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Abstract: We propose a dynamic auction mechanism for efficiently allocat-

ing multiple heterogeneous indivisible goods. These goods can be split into two

distinct sets so that items in each set are substitutes but complementary to

items in the other set. The seller has a reserve value for each bundle of goods

and is assumed to report her values truthfully. In each round of the auction,

the auctioneer announces the current prices for all items, bidders respond by

reporting their demands at these prices, and then the auctioneer adjusts simul-

taneously the prices of items in one set upwards but those of items in the other

downwards. We prove that although bidders are not assumed to be price-takers

and thus can strategically exercise their market power, this dynamic auction

always induces the bidders to bid truthfully as price-takers, yields an efficient

outcome and also has the merit of being a detail-free, transparent and privacy

preserving mechanism.
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1 Introduction

Our purpose is to provide a dynamic auction mechanism that can efficiently allocate multi-

ple heterogeneous indivisible goods to many bidders and at the same time induces bidders

to behave truthfully. An important feature of the auction is that it can handle a typical

pattern of complementarity among the goods. Traditionally, research has focused on ex-

amining auctions for selling a single item. However, over the last twenty years auctions

for selling multiple items have become popular and widespread use, see e.g., Klemperer

(2004) and Milgrom (2004) on auctioning spectrum rights. The past study has improved

our understanding of how the design of auction affects its outcome and also how a market

environment influences its auction design.

In a seminal paper, Ausubel (2006) develops an ingenious dynamic auction mechanism

for selling heterogeneous goods. His auction yields an efficient outcome, induces bidders

to bid sincerely as price-takers, and at the same time protects bidders’ private values from

being fully exposed. Therefore this auction not only maintains the important strategy-

proof property of the famous Vickrey-Clarke-Groves (VCG) mechanism but also overcomes

the informational inefficiency problem facing the VCG mechanism.4 More specifically,

Ausubel (2006) examines two auction models: In his first model, the goods are perfectly

divisible and bidders have strictly concave value functions, whereas in his second model, all

goods are indivisible and are viewed as substitutes in the sense that every bidder’s demand

for the goods satisfies the gross substitutes (GS) condition of Kelso and Crawford (1982).5

His analysis concentrates on the first model and is based on calculus and convex analysis.

This paper aims to show that we can extend and generalize Ausubel’s auction from the

setting with substitute goods to a more general and more practical setting that permits

complementarities among goods. More precisely, we examine an auction market where a

seller wishes to sell two disjoint sets S1 and S2 of heterogeneous items to many bidders

and has a reservation value for every bundle of goods. The seller trades her products

in order to maximize revenues. Generally, items in the same set Si are substitutes but

are complementary to items in the other set Sj. This relation is introduced by Sun and

4See Rothkopf, Teisberg, and Kahn (1990), Ausubel (2004, 2006), Perry and Reny (2005), Milgrom

(2007), and Rothkopf (2007) on the merits and demerits of the VCG mechanism in detail.
5In a seminal paper, Kelso and Crawford (1982) examine a job matching model and prove by a salary

adjustment process that there exists an efficient matching between firms and workers which is supported

by a system of competitive salaries, provided that every firm views all workers as substitutes. Gul and

Stacchetti (2000) propose an ascending auction for discovering a Walrasian equilibrium price vector in a

market where all goods for sale are substitutes. Milgrom (2000) introduces an ascending auction for selling

substitute goods and discusses its application to the sale of spectrum licenses in the USA. The crucial

difference between the first three processes and Ausubel’s is that the latter one is not only efficient but

also strategy-proof.
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Yang (2006) and called gross substitutes and complements (GSC).6 This fundamental

pattern captures many familiar and important situations. For instance, in the view of

manufacturing firms, workers and machines are typically complements, whereas workers

are substitutes and so are machines. In our earlier analysis (Sun and Yang 2009), we

propose a price adjustment process and show that this process always yields a Walrasian

equilibrium if all bidders are assumed to be price-takers. However, the important strategic

and incentive issues have not yet been addressed. In the current model, we assume instead

that every bidder has a private value on each bundle of the goods and may have an incentive

to economize on his private information. So in this setup, bidders are not assumed to behave

naively as price-takers and could strategically exercise their market power. Now the central

issue is how to devise a dynamic auction that can restore an incentive for bidders to act

truthfully as price-takers and at the same time yields an efficient outcome in this complex

environment where items for sale can create synergies.7

Built upon and improving the adjustment process of Sun and Yang (2009), we will

develop a strategy-proof dynamic auction design for the environment described above. The

auction works roughly as follows. Starting from an arbitrary price vector, the auctioneer

calls out the current price vector, bidders submit their demands at these prices, and then

the auctioneer adjusts the prices of over-demanded items in one set S1 (or S2) upwards but

those of under-demanded items in the other set S2 (or S1) downwards. We call this a double-

6Ostrovsky (2008) independently presents an analogous condition for a vertical supply chain model

with contracts where prices of goods are fixed and a non-Walrasian equilibrium solution is used. He proves

constructively the existence of stable matching under the condition, which allows complementarity between

upstream and downstream contracts. Hatfield and Milgrom (2005) introduce the notion of contracts to

matching models and establish the existence of stable matching for substitutable contracts. Hatfield et al.

(2013) examine a trading network which allows cycles. They show the existence of equilibrium under a

variant of GSC condition in the sense that every agent in the network has quasi-linear utility and views

his upstream (downstream) contracts as substitutes but upstream (i.e., buying in) and downstream (i.e.,

selling out) contracts together as complements. Their network is a directed graph in which agents are

nodes and both upstream and downstream contracts are directed edges. Baldwin and Klemperer (2013,

section 6), Sun and Yang (2011), and Teytelboym (2013, Chapter 3; 2014) independently study a related

but different type of competitive trading network also permitting cycles and demonstrate the existence of

equilibrium provided that the network does not contain any odd cycle and every agent’s demand for his

concerned goods satisfies the GSC condition. In contrast to Hatfield et al.’s network, this latter trading

network is an undirected graph in which each set of goods is a node, and every agent is an undirected

edge. See also Drexl (2013).
7Complementarities or synergies among items are known as a difficult issue in auction design and

equilibrium models and well-documented in Milgrom (2000, 2004), Jehiel and Moldovanu (2003), Porter

et al. (2003), Klemperer (2004), and Maskin (2005) among others. As pointed out by Kelso and Crawford

(1982), complementarity can even cause problems with existence of competitive equilibrium in the presence

of indivisibilities. Nonetheless, GS or GSC guarantees the existence of competitive equilibrium in economies

with indivisibilities.
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track auction because it simultaneously updates prices in two opposite directions (ascending

and descending). We show that this allocation mechanism always induces bidders to bid

sincerely and finds an efficient outcome in finitely many rounds. In particular, this auction

exhibits a significant strategic property that sincere bidding by every bidder is an ex post

strongly perfect equilibrium of the dynamic game of incomplete information induced by

the auction. More specifically, this means that after the auction has run up to any time

t∗, no matter what has happened up to t∗ and no matter whether it is now on or off an

equilibrium path, sincere bidding is an optimal strategy for every bidder i, as long as from t∗

on, every his opponent j bids sincerely according to a certain fixed GSC utility function ũj

which need not be his true GSC utility function uj. The notion of ex post strongly perfect

equilibrium is slightly stronger than the concept of ex post perfect equilibrium used in

Ausubel (2004, 2006). In addiction, this new auction guarantees ex post a nonnegative

payoff for every bidder no matter how his opponents bid in the auction.

This auction is also detail-free, robust against any regret and independent of the prob-

ability distribution of every bidder’s valuations over the goods. Another attractive feature

of this auction is that it is simple, transparent, and privacy-preserving in the sense of Hur-

wicz (1973) and Ausubel (2006); see Kearns et al. (2013) for a recent development on the

last issue. This auction does not only subsume and generalize Ausubel’s from the setting

with substitutes to the setting with both substitutes and complements, but also improves

Ausubel’s itself.8 Aside from the theoretical interest and general applicability of this dy-

namic auction, our analysis complements Ausubel’s which focuses on the model of divisible

goods and relies on calculus and convex analysis. In contrast to Ausubel’s analysis, ours is

quite different, elementary and intuitive, and can facilitate a better understanding of his

results. Unlike Ausubel (2006), Gul and Stacchetti (2000), Milgrom (2000), Sun and Yang

(2009), the current model permits the seller to have a reservation value for every bundle

of goods and allows her to maximize revenues, and thus makes the model closer to reality.

The proposed auction will also ensure a nonnegative benefit of trading for the seller.

The remainder of this paper goes as follows. Section 2 presents the auction model.

Section 3 describes the price adjustment process. Section 4 provides the main results.

Section 5 concludes with some practical applications.

8In each step of Ausubel’s auction, the auctioneer needs to compute the smallest or largest solution

of an optimization problem which typically has multiple solutions. We will show that this cumbersome

computation is not needed. This improvement is very useful for practical auction design. See Section 3 in

detail.
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2 The Auction Model

A seller (denoted by 0) wishes to auction a set N = {β1, β2, · · · , βn} of n indivisible items

to a finite group I of bidders. The items may be heterogeneous and can be divided into

two sets S1 and S2 (i.e., N = S1 ∪ S2 and S1 ∩ S2 = ∅). For example, one can think of

S1 as tables and of S2 as chairs. Items in the same set can be also heterogeneous. Let

I0 = I ∪ {0} denote the set of all agents (bidders and seller) in the market. Every agent

i ∈ I0 has a value function ui : 2N → IR specifying his/her valuation ui(B) (in units of

money) on each bundle B with ui(∅) = 0, where 2N denotes the family of all bundles of

items.9 It is standard to assume that ui is weakly increasing, and that every bidder (he)

can pay up to his value, and every agent has quasi-linear utilities in money. The seller (she)

is a revenue-maximizer while the bidders are profit-maximizers. Here we allow the seller

to have a utility function u0 and so the model can accommodate more practical situations

than the usual situation of assuming u0 to be always zero.10

A price vector p = (p1, · · · , pn) ∈ IRn indicates a price ph for each item βh ∈ N . Agent

i’s demand correspondence Di(p), the net utility function vi(A, p), and the indirect utility

function V i(p), are defined respectively by

Di(p) = argmaxA⊆N{ui(A)−∑
βh∈A ph},

vi(A, p) = ui(A)−∑
βh∈A ph, and

V i(p) = maxA⊆N{ui(A)−∑
βh∈A ph}.

(2.1)

Because the seller is a revenue-maximizer, the family of her retaining bundles at prices p

are given by

S(p) = argmax
A⊆N

{u0(A) +
∑

βh∈N\A
ph}.

We first have the following basic observation which will be used later. The proof of the

next result, and Lemma 2.3 and Theorem 3.1 will be relegated to the Appendix.

Lemma 2.1 For the seller, it holds that S(p) = D0(p).

An allocation of items in N is a partition π = (π(i), i ∈ I0) of items among all agents

in I0, i.e., π(i) ∩ π(j) = ∅ for all i ̸= j and ∪i∈I0π(i) = N . Note that π(i) = ∅ is allowed.

At allocation π, agent i receives bundle π(i). π(0) ̸= ∅ is the bundle of unsold items and

will be retained by the seller. An allocation π is efficient if
∑

i∈I0 u
i(π(i)) ≥ ∑

i∈I0 u
i(ρ(i))

for every allocation ρ. Given an efficient allocation π, let R(N) =
∑

i∈I0 u
i(π(i)). We call

R(N) the market value of the items which is the same for all efficient allocations.

9The seller’s value function u0 actually denotes her reservation price function and can be quite general.
10For instance, Gul and Stacchetti (2000), Milgrom (2000), Ausubel (2006), Sun and Yang (2009) assume

that the seller’s reservation value is zero.
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Let M denote the market with the set I0 of agents and the set N of items, and for each

bidder i ∈ I, let M−i denote the market M without bidder i. Let I−i = I0 \ {i} for every

bidder i ∈ I, and for convenience also let M−0 = M and I−0 = I0.

Next, we introduce two fundamental solution concepts for this auction model: the

Walraisian equilibrium and the Vickrey-Clarke-Groves (VCG) outcome.

Definition 2.2 A Walrasian equilibrium (p, π) consists of a price vector p ∈ IRn
+ and an

allocation π such that π(i) ∈ Di(p) for every bidder i ∈ I and π(0) ∈ S(p) for the seller.

In equilibrium (p, π), the seller retains the bundle π(0) of goods and collects the pay-

ment
∑

j∈I
∑

βh∈π(j) ph from her sold goods and thus her equilibrium revenue is u0(π(0)) +∑
j∈I

∑
βh∈π(j) ph. Notice that in Gul and Stacchetti (1999, 2000), Milgrom (2000), Ausubel

(2006), Sun and Yang (2006, 2009) it is assumed the seller values every bundle of goods

at zero and consequently in equilibrium all goods will be sold to bidders. In the current

model, because the seller has reservation value for every bundle, we need to slightly modify

the notion of equilibrium. The following lemma shows that the modification is appropriate.

Lemma 2.3 Let (p, π) be a Walrasian equilibrium. Then π is an efficient allocation.

The following defines the Vickrey-Clarke-Groves mechanism. The definition is slightly more

general than its standard one because here we permit the seller to have her own utility

function. The standard one assumes that the seller values everything at zero.

Definition 2.4 The VCG outcome is the outcome of the following procedure: every agent

i ∈ I0 reports his/her value function ui. Then the auctioneer computes an efficient alloca-

tion π with respect to all reported ui and assigns bundle π(i) to bidder i ∈ I and charges

him a payment of q∗i = ui(π(i)) − R(N) + R−i(N), where R(N) and R−i(N) are the

market values of the markets M and M−i based on ui (i ∈ I0), respectively. Bidder i’s

VCG payoff equals R(N)−R−i(N), i ∈ I.

To ensure the existence of a Walrasian equilibrium, it will be necessary for us to impose

some conditions. The most important one is known as gross substitutes and complements

condition, which is introduced and used in Sun and Yang (2006, 2009), and defined as

follows.11

Definition 2.5 The value function ui of agent i satisfies the gross substitutes and com-

plements (GSC) condition if for any price vector p ∈ IRn, any item βk ∈ Sj for j = 1 or 2,

any δ ≥ 0, and any A ∈ Di(p), there exists B ∈ Di(p+δe(k)) such that (A∩Sj)\{βk} ⊆ B

and (Ac ∩ Sc
j ) ⊆ Bc.

11The following piece of notation will be used. For any positive integer k ≤ n, e(k) denotes the kth unit

vector in IRn. Let Zn stand for the integer lattice in IRn and 0 the n-vector of 0’s. For any subset A of

N , let e(A) =
∑

βk∈A e(k). When A = {βk}, we also write e(A) as e(k). For any subset A of N , let Ac

denote its complement, i.e., Ac = N \A. For any finite set A, |A| denotes the number of elements in A.
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GSC says that agent i views items in each set Sj as substitutes, but items across the two

sets S1 and S2 as complements. In particular, when either S1 = ∅ or S2 = ∅, GSC reduces

to the gross substitutes (GS) condition of Kelso and Crawford (1982). GS requires that all

the items be substitutes, and thus excludes any complementarity among items. The GS

case has been studied extensively in the literature; see e.g., Kelso and Crawford (1982),

Gul and Stacchetti (1999, 2000), Milgrom (2000, 2004), and Ausubel (2006). Milgrom and

Strulovici (2009) examine substitute goods in a more general setting. Sun and Yang (2014)

investigate a related but different model in which all items for sale are complementary.12

The following three assumptions will be maintained throughout:

(A1) Integer Private Values for Bidders: Every bidder i’s value function ui : 2N → Z+

takes integer values and is his private information.

(A2) Integer Public Values for Seller: The seller’s value function u0 : 2N → Z+ takes

integer values and is public information, taking the form of u0(S) = u0
1(S ∩ S1) +

u0
2(S ∩ S2) for any S ⊆ N , where u0

h : 2Sh → Z+, h = 1, 2.

(A3) Gross Substitutes and Complements: The value function ui of every agent i ∈ I0

satisfies the GSC condition with respect to the two sets S1 and S2.

In the literature, the value of the seller over each bundle is usually assumed to be zero

and this information is made public. Here A2 is more general and can accommodate more

realistic situations where the seller’s reservation value over her goods for sale need not

be zero and may vary from one bundle to another. The seller’s utility over goods from

the two sets is separable but the utility over goods from the same set Sh need not be

separable and can be very general. Although the seller has a reservation value function,

she is assumed to reveal this function truthfully. This is a natural assumption from the

well-known impossibility result of Myerson and Satterthwaite (1983), saying that it is

impossible to design a trading mechanism even just for one buyer and one seller with one

12The major differences between Sun and Yang (2014) and the current one are (1) while in the current

model there are two sets of items, items of each set are substitutable and can be heterogeneous but are

complementary to items in the other set, goods in the model of Sun and Yang (2014) are all complementary;

(2) while the current model has a Walrasian equilibrium (Sun and Yang 2006) in which the pricing rule is

anonymous and linear, the model of Sun and Yang (2014) can only guarantee the existence of a nonlinear

pricing Walrasian equilibrium in which the pricing rule is anonymous but nonlinear; (3) while the current

auction is a blend of ascending and descending formats where prices are specified on individual items, the

auction of Sun and Yang (2014) is and must be a package auction in which prices are specified on bundles

of items; (4) there does not exist any transformation between the current model and Sun and Yang (2014)

and in fact the structure of equilibrium price vectors for the two models is inherently different; see Sun

and Yang (2009, Theorem 3, p. 937; 2014, Theorem 1, p. 432). These two models describe two typical,

basic, and closely related yet intrinsically different economic environments.
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item in such a way that it is optimal for the seller and the buyer to reveal their values

honestly; budgets are balanced; and the final allocation is efficient. Because of this, in

the literature on auction design it is often implicitly or explicitly assumed that the seller

(or auctioneer) acts honestly, while bidders may behave strategically; see e.g., Gul and

Stacchetti (2000), and Ausubel (2006).

3 The Price Adjustment Process

3.1 An Illustration

It is helpful to use a simple example to illustrate how an ascending (or descending) auction

might be plagued by the exposure problem and how the double-track auction overcomes

the problem to succeed in finding a Walrasian equilibrium. Consider now a market where

a seller wishes to sell two volumes A and B of a book to two buyers. Each buyer knows

his values privately and the seller does not know those values. Buyers’ values are given in

the Table 1, and the seller values every bundle at zero. Observe that every buyer views A

and B as complements.

Table 1: Buyers’ values over items.
∅ A B AB

Buyer 1 0 2 2 5

Buyer 2 0 2 2 5

The ascending auction: In an ascending auction, the seller initially announces a low

price vector of p(0) = (pA(0), pB(0)) = (0, 0) so that every buyer demands both A and B.

Buyers respond by reporting their demand sets at p(0): D1(p(0)) = D2(p(0)) = {AB}.
According to the reported demand sets, the seller subsequently adjusts the price vector

p(0) to the next one p(1) = p(0) + δ(0) = (1, 1) by increasing the price of every good by

1, because both goods are over-demanded at p(0). The seller faces a similar situation at

p(1) and p(2). The auction ends up with the price vector p(3) = (3, 3) at which no bidder

wants to demand the items anymore, and thus gets stuck in disequilibrium. We summarize

the entire process in the Table 2. The reader can also verify that starting with a high

price vector p(0) = (pA(0), pB(0)) = (q, q) for any integer q ≥ 6 so that no buyer demands

any item, a descending auction will terminate with the price vector p̄ = (2, 2) at which

both buyers demand both items, and thus get stuck in disequilibrium, too. We remind the

reader that prices in auction processes are adjusted in integer or fixed quantities, which

are common in practice.
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Table 2: The data created by the ascending auction for the example.
Price vector Buyer 1 Buyer 2 Price variation

p(0) = (0, 0) {AB} {AB} δ(0) = (1, 1)

p(1) = (1, 1) {AB} {AB} δ(1) = (1, 1)

p(2) = (2, 2) {AB} {AB} δ(2) = (1, 1)

p(3) = (3, 3) {∅} {∅} δ(3) = (0, 0)

The double-track auction: Unlike the previous two cases, in the current double-track

auction, the seller initially announces a price vector of p(0) = (pA(0), pB(0)) = (0, 6) (a

low price for item A but a high price for item B) so that every buyer demands only item

A and not item B. Buyers respond by reporting their demand sets at p(0): D1(p(0)) =

D2(p(0)) = {A}. Using the reported demands, the seller subsequently adjusts the price

vector p(0) to the next one p(1) = p(0)+ δ(0) = (1, 5) by increasing the price of A by 1 but

decreasing the price of B by 1, because A is over-demanded but B is under-demanded at

p(0). At p(1), the seller faces a similar situation. An interesting moment occurs when p(1)

advances to p(2) = (2, 4) at which B is clearly still under-demanded, but A can be seen

as either over-demanded or balanced. According to the rule of the double-track auction

to be discussed soon in detail, the seller treats A as balanced and so she adjusts p(2) to

p(3) = (2, 3) by decreasing the price of B by 1 and holding the price of A constant. At p(3),

the market reaches an equilibrium in which the seller can assign items A and B to buyer

1 and asks him to pay 5, while buyer 2 gets nothing and pays nothing. We can summarize

the entire process in the Table 3. Observe that in this process, the seller increases the

price of item A (since it is over-demanded) but decreases the price of item B (since it is

under-demanded) until the market is clear.

Table 3: The data created by the double-track auction for the example.
Price vector Buyer 1 Buyer 2 Price variation

p(0) = (0, 6) {A} {A} δ(0) = (1,−1)

p(1) = (1, 5) {A} {A} δ(1) = (1,−1)

p(2) = (2, 4) {∅, A} {∅, A} δ(2) = (0,−1)

p(3) = (2, 3) {∅, A,AB} {∅, A,AB} δ(3) = (0, 0)

3.2 The Formal Price Adjustment Process

In this subsection we give a detailed description of the double-track auction. In a dynamic

auction, at each time t ∈ Z+ and with respect to a price vector p(t) ∈ IRn, each bidder i

selects a bid Ci(t), a subset of 2N . We say that bidder i bids sincerely relative to value

function ui if his bid always equals his true demand correspondence, i.e., Ci(t) = Di(p(t)) =

argmaxA⊆N{ui(A)−∑
βh∈A ph(t)}.
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In this section we assume that bidders are price-takers and thus bid sincerely. We will

present a modified version of the double-track adjustment process introduced by Sun and

Yang (2009). This process always yields an equilibrium and provides a key ingredient for the

auction design in Section 4 where bidders i ∈ I are not assumed to behave as price-takers

and thus may act strategically. Throughout the paper, in the price adjustment process and

in the auction mechanism, at the beginning the seller reports her reserve price function

u0 to the auctioneer who then uses u0 to calculate the seller’s demand correspondence

D0(p(t)) at prices p(t) in every round t. Thus, the auctioneer (she) acts as a proxy bidder

for the seller. Recall that since by Lemma 2.1, D0(p(t)) = S(p(t)), the seller can act as a

bidder. In the sequel, the seller may be also called a bidder. Nevertheless, remember that

this proxy bidder always acts sincerely.

The price adjustment process makes use of the Lyapunov function L : IRn → IR defined

as

L(p) =
∑

βh∈N
ph +

∑
i∈I0

V i(p) (3.2)

where V i is the indirect utility function of agent i ∈ I0. Although the use of Lyapunov

function is well-known in the literature on economies with divisible goods (see Arrow and

Hahn (1971), and Varian (1981)), it was only recently explored by Ausubel (2005, 2006) in

a striking manner to deal with discrete economies with substitutes and extended by Sun

and Yang (2009) to the case including both substitutes and complements. Observe that

the Lyapunov function introduced above includes also the seller’s indirect utility function

V 0 and is more general than those previously used in the literature.

By Sun and Yang (2009, Lemma 1 and Theorem 3), the Lyapunov function L defined

above is a convex function and has its minimizers, which correspond to equilibrium price

vectors under certain mild conditions, which are satisfied by (A3). The double-track auc-

tion explores this link to discover an equilibrium price vector. To use this idea, we need to

clear two major hurdles: one is how to connect observable information such as prices and

demands with the unobservable Lyapunov function L, and the other is how to resolve the

exposure problem. As shown in the previous subsection, while neither an ascending nor

descending auction mechanism will work, the double-track auction does work in this case.

To describe the double-track auction, we introduce the following n-dimensional cube

for price adjustment

Φ = {δ ∈ IRn | 0 ≤ δk ≤ 1,∀βk ∈ S1, −1 ≤ δl ≤ 0,∀βl ∈ S2 }.

Let ∆ = Φ ∩ Zn be the discrete set and Φ∗ = −Φ, ∆∗ = −∆. Through Φ (∆), we lower

prices of items in S2 but raise prices of items in S1, while through Φ∗ (∆∗), we lower prices

of items in S1 but raise prices of items in S2. The auction works as follows: Given an

10



integer price vector p(t) ∈ Zn at time t ∈ Z+, the auctioneer asks every bidder i to report

his demand Di(p(t)). Then she uses every bidder’s reported demand Di(p(t)) to search for

a price adjustment δ ∈ Φ so as to reduce the value of the Lyapunov function L(p(t)+ δ) as

much as possible, in the hope that the minimum of the Lyapunov function will be reached.

Formally, this amounts to solving the continuous maximization problem with the unknown

objective function L

max
δ∈Φ

{L(p(t))− L(p(t) + δ)} (3.3)

Sun and Yang (2009, pp. 940-942) derive the following crucial relationship in detail:13

max
δ∈Φ

{L(p(t))− L(p(t) + δ)} = max
δ∈∆

{∑
i∈I0

(
min

S∈Di(p(t))

∑
βh∈S

δh
)
−

∑
βh∈N

δh
}

(3.4)

Observe that the left hand continuous maximization problem over the entire cube Φ reduces

to the right hand discrete maximization problem over a finite set ∆ of integer price vectors,

and that the relation shows a dramatic change from the unobservable Lyapunov function L
to the observable reported demands of bidders and integer price adjustment δ. In the right

hand formula, the price of each item in S1 increases either one unit or nothing, whereas

the price of each item in S2 decreases either one unit or nothing. Furthermore, the right

hand max-min formula has an intuitive and meaningful economic interpretation: when the

auctioneer adjusts the prices from p(t) to p(t + 1) = p(t) + δ(t), she acts in an elaborate

manner so that the seller can extract a maximal gain whereas every bidder can achieve a

minimal loss in indirect utility. Observe that the auctioneer is responsible for executing

the computation of (3.4) based on bidders’ reported demands Di(p(t)). It is fairly easy to

calculate the value (minS∈Di(p(t))

∑
βh∈S δh) for each given δ ∈ ∆ or ∆∗ and bidder i. We

can now present the detailed steps of the adjustment process as follows:

The improved double-track (IDT) adjustment process

Step 1: The seller reports her reserve price function u0 to the auctioneer, who an-

nounces the initial price vector p(0) ∈ Zn
+. Let t := 0 and go to Step 2.

Step 2: The auctioneer asks every bidder i ∈ I0 (this also includes the proxy bidder

0) to report his demand Di(p(t)) at p(t). Then based on reported demands Di(p(t)),

the auctioneer computes a solution δ(t) to the problem (3.4). If δ(t) = 0, go to Step

3. Otherwise, set the next price vector p(t+ 1) := p(t) + δ(t) and t := t+ 1. Return

to Step 2.

13A brief self-contained explanation is given in the appendix.
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Step 3: The auctioneer asks every bidder i ∈ I0 to report his demand Di(p(t)) at

p(t). Then based on reported demands Di(p(t)), the auctioneer computes a solution

δ(t) to the problem (3.4) where ∆ is replaced by ∆∗. If δ(t) = 0, then the auction

stops. Otherwise, set the next price vector p(t + 1) := p(t) + δ(t) and t := t + 1.

Return to Step 3.

Observe that in both Step 2 and Step 3 the auctioneer needs only an arbitrary solution to

the problem (3.4) with respect to ∆ or ∆∗. This improves considerably the original process

of Sun and Yang (2009) which requires to take the smallest or largest solution to the same

problem if there are several solutions. (In fact, the set of solutions to the problem (3.4) is

a nonempty lattice and typically has multiple solutions.) This improvement is very useful

and important for practical auction design and makes the implementation easy and fast.

Consequently, it also improves the auction of Ausubel (2006). Recall that in his auction

model with indivisible goods, all goods are assumed to be substitutes, i.e., S1 = ∅ or S2 = ∅
in the current model. In each step of his auction, the auctioneer must compute the smallest

or largest solution of an optimization problem which typically has multiple solutions. The

above process shows that this cumbersome computation is no longer needed. Observe that

the IDT process may go to Step 3 from Step 2 but will never return to Step 2 from Step

3. This is another attractive property and means that we can improve Ausubel’s (2006)

global auction which requires repeated implementation of his ascending auction and his

descending auction one after another. Now that requirement can be dropped. His global

auction just needs to execute his ascending auction and descending auction each at most

once.

The following theorem shows the global convergence of the IDT adjustment process.

Theorem 3.1 For the market model under Assumptions (A1), (A2) and (A3), starting

with any integer price vector, the IDT adjustment process converges to an equilibrium price

vector in a finite number of rounds.

4 The Strategy-Proof Dynamic Auction Mechanism

In the previous section we have assumed that every bidder acts honestly as a price-taker.

In this section we totally drop that assumption by allowing bidders i ∈ I to strategically

exercise their market power. In this environment, we need to address two basic questions.

First, is it possible to design an auction mechanism that induces bidders to act honestly

as price-takers? Second, is it possible to devise an auction that requires just enough

but not excessive information from bidders so that bidders’ privacy can be preserved?

To answer these questions in the affirmative, we propose a dynamic auction that not

12



only possesses the appealing strategy-proof property but also has the merit of privacy-

preservation, transparency and detail-freeness.

4.1 The Auction Mechanism Design

We now present the dynamic auction mechanism. The mechanism runs the IDT adjustment

process for all markets M−m (m ∈ I0) simultaneously in parallel and in coordination. The

IDT adjustment process works for every market M−m exactly as described in Section 3 but

needs the following modifications: Consider any marketM−m. At t ∈ Z+ and p−m(t) ∈ Zn
+,

every bidder i ∈ I−m reports a bid Ci
−m(t) ⊆ 2N (which need not be his demand set

Di(p−m(t))14) and the problem (3.4) becomes the next one for ∆ or ∆∗ respectively,

max
δ∈∆( or∆∗)

{ ∑
i∈I−m

(
min

S∈Ci
−m(t)

∑
βh∈S

δh
)
−

∑
βh∈N

δh
}

(4.5)

If the auctioneer finds a solution σ−m(t) of (4.5) for ∆ (∆∗), she obtains the next price

vector p−m(t + 1) = p−m(t) + δ−m(t) whenever δ−m(t) ̸= 0. We say the IDT adjustment

process finds an allocation π−m in M−m if δ−m(t) = 0 for ∆∗ (i.e., in Step 3 of the

auction) and π−m(i) ∈ C i
−m(t) for all i ∈ I−m. The IDT adjustment process needs to go

back to Step 2 from Step 3 if δ−m(t) = 0 for ∆∗ but it finds no allocation π−m in M−m

such that π−m(i) ∈ Ci
−m(t) for all i ∈ I−m—this modification is meant to tolerate minor

mistakes or manipulations committed by bidders. The IDT adjustment process detects

serious manipulation if it never finds an allocation in M−m in which case the auction is

said to stop at time ∞. Now we have

The strategy-proof double-track (SPDT) auction

Step 1: Run the IDT adjustment process simultaneously in parallel for every market

M−m (m ∈ I0) by starting with a common initial price vector p−m(0) = p(0) ∈ Zn
+.

At t ∈ Z+ and p−m(t) ∈ Zn, every bidder i ∈ I−m \ {0} = I \ {m} reports a bid

C i
−m(t) ⊆ 2N , the proxy bidder 0 bids truthfully by reporting C0

−m(t) = D0(p−m(t)),

and the auctioneer finds the next price vector p−m(t + 1) = p−m(t) + δ−m(t). If the

IDT adjustment process detects serious manipulations in any market, go to Step 3.

Otherwise, the IDT adjustment process continues until it finds an allocation π−m in

every market M−m (m ∈ I0) at p
−m(T−m) ∈ Zn

+, and T−m ∈ Z+. Go to Step 2.

Step 2: In this case all markets are clear. For every m ∈ I0, every agent i ∈ I−m and

every t = 0, 1, · · · , T−m − 1, let ∆−m
i (t) denote the “indirect utility change” of agent

14However, the proxy bidder 0 (the seller) always bids honestly by reporting her demand set C0
−m(t) =

D0(p−m(t)).
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i in I−m when prices move from p−m(t) to p−m(t+ 1), where

∆−m
i (t) = min

S∈Ci
−m(t)

∑
βh∈S

δ−m
h (t) (4.6)

Every bidder i ∈ I will be assigned the bundle π−0(i) of the allocation π−0 found in

the market M−0 = M and required to pay qi, with the option to decline when his

payoff becomes negative, where

qi =
∑
j∈I−i

(T−0−1∑
t=0

∆−0
j (t)−

T−i−1∑
t=0

∆−i
j (t)

)
+

∑
βh∈N

p−i
h (T−i)−

∑
βh∈N\π−0(i)

p−0
h (T−0) (4.7)

The auction stops.

Step 3: In this case every bidder i ∈ I receives no item and pays nothing. The

auction stops.

The payment qi of bidder i ∈ I has an intuitive interpretation: qi is equal to the

accumulation of “indirect utility changes” of his opponents l ∈ I−i (also including the proxy

bidder 0) along the path from p−i(T−i) to p(0) (in the market M−i) and the path from p(0)

to p−0(T−0) (in the market M ) by subtracting
∑

βh∈N\π−0(i) p
−0
h –the equilibrium payments

by bidder i’s opponents in the market M, and adding
∑

βh∈N p−i
h (T−i)–the equilibrium

payments by bidder i’s opponents in the market M−i. Notice that Ausubel’s auction

(2006) and his payment rule are not symmetric, whereas the current auction and payment

rule are symmetric and simpler.15

Notice that the option of rejection in Step 2 is a new auction rule in contrast to Ausubel

(2004, 2006) which do not have such rules. This rule means that if the assignment of bidder

i gives him a negative payoff ui(π−0(i)) − qi < 0, he can reject the assignment and leave

the auction empty handed without any cost. In Step 3, in contrast to Ausubel’s penalty

of infinity, we adopt the lenient policy of no punishment, which is common in practice.

This is possible because we use the convention that if honesty for an agent is one of his

optimal policies, he will only adopt the honesty policy. Finally, it is simple but important

to observe that the SPDT auction tolerates any mistakes or manipulations committed by

bidders and allows them to correct so that for any time t∗ ∈ Z+, no matter what has

15More precisely, the current auction starts with the same initial price vector p(0) for all markets M and

M−i, i ∈ I, whereas Ausubel’s (Ausubel 2006, pp.615-616) starts with the same initial price vector p(0)

only for the markets M−i, i ∈ I, but for the market M his auction starts with the equilibrium price vector

p−k∗
of any chosen market M−k∗ . In Ausubel’s auction, the payment of bidder k∗ is given by Equation

(7) (Ausubel 2006, p.611) using the price vectors along the path from p−k∗
to p∗. The VCG payment of

bidder i (i ∈ I−k∗) is also given by Equation (7) but using the price vectors along the path from p−i to

p0; the path from p0 to p−k∗
; and the path from p−k∗

to p∗.
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happened before t∗, as long as from t∗ on every bidder i bids according to his GSC value

function ui, the auction will find a Walrasian equilibrium in every market in finitely many

rounds and thus terminates in Step 2, because the IDT adjustment process converges to a

Walrasian equilibrium from any integer price vector.

4.2 Incentive and Strategic Issues

To study the incentive and strategic properties of the SPDT auction mechanism, we will

formulate this auction as an extensive-form dynamic game of incomplete information in

which bidders are players. Prior to the start of the (auction) game, nature reveals to

every player i ∈ I only his own value function ui ∈ U of private information and a joint

probability distribution F (·) from which the profile {ui}i∈I is drawn, where U denotes the

family of all value functions u : 2N → Z+ satisfying Assumptions (A1) and (A2). Let H t
i

be the part of the information (or history) of play that player i has observed just before

he submits his choice sets at time t ∈ Z+. A natural and sensible specification is that H t
i

comprises the complete set of all observable price vectors and all players’ choice sets, i.e.,

H t
i = {p−m(t), p−m(s), Cj

−m(s) | m ∈ I0, j ∈ I, 0 ≤ s < t,m ̸= j}

Note that H t
i = H t

j for all i, j ∈ I, namely, all bidders share a common history just like in

an English auction. Let T ∗ be the time when the SPDT auction stops at Steps 2 or 3. If the

auction has found an allocation in any M−m, for consistency and convenience, we define

Ci
−m(t) = Ci

−m(T
−m) and p−m(t) = p−m(T−m) for any i ∈ I−m and any t ∈ Z+ between

T−m and T ∗. After any history H t
i and at any time t ∈ Z+, each player i updates his

posterior beliefs µi(· | t,H t
i , u

i) over opponents’ value functions; see also Ausubel (2006).

We stress that even after the auction is finished, player i may not know his opponents’

value functions precisely.

A (dynamic) strategy σi of player i(i ∈ I) is a set-valued function {(t,m,H t
i , u

i) | t ∈
Z+,m ∈ I−i, u

i ∈ U} → 2N , which tells him to bid σi(t,m,H t
i , u

i) ⊆ 2N for every market

M−m(m ∈ I−i) at each time t ∈ Z+ when he observes H t
i . Let Σi denote player i

′s strategy

space of all such strategies σi. We say that σi is a regular bidding strategy for player i if

irrespective of his true utility function ui, he always reports his choice set Ci
−m(t) according

to some utility function ũi ∈ U for any m ∈ I−i, t ∈ Z+, p
−m(t) ∈ Zn, and H t

i , i.e.,

σi(t,m,H t
i , u

i) = C i
−m(t) = argmax

A⊆N
{ũi(A)−

∑
βh∈A

p−m
h (t)}

Note that ũi may or may not be his true utility function ui. We denote such a regular

bidding strategy by σũi

i . Thus, every GSC utility function ũ(ũ ∈ U) determines a regular

bidding strategy for each player. For simplicity, we also use U to denote the family of all
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such strategies. Clearly, U ⊆ Σi. A regular bidding strategy σũi

i is sincere bidding (strategy)

for player i if ũi is equal to his true utility function ui, namely, if he always reports his

demand set Di(p−m(t)) as defined by (2.1) with respect to his true utility function ui,

i.e., σi(t,m,H t
i , u

i) = Ci
−m(t) = Di(p−m(t)) = argmaxA⊆N{ui(A) − ∑

βh∈A p−m
h (t)} for all

t ∈ Z+, m ∈ I−i and p−m(t) ∈ Zn. The strategy space Σi of player i contains regular

bidding strategies, sincere bidding strategies and also various other strategies.

Given the auction rules, the outcome of this auction game depends entirely upon the

realization of utility functions and the strategies the bidders take. When every bidder i ∈ I

takes a strategy σi and the SPDT auction terminates in Step 2, then bidder i ∈ I receives

bundle π−0(i) and pays qi given by (4.7), or gets nothing and pays nothing. When every

bidder i ∈ I takes a strategy σi and the SPDT auction stops in Step 3, every bidder gets

nothing and pays nothing. In summary, every player i′s payoff function Wi(·, ·) is given by

Wi

(
{σj}j∈I , {uj}j∈I

)
=

{
max{0, ui(π−0(i))− qi} if the auction stops in Step 2,

0 if the auction stops in Step 3.

We now recall the notion of ex post perfect equilibrium used by Ausubel (2004, 2006) to

dynamic auction games of incomplete information. For such a game, the ♯(I)-tuple {σi}i∈I
is said to be an ex post perfect equilibrium16 if for any time t ∈ Z+, any history profile

{H t
i}i∈I , and any realization {ui}i∈I of profile of utility functions of private information, the

continuation strategy σi(· | t,H t
i , u

i) of every player i ∈ I (i.e., σi(s,m,Hs
i | t,H t

i , u
i) ⊆ 2N

for all s ≥ t, m ∈ I−i and Hs
i ) constitutes his best response against the continuation

strategies {σj(· | t,H t
j , u

j)}j∈I−i
of player i’s opponents of the game even if the realization

{ui}i∈I becomes common knowledge.

For the current model, we introduce and use the following stronger equilibrium solution

than the previous one. A strategy σi of player i constitutes an ex post strongly perfect

strategy for him if for any time t ∈ Z+, any history profile {H t
j}j∈I , and any realization

{uj}j∈I of profile of utility functions of private information, the continuation strategy

σi(· | t,H t
i , u

i) of player i is his best response against all continuation regular bidding

strategies {σũj

j (· | t,H t
j , u

j)}j∈I−i
of player i’s opponents, even if the realization {ui}i∈I

becomes common knowledge. The ♯(I)-tuple {σi}i∈I of regular bidding strategies comprises

an ex post strongly perfect (Nash) equilibrium if for every player i ∈ I, his regular bidding

strategy σi is an ex post strongly perfect strategy. Clearly, every ex post strongly perfect

equilibrium is an ex post perfect equilibrium but the reverse may not be true. Stronger than

Bayesian equilibrium or perfect Bayesian equilibrium, ex post (strongly) perfect equilibria

have a number of additional desirable properties, i.e., they are not only robust against any

regret but also independent of any probability distribution. Furthermore, in the complete

16In (static or sealed-bid) auction games of incomplete information, the ex post equilibrium is used by

Crémer and McLean (1985) and Krishna (2002).
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information case, ex post perfect equilibrium simply coincides with the familiar notion of

subgame perfect equilibrium.

In the current auction game, although the auctioneer knows that every bidder i ∈ I

possesses a GSC utility function ui, she has no precise knowledge of ui. This implies that

as long as a bidder reports his demand according to some fixed GSC utility function ũi

not necessarily being his true utility function, it is extremely hard if not impossible to

prove whether he bids truthfully or not. According to Hurwicz (1973, p.23) on mechanism

design, “it is conceivable that the participants would cheat without openly violating the

rules.” This is why we focus on “all regular bidding strategies” instead of “all dynamic

strategies” of all opponents of every bidder i ∈ I in the definition of the proposed solution.

Regular bidding strategies are safe, whereas irregular ones are unsafe in the sense that they

have a high probability of being detected for open violation of the auction rules.

Finally, we introduce one more desirable property, which we believe is also important

for any practical auction design. An auction mechanism is said to be ex post individually

rational, if, for every bidder, no matter how his opponents bid in the auction, as long as

he is sufficiently rational in the sense that he can judge whether his payoff is negative

or nonnegative, he will never end up with a negative payoff. It will be shown that the

proposed auction also possesses this appealing property. It might be worth mentioning

that Ausubel’s auction (2006) does not have this property.

Now we are prepared to establish our major theorem.

Theorem 4.1 Suppose that the market M satisfies Assumptions (A1), (A2) and (A3).

(i) When every bidder bids sincerely, the SPDT auction converges to a Walrasian equi-

librium, yields a Vickrey-Clarke-Groves outcome for the market M in a finite number of

rounds, and the seller receives a nonnegative benefit of trading.

(ii) Sincere bidding by every bidder is an ex post strongly perfect equilibrium in the SPDT

auction.

(iii) The SPDT auction is ex post individually rational.

Proof: We first prove (i). By the argument in Section 3, we see that when every bidder

i bids sincerely according to his true GSC function ui , the auction terminates at Step 2

and finds a Walrasian equilibrium (p−m(T−m), π−m) in every market M−m, m ∈ I0. By

the rules, every bidder i receives bundle π−0(i) and pays qi of (4.7). It follows from (5.9)

in the Appendix that

∆−m
i (t) = min

S∈Ci
−m(t)

∑
βh∈S

δ−m
h (t) = V i(p−m(t))− V i(p−m(t+ 1))

for all i ∈ I and m ∈ I0 (i ̸= m), where Ci
−m(t) = Di(p−m(t)). Using these equations, we

will show that qi coincides with the VCG payment q∗i = ui(π−0(i)) − R(N) + R−i(N),
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where R(N) =
∑

j∈I u
j(π−0(j)) and R−i(N) =

∑
j∈I−i

uj(π−i(j)). Observe that payment

qi of (4.7) satisfies

qi =
∑

j∈I−i

(∑T−0−1
t=0 (V j(p−0(t))− V j(p−0(t+ 1)))

−
∑T−i−1

t=0 (V j(p−i(t))− V j(p−i(t+ 1)))
)

+
∑

βh∈N p−i
h (T−i)−

∑
βh∈N\π−0(i) p

−0
h (T−0)

=
∑

j∈I−i

(
(V j(p−0(0))− V j(p−0(T−0)))− (V j(p−i(0))− V j(p−i(T−0)))

)
+

∑
βh∈N p−i

h (T−i)−
∑

βh∈N\π−0(i) p
−0
h (T−0)

=
(∑

j∈I−i
V j(p−i(T−0)) +

∑
βh∈N p−i

h (T−i)
)

−
(∑

j∈I−i
V j(p−0(T−0)) +

∑
βh∈N\π−0(i) p

−0
h (T−0)

)
=

∑
j∈I−i

uj(π−i(j))−
∑

j∈I−i
uj(π−0(j))

= ui(π−0(i))−R(N) +R−i(N)

= q∗i .

Bidder i′s payoff ui(π−0(i))− qi equals his VCG payoff R(N)−R−i(N).

We next prove that the seller receives a nonnegative benefit. First note that for every

buyer i ∈ I, it satisfies that

R−i(N) ≥ u0(π−0(0) ∪ π−0(i)) +
∑

j∈I\{i}
uj(π−0(j)).

Thus, for the final payoff W̃0 of the seller, we have

W̃0 = u0(π−0(0)) +
∑

i∈I q
∗
i

= u0(π−0(0)) +
∑

i∈I

(
ui(π−0(i))−R(N) +R−i(N)

)
=

∑
i∈I R−i(N)− (m− 1)R(N)

≥ ∑
i∈I

(
u0(π−0(0) ∪ π−0(i)) +

∑
j∈I\{i} u

j(π−0(j))
)
− (m− 1)R(N)

=
∑

i∈I

(
[u0(π−0(0) ∪ π−0(i))− u0(π−0(0)] +R(N)− ui(π−0(i))

)
− (m− 1)R(N)

= u0(π−0(0)) +
∑

i∈I [u
0(π−0(0) ∪ π−0(i))− u0(π−0(0)]

=
∑

i∈I u
0(π−0(0) ∪ π−0(i))− (m− 1)u0(π−0(0).

By Assumptions (A2) and (A3) on the seller’s utility function u0, for every k = 1, 2, · · · ,m−
1, we have

u0(∪k
i=0π

−0(i)) + u0(π−0(0) ∪ π−0(k + 1)) ≥ u0(∪k+1
i=0 π

−0(i)) + u0(π−0(0).

Thus, we can iteratively show that

W̃0 =
∑

i∈I u
0(π−0(0) ∪ π−0(i))− (m− 1)u0(π−0(0)

≥ u0(∪m
i=0π

−0(i)) = u0(N).

Consequently, the seller’s benefit W̃0 − u0(N) is nonnegative.
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Now we prove (ii). It suffices to show that sincere bidding is every player i′s ex post

strongly perfect strategy. Consider any time t∗ ∈ Z+, any history profile {H t∗
j }j∈I (which

may be on or off the equilibrium path), and any realization {uj}j∈I of profile of utility

functions in U I of private information.17 Suppose that from this time t∗ on every opponent

j(j ∈ I−i) will report his bids according to a regular bidding strategy σũj

j . That is, every

player j(j ∈ I−i) according to some ũj ∈ U reports his Cj
−m(t) at every round t(t ≥ t∗),

namely,

σũj

j (t,m,H t
j , u

j) = Cj
−m(t) = argmax

A⊆N
{ũj(A)−

∑
βh∈A

p−m
h (t)}

for every m ∈ I−j. Of course, it is possible that ũj ̸= uj. Clearly, in this continuation game

from time t∗, when all opponents of player i choose regular bidding strategies, because of

the option rule of rejection in Step 2, bidder i prefers a strategy which results in the auction

terminating at Step 2 and a nonnegative payoff, to any other strategies which result in the

auction stopping at Step 3 and a zero payoff. Therefore, it sufficient to compare the sincere

bidding strategy with any other strategies which also result in the auction finishing at Step

2. Suppose that σ′
i(· | t∗, H t∗

i , ui) (σ′
i in short) is such a continuation strategy of player

i resulting in an allocation ρ for M, and that bidder i’s (continuation) sincere bidding

strategy results in an allocation π for M. Without any loss of generality, we assume that

by the time t∗, the auction for the markets M and M−i has not yet finished, i.e., t
∗ < T−0

and t∗ < T−i. When player i chooses the strategy σ′
i, his payment q′i given by (4.7) is

q′i =
∑

j∈I−i

(∑t∗−1
t=0 ∆−0

j (t) +
∑T−0−1

t=t∗ [Ṽ j(p−0(t))− Ṽ j(p−0(t+ 1))]

−
∑t∗−1

t=0 ∆−i
j (t)−

∑T−i−1
t=t∗ [Ṽ j(p−i(t))− Ṽ j(p−i(t+ 1))]

)
+

∑
βh∈N p−i

h (T−i)−
∑

βh∈N\ρ(i) p
−0
h (T−0)

=
∑

j∈I−i

(∑t∗−1
t=0 [∆−0

j (t)−∆−i
j (t)] + Ṽ j(p−0(t∗)) + Ṽ j(p−i(T−i))− Ṽ j(p−i(t∗))

)
+

∑
βh∈N p−i

h (T−i)

−
(∑

j∈I−i
Ṽ j(p−0(T−0)) +

∑
βh∈N\ρ(i) p

−0
h (T−0)

)
= constant−

∑
j∈I−i

ũj(ρ(j)),

where Ṽ j is bidder j’s indirect utility function based on ũj and constant is given by

constant =
∑

j∈I−i

(∑t∗−1
t=0 [∆−0

j (t)−∆−i
j (t)]

)
+

∑
j∈I−i

(
Ṽ j(p−0(t∗)) + Ṽ j(p−i(T−i))− Ṽ j(p−i(t∗))

)
+

∑
βh∈N p−i

h (T−i)

Observe that constant is totally determined by the history profile {H t∗
j }j∈I and the market

M−i without bidder i, and does not depend on player i’s strategy σ′
i, (and that ∆−0

j (t) and

∆−i
j (t) for t < t∗ cannot be expressed by Ṽ j, because player j may not have bid according

17In this case, the outcome of the game depends on the histories Ht∗

j and the strategies that all bidders

will take in the continuation game starting from t∗. Bidders cannot change histories but can influence the

path of the future from t∗ on.
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to ũj before t∗). Analogously we can show that when bidder i uses the (continuation)

sincere bidding strategy, his payment q̃i will be q̃i = constant − ∑
j∈I−i

ũj(π(j)), where

constant is the same as the previous one. Furthermore, we know from the argument in

Section 3 that (in the continuation game) when bidder i bids sincerely according to his

utility function ui and every his opponent j(j ∈ I−i) bids according to a regular bidding

strategy σũj

j (i.e., according to a GSC utility function ũj ∈ U), the resulted allocation π

must be efficient for M w.r.t. ui and ũj, j ∈ I−i. This implies that

ui(π(i)) +
∑
j∈I−i

ũj(π(j)) ≥ ui(ρ(i)) +
∑
j∈I−i

ũj(ρ(j)).

Thus, for bidder i′s payoff Wi of the assignment resulting from the sincere bidding strategy

and his payoff W ′
i of the assignment resulting from the strategy σ′

i, we have

Wi = ui(π(i))− q̃i = ui(π(i))− (constant−∑
j∈I−i

ũj(π(j)))

= ui(π(i)) +
∑

j∈I−i
ũj(π(j))− constant

≥ ui(ρ(i)) +
∑

j∈I−i
ũj(ρ(j))− constant = ui(ρ(i))− q′i

= W ′
i .

Consequently, for bidder i′s final payoff W̃i with the sincere bidding strategy and his final

payoff W̃ ′
i with the strategy σ′

i, we have

W̃i = max{Wi, 0} ≥ max{W ′
i , 0} = W̃ ′

i .

Therefore, every player’s sincere bidding strategy is his ex post strongly perfect strategy,

so sincere bidding by every bidder is an ex post strongly perfect equilibrium.

Finally, we prove (iii). Since for every bidder there is the option of rejection in Step 2

and no punishment in Step 3, his final payoff cannot be negative if he is sufficiently rational,

not necessarily optimizing his actions. Clearly, the SPDT auction is ex post individually

rational. 2

Observe that Ausubel’s analysis (2006) on his auction’s strategic property focuses on

economies with divisible goods and relies on calculus and Theorem 1 of Krishna and Maen-

ner (2001), whereas the current analysis is quite different, elementary and intuitive.

5 Applications

In many practical economic environments, substitutes and complements are jointly ob-

served. We name, but a few of basic instances, tables and chairs, left and right shoes, keys

and lockers, software and hardware packages, landing and taking-off slots, machines and

workers. The GSC condition captures the key feature of such environments. That is, there

20



are two different kinds of goods in which goods of the same kind are substitutes and can

be heterogeneous but are complementary to goods of the other kind. The GSC condition

is defined with respect to two disjoint sets S1 and S2. When one of the two sets is empty,

the GSC condition coincides with the famous GS condition of Kelso and Crawford (1982).

Either of the two conditions ensures the existence of a Walrasian equilibrium. It is also

known from e.g., Sun and Yang (2014, Example 1, p. 429) that if the GSC condition applies

to three or more different kinds of goods in which goods of the same kind are substitutes

but complementary to goods of any other kind, the existence of a Walarasian equilibrium

is not guaranteed anymore. A major open question here is whether the GSC condition

defined for three or more different kinds of goods guarantees the existence of a nonlinear

pricing Walrasian equilibrium or not.

In the following we discuss two practical and common situations in which the GSC

condition is naturally satisfied. The double-track auction can be easily applied to these

environments, while neither an ascending nor descending auction can work, as the simple

example in Section 3.1 indicates.

Example 1: Many goods are made up of two basic components. For example, the Bible

consists of Old Testament and New Testament. Let S1 denote the set of identical items of

component 1, and S2 the set of identical items of component 2. Identical items are labeled

differently. The set N stands for the set of all items, i.e., N = S1 ∪ S2. Here goods from

each component Sh, h = 1, 2, may be called intermediate goods, and a pair of one item

from each component Sh, h = 1, 2, forms a unit of the final good. Consider now a market

in which a seller wishes to sell all goods in N to a group I of buyers. To each buyer i ∈ I,

units of each intermediate good (and the final good) are perfect substitutes and can be

represented by a weakly increasing and concave function f i
h : IR+ → IR+ with f i

h(0) = 0,

where h = 1, 2 indicate for the intermediate goods and h = 0 stands for the final good.

When facing up a set A of goods, each buyer i ∈ I has to pick up best choices among all

possible combinations, which determine agent i′s value function ui : 2N → IR by

ui(A) = max
k∈{j∈Z+ | j≤min{k1,k2}}

(
f i
0(k) + f i

1(k1 − k) + f i
2(k2 − k)

)
where k1 = |A ∩ S1| and k2 = |A ∩ S2|.

Given such a market, it is natural and important to ask (i) whether there exists any

competitive equilibrium, and (ii) in the yes case, which items should be assigned to whom

at what prices. We will prove that every agent i’s utility function ui satisfies the GSC

condition, and thus the market has a competitive equilibrium. It is then clear that the

double-track auction automatically answers the second question.

Theorem 5.1 In the market, the value function ui ∈ I as defined above satisfies the gross

substitutes and complements (GSC) condition. The market has at least one competitive
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equilibrium.

Proof: In the proof, we ignore the index i of each agent i ∈ I. Take any price vector

p ∈ IRn, any A ∈ D(p), any item βi∗ ∈ S1 (or S2), and any δ ≥ 0. Define D̂(p + δe(i∗)) =

D(p+δe(i∗))∩{B ⊆ N | (A∩S1)\{βi∗} ⊆ B}. To show that u satisfies the GSC condition,

we just need to prove that there exists a set B ∈ D̂(p+ δe(i∗)) such that B ∩ S2 ⊆ A.

Let ak = f0(k) − f0(k − 1), bk = f1(k) − f1(k − 1), and ck = f2(k) − f2(k − 1) for all

k = 1, 2, · · ·. It follows that ak ≥ ak+1, bk ≥ bk+1, and ck ≥ ck+1 for all k = 1, 2, · · ·. For

convenience, we also set a0 = b0 = c0 = 0. Suppose that u(A) = f0(r) + f1(s) + f2(t),

where r, s and t are all non-negative integers satisfying r+s = |A∩S1| and r+ t = |A∩S2|.
Then for every βi ∈ A ∩ S1, βj ∈ A ∩ S2, βi′ ∈ S1 \ A (if ̸= ∅), and βj′ ∈ S2 \ A (if ̸= ∅),
we have the following observations from the function u and the demand set D(p) that

(1) pi ≤ pi′ , pj ≤ pj′ , bs+1 ≤ pi′ , ct+1 ≤ pj′ , and ar+1 ≤ pi′ + pj′ ;

(2) if s ≥ 1, then bs ≥ max{pi, ar+1 − pj′};

(3) if t ≥ 1, then ct ≥ max{pj, ar+1 − pi′};

(4) if r ≥ 1, then ar ≥ max{pi + pj, ct+1 + pi, bs+1 + pj}.

We first prove that D̂(p+ δe(i∗)) ̸= ∅. For this purpose, it is sufficient to show that there

exists B ∈ D(p + δe(i∗)) such that |B ∩ S1| ≥ |A ∩ S1| − 1, because all items in S1 are

identical and pi ≤ pi′ for all βi ∈ A ∩ S1 and βi′ ∈ S1 \ A. Suppose to the contrary that

D̂(p + δe(i∗)) = ∅, i.e., |B ∩ S1| < |A ∩ S1| − 1 for every B ∈ D(p + δe(i∗)). Pick up any

B̄ ∈ D(p+ δe(i∗)) satisfying |B ∩ S1| ≤ |B̄ ∩ S1| < |A ∩ S1| − 1 for all B ∈ D(p+ δe(i∗)).

Then, there must be some item βī ∈ (A ∩ S1) \ {βi∗} such that βī /∈ B̄. Suppose that

u(B̄) = f0(k) + f1(k1) + f2(k2), where k, k1 and k2 are all nonnegative integers satisfying

k + k1 = |B̄ ∩ S1| < r + s − 1 and k + k2 = |B̄ ∩ S2|. Then, we have pī > bk1+1, or else

B̄ ∪ {βī} ∈ D(p + δe(i∗)). It follows from bk1+1 < pī ≤ bs that k1 ≥ s. Thus, it is only

possible that k < r − 1. However, we can show that A ∩ S2 ⊆ B̄ and so k2 > t + 1. This

is because if not, take any βj̄ ∈ (A ∩ S2) \ B̄ ̸= ∅, then ak+1 ≥ ar ≥ pī + pj̄. And so,

B̄ ∪ {βī, βī} ∈ D(p + δe(i∗)), yielding a contradiction. Moreover, it follows from property

(4) that ak+1 ≥ ar ≥ ct+1 − pī ≥ ck2 − pī. This implies B̄ ∪ {βī} ∈ D(p + δe(i∗)), leading

to a contradiction. Consequently, D̂(p+ δe(i∗)) ̸= ∅.
It remains to prove that there exists some B ∈ D̂(p+ δe(i∗)) such that B ∩ S2 ⊆ A. It

suffices to show that there exists B ∈ D̂(p+δe(i∗)) satisfying |B∩S2| ≤ |A∩S2|, because all
items in S2 are homogeneous and pj ≤ pj′ for all βj ∈ A∩S2 and βj′ ∈ S2\A. Notice that if
there is B ∈ D(p+δe(i∗)) with βi∗ ∈ B, then A ∈ D̂(p+δe(i∗)) and A∩S2 ⊆ A, and so the

proof is finished. We assume now that there is not B ∈ D(p+ δe(i∗)) so that βi∗ ∈ B. Pick
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up any B̄ ∈ D̂(p+δe(i∗)) satisfying βi∗ /∈ B̄ and |B̄∩S2| ≤ |B∩S2| for all B ∈ D̂(p+δe(i∗)).

We will show |B̄∩S2| ≤ |A∩S2|. Assume by way of contradiction that |B̄∩S2| > |A∩S2|,
and pick up any βj′ ∈ (B̄∩S2)\A. Suppose that u(B̄) = f0(k)+f1(k1)+f2(k2), where k, k1

and k2 are all nonnegative integers satisfying k+k1 = |B̄∩S1| and k+k2 = |B̄∩S2| > r+t.

If k2 > t, then ck2 ≤ ct+1 ≤ pj′ . This implies a contradiction that B̄ \{βj′} ∈ D̂(p+δe(i∗)).

If k2 ≤ t and k + k1 ≥ r + s = |A ∩ S1|, then k > r and (S1 \ A) ∩ B̄ ̸= ∅. Take any

βi′ ∈ (S1 \ A) ∩ B̄. Then we have ak ≤ ar+1 ≤ pi′ + pj′ and B̄ \ {βi′ , βj′} ∈ D̂(p + δe(i∗)),

leading to a contradiction. Otherwise, we have k2 ≤ t and k+ k1 < |A∩S1| = r+ s, which

implies k > r and k1 < s. It follows from property (2) that ak ≤ ar+1 ≤ bs+pj′ ≤ bk1+1+pj′ .

This implies a contradiction that B̄ \ {βj′} ∈ D̂(p+ δe(i∗)).

This concludes that the value function u satisfies the GSC-condition. By Theorem 3.1

of Sun and Yang (2006), the market has an equilibrium. 2

The following example is due to Sun and Yang (2006) and reflects a typical and funda-

mental case in the manufacturing industry.

Example 2: Consider a manufacturing industry which consists of finitely many firms,

workers and machines. Let I denote the set of manufacturing firms, S1 = {w1, w2, · · · , wK}
the set of workers and S2 = {m1,m2, · · · ,mL} the set of machines. Firms need not be

identical and can be heterogeneous, so do workers and machines. Every firm can hire as

many workers and buy as many machines as it wishes, under its budget constraint, for

any given salaries and prices. At each moment in time each worker can work for at most

one firm and each machine can be used by at most one firm. When worker wj operates

machine mk in firm i, this yields a revenue to the firm, denoted by ri(j, k). As a modeling

convention, we assume that no machine or worker does harm to any firm if they stay idle.

When firm i ∈ I uses a set A of workers and machines, the revenue ui(A) of these workers

and machines to the firm is completely determined by the pairwise combinations of worker

and machine that the members in A can generate, and is given by

ui(A) = max{0, ri(j1, k1) + ri(j2, k2) + · · ·+ ri(jl, kl)}

with the maximum to be taken over all sets {(wj1 ,mk1), (wj2 ,mk2), · · · , (wjl ,mkl)} of l

distinct worker-machine pairs in A. In other words, when facing a set A of workers and

machines, every firm i ∈ I need to solve an optimal worker-machine assignment problem.

The whole industry, however, faces a larger and more complex problem of whether there

exists a system of competitive salaries and prices through which all workers and machines

can be efficiently allocated to the firms. Sun and Yang (2006, Theorem 4.1) prove that

the revenue function ui of each firm i ∈ I satisfies the GSC condition and the industry has

a competitive equilibrium. The double-track auction proposed in the current paper can

actually discover competitive equilibrium prices of workers and machines by which firms

23



can be efficiently assigned with their optimal choices of workers and machines.

As mentioned earlier, Hatfield et al. (2013), Baldwin and Klemperer (2013), Drexl

(2013), Sun and Yang (2011), and Teytelboym (2013, 2014) have found other important

environments from which the GSC pattern arises naturally. The interested reader can also

refer to Scarf (1960), Shapley (1962), Samuelson (1974), Rassenti et al. (1982) for earlier

venerable studies on complementarity.

Appendix

Proof of Lemma 2.1 Because, at any given prices p,

maxA⊆N{u0(A) +
∑

βh∈N\A ph} = maxA⊆N{u0(A)−∑
βh∈A ph+

+
∑

βh∈A ph +
∑

βh∈N\A ph}
= maxA⊆N{u0(A)−∑

βh∈A ph}+
∑

βh∈N ph,

clearly we have S(p) = D0(p). 2

Proof of Lemma 2.3 Take any Walrasian equilibrium (p, π) and any allocation ρ.

By definition, we have for any bidder i ∈ I

ui(π(i))−
∑

βh∈π(i)
ph ≥ ui(ρ(i))−

∑
βh∈ρ(i)

ph

and for the seller

u0(π(0)) +
∑

βh∈N\π(0)
ph ≥ u0(ρ(0)) +

∑
βh∈N\ρ(0)

ph

Summing up the two inequalities yields∑
i∈I0

ui(π(i)) ≥
∑
i∈I0

ui(ρ(i)).

This shows that π is efficient. 2

Here we give a brief self-contained explanation about the relationship (3.4), i.e.,

max
δ∈Φ

{L(p(t))− L(p(t) + δ)} = max
δ∈∆

{∑
i∈I0

(
min

S∈Di(p(t))

∑
βh∈S

δh
)
−

∑
βh∈N

δh
}

We sketch how to derive the above relationship from the left to the right. The interested

reader can refer to Sun and Yang (2009) in detail. Write down the Lyapunov function L
as

L(p(t))− L(p(t) + δ) =
∑
i∈I0

(V i(p(t))− V i(p(t) + δ))−
∑

βh∈N
δh (5.8)
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Observe that the above formula involves every bidder’s valuation of every bundle of

goods, so it involves private information. Apparently, it is impossible for the auctioneer

to know such information unless the bidders tell her. Fortunately, she can fully infer the

difference between L(p(t)) and L(p(t) + δ) just from the reported demands Di(p(t)) and

the price variation δ. To see this, we know from Sun and Yang (2009) that when prices

move from p(t) to p(t) + δ, the change in indirect utility for every bidder i is unique and

is given by

V i(p(t))− V i(p(t) + δ) = min
S∈Di(p(t))

∑
βh∈S

δh (5.9)

Consequently, the equation (5.8) becomes the following simple formula whose right side

involves only price variation δ and optimal choices at p(t):

L(p(t))− L(p(t) + δ) =
∑
i∈I0

(
min

S∈Di(p(t))

∑
βh∈S

δh
)
−

∑
βh∈N

δh

It follows immediately that

max
δ∈Φ

{L(p(t))− L(p(t) + δ)} = max
δ∈∆

{∑
i∈I0

(
min

S∈Di(p(t))

∑
βh∈S

δh
)
−

∑
βh∈N

δh
}
.

This completes a brief discussion of the important formula of (3.4).

In the rest we will prove Theorem 3.1. To do so, we first introduce several notations.

Let p, q ∈ IRn be any vectors. With respect to the two given sets S1 and S2, we define their

generalized meet s = (s1, · · · , sn) = p ∧g q and join t = (t1, · · · , tn) = p ∨g q by

sk = min{pk, qk}, βk ∈ S1, sk = max{pk, qk}, βk ∈ S2;

tk = max{pk, qk}, βk ∈ S1, tk = min{pk, qk}, βk ∈ S2.

Notice that the two operations are different from the standard meet and join operations.

For p, q ∈ IRn, we introduce a new order by defining p ≤g q if and only if ph ≤ qh for all

βh ∈ S1 and ph ≥ qh for all βh ∈ S2. A function f : IRn → IR is a generalized submodular

function if f(p ∧g q) + f(p ∨g q) ≤ f(p) + f(q) for all p, q ∈ IRn.

Proof of Theorem 3.1 By Theorem 3.1 of Sun and Yang (2006) the market has a

Walrasian equilibrium and by Lemma 1 of Sun and Yang (2009) the Lyapunov function

L(·) attains its minimum value at any equilibrium price vector and is bounded from below.

Since the prices and value functions take only integer values, the Lyapunov function is an

integer valued function and it lowers by a positive integer value in each round of the IDT

adjustment process. This guarantees that the auction terminates in finitely many rounds,

i.e., δ(t∗) = 0 in Step 3 for some t∗ ∈ Z+.

Let p(0), p(1), · · · , p(t∗) be the generated finite sequence of price vectors. Let t̄ ∈ Z+

be the time when the IDT adjustment process finds δ(t̄) = 0 at Step 2. We claim that
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L(p) ≥ L(p(t̄)) for all p ≥g p(t̄). Suppose to the contrary that there exists some p ≥g p(t̄)

such that L(p) < L(p(t̄)). By the convexity of L(·) via Theorem 3 (i) of Sun and Yang

(2009), there is a strict convex combination p′ of p and p(t̄) such that p′ ∈ p(t̄) + Φ and

L(p′) < L(p(t̄)). From equation (3.4) we know that L(p(t̄) + δ(t̄)) < L(p(t̄)), and so

δ(t̄) ̸= 0 in Step 2 of the IDT adjustment process, yielding a contradiction. Therefore, we

have L(p ∨g p(t̄)) ≥ L(p(t̄)) for all p ∈ IRn, because p ∨g p(t̄) ≥g p(t̄) for all p ∈ IRn. We

will further show that L(p ∨g p(t)) ≥ L(p(t)) for all t = t̄ + 1, t̄ + 2, · · · , t∗ and p ∈ IRn.

By induction, it suffices to prove the case of t = t̄ + 1. Notice that p(t̄ + 1) = p(t̄) + δ(t̄),

where δ(t̄) ∈ ∆∗ is determined in Step 3 of the IDT adjustment process. Assume by way

of contradiction that there is some p ∈ IRn such that L(p ∨g p(t̄ + 1)) < L(p(t̄ + 1)).

Then if we start the IDT adjustment process from p(t̄ + 1), we can by the same previous

argument find a δ(̸= 0) ∈ ∆ in Step 2 such that L(p(t̄+ 1) + δ) < L(p(t̄+ 1)). Since L(·)
is a generalized submodular function by Theorem 3 (i) of Sun and Yang (2009), we have

L(p(t̄)∨g (p(t̄+ 1) + δ)) +L(p(t̄)∧g (p(t̄+ 1) + δ)) ≤ L(p(t̄) +L(p(t̄+ 1) + δ). Recall that

L(p(t̄)∨g (p(t̄+1)+δ)) ≥ L(p(t̄)). It follows that L(p(t̄)∧g (p(t̄+1)+δ)) ≤ L(p(t̄+1)+δ) <

L(p(t̄ + 1)). Observe that δ′ = 0 ∧g (δ(t̄) + δ) ∈ ∆∗ and p(t̄) ∧g (p(t̄ + 1) + δ) = p(t̄) + δ′.

This yields L(p(t̄) + δ′) < L(p(t̄) + δ(t̄)) and so δ′ ̸= δ(t̄), contradicting the definition of

δ(t̄) ∈ ∆∗ by which L(p(t̄) + δ(t̄)) = minδ∈∆∗ L(p(t̄) + δ).

Next we prove that L(p ∧g p(t∗)) ≥ L(p(t∗)) for all p ∈ IRn. To see this, we first

show that L(p) ≥ L(p(t∗)) for all p ≤g p(t∗). Suppose to the contrary that there exists

some p ≤g p(t∗) such that L(p) < L(p(t∗)). By the convexity of L(·) via Theorem 3 (i)

of Sun and Yang (2009), there is a strict convex combination p′ of p and p(t∗) such that

p′ ∈ {p(t∗)} −Φ and L(p′) < L(p(t∗)). Because of the symmetry between Step 2 and Step

3, Lemma 3 (where Φ is replaced by Φ∗ = −Φ) and Step 3 of the GDDT procedure imply

that L(p(t∗) + δ(t∗)) = minδ∈Φ∗ L(p(t∗) + δ) = minδ∈∆∗ L(p(t∗) + δ) ≤ L(p′) < L(p(t∗))
and so δ(t∗) ̸= 0, contradicting the fact that the GDDT procedure stops in Step 3 with

δ(t∗) = 0. So we have L(p) ≥ L(p(t∗)) for all p ≤g p(t
∗). Because p∧g p(t

∗) ≤g p(t
∗) for all

p ∈ IRn, it follows that L(p ∧g p(t
∗)) ≥ L(p(t∗)) for all p ∈ IRn.

We also proved above that L(p ∨g p(t∗)) ≥ L(p(t∗)) for all p ∈ IRn. Since L(·) is

a generalized submodular function by Theorem 3 (i) of Sun and Yang (2009), we have

L(p)+L(p(t∗)) ≥ L(p∨g p(t
∗))+L(p∧g p(t

∗)) ≥ 2L(p(t∗)) for all p ∈ IRn. This shows that

L(p(t∗)) ≤ L(p) holds for all p ∈ IRn and by Lemma 1 of Sun and Yang (2009), p(t∗) is an

equilibrium price vector. 2
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