimal and maximal assigned probabilities induced by the combining (filtered) databases.

19In an unfiltered concatenated database any information appear in either of their (unfiltered) concatenating databases
and find weight in their induced beliefs. However for filtered databases (P ◦ΓD◦E)(D ◦E) = λ(P ◦ΓD)(D) + (1−λ)(P ◦
ΓE)(E) is meaningless, since the relationships between Γ(D ◦ E) and the parts Γ(D) and Γ(E) are unclear.
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formative perspective 20. In this way, the concatenated databases represent a quite natural

choice as a ”smallest” perspective from which the filtering process is initiated.

4.3 Collinearity Axiom

No three elements of {(P ◦ Γc(c)}c∈C are collinear.

Technically speaking this axiom allows to derive a unique similarity function (in com-

bination with the other axioms), but it has also some reasonable intuition. Roughly it

states that the estimation based on a case is never equivalent to the combined estima-

tions based on two other cases. Hence, a case is always informative in the sense that no

combination of two other cases can deliver the same estimate and would make this case

redundant.

5 Representation Theorem

Theorem 5.1

Let there be given a function (P ◦ Γ) : C∗ × C∗ → ∆(R), where P : C∗ → ∆(R) and Γ be

an admissible filter on C∗ × C∗. Let (P ◦ Γ) : C∗ × C∗ → ∆(R) satisfy the Collinearity

Axiom.

Then the following are equivalent:

(i) The function (P ◦ Γ) satisfies the filtered Concatenation Axiom

(ii) There exists for each c ∈ C a unique P c ∈ ∆(R), and a unique -up to multiplication

by a strictly positive number- function s : C → R+, such that for all D ⊆ E ∈ C∗ such

that ΓE(D) 6= ∅

(P ◦ ΓE)(D) =

∑
c∈D s(c)1Γ(E)(c)P

c∑
c∈D s(c)1Γ(E)(c)

(4)

5.0.1 Rough sketch of the proof

The necessity part is straightforward calculation. The sufficiency part follows the rough

structure of the proof of BGSS and Bleile (2014a), but differs in the crucial arguments.

The idea is to transform the framework from the space of databases to the space of fre-

quency vectors that is structural more tractable, i.e. the filtered belief based on databases

(P ◦ΓE)(D) =
∑

c∈D s(c)1Γ(E)(c)P
c∑

c∈D s(c)1Γ(E)(c)
for D ⊆ E ∈ C∗ translates to frequency vectors fD ⊆ fE

by (P ◦ ΓfE )(fD) =
∑

j≤m sjΓ
fE
j (fD)P j∑

j≤m sjΓ
fE
j (fD)

. In order to show that this is viable we exploit some

properties of the filter and the Concatenation Axiom.

The essential part of the proof is to derive the similarity weights (si)i≤m. This will be

shown inductively over |C| = m and div(fE) ≤ m.

Step 1: Base case for the induction, i.e. |C| = m = 3 and div(fE) ≤ 3, w.l.o.g.

C = {c1, c2, c3}, i.e. aim to find s1, s2, s3.

For pairs (fD, fE) ∈ ∆ × ∆ (i.e. such that div(fE) ≤ 3) the properties of the filter (in

20This is even impossible if the filtering occurs unconsciously, since the information entered already her mind by the
nature of the task.
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particular the minimal attention span) induce that the filtering stage disappears and the

axioms coincide with BGSS. Thus, the same steps (using simplicial partitions) as in BGSS

will show the above representation for all pairs (fD, fE) such that fD ⊆ fE and div(fE) ≤ 3.

Step 2: |C| = m > 3 and div(fE) ≤ m.

As in BGSS, we can show (again using the minimal attention property) that the similarity

weights derived in Step 1 for any set of basic cases C = {ci, cj , ck} are independent of the

triplet {i, j, k} and thus we can define for all fD ⊆ fE ∈ ∆

(P ◦ ΓfE )s(fD) =
∑

j≤m sjΓ
fE
j (fD)P j∑

j≤m sjΓ
fE
j (fD)

using the derived s = (s1, .., sm)

The aim is to show (P ◦ ΓfE )(fD) = (P ◦ ΓfE )s(fD) for all fD ⊆ fE ∈ ∆ via induc-

tion over m and using Step 1 (m = 3) as base case.

a) For all pairs (fD, fE) such that div(fE) = m and div(fD) < m the ”idempotence” of

the filter (i.e. Γ(ΓfE (fD)) = ΓfE (fD)) is used to exploit the induction assumption.

b) For div(fD) = div(fE) = m we adopt (with different reasoning) the construction used

in BGSS, i.e. fD = αqj + (1−α)f(j) (for some α ∈ (0, 1), where f(j) denotes the point on

conv{(ql)l∈{1,...,m}\j} on the line through fD and f j . The result of a) allows to apply the

filtered Concatenation Axiom. The filter properties (minimal attention and consideration

property) ensure that there exist at least three qj such that ΓfD(qj) 6= 0m and therefore

there exist three P j that do not lie on one line by the Collinearity Axiom. Thus, there are

at least three different lines on which (P ◦ΓfD)(fD) and (P ◦ΓfD)s(fD) lie and since their

intersection is unique the beliefs (P ◦Γ) and (P ◦Γ)s induced by the pair (fD, fD) have to

coincide. The filter ignorance property concludes the proof for all (fD, fE).

5.0.2 Interpretation of Theorem

The main difference to the axiomatized representation of BGSS (i.e. (1)) lies obviously

in the inclusion of the filtering process that captured by the indicator function in the

representation (4). Thereby the agent only employs and needs to take into account the

information that she really filtered to be most important, ”relevant” or acceptable (ac-

cording to some criteria, such that the admissible filter properties are met) 21. Thus, the

belief formation follows a two-stage procedure of filtering and subsequent belief formation.

Another deviation from BGSS concerns the dependence of the axiomatization on pairs of

databases and no single database as in BGSS. Such a structure is necessary and reasonable

for our axiomatization. However for interpretational purpose and the motivation behind

this work, the situation E = D is most interesting. In this context, an agent is not con-

cerned with additional information or priming of her mind by E, but evaluates the given

or evoked database D. By interpreting a database D as her potentially available memory,

an agent might recall or retrieve only some of her memorized experiences Γ(D). Basically

Γ(D) can be seen as the result of a brainstorming or coming to mind process of those

past experiences that she deems most appropriate, valuable, salient or wants to take into

account.

21It allows also a conditional belief formation, i.e. s(x, c) = 1{x=xc}(c), mentioned already in BGSS, but unfeasible in
their setup.
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5.1 Example: Similarity Satisficing

Initially Simon (1955, 1957) introduced satisficing behavior as an alternative approach to

the classical rational choice theory. According to him, in most global models of ratio-

nal choice all alternatives are evaluated before a choice is made, but ” in actual human

decision-making alternatives are often examined sequentially. We may, or may not, know

the mechanism that determines the order of procedure. When alternatives are examined

sequentially, we may regard the first satisfactory alternative that is evaluated as such as

the one actually selected” (Simon (1955), p. 110). In general satisficing behavior is a

relevant and often observed heuristic in reality (e.g. for experimental evidence see Caplin

et al. (2011), Reutskaja et al. (2011)).

In our motivating example of a similarity satisficing procedure (2), the filtered belief was

(P ◦ ΓE)(D) =

∑
c∈D s(c)1{s(c)≥s∗}(c)P

c∑
c∈D s(c)1{s(c)≥s∗}(c)

.

Its interpretation is especially appealing if a database is identified with recalled memory

and assuming that those experiences are retrieved earlier that are most similar to the

current problem. In this situation an agent will stop to contemplate after some time and

starts to process the till-then recalled (most relevant) information.

Obviously, setting the threshold level to zero, i.e. s∗ = 0, would result in the BGSS

representation (1). This directly shows that s∗ needs to be restricted in order to be

meaningful embedded in our filtered belief formation-framework. In particular, our filter-

ing process must satisfy the minimal attention and consideration property. The former

property requires that we need to take into consideration the k (k ≥ 3) most similar

cases. This determines the threshold values s∗. Obviously, such a threshold needs to be

database-dependent, i.e. s∗(E) =: sE for all E ∈ C∗. More precisely, define for all E ∈ C∗
SE := {(s(c))c∈E} and denote by sEj the j-largest number s(c) according to ≥ in SE . Then

we get directly that for all E ∈ C∗ the database-dependent threshold level sE is given by

sE = sEk1{div(E)≥k}(E) for any cognitive ability k ≥ 3. Such a definition of the thresh-

old sE implies the minimal attention property. In order to also satisfy the consideration

property - i.e. c ∈ Γ(E), then c ∈ Γ(D) for all D ⊆ E - we need to enforce sE ≥ sD for

D ⊆ E. The resulting filter ΓE(D) = (c ∈ D | s(c) ≥ sE) satisfies the remaining properties

directly.

Summarized, this yields the following Corollary.

Corollary 5.1

Let P be as in Theorem 5.1 and Γ a similarity satisficing filter ΓE(D) := (c ∈ D|s(c) ≥ sE)

for D ⊆ E ∈ C∗ with database dependent similarity thresholds sE as defined above. Then

the equivalence in Theorem 5.1 holds with the specific representation

(P ◦ ΓE)(D) =

∑
c∈D s(c)1{s(c)≥sE}(c)P

c∑
c∈D s(c)1{s(c)≥sE}(c)

(5)

A database dependent threshold is even more in the spirit of Simon’s satisficing behav-

ior. Simons hypothesis is that most subjects search sequentially and stop search when

an environmentally determined level of reservation utility (similarity in this context) has
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been surpassed. Hence, for the specification of their reservation or satisficing level indi-

viduals take into account the environment, i.e. in our setup the given information set E.

In addition, Simon proposed that the levels of reservation utility (similarity here) increase

with set size and object complexity, i.e. for larger databases in our setup. Thus, both

conditions on the threshold - database dependence and increasing in database complexity

- are well-grounded in the satisficing literature.

A recent related paper that is concerned with the axiomatization of a two-stage threshold

representation (Manzini et al. (2013a)) obtains various structures for the threshold values.

Comparing it to Lleras et al. (2010) (or our admissible filter) they get as well sE > sD for

D ⊂ E. However the attention filter model of Masatlioglu et al. (2012) results in sE = sD

for any nested D and E, such that Γ(E) ⊆ D and for the two stage salience model of Tyson

(2013) even the converse inequality holds.

6 Related literature with consideration or elimination stage

6.1 Relationship to Multi-criteria or stage Decision Theory

As mentioned in the introduction the (implicit) formation of a consideration set is part

of many recently developed multistage decision procedures in which a consideration set is

constructed by eliminating several alternatives according to some criteria. The literature

varies in the process of filtering. Some employ (sequences of) rational(es) to eliminate

alternatives (Manzini and Mariotti (2007, 2012a), Apesteguia and Ballester (2013), Houy

(2007, 2010), Houy and Tadenuma (2009)) or accept alternatives that can be justified

by some of multiple criteria (Cherepanov et al. (2013) (CFS from now on), Gerasimou

(2013)). Other procedures are based on undominated categor(y)ies (Manzini and Mariotti

(2012b)) or specific frames (orders, lists, moods, fairness) which are unrelated to preferences

(Salant and Rubinstein (2008)). Also mental constrains might induce consideration sets

(Masatlioglu and Ok (2005)).

The aim of this section is to interpret and identify our filter in terms of a multi-criteria

choice correspondence by adopting the above mentioned multistage elimination procedures.

A problematic issue in merging both concepts lies in the fact that choice models usually

are intended to identify a single chosen alternative by choosing in the final step the ”best”

alternative within the remaining consideration set. However, for a filtering process and

implied corresponding consideration sets singletons are not desirable. For this reason we

do not identify and compare the entire choice process with a filtering process, but we are

mainly interested in the filtering and elimination stages and not on the final choice stage.

On the other hand we can stick to these choice models, if we replace the criteria applied in

the final choice step (often binary asymmetric relation) by appropriate satisficing criteria

(as discussed above) such that we end up with a set of acceptable alternatives. Roughly

speaking, we discuss and relate the models in a more approximative and intuitive style,

being aware of the difficulties and basic differences.
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6.2 Filter as choice correspondence in multistage procedures

In order to identify a filter Γ as a choice correspondence we need to discuss our filter prop-

erties in a multistage decision theoretic framework.

The filter definition ∅ 6= Γ(D) ⊆ D is plausible for a choice correspondence since ac-

tive, non-empty choices need to be made from D. The second part of the definition -

ΓE(D) = Γ(E) ∩D- can be interpreted as a usual consistency condition or as choice from

E given a (budget) constraint D.

Since usual decision theoretic frameworks deal with sets of alternatives in which orderings

and repetitions are immaterial, the properties of invariance, equal treatment and

ignorance of additional identical information are directly satisfied for a choice cor-

respondence.

Our minimal attention span property can be interpreted as a restriction to multiple

choices (i.e. correspondences) such that a minimum of k available cases need to be chosen.

Of course this requirement differs from common decision theoretic frameworks in which no

restrictions on the quantity of chosen elements is enforced (unless non-emptiness). Thus,

it will be crucial to implement this property into an adopted choice correspondence. A

possible approach will be proposed and discussed in Section 6.2. In particular we exem-

plarily adopt CFS’s rationalization model, but the taken approach can be applied to other

models as well (discussed below). Another approach to guarantee for a minimum amount

of choices can be imposed by enforcing an appropriate satisficing strategy at some stage

of the choice process.

However, for the moment we want to focus on the Consideration property. In the

choice literature it is known as Sen’s property α or akin as Contraction Axiom. Many

modified versions of the weak Axiom of revealed preferences (WARP) satisfy the consid-

eration property. Manzini and Mariotti (2007) introduce a Weak WARP that is also

satisfied by CFS (2013), Lleras et al. (2010) and Lombardi (2009) that states that for all

c, c′ ⊂ D ⊂ E and c = Γ((c, c′)) = Γ(E), then c′ 6∈ Γ(D). This coincides with a ReWARP

of Gerasimou (2013). Lleras et al. (2010) introduce a Limited Consideration WARP

that states that for any c ∈ D∩E it holds that c ∈ Γ(E) if (i) Γ(E) ∈ D and (ii) c ∈ Γ(A)

for some A ⊇ E.

However, there are also some refinements of WARP in our context that do not satisfy the

consideration property, e.g. Gerasimou (2013)’s DeWARP is neither satisfied in general-

ity nor Moody WARP of Manzini, Mariotti (2013b).

For the remaining section our interest lies on the elimination procedures suggested in

the multistage decision models and their link to the consideration property. We translate

the choice theoretic approaches directly into our database framework and will not state

the original versions of their models.

6.2.1 Models without an explicit procedure to form consideration sets

In Lleras et al. (2010) the formation of the consideration set is directly characterized by

the consideration property, as in our approach.

Masatlioglu et al. (2012) axiomatizes choice based on a consideration set generated by
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an attention filter, which is characterized by

Γ(D) = Γ(D\c) for all c ∈ D\Γ(D)

Basically, such a filter selects only those cases in a database D that she is aware of and

effectively pays attention to. Hence, if an agent is not aware of c ∈ D\Γ(D), then removing

c from the database D should not affect the set of cases an agent would pay attention to.

In contrast, our consideration property does not rely on such an unawareness component

and in general both properties (attention and consideration) are independent (see Lleras,

et al. (2010) for an example demonstrating the differences).

6.2.2 Models with explicit formation procedures

Given a binary relation R on C, we denote by U(D,R) := (c ∈ D | 6 ∃c̃ with c̃Rc)
22 the cases in D that are undominated in D and by Dom(D,R) := (c̃ ∈ D | ∃c ∈
D\c̃ such that cRc̃) the set of cases in D that are dominated by a case in D.

Sequential elimination Procedures

The following approaches adopt the same rough idea of ”short-listing” in which multi-

criteria are checked sequentially and only those alternatives survive until the final con-

sideration stage that meet some or all criteria. The elimination is based mainly on un-

dominance inspections regarding the specific criterion.

Manzini and Mariotti (2007) axiomatize choice following a rational shortlisting behav-

ior. The final choice is made according to criterion R2 within the alternatives in the

consideration set that are undominated and survived the elimination according to R1

(asymmetric and transitive binary relation)

Γ(D) = (c ∈ D |c ∈ U(R2, U(R1, D))).

Houy (2007, 2010) introduces as well another mechanism to form a consideration set

that is based on a composition of some binary relations Ri, in which agents sequentially

check for a certain pattern of (un)dominance according to ordered criteria

Γ(D) = (c ∈ D | for all c̃, cR1c̃ or (¬(c̃R1c) and cR2c̃) or (¬(c̃R2c) ∨ cR3c̃...)).

In a similar spirit Horan (2013) summarizes many of these two stage models in which

a consideration stage is formed according to undominance based on a asymmetric relation

and then a second (asymmetric) relation is used for the choice.

Obviously, all such short-listing procedures (and extended to more criteria (Ri)i) do satisfy

the consideration property.

A sequential elimination procedure of a different kind is discussed in Manzini and Mar-

iotti (2012b). Their consideration set is formed according to a (asymmetric, possibly

22For our purpose it might make more sense to think rather in terms of satisficing than maximal elements, e.g. in the
sense of U(Ri, D) = (c ∈ D|cRic

∗
i ) for some threshold case c∗i .
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incomplete) relation P on subsets that are interpreted as categories. The un-dominated

categories survive the elimination phase.

Γ(D) = (S ⊂ D | 6 ∃S̃ ⊂ D such that S̃PS).

In order to capture the consideration property, specific requirements on the categorization

structure are necessary. Bleile (2014b) implements two potential versions of categoriza-

tions on databases into a belief formation process.

Satisficing procedures

The following branch of literature adopts the satisficing idea of Simon (1955, 1957).

Tyson (2008) axiomatizes a satisficing procedure based on a considerations set that con-

tains only those elements that exceed some database dependent threshold level Θ according

to some numerical representation of a criterion f

Γ(D) = (c ∈ D | f(c) ≥ Θ(D)).

Such a filter satisfies the consideration property for an appropriate definition of the database

dependent threshold value Θ (as in our similarity satisficing example in Section 5.1).

Tyson (2013) and Manzini et al. (2013a) modify and generalize this procedure to

salience measures and general relations.

Papi (2012) proposes an axiomatic characterization of the satisficing heuristic under

various informational structures in which the order of inspecting alternatives are either

full, partially or not observable. Especially the case of unobserved sequences can be in-

terpreted within a framework of choice correspondences by assuming that for all possible

orders the satisficing elements enter the consideration set.

Frame related elimination procedures

Salant and Rubinstein (2008) model a general approach in which the in principle available

choice set is restricted by subjective and psychological constraints, rationales or biases.

They call such additional characteristics that are not directly covered by the objective

description of the alternatives as frames

Γ(D) = (c ∈ D |Γ(D, f) = c for some frame f).

Obviously, for a general unspecified frame our filter properties are not directly satisfied.

Reason Based Choice procedures

In general, the above mentioned procedures to form a consideration set can be interpreted

under the premise of having and/or seeking a reason to accept or eliminate alternatives.

This general idea follows the stream of literature on reason based choice initiated by Shafir

et al. (1993) or even Tversky (1972). That is, elements in the consideration set are those
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that can be (internally) justified most easily (according to some reasons). Thereby as

above, an (un)dominance structure (according to one, some or all criteria) serves as con-

vincing reason for choosing the specific element. A link between reason based choice and

the consideration property can be established by the insight that in a smaller set it might

be easier to find a reason to choose some alternative, whereas in a larger set it also might

be easier to find a reason to reject.

Lombardi (2009) relies on the concept of reason based choice in the sense of finding

the best and most easily justifiable alternatives by possessing the ”most convincing ”

dominance structure. It constructs a consideration filter by employing the same criterion

for the screening as well as for the final evaluation, but in different ways 23. The rational

(acyclical binary relation) used as a criterion in the first stage is used to construct another

criterion for the second stage.

Γ(D) = (c ∈ U(D) | 6 ∃ c̃ ∈ U(D) such that Dom(c̃, D,R) ⊃ Dom(c,D,R)),

where Dom(c,D,R) := (c̃ ∈ D such that cRc̃). Such a procedure does not satisfies the

consideration property in general.

Gerasimou (2013) also relies on a procedure based on a single (acyclical or asymmetric)

relation R. The consideration set contains elements that are justified by the fact that they

are un-dominated, but at least one alternative is worse 24

Γ(D,R) = (c ∈ D | 6 ∃ c̃ ∈ D such that c̃Rc and ∃c′ ∈ D s. th. cRc′).

Such a procedure does not satisfy in general the consideration property.

Similarly, in the vein of seeking reasons to justify the selection, De Clippel and Eliaz

(2012) employ a pro-cons bargaining procedure based on linear orders P1, P2. The agent

forms the consideration set via (internal) compromising between P1 and P2 by trying to

receive as many as possible dominated alternatives for both rationales.

Γ(D) = (c ∈ D | argmaxcmini|Dom(D,Pi)|)

The consideration property needs not to hold in general for this procedure.

However, the most interesting and elegantly fitting model for our approach is CFS’s (2013)

Rationalization Theory that we want to merge with our approach exemplarily.

6.2.3 Rationalization Theory and related psychological filter

CFS model a consideration filter explicitly as a rationalization procedure. For a set of

general binary relations R = (R1, ..., Rn) a case in database D is rationalized if cRic̃ for

all c̃ ∈ D for some i ≤ n. This psychological filter contains those alternatives that are

23In general, the psychological literature (e.g. Andrews and Srinivasan (1995), Roberts and Lattin (1997)) states that
the criteria influencing consideration and the final evaluation stage may differ as well as (partially) overlap. Overlapping
criteria, however, play different roles at both stages.

24Note, there is a difference to undomination
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justifiable by at least one criterium, rational, reason, story, etc.

ΓR(D) = (c ∈ D | ∃i ≤ n such that cRic̃ for all c̃ ∈ D).

This procedure is very interesting, since such a psychological filter satisfies the considera-

tion property directly and hence the rationalization procedure can be seen as a generator of

any filter satisfying the consideration property. However, for our purpose we need to take

care of our additional minimal attention property. Roughly speaking, we want to find some

reasonable rationales S = (S1, ..., SN ) that deliver an admissible filter via a rationalization

procedure similar to CFS.

For a binary relations S and for D ∈ C∗, we define the following recursive (maximal)

domination sets for an attention level k ≥ 3

Max(D,S) =: Max1(D,S) := (c ∈ D | cSc̃ for all c̃ ∈ D)

for n > 1 : Maxn(D,S) := Max(D\ ∪i≤n−1 Maxi(D,S), S) and

Max∗(D,S) := Maxd(D,R) for d := argminn{div(Maxn(D,S)) ≥ k}.

Note, that Max∗(D,S) can be empty, e.g. for div(D) < k.

Definition 6.1

a) Let S = {S1, ..., SN} be a be a set of binary relations on C and D ∈ C∗. Then we call

a case c minimal k-attentive rationalizable (MAR) by S in D if and only if

c ∈Max∗(D,S1) ∨ c ∈ ◦Ni=2Max(D,Si).

The set of all MAR cases in database D by rationales S is denoted by MAR(D,S).

b) A filter Γ is called a minimal k-attentive psychological filter based on a set of binary

relations S = {S1, .., SN}, i.e. Γ = MAR(D,S), if it holds

(i) for any D ∈ C∗ such that div(D) ≤ k: Γ(D) = D and

(ii) for any D ∈ C∗ such that div(D) ≥ k and Max∗(D,S1) 6= ∅: Γ(D) = MAR(D,S).

Basically the modification of a CFS filter serves the reason to capture the required min-

imal attention property by enforcing ad hoc that always the k-best cases according to a

most important, seminal, distinguishing, leading rational (criterium, reason, story) S1 are

consider for sure. In addition, if they differ from the best cases according to the other

criteria, also all cases which are rationalizable by these other rationales survive the elim-

ination procedure. A plausible way to justify such a formation process would emphasize

the extraordinary role of criterion S1. An agent is focussing on the (at least) k-best un-

dominated or most salient alternatives for the most important criterion S1 and only the

best alternatives according to the minor, rather marginal or negligible criteria are worth to

consider. For instance, an agent buying a car would choose according to different criteria,

like speed, mileage, gas consumption, etc. Her major criteria might be gas consumption

and hence includes the k best cars regarding economy into her consideration set, whereas

she only takes the fastest car and that with lowest mileage into account, since they are

outstanding or salient within the minor criteria.

For the definition and the underlying recursive domination we have in mind k = 3.

For larger minimal attentions k one can generalize this approach to any specific structure
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of ranking criteria. For instance for k = 4, one might assume to consider for sure the

two best alternatives according to rational S1, and additional the two best remaining

alternatives regarding to story S2. In this sense a minimal attentive psychological filter

can be generalized in arbitrary ways for specific attention levels.

The non-emptiness requirement of a MAR-filter, i.e. Max∗(D,S1) 6= ∅, is for example

satisfied if the binary relation S1 is complete. But also for an incomplete ”benchmark” or

satisficing relation S1
25 the non-emptiness is satisfied if c∗ is chosen such that there exist

at least k cases c ∈ D such that cS1c
∗

Consequently, we can state the following corollary

Corollary 6.1

Let Γ be an MAR-filter on C∗ × C∗ based on a set of binary relations S = {S1, ..., SN}.
Then Γ is an admissible filter and the equivalence in the Theorem 5.1 holds for all D ⊆
E ∈ C∗, such that ΓE(D) 6= ∅ with the specific representation

(P ◦ ΓE)(D) =

∑
c∈D s(c)1MAR∗(E,S)(c)P

c∑
c∈D s(c)1MAR∗(E,S)(c)

In general, most of the above mentioned multistage procedures can be adopted to satisfy

the minimal attention property by replacing an usual dominance structure by our defined

Max∗ structure for some rational at some stage of their elimination procedures. In this

way, these modified multistage choice processes (that satisfy the consideration property)

can be interpreted as an admissible filter and incorporated into our filtered belief formation.

An appealing and intuitive example for rationales Si in S is to interpret them as ra-

tionales that are related to componentwise similarities on the characteristics space X =

X1× ...×XN , i.e. si(c) ∈ R+ for all c ∈ C (i ≤ N). One can understand the endogenously

derived similarity value s as an (complex) aggregation f (f: RN → R) of these component-

wise similarities- i.e. s(c) = f(s1(c), ...., sN (c)). An underlying motive for choosing such a

form relies on the fact that agents tend to evaluate the dimensions lexicographically instead

of aggregating multi-evaluation criteria (Tversky et al. (1988), Dulleck et al. (2011)), i.e.

(si)i≤N versus s = f(s1, .., sN ). In addition, research shows that in the filtering stage

agents use noncompensatory heuristics for a rough screening based on simple criteria, e.g.

a satisficing behavior like comparing si with thresholds s∗i . But for the final evaluation

stage a compensatory, more detailed multi-component and compromise-based procedure is

taken, as in our aggregated similarity measure s = f(s1, .., sN ) 26.

Two candidates for a reasonable and plausible, but ad hoc, definition of binary relations

Si are based on comparisons of the componentwise similarities si in the following way.

Definition 6.2

Let there be functions si : C → R for all i ≤ N .

(i) ”Componentwise similarity”: For all i ≤ N , a transitive and complete binary relation

25I.e. for a benchmark c∗ cS1c
′ if and only if cS1c

∗S1c
′ or (cS1c

∗ and c′S1c
∗) for c, c′, c∗ ∈ D, see also Definition 6.2

later.
26See e.g. Bettman (1979), Gensch (1987), Hauser and Wernerfelt (1990), Roberts and Lattin (1991, 1997), Andrews

and Srinivasan (1995) and for a model Lombardi (2009).
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S̃i is defined on C × C by cS̃ic
′ if and only if si(c) ≥ si(c′)

(ii) ”Benchmark exceeding componentwise similarity”: For all i ≤ N the asymmetric,

transitive and possibly incomplete binary relation S∗i is defined by cS∗i c̃ if and only if

(si(c) ≥ s∗i > si(c̃) ∨ si(c) ≥ si(c̃) ≥ s∗i ) for componentwise threshold values (s∗i )i.

Obviously, the binary relation defined in (i) can be used to define a MAR-filter. The

relations in (ii) can be applicable for a MAR-filter if for any D ∈ C∗ s∗1 is chosen according

to s∗1 ≤ sDk
1 1{div(D)≥k}(D) (as defined in Section 5.1).

7 Conclusion

This paper examines how beliefs are formed by agents that are constraint or not willing

to pay attention to all potentially available pieces of information. It is well known in the

psychology and marketing literature that humans do not take into account all available

information due to many different reasons. Based on this insight we axiomatize a two stage

belief formation procedure in which agents employ only these pieces of information that

”survived” a first step of (un(intentional)) filtering (or screening). The filter is required

to satisfy natural, reasonable and well known properties. The axioms on the belief level

are closely related to the axioms introduced in BGSS and modified in a way to capture

the link to filtering information and their consequences for induced beliefs. The resulting

filtered belief is a weighted sum of estimates induced by past observed information that

are attention grabbing. Thus only pieces of information that attracted the attention and

consideration of an agent are taken into account. The weights are determined by the

similarities of the observed cases with the problem under consideration.

The axiomatized filtered belief formation generalizes the axiomatizations of BGSS, EG

and Bleile (2014a) in which all available pieces of information are necessarily taken into

account which prevents unintentional forgetting or unawareness as well as intentional ap-

plication of a heuristic screening techniques, that often drive human judgment. Hence,

a filtered belief formation offers a cognitively less demanding and maybe more realistic

behavioral procedure to form beliefs based on data.

An intuitive and natural application of a filtered belief formation are models of satis-

ficing behavior regarding the relevance or appropriateness of information for the current

problem. Moreover, it captures also a conditional belief formation process that only takes

into account identical problems in the past and neglects all not perfectly similar observa-

tions - which cannot be covered by BGSS, EG and Bleile (2014a).

In particular interesting is that filtering (and elimination) of information (or alterna-

tives) emerged very recently as a research topic in the decision theory literature. These

multi-stage/criteria models incorporate as well a first step of filtering before engaging into

the final choice step. Many of these models can be easily translated and embedded into the

filtering stage of our belief formation process such that our filter stage can be interpreted

as a choice correspondence in terms of decision theory.
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A Proof of Theorem 5.1, necessity part (ii) ⇒ (i)

Let (P ◦ ΓE)(D) =
∑

c∈D s(c)1Γ(E)(c)P
c∑

c∈D s(c)1Γ(E)(c)
for all D ⊆ E ∈ C∗, such that ΓE(D) 6= ∅.

Let D = D1 ◦D2 and D ⊆ E ∈ C∗ .

(P ◦ ΓE)(D) =

∑
c∈D s(c)1Γ(E)(c)P

c∑
c∈D s(c)1Γ(E)(c)

=
1∑

c∈D s(c)1Γ(E)(c)

( ∑
c∈D1

s(c)1Γ(E)(c)P
c +

∑
c∈D2

s(c)1Γ(E)(c)P
c
)

=
∑
i=1,2

∑
c∈Di

s(c)1Γ(E)(c)∑
c∈D s(c)1Γ(E)(c)

(∑
c∈Di

s(c)1Γ(E)(c)P
c∑

c∈Di
s(c)1Γ(E)(c)

)
= λ(P ◦ ΓE)(D1) + (1− λ)(P ◦ ΓE(D2)

Thus, the the filtered Concatenation Axiom is satisfied. �.

B Proof of Theorem 5.1, sufficiency part (i) ⇒ (ii)

B.1 Important Observations

In the proof, we treat the situation in which the level of minimal attention k is set equal
to three, i.e. k = 3. This simplifies notational effort and is sufficient to follow the main
steps of the proof that analogously work for any k ≥ 3.

The following Lemma states useful and crucial properties for the proof.

Lemma B.1
Let Γ be an admissible filter, then the following holds:
(i) For all c ∈ D ∈ C∗, ΓD(cT ) ∈ {∅, cT } for all T such that cT ∈ D
(ii) For all D ⊆ E ∈ C∗ such that div(E) ≤ 3: D ⊆ ΓE(D) ⊆ D = ((cfD(C)|D|)c∈C)
(iii) For all D ⊆ E ∈ C∗ we have some kind of idempotence, i.e.

Γ(ΓE(D)) = ΓE(D)

Proof:
(i) By definition ΓD(c) ⊆ c, hence the equal treatment property delivers directly the de-
sired result.

(ii) By definition and the equal treatment property, we have for all D ⊆ E ∈ C∗ that
ΓE(D) = ◦c∈C(ΓE(c))fD(c)|D|

If div(E) = k ≤ 3, then by minimal attention property div(Γ(E)) = k and thus by
the equal treatment property Γ(E) = ◦c∈CcfE(c)|E|. Since D ⊆ E, we get directly
ΓE(D) = ◦c∈CcfD(c)|D|.

(iii) By definition of a filter, we have Γ(ΓE(D)) ⊆ ΓE(D). The consideration property
implies

Γ(ΓE(D)) = ΓΓE(D)(ΓE(D)) ⊇ ΓE(ΓE(D)) = ΓE(E) ∩ ΓE(D) ⊇ ΓE(D)
and hence the claim holds true. �

Basically (ii) just says that no filtering of D takes place in this situation (only a reordering
takes place, which is ”immaterial” for the induced belief).
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B.2 Translating the database framework to frequencies

An essential step in the proof is to identify databases with their frequency vectors. The
space of frequency vectors is more tractable and enables us to adopt the structure of BGSS’s
proof (and use the procedure of of Bleile (2014a)). However, the proof here requires some
additional features, since in addition filters are involved, which alters the crucial steps in
the inductive proof.

B.2.1 General Definitions for a Frequency Framework

We need to introduce some definitions regarding the frequency framework.

The set of all frequency vectors on the ordered set of basic cases C = {c1, .., cm} is given
by (since C is fixed we skip it in the following)
∆(C) = ∆ := {f = (f1, ..., fm) s. th. fi ∈ Q ∩ [0, 1] for all i ≤ m and

∑
i≤m fi = 1}

The following set represents all frequency vectors related to databases D ∈ CT :

∆T := {f ∈ ∆ fi =
li
T
, li ∈ N+,

m∑
i=1

li = T and ∃D ∈ CT such that fD(ci) = fi = li/T}

Observe that if f ∈ ∆T (C), then f ∈ ∆TZ(C) for all Z ∈ N+, i.e. the frequency vector
fD represents all databases DZ for some Z ∈ N and we cannot relate it to any specific
database Dk for a specific k ∈ N.

Definition B.1
(i) Om denotes the null-vector on Rm.
(ii) For all j ∈ {1, 2, ...,m} denote by qj the j-th unit vector in Rm, i.e. the frequency
vector representing a database containing only case cj ∈ C, i.e. qj = (0, ..., 0, 1︸︷︷︸

j−th
, 0, ..., 0)t

(iii) For all d ∈ ∆ its diversity is given by div(d) := |{i ≤ m | di > 0}|

Definition B.2
(i) The ⊆-relation on frequencies ∆×∆ is defined as follows for d, e ∈ ∆:

d ⊆ e if and only if di ≥ 0 only if ei > 0 for all i ≤ m.

(ii) Let d ∈ ∆T and e ∈ ∆L, then the ∩-relation on ∆×∆ is defined by

d ∩ e := ((
min{diT, eiL}∑
i≤m min{diT, eiL}

)i≤m) 27

For definition (i) we have in mind that there exist T and L such that d represents a database
of length T, i.e. D ∈ CT and e an E ∈ CL such that minj≤m djT ≤ minj≤m ejL.

B.2.2 Why is a transformation viable?

Roughly, we want to show that for a filtered belief formation we can identify databases
D ⊆ E ∈ C∗ in the filtering process by frequencies fD ⊆ fE such that ΓfE (fD) corresponds
to ΓE(D). For this purpose, we exploit the properties of an admissible filter and the axioms
on filtered belief formation in the following way.

(i) The filter ignorance property for Γ implies directly ΓE
L
(D) = ΓE(D) for D ⊆ E

and for all L ∈ N, i.e. (P ◦ ΓE)(D) = (P ◦ ΓE
L
)(D).

(ii) The filtered Concatenation Axiom implies (by DZ = D ◦ ... ◦ D) (P ◦ ΓF )(D) =
(P ◦ ΓF )(DZ) for an appropriate F such that DZ ⊆ F holds for Z ∈ N.

27 (Consistency) Remark: If d ⊆ e, then obviously d ∩ e = (( min{diT,eiL}∑
i≤m min{diT,eiL}

)i≤m) = (( diT∑
i≤m diT

)i≤m) = d
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However, since for all Z ∈ N there exists a L ∈ N such that DZ ⊆ FL, observations (i)
yields that for D ⊆ E

(P ◦ ΓE)(D) = (P ◦ ΓE
L
)(DZ) for all Z ∈ N and all sufficiently large L ∈ N (6)

Further, by the definition of a filter and its order invariance property (and hence its im-
plied belief invariance property) the order of the cases do not matter, which enables us to
represent all involved databases by their frequency vector on C (which are independent of
lengths) and their corresponding lengths.
However, by the above observations, within the filtered belief formation, lengths of databases
become irrelevant in the sense of equation (6). In particular, since each DZ ∈ C∗ (for any
Z ∈ N) is represented by the same frequency vector fD, the ”sufficiently large”-condition
looses its bite. Thus, we can identify the filtered belief formation process on databases by
frequency vectors.

Filtered belief induced by frequencies

Definition B.3
The filtered beliefs (P ◦ Γ) : C∗ × C∗ → ∆(R) based on databases D ⊆ E translates to
corresponding beliefs based on frequency vectors d ⊆ e in the following way:
(P ◦ Γ) : ∆ × ∆ → ∆(R) such that Γ(fD, fE) := Γ(D,E) and (P ◦ Γ)(fD, fE) :=
(P ◦ Γ)(D,E).

Basically, the weakening of the condition D ⊆ E to fD ⊆ fE runs through the implicit or
intuitive interpretation of ΓfE (fD) in a way such that there exists an appropriate repli-
cation Z of database E (i.e. fE = fEZ ) such that EZ ⊇ D is matched and since by the

ignorance property ΓE
Z

(D) = ΓE(D) the nestedness condition can be relaxed.
Thus an application of filter properties and belief axioms show the viability of the trans-
formation from databases to the frequency framework.

B.2.3 Filter definition in frequency terms

Definition B.4
For d ⊆ e ∈ ∆, a function Γ: ∆×∆→ ∆ is called an e-induced filter on d, if
(i) Γ(e, e) := Γe(e) := Γ(e) ∈ ∆ and (ii) Γe(d) := Γ(e) ∩ d hold.

Definition B.5
(i) Consideration property:
A filter Γ on ∆×∆ satisfies the consideration property if for d ⊆ e ∈ ∆: Γ(e) ∩ d ⊆ Γ(d)

(ii) Minimal attention span:
A filter Γ satisfies the minimal attention of k ≥ 3, if for all d ∈ ∆:
(a) If div(d) = l ≤ k, then div(Γ(d)) = l
(b) If div(d) > k, then div(Γ(d)) ≥ k.

(iii) Filter ignorance of repeated information:
Let d, e = (p1

p ,
p2

p , ...,
pm
p ), f = ( p1

p+1 ,
p2

p+1 , ..,
pi+1
p+1 , ...,

pm
p+1) ∈ ∆, where p :=

∑
j≤m pj ∈ N.

Let d ⊆ e ⊆ f . A filter Γ satisfies the ignorance property, if Γe(d) = Γf (d).

The equal treatment property is directly satisfied by the definition of a filter in frequency
terms.

Definition B.6
A filter Γ on ∆×∆→ ∆ satisfying the consideration, equal treatment, minimal attention
span and ignorance property is called admissible.

Analogously to Lemma B.1, we get in frequency terms:
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Lemma B.2 (Lemma B.1 in frequency terms)
Let Γ be an admissible filter on ∆×∆.
(i) For all qj ⊆ d ∈ ∆, we have Γd(qj) ∈ {∅, qj}.
(ii) For all d ⊆ e ∈ ∆ such that div(e) ≤ 3 Γe(d) = d holds.
(iii) For all d ⊆ e ∈ ∆: Γ(Γe(d)) = Γe(d)

B.2.4 Axioms in frequency terms

Filtered Concatenation Axiom
Let Γ be a filter on ∆ × ∆. For all d ∈ ∆T and e ∈ ∆L for any T, L ∈ N, there exists
λ ∈ [0, 1], such that for g ⊇ f := T

T+Ld+ L
T+Le

(P ◦ Γg)(f) = λ(P ◦ Γg)(d) + (1− λ)(P ◦ Γg)(e),

where λ = 0 if and only if Γg(d) = Om.

Collinearity Axiom
No three of {(P ◦ Γq

j
)(qj)}j≤m are collinear.

B.2.5 Sufficiency part of Theorem 5.1 in frequency terms

Proposition B.1
Let there be given a function (P ◦ Γ) : ∆ → ∆(R), where P : ∆ → ∆(R) and Γ an ad-
missible filter on ∆×∆. Let a filtered belief (P ◦ Γ) : ∆×∆→ ∆(R) satisfies the filtered
Concatenation and Collinearity Axiom.
Then, there exist unique probability vectors (P j)j≤m ∈ ∆(R), and unique -up to multipli-
cation by a strictly positive number- strictly positive numbers (sj)j≤m ∈ R such that for all
q ⊆ f ∈ ∆ such that Γf (q) 6= (0, ..., 0)

(P ◦ Γf )(q) =

∑
j≤m sjΓ

f
j (q)P j∑

j≤m sjΓ
f
j (q)

(7)

where Γfj (q) denotes the frequency of case cj in Γf (q).

B.3 Proof: Sufficiency part of Theorem 5.1 in frequency terms

We have by Lemma B.2 (ii) directly that Γf (qj) = qj for all f ⊇ qj such that div(f) ≤ 3
and hence we need to choose

P j = (P ◦ Γf )(qj) (8)

The aim of the inductive proof over m with |C| = m or div(f) ≤ m is to find the similarity
values s1, ..., sm.
Step 1: |C| = m = 3, w.l.o.g. C = {c1, c2, c3}, thus ∆ = ∆(q1, q2, q3)
Step 1.1: Defining similarity weights
We define q∗ := 1

3(q1 + q2 + q3) and for f ⊇ q∗ Lemma B.2 (ii) yields

(P ◦ Γf )(q∗) =

∑
j≤3 sjΓ

f
j (q∗)P j∑

j≤3 sjΓ
f
j (q∗)

=

∑
j≤3 sj

1
3P

j∑
j≤3 sj

1
3

=

∑
j≤3 sjP

j∑
j≤3 sj

According to the filtered Concatenation Axiom there exist λ ∈ int(∆3) (by minimal at-
tention, i.e. Γf (qj) = qj) such that

(P ◦ Γf )(q∗) =
∑
j≤3

λj(P ◦ Γf )(qj) =
∑
j≤3

λjP
j ,
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where the last equality follows from (8).
By equating both representations we can derive the corresponding similarity weights s1, s2, s3

uniquely up to multiplication by a strictly positive number and define for all q ⊆ f ∈ ∆

(P ◦ Γf )s(q) =

∑
j≤m sjΓ

f
j (q)P j∑

j≤m sjΓ
f
j (q)

The aim is now to show that for all (q, f) ∈ ∆×∆ such that q ⊆ f

(P ◦ Γf )s(q) = (P ◦ Γf )(q). (9)

All such (q,f) are collected in E := {(q, f) ∈ ∆ ×∆ | (P ◦ Γf )s(q) = (P ◦ Γf )(q)}, where
obviously by definition

(qj , f) ∈ E for all j ≤ 3 and f ∈ ∆ such that qj ⊆ f
and (q∗, f) ∈ E for all f ∈ ∆ such that q∗ ⊆ f. (10)

Step 1.2: All simplicial points (with appropriate perspective) satisfy equation
(9)
Notation: In the following we will denote for a, b ∈ ∆ or a, b ∈ ∆(R) the straight line
through a and b by (a, b) (since there won’t be a confusion to the usual interval notation).
The main tool of the proof is the following observation, which will be recursively applied
in an appropriate manner in the proof.

Lemma B.3
Let a, b, c, d, e ∈ ∆, where e = (a, b) ∩ (c, d) and for all f ∈ {a, b, c, d} let div(f) ≤ 3 and
(f, f) ∈ E. If ((P ◦ Γf )(f))f∈{a,b,c,d} are not collinear, then (e, g) ∈ E for g ∈ ∆ such that
div(g) ≤ 3 and e, f ⊆ g for all f ∈ {a, b, c, d}.
Proof:
W.l.o.g. let e be between a and b on the line through a and b. By the filtered Concatenation
Axiom we get

(P ◦ Γe)(e) ∈ ((P ◦ Γe)(a), (P ◦ Γe)(b)) and (P ◦ Γe)s(e) ∈ ((P ◦ Γe)s(a), (P ◦ Γe)s(b)),

since (P ◦ Γ)s and (P ◦ Γ) satisfy the axiom. For f ∈ {a, b} such that div(f) ≤ 3, Lemma
B.2 (ii) generalizes it to

(P ◦ Γg)(e) ∈ ((P ◦ Γg)(a), (P ◦ Γg)(b)) and (P ◦ Γg)s(e) ∈ ((P ◦ Γg)s(a), (P ◦ Γg)s(b))

for all g ∈ ∆ such that div(g) ≤ 3 and e, f ⊆ g.
Analogously, we get a similar result for the segment (c, d).
By Lemma B.2 we know that Γg(f) = Γf (f) for all f ∈ {a, b, c, d} and since by assumption
(f, f) ∈ E, i.e. (P ◦ Γf )s(f) = (P ◦ Γf )(f), we directly get (P ◦ Γg)s(f) = (P ◦ Γg)(f) and

(P ◦ Γg)(e), (P ◦ Γg)s(e) ∈ ((P ◦ Γg)(a), (P ◦ Γg)(b)) ∩ ((P ◦ Γg)(c), (P ◦ Γg)(d)).

Since the intersection of the two line is unique due to the Collinearity Axiom, we get the
desired result, i.e. (P ◦ Γg)(e) = (P ◦ Γg)s(e) and (e, g) ∈ E. �.

By Lemma B.2 we know that Γf (q) = q for any q ⊆ f such that div(f) ≤ 3, hence
we need to show equality (9) not for all appropriate pairs (q, f), but only for any q and
some appropriate f such that q ⊆ f . Then it will hold for all f such that q ⊆ f .

In the following, we will partition the simplex ∆ into so called simplicial triangles re-
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cursively, as illustrated in the Figure 1 below.

Definition of Simplicial Triangles:

The 0-th simplicial partition consist of vertices qj0 ∈ ∆, which are exactly the unit vectors
qj for j = 1, 2, 3. The first simplicial partition of ∆ is a partition to four triangles separated
by the segments connecting the middle points between the two of the three unit frequency
vectors, i.e. q1

1 := (1
2q

1 + 1
2q

2), q2
1 := (1

2q
2 + 1

2q
3) and q3

1 := (1
2q

3 + 1
2q

1). The second
simplicial partition is obtained by similarly partitioning each of the four triangles to four
smaller triangles, and the l-th simplicial partition is defined recursively. The simplicial
points of the l-th simplicial partition are all the vertices of triangles of this partition.

q1 q2

q3

q∗

q21q31

q11
•

•

•

• •

•

•

•
q12

•
q22

•q32 •
q42

•
q52

• q62

•
q72

•q82 • q92

Figure 1: a

1

Figure 1: 1st and 2nd Simplicial partitions

We want to show that all simplicial points satisfy equation (9), i.e. are in E, by induction
over the l-th simplicial partitions. Step 1.1. showed the claim for l = 0 (equation (10)).
We proceed to the points in the
First simplicial partition:
Since

q1
1 = (q1, q2) ∩ (q3, q∗),

and we already know that for all f ∈ {q1, q2, q3, q∗} (f, f) ∈ E we can apply Lemma B.3
if the collinearity condition holds. However, since (P ◦ Γq

i
)(qi) = P i for i = 1, 2, 3 and

(P ◦ Γq
∗
)(q∗) ∈ int(conv({P 1, P 2, P 3})) the Collinearity Axiom directly induces the non-

collinearity condition. Hence, by Lemma B.3 we get that (q1
1, f) ∈ E for all f such that

q1
1 ⊆ f .

With the same reasoning, we get (q2
1, f), (q3

1, f) ∈ E where f ⊇ q2
1 (respectively q3

1). Thus
all pairs (qi1, f) consisting of a simplicial points of the first simplicial partition and all f
such that qj1 ⊆ f are included in E.

For the second simplicial partition we distinguish between inner simplicial points and
points on the boundary of the simplex ∆, i.e. between two of the corners qj . Figure 2
demonstrates the intuition.

(a) The first step involves the inner simplicial points q4
2, q

5
2, q

7
2 ∈ int(conv({q1, q2, q3})).

Since
q4

2 ∈ (q1
1, q

3
1) ∩ (q1, q2

1)
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q1 q2

q3

q∗

q21q31

q11
•

•

•

• •

•

•
•
q42

•
q52

•
q72

•q92

•

Figure 1: a

1

Figure 2: Step from 1st to 2nd Simplicial partition

and for all f ∈ {q1
1, q

3
1, q

1, q2
1} (f, f) ∈ E by Step 1.1 and Step 1.2 for the first simplicial par-

tition, we need to check the collinearity condition to apply Lemma B.3. However, the con-
dition is met since the induced beliefs for (qj1, q

j
1) with j = 1, 2, 3 are in int(conv({P 1, P j}))

that cannot lie on one line since (P j)j≤3 are not collinear by the Collinearity Axiom. Con-
sequently by Lemma B.3 we get that (q4

2, f) ∈ E for all f ⊇ q4
2.

Analogously, we can get that all simplicial points (combined with appropriate perspective
f) of the 2nd partition in the interior of ∆, i.e. q5

2, q
7
2 with appropriate super-frequencies f

are in E.

(b) In the second step we will deal with and focus on the simplicial points on the bound-
ary of ∆ (e.g. representative q9

2, see Figure 2).

We have that q9
2 ∈ (q3, q2) ∩ (q4

2, q
7
2). All frequencies f involved in the intersection are

shown (Step 1.1. and Step 1.2 (a) for second partition) to be contained in E, in the sense
of (f, f) ∈ E. Again, the non-collinearity is fulfilled since (P 2 and P 3) and induced be-
liefs in int(conv({P 1, P 2, P 3})) are involved and (P 2, P 3) 6∈ int(conv({P 1, P 2, P 3})) since
(P j)j≤3 are not collinear. Thus, Lemma B.3 delivers (q9

2, f) ∈ E for all f ⊇ q3
2.

The same procedure with analogous and adjusted arguments yield that all simplicial
points on the boundary of the 2nd simplicial partition combined with appropriate super-
frequencies (perspectives) are also included in E.

The same kind of algorithm works for all simplicial points of any l-th simplicial parti-
tions, i.e. obviously each q ∈ rim(conv({q1, q2, q3})) is for some l captured. For q ∈
int(conv({q1, q2, q3})) one can approximate q via a series of simplicial points (q1

l , q
2
l , q

3
l )

such that q ∈ int(conv({q1
l , q

2
l , q

3
l }l)) for all l. In detail, the completion for all permissible

(q, f) ∈ ∆×∆ can be shown almost similarly as in Step 1.3 Bleile (2014a) (or differently in
BGSS Step 1.2 in their proof) and hence we refer to these papers for the entire procedure.
This concludes the proof for the case |C| = 3 or (q, f) with q ⊆ f such that div(f) ≤ 3.

Now we need to show the claim for |C| = m > 3 or div(f) ≤ m.
Step 2: |C| = m > 3
Step 2.1: Defining the similarity weights
Using the considerations from Step 1 above for {j, k, l} (i.e. q∗{j,k,l} :=

∑
i∈{j,k,l} q

i, qi ∈ ∆

and q ⊆ f ∈ ∆(qj , qk, ql)) we can derive the similarity weights (s
{j,k,l}
i )i∈{j,k,l}. Further,

for all (q,f) such that q ⊆ f ∈ conv({qj , qk, ql}) the following representation holds

(P ◦ Γf ){j,k,l}(q) =

∑
i=j,k,l s

{j,k,l}
i Γfi (q)P {j,k,l}(qi)∑
i=j,k,l s

{j,k,l}Γf
i (q)

i
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Moreover for all i ∈ {j, k, l}, we have (P ◦ Γf ){j,k,l}(qi)) = P i and (s
{j,k,l}
i )i∈{j,k,l} are

unique up to multiplication by a positive number.

Similar to BGSS or Bleile (2014a), we can show that the similarity values s
{j,k,l}
i are

independent of the choice of j, k and l for all i ∈ {j, k, l}, since filtering is not present in
the arguments. Thus we can define for all q ⊆ f ∈ ∆

(P ◦ Γf )s(q) :=

∑
i≤m siΓ

f
i (q)P i∑

i≤m siΓ
f
i (q)

The aim is to show that for all (q, f) ∈ ∆×∆ such that q ⊆ f (P ◦ Γf )(q) = (P ◦ Γf )(q).

Step 2.2: Completion to all (q, f) ∈ ∆×∆

By Step 1 we know that the claim (P ◦Γf )s(q) = (P ◦Γf )(q) is true for all (q, f) such that
div(f) ≤ 3. We take this as the base case of our induction.
For the induction assumption, we have that (P ◦Γf )s(q) = (P ◦Γf )(q) for all (q, f) ∈ ∆×∆
with q ⊆ f and div(f) ≤ k − 1.
The induction step considers q, f ∈ ∆ with q ⊆ f and div(f) ≤ k :
We can restrict the analysis to f such that div(f) = k, since for all other f ∈ ∆ the claim
is true by the induction assumption.
We split the proof into two parts. First for which div(q) ≤ k − 1 and then for div(q) = k.

First Situation: Consider q ⊂ f , i.e. div(q) ≤ k − 1.

By Lemma B.2 (iii), we have Γ(Γf (q)) = ΓΓf (q)(Γf (q)) = Γf (q) and hence directly

(P ◦ Γf )(q) = (P ◦ ΓΓf (q))(Γf (q)), (11)

Since Γf (q) ⊆ q by definition of a filter and hence div(Γf (q)) ≤ k−1 the induction assump-

tion applies to the RHS of equation (11), i.e. (P ◦ ΓΓf (q))(Γf (q)) = (P ◦ ΓΓf (q))s(Γ
f (q))

which is again identical to (P ◦Γf )s(q) and hence the desired result (P ◦Γf )s(q) = (P ◦Γf )(q)
is implied directly.

Second Situation: Consider q ⊆ f with div(q) = k

A similar construction as in BGSS, but with different reasoning, yields the result. Let
q =

∑
l∈K αlq

l with αl > 0 and K ⊆ {1, ...,m} such that |K| = k.
Define the frequency vector q(l) to be the vector in conv({(qj)j∈K\l}) such that q lies on

the line (q(l), ql).
By the minimal attention span property div(Γq(q)) = div(◦{l:ql>0}Γq(ql)) ≥ 3, i.e. there

exist at least three l’s (e.g. l = i, j, k) such that Γq(ql) = ql 6= ∅ and hence (P ◦ Γq)(ql) =
P l = (P ◦ Γq)s(q

l).
Further, for these l ∈ {i, j, k} we get (P ◦ Γq)s(q(l)) = (P ◦ Γq)(q(l)) by the result of the
first situation, since div(q(l)) ≤ k − 1.
Hence we have that (P ◦ Γq)s(q), (P ◦ Γq)(q) ∈ (P l, (P ◦ Γq)(q(l))) =: L(l), for those three
l = i, j, k. Since no three P j are collinear, there are at least two distinct lines L(l), i.e.
L(l) 6= L(n) for at least two distinct l, n ∈ {i, j, k}. Since (P ◦Γq)s(q), (P ◦Γq)(q) are both
on these distinct lines and these lines need to intersect uniquely, we have (P ◦ Γq)s(q) =
(P ◦ Γq)(q). By the ignorance property (P ◦ Γq)(q) = (P ◦ Γf )(q) for all f with div(f) = k,
which completes the proof. �.
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