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Abstract. In this paper we provide a complete theoretical analysis of a two-dimensional
degenerate non convex singular stochastic control problem. The optimisation is motivated by a
storage-consumption model in an electricity market, and features a stochastic real-valued spot
price modelled by Brownian motion. We find analytical expressions for the value function, the
optimal control and the boundaries of the action and inaction regions. The optimal policy is
characterised in terms of two monotone and discontinuous repelling free boundaries, although
part of one boundary is constant and and the smooth fit condition holds there.
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1 Introduction

In this paper we study a two-dimensional degenerate problem of singular stochastic control (SSC)
with monotone, bounded controls and a non convex performance criterion that was introduced
in [10] in the context of electricity markets. Here the first component of the state process is the
electricity spot price, represented by a one-dimensional Brownian motion B := (Bt)t≥0 carried
by a complete probability space (Ω,F ,P) and the optimisation problem detailed in [10] reads

U(x, c) = inf
ν
E

[ ∫ ∞
0

e−λtλXx
t Φ(c+ νt)dt+

∫ ∞
0

e−λtXx
t dνt

]
, (x, c) ∈ R× [0, 1], (1.1)

with Xx
t := x+Bt, t ≥ 0, and where the infimum is taken over a suitable class of nondecreasing

controls ν such that c+ νt ≤ 1, P-a.s. for all t ≥ 0. The constant λ denotes a positive discount
factor and Φ is a strictly convex, twice continuously differentiable, decreasing function.

As discussed in Appendix A of [10], problem (1.1) is a non convex optimisation problem
arising naturally from storage-consumption problems for electricity, when the spot price X is
modelled by a continuous strong Markov process taking negative values with positive probability.
In this problem c + νt represents the inventory level at time t of an electricity storage facility
such as a battery, so that νt is the cumulative amount of energy purchased up to time t. A finite
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fuel constraint c+ νt ≤ 1, c ∈ [0, 1], P-a.s. for all t ≥ 0, reflects the fact that electricity storage
has limited total capacity.

The study in [10], where the uncontrolled process X is of Ornstein-Uhlenbeck (OU) type,
reveals how the non-convexity impacts in a complex way on the structure of the optimal control
and on the connection between SSC problems and associated optimal stopping (OS) problems
(as standard references on the subject see [19] and [20]). The analysis in [10] identifies three
regimes, two of which are solved and the third of which is left as open problem under the
OU dynamics. Here, with the aim of a full theoretical investigation, we take a more canonical
example letting X be a Brownian motion. The complete solution that we provide also gives
some insight in the open case of [10] since Brownian motion is a special case of OU with null
rate of mean reversion. The methodology we employ here is different from that of [10], as we
employ the characterisation via concavity of excessive functions for Brownian motion introduced
in [11], Chapter 3 (for Brownian motion, later expanded in [7]) to study a parameterised family
of OS problems in Section 3.3 below. This characterisation allows us to obtain the necessary
monotonicity and regularity results for the optimal boundaries in (1.1). In contrast to the OU
case, the Laplace transforms of the hitting times of Brownian motion are available in closed
form and it is this feature which enables the method of the present paper.

From the mathematical point of view (1.1) falls into the class of finite fuel, singular stochastic
control problems of monotone follower type (see, e.g., [4], [6], [12], [13], [21] and [22] as classical
references on finite fuel monotone follower problems). As noted in [10] the total expected cost
functional we aim at minimising in (1.1) is not convex in the control variable. In particular, by
simply writing X as the difference of its positive and negative part, it is easy to see that the
total expected cost functional in (1.1) can be written as a d.c. functional, i.e. as the difference of
two convex functionals (see [16] or [17] for a reference on d.c. functions). As a consequence the
standard connection between singular stochastic control and optimal stopping as addressed, for
example, in [12], [19] and [21] among others, does not provide an approach to solving problem
(1.1). To the best of our knowledge, when the connection to optimal stopping cannot be used as
in our case, the explicit solution of two-dimensional problems of this kind becomes much more
complex and it has to be performed on a case by case basis.

We will show that due to this non convexity, the control policy even in this Brownian case
is quite complex. While the action region is disconnected as expected from [10] the two free
boundaries c 7→ β̂(c) and c 7→ γ̂(c) are discontinuous, the former being non-increasing everywhere
but at a single jump and the latter being non-decreasing with a vertical asymptote. Through a
verification argument we are able to show that control is always exercised discontinuously, that
is, by inducing jumps in the state process.

The free boundaries β̂ and γ̂ are therefore repelling (in the terminology of [8] or [23]). How-
ever, in contrast with most known examples of repelling boundaries, if the optimally controlled
process hits β̂ the controller does not immediately exercise all available control but, rather,
causes the inventory level to jump to a critical level ĉ ∈ (0, 1) (which coincides with the point of
discontinuity of the upper boundary c 7→ β̂(c)). After this jump the optimally controlled process
continues to diffuse until hitting the lower boundary γ̂ (the upper boundary is then formally
infinite; for details see Sections 3 and 4).

This optimal process is unexpected in light of [10], whose results might suggest the presence
of a continuously reflecting boundary. However the present solution can in part be related to
the usual connection between SSC and OS as addressed in [12], [19] and [21], among others.
In particular when the initial inventory level c is strictly larger than the critical value ĉ there
is a single lower boundary γ̂ which is constant and the optimal policy consists in exercising
all the available control when the process X hits this boundary. However the so-called smooth
fit condition holds at γ̂ (for c > ĉ), i.e. Uxc is continuous across it, and Uc coincides with the
value function of an associated optimal stopping problem on R× (ĉ, 1]. This constant boundary
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can therefore be considered discontinuously reflecting, as a non increasing counterpart of the
more canonical strictly decreasing reflecting boundaries. On the other hand, when the initial
inventory level c is smaller than the critical value ĉ we establish through solving the family of
OS problems in Section 3.3 and examining their free boundaries that the value function U of
problem (1.1) coincides itself (and not through its derivative Uc) with the value function of an
associated optimal stopping problem. In this case we confirm that Uxc is discontinuous across
the optimal boundaries so that the smooth fit condition breaks down.

The rest of the paper is organised as follows. In Section 2 we set up the problem and in
Section 3 we construct a candidate value function. A candidate optimal control for problem
(1.1) and the candidate value function from Section 3 are then validated in Section 4 through
a verification argument. Finally, proofs of some results needed in Section 3 are collected in
Appendix A.

2 Setting and basic assumptions

Let (Ω,F ,P) be a complete probability space carrying a one-dimensional standard Brownian
motion (Bt)t≥0 adapted to its natural filtration augmented by P-null sets F := (Ft)t≥0. We
denote by Xx the Brownian motion starting from x ∈ R at time zero; i.e.

Xx
t = x+Bt, t ≥ 0. (2.1)

It is well known that Xx is a recurrent process with infinitesimal generator LX := 1
2
d2

dx2
and with

fundamental decreasing and increasing solutions of the characteristic equation (LX − λ)u = 0

given by φλ(x) := e−
√

2λx and ψλ(x) := e
√

2λx, respectively.
Letting c ∈ [0, 1] be constant, we denote by Cc,ν the purely controlled process evolving

according to
Cc,νt = c+ νt, t ≥ 0, (2.2)

where ν is a control process belonging to the set

Ac := {ν : Ω× R+ 7→ R+, (νt(ω))t≥0 is nondecreasing, left-continuous, adapted

with c+ νt ≤ 1 ∀t ≥ 0, ν0 = 0 P− a.s.}.

From now on controls belonging to Ac will be called admissible.
Given a positive discount factor λ and a convex running cost function Φ, the problem is to

find
U(x, c) := inf

ν∈Ac
Jx,c(ν), (2.3)

with

Jx,c(ν) := E

[ ∫ ∞
0

e−λsλXx
s Φ(Cc,νs )ds+

∫ ∞
0

e−λsXx
s dνs

]
, (2.4)

and the minimising control policy ν∗.
Notice that throughout this paper we make use of the notation

∫ t
0 e
−λsXx

s dνs, t ≥ 0, to
indicate the Stieltjes integral

∫
[0,t) e

−λsXx
s dνs, t ≥ 0, with respect to any ν ∈ Ac. Moreover,

from now on the following standing assumption on the running cost factor Φ will hold.

Assumption 2.1. Φ : R 7→ R+ lies in C2(R) and is decreasing and strictly convex with Φ(1) = 0.

For frequent future use it is also convenient to introduce the following quantities. We denote
by co ∈ (0, 1) the unique solution of

R(c) := 1− c− Φ(c) = 0 (2.5)
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in (0, 1) should one exist. Note that R(1) = 0 and R is strictly concave, hence if co exists then
1− Φ(0) < 0, R is negative on [0, co) and positive on (co, 1). As in [10] the sign of the function

k(c) := λ+ λΦ′(c) (2.6)

over c ∈ [0, 1] will also play a fundamental role in the solution of problem (2.3). Since c 7→ k(c) is
strictly increasing by the strict convexity of Φ (cf. Assumption 2.1) ĉ ∈ R is the unique solution
in (0, 1) of

k(c) = 0 (2.7)

should one exist. Notice that if both ĉ and co exist in (0, 1) then ĉ > co since k(c) = −λR′(c),
R(1) = 0 and R is strictly concave, so that at ĉ the function R attains a positive maximum.

From now on we make the following standing assumption.

Assumption 2.2. Both co and ĉ exist in (0, 1) with 0 < co < ĉ < 1.

Such assumption guarantees the most general setting for our problem and the cases where either
co or both co and ĉ do not exist in (0, 1) are also covered by the results that we present in the
next sections.

3 Construction of a candidate value function

The next preliminary result shows that under our assumptions problem (2.3) is well posed with
finite value function.

Proposition 3.1. Let U be as in (2.3). Then there exists K > 0 such that |U(x, c)| ≤ K(1+ |x|)
for any (x, c) ∈ R× [0, 1].

Proof. We take ν ∈ Ac and integrate by parts the cost term
∫∞

0 e−λsXx
s dνs in (2.4) noting that

the martingale Mt :=
∫ t

0 e
−λsνsdBs is uniformly integrable and hence its expectation vanishes.

Then by well known estimates for the Brownian motion we get

|Jx,c(ν)| ≤ E

[ ∫ ∞
0

e−λsλ|Xx
s |
[
Φ(Cc,νs ) + νs

]
ds

]
≤ K(1 + |x|), (3.1)

for some suitable K > 0, since Φ(c) ≤ Φ(0), c ∈ [0, 1] by Assumption 2.1 and ν ∈ Ac is bounded
from above by 1. By (3.1) and arbitrariness of ν ∈ Ac the proposition is proved.

The aim of our study is to find analytical expressions for the value function U of problem
(2.3) and the associated optimal control ν∗. That will be achieved by constructing in this section
a suitable solution, W , of the Hamilton-Jacobi-Bellman (HJB) equation naturally associated
with U of (2.3) (cf. (3.2) below). The function W will be our candidate value function of the
optimisation problem in (2.3) and in Section 4 we will use a generalised version of Itô’s formula to
prove that W = U provided that suitable regularity results are obtained for W beforehand. The
optimal control will be specified by relying on geometric properties of suitable free boundaries
which we associate to the action and inaction region of the control problem.

To be more precise, for O := R× (0, 1), we aim at finding W ∈ C1(O) ∩ C(O) with Wxx ∈
L∞loc(O) such that it solves the variational problem

max
{

(−1
2Wxx + λW )(x, c)− λxΦ(c) , −Wc(x, c)− x

}
= 0, for a.e. (x, c) ∈ O (3.2)

with W (x, 1) = 0, x ∈ R. The candidate action and inaction regions associated to W are
denoted DW and IW , respectively and are defined by

DW :=
{

(x, c) ∈ O : Wc(x, c) = −x
}

and IW :=
{

(x, c) ∈ O : Wc(x, c) > −x
}
. (3.3)
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3.1 Heuristic study of the optimal policy

Here we provide an initial, heuristic analysis of the geometry of the action and inaction regions in
problem (2.3). For this and for the subsequent solution of the problem it is convenient to consider
separately the intervals [0, ĉ) and (ĉ, 1] of possible values for the controlled state variable.

We begin by comparing two strategies when c ∈ (ĉ, 1], hence k(c) > 0. If control is never
exercised, i.e. νt ≡ 0, t ≥ 0, one obtains from (2.4) an overall cost Jx,c(0) = xΦ(c) by an
application of Fubini’s theorem. If instead at time zero one increases the inventory by a small
amount δ > 0 and then does nothing for the remaining time, i.e. νt = νδt := δ for t > 0 in (2.4),
the total cost is Jx,c(νδ) = x(δ + Φ(c+ δ)). By approximating Φ(c+ δ) = Φ(c) + Φ′(c)δ + o(δ2)
we find that Jx,c(νδ) = Jx,c(0) + δx(1 + Φ′(c)) + o(δ2) so that exercising a small amount
of control reduces future costs relative to a complete inaction strategy only if xk(c)/λ < 0,
i.e. x < 0 since k(c) > 0. It is then natural to expect that for each c ∈ (ĉ, 1] there should exists
γ(c) < 0 such that it is optimal to exercise control only when the process X falls below such a
threshold. We now want to understand whether a small control increment is more efficient than
a large one and for that we consider a strategy where at time zero one exercises all available
control, i.e. νt = νft := 1 − c for t > 0. The latter produces a total expected cost equal to
Jx,c(νf ) = x(1− c), so that for x < 0 and recalling that k is increasing one has

Jx,c(νf )− Jx,c(νδ) =
x

λ

(∫ 1

c
k(y)dy − δk(c)

)
+ o(δ2) ≤ x

λ
k(c)(1− c− δ). (3.4)

Since k(c) > 0 the last expression is negative whenever 1−c > δ, so it is reasonable to expect that
large control increments are more profitable than small ones. This suggests that the threshold
γ introduced above should not be of the reflecting type (see for instance [12] or [14]) but rather
of repelling type as observed in [1], [2] and [8] among others.

Now consider the case c ∈ [0, ĉ), i.e. k(c) < 0 and argue similarly. If again we compare the
cost associated with complete inaction to that associated with the strategy νδ we find that the
latter is convenient if and only if xk(c)/λ < 0, i.e. x > 0 since now k(c) < 0. Hence we expect
that for fixed c ∈ [0, ĉ) one should act when the process X exceeds a positive upper threshold
β(c). Then compare small control increment with a large one, in particular consider a policy ν ĉ

that immediately exercises an amount ĉ− c of control and then acts optimally for problem (2.3)
with initial conditions (x, ĉ). The expected cost associated to ν ĉ is Jx,c(ν ĉ) = x(ĉ− c) +U(x, ĉ)
and one has

Jx,c(ν ĉ)− Jx,c(νδ) ≤
x

λ

(∫ ĉ

c
k(y)dy − δk(c)

)
+ o(δ2) (3.5)

where we have used that U(x, ĉ) ≤ xΦ(ĉ). If we fix c ∈ [0, ĉ) and x > 0, then for δ > 0
sufficiently small the right-hand side of (3.5) becomes negative, which suggests that a reflection
strategy at the upper boundary β would be less efficient than the strategy described by ν ĉ. We
can interpret this observation as an effect of the “proximity” to the action/inaction set of the
state space’s region R× (ĉ, 1] discussed in the previous paragraph. For x > 0 large enough the
controller finds it convenient to increase the inventory by the amount needed to push the process
(X,C) inside the inaction region of the subset R × (ĉ, 1] described in the previous paragraph,
rather than optimising with smaller purchases. In fact such proximity affects the geometry of
action/inaction set in a deeper way and it turns out that it may be sometimes convenient to
act also in the region (−∞, 0) × [0, ĉ). To make this claim clearer let us compare therein the
strategies νt ≡ 0, t ≥ 0 and ν ĉ. Fix x < 0, c ∈ [0, ĉ) and note that U(x, ĉ) ≤ x(1− ĉ) to obtain

Jx,c(ν ĉ)− Jx,c(0) ≤ x

λ

∫ 1

c
k(y)dy =

x

λ

(∫ ĉ

c
k(y)dy +

∫ 1

ĉ
k(y)dy

)
. (3.6)
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Now, the first integral on the right-hand side of (3.6) is negative but its absolute value could
be made arbitrarily small by taking c close to ĉ. Instead the second integral is positive and its
value is not affected by the choice of c. Thus, given that x < 0, the overall expression becomes
negative when c approaches ĉ from the left. This suggests that when the inventory is smaller
than but close enough to the critical value ĉ and x < 0 an investment sufficiently large to increase
the inventory to a critical level ĉ is a better choice than complete inaction. This is a remarkable
effect and we will see in Sections 3.3 how this leads to an efficient method of solution through
an auxiliary optimal stopping problem.

3.2 Step 1: c ∈ [ĉ, 1].

Recall that ĉ denotes the unique solution in (0, 1) of (2.7) (cf. Assumption 2.2) and take c ∈ [ĉ, 1].
Since ĉ > co (cf. (2.5) and Assumption 2.2) we have R(c) > 0 for c ∈ [ĉ, 1). In the portion of
plane [ĉ, 1]×R we expect to find that the inaction region is of the form x > γo(c) where γo is a
repelling boundary such that once the process X hits γo the optimal strategy is to exert all the
available fuel. Therefore we write (3.2) as a free-boundary problem where we want to find the
couple of functions (u, γ) solving

1
2uxx(x, c)− λu(x, c) = −λxΦ(c) for x > γ(c), c ∈ [ĉ, 1)
1
2uxx(x, c)− λu(x, c) ≥ −λxΦ(c) for a.e. (x, c) ∈ R× [ĉ, 1)

uc(x, c) ≥ −x for x ∈ R, c ∈ [ĉ, 1)

u(x, c) = x(1− c) for x ≤ γ(c), c ∈ [ĉ, 1]

ux(x, c) = (1− c) for x ≤ γ(c), c ∈ [ĉ, 1)

u(x, 1) = 0 for x ∈ R.

(3.7)

Proposition 3.2. The couple (W o, γo) defined by γo := − 1√
2λ

and

W o(x, c) :=

{
− 1√

2λ
e−1R(c)φλ(x) + xΦ(c), x > γo,

x(1− c), x ≤ γo,
(3.8)

solves (3.7) with W o ∈ C1(R× [ĉ, 1]) and W o
xx ∈ L∞loc(R× (ĉ, 1)).

Proof. A general solution to the first equation in (3.7) is given by

u(x, c) = Ao(c)ψλ(x) +Bo(c)φλ(x) + xΦ(c), x > γ(c),

with Ao, Bo and γ to be determined. Since ψλ(x) diverges with a superlinear trend as x → ∞
and U has sublinear growth by Proposition 3.1, we set Ao(c) ≡ 0. Imposing the fourth and fifth
of (3.7) for x = γ(c) and recalling the expression for R as in (2.5) it is easy to find

Bo(c) := − 1√
2λ
e−1R(c), γ(c) = γo = − 1√

2λ
. (3.9)

This way the function W o of (3.8) clearly satisfies W o(x, 1) = 0, W o
x is continuous by con-

struction and by some algebra it is not difficult to see that W o
c is continuous on R× [ĉ, 1] with

W o
c (γo, c) = −γo, c ∈ [ĉ, 1]. Moreover one also has

W o
cx(x, c) + 1 = (1 + Φ′(c))

(
1− e−1φλ(x)

)
≥ 0, x > γo, c ∈ [ĉ, 1], (3.10)

and hence W o
cx(γo, c) = −1, for c ∈ [ĉ, 1], i.e. the smooth-fit holds, and W o

c (x, c) ≥ −x on
R× [ĉ, 1] as required. It should be noticed that W o

xx fails to be continuous across the boundary
although it remains bounded on any compact subset of R× [ĉ, 1].
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Finally we observe that

1
2W

o
xx(x, c)− λW o(x, c) = −λx(1− c) ≥ −λxΦ(c) for x ≤ γo, c ∈ [ĉ, 1], (3.11)

since γo < 0 and R(c) ≥ 0 on c ∈ [ĉ, 1].

Remark 3.3. In this setting the classical connection between SSC and OS holds as in the case
of convex problems (see [19]). Direct derivation of the first and third equations in (3.7) (or
alternatively of (3.8)) easily allow to show that W o

c solves a free-boundary problem which is
naturally associated to the following family of OS problems parametric in c ∈ [ĉ, 1)

w(x, c) := sup
τ≥0

E
[
λΦ′(c)

∫ τ

0
e−λtXx

t dt− e−λτXx
τ

]
, x ∈ R. (3.12)

Moreover W o
c ( · , c) ∈ C1(R) for all c ∈ [ĉ, 1), as proven above and hence from standard ver-

ification arguments it follows W o
c = w. Details are omitted here since they can be found in

the very wide existing literature on infinite time-horizon OS problems (see for instance [24] and
references therein).

The analysis conducted so far provides us with a candidate analytical expression, W o, for the
function U of (2.3) and a candidate optimal control of bang-bang type triggered by the repelling
boundary γo. Clearly W o needs to be suitably pasted with the solution of the HJB equation
that we will find in the next section for the portion of state space R× [0, ĉ).

3.3 An auxiliary problem of optimal stopping

We now consider c ∈ [0, ĉ) and as it will become clear in what follows our study of this region goes
through two subcases, namely c ∈ (co, ĉ) and c ∈ [0, co] with co the unique solution in (0, 1) of
(2.5) (cf. Assumption 2.2). For c ∈ [0, ĉ) we expect again an optimal control of bang-bang type so
that, once the uncontrolled process X enters the action region, the optimal policy is to increase
the capacity up to ĉ and then to continue optimally in the region R × [ĉ, 1]. This structure of
the expected optimal control and results obtained in the previous section imply that for fixed
c ∈ [0, ĉ) the function U of (2.3) should coincide with the value function of an infinite time-
horizon, one-dimensional, parameter dependent (where c enters only as a parameter) optimal
stopping problem. More precisely we aim at proving that U( · , c) equals

W 1(x, c) := inf
τ≥0

E

[ ∫ τ

0
e−λtλXx

t Φ(c)dt+ e−λτXx
τ (ĉ− c) + e−λτW o(Xx

τ , ĉ)

]
, (3.13)

for x ∈ R and where the optimisation is taken over the set of (Ft)-stopping times valued in
[0,∞]. The rest of this section is devoted to the study of analytical properties of W 1 and of the
associated optimal stopping regions.

From now on we will adopt the convention
e−λτXx

τ := lim
t↑∞

e−λtXx
t = 0 on {τ = +∞}

e−λτW o(Xx
τ , ĉ) := lim

t↑∞
e−λtW o(Xx

t , ĉ) = 0 on {τ = +∞}

where the equalities follow from the law of iterated logarithm and the fact that |W o(x, c)| ≤
C(1 + |x|) for suitable C > 0 (cf. (3.8)).

Notice that the integral term in (3.13) may be rewritten by using Itô’s formula so that (3.13)
reads as

W 1(x, c) := xΦ(c) + V (x, c), (3.14)
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where
V (x, c) := inf

τ≥0
E
[
e−λτG(Xx

τ , c)
]

(3.15)

is the value function of an optimal stopping problem (again, parametric in c) with

G(x, c) := x(ĉ− c− Φ(c)) +W o(x, ĉ). (3.16)

According to the standard optimal stopping theory (see, e.g., [24]), for any fixed c ∈ [0, ĉ), we
define the continuation region Cc and the stopping region Sc of problem (3.15) by

Cc := {x ∈ R : V (x, c) < G(x, c)} and Sc := {x ∈ R : V (x, c) = G(x, c)}, (3.17)

respectively. When the observed process X is in Cc then the value function of (3.15) is strictly
smaller than the value of immediate stopping, i.e. G, therefore it is optimal to continue the
observation. On the other hand if X lies in Sc then the value of immediate stopping equals the
value of continuation and hence it is optimal stop the observation.

3.3.1 Step 2.1: c ∈ (co, ĉ).

Recall (2.5), (2.7), (3.8) and Assumption 2.2 and take c ∈ (co, ĉ) so that R(c) > 0 for any c in
such interval. An initial insight into the shapes of Cc and Sc is obtained by studying the sign of
1
2Gxx−λG as indeed standard arguments based on exit times from small intervals guarantee that
for every c ∈ (co, ĉ) one has Sc ⊂ {x : (1

2Gxx−λG)(x, c) ≥ 0} and Cc ⊃ {x : (1
2Gxx−λG)(x, c) <

0}. From simple calculations one finds from (3.16) and (3.8)

(1
2Gxx − λG)(x, c) =

{
−λx

∫ ĉ
c k(y)dy, x > γo,

−λxR(c), x ≤ γo.
(3.18)

Hence, recalling that R(y) > 0 and k(y) < 0 for y ∈ (co, ĉ) we get Sc ⊂ (−∞, γo] ∪ [0,∞). We
thus expect a non-connected stopping set and two optimal stopping boundaries.

Since |G(x, c)| ≤ C(1 + |x|) for suitable C > 0 it is clear that |V (x, c)| < +∞ for all
(x, c) ∈ R×(co, ĉ) and since x 7→ E

[
e−λτG(Xx

τ , c)
]

is continuous for any fixed τ ≥ 0 and c ∈ (co, ĉ)
it follows that x 7→ V (x, c) is upper-semi-continuous (one can in fact prove that it is continuous).
Then it follows from standard theory (cf. for instance [24]) that τ∗ := inf{t ≥ 0 : Xx

t ∈ Sc} is an
optimal stopping time and V solves the variational problem

max
{
− 1

2uxx + λu , u−G
}

= 0 for a.e. (x, c) ∈ R× (co, ĉ). (3.19)

A standard way of characterising V analytically would be to proceed as in Section 3.2 by
writing down and solving (3.19) as a free-boundary problem with boundary conditions at the
endpoints of an interval (γ, β) with γ < γo and β > 0 to be determined. Natural boundary
conditions are u = G (continuous-fit) and ux = Gx (smooth-fit). Those would lead to a system
of non-linear equations involving φλ and ψλ that we would need to solve (to some extent) in
order to prove that the treble of functions (u, γ, β) has suitable properties. Namely, to prove
that u = V we require u ∈ C1 with locally bounded second derivative with respect to x and
u ≤ G everywhere. Moreover to substantiate our initial claim that W 1 = U and that the optimal
strategy in the control problem is of bang-bang type we also need to verify that c 7→ γ(c) is
increasing and c 7→ β(c) is decreasing. It turns out that this work-plan is not feasible due to the
difficulty in handling the resulting system of non-linear equations.

Therefore we tackle the optimal stopping problem (3.15) via a different approach. That is,
we adapt to our parameter-dependent setting the geometric approach originally introduced in
[11], Chapter 3, for Brownian motion (see also [7] for further extensions and details) which in
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this case proves particularly handy due to the nature of the uncontrolled process X. As in [7],
eq. (4.6), we define

Fλ(x) :=
ψλ(x)

φλ(x)
= e2

√
2λx, x ∈ R, (3.20)

together with its inverse

F−1
λ (y) :=

1

2
√

2λ
ln(y), y > 0, (3.21)

and, for fixed c ∈ (co, ĉ), the function

H(y, c) :=

{
G(F−1

λ (y),c)

φλ(F−1
λ (y))

, y > 0

0 y = 0.
(3.22)

We can now restate part of Proposition 5.12 and Remark 5.13 of [7] as follows.

Proposition 3.4. Fix c ∈ (co, ĉ) and let Q( · , c) be the largest non-positive convex minorant of
H( · , c) (cf. (3.22)), then V (x, c) = φλ(x)Q(Fλ(x), c) for all x ∈ R. Moreover Sc = F−1

λ (SQc ),

where SQc := {y > 0 : Q(y, c) = H(y, c)} (cf. (3.17)).

To solve problem (3.15), and hence (3.13), we have now to determine H and Q as above and
characterise the contact set SQc . From now on we fix c ∈ (co, ĉ), then recalling (3.8) and (3.16)
we get

G(x, c) =

{
xR(c), x ≤ γo

− 1√
2λ
e−1R(ĉ)φλ(x) + x(R(c)−R(ĉ)), x > γo,

(3.23)

with R as in (2.5). Noting that φλ(F−1
λ (y)) = y−

1
2 , y > 0, we obtain from (3.21), (3.22) and

(3.23)

H(y, c) =


0, y = 0

1
2
√

2λ
R(c)y

1
2 ln y, 0 < y ≤ e−2

− 1√
2λ
e−1R(ĉ) + 1

2
√

2λ
(R(c)−R(ĉ))y

1
2 ln y, y > e−2.

(3.24)

In the next lemma we collect some elementary properties of H. The proof is trivial and it is
moved to Appendix A for completeness.

Lemma 3.5. The function H( · , c) belongs to C1(0,∞)∩C([0,∞)) it is strictly decreasing and
Hyy( · , c) ∈ L∞loc(δ,∞) for all δ > 0 (with a single discontinuity at y = e−2). Moreover H( · , c)
is convex in the intervals [0, e−2) ∪ (1,∞) and it is concave in [e−2, 1].

To get a geometric intuition of the meaning of Proposition 3.4 we may say, roughly speaking,
that in order to find the largest non-positive convex minorant of H( · , c), i.e. Q( · , c), we must
put a rope below the new obstacle function H with both ends pulled to the sky (see, e.g., Section
8.1 of Chapter IV in [24] for such geometric interpretation). Mathematically, in our case, this
corresponds to finding two points, y1 := y1(c) and y2 := y2(c), with y1 < e−2 and y2 > 1, such
that the tangent straight lines to H in y1 and y2, denoted respectively ry1 and ry2 , coincide.
Then Q = H on [0, y1] ∪ [y2,∞) and Q = ry1 = ry2 on (y1, y2). Namely, y1 and y2 must solve
the system {

Hy(y1, c) = Hy(y2, c) (same slopes)

H(y1, c)−Hy(y1, c)y1 = H(y2, c)−Hy(y2, c)y2 (same intercepts)
(3.25)

and they will be the boundaries of the stopping region SQc = [0, y1] ∪ [y2,∞).
A geometric proof of the following existence and uniqueness result is provided in Appendix

A.
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Proposition 3.6. There exists a unique couple (ŷ1(c), ŷ2(c)) solving system (3.25) for any
c ∈ (co, ĉ) with ŷ1(c) ∈ (0, e−2) and ŷ2(c) > 1.

We also defer to the Appendix the proof of the following properties.

Proposition 3.7. The functions ŷ1 and ŷ2 of Proposition 3.6 belong to C1(co, ĉ) with c 7→ ŷ1(c)
increasing and c 7→ ŷ2(c) decreasing on (co, ĉ). Moreover, one has

1. limc↑ĉ ŷ1(c) = e−2;

2. limc↑ĉ ŷ
′
1(c) = 0;

3. limc↓co ŷ1(c) = 0;

4. ŷ2(c) < e2 for all c ∈ (co, ĉ).

We are now ready to construct the largest non-positive convex minorant Q (see Proposition
3.4) of our function H (cf. (3.24)) by setting, for any fixed c ∈ (co, ĉ),

Q(y, c) =


H(y, c), y ∈ [0, ŷ1(c)],

Hy(ŷ2(c), c)(y − ŷ2(c)) +H(ŷ2(c), c), y ∈ (ŷ1(c), ŷ2(c)),

H(y, c), y ∈ [ŷ2(c),∞).

(3.26)

Figure 1: An illustrative plot of the functions y 7→ H(y, c) and y 7→ Q(y, c) (bold) of (3.24) and (3.26),
respectively, for fixed c ∈ (co, ĉ). The bold interval [0, ŷ1(c)] ∪ [ŷ2(c),∞) on the y-axis is the stopping
region SQc .

From the above expression, using Proposition 3.4 and setting

γ̂(c) := F−1
λ (ŷ1(c)) and β̂(c) := F−1

λ (ŷ2(c)) (3.27)

with F−1
λ as in (3.21) we find the expression for V of (3.15)

V (x, c) =


G(x, c), x ∈ (−∞, γ̂(c)]

φλ(x)
[
Hy(Fλ(β̂(c)), c)

(
Fλ(x)− Fλ(β̂(c))

)
+H(Fλ(β̂(c)), c)

]
, x ∈ (γ̂(c), β̂(c))

G(x, c), x ∈ [β̂(c),∞).
(3.28)
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Remark 3.8. Note that since ŷ1 and ŷ2 solve (3.25), the second expression in (3.26) may be
equivalently rewritten in terms of ŷ1, i.e. Q(y, c) = Hy(ŷ1(c), c)(y − ŷ1(c)) + H(ŷ1(c), c) for
y ∈ (ŷ1(c), ŷ2(c)) and analogously (3.28) may be equivalently rewritten in terms of γ̂, that is

V (x, c) = φλ(x)
[
Hy(Fλ(γ̂(c)), c)

(
Fλ(x)− Fλ(γ̂(c))

)
+H(Fλ(γ̂(c)), c)

]
for x ∈ (γ̂(c), β̂(c)).

Before proving some other crucial properties of V we consider the case of c ∈ [0, co).

3.3.2 Step 2.2: c ∈ [0, co).

Recall (2.5) and take c ∈ [0, co) arbitrary but fixed so to have R(c) < 0. Proceeding as at
the beginning of Section 3.3.1, an initial insight into the geometry of the continuation and the
stopping region Cc and Sc (cf. (3.17)) may be obtained also in this case by looking at the sign of
1
2Gxx−λG. From (3.18), recalling that R(y) < 0 and k(y) < 0 for y ∈ [0, co) we get Sc ⊂ [0,∞)
and we thus expect a connected stopping set and one optimal stopping boundary.

Again we address the optimal stopping problem (3.15) via a geometric approach in the spirit
of [7] and [11]. Recalling (3.24), for any c ∈ [0, co) the following result easily follows by arguments
similar to those employed in the proof of Lemma 3.5 performed in Appendix A.

Lemma 3.9. The function H( · , c) of (3.24) belongs to C1(0,∞) ∩ C([0,∞)). It is strictly
increasing in (0, e−2) and strictly decreasing in (e−2,∞). Moreover, Hyy( · , c) ∈ L∞loc(δ,∞) for
all δ > 0 (with a single discontinuity at y = e−2), Hyy(1, c) = 0 and H( · , c) is (strictly) concave
in the interval (0, 1) and it is (strictly) convex in (1,∞).

The strict concavity of H in (0, 1) suggest that there should exist a unique point y∗2(c) > 1
solving

Hy(y, c)y = H(y, c). (3.29)

This way the straight line ry∗2 : [0,∞) 7→ (−∞, 0]

ry∗2 (y) := H(y∗2(c), c) +Hy(y
∗
2(c), c)(y − y∗2(c))

is tangent to H at y∗2(c) and ry∗2 (0) = 0. Notice that by (3.24) and (A-1), equation (3.29) may
be rewritten in the equivalent form

F3(y; c) = 0, (3.30)

where we define the jointly continuous function F3 : (0,∞)× [0, 1] 7→ R as

F3(y; c) := y
1
2
(
1− 1

2 ln y
)
− 2e−1R(ĉ)

R(ĉ)−R(c)
. (3.31)

The proof of the next result may be found in Appendix A.

Proposition 3.10. For each c ∈ [0, co) there exists a unique point y∗2(c) ∈ (1, e2) solving
(3.30). The function c 7→ ŷ∗2(c) is decreasing and belongs to C1([0, co)). Moreover, for ŷ2 as in
Proposition 3.6 one has

y∗2(co−) := lim
c↑co

y∗2(c) = lim
c↓co

ŷ2(c) =: ŷ2(co+) (3.32)

and
(y∗2)′(co−) := lim

c↑co
(y∗2)′(c) = lim

c↓co
(ŷ2)′(c) =: (ŷ2)′(co+). (3.33)
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Thanks to Proposition 3.10 we see that the curve y∗2 is actually the C1-extension in the set
c ∈ [0, co] of ŷ2 of Proposition 3.6. Therefore from now on, with a slight abuse of notation,
we will simply refer to y∗2 and ŷ2 by using uniquely ŷ2, with the understanding that it is the
upper boundary of the optimal stopping problem (3.15) for any value of c ∈ [0, ĉ). This notation
will be fully justified in the following section by also proving regularity of the value function V ,
obtained constructively in [0, co) ∪ (co, ĉ) (see (3.28) and (3.35) below), across c = co.

As in Section 3.3.1 we can construct the largest non-positive convex minorant Q (see Propo-
sition 3.4) of our function H (cf. (3.24)) by setting, for any fixed c ∈ [0, co),

Q(y, c) =

{
Hy(ŷ2(c), c)y, y ∈ [0, ŷ2(c)),

H(y, c), y ∈ [ŷ2(c),∞).
(3.34)

Recalling (3.27) we set β̂(c) := F−1
λ (ŷ2(c)) so that the expression for V of (3.15) reads (cf.

Proposition 3.4)

V (x, c) =

{
φλ(x)Hy(Fλ(β̂(c)), c)Fλ(x), x ∈ (−∞, β̂(c))

G(x, c), x ∈ [β̂(c),∞).
(3.35)

Figure 2: An illustrative plot of the functions y 7→ H(y, c) and y 7→ Q(y, c) (bold) of (3.24) and (3.34),
respectively, for fixed c ∈ [0, co). The bold interval [ŷ2(c),∞) on the y-axis is the stopping region SQc .

3.3.3 Regularity of V and its offsprings

Recalling (3.17) we see that, by construction, C := ∪c∈[0,ĉ)Cc and S := R× [0, ĉ)\C are such that

C ={(x, c) ∈ R× [0, ĉ) : x ∈ (γ̂(c), β̂(c))} (3.36)

S ={(x, c) ∈ R× [0, ĉ) : x ∈ (−∞, γ̂(c)] ∪ [β̂(c),+∞)} (3.37)

with the convention that γ̂ = −∞ on [0, co]. From Propositions 3.7 and 3.10 and from (3.27)
follows the regularity of γ̂ and β̂.

Corollary 3.11. It holds

i) β̂ ∈ C1([0, ĉ)) monotone strictly decreasing and β̂(c) ∈ (0, 1/
√

2λ) for all c ∈ [0, ĉ);
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ii) γ̂ ∈ C1((co, ĉ]) monotone strictly increasing with γ̂(c) ≤ γo for all c ∈ [0, ĉ) and γ̂ = −∞
on [0, co].

We now address the question of the C1 regularity of V across the two boundaries and on
[0, ĉ).

Proposition 3.12. The value function V of (3.15) belongs to C1(R× [0, ĉ)) with Vxx ∈ L∞loc(R×
(0, ĉ)). Moreover it is such that

1
2Vxx(x, c)− λV (x, c) = 0 for γ̂(c) < x < β̂(c), c ∈ [0, ĉ)
1
2Vxx(x, c)− λV (x, c) ≥ 0 for a.e. (x, c) ∈ R× [0, ĉ)

V (x, c) = G(x, c) for x ≤ γ̂(c), x ≥ β̂(c), c ∈ [0, ĉ)

Vx(x, c) = Gx(x, c) for x ≤ γ̂(c), x ≥ β̂(c), c ∈ [0, ĉ)

Vc(x, c) = Gc(x, c) for x ≤ γ̂(c), x ≥ β̂(c), c ∈ [0, ĉ).

(3.38)

Remark 3.13. As one may note in (3.38) the boundary condition at ĉ is missing. This will be
retrieved at a later stage when we will show that there is a C1 pasting of W 1 and W o at c = ĉ.

Proof. The proof will be divided in a number of steps.

Step 1. First we show that V ∈ C(R × [0, ĉ)). Note that V ∈ C(R × [0, ĉ)) if and only if
Q ∈ C((0,∞)× [0, ĉ)) by Proposition 3.4. For the sake of clarity of notation we denote Q− := Q
restricted to [0,∞)×[0, co) and Q+ := Q restricted to [0,∞)×(co, ĉ). From (3.26) and (3.34) it is
easy to see that Q− ∈ C([0,∞)×[0, co)) and Q+ ∈ C([0,∞)×(co, ĉ)) and moreover, for any y > 0
there exist limits Q−(y, co−) := limc↑co Q

−(y, c) and Q+(y, co+) := limc↓co Q
+(y, c) and such

limits are locally uniform with respect to y in bounded subsets of [0,∞). It is also easy to see that
Q±(· , co±) are continuous as well by Propositions 3.7 and 3.10 and therefore we can continuously
extend Q− and Q+ respectively to [0,∞)× [0, co] and [0,∞)× [co, ĉ) and for simplicity we denote
such extensions again by Q− and Q+. If now we can prove Q−(y, co) = Q+(y, co) for all y > 0
then V ∈ C(R× [0, ĉ)).

Note that for y ≥ ŷ2(co) one has Q−(y, co) = Q+(y, co) = H(y, co) hence the proof is trivial.
On the other hand for any δ ∈ (0, ŷ2(co)) and y ∈ [δ, ŷ2(co)), there always exists cδ > co such
that (y, c) ∈ (ŷ1(c), ŷ2(c)) for all c ∈ [co, cδ) by (3) of Proposition 3.7 and (3.32). Hence by using
(3.26), (3.34) and Proposition 3.10 one has

Q−(y, co) = Q+(y, co) = Hy(ŷ2(co), co)(y − ŷ2(co)) +H(ŷ2(co), co). (3.39)

By arbitrariness of δ > 0 continuity of Q in (0,∞)× [0, ĉ) follows.

Step 2. We now employ arguments similar to those above to prove that V ∈ C1(R× [0, ĉ)).
Again, from (3.26) and (3.28) it is clear that V ∈ C1(R× [0, ĉ)) if and only if Q ∈ C1((0,∞)×
[0, ĉ)).

First we show that Q is C1 on (0,∞)×[0, co) and on (0,∞)×(co, ĉ) by proving that Q±y = Hy

and Q±c = Hc across ŷi, i = 1, 2 (where we also adopt the convention ŷ1 = 0 on [0, co]). Let us
start by considering c̄ ∈ (co, ĉ), and define the open set Λc̄,h := {(y, c) : y ∈ (ŷ1(c), ŷ2(c)), c ∈
(c̄−h, c̄+h)} with suitable h > 0. Inside Λc̄,h we can take the derivative of Q = Q+ with respect
to c and use Remark 3.8 to obtain

Q+
c (y, c) =

[
Hyc(ŷ1(c), c) +Hyy(ŷ1(c), c)ŷ′1(c)

]
(y − ŷ1(c)) +Hc(ŷ1(c), c). (3.40)

Moreover, Q+
c is uniformly continuous in Λc̄,h and hence can be continuously extended to the

closure of Λc̄,h with Q+
c (ŷ1(c), c) = Hc(ŷ1(c), c). Using the expression of Q in terms of ŷ2
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(cf. (3.26)) we can perform calculations analogous to those that led to (3.40) and show that it
also holds Q+

c (ŷ2(c), c) = Hc(ŷ2(c), c) for c ∈ (c̄ − h, c̄ + h). Similarly we take the derivative of
Q+ with respect to y and find

Q+
y (y, c) = Hy(ŷi(c), c), i = 1, 2. (3.41)

By arbitrariness of c̄ we conclude that Q+ ∈ C1((0,∞)× (co, ĉ)) and the very same arguments
may be used to prove that Q− ∈ C1((0,∞)× (0, co))

Now we aim at proving thatQ is also C1 across c = co. From (3.40), (3.41) (where in (3.40) we
replace ŷ1 by ŷ2 according to (3.34)) and noting that Q = H on [0, ŷ1(c)]∪[ŷ2(c),∞) for c ∈ [0, ĉ)
we conclude that for all y > 0 the limits Q±c (y, co±) and Q±y (y, co±) are well defined, they are
uniform for y in bounded intervals, and the resulting functions Q±c ( · , co±) and Q±y ( · , co±)
are continuous. Then we can extend Q±c and Q±y up to c = co (see also Step 1 above). Such
extensions will be denoted again by Q±c and Q±y . If now we can prove that Q−c (y, co) = Q+

c (y, co)
and Q−y (y, co) = Q+

y (y, co) for y > 0 then that will imply V ∈ C1(R× [0, ĉ)).
For y ≥ ŷ2(co) again Q± = H and the proof is trivial. On the other hand for any δ ∈

(0, ŷ2(co)) and y ∈ [δ, ŷ2(co)), there always exists cδ > co such that (y, c) ∈ (ŷ1(c), ŷ2(c)) for all
c ∈ [co, cδ) by (3) of Proposition 3.7 and (3.32). Hence, from (3.26) and (3.34), for y ∈ [δ, ŷ2(co))
we have

Q+
c (y, c) =

[
Hyc(ŷ2(c), c) +Hyy(ŷ2(c), c)ŷ′2(c)

]
(y − ŷ2(c)) +Hc(ŷ2(c), c) c ∈ [co, cδ) (3.42)

Q−c (y, c) =
[
Hyc(ŷ2(c), c) +Hyy(ŷ2(c), c)ŷ′2(c)

]
(y − ŷ2(c)) +Hc(ŷ2(c), c) c ∈ [0, co] (3.43)

and clearly Qc is continuous across c = co by Proposition 3.10. Similarly we can conclude that
Qy is continuous as well.

Step 3. To prove that Vxx is locally bounded it suffices to show it for Qyy. One has Qyy = Hyy

on S and Qyy = 0 on C since Qy(y, c) = Hy(ŷ2(c), c) for c ∈ [0, ĉ), then the claim follows.

Step 4. The fact that V solves (3.38) is a consequence of its regularity and derives from
standard Markovian arguments which are well known in the optimal stopping theory (see for
example [24], Sec. 7). The last equations in (3.38) provide the so-called smooth-fit condition
and we have verified them in Step 2 above.

As a straightforward consequence of Proposition 3.12 and (3.14) we have

Corollary 3.14. W 1 ∈ C1(R× [0, ĉ)), with W 1
xx ∈ L∞loc(R× (0, ĉ)) and in particular it holds

W 1
c (x, c) = −x and W 1

x (x, c) = ĉ− c+W o
x (x, ĉ) (3.44)

for x ∈ (−∞, γ̂(c)] ∪ [β̂(c),+∞) and c ∈ [0, ĉ).

Since we are trying to argue that W 1 solves (3.2) in R× [0, ĉ) we need a suitable lower bound
for W 1

c . This is provided in the next proposition. Its proof is quite long and technical and it is
given in Appendix A.

Proposition 3.15. One has W 1
c (x; c) ≥ −x for all (x, c) ∈ R× [0, ĉ).

Before concluding this section and providing a verification theorem we want to show that
W 1 and W o fulfill a C1 pasting across c = ĉ.

Proposition 3.16. Let

W (x, c) :=

{
W 1(x, c), for (x, c) ∈ R× [0, ĉ)

W o(x, c), for (x, c) ∈ R× [ĉ, 1],
(3.45)

then W ∈ C1(R× [0, 1]) and Wxx ∈ L∞loc(R× [0, 1]).
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Proof. From (3.14), (3.26) and (3.28), Corollaries 3.11 and 3.14 and by using Remark 3.8 and
(1)− (2) of Proposition 3.7 we observe that for all x ∈ R

W 1(x, ĉ−) := lim
c↑ĉ

W 1(x, c), W 1
c (x, ĉ−) := lim

c↑ĉ
W 1
c (x, c) and W 1

x (x, ĉ−) := lim
c↑ĉ

W 1
x (x, c)

exist and they are uniform with respect to x in bounded subsets of R. It is also easy to see
that W 1

c (· , ĉ−) and W 1
x (· , ĉ−) are continuous and therefore W 1 has a C1 extension to R× [0, ĉ]

which we denote again by W 1.
For x ∈ (−∞, γo] ∪ [β̂(ĉ−),+∞) we have W 1(x, ĉ) = W o(x, ĉ), W 1

c (x, ĉ) = W o
c (x, ĉ) and

W 1
x (x, ĉ) = W o

x (x, ĉ) since V = G, Vc = Gc and Vx = Gx in that set (cf. (3.15), (3.16) and (3.8)).
For x ∈ (γo, β̂(ĉ−)) we have

W 1(x, ĉ) =xΦ(ĉ) + φλ(x)Q(Fλ(x), ĉ−) (3.46)

W 1
c (x, ĉ) =xΦ′(ĉ) + φλ(x)Qc(Fλ(x), ĉ−) (3.47)

W 1
x (x, ĉ) =Φ(ĉ) + φλ(x)

[
Qx(Fλ(x), ĉ−)F ′λ(x)−

√
2λQ(Fλ(x), ĉ−)

]
(3.48)

by (3.14) and Proposition 3.4. To find an explicit expression of (3.46) we study Q(y, ĉ−)
for y ∈ (e−2, ŷ2(ĉ−)) (see (1) of Proposition 3.7). In particular from (3.26), Remark 3.8 and
Proposition 3.7 (noting that ŷ1(c) < e−2 for c < ĉ) we find

Q(y, ĉ−) = Hy(e
−2−, ĉ)(y − e−2) +H(e−2−, ĉ) = − 1√

2λ
R(ĉ)e−1 (3.49)

by (A-1). It then follows W 1(x, ĉ) = W o(x, ĉ) by simple calculations, (3.8) and (3.20).
For (3.47) we consider Qc(y, ĉ−) for y ∈ (e−2, ŷ2(ĉ−)) and arguing as above we obtain

Qc(y, ĉ−) =
[
Hyc(e

−2−, ĉ) +Hyy(e
−2−, ĉ)ŷ′1(ĉ−)

]
(y − e−2) +Hc(e

−2−, ĉ) = 0 (3.50)

by (3.24), (A-1) and (A-2), hence Vc(x, ĉ−) = 0 and W 1
c (x, ĉ) = W o

c (x, ĉ) = −x by recalling that
Φ′(ĉ) = −1 (cf. (2.7)).

To conclude the proof we observe that Qy(y, ĉ−) = Hy(ŷ1(ĉ−), ĉ) = 0 for y ∈ (e−2, ŷ2(ĉ−)),
hence (3.49) and (3.48) give W 1

x (x, c) = W o
x (x, ĉ) = Φ(ĉ) + φλ(x)R(ĉ)e−1.

Remark 3.17. It is not hard to see that the geometry of H(y, ĉ) (cf. (3.24)) is such that
V (x, ĉ) = G(x, ĉ) for all x ∈ R. In other words, according to our definitions (3.17) the con-
tinuation set Cĉ is empty whereas Sĉ = R. This happens despite the upper boundary β̂ has a
strictly positive left limit and may be interpreted in terms of a discontinuity of such boundary,
i.e. β̂(ĉ−) > β̂(ĉ) = γo.

However one should also notice that (LX − λ)V (x, ĉ) = 0 for x > γo so that the region
x > γo is a region of “indifference” since continuing the observation would produce the same
performance as stopping at once (by a standard martingale argument). With this in mind one
may also redefine Cĉ and Sĉ by setting β̂(ĉ) = +∞. Doing so one would still obtain the same
analytical properties of V and τo := inf{t ≥ 0 : Xt ≤ γo} would be an optimal stopping time.

In the next section we will see how these considerations affect the construction of the optimal
control.

4 The verification theorem and the optimal solution

In this section we perform a verification argument which will allow us to conclude that the
candidate value function W of (3.45) we have constructed in previous Section 3 is indeed the
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value function of our problem (2.3). As a byproduct, we also provide the explicit expression of
the optimal control policy for problem (2.3) which is shown to be of bang-bang type triggered
by the boundaries γo of Proposition 3.2 and β̂ and γ̂ of Corollary 3.11.

From now on, by noting thanks to (1) and (2) of Proposition 3.7 and (3.27) that the curve γ̂
is actually the C1-extension in the set c ∈ (co, ĉ] of γo of Proposition 3.2, to simplify exposition,
with a slight abuse of notation, we will simply refer to γo and γ̂ by using uniquely γ̂.

Proposition 4.1. The function W of (3.45) solves the variational problem (3.2). Moreover,
|W (x, c)| ≤ K(1 + |x|) for some K > 0 and W (x, 1) = U(x, 1) = 0.

Proof. Recalling (3.8), (3.14) and (3.45), and collecting the results of Proposition 3.2, Proposi-
tion 3.12, Corollary 3.14, Proposition 3.15 and Proposition 3.16 it easily follows that W as in
(3.45) solves (3.2).

Moreover, (3.45), together with (3.8), (3.13) (see also (3.28) and (3.35)), shows that W has
sub-linear growth. Finally, the fact that W (x, 1) = 0 can be easily seen thanks to (3.45) and
(3.8).

From now on, according to Corollary 3.11 and to the discussion in Remark 3.17, we formally
set γ̂(c) = −∞ on [0, co] and β̂(c) = +∞ on [ĉ, 1].

Let (x, c) ∈ R × [0, 1] be arbitrary but fixed and consider the two dimensional dynamics
(Xx, Cc,ν) for an arbitrary admissible control ν. Define the stopping times

τβ̂ := inf{t ≥ 0 : Xx
t ≥ β̂(Cc,νt )}, τγ̂ := inf{t ≥ 0 : Xx

t ≤ γ̂(Cc,νt )}, (4.1)

and
τ∗ := τβ̂ ∧ τγ̂ , σ∗ := inf{t ≥ τβ̂ : Xx

t ≤ γ̂(Cc,νt )}. (4.2)

Here we notice that such stopping times could be P-a.s. infinite depending on the particular
choice of ν but in general σ∗ ≥ τβ̂ ≥ τ∗ P-a.s. Then, recalling that ĉ is the unique solution in

(0, 1) of (2.7) we introduce the admissible purely discontinuous control

ν∗t := (1− c)1{t> τ∗}1{τ∗= τγ̂} +
[
(ĉ− c)1{t≤σ∗} + (1− ĉ)1{t>σ∗}

]
1{t> τ∗}1{τ∗= τβ̂}. (4.3)

The control ν∗ prescribes to do nothing until the uncontrolled process Xx leaves the interval
(γ̂(c), β̂(c)), where c ∈ [0, 1) is the initial capacity. Then, if τγ̂ < τβ̂ one should immediately

exert all the available fuel after hitting γ̂(c), if instead τγ̂ > τβ̂ one should initially increase the

capacity to ĉ after hitting β̂(c) and then wait until X hits γ̂(ĉ) before exerting all the control
left. We remark that under the strategy ν∗ the stopping time τγ̂ is P-a.s. finite. In Figure 3
below we provide an illustrative diagram of the boundaries and of the behaviour of control ν∗

of (4.3). Optimality of ν∗ for problem (2.3) is proved in the next theorem.

Theorem 4.2. The admissible control ν∗ of (4.3) is optimal for problem (2.3) and W ≡ U .

Proof. The proof is based on a verification argument and, as usual, it splits into two steps.

Step 1. Fix (x, c) ∈ R × [0, 1] and take R > 0. Set τR := inf
{
t ≥ 0 : Xx

t /∈ (−R,R)
}

, take
an admissible control ν, and recall the regularity results for W by Proposition 3.16. Then we
can use Itô’s formula in the weak version of [15], Chapter 8, Section VIII.4, Theorem 4.1, up to
the stopping time τR ∧ T , for some T > 0, to obtain

W (x; c) =E
[
e−λ(τR∧T )W (Xx

τR∧T , C
c,ν
τR∧T )

]
− E

[ ∫ τR∧T

0
e−λs(LX − λ)W (Xx

s , C
c,ν
s )ds

]
− E

[ ∫ τR∧T

0
e−λsWc(X

x
s , C

c,ν
s )dνs

]
− E

[ ∑
0≤s<τR∧T

e−λs
(
W (Xx

s , C
c,ν
s+ )−W (Xx

s , C
c,ν
s )−Wc(X

x
s , C

c,ν
s )∆νs

) ]
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Figure 3: An illustrative diagram of the the free-boundaries and of the optimal control ν∗ of (4.3).

The upper boundary β̂ and the lower boundary γ̂ split the state space into the inaction region (white)

and action region (hatched). When the initial state is (x, c) with c ∈ [0, co) and x < β̂(c) one observes

the following three regimes: in regime (I) the process X diffuses until hitting β̂(c), then the capacity is
increased by ∆ν = ĉ− c pushing horizontally the process (X,C) to the regime (II); there X continues to
diffuse until it hits γo and at that point all the fuel is spent and (X,C) is pushed horizontally to regime
(III) where the optimisation is concluded.

where ∆νs := νs+ − νs and the expectation of the stochastic integral vanishes since Wx is
bounded on (x, c) ∈ [−R,R]× [0, 1].

Now, recalling that any ν ∈ Ac can be decomposed into the sum of its continuous part and of
its pure jump part, i.e. dν = dνcont + ∆ν, one has (see [15], Chapter 8, Section VIII.4, Theorem
4.1 at pp. 301-302)

W (x, c) =E
[
e−λ(τR∧T )W (Xx

τR∧T , C
c,ν
τR∧T )

]
− E

[ ∫ τR∧T

0
e−λs(LX − λ)W (Xx

s , C
c,ν
s )ds

]
− E

[ ∫ τR∧T

0
e−λsWc(X

x
s , C

c,ν
s )dνconts +

∑
0≤s<τR∧T

e−λs
(
W (Xx

s , C
c,ν
s+ )−W (Xx

s , C
c,ν
s )
) ]
.

Since W satisfies the Hamilton-Jacobi-Bellman equation (3.2) (cf. Proposition 4.1) and by notic-
ing that

W (Xx
s , C

c,ν
s+ )−W (Xx

s , C
c,ν
s ) =

∫ ∆νs

0
Wc(X

x
s , C

c,ν
s + u)du, (4.4)

we obtain

W (x, c) ≤E
[
e−λ(τR∧T )W (Xx

τR∧T , C
c,ν
τR∧T )

]
+ E

[ ∫ τR∧T

0
e−λsλXx

s Φ(Cc,νs )ds

]
+ E

[ ∫ τR∧T

0
e−λsXx

s dν
cont
s

]
+ E

[ ∑
0≤s<τR∧T

e−λsXx
s ∆νs

]
(4.5)

=E

[
e−λ(τR∧T )W (Xx

τR∧T , C
c,ν
τR∧T ) +

∫ τR∧T

0
e−λsλXx

s Φ(Cc,νs )ds+

∫ τR∧T

0
e−λsXx

s dνs

]
.

When taking limits as R → ∞ we have τR ∧ T → T , P-a.s. By standard properties of
Brownian motion it is easy to prove that the integral terms in the last expression on the right
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hand side of (4.5) are uniformly bounded in L2(Ω,P), hence uniformly integrable. Moreover, W
has sub-linear growth by Proposition 4.1. Then we also take limits as T ↑ ∞ and it follows that

W (x, c) ≤ E

[ ∫ ∞
0

e−λsλXx
s Φ(Cc,νs )ds+

∫ ∞
0

e−λsXx
s dνs

]
, (4.6)

due to the fact that limT→∞ E[e−λTW (Xx
T , C

c,ν
T )] = 0. Since the latter holds for all admissible

ν we have W (x, c) ≤ U(x; c).

Step 2.
If c = 1 then W (x, 1) = 0 = U(x, 1). Then take c ∈ [0, 1) and define C∗t := Cc,ν

∗

t = c + ν∗t ,
with ν∗ as in (4.3). Applying Itô’s formula again (possibly using localisation arguments as in
Step 1.) up to time τγ̂ (cf. (4.1)) we find

W (x, c) =E

[
e−λτγ̂W (Xx

τγ̂
, C∗τγ̂ )−

∫ τγ̂

0
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds

]
− E

[ ∑
0≤s<τγ̂

e−λs
(
W (Xx

s , C
∗
s+)−W (Xx

s , C
∗
s )
)]
, (4.7)

where we have used that ν∗ does not have a continuous part. We also recall, as already observed,
that τγ̂ < +∞, P-a.s. under the control policy of ν∗.

From (4.2) one has τ∗ ≤ τγ̂ , P-a.s. and therefore we can always write∫ τγ̂

0
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds

=

∫ τ∗

0
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds+

∫ τγ̂

τ∗
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds

=−
∫ τ∗

0
e−λsλXx

s Φ(C∗s )ds+

∫ τγ̂

τ∗
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds (4.8)

where the second inequality follows by recalling that (LX − λ)W (x, c) = −λxΦ(c) for γ̂(c) <
x < β̂(c) and hence it holds in the first integral for s ≤ τ∗. To evaluate the last term of (4.8)
we study separately the events {τ∗ = τβ̂} and {τ∗ = τγ̂}. We start by observing that under the

control strategy ν∗ one has {τ∗ = τβ̂} = {τγ̂ = σ∗} and we get

1{τ∗=τβ̂}

∫ τγ̂

τ∗
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds = −1{τ∗=τβ̂}

∫ τγ̂

τ∗
e−λsλXx

s Φ(C∗s )ds (4.9)

by Proposition 3.2 since (Xx
s , C

∗
s ) = (Xx

s , ĉ) for any τ∗ < s ≤ τγ̂ = σ∗ on {τ∗ = τβ̂}. On the
other hand

1{τ∗=τγ̂}

∫ τγ̂

τ∗
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds = 0 = 1{τ∗=τγ̂}

∫ τγ̂

τ∗
e−λsλXx

s Φ(C∗s )ds. (4.10)

Then it follows from (4.8), (4.9) and (4.10) that∫ τγ̂

0
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds = −

∫ τγ̂

0
λXx

s Φ(C∗s )ds. (4.11)

Moreover Φ(C∗s ) = 0 for any s > τγ̂ because C∗s = 1 for any such s and thus we finally get from
(4.11) ∫ τγ̂

0
e−λs

(
LX − λ

)
W (Xx

s , C
∗
s )ds = −

∫ ∞
0

λXx
s Φ(C∗s )ds. (4.12)
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Note that under the control strategy ν∗ it also holds {τγ̂ < τβ̂} = {τγ̂ < σ∗} and {τγ̂ > τβ̂} =

{τγ̂ = σ∗}, then from (4.3) we have

E
[
e−λτγ̂W (Xx

τγ̂
, C∗τγ̂ )

]
=E
[
1{τγ̂>τβ̂}e

−λτγ̂W (γ̂(ĉ), ĉ)
]

+ E
[
1{τγ̂<τβ̂}e

−λτγ̂W (γ̂(c), c)
]

=E
[
1{τγ̂>τβ̂}e

−λτγ̂ γ̂(ĉ)(1− ĉ)
]

+ E
[
1{τγ̂<τβ̂}e

−λτγ̂ γ̂(c)(1− c)
]

=E

[ ∫ ∞
τγ̂

e−λsXx
s dν

∗
s

]
(4.13)

by using that W (γ̂(c), c) = γ̂(c)(1 − c) for all c ∈ [0, 1) as proved in Section 3 (see also Figure
3).

For the jump part of the control, i.e. for the last term in (4.7), again we argue in a similar
way as above and use that on the event {τ∗ = τγ̂} there is no jump strictly prior to τγ̂ and the
sum in (4.7) is zero, whereas on the event {τ∗ = τβ̂} a single jump occurs prior to τγ̂ , precisely
at τβ̂. This gives

E
[ ∑

0≤s<τγ̂

e−λs
(
W (Xx

s , C
∗
s+)−W (Xx

s , C
∗
s )
)]

=
[
1{τ∗=τγ̂} · 0 + 1{τ∗=τβ̂}e

−λτβ̂Xx
τβ̂

(ĉ− c)
]

= E

[ ∫ τγ̂

0
e−λsXx

s d ν
∗
s

]
. (4.14)

Combining (4.12), (4.13) and (4.14) it follows from (4.7) that

W (x, c) = E

[ ∫ ∞
0

e−λsλXx
s Φ(C∗s )ds+

∫ ∞
0

e−λsXx
s dν

∗
s

]
≥ U(x, c), (4.15)

which together with Step 1. implies W (x, c) = U(x, c), (x, c) ∈ R × [0, 1] and ν∗ of (4.3) is
optimal.

Remark 4.3. Recalling Remark 3.17 we note here that for c = ĉ the optimal control of (4.3)
prescribes to do nothing as long as X stays above γo; however, from (3.8) we see that W o

c (x, ĉ) =
−x for all x ∈ R and therefore there seems to be a contradiction with our definition of action
and inaction regions (3.3). The point here is that although (x, ĉ) ∈ DW for all x ∈ R, one
also has (LX − λ)W (x, ĉ) = −λΦ(ĉ)x for x > γo and therefore, as long as X stays above
γo, an inaction strategy does not increase the overall costs. A general principle of “minimality”
stands in stochastic control, that is one should only use the minimal effort to achieve the optimal
performance. In our case this translates into acting only in the region of the state space where
(LX − λ)W (x, ĉ) > −λΦ(ĉ)x so that we can effectively redefine action and inaction region
accordingly.

A Some proofs needed in Section 3

Proof of Lemma 3.5

Recall that R(c) − R(ĉ) < 0 since c ∈ (co, ĉ). One has limy↓0H(y, c) = 0, hence H( · , c) is
continuous on [0,∞) with limy↑∞H(y, c) = −∞. On the other hand, simple algebra leads to

Hy(y, c) =
1

2
√

2λ
y−

1
2 (1 +

1

2
ln y)×

{
R(c), 0 < y ≤ e−2

R(c)−R(ĉ), y > e−2,
(A-1)
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hence H( · , c) ∈ C1(0,∞), it is decreasing with limy↓0Hy(y, c) = −∞ and limy↑∞Hy(y, c) = 0.
Taking the derivative of (A-1) with respect to y we obtain

Hyy(y; c) = − y−
3
2

8
√

2λ
ln(y)×

{
R(c), 0 < y ≤ e−2

R(c)−R(ĉ), y > e−2.
(A-2)

Therefore Hyy( · c) is continuous on (0,∞) \ {e−2}, it is positive in the interval (0, e−2)∪ (1,∞)
and negative elsewhere.

Proof of Proposition 3.6

Fix c ∈ (co, ĉ), for y > 1 denote by ry( · ) the straight line tangent to H(y, c), i.e.

ry(z) = Hy(y, c)(z − y) +H(y, c), z > 0 (A-3)

and define

ŷ2 := ŷ2(c) = inf{y > 1 : Pr(y, c) < 0}, (A-4)

where Pr(y, c) := supz∈[0,e−2]

(
ry(z)−H(z, c)

)
for y > 1. Clearly the set to the right of (A-4) is

not empty by properties of H listed in Lemma 3.5 and we claim that ŷ2 > 1 (this will be proved
later). The map y 7→ Pr(y, c) is continuous and decreasing on (1,∞) and hence Pr(ŷ2, c) = 0
and ŷ2 is unique. Since z 7→ rŷ2(z) −H(z, c) is concave on [0, e−2] (cf. Lemma 3.5) then there
exists a unique z∗ = z∗(ŷ2) such that rŷ2(z∗) −H(z∗, c) = 0 and ŷ1 = z∗. It thus follows that,
by construction, (ŷ1, ŷ2) uniquely solves system (3.25) and to complete the proof we only need
to show that ŷ2 > 1.

We argue by contradiction and assume that ŷ2 = 1. Then rŷ2(z) = r1(z) = Hy(1, c)(z− 1) +
H(1, c) and by the explicit formulae in the proof of Lemma 3.5 we find

r1(e−2)−H(e−2, c) = 1√
2λ

(R(c)−R(ĉ))
(

1
2e
−2 + e−1 − 1

2

)
> 0

which contradicts the definition of ŷ2 given the continuity of Pr( · , c). Note that ŷ1 must be
strictly positive since any straight line passing through the origin cannot be tangent to H as
limz↓0Hy(z, c) = −∞ for all c ∈ (co, ĉ). Similarly ŷ1(c) < e−2 since the tangent line to H is
horizontal for y = e−2.

Proof of Proposition 3.7

We rewrite (3.25) as

F1(ŷ1(c), ŷ2(c); c) = 0 and F2(ŷ1(c), ŷ2(c); c) = 0, (A-5)

with the two functions Fi : (0,∞)× (0,∞)× [0, 1], i = 1, 2, defined by

F1(x, y; c) := x−
1
2 (1 + 1

2 lnx)R(c)− y−
1
2 (1 + 1

2 ln y)(R(c)−R(ĉ)), (A-6)

F2(x, y; c) := x
1
2 (1− 1

2 lnx)R(c)− y
1
2 (1− 1

2 ln y)(R(c)−R(ĉ))− 2e−1R(ĉ). (A-7)

We formally take total derivatives with respect to c in both equations in (A-5) to find{
ŷ′1(c)∂F1

∂x (ŷ1(c), ŷ2(c); c) + ŷ′2(c)∂F1
∂y (ŷ1(c), ŷ2(c); c) = −∂F1

∂c (ŷ1(c), ŷ2(c); c),

ŷ′1(c)∂F2
∂x (ŷ1(c), ŷ2(c); c) + ŷ′2(c)∂F2

∂y (ŷ1(c), ŷ2(c); c) = −∂F2
∂c (ŷ1(c), ŷ2(c); c),

(A-8)
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which takes the form of 2× 2 system in the unknowns (ŷ′1(c), ŷ′2(c)). Defining
Do(x, y; c) :=

[
∂F1
∂x

∂F2
∂y −

∂F1
∂y

∂F2
∂x

]
(x, y; c),

D1(x, y; c) :=
[
− ∂F1

∂c
∂F2
∂y + ∂F2

∂c
∂F1
∂y

]
(x, y; c),

D2(x, y; c) :=
[
− ∂F1

∂x
∂F2
∂c + ∂F1

∂c
∂F2
∂x

]
(x, y; c),

(A-9)

and applying Cramer’s method it is easy to see that the unique solution of (A-8) is given by

ŷ′1(c) =
D1(ŷ1(c), ŷ2(c); c)

Do(ŷ1(c), ŷ2(c); c)
and ŷ′2(c) =

D2(ŷ1(c), ŷ2(c); c)

Do(ŷ1(c), ŷ2(c); c)
. (A-10)

Now, if for a given c̄ ∈ (co, ĉ) one has Do(ŷ1(c̄), ŷ2(c̄); c̄) 6= 0 then the implicit function theorem
allows us to make the above derivation rigorous in a suitable interval Ih := (c̄ − h, c̄ + h) for
some h > 0, so that ŷ1 and ŷ2 are C1 in Ih. As it will be shown below Do(ŷ1(c), ŷ2(c); c) 6= 0 for
all c ∈ (co, ĉ) hence ŷ1 and ŷ2 are C1 as claimed.

Simple but tedious algebra gives
Do(x, y; c) = 1

16

[
R(c)−R(ĉ)

]
R(c) 1√

xy

(
1
y −

1
x

)
lnx ln y,

D1(x, y; c) = 1
4R
′(c)
[
R(c)−R(ĉ)

]
y−1
[√

x
y (1− 1

2 lnx) + ln y −
√

y
x(1 + 1

2 lnx)
]

ln y,

D2(x, y; c) = −1
4x
− 3

2R(c)R′(c)
[
x

1
2 lnx− xy−

1
2 (1 + 1

2 ln y) + y
1
2 (1− 1

2 ln y)
]

lnx.

(A-11)

Since ŷ2(c) > 1, ŷ1(c) < e−2 and R(c) < R(ĉ) we obtain that Do(ŷ1(c), ŷ2(c); c) < 0 and hence
implicit function theorem applies. Moreover one has D1(ŷ1(c), ŷ2(c); c) < 0, hence from the first
of (A-10) we get c 7→ ŷ1(c) increasing.

In order to prove that ŷ′2(c) < 0 it remains to show that D2(ŷ1(c), ŷ2(c); c) > 0 in (A-10).
Notice that since 0 < ŷ1(c) < e−2, R(c) > 0 and R′(c) < 0, the sign of D2(ŷ1(c), ŷ2(c); c) is the
same as the one of D̂2(ŷ1(c), ŷ2(c); c) where

D̂2(x, y; c) := x
1
2 lnx− xy−

1
2 (1 +

1

2
ln y) + y

1
2 (1− 1

2
ln y). (A-12)

Recalling now (A-5), (A-6) and (A-7), we obtain

ŷ
1
2
2 (c)

(
1− 1

2
ln ŷ2(c)

)
=

R(c)

R(c)−R(ĉ)
ŷ

1
2
1 (c)

(
1− 1

2
ln ŷ1(c)

)
− 2e−1

R(c)−R(ĉ)
R(ĉ),

and

ŷ
− 1

2
2 (c)

(
1 +

1

2
ln ŷ2(c)

)
=

R(c)

R(c)−R(ĉ)
ŷ
− 1

2
1 (c)

(
1 +

1

2
ln ŷ1(c)

)
,

which plugged into (A-12) give

D̂2(ŷ1(c), ŷ2(c); c) = − R(ĉ)

(R(c)−R(ĉ)
(
√
ŷ1(c) ln ŷ1(c) + 2e−1) =: − R(ĉ)

(R(c)−R(ĉ)
q(ŷ1(c)).

It is now easy to see that x 7→ q(x) is strictly decreasing on (0, e−2) and such that q(e−2) = 0 and
limx↓0 q(x) = 2e−1 > 0. Hence q(ŷ1(c)) > 0 as ŷ1(c) ∈ (0, e−2) and therefore D̂2(ŷ1(c), ŷ2(c); c) >
0, implyingD2(ŷ1(c), ŷ2(c); c) > 0. It thus follows from (A-10) and the fact thatDo(ŷ1(c), ŷ2(c); c) <
0 that ŷ

′
2(c) < 0; i.e. c 7→ ŷ2(c) decreasing.

To complete the proof we need to show properties (1)− (4) and for that we observe that due
to monotonicity of ŷi(·), i = 1, 2, on (co, ĉ) there exist limits at any point of such interval.
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(1) Taking limits as c ↑ ĉ in the second of (A-5), using (A-7) and defining ŷ1(ĉ−) := limc↑ĉ ŷ1(c)
we get

ŷ
1
2
1 (ĉ−)

(
1− 1

2
ln ŷ1(ĉ−)

)
= 2e−1,

which is uniquely solved by ŷ1(ĉ−) = e−2.

(2) We take limits as c ↑ ĉ in the first of (A-10) and note that limc↑ĉD1(y1(c), y2(c); c) = 0 by
(A-11).

(3) We argue by contradiction and assume that limc↓co ŷ1(c) = y1 > 0. Then taking limits as
c ↓ co in the first of (A-5) and recalling that R(co) = 0 we find

R(ĉ)
√
ŷ2(co+)

[
1 +

1

2
ln ŷ2(co+)

]
= 0,

which is clearly impossible since ŷ2(co+) ≥ 1 due to the fact that ŷ2(c) > 1 for any
c ∈ (co, ĉ).

(4) From the second of (A-5) and (A-7) one finds

√
ŷ2(c)

[
1− 1

2
ln ŷ2(c)

]
=

2e−1R(ĉ)−R(c)
√
ŷ1(c)

[
1− 1

2 ln ŷ1(c)
]

R(ĉ)−R(c)
≥ 2e−1 > 0 (A-13)

where the first lower bound follows by the fact that x 7→
√
x[1− 1

2 ln(x)] is strictly increasing
and positive on [0, e−2], with maximum value 2e−1. Since also ŷ2(c) > 0, from (A-13) we
conclude that

[
1− 1

2 ln ŷ2(c)
]
> 0, thus implying ŷ2(c) < e2.

Proof of Proposition 3.10

The proof is carried out in three steps.

Step 1. It is easy to see that the function f(y) :=
√
y(1 − 1

2 ln(y)), y > 0, is such that
f(1) = 1, f(e2) = 0 and it is strictly decreasing on (1, e2). Since the absolute value of the second
term of (3.31) is smaller than one, then there exists a unique y∗2(c) ∈ (1, e2) solving (3.30).
Moreover since

∂F3

∂y
(y, c) = −1

4y
− 1

2 ln y < 0 for (y, c) ∈ (1, e2)× [0, co) (A-14)

we can use the implicit function theorem to conclude that

(y∗2)′(c) = −
(∂F3

∂y

/∂F3

∂c

)
(y, c) = − 8e−1R(ĉ)R′(c)(

R(ĉ)−R(c)
)2 y 1

2

ln y
< 0 on [0, co) (A-15)

and (y∗2)′ ∈ C([0, co)).

Step 2. Taking limits for c ↑ co in the equation F3(y∗2(c); c) = 0 one finds

0 = lim
c↑co

F3(y∗2(c); c) = F3(y∗2(co−); co), (A-16)

where y∗2(co−) := limc↑co y
∗
2(c) clearly exists by monotonicity; that is√

y∗2(co−)
(
1− 1

2 ln y∗2(co−)
)

= 2e−1. (A-17)
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We now take limits as c ↓ co in (A-7) and use (3.) of Proposition 3.7 to conclude that√
ŷ2(co+)

(
1− 1

2 ln ŷ2(co+)
)

= 2e−1, (A-18)

where ŷ2(co+) := limc↓co ŷ2(c) exists by monotonicity of ŷ2 (cf. Proposition 3.7). Hence from
(A-17), (A-18) and uniqueness of the solution to F3(y; co) = 0 we obtain (3.32). From now on
we simply set y∗2(co−) = ŷ2(co+) = ŷ2(co).

Step 3. To prove (3.33) requires a bit more work. Taking limits as c ↑ co in (A-15) and using
(3.32) we obtain

(y∗2)′(co−) = −
8e−1R′(co)

√
ŷ2(co)

R(ĉ) ln ŷ2(co)
. (A-19)

We now turn to study the limit of ŷ
′
2(c) when c ↓ co. Recall (A-10) and Do and D2 as in

(A-11). We have ŷ1(c) ↓ 0 and R(c) ↓ 0 for c ↓ co, however from point (3) in the proof of
Proposition 3.7 and by taking limits in the first equation of (A-5), it turns out that it must be

lim
c↓co

R(c)ŷ
− 1

2
1 (c) ln ŷ1(c) = −` for some ` > 0. (A-20)

Therefore as c approaches co from above we have the following asymptotic behaviours

Do(ŷ1(c), ŷ2(c); c) ≈ 1

16
R(ĉ)R(c)ŷ

− 1
2

2 (c) ln ŷ2(c)ŷ
− 3

2
1 (c) ln ŷ1(c),

and

D2(ŷ1(c), ŷ2(c); c) ≈ −1
4R
′(c)R(c)ŷ

1
2
2 (c)

(
1− 1

2 ln ŷ2(c)
)
ŷ
− 3

2
1 (c) ln ŷ1(c)

so that

D2(ŷ1(c), ŷ2(c); c)

Do(ŷ1(c), ŷ2(c); c)
≈ −4

R′(c)

R(ĉ)

 ŷ
1
2
2 (c)

(
1− 1

2 ln ŷ2(c)
)

ŷ
− 1

2
2 (c) ln ŷ2(c)

 . (A-21)

Hence, taking limits as c ↓ co in the second equation of (A-10), using (A-21) and recalling (A-18)
(A-19) we obtain (3.33).

Proof of Proposition 3.15

Recalling (3.14), (3.15), (3.16) and Proposition 3.12 we see that it suffices to show that
Vc(x, c) ≥ Gc(x, c) for any x ∈ (γ̂(c), β̂(c)) and c ∈ [0, ĉ), i.e. inside the continuation set C (see
(3.36)). The proof is performed in two steps.

Step 1. Fix c ∈ [0, co] and recall that (cf. Section 3.3.2 and (3.17)) for any such c the
continuation set is of the form Cc = (−∞, β̂(c)). Define u := Vc − Gc, then it is not hard to
see by (3.16), Proposition 3.12 and (3.38) that u ∈ C(R × [0, co]) and it is the unique classical
solution of

(LX − λ)u(x, c) = −λx(1 + Φ′(c)), for x < β̂(c) with u(β̂(c), c) = 0. (A-22)

Therefore, setting τβ := inf{t ≥ 0 : Xx
t ≥ β̂(c)} and using the Feynmann-Kac representation

formula (possibly up to a standard localisation argument), we get

u(x, c)=E

[
e−λτβu(Xx

τβ
, c) + λ(1 + Φ′(c))

∫ τβ

0
e−λtXx

t dt

]
=(1 + Φ′(c))E

[∫ τβ

0
λe−λtXx

t dt

]
, (A-23)

where we have used that u(Xx
τβ
, c) = 0 P-a.s. since τβ <∞ P-a.s. by the recurrence property of

Brownian motion. Recalling that Xx
t = x+Bt (cf. (2.1)) we can write

x = E

[ ∫ ∞
0

λe−λtXx
t dt

]
(A-24)
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and then by strong Markov property and standard formulae for the Laplace transform of τβ it
easily follows from (A-23)

u(x, c) = (1 + Φ′(c))
(
x− E

[
e−λτβXx

τβ

])
= (1 + Φ′(c))

[
x− β̂(c)

ψλ(x)

ψλ(β̂(c))

]
. (A-25)

Since (1 + Φ′(c)) ≤ 0 for c ∈ [0, co], we have u(x, c) = Vc(x, c)−Gc(x, c) ≥ 0 if and only if

θ(x, c) := x− β̂(c)
ψλ(x)

ψλ(β̂(c))
≤ 0 for x < β̂(c). (A-26)

From Proposition 3.6 we obtain 1 < ŷ2(c) < e2 and hence 0 < β̂(c) < 1/
√

2λ. Therefore, also

recalling that ψλ(x) = e
√

2λx, one has for any x < β̂(c)

θx(x, c) = 1− β̂(c)
√

2λe
√

2λ(x−β̂(c)) ≥ 1− β̂(c)
√

2λ ≥ 0.

We can now conclude that (A-26) is fulfilled by noting that θ(β̂(c), c) = 0, hence u ≥ 0 in
(−∞, β̂(c))× [0, co].

Step 2. Fix now c ∈ (co, ĉ), take x ∈ (γ̂(c), β̂(c)) and denote again u := Vc −Gc. As in Step
1 it is not hard to see that

(LX − λ)u(x, c) = −λx(1 + Φ′(c)) for x ∈ (γ̂(c), β̂(c)) and u(γ̂(c), c) = u(β̂(c), c) = 0. (A-27)

Set τγ,β := τγ ∧ τβ with τβ as in Step 1 above and τγ := inf{t ≥ 0 : Xx
t ≤ γ̂(c)}. Then u is

continuous and it admits the Feynmann-Kac representation

u(x, c)=(1 + Φ′(c))E

[ ∫ τγ,β

0
λe−λtXx

t dt

]
(A-28)

where we have used that u(Xx
τγ,β

, c) = 0 P-a.s. due to (A-27) and to the fact that τγ,β <∞ P-a.s.

by the recurrence property of Brownian motion. Since (1 + Φ′(c)) < 0 on [co, ĉ) then u(x, c) ≥ 0
on (γ̂(c), β̂(c)) (i.e. Vc ≥ Gc) if and only if E[

∫ τγ,β
0 λe−λtXx

t dt] ≤ 0 for x ∈ (γ̂(c), β̂(c)). Thanks
to (A-24), strong Markov property and Green’s formula (cf. also [7], eq. (4.3))

E

[ ∫ τγ,β

0
λe−λtXx

t dt

]
= x− E

[
e−λτγ,βXx

τγ,β

]
= x−

{
γ̂(c)E

[
e−λτγ1{τγ<τβ}

]
+ β̂(c)E

[
e−λτβ1{τβ<τγ}

]}
= x−

{
γ̂(c)

sinh
(√

2λ(β̂(c)− x)
)

sinh
(√

2λ(β̂(c)− γ̂(c))
) + β̂(c)

sinh
(√

2λ(x− γ̂(c))
)

sinh
(√

2λ(β̂(c)− γ̂(c))
)}

=
1

sinh
(√

2λ(β̂(c)− γ̂(c))
)Θ(x, c; β̂(c), γ̂(c)), (A-29)

where we define

Θ(x, c; γ̂(c), β̂(c)) (A-30)

:=
[
x sinh

(√
2λ(β̂(c)− γ̂(c))

)
− γ̂(c) sinh

(√
2λ(β̂(c)− x)

)
− β̂(c) sinh

(√
2λ(x− γ̂(c))

)]
.

To simplify notation we set ϑ(x, c) := Θ(x, c; γ̂(c), β̂(c)). The right-hand side of (A-29) is
negative for any x ∈ (γ̂(c), β̂(c)) if and only if ϑ(x, c) ≤ 0 therein. To study the sign of ϑ we
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first note that ϑ(γ̂(c), c) = 0 = ϑ(β̂(c), c) and

ϑx(x, c) = sinh
(√

2λ(β̂ − γ̂)(c)
)

+
√

2λ
[
γ̂(c) cosh

(√
2λ(β̂(c)− x)

)
− β̂(c) cosh

(√
2λ(x− γ̂(c))

)]
ϑxx(x, c) = −2λγ̂(c) sinh

(√
2λ(β̂(c)− x)

)
− 2λβ̂(c) sinh

(√
2λ(x− γ̂(c))

)
ϑxxx(x, c) = 2λ

√
2λ
[
γ̂(c) cosh

(√
2λ(β̂(c)− x)

)
− β̂(c) cosh

(√
2λ(x− γ̂(c))

)]
.

(A-31)

From (A-31) it is easy to see that i) ϑx(γ̂(c), c) < 0, since γ̂(c) ≤ −1/
√

2λ, ii) ϑxx(γ̂(c), c) > 0,
ϑxx(β̂(c), c) < 0 and iii) ϑxxx(x, c) < 0. Hence x 7→ ϑxx(x, c) is strictly decreasing and there
exists a unique point x∗ := x∗(c) such that ϑxx(x∗, c) = 0. Clearly x∗ is a maximum of x 7→
ϑx(x, c) in (γ̂(c), β̂(c)). We claim now and we will prove it later that ϑx(β̂(c), c) > 0. Then
ϑx(x, c) > 0 for x ∈ (x∗, β̂(c)). Moreover since ϑx(γ̂(c), c) < 0, then there exists a unique
point x′∗ := x′∗(c) < x∗ such that ϑx(x′∗, c) = 0. Such x′∗ is the unique stationary point of
ϑ( · , c) in (γ̂(c), β̂(c)) and it is a negative minimum due to the fact that ϑxx(x, c) > 0 for any
x < x∗. Therefore, recalling also ϑ(γ̂(c), c) = 0 = ϑ(β̂(c), c), we conclude that ϑ(x, c) < 0 for
any x ∈ (γ̂(c), β̂(c)). From (A-28) and (A-29) we thus get u(x, c) ≥ 0 for any x ∈ (γ̂(c), β̂(c)).

To complete the proof it remains to show that ϑx(β̂(c), c) > 0. For that it is convenient to
rewrite the first of (A-31) in terms of ŷ1(c) and ŷ2(c) (cf. (3.27)) so to have

ϑx(β̂(c), c) = Θx(F−1
λ (ŷ2(c)), c;F−1

λ (ŷ1(c)), F−1
λ (ŷ2(c)))

= ŷ
1
2
2 (c)ŷ

− 1
2

1 (c)
(
1− 1

2 ln ŷ2(c)
)
− ŷ−

1
2

2 (c)ŷ
1
2
1 (c)

(
1 + 1

2 ln ŷ2(c)
)
. (A-32)

From system (3.25) (see also (A-5), (A-6) and (A-7)) we obtain
ŷ

1
2
2 (c)

(
1− 1

2 ln ŷ2(c)
)

=
−2e−1R(ĉ) +R(c)ŷ

1
2
1 (c)

(
1− 1

2 ln ŷ1(c)
)

R(c)−R(ĉ)

ŷ
− 1

2
2 (c)

(
1 + 1

2 ln ŷ2(c)
)

=
R(c)

R(c)−R(ĉ)
ŷ
− 1

2
1 (c)

(
1 + 1

2 ln ŷ1(c)
)
,

(A-33)

which plugged into (A-32) give

2ϑx(β̂(c), c) = 2Θx(F−1
λ (ŷ2(c)), c;F−1

λ (ŷ1(c)), F−1
λ (ŷ2(c)))

=
ŷ
− 1

2
1 (c)

R(ĉ)−R(c)

[
2e−1R(ĉ) +R(c)

√
ŷ1(c) ln ŷ1(c)

]
. (A-34)

Recalling now that 0 < ŷ1(c) < e−2, R(ĉ) > R(c) > 0 and noting that the function
√
x ln(x) is

nonnegative on [0, e−2], we conclude by (A-34) that ϑx(β̂(c), c) > 0 for all c ∈ (co, ĉ) as claimed.

References

[1] Alvarez, L.H.R. (1999). A Class of Solvable Singular Stochastic Control Problems, Stoch.
Stoch. Rep. 67, pp. 83–122.

[2] Alvarez, L.H.R. (1999). Singular Stochastic Control, Linear Diffusions, and Optimal
Stopping: a Class of Solvable Problems, SIAM J. Control Optim. 39(6), pp. 1697–1710.

[3] Bank, P. (2005). Optimal Control under a Dynamic Fuel Constraint, SIAM J. Control
Optim. 44, pp. 1529–1541.



A solvable singular control problem with non convex costs 26
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