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[Abstract:] This work takes a closer look on the predominant assumption in
usual lemon market models of having �nitely many or even only two di�erent
levels of quality. We model a situation which is close to the classical monop-
olistic setting but admits an interval of possible quality values. Additionally,
to make the model interesting, the consumer receives a signal which is corre-
lated to the quality level and is her private information. We introduce a new
concept for the consumer reaction to the received information, encompassing
rationality but also allowing for a certain degree of imperfection. We �nd that
there is always a strictly positive price-quality relation in equilibrium but the
classical adverse selection e�ects are not observed. In contrast, low quality
levels do not make any sales. After applying a re�nement to these equilibria,
we show that when the additional signal is very precise, more low quality
levels are excluded from the market. In the limit of perfect information, the
market breaks down, a behavior completely opposed to the original perfect
information case. These di�erent and quite extreme results compared to the
classical lemon market case should serve as a warning to have a closer look
at the assumption of having �nitely many quality levels.
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1 Introduction

Markets with quality uncertainty have been well discussed in the recent decades, starting
from the famous paper by George Akerlof (1970). Since then, many articles have for-
malized the idea in di�erent ways, most of which focused on a particular market feature
to implement into the classical model. Some works like Bagwell and Riordan (1991)
enriched the market by introducing multiple periods and thus letting the market price
not only be determined by equilibrium posterior beliefs but also by past experience of
the consumers. Others focused on advertising possibilities in terms of wasteful spend-
ing and thus costly signaling (Milgrom and Roberts (1986)) or on the possibility of the
consumers to receive additional information before the purchase (Bester and Ritzberger
(2001), Voorneveld and Weibull (2011), Martin (2012) and the previous chapter). Some
e�orts were made in transfering the monopolistic setting into a model with multiple sell-
ers. See Adriani and Deidda (2011) for a case with �nitely many sellers and buyers.
Daughety and Reinganum (2007) consider a duopolistic setting in which the good di�ers
in a �safety� aspect. Wilson (1980) introduced a setting with a continuum of sellers and
buyers.

Most of the literature has an assumption in common which seems innocuous. While qual-
ity is modeled to be unknown to the consumer, it can only have �nitely many di�erent
values in the real numbers. In most cases, there is only a �good� and a �bad� quality
level. Two objections directly arise to this assumption. For one, when we think about
the quality of a car, we think of many di�erent aspects which are relevant and enter the
computation. Performance, safety, handling, comfort are only some broad categories,
each of which could be split into multiple characteristics of a car. Quality should thus
intuitively be something multidimensional. However, it is widely known that under rela-
tively mild assumptions, preferences over multidimensional objects can be expressed by a
von Neumann utility function and thus the comparison can be made in the real numbers.
One sure has to be careful of whether even these weak assumptions apply to all real-life
situations but in this chapter we do not focus on relaxing this assumption.
The other objection, which is the more severe one, is the assumption of �nitely many
quality levels. Certainly, some characteristics, like the resolution of a TV screen, only
have �nitely many possible values but others, like its life period or the quality of its
colors, would better be modeled on a continuous scale. Most of the literature ignores
this aspect, the predominant reasons being the mathematical simplicity, expositional
bene�ts and the idea that two quality levels are enough to capture the relevant market
e�ects.
This chapter takes a closer view at the last point. Is it really the case that having a
continuum of quality levels does not lead to qualitatively di�erent phenomena compared
to only two possible values? Is this true in every model or could some positive answers
to this question hide other issues which occur only when the setting is enhanced?
We present a model with quality uncertainty and a continuum of quality levels that
resembles the classical monopolistic model of quality uncertainty as similarly stated in
Ellingsen (1997). We show two examples in which under �regular� assumptions, having
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many quality values either leads to undetermined behavior or does not add interesting
phenomena to the comparable model with only two quality levels.
We then continue modifying the model by adding private information to the consumer.
When receiving a free signal which is correlated to the true quality, there naturally arise
mathematical problems when trying to update beliefs about the quality distribution in
a mathematically correct way. The form of the objective function of a �rm bears the
problem that the type space can not directly be split into convex subsets, all in which
types set the same price. Consequently, Bayesian updating can be impossible or at best
highly complex for the consumer to realize.
To overcome this issue, we introduce an elegant generalization of building an expected
quality level, demanding Bayesian updating only in the easiest cases and otherwise al-
lowing for non-perfectness or (to some degree) irrationality of the consumer while at the
same time preserving the possibility of full rationality.
Analyzing the structure of equilibria, we characterize their pricing function and �nd
that there is always a positive prize-quality relationship in every equilibrium. Moreover,
adverse selection phenomena do in general not occur. Since pro�ts are non-decreasing in
the quality, only low quality types can completely be excluded from trade. We further
investigate the limit behavior when the consumer's information becomes perfect, i.e. the
signal precision approaches perfect information. We show that in this case, the market
breaks down uniformly over all existing equilibria. Furthermore, the proof shows that
this e�ect is mainly caused by the interval structure of available quality levels.

The paper is structured as follows. We shortly present the model before we show two
cases with a continuous quality set but with only one-sided asymmetric quality infor-
mation. We show that these models do not provide interesting or previously not known
behavior. We then proceed by analyzing the model with two-sided asymmetric infor-
mation. After de�ning a generalization of expected quality with respect to Bayesian
updating, we analyze the equilibria of the market. Interesting aspects of equilibria can
be found already at this stage. Applying a re�nement to these equilibria, we �nally �nd
that approaching the perfect information case drives low quality �rms out of the market
and leads to market breakdown in equilibrium.

2 The Model

We consider a minimalistic market with one �rm and one consumer. The �rm (or seller)
produces and o�ers an indivisible good of random quality q ∈ [0, 1], unobserved by the
consumer. The consumer (or buyer) can buy this good for a certain price which is set by
the �rm as a take-it-or-leave it o�er. For each quality, the buyer has a certain, publicly
known utility u(q). For simplicity, we normalize u(q) = q and speak equivalently of the
�rm's quality or type.
This type q is drawn by nature by a distribution on [0, 1] with a continuous, everywhere-
positive density function f . This distribution is known by the consumer, while the
realized quality is not. The price p is set by the �rm after observing the quality q. The
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action set of a �rm is the set of all price functions

π : [0, 1]→ [0, 1]

q 7→ π(q).

The consumer buys at most one unit of the good. In addition to the price, she observes
a signal s before the purchase decision. This signal is costless and can be interpreted
as the private observation of a test result or of the result of an own quality information
acquisition process with a �xed cost.1 Having the realized quality level q, the signal is
uniformly distributed on the interval [q−κ, q+κ] and hence depends on the true quality
q. The error variable κ is �xed, strictly positive and known to the seller and the buyer.
Denote S := [−κ, 1 + κ] the set of possible signal realizations.
The buyer is a risk-neutral utility maximizer. Observing the price and the signal and
having built an expectation E(p, s) of the realized type, her expected utility is

E(p, s)− p

from buying the good and 0 otherwise. Whenever these values are equal, she buys with
some indi�erence probability α ∈ [0, 1], chosen by her. The strategy of the consumer can
thus be characterized by this value.
We need some notation for the analysis. We denote the complete Lebesgue measure on R
by λ. In Particular, a set A ⊂ R is called a null set if and only if there exists a Borel set B
with λ(B) = 0 and A ⊂ B. Having two sets A and B, we denote A4B = (A\B)∪(B\A)
the symmetric di�erence of these two sets. If A,B 6= ∅, we use the notation

A < B ⇔ a < b ∀ a ∈ A, b ∈ B.

An element a is a limit point of the set A if there exists a sequence (an) in A with
limn→∞ an = a.

3 One-sided Asymmetric Information

Before we deal with the model, we consider the simpler case in which the consumer
does not get the additional signal but only observes the price before making the buying
decision. This would be the natural extension of the standard lemon market models. Two
types with the same pricing strategy then have the same chance of selling since the buyer
receives the identical information and hence behaves the same. From the optimality in
an equilibrium2, each type's pricing strategy must maximize the payo�s. Since there are

1For example, if you always do a test drive before buying a second hand car, the resulting information
is available to you and the (�xed) cost of the test drive does not enter your utility maximization
considerations.

2In this section, we speak of Bayesian equilibria without giving the formal de�nition. Updating behav-
ior is rather easy in these cases (as long as the price function is well-behaved) and the optimality
conditions of seller's and buyer's behavior is obvious. Since all the results in this section state
necessary properties of equilibria and do not deal with existence, we do not have to worry about
out-of-equilibrium beliefs.
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no payo� di�erences between types, every strategy which is used by some type yields the
same payo�. Note that for each price and without further information, the consumer
reaction can only be �not buying�, �buying� or �buying with probability α� where α can
not di�er between prices. Since every price of every pricing strategy must yield the same
payo�, this leaves only two possible prices for each equilibrium.

Proposition 3.1. Let there be no extra signal for the consumer. Then in every equi-

librium in which some type makes positive pro�t, there are at most two prices p = αp′

where α ∈ (0, 1) is the consumer's indi�erence strategy.

It is interesting to notice that the order of types setting these two prices is not clearly
determined. From the consumer reaction it is clear that the set of types setting the high
price p′ must yield the expected quality p′ because the buyer uses its indi�erence strategy
α. In the same way, the expected quality from the set of types setting price p must be
strictly above p. Each constellation which satis�es these assumptions constitutes an
equilibrium. This, however, is not very restrictive and allows for many types of behavior,
all of which only involve two prices but can have positive or negative price correlation.
One example of such a setting is shown in Figure 1.

q

p

p′

π(q)

Figure 1: An example of a possible price function in the case without additional signal.

This behavior might actually stem from some of the other restrictions we make about
the market. In particular, we assume one value α for all consumer reactions in which she
is indi�erent. Instead, one might think about allowing a di�erent reaction for each price
in which neither buying nor the absence from the purchase is the unique best reply. The
result of only having two prices certainly stems from this restriction.
In the same spirit, quality-depending production costs (or outside options) could be
present in the market which implies that the same price yields not only the same chance
of selling but not the same pro�t for all types setting the price. This is what drives the
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high indeterminacy of the pricing function which was observed above. However, although
getting rid of these restrictions does indeed help to overcome this behavior, it does not
lead to new insights.

Proposition 3.2. Let c : [0, 1] → R+ be a strictly increasing cost function and let

the consumer strategy have the more general form γ : [0, 1] → [0, 1]. Then in every

equilibrium, if one exists, the price function is monotonically increasing and γ is strictly

decreasing when being restricted to the equilibrium prices π−1([0, 1]).

Knowing the results in the classical two-quality case, this statement is not very surprising
and does not provide anything new to the matter. The monotonicity of the price function
admits a positive price-quality relationship. This, in combination with the decreasing
willingness of the consumer to buy with higher prices, also implies an adverse selection
e�ect. Higher quality has a higher price and thus a lower chance of selling.
We could generalize this even more and allow the �rm to have a mixed strategy. One
can see in the proof that this modi�cation would not change the result.

This detour shows that generalizing the standard model in a way just to incorporate a
continuum of quality levels does not enrich the results in any way. Our model component
of having the extra signal s is thus crucial for the following analysis and results. We now
go back to the model presented in the previous section.

4 The Consumer

The notion of consumer's utility involves the building of an expectation based on the
observed price and signal. The question, of course, is how this expectation is formed. If
we followed classical Bayesian theory, a buyer would observe her information, in this case
the price p and the signal s, and then hold a posterior belief µ(p, s) ∈ ∆[0, 1] about the
actual product's quality. In an equilibrium, this probability distribution would be derived
by Bayes' law whenever p and s correspond to at least one possible quality realization,
given the signal distribution and the equilibrium price function π. While this works well
in settings with �nitely many quality levels, there are issues in our model that can not
easily be overcome when sticking to this posterior belief assumption. In particular, the
relatively unrestricted shape of the function π in the equilibrium de�nition below causes
problems which are not easy to overcome.
Bayesian equilibria have of course been analyzed before, also in settings with continuous
state spaces. A famous example is the signaling paper by Crawford and Sobel (1982).
They analyze a sender-receiver setting in which the sender is biased and tries to induce
a receiver's action which is not optimal for the receiver. In their setting, however, they
show that no matter what the receiver's strategy, the optimal behavior of the sender is
to divide the state space into (almost surely) convex sets and send messages depending
on the set the state space is in. It is easy to show that Bayesian updating is always
well-de�ned on these convex sets.3 Similar arguments apply for extensions of this model

3Their de�nition of the posterior belief (the function p in point (2) on page 1434), is not well-de�ned
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to the multi-dimensional case (Metzger, Jäger, Riedel (2011)) and for uncertainty about
language competence (Blume, Board (2013)).
To approach this issue in our setting, imagine that the function π is �xed and known to
the consumer and she observes a price p and a signal s. From the price p, and knowing
the price function π, she infers that the true quality must be in the set

Qπp := π−1({p}) = {q ∈ [0, 1]|π(q) = p} .

She also knows that the quality level is not more than κ away from the observed signal
which yields

q ∈ Qs := [s− κ, s+ κ] ∩ [0, 1] = {q ∈ [0, 1]|s ∈ [q − κ, q + κ]} .

If the quality level was outside of this set, the received signal would not be in the support
of the signal distribution and could thus not be received. Altogether, she can infer that
the true quality level must lie in the preimage

Qπp,s = Qπp ∩Qs = π−1({p}) ∩ [s− κ, s+ κ].

If Qπp,s is a Borel set with positive Lebesgue measure and with non-empty interior, a
posterior distribution µ is given by the density function

gµ(q|p, s) =


f(q)∫

Qπp,s
f(x)dx

q ∈ Qπp,s
0 else

(1)

which is the normalized restriction of the original density function f to the set Qπp,s.
4 A

similar expression is possible for the case in which this set is �nite.5

In general, however, the set Qπp,s can not be assumed to have this form and does not
even have to be measurable. Even when assuming measurability, Qπp,s could in theory be
an in�nite null set. Even if we excluded all these cases and agree on updating on �nite
sets, we would still be forced to distinguish situations in which we face a �nite set or one
of positive measure. We thus take a di�erent, more general approach that allows us to
keep the basic idea of a posterior distribution without having to further restrict the set
of possible price functions π.
Note that if we had a posterior belief µ(p, s), the consumer would buy the product if the
expected quality exceeds the price p, while there can be mixed behavior in the case of
equality. In particular, the buying decision does not depend on the distribution µ itself
but on the expected quality derived from this belief. Using this, we restrict ourselves to
only consider expected quality instead of posterior beliefs.

if the integral
∫ 1

0
q(n|t)f(t)dt is zero. The points (5),(6) and (7) in the proof of Lemma 1 show that

they do not have to tackle this problem.
4Updating only f - and not the joint distribution of the type and the signal - is possible due to the
uniform distribution of the signal.

5Voorneveld and Weibull (2011) use a version for the �nite case in which the distribution over the set
is just the normalized values of the density function. This can be justi�ed as approximation from
conditioning on environments around each point and letting these environments go to zero. In the
strict sense, however, conditioning on null sets is problematic.
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De�nition 4.1. Let a price function π be given. An expectation system with respect to

π is a function E : [0, 1]× S → [0, 1] such that

(i) For every pair (p, s) for which Qπp,s is not empty we have

E(p, s) ∈
[
inf Qπp,s, supQπp,s

]
.

(ii) The function is non-decreasing in s.

(iii) For each two pairs (p, s), (p, s′) with Qπp,s = Qπp,s′ 6= ∅, we have E(p, s) = E(p, s′).
If Qπp,s = Qπp,s′ = ∅ and s < s′, E(p, s) < E(p, s′).

(iv) For two signals s < s′, if Qπp,s4Qπp,s′ is not a null set, then E(p, s) < E(p, s′).

(v) Whenever Qπp,s is a non-empty interval, E(p, s) is the expectation of the distribution

given in (1).

We say that E is an expectation system if there exists a price function π̃ so that E is an

expectation system with respect to π̃.

Property (v) ensures that Bayesian updating is used at least in the simple case when
we have an interval. The other items translate properties of this Bayesian updating to
situations in which it can not be applied. Item (i) ensures that the consumer rationally
does not assume a value outside the extremes of the set of possible quality levels. Property
(ii) captures the fact that the induced quality distribution of a signal s, namely the
uniform distribution on the interval [s−κ, s+κ] �rst-order-stochastically dominated any
other such distribution induced by any lower signal. Moreover, the signal is objective
and not in�uenced by the �rm. It is easy to check that when Qπp,s is a Borel set with
positive measure for two signals, Bayesian updating leads to this monotonic behavior in
the signal. This e�ect is captured in an even stricter form by (iv). Whenever a signal
increase removes or adds a set of qualities which is not a null set, the expectation must
strictly increase, as it would in a Bayesian setting.
Property (iii) already contains an important re�nement about the rationality of the
consumer. On the one hand, having the same (non-empty) set of possible types for the
same price should lead to the same expectation. Even if the signal s′ is higher than
s, the consumer rationally infers that there is no di�erence in the quality and thus the
expectation is the same. This is di�erent if Qπp,s is empty. In this case it is clear that
there was a deviation from the price function π. Although the de�nition is not very
restrictive on these cases, we do need that a higher signal leads to a higher expectation
when two of these deviations are observed for the same price. After all, the set of quality
levels who could send the signal s is strictly lower (in an obvious sense) than the set for
s′. While the information is proof for out-of-equilibrium behavior, the signal is the only
objective, non-strategic information available to the consumer.
Overall, the concept of an expectation system not only allows to overcome measurability
and Bayesian updating issues but also relaxes assumptions on the rationality of the
consumer. She could be completely rational, using Bayesian updating whenever she can,
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or she can behave di�erently if the problem of updating is too complex. Heuristics or
other forms of bounded rationality could be applied here.
Having introduced this new mathematical construct, one might wonder whether such an
expectation system always exists or if one has to put assumptions on the price function.

Lemma 4.2. For each price function π, there exists an expectation system.

In particular, the concept of an expectation system does not impose a further restriction
on the pricing function.
The proof is constructive, the �rst insight being that the de�nition of an expectation
system does not contain restrictions across prices. We can thus de�ne the value E(p, s)
for a �xed price. This is done by �rst using property (v) when it applies and then extend
it to all signals for which Qπp,s is not empty. The extension to the empty cases is then
always possible.

Having this structure, there are some interesting consequences for the behavior of the
consumer.

Lemma 4.3. Let E be an expectation system and let p be a price. Then there exist

unique values s ≤ s in S with

E(p, s)


< p s < s

= p s < s < s

> p s > s.

Moreover, we have s− s ≤ 2κ.

In the situation of the lemma, de�ne q = s − κ, q = s + κ, q = s − κ, q = s + κ, the

quality levels which can just �reach� the signals s or s. From s − s ≤ 2κ it also follows
that we have q− q ≤ 2κ. We say that the interval [q, q] has full length if q− q = 2κ. This
describes the special case s = s so that the consumer is almost surely never indi�erent
between buying and not buying. Note that the order q ≤ q ≤ q ≤ q is always satis�ed.
To illustrate these values, assume that Qπp is an interval [a, b] of length smaller than

2κ and that the expected quality, restricted to that interval, matches the price p. This
situation occurs regularly in equilibria as is shown in the equilibrium analysis below. If
a signal is higher than the value a + κ, it can only have come from a certain fraction
of the right side of the interval, which yield a higher expectation and thus must lead to
sure buying. In the same way, a signal lower than b − κ causes the buyer to not spend
anything. Any signal between b− κ and a+ κ would, on the other hand, give no further
information to the consumer and she would thus stay indi�erent. These boundary signals
are the values of s and s from the lemma above.
It is worth mentioning that all these values are completely characterized by only knowing
the pair (s, s) or the pair (q, q). Note also that in the example of the interval, q and q
are the interval's end points a and b.
The values depend on the price p so we would have to write s(p), s(p), . . .. For readabil-
ity, we introduce a notation to leave out these arguments. A price denoted by pq implies
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s qq sq q

Figure 2: The di�erent values in the case of an interval

that the values q, q, q and q are determined with respect to this price. In the same way,

prices pr and pt have the corresponding values r, . . . and t, . . ., respectively. If only one
price is considered at a certain point, the values s and s are taken with respect to that
price.

Using the concept on an expectation system, we can analyze a basic property of what
will later be an equilibrium. If we �x such an expectation system and assume that the
�rm knows it as well as the consumer indi�erence reaction α, every �rm type should set
a price that yields the highest pro�t of all prices.

Lemma 4.4. Let E be an expectation system and α ∈ [0, 1] be an indi�erence strategy.

De�ne

φ(q, p;E,α) := p
1

2κ

∫ q+κ

q−κ
α1E(p,s)=p(s) + 1E(p,s)>p(s)ds

the pro�t of type q when setting price p. Moreover, let π be an optimal price system6 to

the buyer's behavior. Then the function

φπ(q;E,α) := φ(q, π(q);E,α)

is continuous and non-decreasing.

Whenever E and α are given, we just write φ(q, p) instead of φ(q, p;E,α). A short
way of writing the pro�t function is by de�ning the probability γ of selling a product of

6A price system is optimal if for every type q the price π(q) maximizes the type's pro�t, given the
consumer reaction.
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quality q for a certain price p

γ(q, p) :=
1

2κ

(∫ q+κ

q−κ
α1E(p,s)=p + 1E(p,s)>pds

)
=

1

2κ

(
αλ
(
[q − κ, q + κ] ∩ [s, s]

)
+ λ

(
[q − κ, q + κ] ∩ (s,∞)

))

=



0 q + κ ≤ s
1
2κα(q + κ− s) q + κ ∈ (s, s)
1
2κ(α(s− s) + (q + κ− s)) q − κ ≤ s, s ≤ q + κ
1
2κ(α(s− (q − κ)) + (q + κ− s)) q − κ ∈ (s, s)

1 q − κ ≥ s

=



0 q ≤ q
1
2κα(2κ− (q − q)) q ∈ (q, q)
1
2κ(α(2κ− (q − q)) + (q − q)) q ∈ [q, q]
1
2κ(α(2κ− (q − q)) + (q − q)) q ∈ (q, q)

1 q ≥ q

(2)

and writing φ(q, p) = p · γ(q, p).
Given an expectation system E, an indi�erence strategie α and some price p, the form
and slope of the pro�t function φ(q, p) is of high importance for the understanding of the
proofs in the analysis. Note that we can have E(p, s) < p for every signal, e.g. if no type
is associated to the price p, so Qπp = ∅.7. If this happens, the pro�t of the �rm is always
zero whenever it sets the price p, regardless of its quality. In the other cases, however,
the function looks as shown in Figure 3.8

q q q q q

αp
2κ

(1−α)p
2κ

p
2κ

p

Figure 3: The typical form of φ(·, p) and its slope for a non-trivial price.

This form of the pro�t function is why the classical concept of a Bayesian equilibrium
is problematic in our setting and why the standard approach does not work. For two

7An example of such a construction is given in the proof of Lemma 4.2.
8Technically, this is not a special case but is equivalent to s = s = 1 + κ.
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di�erent prices p, p′, it is possible to have types q′ < q < q′′ with q′ and q′′ preferring
the price p′ while the optimal price for q is p. This, given a �xed consumer reaction,
allows for non-convexity of type regions Qπp setting the same price, even when the �rm's
behavior is optimal.9

De�nition 4.5. A tuple (π,E, α), consisting of a price function π, an expectation system

E and an indi�erence strategy α is called an equilibrium if the price function π assumes

�nitely many values, E is an expectation system with respect to π and for every type

q ∈ [0, 1] the price π(q) maximizes the �rm's pro�t, given E and α.

This de�nition is the natural adaptation of a Bayesian equilibrium, using the notion
of expectation systems. The usual assumption of correct updating is replaced by the
property of E being an expectation system for π. The optimality of the consumer's
behavior is implicitly assumed, leaving her only α as choice variable. We assume that
this price function can only take �nitely many values, as is the case in most markets.10

De�nition 4.6. Let an equilibrium (π,E, α) be given. We call a price p an equilibrium
price if there exists a type q ∈ Qπp which makes positive pro�t in the equilibrium.

For an equilibrium price p, denote Q∗p := Qp ∩ {q ∈ [0, 1]|φπ(q) > 0} the set of types
setting this price and making positive pro�ts in equilibrium. In this notation, we drop the
superscript π for expositional reasons. We call a type q pro�table if q ∈ Q∗π(q). Types that
are in Qπp but have zero gains from the market are not bounded by incentive constraints
and thus their behavior is quite arbitrary. Many statements about equilibrium behavior
have to be restricted to pro�table types.

5 Equilibrium Analysis

The obvious next step is to determine under which conditions a market equilibrium exists
and what its main features are. The following result shows the structure of equilibrium
price behavior.

Theorem 5.1. An equilibrium exists. Let (π,E, α) be an equilibrium and let qmin be

the in�mum of all pro�table types. Then π restricted to (qmin, 1] is almost surely a non-

decreasing step function.

In terms of price-quality relation, this is a strong statement, at least for the pro�table
types. One can argue that �rms with a product of quality lower than qmin would not
survive in the market and eventually drop out. Prices then monotonically increase with

9To see this in Figure 3, take some pr > αp with [r, r] having full length (so that r − r = 2κ and the
graph has only one increasing line, going from 0 to pr) and r = r ∈ (q, q). One can calibrate this so

that the new graph is above the existing one in q while it is below this graph in a point on the left
and a point on the right side of q.

10The most obvious example would be product prices in a supermarket. But it also applies to goods
which can have even �ner pricing like petrol at a gas station. Since the good we have is indivisible,
it is also natural to assume a �nite number of values for the pricing strategy.
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quality which implies that a higher price corresponds to higher quality. Although the
relation is not one-to-one (so some ambiguity is left to the consumer for every price),
prices roughly signal the right quality.
This result, does not come natural. The formal proof involves a series of technical
lemmas and is given in an extra section. Note that this statement also holds if κ is large,
so that the additional signal does not convey much information. It is thus implied that
even in the case of a rather uninformative signal, the indeterminate behavior which was
shown in section 3 for the absence of a signal is prevented.
Having arrived at this result, our de�nition of an equilibrium and the construct of an
expectation system may seem like overkill, considering that now the sets on which to
update are well shaped. Nevertheless, we need the expectation system concept to reach
this point of having convex sets of types setting the same price. This step was not easily
given to us as it would be in other models, e.g. the classical signaling game of Crawford
and Sobel (1982).

To give an intuition on the proof, we continue to state the informal version of the needed
steps. The most important observation, �xing an equilibrium price pq and having in
mind the points q, q, q and q, is to see that one of the types q and q must have the price

pq as its optimal choice. They are the types which can just reach the signal s as upper
or lower bound of the corresponding signal range. By the de�nition of s, the expectation
of the consumer must di�er when receiving signals slightly above or below this value. In
an equilibrium, this means that the information, i.e. the set of quality levels assigned to
a signal, must di�er between these signals. But the only di�erence in types can occur
in environments of q and q. Applying a limit argument, we see that at least one of the
points q and q is a limit point of the set Qπpq . Using continuity, setting price pq must
yield the optimal pro�t for this limit type. In the same way, this holds for the points q
and q.

This observation is then extended to further statements. We show that q and q, if they
are di�erent, can not both be limit points at the same time. Moreover, in this case, there
must be a type in an environment of [q, q] actually setting the price pq. Finally, we show
that essentially no type in the sets (q, q) and (q, q) sets the price pq. While the �rst

points require rather technical arguments, the last property stems from item (iv) of the
de�nition of an expectation system. If more than a null set of types in the two sets set
the price pq, it would contradict the de�nition of the signals s and s.
Having these observations, we compare each two equilibrium prices pq > pr for all
di�erent possible orders of the points q, q, r and r. In each case we �nd that the situ-
ation is either impossible or the order Q∗pr < Q∗pq holds almost surely which shows the
monotonicity and thus the step function form of the equilibrium pricing behavior.
Existence of an equilibrium is shown quite easily by just noting that every single-price
setting can be an equilibrium.

This equilibrium existence proof reveals a �aw of our so-far used equilibrium concept.
Setting E(p, s) low for all non-equilibrium prices, deviation is never pro�table for the �rm
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and thus every constant price function can be an equilibrium, independent of whether
the market price is high or low. This phenomenon is not new and essentially the same as
in regular Bayesian equilibria. To resolve these issues, we look closer at an equilibrium
with a particularly low price. Consider the price function π(q) = .1 for all q ∈ [0, 1]
in a setting with κ = 1

10 . The type q = .8 then sells for this very low price but with
probability 1. The consumer, when facing such a type, observes the price p and a signal
s ∈ [.7, .9], indicating a far higher quality than the price would suggest. While it is not
counter-intuitive that the consumer does not hesitate to buy the product for the price
.1, it is harder to believe that for any slightly higher price p′ she would assign a much
lower expectation to any (also high) signal and never buy. Our next re�nement captures
this idea.

De�nition 5.1 (Locally continuous equilibrium). An equilibrium (π,E, α) is called lo-
cally continuous if for every signal s the function E(·, s) is continuous in every equilibrium

price.

This re�nement is in the same spirit as in the �rst chapter. It ensures that marginal
price deviations do not cause a jump in equilibrium beliefs (and thus expected values).
In the example above, the lowest possible signal coming from a type of quality .8 is
.8 − κ = .7. Receiving this low signal, the consumer knows that the quality must be at
least .6. Hence the value E(.1, s) is at least .6 for every signal that could come from type
.8. The local continuity of E(·, s) at the price p = .1 shows that for some marginally
higher price the expectation must still be above p for every signal possibly induced by the
quality level. The �rm would thus still sell with probability 1 and this makes a deviation
pro�table. The constant-price equilibrium would then not be possible, at least for such
low prices.

Lemma 5.2. A locally continuous equilibrium exists. Let (π,E, α) be a locally contin-
uous equilibrium. Then for every equilibrium price pq - except for the lowest one - Q∗pq
is an interval with endpoints q and q. For each of these intervals, the expected quality

matches the price, i.e.

pq = Exp(q|q ∈ [q, q]) = 1
F (q)−F (q)

∫ q

q
qf(q)dq

This result shows how step function behavior is further enforced by the re�nement.
Although single-priced equilibria are still possible, the corresponding price can not be too
far away from the highest possible quality level.11 Moreover, the unre�ned equilibrium
de�nition in general allows for types that sell for sure in a way that every of their possible
signals induces a consumer expectation strictly above the price. With local continuity,
this �high reputation� can be used by the �rm to demand a higher price, as described
above. Note that even with this re�nement, it is possible for a �rm to sell with probability
one but only in equilibria with α = 1.

11This can be seen in the proof of Lemma 5.2.
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To illustrate the market outcome, we can now look at such an equilibrium. We choose
κ = .25 and a uniform quality distribution. From this, it follows that for each step of
the price function (except the lowest one), the price is the middle point of the quality
interval. Choosing the �rst discontinuity to be at .99, we get the following equilibrium
price function. The value of qmin is positive in this example, as one can see in the pro�t

Figure 4: The equilibrium price, pro�t and selling probabilities in our example
.

function. Note that the price setting of types below qmin could be chosen di�erently
to some extent. For expositional reasons, it is chosen to match the lowest price. The
selling probabilities are increasing within the areas of same prices but are overall not
continuous and not monotonic. One can hardly speak of an adverse selection e�ect in
this equilibrium.
Adverse selection is thus not a big issue, anymore. Unlike in the classical model of
Ellingsen (1997), high quality is in general not traded with a lower probability than low
quality. Selling probabilities can go down but this is always compensated by a higher
price so that pro�ts still increase with quality. This result is partly driven by the missing
production costs in this model. With such costs, this part of the result may be di�erent.
Note, however, that the existence of the lower bound qmin is not mainly caused by this
assumption.
Regarding this cuto� value of pro�table types, we did not yet say anything about its
exact value and its dependence on the parameters. In particular, the signal precision
variable κ does not appear in the so far established results. The example does not show
the upper and lower bound of possible values of qmin over all equilibria. Clearly, choosing
a di�erent location for the last discontinuity (instead of .99) would change the point from
which pro�ts start to be positive.
Before we present the next result, we brie�y think about the case of perfect information.
With κ = 0, quality information would be public and hence the only equilibrium in such a
market is that every type q sells its product for the �fair� price p = q with probability one.
The product would always be sold regardless of its quality. Of course, our assumption
of only having a �nite number of equilibrium price rules out this behavior. Nevertheless,
looking at the previous result, one may expect the lower bound qmin to approach zero in
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a comparative static analysis when κ becomes small. Otherwise convergence to the full
information case would not be possible in any sense.
The next result shows, however, that even the opposite phenomenon occurs. The result
is stated for the special case in which the type's distribution is uniform.

Theorem 5.2 (Market breakdown on perfect information). Let the �rm type q be uni-

formly distributed over [0, 1]. With signal precision approaching perfect information

(κ → 0), the maximal12 expected amount of sold goods over all locally continuous equi-

libria converges to zero.

The following proof of this theorem shows very nicely that the market breakdown is
caused by the interplay of quality types who are close to each other. The incentive
compatibility constraints for types on adjacent steps of the price function dictated that
the length of these steps can not get arbitrarily large. This e�ect gets more extreme in
a way that even the sum of these length is bounded with the bound going to zero as κ
becomes small.

Proof. For �xed κ > 0, let (π,E, α) be a locally continuous equilibrium. Proposition 5.2
implies that for all equilibrium prices pq the set Q

∗
pq is an interval with endpoints q and

q or pq is the lowest equilibrium price. Using this, we have q − q = 2κ or E([q, q]) = pq.
The former case of having full length is only possible for the lowest price. Otherwise, the
pro�t of type q would be zero which is impossible for types strictly above qmin.
Theorem 5.1 shows that π is almost surely a step function. Because of the pro�t's
continuity, each type that lies on a discontinuity of the price function must be indi�erent
between setting either of the two adjacent prices.

In the case where π is a constant function above qmin, note that we have
13 qmin ≥ 1− 2κ

which converges to one with κ→ 0. In the same way, convergence of all price functions
with two steps can be shown. In fact, for every �xed number of steps, the corresponding
equilibria must yield uniform convergence of qmin to 1. But there is still an in�nite number
of possible steps and thus the convergence result does not follow from these thoughts.
However, it shows that for the following proof we can assume the price function to have
at least three di�erent prices. This also implies α > 0, otherwise the lowest type of each
step would get zero pro�t which is a contradiction.
Let q < r < t be three types that lay on adjacent discontinuities and denote p1 < p2 the
corresponding prices as depicted in Figure 5. Assume that p1 is not the lowest equilibrium
price. For κ low enough we can choose these values so that r is above 1

2 + κ. The prices
must be equal to the expected qualities over the intervals [q, r] and [r, t], respectively.
From the uniform type distribution it follows that p1 = q+r

2 and p2 = r+t
2 . Because of

the continuity of the pro�t function, the type r is indi�erent between setting price p1 or

12Technically, the existence of a maximum is not guaranteed and we should speak of a supremum, here.
13This is shown in the existence proof for locally continuous equilibria. Intuitively, having steps of a

size larger than 2κ, some types always send signals above s. This is not compatible with locally
continuous equilibria. The proof for any �nite number of steps follows with the same argument.
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rq t
p1

p2

Figure 5: The situation of q,r and t in the proof

p2. Hence the following equation holds.

φ(r, p1) = φ(r, p2)

(2)⇔ p1
1
2κ(r − q + α(2κ− (r − q))) = p2

1
2κ(α(2κ− (t− r)))

⇔ q+r
2 (r − q + α(2κ− (r − q))) = r+t

2 (α(2κ− (t− r)))
⇔ r2 − q2 + α(2κ(r + q)− (r2 − q2)) = α(2κ(t+ r)− (t2 − r2))

Reordering this, one gets

αt2 − 2καt+ (1− 2α)r2 − (1− α)q2 + 2ακq = 0

t2 − 2κt+ 1−2α
α r2 − 1−α

α q2 + 2κq = 0

and solving this for t yields

t =κ±
√
κ2 − 1−2α

α r2 + 1−α
α q2 − 2κq

=κ±
√

(κ− r)2 − 1−α
α (r2 − q2)︸ ︷︷ ︸

>0

+ 2κ(r − q)

α∈(0,1]
≤ κ+

√
(κ− r)2 + 2κ(r − q).

In other words, for each pair q, r we get an upper bound for the next discontinuity t
which is independent of the parameter α.
For expositional purposes, we introduce the notation t′ := t − κ which we use similarly
for the other variables. The inequality then becomes

t′ ≤
√
r′2 + 2κ(r′ − q′)

=
√
r′2 +

∫ r′2+2κ(r′−q′)

r′2

1

2
√
z
dz

≤r′ +
∫ r′2+2κ(r′−q′)

r′2

1

2
√
r′2
dz

=r′ +
1

2r′
2κ(r′ − q′)

r′≥1
2≤ r′ + 2κ(r′ − q′)
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which shows that for the adjacent values q, r and t we have

t− r = t′ − r′ ≤ 2κ(r′ − q′) = 2κ(r − q).

Take q0 the smallest (satisfying q0 >
1
2 + κ) such type that lays on a discontinuity of the

price function and let q1, q2, . . . be the following discontinuities. It follows that for all
n ∈ N we get

qn =q0 + (qn − q0) = q0 +
n∑
i=1

(qi − qi−1) ≤ q0 +
n∑
i=1

(2κ)i−1 (q1 − q0)︸ ︷︷ ︸
≤2κ

≤q0 +
n∑
i=1

(2κ)i ≤ q0 +
2κ

1− 2κ
.

Remember that qn must be equal to 1 for some n. Letting κ go to zero forces q0 to go to
1 uniformly for all equilibria.
Since all types below qmin ≥ q0 − 2κ are not able to sell their product, overall sales
necessarily converge to zero uniformly over all equilibria when κ goes to zero and q0
approaches one.

6 The Proof of Theorem 5.1

This section presents lemmas and their proofs necessary for establishing the result in
Theorem 5.1. They show how to use the properties of an expectation system and the
optimality of the �rm's behavior to determine the structure of an equilibrium price func-
tion.
As is shown below, the de�nition of an expectation system carries some properties
similar to Bayesian updating, thus allowing for a similar analysis without assuming - but
not excluding - perfect rationality on the consumer side.
The proofs of this section are presented directly after their corresponding statements.
We use the shape of the pro�t function for a given equilibrium price, as depicted in
Figure 3, very often. It is important to be familiar with the di�erent areas of its slope
to perfectly understand the proofs.
One of the main points we need to know about expectation systems in equilibria is
formulated in the following lemma which generalizes a property from Bayesian updating.

Lemma 6.1. In any equilibrium (π,E, α) and for each equilibrium price pq, at least one
of the points q and q and at least one of the points q and q are limit points of Qπpq .

The connection to the Bayesian case becomes clear if we remember the interval example.
The points q and q are then the endpoints of the interval. The lemma shows this property
in a weaker sense, only using the equilibrium system de�nition. Note that even in the
case of regular Bayesian updating, it can happen that not q but q is a limit point of Qπpq ,
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e.g. if we have two intervals [a, b] < [c, d] with c − a < 2κ and Exp(q|q ∈ [a, b]) = pq.
Then the point14 c = q is a limit point of Qπpq but q = c− 2κ < a is not.

Proof. We only show that q or q is a limit point of Qπpq . If any of these two points are
in Qπpq , we are done. Assume now that this is not the case. We construct a sequence of

types in Qπpq , converging to either q or q.
Start with any ε0 > 0 and observe that by de�nition of s the values E(pq, s − ε0) and
E(pq, s+ ε0) are not equal.

15

Consider the corresponding sets Qπpq ,s−ε0 and Qπpq ,s+ε0 . If one of them is not empty,
they can not be equal due to De�nition 4.1 (iii). This leaves two cases to consider.

First case: Qπp,s−ε0 = Qπp,s+ε0 = ∅

s s+ εs− ε q

κ

φ(·, p) = pno elements of Qpq

q = q

Figure 6: The situation of the �rst case

This situation is depicted in Figure 6. Because both sets are empty, we have Qπpq ,s ⊂
Qπpq ,s−ε0 ∪ Qπpq ,s+ε0 = ∅ and this is true for all smaller choices of ε0 > 0. From 4.1 (iii),
we know that E(pq, s) is strictly increasing in the signal within some interval around s.
Hence it follows that we have s = s and thus q = q. Since pq is an equilibrium price, there
must be some pro�table type q with π(q) = pq. The only way to make positive pro�t is if
this type is above s−κ and thus above q+ε0. Hence the type q sells with probability one
and we have φπ(q) = pq. By the monotonicity of φπ and since every type in the interval
(q, q) can attain this pro�t, we know that φπ(q′) = pq for all q

′ ∈ (q, q). Any two types
q′, q′′ in this interval, not setting the price pq, must have a selling probability in (0, 1) and
the same pro�t φπ(q′) = φπ(q′′) = pq. But φ(q′, π(q′)) = φ(q′′, π(q′′)) = pq is not possible
if π(q′) = π(q′′) 6= pq > 0 (see Figure 3, the same pro�t for the same price implies that
this pro�t is either zero or matches the price). It follows that each type in the interval
(q, q + ε0) sets a di�erent price. Since there are only �nitely many equilibrium prices,
this is a contradiction. Hence only the following, second case can occur.

Second case: Qπpq ,s−ε0 6= Qπpq ,s+ε0

14To see that we have c = q, note that for a signal s slightly below c− κ, we have Qπpq,s = [a, b] so that
the consumer is indi�erent. For signals above c− κ, we must have E(pq, s) > pq. This is dictated by
property (iv) of an expectation system. Hence c− κ = s and thus c = q.

15Since pq is an equilibrium price, s can not be on the limit of S = [−κ, 1 + κ]. With ε0 small enough,
the expressions are well-de�ned.
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Choose q0 in the (non-empty) symmetric di�erence of these two sets and note that we
have

q0 ∈[s− κ− ε0, s− κ+ ε0] ∪ [s+ κ− ε0, s+ κ+ ε0] = [q − ε0, q + ε0] ∪ [q − ε0, q + ε0]

By construction we have q0 ∈ Qπpq . Choose ε1 = 1
2 min(|q0 − q|, |q0 − q|) ∈ (0, ε02 ).

Repeating these arguments16, using the values ε1, ε2, . . ., we obtain a sequence (qn) in
Qπpq whose elements satisfy

|qn − q| < εn or |qn − q| < εn

for all n ∈ N. At least one of these two conditions is true for an in�nite number of indices
and hence there exists a subsequence of (qn) such that either the left or right inequality
is true for all of its elements. Since (εn) converges to zero, this subsequence converges to
either q or q. This limit is thus a limit point of Qπpq .
The proof for q or q being a limit point uses the same arguments, starting with s instead

of s. We omit this part of the proof.

Acknowledging this lemma, we say that a type is a pq-limit point if it is a limit point of
Qπpq .
While this intermediate result may seem innocuous, it is very important for the analysis
of the structure of equilibrium price systems. Knowing that these points are limit points,
the continuity of the pro�t function φπ implies that the corresponding pro�t of these
types must attain its maximum in the price pq. No other price can yield strictly higher
pro�ts to a �rm with these quality levels. Hence we have17

φπ(q) = φ(q, pq) or φπ(q) = φ(q, pq)

and

φπ(q) = φ(q, pq) or φπ(q) = φ(q, pq),

depending on which of these types has the limit point property described above.
The next result is the �rst direct step to determining the equilibrium price function. It
excludes two possible combinations of ordering pq- and pr-limit points when the order of
these two prices is known. Its proof is a direct application of the previous lemma.

Lemma 6.2. In an equilibrium, let pr < pq be two equilibrium prices and assume r ≥ q.
Then we have r < q.

16Since the �rst case leads to a contradiction, we always end up with the second case.
17Note, however, that for example the inequality π(q) = pq does not follow from φπ(q) = φ(q, pq). The

type pq may set a di�erent price. However, there are arbitrarily close types which set the price pq.
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Figure 7: The two situations excluded by lemma 6.2

Proof. Assume r ≥ q and r ≥ q as shown in Figure 7. This implies

γ(r, pq)
(2)
=

{
1
2κ

(
α(2κ− (q − q)) + r − q

)
r ∈ [q, q]

1
2κ

(
α(2κ− (r − q)) + r − q

)
r ∈ (q, q)

=

{
1
2κ

(
α(2κ− (r − r)) + α(r − r − (q − q)) + r − q

)
r ∈ [q, q]

1
2κ

(
α(2κ− (r − r)) + α(r − r − (r − q)) + r − q

)
r ∈ (q, q)

=

{
1
2κ

(
α(2κ− (r − r)) + α(r − q) + (1− α)(r − q)

)
r ∈ [q, q]

1
2κ

(
α(2κ− (r − r)) + α(r − r) + (1− α)(r − q)

)
r ∈ (q, q)

≥ 1
2κ α(2κ− (r − r))

(2)
=γ(r, pr)

in the case where r < q. If r ≥ q, this inequality is simple to show.

γ(r, pq) ≥ γ(q, pq) = 1 ≥ γ(r, pr)

The type r thus has a weakly higher change of selling for the high price pq than for the
price pr. Note that only in the case where γ(r, pq) = γ(r, pr) = 0 this does not lead to
a strictly higher pro�t when setting the high price. This case, however, would imply18

that q = r = q = r. Setting pr would thus be dominated by setting pq in the sense

that φ(q, pq) > φ(q, pr) whenever φ(q, pr) > 0 for any type q. No pro�table type could
optimally set pr; it would not be an equilibrium price.
Having φ(r, pq) > φ(q, pr) shows that r is not a limit point of Qπpr . It follows from
r ≥ q that r ≥ q and thus γ(r, pr) = γ(r, pq) = 1. Since pq is the higher price, we have
φ(r, pr) < φ(r, pq) so that r is also not a pr-limit point. This contradicts Lemma 6.1.

This lemma excludes the most extreme cases of negative price-quality relation. The pairs
(q, r) and (q, r) can not both be ordered opposite to the corresponding prices. Thinking
about the interval example, this implies that there can not be two intervals Qπpq < Qπpr
so that the higher price is only set by lower types.

We continue to use this lemma to show two further equilibrium properties which help us
to determine the form of equilibrium price functions.

18It is easy to see that a zero selling probability of r implies r = r. The equality φ(r, pq) = 0 implies
the �rst inequality of r ≤ q ≤ q ≤ r.
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Lemma 6.3. In every equilibrium, for every equilibrium price pq and corresponding

values q, q, q, q, we have:

(1) The set

Qπpq ∩
(

(q, q) ∪ (q, q)
)

is a null set.

(2) If q − q < 2κ and thus q 6= q, the points q and q are not both pq-limit points.

(3) If there exists ε > 0 such that Qπpq ∩ [q − ε, q + ε] = ∅, the interval [q, q] has full

length.

The last point may be a little surprising in that you may expect the set [q− ε, q+ ε] to
always contain a type of Qπpq . To see that this needs not always to be the case, imagine
pq = .5, κ = .1 and Qπpq = [.2, .3] ∪ [.7, .8]. We then have E(pq, .4) = .3 < pq < .7 =
E(pq, .6). In what follows, it is possible to have s = s = .5 so that [q, q] = [.4, .6] which
has full length. A narrow environment of this interval contains no element of Qπpq .

Proof. Proof of (1)

Note that this is trivial if q = q and thus also q = q. If q < q, we also have s < s and

thus Qπpq ,s and Qπpq ,s′ are non-empty19 and we have E(pq, s) = E(pq, s
′) for every pair

s, s′ ∈ (s, s). By property (iv) of an expectation system, this implies that

Qπpq ∩
(

(q, q) ∪ (q, q)
)
⊂

⋃
s,s′∈(s,s)∩Q

Qπp,s4Qπp,s′

is a null set.

Proof of (2)

From q− q < 2κ we know that q 6= q = q+ 2κ. Assume that q and q are pq-limit points.
Pick any type r ∈ (q, q) with corresponding prize pr = π(r) 6= pq. This is possible due
to the �rst point of this lemma. Note that because q and q are limit points for pq, we
must have φ(q, pr) ≤ φ(q, pq) and φ(q, pr) ≤ φ(q, pq) while in r, the opposite is true:
φ(r, pr) ≥ φ(r, pq). Since the slope of φ(·, pq) has the constant value 1−α

2κ pq in the whole
interval (q, q), it follows that the slope of φ(·, pr) must be weakly above this value in
some point between q and r while it is weakly smaller than this value in (r, q).
If the slope of φ(·, pr) also had the constant value 1−α

2κ pq in the whole interval (q, q)
there are two options, either having αpr = (1− α)pq or pr = (1− α)pq. Refer to Figure
3 to see this.
In the �rst case, we had r ≤ q < q ≤ r which implies via (1) that the set of types setting
pr in the interval (q, q) is a null set and there is a di�erent price that we could have

19Formally, there can not be two such empty sets over all possible values of s and s′ (see by De�nition
4.1 (iii)). It is trivial that, if at most one of these sets is empty, none of them are.
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chosen in the beginning. We assume without loss of generality that this is the case.20

The second possibility pr = (1 − α)pq implies pr < pq and r ≥ q which is excluded by
Lemma 6.2.

The slope of φ(·, pr) is hence weakly decreasing and not constant over the whole interval
(q, q). Again referring to Figure 3, we deduce that r ∈ (q, q). To see this, note that r
and r are the only points at which the pro�t φ(·, pr) from setting the price pr strictly
decreases. One of these values thus has to be in the interval (q, q). If this is not true for
r, we had q < r < q ≤ r which also implies q ≤ r. Moreover, comparing the slopes in the

interval (r, q) it yields 1−α
2κ pr <

1−α
2κ pq and hence pr < pq. This constitutes a situation

which is, again, excluded by Lemma 6.2.

q qr r

φ(·, pr)

φ(·, pq)

Figure 8: The situation of the proof, and the development of the di�erent pro�t functions

We now know that r < q and hence pr = φ(q, pr) ≤ φ(q, pq) = pq. Since the prices are
not equal, even the strict inequality is true. This shows that q < r, otherwise the slope
of φ(·, pr) would never be below the one of φ(·, pq) in the interval (q, q).
From the continuity and monotonicity of the pro�t functions, we know that there must
be an interval (close to q) contained in (r, q) in which the pro�t from setting pq is strictly
higher than from setting pr. Figure 8 shows the situation. Again by the �rst part of this
lemma, we can �nd a type t in this interval that does not set the price pq (and does not
set qr, as well, since it does not yield the highest pro�t). Using the same arguments as
before, we end up with another equilibrium price pt which is strictly below pq (for the
same arguments) but must be strictly above pr since type t > r sets this price and thus

pr = φ(t, pr) < φ(t, pt) ≤ pt.
The relation of the functions φ(·, pt) and φ(·, pq) follow as before, using the same reason-
ing.
By further repeating these arguments, we end up with an in�nite and strictly increasing
sequence of equilibrium prices which are all below pq. This contradicts the assumption
that there can only be �nitely many prices in an equilibrium.

Proof of (3)

20The new price pr′ can not have the same property since then we would have αpr = (1− α)pq = αpr′ .
This contradicts pr 6= pr′ .
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Assume that [q, q] does not have full length, i.e. s < s. The situation is given in Figure
9.
If there are s < s′ in (s, s) with Qπpq ,s = ∅ = Qπpq ,s′ , we have E(pq, s) < E(pq, s

′) by

property (iii) of an expectation system.
If there are no two such signals, de�ne ε′ = min{ε, s−s4 } (which is strictly greater than
zero by the assumptions) and pick two points s ∈ (s, s + ε′) and s′ ∈ (s − ε′, s). Figure
9 shows the situation. By construction we now have s < s < s′ < s. Note that Qπpq ,s
contains no element above q − ε while Qπpq ,s′ contains no element below q + ε. By the

assumption of this paragraph, we can choose s and s′ so that these sets are not empty.
Then we have

supQπp,s < q < q < inf Qπp,s′

which, by property (i), also implies E(pq, s) < E(pq, s
′).

s sq q

ε εs s′

Figure 9: The situation in (3).

In both cases, the resulting inequality E(pq, s) < E(pq, s
′), is a contradiction to s, s′ ∈

(s, s).

Having the monotonicity result of Lemma 6.2, one might think that this relation is even
more extreme and that the ordering q ≤ r could never occur with pr < pq. The following
lemma indeed shows that, although the case itself is not excluded, the implication for
the order of pro�table types setting the two prices is preserved.

Lemma 6.4. In an equilibrium, let pr < pq be two equilibrium prices. If r ≥ q and r > q
(the case of Lemma 6.2), we have

Q∗pr < Q∗pq .

If additionally r > q, the interval [q, q] has full length.

q q

rr
pr

pq

Figure 10: The situation of Lemma 6.4.
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Proof. A picture of the situation at hand is given in Figure 10. First, consider the strict
case r > q. For all q ≥ q we have φ(q, pq) > φ(q, pr) since

γ(q, pq) = 1
2κ

(
α(2κ− (q − q)) + q − q

)
≥ 1

2κ (α(2κ− (q − r)) + q − r)
= γ(q, pr) > 0

so that we have φ(q, pq) = pq · γ(q, pq) > pr · γ(q, pr) = φ(q, pr). With higher types than
q, the left hand side of this inequality grows faster than the right hand side until the
value q from where we have φ(q, pq) = pq > pr ≥ φ(q, pr). This shows that r (which
is above q) is not a pr-limit point. We thus know that r is a pr-limit point and hence
φ(r, pr) ≥ φ(r, pq).
It follows that

φ(q, pr) =φ(r, pr)−
∫ r

q
φ′(t, pr)dt

=φ(r, pr)−
∫ r

q

αpr
2κ

dt

>φ(r, pq)−
∫ r

q

pq
2κ
dt

=φ(r, pq)−
∫ r

q
φ′(t, pq)dt

=φ(q, pq),

using that both of these functions are di�erentiable in the non-empty interval (q, r).
Finally, since r < q, we have r < q, thus φ(q, pq) = 0 < φ(q, pr). These inequalities imply

that neither q nor q is a limit point of Qπpq . Using Lemma 6.3 (2), we see that [q, q] has

full length.

Observe now that the function φ(·, pq) always has a strictly higher slope than φ(·, pr) in
the interval (q, q). Together with the inequalities

φ(q, pq) = 0 < φ(q, pr) and φ(q, pq) = pq > φ(q, pr)

this proves the existence of a �critical type� qc with φ(q, pq) < φ(q, pr) whenever q <

q < qc and φ(q, pq) > φ(q, pr) if q > qc. Note that also no pro�table type below q sets

the price pq since then the pro�t would be zero. This proves Q∗pr ≤ qc ≤ Q∗pq and thus
Q∗pr < Q∗pq since the sets are disjoint.

The special case r = q needs a di�erent treatment. As before, having r < q implies that q
is a limit point of Qπpq . If q also was such a limit point, the proof above works and we are
done. Hence, we consider the case in which q is a limit point and thus φ(q, pq) ≥ φ(q, pr).
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If this inequality was strict, r = q could not be a limit point of Qπpr . The same obviously
holds for r = q which gives a contradiction to Lemma 6.1.
Having φ(q, pq) = φ(q, pr), it follows that φ(t, pq) > φ(t, pr) for all t > q = r and
φ(t, pq) < φ(t, pr) for t ∈ (r, q). This again can be seen by comparing the slopes of the
pro�t functions. Hence Q∗pr < Q∗pq .

The previous lemmas deal with the counter-intuitive cases in which, although the price
pr is lower than pq, the order q ≤ r holds and thus there could be a negative quality-price
relation. In what follows, we show what happens if this relation has the �natural� order
r < q.

Lemma 6.5. Let pr < pq be two equilibrium prices with r < q. Then we have r ≤ q and
Q∗pr ≤ q ≤ Q∗pq a.s.21.

q q

rr
pr

pq

Figure 11: The situation excluded by Lemma 6.5
.

To prove this statement, we use the following intermediary result.

Lemma 6.6. Let pr < pq be two equilibrium prices with r < q and q < r. Then there

exists another equilibrium price pt such that either

pq < pt, t < r and t > r

or

pt < pr, t < q and t > q

holds.

Proof. We have

γ(r, pq) = 1
2κα(2κ− (q − r))
≥ 1

2κα(2κ− (r − r))
=γ(r, pr).

Note that we always have γ(r, pq) > 0 since q < r and thus q < r ≤ r. Hence the

inequality above implies

φ(r, pq) = pq · γ(r, pq) > pr · γ(r, pr) = φ(r, pr)

21The �almost surely� notation is only necessary in a very special case, as one can see in the proof.
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Figure 12: The two situations with the new equilibrium price pt

so that r is not a pr-limit point.
The condition q < r implies φ(r, pq) > φ(r, pr) = 0. This also proves that r and r must
be limit points for pr. Using Lemma 6.3 (2), this shows that the interval [r, r] has full
length, hence r = r.
Assume now that φ(q, pq) ≤ φ(q, pr). From this it follows that φ(q, pq) < φ(q, pr) for all
q ∈ [q, q), implying that not q but q is a limit point of Qπpq . But since q− q < r− r ≤ 2κ,
Lemma 6.3 (2) then implies that q is not such a limit point. This proves the existence
of ε > 0 such that [q − ε, q + ε] ∩Qεpq is empty22, implying by Lemma 6.3 (3) that [q, q]
has full length. This case is excluded in the situation at hand.

rq

φ(·, pq)

φ(·, pr)

T

Figure 13: The type t is chosen from the open interval T .

We now know that φ(q, pq) > φ(q, pr). By continuity, the same is true for an interval T
of types above q (See Figure 13). Take any type t in this interval with π(t) 6= pq. It exists
by Lemma 6.3 (1) and since q < q. We know that the corresponding price pt := π(t) is
also not equal to pr since it is not optimal for t to set pr. We can assume from Lemma 6.3
(1) that t has been chosen with t /∈ (t, t) ∪ (t, t)23. There are two cases left to consider.

First case: t ∈ [t, t]
Then we also have t ≥ t > q.

22This is true even if we had, φ(q, pq) = φ(q, pr). The non-existence of such an ε would make q a pq-limit
point, thus causing a contradiction.

23Otherwise, take a di�erent t from the interval T . Since there are only �nitely many prices and thus

�nitely many sets of the form (t, t) ∪ (t, t)) which are all null sets, there exists a t ∈ T which is not
in any of these sets.
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First, assume pt < pq. We know from Lemma 6.2 that t < q which is the situation
of the lemma. Hence with the same reasoning, we can show that [t, t] has full length.
Moreover, we have pt < pr. Otherwise, Lemma 6.2 shows r < q and hence the inequality
φ(t, pt) > φ(t, pr) implies φ(r, pt) > φ(r, pr) which is a contradiction to r being a pr-limit
point. We thus have pt < pr and (via Lemma 6.2) t < r < q and t > q. This is the
second case stated in the lemma.
Second, assume pt > pq and thus also pt > pr. Because of the higher slope of φ(·, pt)
compared to φ(·, pr) in the interval (t, t), we have t < r = r. Otherwise r could not be
a pr-limit point. Lemma 6.2 now implies t > r. This satis�es the �rst of the two cases
stated in the lemma.

Second case: t ≥ t
From t ≤ t < r we know

pt = φ(r, pt)
r is pr-limit point

≤ φ(r, pr) ≤ pr

so that pt < pr < pq. Note that we must have t > q. This can be seen by observing that
otherwise the slope of φ(·, pq) is always higher than the slope of φ(·, pt) in the interval
(q, t). Since φ(t, pt) ≥ φ(t, pq), the strict inequality would hold within this interval,
making it impossible for any type in [q − ε, q + ε] (for some ε > 0) to optimally set the
price pq which, again by Lemma 6.3 (3), gives a contradiction.
Knowing t > q and pq > pt, Lemma 6.2 dictates t < q.
We thus have t > q, t < q and pt < pq. This is the second of the two possibilities stated
in the lemma.

With this result we continue to prove the original statement.

Proof of Lemma 6.5. Assume that we had q < r. Denote pmin = pr, pmax = pq. Applying
Lemma 6.6, the resulting price pt is either higher or lower than both, pmin and pmax.
Rede�ne these values so that pmin and pmax are the most extreme of these three prices,
note that the new values of pmin and pmax satisfy the assumptions of Lemma 6.6. We
can thus repeat these arguments over and over, ending up with an in�nite number of
equilibrium prices. This contradicts the assumption of �nitely many equilibrium prices
and proves q ≥ r.

It is left to show that the two sets Q∗pr and Q
∗
pq can be strictly separated as stated in the

lemma. This again has to be done considering multiple cases.

First Case: r < q
It then follows that q is a limit point of Qπpq (since r < q, q can not be a pq-limit

point). From Lemma 6.3 we know that q is not a limit point but q is. We thus have
φ(q, pq) ≥ φ(q, pr). In the whole interval [q, q], the slope of φ(·, pq) is greater than the
one of φ(·, pr). Hence φ(q, pq) > φ(q, pr) for all q > q. In the other direction, note that
r < q implies r < q so that 0 = φ(q, pq) < φ(q, pr). The slope of φ(·, pq) is constant while
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the slope of φ(·, pr) is non-decreasing in [q, q]. This proves the existence of some t ∈ (q, q)

with φ(q, pq) > φ(q, pr) if q > t and φ(q, pq) < φ(q, pr) if q ≤ q < t. Thus Q∗pr ≤ t ≤ Q∗pq .

Second Case: r = q, r > q

We show that this situation is not possible and leads to a contradiction. We have, since
r < q,

φ(r, pr) =
αpr
2κ

(r − r) < αpq
2κ

(r − r) =
αpq
2κ

(r − q) = φ(r, pq).

From this, it follows that r is a limit point of Qπpr . Note that, since q = r, the slope of
φ(·, pq) is higher than the one of φ(·, pr) in the whole interval [q, r]. For φ(r, pr) ≥ φ(r, pq)
to be possible, we thus have φ(q, pq) < φ(q, pr) and φ(q, pq) < φ(q, pr). By continuity,
this shows that

Qπpq ∩ [q − ε, q + ε] = ∅

for some ε > 0. Lemma 6.3 (3) then implies that [q, q] has full length. But the assump-
tions of the second case imply

q − q < q − r < q − q = 2κ.

Third case: r = q, r = q

It follows that the interval [r, r] has full length. If pr > αpq, the claim Q∗pr < Q∗pq
automatically follows from observing that the slope of φ(·, pr) is strictly higher than
φ(·, pq) before the point q and strictly lower afterwards. A similar argument holds if
pr < αpq, the slope always being lower and thus contradicting pr being an equilibrium
price. No type can make positive pro�t when setting this price. Both of these cases are
shown in Figure 14.

r = r = q q

Figure 14: The situation of the third case when the price is high (dashed) or low (dotted).

A special case appears when pr = αpq. All types in the interval [q, q] are then indi�erent

between setting pq or pr. While we know that only a null set of types in this interval can
actually set pq, this would still be enough for the inequality Q∗pr < Q∗pq not to be true.
However, it is enough to observe that this inequality holds almost surely.
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Lemma 6.7. Let pr < pq be two equilibrium prices with r ≤ q. Then we have Q∗pr <
Q∗pqa.s..

This lemma covers the intuitive case in which the intervals [r, r] and [q, q] are ordered
according to their prices. The proof is rather easy, compared to the previous lemmas.

Proof. As before, r < q implies that q is a pq-limit point.
If [q, q] has full length, the slope of φ(·, pq) is higher than the one of φ(·, pr) in the whole
interval [q, q]. For values q > q = q we then have φ(q, pq) = pq > φ(q, pr). This proves
the existence of t ∈ (q, q) so that

φ(q, pq) > φ(q, pr) if q > t, φ(q, pq) < φ(q, pr) if q < t,

proving the inequality Q∗pr < Q∗pq .

If [q, q] does not have full length, Lemma 6.3 (2) shows that q is not a pq-limit points, so
q is one. We thus have φ(q, pq) ≥ φ(q, pr) and φ(q, pq) > φ(q, pr) for all types q > q (using
the usual argument of φ(·, pq) growing faster than φ(·, pr)). Hence Qπpr ≤ q. Lemma 6.3
(1) tells us that only a null set of pro�table types below q can set the price pq so that we
have Q∗pr ≤ q ≤ Q∗pqa.s. which concludes the proof.

Finally, having these lemmas as preparation, we are able to proof our main theorem.

Proof of Theorem 5.1. First assume the existence of an equilibrium. Let p1 < . . . < pn
be the equilibrium prices. The previous lemmas show that for each two indices i < j,
the order of corresponding types setting the prices pi < pj almost surely satisfy Q∗pi <
Q∗pj .Using this, we have Q∗p1 < . . . < Q∗pna.s.. Every type t in the non-empty set Q∗p1
is pro�table by de�nition. Since the pro�t function is monotone in the type, all higher
types also make positive pro�t and must hence set an equilibrium price. This shows
that

⋃n
i=1Q

∗
pi ⊃ (inf Q∗p1 , 1] so that all types above qmin := inf Q∗p1 set one of the prices

p1, . . . , pn. Thus π is almost surely a non-decreasing step function when being restricted
to types above qmin.

The existence of an equilibrium is easy to show, noting that every constant price function
π(q) = p constitutes an equilibrium, independent of the indi�erence strategy α. This can
easily be seen by noting that E(p, s) is uniquely determined by regular Bayesian updating
and that for every other price, E(·, s) can be set low enough like in the existence proof of
Lemma 4.2 to not allow bene�cial deviations. The construction of an expectation system
in the proof of Lemma 4.2 is done in this way. By this construction, the price p always
maximizes the �rm's pro�t and we have an equilibrium. Note that the parameter α can
be chosen arbitrarily.

7 Conclusion and Discussion

We studied a model of quality uncertainty, modi�ed in such a way to admit a continuum
of possible quality types and a costless extra quality signal for the consumer. The analysis
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shows that the price of the good depends on the quality in a positively correlated way in
that a �rm with a certain quality level never sets a higher price than if it would with any
higher quality product. Hence in every equilibrium, the price behavior is a step function.
An interesting aspect of the model is the result of having a clear equilibrium pricing
structure which is not unique but always takes the form of a step function, at least
in those regions where actual trade takes place. A result obtained in a context which
does not require - but allows - full rationality and high computational capabilities on
the consumer side. Instead, our concept of an expectation system, skipping the step
of Bayesian updating in most settings and thus generalizing the concept of Bayesian
equilibria, gives an answer to the criticism on the �homo economicus� assumption present
in the vast majority of economic literature. At the same time, the class of consumers for
which this result holds contains the completely rational behavior.
Of course, once the monotonicity of price behavior is established, the form of the price
function follows from our assumption of having only �nitely many equilibrium prices. As
explained in the text, this assumption is not unrealistic in many settings. There are, for
example, only �nitely many prices that you can encounter in a supermarket (assuming
there is an upper bound for how much an item can cost). But it is worth mentioning
that even without this assumption, pricing behavior must leave some ambiguity. If the
pricing function π was one-to-one, prices would perfectly signal the quality and thus the
extra signal does (at least in equilibrium) not convey any information. If the signal had
a marginal cost, the consumer would not choose to acquire it, thus only rely on price
information and give lower quality levels an incentive to deviate. Similar arguments
to the ones in Section 3 would apply to this situation. Moreover, in classical signaling
games, the result of imperfect signaling even in the case where there are �enough� signals
for perfect signaling, is common in the presence of a sender and a receiver with di�erent
objectives. The �rst to show this were Crawford and Sobel (1982). It is thus not at all
clear whether the step function price behavior disappears if we relax our assumptions.

One of the most remarkable features of this model is certainly the fact that in the limit
of perfect information, the maximum trade amount over all possible equilibria uniformly
converges to zero, thus admitting an entirely di�erent limit behavior than in the limit
case of perfect information where the only equilibrium admits perfect trade for all quality
types. Moreover, the proof of this phenomenon shows that it is indeed the continuum of
types which causes this result.
While having more than two and even a whole interval of possible types is certainly
more realistic than in many of other discussed models, our model is farther from the true
situation in di�erent aspects. We do not even claim that the case discussed here is closer
to reality than certain other models with two quality levels (as for example given in the
�rst chapter). However, this work should serve as a warning that in lemon markets, some
simpli�cation assumptions may not at all be innocuous.
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8 Appendix

Proof of Proposition 3.2. For two equilibrium prices p > p′, we must have γ(p) < γ(p′),
otherwise the price p′ would never be set by any type which makes positive pro�t, since
the higher price p has a higher chance of selling and thus dominates setting p′. Hence
the consumer strategy γ must be strictly decreasing in the equilibrium prices.
Take any �rm type q and let p be the price set by that type. For any other equilibrium
price p′, we thus have

γ(p)(p− c(q)) ≥ γ(p′)(p′ − c(q)).

Take such a price p′ with p′ < p and let q′ be a higher quality level than q with a strictly
higher production cost. We have γ(p) < γ(p′) and thus

γ(p)(p− c(q′)) =γ(p)(p− c(q)) + γ(p)(c(q)− c(q′))
>γ(p′)(p′ − c(q)) + γ(p′)(c(q)− c(q′))
=γ(p′)(p′ − c(q′))

so that higher quality level than q never sets a lower price than p. Hence we have
monotonicity in the price function.

Proof of Lemma 4.2. We perform the proof by construction of a function E, given any
price function π. It is enough to de�ne the function value for a �xed price p since all of
the properties only involve one price. If Qπp = ∅, we can just choose E(p, s) = p s+κ

2(1+2κ) ∈
[0, p2 ]. This obviously satis�es the de�nition and ensures that the consumer always strictly
prefers to abstain from buying which later becomes important for the out-of-equilibrium
consumer reaction in equilibria. In the case of p = 0, choose any increasing function. If
Qπp 6= ∅, the property (v) of the de�nition determines the value of E(p, s) for every signal
in the set

SI :=
{
s ∈ S|Qπp,s is a non-empty interval (including singletons)

}
.

It is clear, since Qπp,s is �increasing� (in an obvious sense) in s and the Bayesian posterior
depends only on the set Qπp,s (not on p and s itself), that these values do not violate the
other properties of the de�nition.

In what follows, we extend the function E(p, ·) to the whole space S. De�ne the non-
empty set

S6=∅ :=
{
s ∈ S|Qπp,s 6= ∅

}
.

On S6=∅, de�ne the non-decreasing functions

E(s) := supQπp,s

E(s) := inf Qπp,s.
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We can easily extend this function to the set S∅ := S \ s 6=∅ in a way that ensures
E(s) < E(s) for all s /∈ SI .24
Take any s ∈ S6=∅ \ SI . De�ne

σ := sup
{
s′ ∈ SI , s′ < s

}
, σ := inf

{
s′ ∈ SI , s′ > s′ ≥ s

}
and e := sup

{
E(p, s′)|s′ ∈ SI , s′ < s

}
, e := inf

{
E(p, s′)|s′ ∈ SI , s′ > s

}
,

the endpoints of the maximum interval of types around s for which E is not yet de�ned
and the maximal and minimal value until these points. If one or both of these sets are
empty, set (σ, e) = (−κ, 0) or (σ, e) = (1 + κ, 1), respectively. Figure 15 shows the
situation.

E(s)

E(s)

SI SI

E(p, s)

S6=∅ \ SI

e

e

σ σ

Figure 15: The situation of the proof after de�ning E(p, s) on the set SI . The situation
at σ shows the special case in which E(p, σ) = E(σ) = E(σ).

To �nd values for the expectation system in the interval (σ, σ)25, it su�ces to show
that we have E(s) > e and E(s) < e for all signals s in this interval. We can then
choose values for E(p, s) in the never-empty corridor

(
max {e, E(s)} ,min

{
e, E(s)

})
(for

s ∈ (σ, σ)) in accordance to the expectation system de�nition (Letting it be constant
when the sets Qπp,s do not change and strictly increasing when they are empty). We only
show the left inequality, the other direction using the same argument.
Note that we have e ≤ E(σ) ≤ E(s) for all signals in the interval. The �rst inequality
is not strict if and only if E(σ) = E(σ)26. But in this case, σ is in SI , while signals s′

slightly above σ are not. This implies e = E(σ) = E(σ) ≤ E(s′) < E(s′), the strict
inequality using the property from our extension of E,E to S∅.

24If s ∈ S 6=∅, we know that Qπp,s contains at least two elements. For the extension to s ∈ S∅, note that

supQπp,s′ < s− κ < s+ κ inf Qπp,s′′ ∀ s′, s′′ ∈ S6=∅, s′ < s < s′′.

Any two strictly increasing extensions with values in [s− κ, s+ κ] ∩ [0, 1] does the job.
25This interval could be empty in special cases. For single points like σ and σ one can just choose an

appropriate value in [e, e], keeping in mind the monotonicity assumptions of De�nition 4.1.
26To see this, note that the density f has a positive minimum value so that there is β ∈ (0, 1) with

E(p, s) < βE(s) + (1 − β)E(s). A picture of such a special case (for σ) is given in Figure 15. The
statement is trivially true in the �border� cases when σ = −κ or σ = 1 + κ.
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Proof of Lemma 4.3. The existence and uniqueness follows just from item (ii) of an ex-
pectation system. Note that we can have s = s ∈ {−κ, 1 + κ} in the case where the
expectation is never or always higher than the price.
Let now π be a price function to which E is an expectation system. Assume that
s− s > 2κ. Then there exist s < s < s′ < s with s′ − s > 2κ and E(p, s) = E(p, s′) = p.
De�nition 4.1 (iii) implies that one of the sets Qπp,s and Q

π
p,s′ is not empty. If none of

them is empty, we have

E(p, s) ≤ supQπp,s < inf Qπp,s′ ≤ E(p, s′)

which is a contradiction.
If Qπp,s is empty, choose some s′′ with s < s′′ < s′ − 2κ < s′. Then either Qπp,s′′ is not
empty (hence the argument above applies) or it is empty and we have by De�nition 4.1
(iii) and (ii)

E(p, s) < E(p, s′′) ≤ E(p, s′),

again contradicting the equality of the left and the right expression.
The case of Qπp,s′ = ∅ uses the same arguments.

Proof of Lemma 4.4. Let q < q′ be two types. It then follows that

φπ(q′) ≥ φ(q′, π(q))

= π(q)
1

2κ

∫ q′+κ

q′−κ
α1E(π(q),s)=π(q)(s) + 1E(π(q),s)>π(q)(s)︸ ︷︷ ︸

=:β(s)

ds


= φπ(q) +

π(q)

2κ

(∫ q′+κ

q+κ
β(s)ds−

∫ q′−κ

q−κ
β(s)ds

)
≥ φπ(q)

where the �rst inequality comes from optimality. To see the last inequality, let s < s′ be
two signals. We then have the implications

E(π(q), s) > π(q)⇒E(π(q), s′) > π(q)

E(π(q), s) = π(q)⇒E(π(q), s′) ≥ π(q)

by using the monotonicity of E. In what follows, since α ≤ 1, β(s) ≤ β(s′). The left of
the two integrals is thus larger since the integration area contains higher signals.

We now prove the continuity of φπ. Although this looks like a standard envelope theorem
application, the function φ(q, p) is not continuous in the price component.
Let q ∈ (0, 1] be some type and let (qn) be a sequence of types below q, converging to
q. We have

φπ(q)
Monot.
≥ φπ(qn)

Optimality
≥ φ(qn, π(q)) ∀ n.
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Since the right hand side converges to φ(q, π(q)) = φπ(q) (φ(q, p) is continuous in q), φπ

is left-continuous.
For q ∈ [0, 1), let (qn) now be a sequence converging to q ∈ [0, 1) from below. For all
n ∈ N we have

φπ(qn)
Monot.
≥ φπ(q)

Optimality
≥ φ(q, π(qn)) ≥ φπ(qn)− C · (qn − q)

where C is an upper bound for the slope of φ(·, p), p ∈ [0, 1].27 Taking the limit shows
limn→∞ φπ(qn) = φπ(q) and thus right-continuity.

Proof of Lemma 5.2 (The Existence Part). Fix a price p̂ ∈ (1− κ, 1). We claim that the
constant price function

π(q) = p̂ ∀ q ∈ [0, 1]

can be part of a locally continuous equilibrium. For this, we have to construct an ex-
pectation system. Note that without the local continuity assumption, out-of-equilibrium
beliefs can just be taken low enough so that the buyer would never buy for any price other
than p̂. Now, we have to de�ne the values for E(p, s) for all signals s in an environment
of p̂ in a continuous way. In what follows, the construction of out-of-equilibrium beliefs
is taken not only in a locally but even in a globally continuous way, without the need to
restrict ourselfs to an environment of p̂.
Because Qp̂,s is always an interval, E(p̂, s) is given by Bayesian updating and is thus
strictly increasing in s. So there exists a pivotal signal ŝ ∈ (1− 2κ, 1 + κ) with

E(p̂, s) < p̂ ∀s < ŝ E(p̂, s) > p̂ ∀s > ŝ.

The existence and range of the signal comes from noting that signals close to 1 +κ prove
a quality above p̂ and that signals below 1− 2κ induce an expectation below 1−κ which
is below the price p̂.
For lower prices than p̂, we set

E(p, s) = E(p̂, s) · p
p̂
, s ∈ S, p < p̂.

This construction preserves the strict monotonicity (demanded by de�nition 4.1 (iii)) to
the lower prices and ensures E(p, s) > p⇔ E(p̂, s) > p̂ so that for all prices p no signal
can give a higher sale probability than the price p̂. Hence, deviation to a lower price is
not pro�table.
The case of higher prices is a bit trickier. Not only do we have to ensure that sale
probabilities do not increase when setting a higher price, they have to fall fast enough to
nullify the positive price e�ect.
Claim: There exists C > 0 such that E(p̂, s) ≤ E(p̂, ŝ) +C · (s− ŝ) for all s ∈ (ŝ, 1 + κ).
To proof this statement, note that we have

E(p̂, s) = Exp(q|q ≥ s− κ) =
∫ 1
s−κ qf(q)dq∫ 1
s−κ f(q)dq

27This upper bound can be chosen to be 1
2κ
, see Figure 3.
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by Baye's law, using De�nition 4.1 (v). Di�erentiating this expression with respect to s,
we get

∂

∂s
E(p̂, s) = 1

(
∫ 1
s−κ f(q)dq)

2 ·
(
−(s− κ)f(s− κ)

∫ 1

s−κ
f(q)dq + f(s− κ)

∫ 1

s−κ
qf(q)dq

)
= f(s−κ)

(
∫ 1
s−κ f(q)dq)

2 ·
∫ 1

s−κ
(q − (s− κ))f(q)dq

= f(s−κ)∫ 1
s−κ f(q)dq

· Exp(q − (s− κ)|q ≥ s− κ)

≤ fmax

fmin·(1−(s−κ)) · (1− (s− κ)) = fmax

fmin
=: C.

The values fmax and fmin refer to the maximum and minimum values of f . They exist
and are positive due to our assumptions. We now have

E(p̂, s) = E(p̂, ŝ) +

∫ s

ŝ

∂

∂t
E(p̂, t)dt ≤ E(p̂, ŝ) + C · (s− ŝ)

which proves the claim.

Having this parameter C, we de�ne the expectation for higher prices than p̂ as follows.

E(p, s) = E(p̂, s)
p

p̂+ C
(
1+κ−ŝ
p̂ (p− p̂)

)
This is a continuous expression in p and preserves the strict monotonicity in s for every
price. Now, we have

E(p, ŝ+
1 + κ− ŝ

p̂
(p− p̂)) = E

(
p̂, ŝ+

1 + κ− ŝ
p̂

(p− p̂)
)

p

p̂+ C
(
1+κ−ŝ
p̂ (p− p̂)

)
≤
(
E(p̂, ŝ) + C

1 + κ− ŝ
p̂

(p− p̂)
)

p

p̂+ C
(
1+κ−ŝ
p̂ (p− p̂)

)
=

(
p̂+ C

1 + κ− ŝ
p̂

(p− p̂)
)

p

p̂+ C
(
1+κ−ŝ
p̂ (p− p̂)

)
= p

which, because of the strict monotonicity, implies that a �rm can only sell for a price p
if the signal is above ŝ+ 1+κ−ŝ

p̂ (p− p̂). Hence, for every quality type q

φ(q, p) = p · γ(q, p) ≤ p
(
q + κ−

(
ŝ+

1 + κ− ŝ
p̂

(p− p̂)
))

≤ p
(
q + κ−

(
ŝ+

1 + κ− ŝ
p

(p− p̂)
))

= p(q − 1) + p̂(1 + κ− ŝ) ≤ p̂(q − 1) + p̂(1 + κ− ŝ)
= p̂(q + κ− ŝ) = p̂ · γ(q, p̂) = φ(q, p̂)
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in the case where γ(q, p) > 0. Otherwise we trivially have γ(q, p) = 0 ≤ φ(q, p̂). This
shows that a deviation to a higher price is not pro�table and we have an equilibrium.

The rest of the proof of Lemma 5.2. We �rst apply Theorem 5.1. Knowing that prices
are set due to a step function, the set Q∗pq is an interval for all equilibrium prices pq.
Lemma 6.3 (1) shows that in this case the interval [q, q] has full length or we have
Q∗pq ⊂ [q, q].
In the latter case, Lemma 6.1 implies that Q∗pq must be an interval with endpoints q
and q.

We thus only have to show that the former case can not occur. Note that, if pq is not
the lowest equilibrium price, the case of [q, q] having full length implies that, q = q is a
pq-limit point but q = q is not. Otherwise φπ(q) = φ(q, pq) = 0 so that there can be no

lower pro�table type. From this it follows that there must be a type q > q which sets
the price pq. Otherwise let

t := inf Q∗pq > q.

All signals in (q − κ, t + κ) 6= ∅ yield the same expectation due to property (iii) of an
expectation system. This expectation must be equal to the price. If it was lower, pro�ts
would be zero. If it was higher, the local continuity condition implies that type q could
set a marginally higher price and still sell with full probability, making it pro�table to
deviate. Having E(pq, s) = pq for all signals s ∈ (q − κ, t + κ) 6= ∅ is a contradiction to
[q, q] having full length.
The existence of the type q > q setting the price pq implies that E(q, s) > pq for all
signals s ∈ [q − κ, q + κ] so that for the same reason as before a higher price could be
demanded by type q under the local continuity condition.
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