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Abstract

We study investments in R&D and the formation of R&D clusters of firms
which are competitors in the market. In a three stage game, firms first decide on
the budget allocated to their R&D department, then form research clusters and
finally compete in quantities. The second stage cluster formation is modeled by
the unanimity game introduced in Bloch(1995). We show that for any distribution
of R&D investments, an equilibrium of the second stage cluster formation exists
and is generically unique up to a permutation of firms which chose the same
investment. Restricting to two investment levels in the first stage, we provide a
complete characterization of the equilibria of the three stage game. We show that
for some range of investment costs, equilibria with no-investment co-exist with
equilibria where a large fraction or even all firms invest in R&D. Furthermore, in
the high-investment equilibrium firms over–invest compared to a scenario where
research clusters are ex-ante fixed and also compared to the welfare optimum.

JEL Classifications: C71, C72, L13, O30
Keywords: R&D, cluster formation, oligopoly,

1 Introduction

R&D Cooperations among firms play a crucial role in many industries (see e.g. Hage-
doorn, 2002; Powell et al., 2005; Roijakkers and Hagedoorn, 2006). Examples include
the formation of research joint ventures, the exchange of information, and the share of
laboratories or facilities. Although empirical studies show that the majority of R&D
cooperations between firms are vertical (i.e. with suppliers or customers), also a large
number of horizontal cooperations between competing firms is observed, where this type
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of cooperation is most frequent in high-technology sectors (see Miotti and Sachwald,
2003). Recent examples for horizontal R&D cooperations include the Global Hybrid
Cooperation between GM, Daimler, Chrysler, and BMW for the development of hybrid
cars, the cooperation between Sony and Samsung for the development of TFT-LCD
screens, or the cooperation between Lenovo and NEC to develop tablet computers.

Knowledge and technology transfer from the partners is a main motivation for firms
to enter horizontal R&D cooperations and therefore the choice of the partners is of
crucial importance (see Arranz and de Arroyabe, 2008; Miotti and Sachwald, 2003).
As pointed out e.g. in Belderbos et al. (2004), the firms which mostly benefit from in-
coming spillovers for being far from the technological frontier might not have access to
these spillovers since they are not attractive as cooperation partners. Empirical studies
based on data from numerous countries and sectors have consistently found a positive
relationship between the R&D intensity and the degree of R&D cooperation of firms
(see e.g. Veugelers, 1997; Kaiser, 2002; Becker and Dietz, 2004; Franco and Gussoni,
2014), where some of these studies explicitly refer to permanent R&D investments or
the existence of fully staffed R&D labs (e.g. Franco and Gussoni (2014)). Such positive
correlation seems at odds with standard models of innovation incentives in the pres-
ence of knowledge spillover to competitors (see e.g. D’Aspremont and Jacquemin, 1989;
Kamien et al., 1992), which predict that an increase in the intensity of the knowledge
exchange (typically captured by a spillover parameter) reduces the R&D investments
of the firms1. However, as has been shown in Kamien and Zang (2000), in an extended
model which incorporates that the absorptive capacity of firms is positively influenced
by own R&D, an increase in the spillover parameter leads to stronger R&D incentives
as long as the elasticity of the absorptive capacity with respect to own R&D is suffi-
ciently large. In light of these results and, more generally, in the extensive literature
on absorptive capacity started by Cohen and Levinthal (1989), the empirical evidence
about the positive relationship between R&D investments and R&D cooperation has
been mainly interpreted as evidence that firms need own R&D activities to profit from
R&D cooperations.

However, the formation of an R&D cooperation requires the agreement of all part-
ners, which means that the R&D expertise of a firm, determined by (permanent) R&D
expenditures, does not only influence the incentives of the firm to enter R&D coop-
erations, but also determines whether potential partners are willing to enter such an
agreement with the firm. This aspect of the formation of R&D cooperations has so
far been neglected in the theoretical literature and this paper makes a first step to
fill this gap. In particular, we consider a Cournot oligopoly where firms choose their
(long-term) level of R&D investment before they form R&D clusters. Firms within the
same cluster receive spillovers from all cluster members and the sum of own R&D and
incoming spillovers determines the marginal production costs of a firm. Although in

1Consistent with the literature on R&D networks, to be reviewed below, in this paper we interpret
R&D cooperations as an agreement to share (parts of) the R&D results with the partners. The
literature on R&D joint ventures initiated by D’Aspremont and Jacquemin (1989); Kamien et al. (1992)
typically also considers the effect of cooperating by jointly determining the level of R&D investments of
all partners with the goal of maximizing joint profits of the partners. In the empirical literature these
different types of cooperations usually cannot be distinguished. Many studies are based on European
Community Innovation Survey (CIS) data and in CIS questionaires cooperations are defined in a broad
sense including an informal exchange of information.
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the main body of the paper we restrict attention to cost reducing process R&D, which
is in accordance with the majority of the theoretical literature on R&D cooperation, we
show in Appendix A that all our findings also apply to a model in which firms engage in
quality improving product innovation such that the type of innovation (cost reduction
or quality improvement) is not important for our results.

The main innovative aspect of our analysis is that we explicitly consider interplay
between the firms’ R&D decisions and the process by which the R&D clusters among
potentially heterogeneous firms with repect to R&D investments are formed. To model
the formation of clusters we employ a non-cooperative game, which is a version of the
unanimity game first introduced in Bloch (1995). Our approach captures that firms
choosing a high level of R&D investments do not only thereby reduce their production
costs, but become more attractive for potential partners since members of a cluster
with high investing firms will receive a larger amount of spillovers. In order to focus on
this aspect of the choice of own R&D investment, we abstract from any dependence of
the absorptive capacity of a firm on own R&D spending.

Formally, we consider a non-cooperative three stage game, where in the first stage
firms choose between two levels (high/low) of cost-reducing R&D investment, in the
second stage they engage in the unanimity game in order to determine the profile
of R&D clusters, and in the third stage, after the spillovers in all consortia have been
realized, firms compete with respect to quantities. We fully characterize the investment
patterns and the structure of the R&D clusters arising in the subgame perfect equilibria
for different values of the R&D investment costs. With respect to the emerging structure
of the R&D clusters we show that under weak conditions all firms will be arranged in
exactly two clusters such that one of these clusters may even be heterogenous, i.e.
consisting of both low and high investors.Investing high increases the probability to
participate in the more attractive cluster consisting of a larger number of high investors
and thereby to profit from the corresponding spillovers. For a large range of the number
of high investing firms in the population this effect is stronger the more other firms in the
industry choose a high R&D level, and, based on this effect, strategic complementarities
between the R&D investment decisions of the firms arise. Whereas for sufficiently small
and sufficiently large investment costs a unique equilibrium pattern with all respectively
none of the firms investing high arises, we show that for a large intermediate range of
investment costs a no–investment equilibrium co-exists with an equilibrium where a
large fraction or even all firms choose high level of R&D.

Furthermore, we show that the endogenous formation of clusters has a substantial
positive effect on R&D incentives. In a scenario where firms are exogenously grouped
into clusters the range of investment costs values where no investment is the unique
equilibrium is substantially larger. In particular, there is a range of investment cost
values such that in the unique equilibrium of the game with exogenous consortia no firm
invests although the only equilibrium profile under endogenous formation of consortia
implies full investment.

Comparing equilibrium outcomes with the welfare optimum, it turns out that the
emerging clusters are too small from a welfare perspective. Due to the strategic comple-
mentarity between firms’ R&D decisions, distortions of investment incentives relative
to the social optimum in both directions can occur. On the one hand, for a considerable
range of investment costs over–investment arises in a sense that there is an equilibrium
with high investment of all or at least a large fraction of the firms, whereas no invest-
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ment would be optimal from a welfare perspective. On the other hand, for smaller
values of investment costs, profiles without any investment can emerge in equilibrium
although welfare is maximized if all firms choose a high R&D level.

Due to these distortions in both directions, policy relevant mechanisms to increase
welfare may be discussed. In the case of under–investment, sketched above, a small
change in investment costs, e.g. due to R&D subsidies, can induce an abrupt increase
in the level of R&D investment and vice versa. Moreover, measures to foster R&D
exchange in clusters may lead to an increase in the investment incentives and can
also overcome under–investment scenarios. Our analysis, moreover, generates several
empirically testable implications about the relationship between certain industry char-
acteristics and the size and heterogeneity of horizontal R&D consortia.

The present paper substantially extends the theoretical literature on R&D coopera-
tions since it is the first contribution to provide a general analytical characterization of
emerging R&D cooperation structures in an oligopoly setting with endogenous choice
of R&D effort and an arbitrary number of firms. There is a body of literature which
studies the formation of cooperation structures between competitors. Most closely re-
lated to our model are Goyal and Moraga-Gonzalez (2001) and Greenlee (2005) who
also consider settings where both the choice of R&D effort and the formation of cooper-
ation structures are endogenous. Goyal and Moraga-Gonzalez (2001) restrict attention
to binary cooperations and characterize stable R&D networks in this setting under the
assumption that all firms have an identical number of cooperation partners. A general
analysis, not relying on the assumption of a regular R&D network, is provided only
for the special case of three firms. Greenlee (2005), instead, provides a partial analyti-
cal characterization together with a numerical analysis of the shape of R&D consortia
generated through the unanimity game in a setting where firms endogenously choose
their R&D effort. Both Goyal and Moraga-Gonzalez (2001) and Greenlee (2005) dif-
fer from our setup by assuming that the firm’s choice of R&D investment occurs after
the cooperation structure has been settled. In this sense these papers deal with short
term R&D decisions, whereas we are concerned about the decision about the long term
(permanent) R&D level, like the size and endowment of the firm’s R&D department.

Our contribution also extends the paper by Bloch (1995), where the outcome of the
unanimity game is characterized in a Cournot oligopoly setting where marginal costs of
a firm are entirely determined by the pure size of its consortium. In particular, invest-
ments in R&D are not modeled in Bloch (1995). In our setting, the analysis in Bloch
(1995) corresponds to a scenario where all firms have identical levels of R&D investment.
We show in the more general case of firms with potentially heterogeneous investements
that different structures emerge, but reproduce the findings of Bloch (1995) as a special
case of our analysis. Incorporating endogenous and potentially heterogeneous invest-
ment levels, our results can also be used to understand the robustness of the qualitative
insights from Bloch (1995) with respect heterogeneity of firms’ investments.

Moreover, there are several studies on the formation of bilateral R&D collaborations
between homogeneous firms which abstract from endogenous determination of R&D
investments. It is shown in Goyal and Joshi (2003), König et al. (2012) and Dawid and
Hellmann (2014) that group structures (where all firms within a group are connected)
emerge which resembles the structure that emerges from the cluster formation cases.
In an analogous framework, Westbrock (2010) studies efficient networks and concludes
that the welfare maximizing structures may have similar structures where, however, the
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sizes of groups differ from the stable structures.
The paper is organized as follows. Our model is introduced in Section 2, in which we

also characterize the equilibrium outcome of the Cournot competition stage. Section 3
provides an analysis of the equilibria in the cluster formation stage and the resulting
equilibrium investment patterns are examined in Section 4. In Section 5 we provide
a welfare analysis of our findings and we conclude in Section 6. In Appendix A we
briefly outline a variant of our model where firms invest in product rather than process
innovation, to which our results also apply. All proofs are given in Appendix B.

2 The Model

An oligopoly of a set N = {1, . . . , n} of ex ante identical2 firms engage in a three stage
game. Firms first choose permanent R&D efforts, then form R&D clusters and finally
compete in the market by choosing quantities of a homogeneous product.3

When investing in R&D, firms make long-term and irreversible investment decisions,
like building facilities, investing in a lab, or committing a budget to a permanent R&D
fund. For simplicity, we assume that the investment decision is binary, such that firms
can either invest high or low. We denote by x(i) ∈ {x, x̄} the R&D effort of firm i.
Choosing to invest high, x(i) = x̄ > x ≥ 0, implies costs of ξ > 0, whereas the costs of
low effort x are normalized to zero. In what follows we denote by x = (x(1), . . . , x(n))
the profile of R&D effort.

Firms may cooperate with other firms to lower their production costs. To do so,
firms form clusters where research is shared. Each firm can only participate in one such
cluster, or can stay singleton. Hence, the cluster structure or profile of R&D clusters4,
denoted as A = (A1, . . . , AK), is a partition of the set of firms, i.e. Ak ⊆ N ∀k =
1, . . . , K,

⋃K
k=1Ak = N, Ak ∩ Aj = ∅ k, j = 1, . . . , K, j 6= k. The cluster to which firm

i belongs will be referred to as A(i).
We assume that marginal production cost is constant and that R&D has a cost

reducing effect and is shared within the respective clusters. That is, incoming spillovers
in their cluster contribute to the cost reduction of firms. Thus marginal cost of firm i
is given by

c(i,x,A) := c̄− γ
(
x(i) + β

∑
j∈A(i)
j 6=i

x(j)
)
, i = 1, .., n, (1)

where c̄ is the base cost (pre-innovation) cost level, the parameter γ > 0 measures the
marginal effect of R&D effort on marginal costs and 0 < β < 1 captures the intensity
of knowledge exchange within a cluster. We assume that marginal costs in the absence
of any R&D effort are below the reservation price on the market, i.e. α > c̄. Whenever
the context is clear, we will also denote c(i) = c(i,x,A) to save notation.

2At the end of Section 4 we briefly discuss the effect of heterogeneous investment cost ξ.
3When we interpret R&D as product innovation rather than process innovation, products are dif-

ferentiated while marginal costs are homogeneous, see Appendix A. Both model formulations lead to
the same results.

4In order to avoid confusion with the variables denoting firms’ marginal cost we denote the clusters
by Ak rather than Ck. This notation is motivated by Bloch (1995), where what we call clusters is
denoted as associations.
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Whereas the model described here interprets R&D as process innovation effort re-
ducing marginal costs, in Appendix A we show that a model where R&D effort influ-
ences product quality, rather than marginal costs, yields qualitatively analogous results.
Hence, the assumption that firms engage in process rather than product innovation is
not crucial for our analysis. We focus on the process innovation case following the estab-
lished literature on R&D network respectively cluster formation which has consistently
treated the process innovation case.

Producing quantities of the homogeneous product q(i), i ∈ N , firms face linear
inverse demand given by

P (Q) = α−Q, α > 0,

where P denotes the price and Q =
∑n

i=1 q(i) total quantity.
Since we focus on long-term or permanent R&D investments, cluster formation can

adapt much faster. Hence, we model the timing of the choices by the following three
stages.

Stage 1: Effort Choice
All firms simultaneously choose their R&D effort x(i) ∈ {x̄, x}. The effort profile x
becomes public knowledge at the end of the stage.

Stage 2: Cluster Formation
Firms non-cooperatively form R&D clusters. To model the cluster formation process
we employ the unanimity game introduced in Bloch (1995). The unanimity game
models the cluster formation process as a sequential game where firms propose clusters
according to a given rule of order. We assume that the rule of order, i.e. a permutation
of firms ρ : N → N , is chosen from the set Π = {ρ : N → N |ρ(i) < ρ(j) if x(i) > x(j)}
with equal probability. The lowest firm in order ρ then proposes a set of firms as the
first cluster. All firms included in the proposal are then asked according to the order
ρ whether they agree to join the cluster. If all firms in the proposal agree to join, the
cluster forms, the firms leave the game, and the lowest remaining firm in the order ρ
proposes the next cluster. If one of the firms in the proposal disagrees to join, then all
firms remain in the game and the next proposal is made by the firm who first disagreed
to join. This procedure is repeated until all firms have joined a cluster. The resulting
cluster profile A becomes public knowledge. Assuming that firms with high R&D effort
propose clusters before low investors substantially simplifies the analysis. Furthermore,
for sake of simplicity we abstract from discounting between stages of the unanimity
game.

Stage 3: Quantity Choice
Firms simultaneously choose quantities given the profile of marginal costs determined
by the R&D effort choices and the formed clusters, see (1). Standard calculations yield
that under the assumption of a sufficiently large α the Cournot equilibrium in the 3rd
stage is given by

q∗(i,x,A) =
α− (n+ 1)c(i,x,A) +

∑
j∈N c(j,x,A)

n+ 1
(2)

and the profits read π∗(i,x,A) = (q∗(i,x,A))2 − ξ1x(i)=x̄. To abbreviate notation we
will also denote firm i’s quantities and profits by q∗(i), and π∗(i), respectively.
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In order to analyze the game described above we focus on the subgame perfect
equilibria of the game and therefore apply backward induction. With respect to the
unanimity game in general, Bloch (1996) shows that there exists a subgame perfect
equilibrium with the property that all firms always accept a proposal as long as rejecting
would not result in a strictly higher payoff.5 In what follows we restrict attention to
this type of subgame perfect equilibrium in the unanimity game.

3 Cluster Formation

When forming the R&D clusters according to the unanimity game, interesting effects
arise. Firms face the tradeoff between achieving a cost advantage through the incoming
spillovers and allowing other firms a cost advantage by reducing the cost of other cluster
members while sharing the research within the cluster. This tradeoff is also present in
Bloch (1995). In our model, because firms are heterogeneous with respect to their R&D
effort chosen in the first stage, the net effect under this tradeoff depends on the profile
of the cluster and the investment level of the considered firm.

To understand above effects, let us, thus, inspect the payoff implied by the Cournot
quantities in the third stage (2), resulting from a given pattern of investment x and
given cluster structure A. In what follows we denote by h respectively l the number
of high (low) investors in the firm population. Whenever we refer to these numbers
excluding firm i we indicate this as h−i, respectively l−i, while a subscript A restricts
the respective numbers to cluster A ∈ A. Plugging (1) into (2) and simplifying, we get,

π(i) = 1
(n+1)2

[
α− c̄+ γ(nx(i)− h−ix̄− l−ix)

+ γβ
(

(n− h−iA(i) − l
−i
A(i))(h

−i
A(i)x̄+ l−iA(i)x) + h−iA(i)(x̄− x(i))− l−iA(i)(x(i)− x)

−
∑

Ak 6=A(i)

(hAk
((hAk

− 1)x̄+ lAk
x) + lAk

(hAk
x̄+ (lAk

− 1)x))
)]2

− ξ1x(i)=x̄. (3)

Since Cournot quantities are anticipated in the third stage, firms try to optimize (3) in
the cluster formation process. A closer inspection of (3), hence, turns out to be very
useful for understanding the logic of the cluster formation process. First, note that
the expression on the right hand side of the first line only captures the effects of the
direct cost reductions generated by the R&D investments of all firms and as such is
independent from the cluster profile. The effects of spillovers on the profit of firm i is
given in the second and third line. The second line corresponds to the spillovers arising
in the cluster of firm i, and consists of a positive term stemming from spillovers received
by firm i and two negative terms describing the spillovers obtained by the other firms
in the cluster. Finally, the third line depicts the effects of the spillovers in all other
clusters on firm i’s profit, having a cost reducing effect for other firms and, via the price
channel, a negative effect for firm i’s profit. Moreover, the third line also includes the
costs of investment and therefore contains only negative terms.

5This observation follows from Proposition 2.4 in Bloch (1996) where it is shown that every subgame
perfect equilibrium of the unanimity game with discounting is also a subgame perfect equilibrium in
the game without discounting if the discount factor is sufficiently close to 1.
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When a firm i ∈ N is selected to propose a cluster and contemplates which firms to
include in the proposal, the marginal effect of adding an additional firm which otherwise
might end up in a different cluster plays a crucial role. Hence, consider the impact of
moving one firm j from a cluster A(j) 6= A(i) to cluster A(i). Since such a move does
not affect investment costs of firm i and profit net of investment costs is the square of
firm i’s quantity we can restrict attention to the induced change in equilibrium quantity
q∗(i). This change in quantity in response to a move of firm j from A(i) to A(j) can
be calculated to be

∆q∗(i) = γβ
n+1

(
nx(j)− (hA(i) + lA(i) − 1)x(j)− (hA(i)x̄+ lA(i)x) + (h−jA(j) + l−jA(j))x(j)

+(h−jA(j)x̄+ l−jA(j)x)
)
. (4)

Adding firm j from a cluster A(j) to A(i) has an effect on both i’s and j’s spillovers, as
well as on all firms’ spillovers within the respective clusters. First, firm i experiences
additional spillovers by adding j where the size depends on the R&D effort of j captured
by the first term in the brackets of (4). However, all other firms within i’s cluster are
also enjoying these spillovers which are given by the second term and firm j receives
the spillovers from the whole cluster (third term). These two terms are negative since
a cost reduction of other firms lead to higher quantities of these firms, thus, lower the
price and decrease the equilibrium quantities (and hence profit) of i. Note that both of
these terms increase in absolute value with the size of A(i) since increasing the number
of firms in i’s cluster means that more firms receive the additional spillovers and j
receives more spillovers from those firms. The last two terms of (4) describe the effects
of the reduction in spillovers for the remaining members of cluster A(j) and of firm j
loosing spillovers from its former cluster. These two effects are positive for the profit
of firm i and their size increases with the size of cluster A(j).

Three important observations can be made. First, it is easy to see that ∆q∗(i)
is independent of x(i), implying that whenever it is optimal for a firm to invite an
additional firm to its cluster, the same also holds true for all other firms in the same
cluster, regardless of their choices of R&D effort. Second, ∆q∗(i) is an increasing
function of x(j), which means that all firms in A(i) prefer to invite a firm j with high
R&D effort compared to a member of A(j) with low R&D effort. Third, the incentive
to invite a firm j to the own cluster decreases with the size of the own cluster but
increases with the size of the current cluster of firm j.

The three observations discussed above provide a clear intuition for the potential
structure of the cluster profile in equilibrium.6 Due to the fact that firms always prefer
high R&D firms to join their cluster compared to low R&D firms, it is intuitive that
low R&D firms are only included in a cluster proposal if no more high R&D firms
are available. Hence, there can be at most one cluster containing heterogeneous firms,
i.e. containing both high and low investors. Since ∆q∗(i) > 0 implies ∆π∗(i) > 0,
the strategy determining which clusters arise becomes clear. We solve the game via
backward induction by supposing that n −m firms have already formed clusters and
then determine conditions under which all remaining m firms join one cluster. That
is, we determine under which conditions a singleton low effort firm j with |A(j)| = 1,

6Although the intuition is very straightforward, the derivation of the subgame equilibria of the
unanimity game is quite involved, see proof of Proposition 1.
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is accepted in a cluster of size |A(i)| = m − 1. Note that this corresponds to the case
where the incentive to add j is minimal since by (4) the incentive is decreasing in the
size of A(i) and decreasing in the investment x(j) while increasing in the size of A(j).
Hence, we get from (4) for m remaining firms with hm remaining high investors and
lm 6= 0 low investors (thus, m = hm + lm) that ∆q∗(i) > 0 if and only if

m < n+3
2
− 1

2
hm

(
x̄
x
− 1
)

(5)

while for m homogeneous firms, i.e. lm = 0 or hm = 0, m < n+3
2

. Hence, by re-
stricting to integers, we may state that m firms with lm 6= 0 join, if and only if

m ≤
⌈
n+1

2
− 1

2
hm

(
x̄
x
− 1
)⌉

where dye is the largest integer smaller than y ∈ R. To

see the latter note that as long as ∆q∗(i) > 0 cluster A(i) has an incentive7 to add firm

j. Thus, to have ∆q∗(i) ≤ 0 we need m ≥
⌈
n+3

2
− 1

2
hm

(
x̄
x
− 1
)⌉

.

From (5), we can immediately conclude that the grand coalition, i.e. a cluster com-
prising of all firms, can never be a subgame perfect equilibrium (from now on SPE)
for n ≥ 3. Further, we also cannot have more than three clusters forming in equilib-
rium. The intuition for the latter is simple. First, by above reasoning, for any pattern
of effort choice in the first stage x, we get at most one mixed cluster. Second, any
homogeneous cluster not limited by the number of available firms (i.e. a cluster where
the proposal would not change even if an additional firm of that type would become
available) will consist of at least

⌈
n+1

2

⌉
members which immediately implies that there

cannot be more than one such homogeneous cluster. Hence, there can exist at most
three different clusters in equilibrium.

One additional fact to note from (5) is that the maximal size of a mixed cluster (here
when all firms join, but more generally for all mixed clusters) is decreasing in the ratio
x̄/x. Thus, the more homogeneous low and high investors become, the more can we
expect to see the formation of two clusters in equilibrium. Proposition 1 confirms this
intuition and shows that only two clusters emerge in equilibrium if the ratio between x̄
and x is not too large. In particular, to simplify the analysis, in what follows, we make
the following assumption:

Assumption 1. The ratio of R&D effort between high and low investors (x̄/x) is
bounded above by 2.

It should be noted that we only consider firms who are active in R&D and (apart
from their R&D choice) are symmetric. Hence, restricting the analysis to scenarios
where the variance in R&D levels is not too large does not seem to be overly restric-
tive. Furthermore, although the technical complexity would substantially increase, the
qualitative mechanisms driving our results would hardly be affected if we relax Assump-
tion 1.

Proposition 1. For any profile of investment x, there exists a stationary SPE of the
cluster formation game. All SPE result in the formation of two clusters A = (A1, A2).
The number of high and low investors in each cluster are generically unique and are a

7Note that throughout our analysis we assume that a firm is not added to a cluster proposal if the
other firms in the proposal are indifferent between including and excluding that firm in the cluster.
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function of the total number of high investors h such that

hA1(h) =

h if h ≤ ˜̃h⌈
(2n+h−1)x̄+(n−h)x

4x̄

⌉
else

lA1(h) =

{⌈
(3(n−h)−1)x−hx̄

4x

⌉
if h ≤ h̃

0 else

where h̃ = (3n−1)x
3x+x̄

, ˜̃h = (2n−1)x̄+nx
3x̄+x

. Furthermore, hA2(h) = h − hA1(h) and lA2(h) =

n− h− lA1(h).

The proof of this proposition together with all other proofs are presented in Ap-
pendix B. The main difficulty is to exclude other subgame perfect equilibria in the
unanimity game by Bloch (1995). We first assume that all proposals are accepted and
some clusters have already formed such that the game is at a stage where only two
clusters form. Then we use backward induction to show that indeed all proposals are
accepted which is mainly due to symmetric incentives of high and low effort firms, see
also (4). Finally, we show that under Assumption 1, the stage at which the game gives
rise to only two clusters, is actually the stage, when the game starts. The composition
of firms in these two clusters then follows.

Proposition 1 implies that essentially three different types of cluster constellations
can emerge. If the number of high investors is small, then all these high investors
together with a subset of the low investors form the first cluster and all remaining low
investors join for the second cluster. If, on the contrary the number of high investors
is sufficiently large, then the first cluster contains only high investors and the second
cluster is mixed between high and low investors. For an intermediate range of the
number of high investors the two types of investors sort into two homogeneous clusters.
It is quite intuitive that the thresholds separating the first scenario from the case where
all high investors join the same cluster decreases with the size of the ratio x̄/x since
the incentives for high investors to include a low investor in their cluster decrease.
Similarly, the threshold separating the case with two homogeneous cluster from the
scenario where the second cluster is mixed, also decreases with x̄/x. The intuition for
this observation is that the incentives of the members of the first cluster to include an
additional high investor, thereby preventing this high investor from receiving spillovers
from the low investors in the second cluster, decreases as x̄/x becomes larger.

In order to gain some additional intuition for the implications of a change in the
number of high investors for the size and structure of the emerging clusters let us distin-
guish between the cases where the homogeneous cluster consists only of low respectively
high investors. First, if the homogeneous cluster has only low investors and the other
cluster is mixed, an increase of the number of high investors reduces the number of
low investors in the mixed cluster, where this reduction is so strong that the overall
size of that cluster is weakly8 reduced. The fact that the inclusion of one additional
high investor in the cluster might trigger a reduction of the number of low investors by
more than one can be explained as follows. The outgoing spillovers of the low investors

8Due to the fact that all cluster sizes are integers they change in discrete steps. Throughout the
paper we refer to stepwise decreasing (increasing) functions as weakly decreasing (increasing).
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Figure 1: The size of the first cluster (black line) and the number of high investors in
that cluster (blue line).

in the cluster remain the same, whereas the spillovers they receive increase due to the
exchange of a low with a high investor. Hence, the incentive to have the low investors
in the cluster decreases. Secondly, considering the cases where a mixed cluster coex-
ists with a homogeneous cluster of high investors, an increase of the number of high
investors induces a (weak) increase in the size of the homogeneous cluster and a (weak)
decrease of the number of high investors in the mixed cluster. The underlying rationale
is similar to above, namely that due to the exchange of a low investor with a high
investors in the mixed cluster, the incentives for members of the homogeneous high
investment cluster to transfer one additional high investor to their cluster also increase.
The size and structure of the first cluster as a function of the number of high investors
is illustrated in Figure 1.9

Finally, we note that for the case where all investments are homogeneous (i.e. either
x̄ = x or h = 0 or h = n) the size of the first cluster is given by

⌈
3n−1

4

⌉
, which

corresponds to the findings in Bloch (1995), where coalition formation in homogeneous
populations is analyzed.

4 Effort Choice

In the investment stage, all firms simultaneously choose their R&D effort. In general,
the profit of a firm induced by a certain investment profile x is stochastic due to our
assumption that all sequences of proposal orders in the cluster formation game, which
satisfy the assumption that high investors propose prior to low investors, have equal
probability. Denoting by E(π(i, x(i), h−i) the expected profit of firm i with investment
level x(i) ∈ {x, x̄} if h−i of its competitors choose high R&D investment, it is optimal
for firm i to invest high if and only if ∆π(h−i) := E(π(i, x̄, h−i))− E(π(i, x, h−i)) > ξ.

Two main effects determine the investment incentives of a firm: first, the implica-
tions of own investment for the expected attractiveness of the firm’s cluster, and second,
the expected profit increase for a given cluster allocation. Proposition 1 highlights that

9In all figures in this paper we use the default parameter setting: n = 20, α = 35, c̄ = 4, β = 0.2, γ =
0.2, x = 1, x̄ = 2.
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under our Assumption 1 two clusters emerge, where typically the larger of the two
clusters also contains the larger number of high investors. Taking this into account, the
expected payoff difference between high and low investment can be written as

∆π(h−i) =
(
pA1(x̄, h

−i + 1)− pA1(x, h
−i)
) (
πA1(x̄, h

−i + 1)− πA2(x̄, h
−i + 1)

)
(6)

+ EpA1
(x,h−i)

(
π(x̄, h−i + 1)

)
− EpA1

(x,h−i)

(
π(x, h−i)

)
+ 2πA2(x, h

−i).

where pA1(x, h) denotes the probability of a firm with investment x to end up in the
cluster A1 and πA(x, h) gives the profit in cluster A of a firm with investment x, if
a total number of h firms have chosen high investment. The term EpA1

(π(x, h)) =
pA1πA1(x, h) + (1− pA1)πA2(x, h) denotes the expected payoff of investing x for a given
(fixed) probability pA1 to end up in cluster A1.

The first of the two main effects is captured in the first line of (6). Ceteris paribus,
firms prefer to become a member of the larger cluster with more high investors (i.e.
πA1−πA2 > 0), since this generates stronger incoming spillovers for a firm compared to
the smaller cluster with fewer high investors. Clearly, the probability pA1 for a firm to
end up in this preferred cluster A1, depends both on the level of investment of the firm,
as well as, the investment pattern of all its competitors. The probability for a firm to
end up in the more attractive cluster A1 can be directly derived from Proposition 1.

pA1(x̄, h
−i + 1) = 1, pA1(x, h

−i) =
lA1

(h−i)

n−h−i if h−i ≤ h̃

pA1(x̄, h
−i + 1) = 1, pA1(x, h

−i) = 0 if h̃ < h−i ≤ ˜̃h− 1

pA1(x̄, h
−i + 1) =

hA1
(h−i+1)

h−i+1
, pA1(x, h

−i) = 0 if h−i ≥ ˜̃h,

(7)

where hA1 , lA1 , h̃, and ˜̃h are given in Proposition 1. It is easy to see that both lA1(h
−i)/(n−

h−i)) and hA1(h
−i + 1)/(h−i + 1) are (weakly) decreasing functions of h−i. This estab-

lishes that pA1(x̄, h
−i)− pA1(x, h

−i) is a weakly increasing function of h−i for h−i ≤ h̃,

but (weakly) decreasing for h−i ≥ ˜̃h. Hence, the increase in the probability of ending
up in the more attractive cluster, which is induced by high investment, becomes larger
the more competitors choose high investment as long as this number does not become
so large that high investors might end up in the second cluster. For this range of com-
petitors with high investment the consideration of the probability to become a member
of the stronger cluster introduces strategic complementarities into the R&D investment
choice of the firms.

However, investment incentives are not entirely driven by the effect of R&D invest-
ment on the probability to join the stronger cluster. The expected change of firms’
market profit for a given probability to end up in A1 respectively A2 influences in-
vestment incentives as well. Formally, this is expressed by EpA1

(x,h−i) (π(x̄, h−i + 1)) −
E (π(x, h−i)) > 0, see (6). The strength of this second effect essentially depends on the
expected change in firms’ output due to high investment and also the expected level of
output, because investment reduces the firm’s unit costs of production.

The following Proposition shows that the strategic complementarity sketched above
is indeed the dominant force in a sense that for a large range of investment costs extreme
patterns (no investment or full investment) prevail in equilibrium and that such extreme
equilibria might also co-exist.
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Figure 2: Best response and equilibria on the investment stage.

Proposition 2. If β := 4x
(n+6)x+x̄

< β < 1/2, then there exist thresholds ξ̄, ¯̄ξ,
¯̄̄
ξ with

max[ξ̄, ¯̄ξ] <
¯̄̄
ξ such that

• For ξ < ξ̄ there is a unique equilibrium (up to permutation of firms) where the
number of firms investing x̄ is given by h̄(ξ) > 0. The function h̄ is constant in ξ

with h(ξ) = n for ξ ≤ ¯̄ξ and weakly decreasing (step-function) in ξ for ξ > ¯̄ξ.

• For ξ̄ ≤ ξ ≤ ¯̄̄
ξ an equilibrium where h̄(ξ) firms invest x̄ co-exists with an equilib-

rium where all firms invest x.

• For ξ >
¯̄̄
ξ there is a unique equilibrium where all firms invest x.

The proposition is illustrated in Figure 2, which depicts the best response for a
firm on the investment stage depending on the number of high investors among the
competitors for different values of investment costs ξ. A green arrow to the left indicates
that low investment is the best response, whereas an arrow to the right stands for a best
response of high investment. The red lines correspond to equilibria on the investment
stage, i.e. situations where the investment of all opponents is optimal given that the
considered firm invests according to its best response. The step-function with the
inverted U-shape corresponds to the expected change in firm i’s market profits if i
changes investment from x to x̄. The figure shows that the qualitative properties of
this profit difference is indeed closely related to the difference in the probability to end
up in the more attractive cluster. In particular, it can be seen that the incentive to

invest increases with h−i for h ≤ h̃ and decreases for h−i ≥ ˜̃h where h̃ and ˜̃h are the
bounderies from Proposition 1.

Proposition 2 assumes that the spillover parameter β to be in an intermediate range
(β < β < 1/2). To understand the implications of a very low spillover parameter
β << β on the investment incentives, one can consider the extreme case of β = 0. In
such a scenario, R&D investment decreases only the firm’s own marginal production
costs but generates no spillovers to other firms. It is well known (see e.g. Qiu, 1997) that
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under Cournot competition process innovation, investments are strategic substitutes.
Hence, for sufficiently small β the firms’ investment incentives are decreasing in h−i and,
hence, generically a unique equilibrium emerges. On the other hand, if the spillovers
become very large (β >> 1/2), then the incentives stemming from the spillovers in the
first (larger) cluster become dominant as the difference in spillovers between the two
clusters increase. In such a scenario the main effect of an increase in h−i is that the
number of high investors in the first cluster grows. Hence, an increase in h−i increases
the spillovers in the larger cluster, where the size of that effect is increasing in β. Thus,
investing high becomes more profitable the larger h−i since it increases the probablity
of being included in the large cluster. For large β this effect is so strong that strategic
complements are satisfied over the whole range of h−i. In this case, only equilibria
with no investment and with full investment exist (and they might also co-exist). The
most interesting case of the spillover parameter β, which allows also for equilibria with
partial investment, is covered in Proposition 2.

The discussion above suggests that the desire to end up in the more attractive
larger cluster is the main driving force for the investment behavior of firms. To further
illustrate this point we compare the investment incentives in our model in which cluster
formation is endogenous with such incentives in a setting in which the allocation of
firms to the two clusters is ex-ante fixed. We assume that at most two clusters form,
and focus on the maximal possible investment incentives across all possible cluster
structures. Formally, we define by π̃Ãk

(x, Ã,x(−i)) the market profit of a firm with

investment level x in cluster Ãk, k = 1, 2 if the profile of clusters is Ã = (Ã1, Ã2) and
the investment profile of firm i’s competitors x(−i)). The maximal possible investment
incentives of a firm given a number h−i of other high investors can be written as

∆π̃(h−i) := max
Ã:h−i

Ã1
+h−i

Ã2
=h−i

[
π̃Ã1

(x̄, Ã,x(−i))− π̃Ã1
(x, Ã,x(−i))

]
.

Although an analytical characterization of these maximal investment incentives un-
der exogenous cluster allocation of firms is very involved, in Figure 3(a) they are com-
pared numerically to the incentives under endogenous cluster formation. It can be
clearly seen that the incentives are substantially larger under endogenous cluster for-
mation. The gap is so large that for a certain range of investment costs ξ the best
response of the considered firm under exogeneous cluster allocation is to choose x re-
gardless of the investment pattern of the competitors, whereas under endogenous cluster
formation it is x̄ for all values of h−i.

In order to allow for a more thorough comparison between scenarios with endoge-
nous and exogenous cluster formation, in what follows we will sometimes refer to a
scenario with ex-ante given clusters, where the cluster sizes are identical to the ones
emerging as equilibrium size under endogenous cluster formation. Given the strategic
complementarity between R&D investments of firms in the same cluster (for sufficiently
large β) three potential equilibrium constellations might arise under such an exogenous
cluster scenario. In addition to equilibria with no investment respectively full invest-
ment we can also have equilibria where all firms in the larger cluster A1 invest, whereas
all firms in the smaller cluster A2 choose x = x. The number of the high investors in
the different types of equilibria under endogenous and exogenous cluster formation is
illustrated in Figure 3(b). The figure shows that also under exogenous cluster alloca-
tion different equilibria might co-exist. Furthermore, the figure highlights that there is
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(a) (b)

Figure 3: Investment incentives (a) and equilibrium number of high investors (b) under
endogenous (black) and exogenous (blue) cluster formation.

a range of investment cost values for which the unique equilibrium under endogeneous
cluster formation is high investment for all firms, but if clusters of identical size were
fixed before the investment stage, then the unique equilibrium would be that all firms
choose low investment.

Finally, let us briefly consider a scenario where, contrary to our baseline setting,
firms are heterogeneous with respect to the R&D investment cost level ξ. Such het-
erogeneity might, for example, be based on differences with respect to the level of past
R&D activities. For simplicity, let us consider the case where n̄ < n firms have invest-
ment costs ξ1 whereas the investment costs of the remaining n − n̄ firms is given by
ξ2 > ξ1. In what follows we argue that such heterogeneity may lead to an additional
type of equilibrium compared to those described in Proposition 2. Such an equilibrium
occurs when all firms with ξ = ξ1 have incentives to invest high if they assume that
n̄−1 competitors choose x̄ whereas all firms with ξ = ξ2 have incentives to invest low if
they assume that n̄ competitors choose high R&D. In this equilibrium n̄ firms with low
investment costs choose x̄ and no other firm invests high. If n̄ is not too large this im-
plies that in equilibrium the large cluster A1 consists of high and low investors, whereas
the small cluster A2 contains only firms with low R&D level. Such a scenario cannot
occur as equilibrium outcome for homogeneous investment costs. Considering Figure
2 the scenario sketched here corresponds to a value of ξ1 below the inverse U-shaped
step-function for h−i = n̄− 1 and ξ2 above the value of that step-function for h−i = n̄.

5 Welfare Analysis

In light of the different investment patterns and cluster profiles emerging under endoge-
nous and exogenous cluster formation the question arises how welfare, consumer surplus
and firm profits are affected and how these patterns compare to the social optimum.
Given our linear demand function consumer surplus is given by

CS =

(
n∑
i=1

q(i)

)
− 1

2

(
n∑
i=1

q(i)

)2

− P

(
n∑
i=1

q(i)

)
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and we obtain for the social welfare function

W =
n∑
i=1

π(i) + CS =
n∑
i=1

(q(i))2 − hξ +

(
n∑
i=1

q(i)

)2

/2. (8)

Maximizing this function with respect to the investment pattern and the profile of
clusters yields the following Proposition.

Proposition 3. The following characterizes consumer surplus and welfare maximizing
outcomes:

(i) Consumer surplus is maximal if and only if all firms invest x̄ and all join the
same cluster.

(ii) If α − c̄ sufficiently large, then for all ξ the unique welfare maximizing cluster
contains all firms.

(iii) If ξ is sufficiently low, then social welfare is maximized if and only if all firms
invest x̄ and all join the same cluster.

(iv) If ξ is sufficiently large, then social welfare is maximized if and only if all firms
invest x and all join the same cluster.

Consumer surplus is maximized if the market price is minimized, which under
Cournot competition corresponds to the minimization of average marginal costs. Hence,
for consumer surplus to be maximal, R&D effort and spillovers must be maximized.
Therefore, a single cluster in which all firms invest high is optimal from a consumer
surplus perspective (point (i) of Proposition 3).

Considering welfare, the tradeoff between the costs of R&D investments and their
return in terms of cost reduction have to be considered. If all firms have identical R&D
effort, then from a social perspective the total cost reduction is clearly maximal if all
firms join the same cluster, which maximizes spillovers. This explains parts (iii) and (iv)
of Proposition 3. If firms are heterogeneous with respect to their R&D effort including
low investors in a cluster of high investors has not only the spillover induced positive
effect discussed above, but also induces a larger output for the low investor compared
to a scenario where it would stay in isolation.10 Hence, it is no longer obvious that
a single cluster is welfare maximizing. However, part (ii) of Proposition 3 shows that
the direct spillover effect always dominates if the market size is sufficiently large and
therefore under such a condition the generation of a single cluster always maximizes
welfare.

Combining Proposition 3 with Proposition 1 shows that the profile of clusters emerg-
ing in equilibrium is generically inefficient. This insight is also illustrated in Figure 4,
in which the welfare maximum is compared to social welfare of the different types of
equilibria under exogeneous and endogeneous cluster formation. Equilibrium welfare is
always strictly below the maximum and it is obvious that this inefficiency stems from
the profile of clusters since at least for very low and very high investment costs the
welfare maximizing investment pattern coincides with that arising in equilibrium.

10This effect is closely related to the well-known fact that reduction of marginal costs of firms with
low market shares in Cournot competition can be welfare reducing, see Lahiri and Ono (1988).
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Figure 4: Maximal welfare (green) and welfare under equilibria with endogenous (black)
and exogenous (blue) cluster formation.

Comparing the welfare generated in equilibria with endogenous and exogenous clus-
ter formation, Figure 4 shows that the effect of endogenous cluster formation on welfare
is ambiguous. On the one hand, as discussed above, there is a range of investment cost
values where under endogenous cluster formation there exists a unique equilibrium
with high investment whereas under exogenous cluster formation only low investment
is done. In such a scenario welfare is substantially larger under endogenous cluster
formation. On the other hand, there is also a range of investment cost levels where
under exogeneous cluster allocation of firms only the firms in the large cluster invest
high whereas all other invest low. Such an investment profile generates higher welfare
compared to the full investment profile emerging under endogenous cluster formation
because a large share of output is produced by the low cost firms in the larger cluster
and for the relatively low output produced in the small cluster the saved investment
costs outweigh the aggregate reduction in production costs that would result from full
investment of the small cluster firms.

Furthermore, Figure 4 shows that in the upper range of investment cost levels, for
which an equilibrium with high investment exists under endogenous cluster formation,
such an equilibrium generates welfare which is not only substantially below the welfare
maximum but also below that of the unique equilibrium under exogenous cluster for-
mation, which corresponds to the zero investment equilibrium. Welfare maximization
requires zero investment in this parameter range, which means that endogenous cluster
formation can yield massive overinvestment in equilibrium. Intuitively this inefficiency
is triggered by the tournament like structure. All firms have strong incentives to end
up in the larger cluster due to the endogeneity of the difference in payoffs between the
clusters driven by the strategic complementarity.11

11Lazear and Rosen (1981) show in the framework of labor contracts that tournament schemes, in
which the firm chooses the price structure and prices are independent from workers’ investment, can
induce efficient investment. In a related setting with endogeneous determination of the price structure
and asymmetric information about investment Zabojnik and Bernhard (2001) show that underinvest-
ment in equilibrium results. The main difference between our setting and these contributions is that
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Figure 5: Consumer surplus (a) and total firm profits (b) under welfare maximizing
choice of investments and profile of clusters (green) as well as under equilibria with
endogenous (black) and exogenous (blue) cluster formation.

Figure 5(b) shows that total industry profit is always larger if firms are ex-ante
allocated to clusters. As should be expected, the high investment incentives under
endogenous cluster formation are however desirable from a consumer perspective and
consumer surplus is for all values of investmenst costs (weakly) larger in the case of
exogenous cluster formation (see Figure 5(a)).

6 Conclusions

The main contribution of this paper is to improve our understanding of the strate-
gic relationship between firms’ R&D investment decisions and their participation in
R&D clusters. From a theoretical perspective, we go beyond the current state of the
literature by developing and analyzing a framework which allows to characterize the
equilibrium profiles of both R&D investment and R&D cluster formation in a setting
with an arbitrary number of competitors and no symmetry assumptions with respect
to the number of cooperation partners of firms. Our analysis shows that in equilibrium
generically unique cluster profiles emerge which are characterized by a strong hetero-
geneity between clusters with respect to size and R&D investment while within clusters,
the heterogeneity of R&D levels are small. In particular, it is shown that in case of
heterogeneous firm investments the majority of high investors is always included in the
largest cluster. Overall, our model predicts a positive relationship between the level of
firms’ R&D activity and the number of cooperation partners, and therefore is able to
provide a theory-based explanation for a large set of empirical findings pointing towards
such a positive relationship (e.g Veugelers, 1997; Becker and Dietz, 2004). The model
also makes the empirically testable prediction that R&D cooperations are stratified in
a sense that the variance of R&D levels within clusters is lower than that in the entire
population.

the payoffs obtained in the two clusters are positively affected by own investment and marginal returns
from investment are larger in the cluster generating higher payoffs.
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Furthermore, we show in this paper that the endogenous cluster formation process
implies stronger investment incentives, compared to a scenario where allocation of firms
to clusters is ex-ante fixed, and generates strong strategic complementarities with re-
spect to the firms’ investment decisions. Hence, for a large range of investment cost
values a no-investment equilibrium co-exists with an equilibrium in which (almost) all
firms choose a high R&D level. Welfare maximization would require a full investment
profile for a substantial part of the investment cost range where the no-investment equi-
librium exists. These insights have clear policy implications. First, the observation that
firms which anticipate that their R&D level influences their cluster membership invest
more, thereby moving the investment profile closer to the social optimum, provides jus-
tification for policy measures, like technology and cooperation platforms, which foster
the exchange of information between firms and the continuous adjustment of cooper-
ation structures. Second, our analysis suggests that in scenarios where no-investment
and full investment equilibria coexist, the introduction of a (potentially small) public
R&D subsidy, which moves the level of R&D investments required from the firms be-
low the threshold ξ̄ can have a strong positive effect by inducing a transition to the
equilibrium where all firms invest high.

Our analysis is based on a number of simplifying assumptions whose implications
should be critically examined. If the assumption of a binary investment decision would
be relaxed by allowing firms to invest any level between x and x̄ we would not ex-
pect any qualitative changes in our results because the investment complementarities
should induce firm investments at the boundaries of the considered interval although
the complexity in the characterization of the SPE in the second stage increases consid-
erably. If we would allow firms to enter individual cooperation agreements with selected
competitors rather than joining a cluster, the resulting analysis would require the char-
acterization of equilibrium network structures among general profiles of heterogeneous
firms. This technically and conceptionally demanding task is left for future research.
Finally, in this paper we have abstracted from the effects of R&D investment on a firm’s
absorptive capacity. Considering such effects might substantially affect the qualitative
findings obtained here. Again, future work should be able to address this issue.
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Appendix

A An Oligopoly Model with Product Innovation

Here, we briefly outline an oligopoly model where products are vertically differentiated
and R&D activities of firms lead to changes in product quality due to product innova-
tion. We show that this simple model formulation yields equilibrium profit functions
of firms which have a completely analogous functional form as the ones resulting from
the process innovation model used in the main body of the paper. Hence, all results
concerning firm investment and formation of clusters derived in the paper are also valid
in this product innovation setting.

Like in the main body of the paper, we consider an oligopoly of a set N = {1, ..., n}
of ex ante identical firms which engage in a three stage game. Firms first choose
permanent R&D efforts, then form R&D clusters and finally compete in the market by
choosing quantities of their product. The R&D effort x(i) ∈ {x, x̄} of firm i is invested
in product innovation and influences the quality of the product. Choosing to invest
high, x(i) = x̄ > x ≥ 0, implies costs of ξ > 0, whereas the costs of low effort x are
normalized to zero. Firms form clusters in the same way as described in Section 2 and
the quality of the product of firm i is then given by

u(i) = ū+ γ
(
x(i) + β

∑
j∈A(i)
j 6=i

x(j)
)
. i = 1, .., n, (9)

To simplify notation we normalize ū to zero. Marginal production costs of the firms,
which are assumed to be constant and identical across firms, are denoted by c̄ > 0.

Demand on the market is generated by a representative consumer with the utility
function (expressed in monetary units)

U(q(1), . . . , q(n)) =
∑
j∈N

(α + u(j))q(j)− 1

2

(∑
j∈N

q(j)

)2

−
∑
i∈N

p(j)q(j),

where quality and prices are given parameters from the consumer’s perspective.
In the third stage of the game all product qualities are common knowledge and firms

simultaneously choose their quantities. Prices are then adjusted such that the market
clears, which means that the vector of chosen quantities (q(1), . . . , q(n)) maximizes the
consumer’s utility function. The corresponding first order conditions yield

p(i) = α + u(i)−
∑
j∈N

q(j).

Taking this into account, the market profit of firm i can be written as

π̃(i) =

(
α + u(i)−

∑
j∈N

q(j)− c̄

)
q(i)

and standard calculations yield the equilibrium quantities

q∗(i) =
α− c̄+ (n+ 1)u(i)−

∑
j∈N u(j)

n+ 1
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and market profits

π̃∗(i) =

(
α− c̄+ (n+ 1)u(i)−

∑
j∈N u(j)

)2

(n+ 1)2
.

Inserting (9) into this expression yields that the overall profit of the firm is given by (3)
and hence coincides with the one derived in the process innovation model considered
in the main body of the paper. Therefore, all derived results also hold for the product
innovation model sketched here.

B Proofs

Proof of Proposition 1. We show the result in three steps. First, in Lemma 1 we use
backward induction to calculate the number m̃ such that all remaining firms join one
cluster and deduce from that the maximial number m such that a proposal is made
which (upon acceptance) results in a number of remaining firms smaller or equal m̃
implying that two coalitions form. That proposal is made under the assumption that
all other firms will join one coalition. Second, we show in Lemma 2 that any rational
proposal is accepted by all firms included in the proposal. Finally, we show in Lemmas 3
and 4 that it is indeed optimal to propose a cluster such that all remaining firms join
one coalition if the difference between high and low effort firms is bounded, i.e. x̄ ≤ 2x.
In particular it is shown, that it is not profitable for the proposer to suggest a smaller
cluster in order to induce the remaining firms to split up into more than one cluster
after formation of the proposed cluster. This implies that under Assumption 1 always
two clusters form. The size of these clusters and the number of high and low investors
in each of them then follow directly from setting m = n and hm = h in Lemma 1.

Lemma 1. Assume that all cluster proposals are accepted. Then, for m remaining firms
such that among these hm invest high and lm invest low and numbers l∗(hm, lm) :=⌈

(n−1−hm+2lm)x−hmx̄
4x

⌉
and h∗(hm, lm) :=

⌈
(n−1+2hm+lm)x̄+lmx

4x̄

⌉
, the following cluster is

proposed under the assumption that all players outside the proposal join one cluster.

• If 0 < hm ≤ (n−1−2lm)x
x̄+x

, then a coalition of all remaining players is proposed.

• If (n−1−2lm)x
x̄+x

≤ hm ≤ (n−1+2lm)x
x̄+x

, then a coalition of hm high investors and l∗ low
investors is proposed.

• If (n−1+2lm)x
x̄+x

≤ hm ≤ (n−1+lm)x̄+lmx
2x̄

, then a coalition of hm high investors and no
low investors is proposed.

• If (n−1+lm)x̄+lmx
2x̄

≤ hm, then a coalition of h∗ high investors and no low investors
is proposed.

• If hm = 0 and lm ≤
⌈
n+1

2

⌉
a coalition of all remaining players is proposed.

• If hm = 0 and lm >
⌈
n+1

2

⌉
a coalition l∗ of low investors is proposed.
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Proof of Lemma 1. Suppose n−m firms have already formed clusters and let it be firm
i’s turn to propose the next cluster. Denote the cluster structure that has been formed
before i proposes by A(−i). Since by assumption all proposals have been accepted and
because it is assumed that the rule of proposal order ρ is such that high effort firms
have a lower rank than low effort firms, i is either a high investor or there are only low
investors left in the game.

First, suppose that hm > 0, i.e. i is a high investor. Since by assumption the firms
outside the proposal form one cluster, i faces the optimization problem to propose an
optimal cluster A(i) consisting of h̃ high investors and l̃ low investors such that the
other m− h̃− l̃ ≥ 0 firms form one cluster, denoted by Ā such that the cluster structure
is given by A = (A(−i), A(i), Ā).

Since maximizing profit is equivalent to maximizing quantities and, in the maxi-
mization problem, quantities of i are only influenced by the spillovers from the last two
clusters A(i) and Ā, we get

arg max
A(i)⊂N\A(−i)

π(i,x,A) = arg max
A(i)⊂N\A(−i)

q(i,x,A)

= arg max
h̃≤hm,l̃≤lm

[
n((h̃− 1)x̄+ l̃x)− (h̃− 1)((h̃− 1)x̄+ l̃x))− l̃(h̃x̄+ (l̃ − 1)x)

−(hm − h̃)
(
(hm − h̃− 1)x̄+ (lm − l̃)x

)
− (lm − l̃)

(
(hm − h̃)x̄+ (lm − l̃ − 1)x

)]
.

The proposer chooses first from the high effort firms and then from the low effort
firms since a high effort firm is always preferred to a low effort firm and it is assumed
that the remainding firms form one cluster.

Suppose first that the proposal includes only high effort firms, i.e. A(i) = (hA(i), 0)
which implies Ā = (hm − hA(i), lm). Since marginal profit of adding other firms to
the own cluster A(i) is decreasing in the size of the cluster |A(i)|, we get the optimal
number of high effort firms in A(i) is the largest integer h∗ such that marginal profit of
adding the last firm is positive. Thus, we get h∗ as the largest integer satsifying,

π(i,x, ((h∗, 0), (hm − h∗, lm)))− π(i,x, ((h∗ − 1, 0), (hm − h∗ + 1, lm))) > 0

⇔ nx̄− (h∗ − 2)x̄− (h∗ − 1)x̄+ (2(hm − h∗) + lm)x̄+ lmx > 0

⇔ 1

4x̄
x̄(n+ 3 + 2hm + lm) + lmx > h∗.

Hence, the optimal coalition size is given by

h∗ :=
⌈

(n−1+2hm+lm)x̄+lmx
4x̄

⌉
To be consistent with the assumption that no low investors are selected, we need

h∗ ≤ hm which is equivalent to (n−1+2hm+lm)x̄+lmx
4x̄

≤ hm since hm is an integer. Hence,

h∗ ≤ hm ⇔ hm ≥
(n− 1 + lm)x̄+ lmx

2x̄
=: h3

m

Thus, for hm ≥ h3
m, i proposes the cluster A(i) = (h∗, 0).

Now consider the case that h∗ < hm. Therefore, choosing h∗ high investors for
the cluster A(i) is no longer feasible. Since high effort firms are more attractive as
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partners, i will, hence, select all high effort firms. Additionally low investors may also
be included. Again, since marginal profit of adding other firms to the own cluster A(i)
is decreasing in the size of the cluster |A(i)|, we get the optimal number of low effort
firms l∗ by solving,

π(i,x, ((hm, l
∗ + 1), (0, lm − l∗ − 1)))− π(i,x, ((hm, l

∗), (0, lm − l∗))) = 0

⇔ nx− (hm + l∗ − 1)x− hmx̄− l∗x+ 2(lm − l∗ − 1)x = 0

⇔ 1
4x

(n− 1− hm + 2lm)x− hmx̄ = l∗

Thus, the optimal coalition size is given by

l∗ :=
⌈

(n−1−hm+2lm)x−hmx̄
4x

⌉
To ensure that the number selected is feasible, we need 0 ≤ l∗ ≤ lm which is equivalent
to 0 ≤ (n−1−hm+2lm)x−hmx̄

4x
≤ lm since 0 and lm are integers. Hence,

0 ≤ l∗ ⇔ hm ≤
(n− 1 + 2lm)x

x̄+ x
=: h2

m

lm ≥ l∗ ⇔ lm ≥
(n− 1)x− hm(x̄+ x)

2x

⇔ hm(x̄+ x)

2x
≥ (n− 1− 2lm)x

2x

⇔ hm ≥
(n− 1− 2lm)x

x̄+ x
=: h1

m

Thus, for h1
m ≤ hm ≤ h2

m, i proposes the cluster A(i) = (hm, l
∗). It follows that for

hm ≥ h2
m no low effort firms are included in A(i), which implies that for h2

m ≤ hm ≤ h3
m

i proposes the cluster A(i) = (hm, 0). On the other hand, for h < h1
m, i’s proposal

includes all remaining firms, i.e. A(i) = N \A(−i), see also derivation in (5).
Finally, the case where there are no high effort firms, hm = 0 corresponds to the

case when there are no low effort firms since in both cases all firms are symmetric,
completing the proof of Lemma 1.

Lemma 2. Suppose that N̄ ⊂ N have already formed clusters and it is i’s turn to
propose the next cluster. If firm i proposes a payoff maximizing cluster A(i) ⊂ N ,
in the sense that i′s payoff is maximized among all continuation payoffs following any
accepted proposal Ã(i) ⊂ N , then proposal A(i) is accepted by all firms j ∈ A(i).

Proof. Suppose that at some point of the game a firm i is to propose a cluster. In other
words, either i is the first to propose or it proposes after the clusters A1, . . . , Al have
already been formed. Now, firm i, which is the first of the remaining firms according to
the rule of order, proposes a cluster A(i), which upon acceptance results in a continua-
tion subgame with a set Ñ ⊆ N of firms. Furthermore, we assume that A(i) is chosen
in a way that it maximizes the profit for firm i induced under the assumption that
its current proposal is accepted and the subgame perfect equilibrium is followed in the
continuation subgame. For further reference we observe that this optimality property
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implies that q(i; x,A) ≥ q(i; x, Ã), where A denotes the cluster profile induced by A(i)
and Ã a cluster profile induced by some alternative proposal Ã(i) at the current stage.

Consider now a firm j ∈ A(i), j 6= i with x(i) = x(j). Clearly, the payoff of j under
this proposal is identical to that of i. Assume that j rejects the proposal. This would
only be rational if j could obtain a strictly higher payoff by offering an alternative
proposal Ã(j).12 If i ∈ Ã(j) then the payoff of i in this alternative proposal would be
identical to that of j, which implies that the original proposal A(i) would not be optimal
for i, which is a contradiction to our assumption. If i 6∈ Ã(j) then consider instead the
proposal Ã(i) = Ã(j)\{j}∪{i} by firm i. Comparing the subgames after Ã(j) and Ã(i)
have been accepted, it turns out that both are identical up to permutation of players,
since the number of high and low effort firms remaining are identical, and the rule of
order is preserved since we assumed that high effort firms have a lower rank than low
effort firms. Hence, we can conclude that the payoff of i in Ã(i) is identical to the
payoff of j in Ã(j). This again yields a contradiction to the assumption that A(i) is
the optimal proposal for firm i.

Consider now a firm j ∈ A(i), j 6= i with x(i) 6= x(j). Given our assumption that
high investors propose before low investors in the rule of order we must have x(i) = x̄
and x(j) = x. Assume that j rejects the proposal. This would only be rational if j
could obtain a higher payoff by offering an alternative proposal Ã(j). Similar to above
we distinguish between the cases where i ∈ Ã(j) and i 6∈ Ã(j).

In case i ∈ Ã(j) let us denote by A and Ã the unique13 cluster profiles induced by
the acceptance of proposals A(i) and Ã(j). Further, denote by ∆q(i) := q(i,x, Ã) −
q(i,x,A), respectively ∆q(j) the differences in quantities for the two firms between the
cases where Ã(j) is accepted and A(i) is accepted. Since j rejects A(i), it must strictly
prefer the outcome induced by Ã(j) and since profits (net of investment costs) are given
by the square of the quantities, we must have ∆q(j) > 0.

Thus,

(n+ 1)∆q(i)

= −n
(
c(i; x, Ã)− c(i; x,A)

)
+ c(j; x, Ã)− c(j; x,A) +

∑
m 6=i,j

c(m; x, Ã)− c(m; x,A)

= γβ
[
−n
(

(hÃ(j) − 1)x̄+ lÃ(j)x− (hA(i) − 1)x̄− lA(i)x
)

+
(
hÃ(j)x̄+ (lÃ(j) − 1)x

−hA(i)x̄− (lA(i) − 1)x
)]

+
∑
m 6=i,j

c(m; x, Ã)− c(m; x,A)

= γβ
[
−(n− 1)

(
(hÃ(j) − hA(i))x̄+ (lÃ(j) − lA(i))x

)]
+
∑
m 6=i,j

c(m; x, Ã)− c(m; x,A)

= (n+ 1)∆q(j) > 0.

Therefore, we obtain a contradiction to the assumption that proposing A(i) is optimal
for firm i.

12Note that is shown in Bloch (1996) that there exists a subgame perfect equilibrium with the
property that all firms always accept a proposal as long as rejecting would not result in a strictly
higher payoff (see Proposition 2.4 in Bloch (1996)).

13By unique, we mean up to a permutation of firms which invest identically. Thus quantities of i and
j are uniquely determined. We get the uniqueness by backward induction and acceptance of proposals
in case of indifference.
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As a next step we consider the case where i 6∈ Ã(j), but there exists a firm k ∈ Ã(j)
with x(k) = x̄. In case k ∈ A(i) we immediately obtain ∆q(k) < 0 since k is of
the same type as i and therefore A(i) must have been optimal for k. This implies
that also ∆q(j) < 0, which contradicts the optimality of Ã(j) for j. Consider now
the case where k 6∈ A(i). For proposal Ã(j) to be strictly preferred by firm j to
A(i) we must have ∆q(j) > 0. Analogous to above, this implies ∆̃q(k) > 0, where
∆̃q(k) denotes the difference in quantity for firm k between proposal Ã(j) and proposal
A(k) = (A(i) \ {i}) ∪ {k}. Hence A(k) would not be optimal for firm k, but since firm
k is of the same type as firm i this would contradict that A(i) is optimal for firm i.

Finally, consider the case where i 6∈ Ã(j) and there does not exist k ∈ Ã(j) with
x(k) = x̄. In other words, the counter proposal consists of only low effort firms. As
above denote by Ñ the remaining firms (before i’s proposal) and h̃ and l̃ the number of
high respectively low remaining investors. Assume that h̃ is low enough such that i’s
optimal proposal A(i) (conditional on acceptance) also contains low investors (otherwise
a homogeneous coalition is proposed which is always accepted, see above).

We show that no counterproposal Ã(j) with x(k) = x for all k ∈ Ã(j) increases j′s
payoff by induction over the remaining low investors l̃ for given h̃. Clearly for l̃ = 1 such
an Ã(j) yields |Ã(j)| = 1 and thus lower profits. In what follows, we show that under
the assumption that for l low investors with l < l̃ no such profitable counterproposal
Ã(j) exists, no profitable counterproposal Ã(j) also exists for l̃ low investors. To the
contrary, suppose that for l = l̃ there is a profit increasing counterproposal Ã(j) which
is hence accepted. After formation of Ã(j) all proposals are accepted by assumption
above and, hence, cluster sizes are given by Lemma 1. It is easy to see that with
|Ñ \ Ã(j)| ≥ n/2 the profit of the members of Ã(j) would increase if they add a high
investor to their cluster. Following identical arguments to above this would imply that
the profit of j in A(i) would be higher than in Ã(j).

Based on this we restrict attention to the case where |Ñ \ Ã(j)| < n/2. Again, by
induction hypotheses, after formation of Ã(j), all proposals are accepted and we are
in the case of Lemma 1. If all firms in Ñ \ Ã(j) join one cluster Ã(i) = Ñ \ Ã(j),
then Ã(j) clearly cannot be optimal since (Ã(j) \ {k} ∪ {i}) yields higher profits for
all firms in Ã(j) \ {k}. This follows from the fact that x(k) = x for all k ∈ A(j)
and x(i) = x̄ and the observation that for any firm exchanging a low investor in the
own cluster with a high investor from another cluster increases the firm’s quantity.
Since we know that A(i) generates the highest profits for i (and, hence, for j) among
all mixed clusters, this implies that A(i) yields higher profits compared to Ã(j) for
firm j. Hence, consider the formation of two clusters among the firms in Ñ \ Ã(j).

Lemma 1 then implies that these are Ã2 := (h̃, l∗(l̂)) where l∗(l̂) := (n−1−h̃+2(l̃−l̂))x−h̃x̄
4x

and Ã3 := (0, l̃− l̂− l∗(l̂)). Let Ã := (Ã1, Ã2, Ã3) denote the resulting cluster structure
in the game of remaining firms Ñ induced by the proposal Ã1 := Ã(j) = (0, l̂). Consider
the alternative counterproposal A′(j) = (1, l̂ − 1) which results in the cluster structure
A′ := (A′1, A

′
2, A

′
3) with A′1 := A′(j). Hence by Lemma 1 , A′2 := (h̃ − 1, l∗(l̂ − 1) and

Ã3 := (0, l̃− l̂− l∗(l̂−1)). Note that from Lemma 1 we get that l∗(l̂−1) = l∗(l̂)+ 3
4

+ 1
4
x̄
x
.

Calculating ∆q(j) := q(j,x, Ã)− q(j,x,A′), we get:

∆q(j) = γ
(n+1)

(
ns(j,x, Ã)−

∑
k∈Ã1,k 6=j

s(k,x, Ã)−
∑
k∈Ã2

s(k,x, Ã)−
∑
k∈Ã3

s(k,x, Ã)
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− ns(j,x,A′) +
∑

k∈A′1,k 6=j

s(k,x,A′) +
∑
k∈A′2

s(k,x,A′) +
∑
k∈A′3

s(k,x,A′)
)

where s(i,x, A) = β
∑

k∈A(i)\{i} x(k) denotes the spillovers experienced by i ∈ N in an
cluster structure A. We get for the difference in total spillovers in each cluster:

∆S(A1) :=ns(j,x, Ã)−
∑

k∈Ã1,k 6=j

s(k,x, Ã)− ns(j,x,A′) +
∑

k∈A′1,k 6=j

s(k,x,A′)

=β
(
n(l̂ − 1)x− (l̂ − 1)2x− n

(
(l̂ − 2)x+ x̄

)
+ (l̂ − 2)

(
(l̂ − 2)x+ x̄

)
+ (l̂ − 1)x

)
=− β(n− l̂ + 2)(x̄− x)

∆S(A2) :=−
∑
k∈Ã2

s(k,x, Ã) +
∑
k∈A′2

s(k,x,A′)

=− β
(
h̃
(
(h̃− 1)x̄+ l∗(l̂)x

)
+ (l∗(l̂)− 1)

(
h̃x̄+ (l∗(l̂)− 1)x

)
+ (h̃− 1)

(
(h̃− 2)x̄+ l∗(l̂ − 1)x

)
+ (l∗(l̂ − 1)− 1)

(
(h̃− 1)x̄

+ (l∗(l̂ − 1)− 1)x
))

=β 1
4
(x̄− x)

(
− n

2
+ h̃(3

2
x̄
x
− 5

2
)− l̃ + l̂ + 5

2
− 3

4
x̄−x
x

)
∆S(A3) :=−

∑
k∈Ã3

s(k,x, Ã) +
∑
k∈A′3

s(k,x,A′)

=β
((
l − l̂ − l∗(l̂)

)(
l − l̂ − l∗(l̂)− 1

)
x

−
(
l − l̂ − l∗(l̂ − 1) + 1

)(
l − l̂ − l∗(l̂ − 1)

))
x

=β
((
l∗(l̂ − 1)− l∗(l̂)− 1

)(
l∗(l̂ − 1) + l(l̂)− 2(l̃ − l̂)

))
=− β

4
(x̄− x)

(
− n

2
+ h̃( x̄

2x
+ 1

2
) + l̃ − l̂ − 1

4
− x̄

4x

)
Thus we get:

∆q(j) = γ
(n+1)

(∆S(A1) + ∆S(A2) + ∆S(A3))

= γβ
(n+1)

x̄−x
4

(
− 4n+ h̃( x̄

x
− 3) + 6l̂ − 2l̃ − 7

2
− 1

2
x̄
x

)
Thus, for x̄

x
− 3 < 4 the above bracket is clearly negative since n > h̃ + l̂ and

l̃ > l̂. Hence, if x̄
x

is not too large, in particular x̄ < 7x, then ∆q(i) < 0 and thus
the counterproposal cannot have been optimal, implying that for small enough x̄ every
proposal will be accepted.

Lemma 3. If h <
⌈
n−1

2

⌉
, then every equilibrium of the unanimity game results in the

formation of two clusters.
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Proof. First note that by assumption on the rule of order, the first proposer is a high
investor. Further by assumption of the Lemma, h <

⌈
n−1

2

⌉
, implies that all high

investors will be included in the first proposal, since otherwise marginal utility of adding
a high effort firm is always positive which cannot be optimal since all proposals are
accepted, see derivation in (5). This implies, that at most three coalitions form, since
after all high effort firms joined the first cluster A1, there are only low effort firms left
which form at most two coalitions, see also Bloch (1995). Since there may be also
low effort firms included in the first proposal, we get the following cluster structure:
A = (A1, A2, A3) with A1 = (h, l1), A2 = (0, l2) and A3 = (0, l3). We show here that
the last cluster is empty, i.e. l3 = 0 for x̄ ≤ 2x.

Given l−l1 remaining low effort firms after the first coalition forms, we can calculate
the size of A2 to be the largest integer such that

πA2

(
i,x,A

)
− πA2

(
i,x,

(
A1, A2 − (0, 1), A3 + (0, 1)

))
> 0

and therefore the optimal value of l2 is given by l∗2(l1) :=
⌈
n+2(l−l1)−1

4

⌉
, see Lemma 1.

Note that l∗3 = l − l1 − l∗2(l1). It is easy to see that, given l − l1 remaining firms
after the first proposal, if l∗i (l1 + 1) < l∗i (l1), i ∈ {2, 3}, then l∗j (l1 + 1) = l∗j (l1) and
l∗j (l1 + 2) < l∗j (l1 + 1) as well as l∗i (l1 + 2) = l∗i (l1 + 1) j ∈ {2, 3}, j 6= i. Thus, when
firms are added to the first cluster and A2 and A3 are non-empty, then these firms are
added in alternating order from A2 and A3.

Hence the first firm i in order ρ (implying x(i) = x̄) chooses l1 as the largest integer
such that

πA1

(
i,x,

(
(h, l1), A2, A3

))
− πA1

(
i,x,

(
(h, l1 − 2), A2 + (0, 1), A3 + (0, 1)

))
> 0

⇔ 2 (nx− h(x̄+ x)− 2l1x+ l2x+ l3x+ 3x) > 0

This implies

l∗1(h) := max
{

0,
⌈
nx−h(x̄+x)+lx

3x

⌉}
, (10)

which is solved by substituting l3 = l − l1 − l2. Note that it is necessary for three
coalitions to form that l∗3(h) = n− h− l∗1(h)− l∗2(l∗1(h)) > 0 which implies that n− h−
l∗1(h) = n− |A1| >

⌈
n+1

2

⌉
(compare also to Lemma 1). Note that (10) implies that the

size of A1, given by h+ l∗1(h) =
⌈

2nx−h(x̄−x)
3x

⌉
, is decreasing in h (for an illustration, see

also Figure 1). Hence choosing h maximal under the assumption h <
⌈
n−1

2

⌉
yields the

minimal size of A1 which implies h = n−2
2

and n is even for |A1| to be minimal under
our assumption. We then get this size of A1 by calculating l∗1(h):

l∗1(n−2
2

) = max
{

0,
⌈

1
3

(
n− n−2

2

(
x̄
x

+ 1
)

+ n− n−2
2

)⌉}
= max

{
0
⌈

1
6

(
2(n+ 2)−

(
x̄
x

)
(n− 2)

)⌉}
which ist obviously positive due to x̄ ≤ 2x, see Assumption 1. Hence |A1| = h+ l∗(h) >⌈
n−1

2

⌉
and hence no three cluster outcome can be supported as an equilibrium for

h <
⌈
n−1

2

⌉
.
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Lemma 4. If h ≥
⌈
n−1

2

⌉
, then every equilibrium of the unanimity game results in the

formation of two clusters.

Proof. First, note that for
⌈
n−1

2

⌉
≤ h ≤ dn+1

2
e the first cluster A1 will include all high

effort firms (see Lemma 1 by setting lm = n − h and using x̄ ≥ x), implying that no
high effort and only lm < n −

⌈
n−1

2

⌉
= bn+1

2
c low effort firms remain after the first

proposal. These form one coalition by Lemma 1, see also derivation in (5). Hence,
three coalitions are only possible if h > dn+1

2
e such that the first proposal does not

include all high effort firms.
Thus, consider the formation of three clusters A1, A2, and A3 such that A1 consists

of only high effort firms A1 = (h1, 0) with h1 ≥ dn+1
2
e and, hence, h − h1 ≤ n−1

2
≤

(n−1+l)x̄+lx
2x̄

. Therefore, A3 cannot include any high effort firms by Lemma 1.
To summarize, the only way that three coalitions can be supported in equilibrium

is to have A1 = (h1, 0), A2 = (h − h1, l2) and A3 = (0, l3) if h ≥
⌈
n−1

2

⌉
. To the

contrary, suppose that these three coalitions indeed form. Denoting by h2(h1), l2(h1),
and l3(h1) the number of high respectively low effort firms in coalition 2 and 3 for
a given h1, we get (trivially) h2(h1) = h − h1 and, in equilibrium, by Lemma 1,

l2(h1) =
⌈

(n−1−(h−h1)+2l)x−(h−h1)x̄
4x

⌉
and, trivially, l3(h1) = n − h − l2(h1). Again for

A = (A1, A2, A3) to be an equilibrium outcome, the first proposal must be such that it
maximizes payoff under the expectation that these three coalitions form. Note that the
quantity of the proposing firm i (lowest ranked firm in order ρ) choosing h1 is given by

qA1

(
i,x,A

)
=

γβ

n+ 1

[
n(h1 − 1)x̄− (h1 − 1)2x̄− h2(h1)

[
(h2(h1)− 1)x̄+ l2(h1)x

]
− l2(h1)[h2(h1)x̄+ (l2(h1)− 1)x]− l3(h1)(l3(h1)− 1)x

]
+ C,

where C is a constant which is independent from the cluster profile A. Since profit is
strictly increasing in the quantity, the optimal choice of h1 is determined by the first
order condition

∂qA1
(i,x,A)

∂h1
=0

⇔ 0 =nx̄− 2(h1 − 1)x̄+ (h− h1)
[
x̄− x̄+x

4

]
+
[
(h− h1 − 1)x̄+ l2(h1)x

]
− x̄+x

4x

[
(h− h1)x̄+ l2(h1)x− x

]
+ l2(h1)

[
x̄− x̄+x

4

]
+ 2(l − l2(h1)) x̄+x

4
− x̄+x

4

⇔ 0 =(n+ 1− 2h)x̄+ (h− h1)
[
4x̄− x̄+x

4
x̄+x
x

]
+ l2(h1)

[
x− 4 x̄+x

4
+ x̄
]

+ 2l x̄+x
4

⇔ 0 =(n− h)(x̄+ x̄+x
2

)− (h− 1)x̄+ (h− h1)[4x̄− (x̄+x)2

4x
]

⇔ h∗1(h) = 4x
16x̄x+(x̄+x)2

[
(n− h)(x̄+ x̄+x

2
)− (h− 1)x̄

]
+ h

And hence,

⇔ h∗2(h) =− 4x
16x̄x+(x̄+x)2

[
(n− h)(x̄+ x̄+x

2
)− (h− 1)x̄

]
As pointed out above, we need h∗2(h) > 0 if h ≥ n−1

2
, in order to have A as an equilibrium

outcome. Hence,

0 >(n− h)(x̄+ x̄+x
2

)− (h− 1)x̄
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⇔ h > (3x̄+x)n+2x̄
5x̄+x

=: h̄ (11)

Moreover, we must have h∗2 > h1
m = (n−1−2l)x

x̄+x
in order to have A3 non-empty, see

Lemma 1. Using l = n− h, we get the condition

h∗2(h)− h1
m =− 4x

16x̄x+(x̄+x)2

[
(n− h)(x̄+ x̄+x

2
)− (h− 1)x̄

]
− ((n−1)−2(n−h))x

x̄+x
> 0 (12)

The left-hand side of (12) is non-increasing in h if

0 ≥5x̄+x
2
− 216x̄x+(x̄+x)2

4x
x

x̄+x
⇔ 3x ≥ x̄

Hence, for 3x ≥ x̄, (11) and (12) cannot be simultaneously satisfied. To see this, note
we must have h ≥ h̄ by (11) and we get h∗2(h̄) = 0 implying that the left-hand side of
(12) is negative for h = h̄. Since it is, moreover, decreasing in h for 3x ≥ x̄, (12) can
then not be satisfied. Thus, for 3x ≥ x̄ and h ≥ n−3

2
, there cannot exist three coalitions

which are supported by a subgame perfect equilibrium.

To wrap up, we have first characterized optimal cluster profiles for m remaining firms
if firms expect all other firms to join one cluster. That proposals are indeed accepted by
all players is shown by backward induction in Lemma 2 under the condition that 7x > x̄.
Finally, in Lemmas 3 and 4, it is shown that for 2x > x̄, three (and trivially also more)
clusters cannot be supported by a subgame perfect equilibrium. Hence, any subgame
perfect equilibrium consist of two clusters, and, hence, the sizes and composition of
these two clusters are given in Lemma 1. Setting hm = h, lm = n−h in Lemma 1 yields

the expressions for the cluster sizes as well as h̃, ˜̃h in the Proposition. This completes
the proof.

Proof of Proposition 2. We show the proposition in three steps by considering the in-
vestment incentives of firms, i.e. the marginal return on investment. First, if the number
of other high effort firms h−i is low then incentives are increasing in h−i for large enough
values of β which is shown in Lemma 5. For large values of h−i, the investment incen-
tives are decreasing (Lemma 6) if β is not too large, while for intermediate values, there
is a unique maximum (Lemma 7). Together these Lemmas imply the Proposition.

Lemma 5. If β > β := 4x
(n+6)x+x̄

, then for h−i ≤ 3(n−1)x
3x̄+x

− 1 expected return on invest-

ment is increasing in h−i.

Proof. It follows from (7) that for h−i ≤ 3(n−1)x
3x̄+x

− 1 all high investors participate in the

first cluster, i.e. pA1(x̄, h
−i+ 1) = 1. Since l1 = lA1(h

−i+ 1), the profit of a high investor
is given by:

π(x̄, h−i) = 1
(n+1)2

[
α− c̄+ γ(n− h−i)(x̄− x) + γx+ γβ

(
(n− h−i)(h−ix̄+ l1x)

− l1((h−i + 1)x̄+ (l1 − 1)x)− (n− h−i − l1 − 1)(n− h−i − l1 − 2)x
)]2

− ξ

The derivative with respect to h−i yields:

∂π(x̄,h−i)
∂h−i = 2γq(x̄)

(n+1)2
(x̄− x)

[
− 1 + β

4

(
n+ h−i

(
x̄
x
− 1
)

+ 6 + x̄
x

)]
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where q(x̄) denotes the optimal quantity of a high investment firm. If instead firm i
chooses low investment, she will join A1 with probability pA1(x, h

−i) = l1
n−h−i and A2

with probability 1 − pA1(x, h
−i) = n−h−i−l1

n−h−i . The resulting payoff from low investment
in A1 weighted with the probability of being in A1 is hence

π̂(x, h−i, A1) = 1
(n+1)2

pA1(x, h
−i)
[
α− c̄− γh−i(x̄− x) + γx+ γβ

(
(n− (l1 − 1))(h−ix̄+ (l1 − 1)x)

− h−i((h−i − 1)x̄+ l1x)− (n− h−i − l1 − 1)(n− h−i − l1 − 2)x
)]2

,

where l1 = lA1(h
−i). The derivative of π̂(x, h−i, A1) with respect to h−i yields:

∂π̂(x,h−i,A1)
∂h−i =2 1

(n+1)2
γ(x̄− x)pA1(x, h

−i)q(x,A1)
[
− 1 + β

4

(
n+ h−i( x̄

x
− 1) + 7

)]
+

∂pA1
(x,h−i)

∂h−i q(x,A1)2

where q(x,A1) denotes the quantity produced by a low effort firm in A1. Considering
now the payoff from low investment in A2, weighted with the probability of being in
A2, we obtain

π̂(x, h−i, A2) = 1
(n+1)2

(
1− pA1(x, h

−i)
)[
α− c̄− γh−i(x̄− x) + γx

+ γβ
(
n− (n− h−i − l1 − 1))((n− h−i − l1 − 1)x)

− h−i((h−i − 1)x̄+ l1x)− l1(h−ix+ (l1 − 1)x)
)]2

,

where, again, l1 = lA1(h
−i). The derivative of π̂(x, h−i, A2) with respect to h−i yields,

∂π̂(x,h−i,A2)
∂h−i =2 1

(n+1)2
γ(x̄− x)(1− pA1(x, h

−i))q(x,A2)
[
− 1 + β

4

(
− n+ h−i( x̄

x
− 1) + 5

)]
− ∂pA1

(x,h−i)

∂h−i q(x,A2)2

Note that expected payoff from choosing low investment is given by E
(
π(x, h−i)

)
=

π̂(x, h−i, A1)+π̂(x, h−i, A2). Thus the expected return on investment ∆π := π(x̄, h−i)−
E
(
π(x, h−i)

)
changes with h−i according to

∂∆π
∂h−i =∂π(x̄,h−i)

∂h−i − ∂E
(
π(x,h−i)

)
∂h−i = ∂π(x̄,h−i)

∂h−i −
(
∂π̂(x,h−i,A1)

∂h−i + ∂π̂(x,h−i,A2)
∂h−i

)
= 2

(n+1)2
γ(x̄− x)

[(
q(x̄)− E(q(x))

)(
− 1 + β

4

(
n+ h−i

(
x̄
x
− 1
)

+ 6 + x̄
x

)
+ pA1(x, h

−i)q(x,A1)β
4
( x̄
x
− 1) +

(
1− pA1(x, h

−i)
)
q(x,A2)β

4
(2n+ 1)

]
− ∂pA1

(x,h−i)

∂h−i

(
q(x,A1)2 − q(x,A2)2

)
where E(q(x)) = pA1(x, h

−i)q(x,A1)+
(
1−pA1(x, h

−i)
)
q(x,A2) is the expected quantity

of a low effort firm. We clearly have that the quantity produced by a high effort firm in
A1 exceeds the expected quantity of a low effort firm, i.e. q(x̄) > E(q(x)). Hence, ∂∆π

∂h−i

is positive if β > 4x
(n+7)x+(h−i+1)(x̄−x)

since
∂pA1

(x,h−i)

∂h−i = −
(

3+
x̄
x

)
(n−h−i)−4l1

4(n−h−i)2
< 0. Expected

return on investment is hence increasing in h−i for h−i ≤ 3(n−1)x
3x̄+x

− 1 and 2x ≥ x̄ under

the condition of β > 4x
(n+7)x+(h−i+1)(x̄−x)

. This expression is maximized for h−i = 0

yielding β := 4x
(n+6)x+x̄

. Note that the latter is only a sufficient condition.
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Lemma 6. If β < 1/2, then for h−i ≥ (2n−1)x̄+nx
3x̄+x

expected return on investment is

decreasing in h−i.

Proof. If h−i ≥ (2n−1)x̄+nx
3x̄+x

then by Proposition 1, we have that two clusters A1 = (h1, 0)

and A2 = (h − h1, l) form with h1 := hA1(h) =
⌈

(2n+h−1)x̄+(n−h)x
4x̄

⌉
. When i chooses

x(i) = x̄, she will be included in A1 with probability pA1(x̄, h
−i + 1) =

hA1
(h−i+1)

h−i+1
(see

(7)). In this case the payoff of a high investor in A1 weighted with the probability of
being in A1 will be

π̂(x̄, h−i, A1) =pA1(x̄, h
−i + 1) 1

(n+1)2

[
α− c̄+ γ(n− h−i)(x̄− x) + γx

+ γβ
(

(n− (h1 − 1))(h1 − 1)x̄− ((h−i + 1)− h1)
(
(h−i − h1)x̄+ (n− h−i − 1)x

)
− (n− h−i − 1)

(
(h−i + 1− h1)x̄+ (n− h−i − 2)x

))]2

− pA1(x̄, h
−i + 1)ξ

Taking the derivative with respect to h−i yields,

∂π̂(x̄,h−i,A1)
∂h−i =pA1(x̄, h

−i + 1)2q(x̄,A1)
n+1

γ(x̄− x)
[
− 1 + β

4

(
n(x

x̄
− 2) + h−i(1− x

x̄
) + 6− x

x̄

)]
+

∂pA1
(x̄,h−i+1)

∂h−i

(
q(x̄, A1)2 − ξ

)
When i chooses x(i) = x̄, she could also end up in A2 which happens with probability
1− pA1(x̄, h

−i + 1). In this case the expected payoff will be

π̂(x̄, h−i, A2) =(1− pA1(x̄, h
−i + 1)) 1

(n+1)2

[
α− c̄+ γ(n− h−i)(x̄− x) + γx

+ γβ
(

(n− h−i + h1)
(
(h−i − h1)x̄+ (n− h−i − 1)x

)
− (n− h−i − 1)

(
(h−i − h1 + 1)x̄+ (n− h−i − 2)x

)
− h1(h1 − 1)x̄

)]2

− (1− pA1(x̄, h
−i + 1))ξ

Taking the derivative with respect to h−i yields,

∂π̂(x̄,h−i,A2)
∂h−i =(1− pA1(x̄, h

−i + 1))2q(x̄,A2)
n+1

γ(x̄− x)
[
− 1 + β

4

(
nx
x̄

+ h−i(1− x
x̄
) + 8− x

x̄

)]
− ∂pA1

(x̄,h−i+1)

∂h−i

(
q(x̄, A2)2 − ξ

)
Finally, if i invests low, she will be in A2 for sure, i.e. pA1(x, h

−i) = 0. Payoff is then
given by

π(x, h−i) = 1
(n+1)2

[
α− c̄− γh−i(x̄− x) + γx+ γβ

(
(h−i + 1)

(
(h−i − h1)x̄

+ (n− h−i − 1)x
)
− (h−i − h1)

(
(h−i − h1 − 1)x̄+ (n− h−i)x

)
− h1(h1 − 1)x̄

)]2

Taking the derivative with respect to h−i yields,

∂π(x,h−i)
∂h−i =2q(x,A2)

n+1
γ(x̄− x)

[
− 1 + β

4

(
n(x

x̄
) + h−i(1− x

x̄
) + 7

)]
.
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Note that expected payoff from choosing high investment is given by E(π(x̄, h−i)) =
π̂(x̄, h−i, A1)+π̂(x̄, h−i, A2). Thus the expected return on investment ∆π := E(π(x̄, h−i))−
π(x, h−i) changes with h−i according to

∂∆π
∂h−i =∂E(π(x̄,h−i))

∂h−i − ∂π(x,h−i)
∂h−i = ∂π̂(x̄,h−i,A1)

∂h−i + ∂π̂(x̄,h−i,A2)
∂h−i − ∂π(x,h−i)

∂h−i

=
(
E(q(x̄))− q(x)

)
2

(n+1)2
γ(x̄− x)

[
− 1 + β

4

(
− (n− h−i)(1− x

x̄
) + 8− x

x̄

)]
− 2

(n+1)2
γ(x̄− x)β

4

[
pA1(x̄, h

−i + 1)q(x̄, A1)(n+ 2)− (1− pA1(x̄, h
−i + 1))q(x̄, A2)n

+ q(x,A2)(n+ 1− x
x̄
)
]

+
∂pA1

(x̄,h−i+1)

∂h−i

(
q(x̄, A1)2 − q(x̄, A2)2

)
(∗)
>
(
E(q(x̄))− q(x)

)
2

(n+1)2
γ(x̄− x)

[
− 1 + β

4

(
− (n− h−i)(1− x

x̄
) + 8− x

x̄

)]
+

∂pA1
(x̄,h−i+1)

∂h−i

(
q(x̄, A1)2 − q(x̄, A2)2

)
where, again E(q(x̄)) is the expected quantity produced by a high effort firm. The

last inequality (∗) holds since q(x̄, A1) > q(x̄, A2) and, furthermore, the fact that
pA1(x̄, h

−i + 1) is decreasing in h−i and, hence, for all h−i < n − 1 it holds that
pA1(x̄, h

−i + 1) ≥ pA1(x̄, n) =
⌈

3n−1
4n

⌉
> 1 −

⌈
3n−1

4n

⌉
≥ 1 − pA1(x̄, h

−i + 1) (see Propo-
sition 1). Thus, if β < 1/2 then all terms above are non-positive which implies the
statement of Lemma 6.

Lemma 7. For h−i ∈
[

3(n−1)x
3x̄+x

, (2n−1)x̄+nx
3x̄+x

− 1
]

the expected return on investment is

increasing in h−i on the entire interval, decreasing in h−i on the entire interval or has
a unique local maximum in the interior of the interval.

Proof. In order to show the claim of the proposition we prove that the change of the
return on investment is concave in h−i on the considered interval. It follows from
Lemma 1 that for h−i ∈

[
3(n−1)x

3x̄+x
, (2n−1)x̄+nx

3x̄+x
− 1
]

there are two clusters where all high

investors are in the first and all low investors are in the second cluster. Taking this into
account the return on investment is given by

∆π =π(x̄, h−i + 1, A1)− π(x, h−i, A2)

= 1
(n+1)2

[
α− c̄+ γ(n− h−i)(x̄− x) + γx+ γβ((h−i(n− h−i)x̄− (n− h−i − 1)(n− h−i − 2)x)

]2

− 1
(n+1)2

[
α− c̄− γh−i(x̄− x) + γx+ γβ(n(n− h−i)x̄− h−i(h−i − 1)x̄− (n− h−i − 1)2x

]2

.

Considering the derivative with respect to h−i and collecting terms yields

∂∆π
∂h−i = 2γ

(n+1)

[
− (x̄− x)(q(x̄, A1)− q(x,A2)) + β

(
nx̄(q(x̄, A1) + q(x,A2))

+ ((2n− 3)x− 2h−i(x̄+ x))(q(x̄, A1)− q(x,A2)) + (x̄− x)q(x,A2)
)]

Furthermore, we have

∂q(x,A2)
∂h−i = −γ(x̄− x)− γβ(nx+ (2h−i − 1)x̄− 2(n− h−i − 1)x) < 0,

because h−i > 3(n−1)
3x̄+x

implies (nx+ (2h−i − 1)x̄− 2(n− h−i − 1)x) > 0. Moreover,

∂(q(x̄,A1)+q(x,A2))
∂h−i = −2γ(x̄− x)− γβ((n− 4h−i + 1)x̄+ (3n− 4h−i − 5)x) < 0,
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where ((n − 4h−i + 1)x̄ + (3n − 4h−i − 5)x) < 0 again follows from h−i > 3(n−1)
3x̄+x

in
combination with x̄ ≤ 2x. Finally,

∂(q(x̄,A1)−q(x,A2))
∂h−i = γβ((n− 1)(x̄+ x) > 0.

Taking these observations into account we obtain

∂2∆π
∂(h−i)2

= 2γ
(n+1)

[
− (x̄− x)︸ ︷︷ ︸

>0

∂(q(x̄,A1)−q(x,A2))
∂h−i︸ ︷︷ ︸
>0

+β
(
nx̄ ∂(q(x̄,A1)+q(x,A2))

∂h−i︸ ︷︷ ︸
<0

+ ((2n− 3)x− 2h−i(x̄+ x)) ∂(q(x̄,A1)−q(x,A2))
∂h−i︸ ︷︷ ︸
>0

+ (x̄− x)︸ ︷︷ ︸
>0

∂q(x,A2)
∂h−i︸ ︷︷ ︸
<0

)]
<0,

where we have used that h−i > 3(n−1)
3x̄+x

induces ((2n− 3)x− 2h−i(x̄+ x)) < 0.

Lemmas 5–7 then imply that the investment incentives have the shape that is de-
picted in Figure 2 such that the investment incentives have a unique local maximum. For
the sake of the argument, we denote the number of firms which invest high as h∗ where
this local maximium of π(x̄, h−i + 1)− π(x, h−i) is attained. Hence, if costs ξ are low,
i.e. ξ < ξ̄ := π(x̄, 1)−π(x, 0) then because return of investment dominates its cost, even
if no other firm invests, there is a unique equilibrium. The equilibrium is such that h(ξ)

firms invest high and n−h(ξ) invest low, where h(ξ) = n if ξ < ¯̄ξ := π(x̄, n)−π(x, n−1)
or h(ξ) solves min{h ∈ {h∗, . . . , n} : π(x̄, h + 1) − π(x, h) < ξ} else. For ξ > ξ̄ there
is also an equilibrium where no firm invests, since π(x̄, 1) − π(x, 0) < ξ. Finally, if

ξ >
¯̄̄
ξ := π(x̄, h∗ + 1) − π(x, h∗), then there is no equilibrium where h(ξ) firms invest

high, since investment cost exceed the maximal gains of investment for all values of h−i,
which concludes the proof.

Proof of Proposition 3. (i) Suppose that there are K clusters Ak, k ∈ {1, ..., K} and
denote X :=

∑
i∈N x(i), Xk =

∑
i∈Ak

x(i), and ak := |Ak|.Thus,
∑K

k=1 ak = n.
Note that maximizing consumer surplus CS = Q2/2 is equivalent to minimizing
the sum of all marginal costs C(x,A) =

∑n
i=1 c(i,x,A), since (n + 1)Q(x,A) =

nα− C(x,A). Then we get for total cost:

C(x,A) =
n∑
i=1

(
c̄− γx(i)− γβ

∑
j∈A(i),j 6=i

x(j)
)

= nc̄− γX − γβ
K∑
k=1

(
(ak)

2− 1
)
Xk.

Clearly C is minimized if x(i) = x̄ for all i ∈ N and further a1 = n. Thus, a single
cluster where all firms choose high investments is maximizing consumer surplus.

(ii) Fix some profile of investment x = (x(1), ..., x(n)) and denote by s̃(i,x,A) =
γ(x(i)+β

∑
j∈A(i)\{i} x(j)) the cost reduction of firm i due to own R&D investment

and incoming spillovers for a profile of clusters A ∈ A. Thus, c(i,x,A) = c̄ −
s̃(i,x,A)). Denote by S̃(x,A) :=

∑
j∈N s̃(j,x,A) and, as above, C(x,A) :=∑

j∈N c(j,x,A). This implies that given an investment profile x, we can write
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welfare, consisting of the sum of firm profits and consumer surplus, for a cluster
structure A ∈ A as

W =
n∑
i=1

(q(i,x,A))2 − hξ +Q2(x,A)/2

= 1
(n+1)2

[
n∑
i=1

(α− (n+ 1)c(i,x,A) + C(x,A))2 + (nα− C(x,A))2/2

]
− hξ

= 1
(n+1)2

[
n∑
i=1

(
α− c̄+ γ

(
(n+ 1)(x(i) + s̃(i,x,A))− S̃(x,A)

))2

+ (n(α− c̄) + S̃(x,A))2/2

]
− hξ

= 1
(n+1)2

[
(n+ 2)(α− c̄)S̃(x,A) + n(α− c̄)2(1 + n/2)− S̃(x,A)2(n+ 3/2)

+ (n+ 1)2

n∑
i=1

s̃(i,x,A)2

]
− hξ

Considering the last expression and taking into account that s̃(i, x, A) ≤ γx̄(1 +
β(n−1)) it is obvious that for sufficiently large (α−c̄) maximizing W is equivalent
to maximizing S̃(x,A). Since every member of a cluster generates spillovers to
all cluster members, we have

S̃(x,A) = γ

(
n∑
j=1

x(j) + β
K∑
k=1

(
(ak − 1)

∑
i∈Ak

x(i)

))
= γ

(
n∑
j=1

x(j) + β
n∑
i=1

(a(i)− 1)x(i)

)
.

and therefore maximizing S̃(x,A) is equivalent to maximizing
∑n

i=1(a(i)− 1)x(i)
over all profiles of clusters A ∈ A. It is straightforward to see that

n∑
i=1

a(i)x(i) ≤ n
n∑
i=1

x(i)

and, since the right hand side corresponds to the case of a single cluster containing
all firms, we have shown that welfare is maximized for such a cluster.

(iii) We show that a single cluster with full investment strictly maximizes welfare for
ξ = 0, which by continuity implies the claim of this part of the Proposition. For
ξ = 0 welfare can be written as

W (x,A) = U(Q(x,A))−
n∑
i=1

c(i,x,A)q(i,x,A),

where U(.) is the utility function of the representative consumer. Denote by
x̄ = (x̄, . . . , x̄) the investment profile where all firms invest high and by Ā the
cluster structure in which all firms are in the same cluster. Since under (x̄, Ā) each
firm has maximal own R&D investment as well as maximal incoming spillovers,
it is easy to see that ∑

j∈N

c(j, x̄, Ā) = ncmin <
∑
j∈N

c(j,x,A)
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for all (x,A) 6= (x̄, Ā), where cmin = c(j, x̄, Ā) ist the minimal marginal cost
value that can be reached by any firm. Note that c(j, x̄, Ā) is identical across all
firms j. Due to Q(x,A) = nα

n+1
− 1

n+1

∑
j∈N c(j,x,A) we conclude that

Q(x̄, Ā) > Q(x,A).

Furthermore, U ′(Q̃) = p(Q̃) > cmin, for all Q̃ ∈ [Q(x,A), Q(x̄, Ā)] and therefore

W (x̄, Ā) = U(Q(x̄, Ā))− cminQ(x̄, Ā)

> U(Q(x,A))− cminQ(x,A)

≥ U(Q(x,A))−
∑
j∈N

c(j,x,A)q(j,x,A)

for all (x,A) 6= (x̄, Ā), where the last inequality follows from c(j,x,A) ≥ cmin
for all j ∈ N .

(iv) For ξ large enough, any benefit of investment is dominated by the costs, hence all
firms must invest low in the welfare maximum. Given this investment pattern, it
is easy to see that no profile of clusters can generate a lower value of marginal
production costs than what is obtained by all firms if a single cluster is formed.
Taking this into account, an analogous argument to that used in the proof of
part (iii) establishes that the generation of a single cluster containing all firms
maximizes welfare.
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