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1 Introduction

A celebrated and fundamental result of financial economics characterizes the
situations in which all contingent consumption plans can be financed by
trading few long–lived assets; in diffusion models, asset markets are dynam-
ically complete if the number of risky assets corresponds to the number of
independent sources of uncertainty. When information is generated by a d–
dimensional Brownian motion, d risky assets consequently suffice to span a
dynamically complete market.

In such a setting, one can thus expect an equivalence between the rather
heroic equilibria of the Arrow–Debreu type – where all trade takes place on
a perfect market for contingent claims at time zero, and no trade ever takes
place afterwards, – and the more realistic Radner equilibra where agents
trade long–lived assets dynamically over time.

Such equivalence of static and dynamic equilibria for diffusion models has
been established in different settings and at different levels of generality by
Duffie and Huang (1985), Duffie and Zame (1989), Karatzas, Lehoczky, and
Shreve (1990), Anderson and Raimondo (2008), Riedel and Herzberg (2013),
Hugonnier, Malamud, and Trubowitz (2012).

In this paper, we show that this celebrated equivalence generically breaks
down under Knightian uncertainty about volatility. We place ourselves in
a framework which makes it as easy as possible for the market to span the
equilibrium allocations. Even then, we claim, Arrow–Debreu equilibria will
usually not be implementable by a dynamic market if there is Knightian
uncertainty in individual endowments.

In which sense do we make it easy? First, we consider a model in which
a d–dimensional Brownian motion with ambiguous volatility generates the
economy’s information flow. Second, as in the Duffie–Huang–approach, we
consider nominal asset markets. The nominal asset structure allows for an
exogenously chosen asset structure. If there is no spanning in this setting,
one cannot expect spanning in the more demanding real asset setting con-
sidered by Anderson and Raimondo (2008), Riedel and Herzberg (2013),
and Hugonnier, Malamud, and Trubowitz (2012) where security prices and
consumption prices are endogenously determined in equilibrium and linked
via the real dividend structure. Third, we consider a setting where aggre-
gate endowment is ambiguity–free. This is the ideal starting point for an
economic analysis of insurance properties of competitive markets. In this
setting, a “good” economic institution should lead to an ambiguity–free al-
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location for all (ambiguity–averse) individuals. Indeed, we show that the
efficient (and thus, Arrow–Debreu equilibrium) allocations in this Knight-
ian economy provide full insurance against uncertainty. This generalizes the
results of Billot, Chateauneuf, Gilboa, and Tallon (2000), Dana (2002), Tal-
lon (1998) and De Castro and Chateauneuf (2011) to the continuous–time
setting with non–dominated sets of priors.

We study the possibility of implementation in the so–called Bachelier
model where the risky (or, in this Knigtian setting, maybe better: uncertain)
asset is given by the Brownian motion itself because this case is particularly
transparent. Indeed, in the classic case, one can then immediately apply the
martingale representation theorem to find the portfolio strategies that finance
the Arrow–Debreu (net) consumption plans. We study under what condition
this result holds in an uncertain world. Under Knightian uncertainty about
volatility, the martingale representation theorem changes in several aspects.
Implementation is possible if and only if the value of net trades is mean
ambiguity–free, or in other words, if the expected value of net trades is the
same for all priors.

We thus completely clarify under what conditions one can implement
Arrow–Debreu as Radner equilibria. Clearly, being free of ambiguity in the
mean is weaker than being free of ambiguity in the strong sense of having
the same probability distribution under all priors. Nevertheless, our result
implies that “generically”, implementation will be impossible under Knigh-
tian uncertainty about volatility. We show this explicitly in the case when
there is no aggregate uncertainty in the economy. The set of all endowments
for which implementation fails is prevalent.1

An additional contribution of our paper concerns the existence of Arrow–
Debreu equilibria; without existence, the question of implementation would
be void. Existence is not a trivial application of the well–known results on
existence of general equilibrium for Banach lattices as the informed reader
might think (and the authors used to think as well). Under volatility uncer-
tainty, the natural commodity space combines the well–known Lp–space with
some degree of continuity. In fact, the right commodity space consists of con-
tingent claims that are suitably integrable or even bounded almost surely for

1In infinite–dimensional settings, there is no obvious notion of genericity. We use the
concept of prevalence (or shyness) introduced into theoretical economics by Anderson and
Zame (2001) who show that it is a reasonable measure–theoretic generalization to infinite–
dimensional spaces of the usual “almost everywhere”–concept in finite–dimensional con-
texts. Compare also Hunt, Sauer, and Yorke (1992).
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all priors, and are quasi–continuous. A mapping is quasi–continuous if it is
continuous in nearly all its domain. The property of quasi–continuity comes
for free in the probabilistic setting: Lusin’s theorem establishes the fact that
any measurable function on a nice topological space is quasi–continuous. Un-
der volatility uncertainty, this equivalence between measurability and quasi–
continuity no longer holds true. We are thus led to study a new commodity
space which has not been studied so far in general equilibrium theory. Com-
pare also the discussion of this space in the recent papers Epstein and Ji
(2013), Epstein and Ji (2014) and Beißner (2014).

For this commodity space, the available existence theorems do not im-
mediately apply. The abstract question of existence must thus be dealt with
separately, but we leave the general question of existence for the future as it is
not the main concern of this paper. In this paper, we use a different approach
to establish existence. In our homogenous framework, one can show that the
efficient allocations coincide with the efficient allocations under risk (compare
the related results of Dana (2002) in a static setting). When all agents share
the same prior, it is well known that the efficient allocations are independent
of the prior and can be determined by maximizing a suitable weighted sum of
utilities pointwise. As a consequence, the efficient allocations are continuous
functions of aggregate endowment; they are quasi–continuous if aggregate
endowment is quasi–continuous. This allows us to establish existence in our
new commodity space where quasi–continuity is required. One can just fix
any prior P and choose an Arrow–Debreu equilibrium in the expected utility
economy where all agents use this prior. These equilibria are also equilib-
ria under Knightian uncertainty. As a by–product, we obtain indeterminacy
of equilibria, as in related Knightian settings, such as Tallon (1998), Dana
(2002), Rigotti and Shannon (2005), or Dana and Riedel (2013).

The paper is set up as follows. The next section describes the economy.
Section 3 studies efficient allocations and Arrow–Debreu equilibria. Section 4
contains our main results on (generic non–)implementability. Section 5 con-
cludes. The appendix contains additional material on Knightian uncertainty
in continuous time.

2 The Economy under Knightian Uncertainty

We consider an economy over the time interval [0, T ] with Knightian uncer-
tainty.
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There is a finite set of agents I = {1, . . . , I} agents in the economy who
care only about consumption at terminal time T . The agents share a common
view of the uncertainty in their world in the sense that they all agree on the
same set of priors P on the state space Ω = C[0, T ]d of possible trajectories
for the canonical d–dimensional Brownian motion Wt(ω) = ω(t).

Quite general specifications are possible here, and we discuss some of them
in the last section. To have a concrete model, we start here with volatility
uncertainty for d independent Brownian motions. Let Σ =

∏d
k=1[σk, σk] for

0 < σk ≤ σk, k = 1, . . . , d. Σ models the possible values of the volatilities
of our ambiguous Brownian motion W . The set of priors P consists of all
probability measures P that make W a martingale such that the covariation
between any W k and W l satisfies

(
〈W k,W l〉t

)
k,l=1,...,d

∈ Σ for all t ≥ 0

P–a.s. In our concrete case, this means that the covariation between two
different Brownian motions vanishes and the variation of a Brownian motion
W k satisfies

(
σk
)2
t ≤ 〈W k〉t ≤

(
σk
)2
t for all t ≥ 0.

The set of priors is not dominated by a single probability measure. In such
a context, sets that are conceived as null by the agents cannot be identified
with null set under one probability measure. Indeed, as possible scenarios
are described by a whole class of potentially singular priors, an event can
only be considered as negligible or null when it is a null sets under all priors
simultaneously. Such sets are called polar sets; the corresponding sure events,
those that have probability one under all priors, are called quasi–sure events.

These issues require a reconsideration of some measure theoretic results.
Under risk, a measurable function is “almost” continuous in the sense that for
every ε > 0 there is an open set O with probability at least 1−ε such that the
function is continuous on O; this is Lusin’s theorem. Under non–dominated
Knightian uncertainty, this Lusin property, or quasi–continuity, does not
come for free from measurability, and one needs to impose it. We refer to
Epstein and Ji (2013) and Denis, Hu, and Peng (2011) for the financial and
measure–theoretic background.

A proper commodity space under non–dominated Knightian uncertainty
then consists of all bounded quasi–continuous functions; it is denoted by
H = L∞P . The boundedness assumption of endowments is made for ease of
exposition and to keep the arguments as concise as possible for our aims;
it can be relaxed, of course, as we discuss later on. The consumption set,
denoted by H+, consists of quasi-surely positive functions in H.

Agents’ preferences are given by Gilboa–Schmeidler–type expected utility
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functionals of the form

U i(c) = Eui(c) = inf
P∈P

EPui(c)

for nonnegative consumption plans c ∈ H+ and a Bernoulli utility function

ui : [0,∞)→ R

which is concave, strictly increasing, sufficiently smooth, and satisfies the
Inada condition

lim
x↓0

∂ui

∂x
(x) =∞ .

In the following, we will denote by E the economy we just described
and refer to it as the Knightian economy to distinguish it from expected
utility economies EP later on. In the economy EP , agents use expected utility
EPui(c) for a particular common prior P ∈ P ; otherwise, the economy has
the same structure as E .

Agents have an endowment ei which is bounded and bounded away from
zero quasi–surely.

In the following, we consider a situation where the market can poten-
tially insure individuals against their idiosyncratic ambiguity because ambi-
guity washes out in the aggregate. We explicitly do allow for aggregate (and
individual) risk.

Definition 2.1 X ∈ H is ambiguity–free (in the strong sense) if X has the
same probability distribution under all priors P,Q ∈ P.

We assume throughout this paper that aggregate endowment e is
ambiguity–free in the strong sense. We thus make it as easy as possible
for the market to provide insurance.

3 Efficient Allocations and Arrow–Debreu

Equilibria with No Aggregate Ambiguity

Before considering the possibility or impossibility of implementing Arrow–
Debreu equilibria by trading few long-lived assets, we need to study existence
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and properties of equilibria in our context. It will turn out that efficient allo-
cations, and a fortiori Arrow–Debreu equilibrium allocations are ambiguity–
free. If we allow for a complete set of forward markets at time zero, the mar-
ket is thus able to ensure all individuals against their idiosyncratic Knightian
uncertainty.

We recall the structure of efficient allocations in the homogenous expected
utility case. If all agents agree on one particular probability P , the efficient
allocations are independent of that P ; indeed, they are characterized by the
equality of marginal rates of substitution. For weights αi ≥ 0, the efficient
allocation cα maximizes pointwise the sum∑

i∈I

αiui(ci)

over all vectors c ∈ RI
+ with

∑
i∈I c

i ≤ e(ω). It is characterized by the
first–order conditions

αi
∂ui

∂x
(ciα) = αj

∂uj

∂x
(cjα)

for all agents with strictly positive weights αi, αj > 0; the agents with weight
zero consume zero, of course. Due to our assumptions, one can then write
the efficient allocations as a continuous function

cα = cα(e)

of aggregate endowment. In the following, we denote by ∆ the simplex of
weights α that sum up to 1 and by O = (cα)α∈∆ the set of efficient allocations
in homogenous expected utility economies.

Theorem 3.1 1. Every efficient allocation in E is ambiguity–free.

2. The efficient allocations in the Knightian economy E coincide with the
efficient allocations (cα)α∈∆ in homogenous expected utility economies
EP and are independent of a particular prior P ∈ P.

Proof: Note that the efficient allocations in homogenous expected utility
economies O are ambiguity–free as they can be written as monotone functions
of aggregate endowment. As these functions are continuous, they are also
quasi–continuous in the state variable and thus do belong to our commodity
space.

7



We first show that these allocations are also efficient in our Knightian
economy. Fix some weights α ∈ ∆ and fix some P ∈ P . Let c be a feasible
allocation. Then we have∑

i∈I

αiU i(ci) ≤
∑
i∈I

αiEPui(ci) = EP
∑
i∈I

αiui(ci) .

As cα maximizes the weighted sum of utilities pointwise, we continue with

EP
∑
i∈I

αiui(ci) ≤ EP
∑
i∈I

αiui(ciα) =
∑
i∈I

αiEPui(ciα) .

Now cα is ambiguity–free, hence we have EPui(ciα) = EQui(ciα) for all P,Q ∈
P and thus EPui(ciα) = Eui(ciα) = U i(ciα). We conclude that cα maximizes
the weighted sum of Gilboa–Schmeidler utilities. It is thus efficient.

Now let d be another efficient allocation. By the usual separation theo-
rem, it maximizes the weighted sum of utilities∑

i∈I

αiU i(ci)

for some α ∈ ∆. Set

Γ = {ω ∈ Ω : there is i ∈ I with di(ω) 6= ciα(ω)} .

Due to our strict concavity assumptions, we have∑
i∈I

αiui(di(ω)) <
∑
i∈I

αiui(ciα(ω))

for all ω ∈ Γ. Now assume that Γ is not a polar set. Then there is P ∈ P
with P (Γ) > 0. Therefore, we have

EP
∑
i∈I

αiui(di) < EP
∑
i∈I

αiui(ciα) .

Since cα is ambiguity–free, EP
∑

i∈I α
iui(ciα) =

∑
i∈I α

iU i(ciα). On the other
hand, by ambiguity–aversion,∑

i∈I

αiU i(ciα) ≤ EP
∑
i∈I

αiui(di) ,

8



and we obtain a contradiction. We thus conclude that Γ is a polar set and
thus d = cα quasi–surely. 2

The preceding theorem obtains the same characterization of efficient al-
locations in our Knightian case as Dana (2002) does for Choquet expected
utility economies. The argument is different, though: as our set of priors
does not lead to a convex capacity, one cannot use the comonotonicity of
efficient allocations to identify a unique worst–case measure for the agents.
Instead, we rely on aggregate endowment being ambiguity–free to reach the
conclusion that all efficient allocations are ambiguity–free and coincide with
the efficient allocations of any expected utility economy in which all agents
share the same prior. Moreover, we do not have a dominating measure here.

As a consequence of the theorem we obtain the following generalization
of Billot, Chateauneuf, Gilboa, and Tallon (2000) to our non–dominated
setting.

Corollary 3.2 If there is no aggregate uncertainty, i.e. e ∈ R+ quasi–surely,
then all efficient allocations are full insurance allocations.

Let us now turn to Arrow–Debreu equilibria. In the first step, it is im-
portant to clarify the structure of price functionals. A price is a positive and
continuous linear price functional Ψ on the commodity space L∞P . A typical
representative of these price functionals has the form of a pair (ψ, P ) where
ψ is the state–price density as in the expected utility case and P is some
particular prior in P . Knightian uncertainty adds the new feature that the
market also chooses the measure P ∈ P .

An Arrow–Debreu equilibrium consists then of a feasible allocation c =
(ci)i∈I ∈ HI

+ and a price Ψ such that for all d ∈ H+ the strict inequality
U i(d) > U i(ci) implies Ψ(d) > Ψ(ei).

We are going to show that Arrow–Debreu equilibria exist and equilibrium
prices are indeterminate. Recall that EP is the economy in which agents have
standard expected utility preferences U i

P (c) = EPui(c) for the same prior
P ∈ P and the same endowments as in our original economy. Bewley (Theo-
rem 2 in Bewley (1972)) has shown that Arrow–Debreu equilibria exist with
state–price densities in L1(Ω,F , P ) for the economy EP . By the first welfare
theorem, an equilibrium allocation in EP can be identified with some cα for
a vector of weights α ∈ ∆ and the corresponding equilibrium state–price
density with ψα = αi (ui)

′
(ciα). Due to our assumption that endowments are

in the interior of the consumption set, all weights αi are strictly positive.
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We are now ready to characterize the equilibria of our Knightian economy.

Theorem 3.3 1. Let (cα, ψα) be an equilibrium of EP for some α ∈ ∆
and P ∈ P. Then (cα, ψα · P ) is an Arrow–Debreu equilibrium of the
Knightian economy.

2. If (c,Ψ) is an Arrow–Debreu equilibrium of E, then there exists α ∈
rintA and P ∈ P such that c = cα and Ψ = ψα · P with

ψα = αi
(
ui
)′

(ciα) for i ∈ I.

In particular, Arrow–Debreu equilibria

• exist,

• their price is indeterminate,

• and the allocation is ambiguity–free.

Proof: Let (cα, ψα) be an equilibrium of EP . cα obviously clears the
market and is budget–feasible in the Knightian economy because we use the
same pricing functional as in the economy EP . It remains to show that ciα
maximizes utility in the Knightian economy subject to the budget constraint.

In the first place, we need to verify that cα belongs to our commodity
space H (which is smaller than the commodity space L∞(Ω,F , P ) considered
by Bewley (1972) as it contains only quasi–continuous elements). But we
have already noted above that the cα are quasi–continuous, and thus elements
of H+, because they can be written as continuous functions of e.

Let d be budget–feasible for agent i. As cα is an Arrow–Debreu equilib-
rium in the expected utility economy EP , we have EPui(ciα) ≥ EPui(d). As
ciα is ambiguity–free by Theorem 3.1, we have U i(ciα) = EPui(ciα). Therefore,

U i(d) ≤ EPui(d) ≤ EPui(ciα) = U i(ciα)

and we are done.
For the converse, let (c,Ψ) be an Arrow–Debreu equilibrium of E . By

the first welfare theorem and Theorem 3.1, there exist α ∈ ∆ with c =
cα. All αi > 0 as individual endowments are strictly positive. (Otherwise,
ciα = 0 which is dominated by ei.) Due to utility maximization, Ψ has to
be a supergradient of U i at ciα. The set of supergradients consists of linear
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functionals of the form ψα · P , where P is a minimizer in the set of priors.
Since ui(ciα) is ambiguity–free, EPui(ciα) is constant on P and hence every
element in P is a minimizer of the Gilba–Schmeidler–type expected utility.

2

4 (Non–)Implementability by Continuous

Trading of Few Long–Lived Securities

We now tackle the question if the efficient allocations of Arrow–Debreu equi-
libria can be implemented by trading a few long–lived assets dynamically
over time. Under risk, the answer is (essentially) affirmative. If we allow the
market to select the asset structure, Duffie and Huang (1985) establish im-
plementability. In this case, we have purely nominal assets whose dividends
are not directly related to commodities. One can thus choose their prices
independently of consumption prices. In general, of course, the asset price
structure with real assets is endogenous. In that case, the question of Rad-
ner implementability is much more complex and was only recently solved by
Anderson and Raimondo (2008), Riedel and Herzberg (2013) and Hugonnier,
Malamud, and Trubowitz (2012). If the asset market is potentially complete
in the sense that sufficiently many independent dividend streams are traded,
then one can obtain endogenously dynamically complete asset markets in
sufficiently smooth Markovian economies. For non–smooth economies and
non–Markovian state variables, the question is still open.

As we focus on the intrinisic limit of implementability which is created by
Knightian uncertainty, we make here the life as easy as possible for the finan-
cial market: as in Duffie and Huang (1985), we consider the case with nominal
assets freely chosen by the market. Since the equivalence between Arrow–
Debreu and Radner equilibria usually breaks down, the result is stronger if
we allow the market to choose the asset structure for nominal assets. If one
cannot even implement the Arrow–Debreu equilibrium in the nominal case,
one cannot do so with real assets either.

The Bachelier Market We consider first the simplest case of a so–called
Bachelier market. There is a riskless asset S0

t = 1. Moreover, the price
of the other d assets is given by our d-dimensional ambiguous (or E)–
Brownian motion St = Bt. A trading strategy then consists of a process
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(θ1, . . . , θd) = θ ∈ Θ(S), the space of admissible integrands for (Knightian)
Brownian motion (see Appendix A.2, Epstein and Ji (2013) or Denis, Hu,
and Peng (2011) on details for the admissible integrands). The agents start
with wealth zero (as there is no endowment nor consumption at time zero).
Their gains from trade at time t are then

Gθ
t = θtSt =

∫ t

0

θudSu =
∑

1≤k≤d

∫ t

0

θkudS
k
u . (1)

They can afford to consume ci ∈ H+ with (ci − ei)ψ = Gθi

T where ψ is the
spot consumption price at time T , a nonnegative FT–measurable function. A
budget–feasible consumption–portfolio plan (ci, θi) is a pair of a consumption
plan and a trading strategy that satisfy the above budget constraint.

A Radner equilibrium consist of a spot consumption price ψ and portfolio–
consumption plans (ci, θi)i∈I such that markets clear, i.e.

∑
ci = e,

∑
θi = 0,

and agents maximize their utility over all portfolio–consumption plans that
satisfy the budget constraint.

Theorem 4.1 In the Bachelier model with asset prices S = B, an Arrow–
Debreu equilibrium of the form (c, ψ · P ) can be implemented as a Radner
equilibrium if and only if the value of the net trades ξi = ψ(ci− ei) are mean
ambiguity–free, i.e. for all P,Q ∈ P

EP ξi = EQξi .

Proof: Let (c, ψ ·P ) be an Arrow-Debreu Equilibrium as in Theorem 3.3.
Suppose we have an implementation in the Bachelier model with trading

strategies θi. The Radner budget constraint gives

ξi = Gθi

T =

∫ T

0

θitdBt P-quasi surely.

Stochastic integrals are symmetric E–martingales, i.e. EP
∫ T

0
θitdBt =

E
∫ T

0
θitdBt for all P ∈ P . Consequently the value of each net trade is mean

ambiguity–free.
We show now that implementation is possible if net trades are mean

ambiguity–free. We divide the proof into three steps. First, we introduce
the candidate trading strategies for agent i 6= I and show market clearing in
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the second step. Finally we show that these strategies are maximal in the
budget sets.

Let the value of the net trade ξi be mean ambiguity–free for all agents i ∈
I. The Arrow–Debreu budget constraint gives 0 = EP ξi = Eξi. Consequently
by Corollary A.7, the process t 7→ Etξi is a symmetric E-martingale, so by
the martingale representation theorem A.6

Etξi =

∫ t

0

θirdSr, P-quasi surely

and

ξi =

∫ T

0

θitdSt .

Hence, the trading strategies θi are candidates for trading strategies in a
Radner equilibrium with allocation c and spot consumption price ψ.

By market–clearing in an Arrow–Debreu equilibrium, we have

0 =
∑
i∈I

ξi =

∫ T

0

∑
i∈I

θitdBt .

As stochastic integrals that are zero have a zero integrand (even under Knigh-
tian uncertainty; see Proposition 3.3 in Soner, Touzi, and Zhang (2011)), we
conclude that the portfolios clear,

∑
i∈I θ

i = 0.
It remains to check that the consumption–portfolio strategy (ci, θi) is

optimal for agent i under the Radner–budget constraint. Suppose there is a
trading strategy (d, η) with

ψ(d− ei) =

∫ T

0

ηtdSt .

We then have

EPψ(d− ei) = E
∫ T

0

ηtdSt = 0 ,

and d is thus budget–feasible in the Arrow–Debreu model. We conclude that
U i(d) ≤ U i(ci). 2

To illustrate the theorem, we consider a concrete example.

Example 4.2 Let e(ω) ≡ 1, I = 2, d = 1, and ui = log for i = 1, 2.
Assume e1 = φ(BT ) = exp(BT ) ∧ 1 and e2 = 1 − e1. By Corollary 3.2 and
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Theorem 3.3, equilibrium allocations are full insurance; therefore, the state
price density is deterministic, so that we may take without loss of generality
ψ = αi

ciα
= 1.

In this case, the expected value of net trades ξi = ci − ei depends on the
particular measure P ∈ P. For example, if B has constant volatility σ under
P , then

EP exp(BT ) ∧ 1 = exp(σ2/2)Φ(−σ) + 1/2

where Φ is the standard normal distribution. Radner implementation is there-
fore impossible.

The previous example suggests that Radner implementation might not
be expected, in general. In the next step, we clarify this question in a world
without aggregate uncertainty. We know from our analysis in the previous
section that all Arrow–Debreu equilibria fully insure all agents in such a
setting. We claim that “for almost all” economies, or “generically”, Radner
implementation is impossible.

While the notion of “almost all” has a natural meaning in the finite–
dimensional context because one can use Lebesgue measure to define negli-
gible sets as null sets under that measure, the notion of “almost all” does
not generalize immediately to infinite–dimensional Banach spaces because
there is no translation–invariant measure that assigns positive measure to all
open sets on such spaces. Anderson and Zame (2001) develop the notion of
prevalence which coincides with the usual notion of full Lebesgue measure
in finite–dimensional contexts and is thus an appropriate generalization to
infinite–dimensional settings.

In the following, we fix aggregate endowment with no uncertainty e > 0
and consider the class of economies parametrized by individual endowments

K =

{
(ei)i∈I ∈ HI

+ :
∑
i∈I

ei = e

}
.

We say that an economy with endowments (ei)i∈I does not allow for imple-
mentation if there is no Arrow–Debreu equilibrium (c, ψ · P ) which can be
implemented as a Radner equilibrium. Let R be the subset of economies in
K which do not allow for implementation.

In Theorem 4.1, we introduced the notion mean ambiguity–free random
variables in H. The collection of all such elements is denoted by M and set
Mc = H \M. For an alternative characterization of M, see Corollary A.7.
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Theorem 4.3 With no aggregate uncertainty, implementation of Arrow–
Debreu equilibrium via a Bachelier Model is generically impossible: R is
prevalent in K.

Proof: Let (cα, ψ · P ) be an equilibrium and let e = 1 without loss of
generality. By Corollary 3.2, ei is the only non–constant within the value
of each net trade ξi = αi(u

i)′ (ciα) (ciα − ei). Consequently by Theorem 4.1
implementability fails if there is a i ∈ I with ei ∈Mc.

From this observation, we may focus on the prevalence of the property
“mean ambiguity–free” within the space of initial endowments K. The fol-
lowing claim is crucial; its proof is below. The order relation ≤ induced by
the cone H+.

Claim: Mc ∩ [0, 1] is a prevalent set in [0, 1] = {Y ∈ H : 0 ≤ Y ≤ 1} of H.

In the case I = 2, one endowment within [0, 1] determines a distribution of
endowments via e2 = e − e1, hence K ∩MI is a shy subset of K. Therefore
the claim implies that R is prevalent in K.

For an arbitrary I, we have (Mc ∩ [0, 1])I is a prevalent subset in [0, 1]I of
HI. This follow by the the same arguments as in the proof of the claim, by
choosing the subspace T I of HI as the finite dimensional test space. Hence,
Mc ∩ [0, 1]× (M ∩ [0, 1])I−1 is a shy set in [0, 1]I. The result then follows by
an analogous argument as in the case I = 2.

We come now to the proof of the claim made above. The proof relies
on the Martingale representation Theorem A.6. The Corollary A.7 implies
M1 := M ∩ [0, 1] = {(η, 0) ∈ M× {0} :

∫ T
0
ηtdBt ∈ [0, 1]}, where M is the

completion of piecewise constant process, see (2) in Appendix A.3.
Let BV denote the Banach space of progressive–measurable processes with

continuous paths and of bounded variation on [0, T ]× Ω, so that

(M×K0) ∩ [0, 1] =: MK1 ⊂ X := (M× BV) ,

where K0 denotes all processes x+ K̂ such that x ∈ R and K̂ ∈ KM .2

The main step is to define a tractable “test–space” T (to check prevalence)
via a concrete K: By Remark A.8 and setting ϕt ≡ 1 ∈ Rd, fix K1 ∈ KM

given by

K1
t =

∫ t

0

1d〈B〉r −
∫ t

0

G(1)dr =
d∑

k=1

〈Bk〉t −
t

2

(
σk
)2
.

2Akin to (3), set KM=
{
−K : E–martingale,K0 = 0, continuous, incr., E suptK

2
t <∞

}
.
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The process (−K∗t ) = −(x + K1
t ) ∈ K0 is again an increasing E–martingale

since E preserves constants. Positive homogeneity of E implies that −aK∗ is
an E-martingale if a ≥ 0. A rescaling of K∗ into K yields K ∈ K0 ∩ [0, 1].3

Fix the following one dimensional test space

T =
{

(0,−aK) : a ∈ R
}

of X and denote the Lebesgue measure on T by λT ; we have to check:

1. There is a c ∈ X with λT (MK1 + c) > 0:

The arbitrary translation of MK1 is performed by c = (0, 0) ∈ X.
Since only a positive a ∈ R makes −aK an E–martingale, we derive
λT (MK1) ≥ λT ((0,−aK) : a ∈ [0, 1]) = λR([0, 1]) = 1 > 0.

2. For all z ∈ X we have λT (E + z) = 0:

This follows directly from the definition of T and M1, since at most one
K ∈MK1 lies in M1 + z. The condition follows, since λT ({0, K}) = 0
for every K ∈ K.

By Fact 6 of Anderson and Zame (2001) every finitely shy set in MK1 is also
a shy set in MK1, and therefore Mc∩[0, 1] = H∩[0, 1]\M∩[0, 1] ∼= MK1\M1

is a prevalent subset of MK1. 2

Remark 4.4 The proof of Theorem 4.3 also establishes the general fact that
M is a shy subset in H.

4.1 General Asset Structures

The Bachelier model we presented allows for negative values of the price
process. Theorem 4.1 is still valid, when our E-Brownian motion B = B+ +
B− of the Bachelier model is decomposed into the positive B+ and negative
part B−. The trading strategies are then given by θi,+t = θit1{Bt≥0} and

θi,−t = −θit1{Bt<0} where θi denotes the fractions invested in the uncertain
assets of Theorem 4.1. In the same fashion, as mentioned in Section 5 of
Duffie and Huang (1985), the number of assets becomes 2 · d+ 1.

3This is possible since mink

(
σk
)2
t ≤ 〈Bk〉t ≤ maxk

(
σd
)2
t as discussed in the Ap-

pendix for the the case d = 1.
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On the other it is also possible to implement the Arrow-Debreu equilib-
rium with an arbitrary symmetric E–martingale. A canonical example is a
symmetric E–martingale of exponential form:

Mt = exp

(∫ t

0

ηsdBs +
1

2

∫ t

0

η2
sd〈B〉s

)
The strictly positive process (Mt) is the unique solution of the following linear
stochastic differential equation with respect to the E–Brownian motion B,4

dMt

Mt

= ηtdBt, M0 = 1.

From a general perspective, we aim to enlarge the scope of Theorem 4.1 by
allowing a large family of symmetric E-martingales as feasible substitutes of
the Bachelier Model. The following result takes a leaf out of Duffie (1986),
where the notion of “martingale generator” points to the implementability
of an Arrow–Debreu Equilibrium under some classical probability space.

Proposition 4.5 Theorem 4.1. is still valid if we replace the implementing
B with a symmetric E–martingale Mt = M0 +

∫ t
0
VtdBt, such that Vt 6= 0

P–q.s. and Vt ∈ L∞P .

Proof: We show that every
∫
HdB can be written as a

∫
HMdM .

By Proposition 3.3 in Soner, Touzi, and Zhang (2011) states that under
every P ∈ P , the Itô integral

∫
HdB with respect to some H ∈M, coincides

P -almost surely with the stochastic integral under (Ω,H,E).
By using the representation of E from Proposition A.2, we have 〈M〉P =∫
V 2d〈B〉P P -almost surely, where 〈B〉P denotes the quadratic variation of

the E-Brownian motion B under P , since B is an EP -martingale under every
P ∈ P . Since V is bounded, we have ‖η‖M <∞ if and only if

sup
P∈P

EP

∫ T

0

η2
t d〈M〉Pt <∞

Consequently, a stochastic integral with respect to the present symmetric E–
martingale M =

∫
V dB can then be written as

∫ t
0
θsdMs =

∫ t
0
θsd
∫ s

0
V dB =∫ t

0
θsVsdBs, where θ ∈ M, see (2) for the exact of M. The equations hold

P -almost surely for every P ∈ P .

4 See Section 5 in Peng (2010) for details and especially Remark 1.3 therein.
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From the conditions on V it follows that M may represent payoffs in M
similarly to B, since for every X ∈M (with EX = 0), we have

X =

∫ T

0

θtdBt =

∫ T

0

θt
Vt
VtdBt =

∫ T

0

θt
Vt

dMt

and this yields HM = θt
Vt
∈M. 2

Remark 4.6 In finance models it is more usual to take a commodity space
of square–integrable random variables, i.e. EX2 < ∞. As stated in the
Martingale Representation Theorem A.6, square–integrable random variables
are included. If H = L2

P all results of Section 4 remain valid, see Remark
A.3.

5 Conclusion

This paper establishes a crucial difference of risk and Knightian uncertainty.
Under risk, dynamic trading of few long–lived assets suffices to implement the
efficient allocations of Arrow–Debreu equilibria as dynamic Radner equilibria
if the number of traded assets is equal to the number of sources of uncertainty.
This result generically fails under Knightian uncertainty even in the stylized
framework of no aggregate uncertainty and for nominal asset structures.

All results of the paper are formulated in terms of Peng’s sub–linear
expectation space (Ω,H,E). As stated in Proposition A.2, the Knightian
expectation E can be represented by a set priors that corresponds to differ-
ent volatility processes σt(ω) that live within constant bounds Σ. A further
extension refers to the possibility to extend results when the Knightian ex-
pectation is induced by time–dependent and stochastic volatility bounds.
For instance, Epstein and Ji (2014) introduce a more general family of
time–consistent conditional Knightian expectations. Since most results of
the paper are heavily based on the Martingale representation Theorem A.6,
extensions to more general volatility specifications crucially depend on the
availability of an analogous martingale Representation.
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A Knightian Uncertainty in Continuous Time

We fix a time horizon T > 0. Our state space consists of all continuous
trajectories on the time interval [0, T ] that start in zero:

Ω = Cd
0 ([0, T ]) =

{
ω : [0, T ]→ Rd : ω(0) = 0

}
.

The coordinate process
Bt(ω) = ω(t)

will describe the information flow of our economy as in the usual continuous–
time diffusion model. As agents live in a Knightian world, we do not assume
that the distribution P of the process B is commonly known. Instead, we
just use a nonlinear expectation E which is defined on a suitably rich space
H of functions on Ω in the sense of the following definition.

Definition A.1 Let H be a vector lattice of functions from Ω to R that
contains the constant functions. We call (Ω,H,E) an uncertainty space if
the mapping

E : H→ R

satisfies the following properties:

1. preserves constants: Ec = c for all c ∈ R,

2. monotone: EX ≤ EY for all X, Y ∈ H, X ≤ Y

3. sub-additive: E(X + Y ) ≤ EX + EY for all X, Y ∈ H,

4. homogeneous: E(λX) = λEX for λ > 0 and X ∈ H.

We call E a (Knightian) expectation.

We start here with the notion of an uncertainty space rather than model-
ing the set of priors because we want to stress that one can build a whole new
theory of uncertainty (rather than probability theory) by starting with the
notion of an uncertainty space rather than a probability space, as the work
of Peng (2006) demonstrates. Peng calls such spaces sublinear expectation
spaces, but from a philosophical point of view, the name “uncertainty space”
seems quite fitting to us.
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Distributions under (Ω,H,E) and E-Brownian Motion Of particular
importance to us is the fact that one can develop the notion of Brownian
motion in this Knightian setup. We assume throughout the paper that B is
an E-Brownian motion5, the ambiguous version of classic Brownian motion
on Wiener space.

We would like to take a second to explain how such an ambiguous Brow-
nian motion is to be understood. With regard to the concept of ambiguity
free (in the strong sense) from Definition 2.1, we start how one can define
the notion of a “distribution” of a function X ∈ H in our setting. When H
is sufficiently rich (what we assume), then for every continuous and bounded
function f : R→ R, f(X) ∈ H as well. We can then define a new operator

FX

on the space Cb(R) of continuous, bounded real functions by setting

FX(f) = Ef(X) .

We call the operator FX the (uncertain) distribution of X. We consequently

say that X, Y ∈ H have identical uncertainty, or X
d
= Y , if FX = FY .

The notion of independence is crucial for probability theory. We follow
Peng again in letting Y be (E-)independent of X if for all continuous bounded
functions f : R2 → R we have

Ef(X, Y ) = E Ef(x, Y )|x=X .

One can thus first fix the value of X = x, take the expectation with respect
to Y , and then take the expectation with respect to X. This is one way to
generalize the notion of independence to the Knightian case. Without going
into the philosophical issues involved here, we just take this approach. In
the same vein, we call Y independent of X1, . . . , Xn ∈ H if for all continuous
bounded functions f : Rn+1 → R we have

Ef(X1, . . . , Xn, Y ) = E Ef(x1, . . . , xn, Y )|x1=X1,...,xn=Xn
.

The class of (normalized) normal distributions is infinitely divisible. In
particular, if we have two independent standard normal distributions, then

5Again, we slightly deviate from Peng’s nomenclature where this object is called G–
Brownian motion - no G exists at this point.
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for positive numbers a and b, the new variable Z = aX+bY is again normally
distributed with variance a2 + b2. This property is well known to character-
ize the class of normal distributions. One can take this characterization
of normal distributions to call X ∈ H E–normal if for any Y ∈ H which
has identical uncertainty and is independent of X, the uncertain variable
Z = aX + bY has the same uncertainty as

√
a2 + b2X.

We have now the tools at hand to define uncertain E-Brownian motion. B
is called an E–Brownian motion if all increments are independent of the past
and identically E–normal: for all s, t ≥ 0 and all 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t
the increment Bt+s −Bt is independent of Bt1 , . . . , Btn .

It is, of course, a completely nontrivial question whether such an am-
biguous Brownian motion exists. This has been shown by Shige Peng (Peng
(2006)) with the help of the theory of viscosity solutions of nonlinear partial
differential equations. An alternative route proceeds via the construction of
a suitable set of multiple priors. Indeed, readers familiar with the literature
on ambiguity aversion in decision theory or the theory of risk measures in
mathematical finance might immediately anticipate a representation of our
Knightian expectation in terms of a set of probability measures. For the case
of Knightian Brownian motion, the set of probability measures has a special
structure that we now describe.

A.1 Representing Priors and Volatility Uncertainty

We start with the simpler one–dimensional case. Fix two bounds 0 < σ ≤ σ.
The set P1 consists of all probability measures P on Ω endowed with the
Borel σ–field that make B a martingale whose quadratic variation 〈B〉 is
P–almost surely between the following two bounds:

σ2t ≤ 〈B〉t ≤ σ2t .

In general, the set of priors Pd can be parametrized by a subset Θ of Rd×d; this
set describes the possible volatility structures of the d−dimensional Knigh-
tian Brownian motion. Theorem 52 in Denis, Hu, and Peng (2011) implies
the next results.

Proposition A.2 For any X ∈ H, we have the representation

EX = sup
P∈Pd

EPX
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where EP is the probabilistic expectation of X under the probability measure
P . Pd is a weakly–compact set, with respect to the topology induced Cb(Ω).

Wwe give a more detailed description of the lattice H of payoffs we are
working with and set for the rest of the appendix P = Pd. Peng constructs
the E–Brownian motion first on the set of all locally Lipschitz functions of
B that satisfy a polynomial growth constraint. The space H is obtained by
closing this space under the norm

‖X‖∞ = inf{M ≥ 0 : |X| ≤M P-q.s.},

where P-q.s. refers to P -almost surely for every P ∈ P . As indicated in the
introduction and Section 2, we may formulate the uniform version of Luisin’s
property: A mapping X : Ω → R is said to be quasi-continuous (q.c.) if for
all ε > 0 there exists an open set O with c(O) = supP∈P P (O) < ε such that
X|Ω\O is continuous.

Similarly to Lebesgue spaces based on a probability space, we restrict
attention to equivalent classes. Under E, as shown in Denis, Hu, and Peng
(2011), we have the following representation of our commodity space

L∞P = {X ∈ L : X has a q.c. version and ‖X‖∞ <∞}

where L denotes the space of N -equivalence classes of measurable payoffs
and N := {X F-measurable and X = 0 P-q.s.} are the trivial payoffs with
respect to P that do not charge any P ∈ P . We say that X has a P-q.c.
version if there is a quasi–continuous function Y : Ω→ R with X = Y q.s.

Remark A.3 Instead of ‖ ·‖∞, one may take ‖ ·‖2 = (E|X|2)
1
2 and establish

with Theorem 25 in Denis, Hu, and Peng (2011) that the space L2
P , the

completion of Cb(Ω) under ‖ · ‖2 is given by

L2
P =

{
X ∈ L : X has a q.c. version, ‖X‖2 <∞ , lim

n→∞
E|X|1{|X|>n} = 0

}
.

The results of the remaining appendix holds also under L2
P , so that Theorem

4.1 and Theorem 4.3 are still valid.

A.2 Conditional Knightian Expectation

For the purpose of a martingale representation theorem we need a well–
defined conditional expectation. In accordance with the representation of E
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in Proposition A.2, we denote for each P ∈ P , the conditional probability by
Pt = P (·|Ft). Fix a volatility regime (σt) ∈ [σ, σ] and denote the resulting
martingale law by P σ. The set of priors with a time–depending restriction
on the related information set Ft, generated by (Bs)s≤t, is given by

Pt,σ =
{
P ∈ P : Pt = P σ

t on Ft
}
.

This set of priors consists of all extensions of P σ
t from Ft to FT within P .

All priors in Pt,σ agree with P σ in the events up to time t, as illustrated in
Figure 1. As we are seeking for a rational–updating principle, we note, the

Figure 1: The representing priors of a conditional sub–linear expectation

following formulation of conditiong is closely related to dynamic consistency
or rectangularity of Epstein and Schneider (2003).

The efficient use of information is commonly formalized by the concept of
conditional expectations and depends on the underlying uncertainty model.
We introduce a universal conditional expectation, that is under every prior
almost surely equal to the maximum of relevant conditional expectations.
This concept is formulated in the following.

Let L2
t,P ⊂ L2

P denote the subspace of Ft–measurable payoffs. For all
X ∈ L2

P there exists an Ft-measurable random variable EtX ∈ L2
t,P such

that

EtX = sup
P∈Pt,σ

EP
t X, P σ-a.s. for every P σ ∈ P .

The linear conditional expectation EP
t under some P has strong connections

to a positive linear projection operator. In the presence of multiple priors,
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the conditional updating in an ambiguous environment involves a sub–linear
projection Et : L2

P → L2
t,P . In this regard the conditional Knightian expec-

tations satisfies a rational–updating principle, with E0 = E.

Lemma A.4 (Et) meet the law of iterated expectation: Es ◦ Et = Es, s ≤ t.

Moreover, as shown in Proposition 16 of Peng (2006), every Et satisfies the
properties of Definition A.1 now in the conditional sense, while the property
constants preserving extends to EtX = X for every X ∈ L2

t,P .

A.3 Spanning and Martingales

We proceed similarly to the single prior case, where the Radner implementa-
tion in continuous time is based on a classical martingale representation. As
indicated in Proposition A.2, the multiple prior model enforces a conditional
sub–linear expectation and spawns an elaborated martingale representation.

We start with a notion of martingales under the conditional expectation
Et. Fix a random variable X ∈ L2

P . As stated in Lemma A.4, the time consis-
tency of the conditional Knightian expectation allows to define a martingale
similarly to the single prior setting, as being its own estimator.

Definition A.5 An (Ft)-adapted process (Xt) is an E-martingale if

Xs = EsXt P-q.s. for all s ≤ t.

We call X a symmetric E-martingale if X and −X are both E-martingales.

The nonlinearity of the conditional expectation implies that if (Xt) is an
E–martingale, then −X is not necessarily an E–martingale. Intuitively, the
negation let E become super–additive.

We come now to the representation of E-martingales and specify the space
of admissible integrands Θ(S) taking values in Rd. All processes we consider
are (Ft)-progressively measurable.6 We begin with the space of well–defined
integrands when the Bachelier model builds up the integrator:

Θ(B) =
{
η ∈M : ηt satisfies (1)

}
, (2)

6The filtration Ft, deviates from the well–known two–step augmentation procedure
from the stochastic analysis literature, i.e. including the null–sets and taking the right
continuous version. Usually this new filtration is said to satisfy the “usual conditions”. As
mentioned in Section 2 of Soner, Touzi, and Zhang (2011), this assumption is no longer
required. Consequently, the usually questionable assumption of a too rich information
structure at time 0 can be dropped.
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whereM is closure of piecewise constant progressively measurable processes∑
k≥0 ηtk1[tk,tk+1) with ηtk ∈ L2

P , under the norm ‖η‖M = E
∫ T

0
η2
t d〈B〉t, see

Remark A.3
Condition (1) states the self–financing property of an adapted and B-

integrable η. For the arguments in Theorem 4.1, it is crucial if a payoff
X ∈ L2

P can be represented or replicated in terms of a stochastic integral.
To formulate Theorem A.6, set

K =
{

(Kt) : K0 = 0, cont. paths P-q.s., increasing, E sup
t∈[0,T ]

K2
t <∞

}
. (3)

The following Theorem clarifies this issue, see Soner, Touzi, and Zhang (2011)
for a proof.

Theorem A.6 For every X ∈ L2
P , there exist a unique pair (η,K) ∈M×K,

where (−Kt) is a E–martingale, such that for all t ∈ [0, T ]

EtX = E0X +

∫ t

0

ηsdBs −Kt, P-q.s.

The increasing E–martingale −K refers a correction term for the “overshoot-
ing” of the sub–linear expectation Et. Specifically, the conditional Knightian
expectation enforces t 7→ EtX to be a supermartingale under every P ∈ P.
For some effective priors P ∈ P , EtX is an EP -martingale. Foreclosing
Corollary A.7, these two possible cases, can be distinguished, by the fact
EPKT = 0 if and only if EPX = EX.

The following corollary illustrates which random variables have the repli-
cation property in terms of a stochastic integral. In this connection, a fair
game against nature refers to the symmetric E–martingale property. Appar-
ently, in this situation the process is equivalently an EP -martingale under
every P ∈ P .

Corollary A.7 The space M of mean ambiguous–free contingent claims is
a closed subspace of H = L2

P . More precisely, we have

M =
{
X ∈ H : X = EX +

∫ T

0

ηsdBs for some η ∈M
}
.

The notion of perfect replication is associated to the situation when K ≡ 0.
Elements in M generate symmetric martingales, via the successive application
of the conditional Knightian expectation along the augmented filtration (Ft).
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Remark A.8 When X is contained in a subset of L2
P , including all φ(BT )

with φ : R→ R Lipschitz continuous, then the E–martingale −K admits an
explicit representation,

Kt =

∫ t

0

ϕrd〈BG〉r −
∫ t

0

G(ϕr)dr, t ∈ [0, T ],

where ϕ is an endogenous output of the martingale representation, so that
K becomes a function of ϕ. If d = 1, the function G is given by G(x) =
1
2

supσ∈Σ σ
2x. As such it is an open problem, if every X ∈ L2

P can be repre-
sented in this complete form. We refer to Peng, Song, and Zhang (2013) for
the latest discussion.

References

Anderson, R., and R. Raimondo (2008): “Equilibrium in Continuous-
Time Financial Markets: Endogenously Dynamically Complete Markets,”
Econometrica, 76, 841–907.

Anderson, R., and W. Zame (2001): “Genericity with Infinitely Many
Parameters,” Advances in Microeconomic Theory, 1(1), 1–64.

Beißner, P. (2014): “Equilibrium Prices under Ambiguous Volatility,”
Mimeo, IMW Bielefeld.

Bewley, T. (1972): “Existence of Equilibria in Economies with Infinitely
Many Commodities,” Journal of Economic Theory, 4, 514–540.

Billot, A., A. Chateauneuf, I. Gilboa, and J. Tallon (2000): “Shar-
ing Beliefs: Between Agreeing and Disagreeing,” Econometrica, 68, 685–
694.

Dana, R. (2002): “On Equilibria when Agents Have Multiple Priors,”
Annals of Operations Research, 114, 105–112.

Dana, R., and F. Riedel (2013): “Intertemporal Equilibria with Knight-
ian Uncertainty,” Journal of Economic Theory, 148(2013), 1582–1605.

De Castro, L. I., and A. Chateauneuf (2011): “Ambiguity aversion
and trade,” Economic Theory, 48(2-3), 243–273.

26



Denis, L., M. Hu, and S. Peng (2011): “Function Spaces and Capacity
Related to a Sublinear Expectation: Application to G-Brownian Motion
Paths,” Potential Analysis, 34, 139–161.

Duffie, D. (1986): “Stochastic Equilibria: Existence, Spanning Num-
ber, and the No Expected Financial Gain from Trade Hypothesis,”
Econometrica, 54(5), 1161–1184.

Duffie, D., and C. Huang (1985): “Implementing Arrow-Debreu Equilib-
ria by Continuous Trading of Few Long-Lived Securities,” Econometrica,
53, 1337–1356.

Duffie, D., and W. Zame (1989): “The Consumption-Based Capital Asset
Pricing Model,” Econometrica, 57, 1274–1298.

Epstein, L., and S. Ji (2013): “Ambiguous Volatility and Asset Pricing in
Continuous Time,” Review of Financial Studies, 26(7), 1740–1786.

Epstein, L., and S. Ji (2014): “Ambiguous Volatility, Possibility, and
Utility in Continuous Time,” Journal of Matthematical Economics, 50,
269–282.

Epstein, L., and M. Schneider (2003): “Recursive Multiple Priors,”
Journal of Economic Theory, 113, 1–31.

Hugonnier, J., S. Malamud, and E. Trubowitz (2012): “Endogenous
Completeness of Diffusion Driven Equilibrium Markets,” Econometrica,
80(3), 1249–1270.

Hunt, B., T. Sauer, and J. Yorke (1992): “Prevalence: A Translation–
Invariant ’Almost Everywhere’ on Infinite–Dimensional Spaces,” Bulletin
(New Series) of the American Mathematical Society, 27, 217–238.

Karatzas, I., J. P. Lehoczky, and S. E. Shreve (1990): “Existence
and Uniqueness of Multi-Agent Equilibrium in a Stochastic, Dynamic
Consumption / Investment Model,” Mathematics of Operations Research,
15(1), 80–128.

Peng, S. (2006): “G-expectation, G-Brownian Motion and Related Stochas-
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