
Center for

Mathematical Economics

Working Papers 526
September 2014

On Repeated games with imperfect public

monitoring: Characterization of

Continuation payoff processes

Mathias Staudigl

Center for Mathematical Economics (IMW)
Bielefeld University
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Abstract

This note contains complementary information to the paper Staudigl and Steg
(2014). We present a martingale characterization of continuation payoff processes in a
class of repeated games with imperfect public monitoring. Our martingale approach
allows us to work out a clear connection between the discrete time and continuous
time payoff processes. A general proof of convergence is the open issue in this liter-
ature, and I strongly belief that the characterization result reported here is the key to
solve this problem.

Keywords: Repeated games, Public Perfect Equilibrium, Martingale Representation.

1. Introduction

In Staudigl and Steg (2014) we have shown that a recent class of repeated games in
continuous-time can be motivated via a sequence of discrete-time repeated games. In that
paper we prove the convergence of the repeated game dynamics and the total expected
payoffs of the players. However, our analysis does not allow us to say anything about the
relation between public perfect equilibria in the approximating discrete-time games and
the limit game in continuous-time. This is, in general, a completely open question. The
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purpose of this short note is to indicate a promising way to reduce the gap in our under-
standing of equilibrium payoff processes in discrete and continuous time. The exposition
follows the notation of Staudigl and Steg (2014) and I refer to concepts introduced in that
paper rather bluntly. However, in order to understand the material of this note it is not
necessary to understand the convergence argument of the family of repeated games. It
suffices to have a look at sections 2 and 3 of Staudigl and Steg (2014).

2. Continuation payoffs in discrete-time

Since perfect public equilibria are recursive, they can be characterized by dynamic
programming methods as described in Abreu et al. (1990). Here we present an alterna-
tive explicit characterization of any continuation value process, which is the closest as
possible to the corresponding continuous-time characterization presented in Section 3.

Following Staudigl and Steg (2014), we think of our family of discrete-time games Γh

as being played in real time, but only at regularly spaced time points th
n , nh a change

takes place. The discount factor in this game is given by δh ≡ δ = e−rh, where r > 0 is an
exogenously given interest rate. Players observe a public signal process Xh = {Xh

th
n
; n ≥

0} and nothing else in the game. The information filtration of each player is hence given
by Fh

n , σ(Xh
th
k
; 0 ≤ k ≤ n). A pure public strategy for player i in this game is an {Fh

n}n≥0

adapted process αi,h = {αi,h
n ; n ≥ 0} with values in the finite set Ai. Given a pure public

strategy profile αh the repeated game dynamics is constructed on a common probability
space and the players control the distribution of the signals. This ”strategic measure” is
denoted by Pαh

. An explicit construction of this measure is given in Section 3 of Staudigl
and Steg (2014). Given a discrete-time pure public strategy αh, define the payoff processes

Ui,αh

n , EPαh
[

∞

∑
k=0

δk(1− δ)gi(αh
k)
∣∣Fh

n

]
,

W i,αh
, EPαh

[
∑
k≥n

δk−n(1− δ)gi(αh
k)
∣∣Fh

n

]
.

We refer to the process W i,αh
= {(W i,αh

n ,Fh
n); n ∈ N0} as the continuation value process of

player i. W i,αh

n is the remaining utility of player i under the public strategy profile αh when
the game reached period n (summarized by the information structure Fh

n). Observe that
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both processes are connected by the identity

(1) Ui,αh

n =
n−1

∑
k=0

δk(1− δ)gi(αh
k) + δnW i,αh

n .

The process Ui,αh
= {(Ui,αh

n ,Fh
n); n ≥ 0} is a bounded martingale under the probability

measure Pαh
. Set Uα = (Ui,αh

)1≤i≤N.
Our first representation result is a Doob-Decomposition of the continuation payoff

process.

Proposition 2.1. A bounded {Fh
n}n∈N0-adapted process {Wn}n∈N0 is the continuation value

process induced by the public strategy profile αh if and only if it solves the stochastic difference
equation

(2) Wn = W0 +
1− δ

δ

n−1

∑
k=0

[Wk − g(αh
k)] +

n−1

∑
k=0

dh
k+1

where

(3) dh
n+1 ,Wn+1 − EPαh

[Wn+1|Fh
n].

Proof. For ease of notation, we omit the mesh size h in the proof. For every discrete time
process (Wn)N0 that is integrable under the measure Pα we can define a Doob decomposi-
tion W = M + N into a martingale and a predictable process. The martingale increments
are ∆Mn−1 = dn given in (3). Hence, W solves (2) iff the first sum is that of the increments
∆Nk = EPα

[∆Wk|Fk], which is equivalent to

Wn = (1− δ)g(αn) + δEPα
[Wn+1|Fn], n ∈N0.

It is trivial to see that Wα = {(Wα
n ,Fn); n ∈ N0} satisfies this recursion. If another

bounded process W satisfies it as well, then by iteration

(4) Wn = EPα
[
(1− δ)

k−1

∑
l=0

δlg(αn+l) + δkWn+k|Fn

]
for any k ≥ 0. Taking the limit k→ ∞, we obtain Wα

n on the right-hand side by dominated
convergence, as W is bounded (it must be inside the convex compact set V = conv[g(A)]).

�

Our goal in this section is to decompose the bounded martingale Uαh
orthogonally
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into a stochastic integral and a square integrable martingale part. The motivation for
this is that in continuous time the continuation payoff process is the solution to a BSDE
driven by a Wiener process (which will be introduced in Section 3). To obtain an explicit
expression for the integrand of the discrete approximation of the Wiener process, a further
martingale decomposition is needed. To perform such a decomposition we first have
to identify the driving noise process under the probability measure Pαh

. To this end,
consider the martingale

Bαh

n , B̄h
th
n

∀n ≥ 0,

where B̄h is the right-continuous process defined in eq. (16) of Staudigl and Steg (2014).
Following the arguments in that paper, we can alternatively write1

Bαh

n = Bh
n − h

n−1

∑
k=0

µ(αh
k),

so that

∆Bαh

n , Bαh

n+1 − Bαh

n = Bn+1 − Bh
n − hµ(αh

n) = ∆Bh
n − hµ(αh

n).(5)

The Kunita-Watanabe decomposition (see Kunita and Watanabe (1967) or Jacod (1979),
ch. IV, sec.2) of the bounded martingale Uαh

with respect to the martingale Bαh
is given

by

(6) Uαh

n = Uαh

0 +
n−1

∑
k=0

Φh
k+1∆Bαh

k + Lh
n

where Lh is a bounded martingale with Lh
0 = 0 ∈ RN and strongly orthogonal to Bαh

.
This means that

EPαh
[∆Lh

n|Fh
n] = 0 ∀n ≥ 0, and(7)

EPαh
[∆Li,h

n ∆Bαh

j,n|Fh
n] = 0 ∀1 ≤ i ≤ N, 1 ≤ j ≤ d, n ≥ 0.(8)

The process Φh = {Φh
n; n ≥ 1} is an {Fh

n}n-predictable process taking values in RN×d.

1Specifically Bh
n =
√

h ∑n−1
k=0 ξk+1.
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Observe that eq. (8) also implies that

EPαh
[∆Li,h

n ∆Bh
j,n|Fh

n] = 0 ∀1 ≤ i ≤ N, 1 ≤ j ≤ d, n ≥ 0.

However, the process Bh is not a martingale under the “strategic” measure Pαh
(but it is

one under the reference measure P = ρ⊗N, again see section 3 of Staudigl and Steg (2014)
for the details). Taking first order differences in eq. (6) we see that

Uαh

n+1 −Uαh

n = Φh
n+1∆Bh

n + ∆Lh
n − hΦh

n+1µ(αh
n) | by eq. (5)

= δn
{
(1− δ)g(αh

n) + δWh
n+1 −Wh

n

}
| by eq. (1).

Hence,

δ[Wh
n+1 −Wh

n ] = (1− δ)[Wh
n − g(αh

n)]− hδ−nΦh
n+1µ(αh

n) + δ−n∆Lh
n + δ−nΦh

n+1∆Bh
n,

which, after dividing through δ and some rearrangements, gives

Wh
n+1 −Wh

n =
1− δ

δ

[
Wh

n − g(αh
n)−

hδ−n

1− δ
Φh

n+1µ(αh
n)

]
+ δ−(n+1)Φh

n+1∆Bh
n + δ−(n+1)∆Lh

n.

Setting

Zh
n =

1
r

δ−nΦh
n ∀n ≥ 1,

we get

Wh
n+1 −Wh

n =
1− δ

δ

[
Wh

n − g(αh
n)−

rhδ

1− δ
Zh

n+1µ(αh
n)

]
+ rZh

n+1∆Bh
n + δ−(n+1)∆Lh

n.

The next steps are very familiar from the recursive approach to repeated games. Define
the auxiliary one-shot game

(9) Gh(a, z) , g(a) +
rhδ

1− δ
zµ(a),

so that Gh(·, z) : A , ∏1≤i≤N Ai → RN is the auxiliary one-shot game with payoff sensi-
tivity z (the use of this terminology will become clear soon).

Lemma 2.2. Let G : A×RN×d → RN be defined as

(10) G(a, z) = g(a) + zµ(a)
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Then Gh → G uniformly as h→ 0+.

Then, we finally arrive at the representation

(11) Wh
n+1 −Wh

n =
1− δ

δ

[
Wh

n − Gh(αh
n, Zh

n+1)
]
+ rZh

n+1∆Bh
n + δ−(n+1)∆Lh

n.

It is important to keep in mind that Zh = {Zh
n; n ≥ 1} is {Fh

n}n∈N0-predictable. Con-
versely, for a fixed public strategy profile αh, consider a triple (Wh, Zh, Lh) satisfying eq.
(11), where

• Zh = {Zh
n; n ≥ 1} is {Fh

n}n∈N0-predictable,

• Lh is square integrable martingale in RN strongly orthogonal to Bαh
under Pαh

start-
ing at 0, and

• Wh is a bounded adapted process living in V , conv(g(A)).

Then it is easy to see that Wh is the continuation payoff process under the strategy profile
αh. Indeed, under the just spelled out conditions satisfied by the triple (Wh, Zh, Lh), we
get

Wh
n = (1− δ)g(αh

n)− rδZh
n+1

(
∆Bh

n − hµ(αh
n)
)
− δ−n∆Lh

n + δWh
n+1

= (1− δ)g(αh
n)− rδZh

n+1∆Bαh

n − δ−n∆Lh
n + δWh

n+1.

Iterating up m ≥ 0 times gives

Wh
n =

m−1

∑
k=0

(1− δ)δk−ng(αh
n+k)−

m−1

∑
k=0

rδk+1Zh
n+k+1∆Bαh

n+k − δ−n(Lh
n+m − Lh

n) + δmWh
n+m.

Applying the operator EPαh
[·|Fh

n] to both sides of this equation gives for N = n + m, m ≥
0, the expression

Wh
n = EPαh

[
N−1

∑
k=n

(1− δ)δk−ng(αh
k) + δN−nWh

N
∣∣Fh

n

]
.

Using the boundedness of the process Wh allows us to pass to N → ∞ using the domi-
nated convergence theorem. This shows that

Wh
n = EPαh

[
∞

∑
k=n

(1− δ)δk−ng(αh
k)
∣∣Fh

n

]
= Wαh

n Pαh − a.s.
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Hence, we have show the following characterization result.

Theorem 2.3. An adapted process Wh = {Wh
nF

h
n; n ≥ 0} living in V is the continuation value

process under the public strategy profile αh if and only if there are processes (Zh, Lh) satisfying
the following conditions:

• Zh = {Zh
n; n ≥ 1} is a {Fh

n}n≥0-predictable process taking values in RN×d;

• Lh = {Lh
n; n ≥ 0} is a square integrable martingale in RN with Lh

0 = 0 which is strongly
orthogonal to Bαh

under Pαh
;

• The sums

∑
n≥0

rZh
n+1∆Bαh

n + ∑
n≥0

δ−n∆Lh
n

exist in L2(Pαh
), and

• The triple (Wh, Zh, Lh) satisfies the difference equation (11).

Remark 2.4. In Staudigl and Steg (2014) we construct the measure Pαh
to be absolutely

continuous with respect to the reference measure P. Hence, it is immaterial whether we
impose the transversality condition with respect to the strategic measure Pαh

or P. _

The above theorem shows that, given a public strategy profile αh, the solution of the
repeated game dynamic is a triple of processes (Wh, Zh, Lh). The next result gives us
explicit expressions for the coefficients in the characterizing difference equation of the
continuation payoff process.

Proposition 2.5. For all h > 0 and n ≥ 0 we have

rhZh
n+1 = EPαh [

(Wh
n+1 −Wh

n)(Bαh

n+1 − Bαh

n )>
∣∣Fh

n

]
(12)

and

Lh
n+1 − Lh

n = δn+1
(

dh
n+1 − rZh

n+1∆Bαh

n

)
,(13)

where dh is the martingale difference sequence defined in (3).

Proof. From the previous arguments we know that

δWh
n+1 −Wh

n = rδZh
n+1∆Bαh

n + δ−n∆Lh
n − (1− δ)g(αh

n)

–7–



Multiplying both sides by (∆Bαh
n )> and applying the operator EPαh

[·|Fh
n] we get

EPαh
[(δWh

n+1 −Wh
n)(Bαh

n+1 − Bαh

n )>|Fh
n] = rhδZh

n+1.

Here we used the fact that the sensitivity process Zh
n+1 is Fh

n-predictable. Since Wh
n is

Fh
n-measurable, this is equal to

EPαh
[Wh

n+1(Bαh

n+1 − Bαh

n )>|Fh
n] = rhZh

n+1,

which in turn is equal to

EPαh
[(Wh

n+1 −Wh
n)(Bαh

n+1 − Bαh

n )>|Fh
n] = rhZh

n+1.

For the second representation, first recall the Doob-decomposition from Proposition 2.1:

δWh
n+1 −Wh

n = δdh
n+1 − (1− δ)g(αh

n).

Combining this with the previous display we see immediately that

δ−n∆Lh
n = δ

(
dh

n+1 − rZh
n+1∆Bαh

n

)
.

�

Note that these characterizations are general, as we have not imposed any equilibrium
conditions (i.e. incentive compatibility). The last proposition shows that once Wh and Zh

are known, then Lh is determined as a residual via eq. (13). In order to close the system
of equations we need to formulate appropriate incentive compatibility conditions.

From the derivations presented in the next section, it will become clear that equation
(11) is indeed the discrete-time analogue of the continuous-time representation theorem,
first reported in Sannikov (2007). The derivation is just slightly more complicated be-
cause we do not have the predictable representation property of L2-martingales w.r.t. the
driving martingale Bαh

in general.2 We close this section with the following

2In discrete-time, it is well known that the only signal process which has the predictable representation
property is the binary tree model. Assuming this simple structure in the discrete-time game might be fine
for computational purposes (as in Cox et al. (1979)), it is arguably not very satisfactory from a theoretical
point of view in games.
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3. Continuation payoff process in continuous-time

We now turn our attention to the continuous-time limit game. The 2-player version
is due to Sannikov (2007). We here provide the relevant extensions to the N-player case
using the weak solution approach to optimal control. As in discrete-time, key to the
derivation is the construction of continuation payoff processes. Given a public strategy
profile α ∈ A in the continuous-time game (see Staudigl and Steg (2014) for the relevant
definition), let

Ui,α
t = EPα

[∫ ∞

0
re−rsgi(αs)ds|Wt

]
, and(14)

W i,α
t = EPα

[∫ ∞

t
re−r(s−t)gi(αs)ds|Wt

]
.(15)

As in discrete-time, these processes are connected via the identity

Uα
t =

∫ t

0
re−rsg(αs)ds + e−rtWα

t .

Under the probability measure Pα, the process Uα = {Ui,α
t ; t ≥ 0} is a bounded martingale

with respect to the filtration Wt, constructed in Staudigl and Steg (2014). On the resulting
stochastic basis (Wd+1,Wd+1, {Wt}t≥0, Pα) the driving Brownian motion of the repeated
game dynamics is the process Bα, defined in Section 2 of Staudigl and Steg (2014). How-
ever, the filtration {Wt}t≥0 is bigger than the filtration generated by Bα. Hence, the Itô
representation theorem of L2-martingales is not applicable. The necessary technical result
we need for representing the martingale Uα in terms of an Itô-integral with respect to the
Brownian motion Bα is the following classical fact.

Lemma 3.1 (Fujisaki et al. (1972)). Fix a public strategy α ∈ A. For every ξ ∈ L2(W∞, Pα; RN)

there exist unique {Wt}t≥0-progressively measurable RN×(d+1)-valued processes

Φα
t =


Φ1,α

t
...

ΦN,α
t

 , where Φi,α
t = [Φi,α

0 (t), . . . , Φi,α
d (t)] 1 ≤ i ≤ N,

such that

EPα
[∫ ∞

0
‖Φα

s ‖
2 ds

]
< ∞, where ‖z‖2 = tr(zz>),

–9–



and

ξ i = EPα
[ξ i] +

∫ ∞

0

d

∑
k=0

Φi,α
k (t)dBα

k (t) 1 ≤ i ≤ N,

where Bα is a Pα Brownian motion (see Section 2 of Staudigl and Steg (2014)).

Proof. See proposition 2.31 in Bain and Crisan (2000). �

Using this result, we are able to state and prove a nice representation formula satisfied
by the continuation payoff process.

Theorem 3.2. For every public strategy profile α ∈ A, the continuation payoff process is the
almost sure unique adapted process W = {(Wt,Wt); t ≥ 0}, satisfying the following conditions:

(i) Wt ∈ V = conv[g(A)] a.s.-Leb× P, so that the transversality condition

(16) lim
t→∞

e−rtEP[‖Wt‖2] = 0

is satisfied.

(ii) there is an RN×d-valued progressive process Z = {Zt; t ≥ 0} in L2(Pα) and a square inte-
grable process η orthogonal to B(1), such that the pair (W, Z) solves the stochastic integral
equation

(17) Wt =
∫ ∞

t
re−r(s−t)[g(αs) + Zsµ(αs)]ds−

∫ ∞

t
re−r(s−t)ZsdB(1)(s) + ηt.

Proof. (i) is an obvious necessary condition for W to be a continuation payoff process. The
transversality condition is then a direct implication of the almost sure boundedness of the
process.

(ii) For any public strategy profile α ∈ A, the martingale Uα = {Uα
t ,Wt; t ≥ 0} is

bounded. By the martingale convergence theorem there exists a random variable U∞ ∈
L2
W∞

(Pα) such that limt→∞ Uα
t = U∞ Pα-almost surely, and moreover

EPα
[U∞|Wt] = Uα

t ∀t ≥ 0.

Using Lemma 3.1, there exists a {Wt}t≥0-progressively measurable process Φα = {Φα
t ; t ≥

0} such that

U∞ = EPα
[U∞] +

∫ ∞

0
Φα

s dBα
s .

–10–



Taking condition expectations on both sides, we conclude

Uα
t = EPα

[U∞] +
∫ t

0
Φα

s dBα
s =

∫ t

0
re−rsg(αs)ds + e−rtWα

t .

Hence,

e−rtWα
t = EPα

[U∞] +
∫ t

0
Φα

s dBα
s −

∫ t

0
re−rsg(αs)ds.

By Itô’s formula, one sees

dWt = r[Wt − g(αt)]dt + ertΦα
t dBα

t .

Setting

Ψα
t ,

1
r

ertΦα
t ∀t ≥ 0,

and using the relation

dBα
t = dBt − f (αt)dt, f (a) = (0, µ(a))>,

we get

dWt = r[Wt − g(αt)−Ψα
t f (αt)]dt + rΨα

t dBt.

Recall from Staudigl and Steg (2014) that B = (B0, B(1)) is a partitioned vector of Brownian
motions. Accordingly we partition the matrix-valued random variable Ψα

t as

Ψα
t = [ψ0(t) : Zt]

with ψ0(t) = (ψ1
0(t), . . . , ψN

0 (t))>, and Zt = [Zi
k(t)]1≤i≤N;1≤k≤d and N × d matrix valued

process. From this, it is immediate that

dWt = r[Wt − g(αt)− Ztµ(αt)]dt + rZtdB(1)(t) + rψ0(t)dB0(t).

Integrating from t forward by exploiting the transversality condition (16), and setting
ηα

t = eα
∞ − eα

t , where

eα
t ,

∫ t

0
ψ0(s)dB0(s)

–11–



gives the representation (17). �

Remark 3.3.

• In the statement of the Theorem, both processes Z and η depend on the public strat-
egy α. Difference strategies will lead to different coefficients.

• The random variable eα
∞ appearing in the proof of the characterization theorem

is well defined, thanks to the square integrability of the Brownian motion inte-
grands. See also Protter (2005). Note that the process eα = {(eα

t ,Wt); t ≥ 0} is a
P-martingale, strongly orthogonal to B(1).

_

3.1 Equilibrium characterization

The power of Theorem 3.2 is that it introducs a BSDE which must be solved by the con-
tinuation payoff process W and corresponding martingale integrand Z for a given public
strategy profile α. The next result is essentially a comparison principle for solutions of the
BSDE (17), which allows us to derive precise conditions for a perfect public equilibrium
payoff process.3 The key to this characterization is the auxiliary ”one-shot” game

G(a, z) , g(a) + zµ(a).

From Lemma 2.2 we know that this is the uniform limit of the sequence of discrete-time
auxiliary one-shot games {Gh; h ∈ (0, 1)}. In general, for any normal form game u : A→
RN, we let NE(u) denote the pure-strategy Nash equilibria of u (possibly empty). The
definition of public equilibrium uses the following version of sequential rationality:

Definition 3.4. A public strategy profile α∗ ∈ A is a perfect public equilibrium if

(18) W i,α∗
t ≥W i,(αi,α−i,∗)

t ∀t ≥ 0, P− a.s.

for all players i = 1, 2, . . . , N and alternative strategies αi ∈ Ai.

The next theorem shows that the characterization of public equilibria in the continuous-
time game is close to what is known in discrete-time as the recursive approach.

3Observe that the BSDE (17) is high dimension, so the existence of a comparison principle is not imme-
diate.

–12–



Theorem 3.5. Suppose that the pair of adapted processes (W, Z) solves the BSDE (17) for a given
public strategy profile α ∈ A. Then α is a perfect public equilibrium strategy if and only if

(19) αt ∈ NE(G(·, Zt))

for almost all t and P-a.s.

Proof. (i) Suppose that the strategy profile α∗ satisfies condition (19). We will show that
this implies that α∗ is a perfect public equilibrium strategy. For this it is enough to show
that no single player has a profitable deviation from α∗. Hence, let αi ∈ Ai be an arbitrary
alternative public strategy of player i and denote by α = (αi, α−i,∗) the resulting deviation
strategy profile. By definition,

Wα
t = EPα

[∫ ∞

t
re−r(s−t)g(αi

s, α−i,∗
s )ds|Wt

]
.

Following Theorem 3.2, the continuation payoff process under strategy α∗ is given by

Wα∗
t =

∫ ∞

t
re−r(s−t)g(α∗s )ds−

∫ ∞

t
re−r(s−t)Ψα∗

s dBα∗
s ,

where Ψα∗ = [ψα∗
0 : Zα∗ ]. Since

0 = Wα∗
t −

∫ ∞

t
re−r(s−t)g(α∗s )ds +

∫ ∞

t
re−r(s−t)Ψα∗

s dBα∗
s

= Wα∗
t −

∫ ∞

t
re−r(s−t)g(α∗s )ds +

∫ ∞

t
re−r(s−t)Ψα∗

s dBα
s

+
∫ ∞

t
re−r(s−t)Ψα∗

s [ f (αs)− f (α∗s )]ds,

and Ψα∗
t [ f (αt)− f (α∗t )] = Zα∗

t [µ(αt)− µ(α∗t )], we get

Wα
t −Wα∗

t = EPα

Wt

[∫ ∞

t
re−r(s−t)[g(αs) + Zα∗µ(αs)− g(α∗s )− Zα∗

s µ(α∗s )]ds

+
∫ ∞

t
re−r(s−t)(Ψα∗

s −Ψα
s )dBα

s

]
= EPα

Wt

[∫ ∞

t
re−r(s−t)[G(αs, Zα∗

s )− G(α∗s , Zα∗
s )]ds

]
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In particular, for the deviating player i, we conclude

W i,(αi,α−i,∗)
t −W i,α∗

t = EP(αi ,α−i,∗)
Wt

{∫ ∞

t
re−r(s−t)[Gi(αs, Zα∗

s )− Gi(α∗s , Z∗s )]ds
}
≤ 0.

since α∗ satisfies (19) by hypothesis. This implies that Wα∗ is a perfect public equilibrium
payoff process.

(ii) Suppose that α∗ is a perfect public equilibrium strategy profile with correspond-
ing continuation payoff process Wα∗ . Suppose that condition (19) is violated by the pair
α∗, Zα∗ for player i. Define the strategy

αi
t ∈ argmax

ai∈Ai
Gi((ai, α−i,∗

t ), Zα∗
t ).

Since Ai is finite and Zα∗
t and α−i,∗

t are both Wt-measurable, αi
t is Wt-measurable as

well (if there are ties, then make some selection). Under the new public strategy profile
(αi, α−i,∗) = α, the continuation payoff is

W i,α
t = EPα

[∫ ∞

t
re−r(s−t)gi(αs)ds|Wt

]
.

Mimicking the manipulation performed in part (i) of the proof, we see that

W i,α
t −W i,α∗

t = EPα

Wt

[∫ ∞

t
re−r(s−t)[gi(αi

s, α−i,∗
s ) + Zi,α∗µ(αs)− g(α∗s )− Zi,α∗

s µ(α∗s )]ds
]

= EPα

Wt

{∫ ∞

t
re−r(s−t)[Gi((αi

s, α−i,∗
s ), Zα∗

s )− Gi(α∗s , Zα∗
s )]ds

}
> 0

where the last inequality follows from the hypothesis that the Nash-equilibrium condition
(19) is violated. But this contradicts the initial hypothesis that Wα∗ is a public perfect
equilibrium payoff process. �

4. The open problem

The previous sections have shown that continuation payoff processes in discrete as
well as in continuous-time are characterized by orthogonal decompositions with respect
to the driving martingale noise processes. Recall that in discrete time the continuation
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payoff process corresponding to a public strategy αh is determined by the equation

(Conth) Wh
n+1 −Wh

n =
1− δ

δ

[
Wh

n − Gh(αh
n, Zh

n+1)
]
+ rZh

n+1∆Bh
n + δ−(n+1)∆Lh

n.

In continuous time the corresponding representation is

(Cont) dWt = r[Wt − G(αt, Zt)]dt + rZtdBt + dηt.

The open problem is to understand in which precise sense these two equations are
similar. This is not at all an obvious question, but it is the key to understand the connec-
tion between repeated game dynamics in discrete and continuous time. Viewing these
equations abstractly as BSDEs, a promising starting point might be to relate the repeated
game dynamics with recent stability results on martingale representations reported in
Jacod et al. (2000), and related results in the context of backward stochastic differential
equations in Briand et al. (2002). The connection is however not very clear due to the
presence of the control (the public strategies), which might lead to the chattering prob-
lem, which already is present in our weak convergence analysis (Staudigl and Steg, 2014).
Still it is a central question for future research to solve this problem.
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