Providing Intelligent Assistance for Product Configuration

in Manufacturing: A Learning-To-Rank Approach

Carsten Poggemeier!, Matthias Hartung?, and Philipp Cimiano?

'HARTING IT Services GmbH & Co. KG, Espelkamp, Germany,
Carsten.Poggemeier@HARTING. com
2CITEC, Bielefeld University, Germany, {mhartung,cimiano}@cit-ec.uni-bielefeld.de

Abstract

Configuring complex products can be a challenge due
to the huge number of configuration possibilities. In
this paper, our goal is to foster the development of
intelligent configuration assistants that can support
customers in configuring complex products. We for-
malize the task as a machine learning problem and in
particular as a learning-to-rank problem. Given pair-
wise preferences elicited from experts, we show that
we can train a model using support vector machines
that ranks possible products according to their rel-
evance to a given set of requirements specified by a
user.

1 Introduction

Many industries produce complex products that con-
sist of different sub-components and can be config-
ured or assembled in many different ways to meet the
needs of a specific customer or application. This is
the case for the domain of manufacturing or engineer-
ing where products can be quite complex and display
many configuration possibilities. Selecting the right
product from all the possible configurations can be a
significant challenge.

In this paper we are concerned with developing in-
telligent assistants in order to support the search for
components or products that meet a certain set of
requirements. We follow Hedin et al. [1] and define
a product configurator as “a tool which supports the
product configuration process so that all the design
and configuration rules which are expressed in a prod-
uct configuration model are guaranteed to be satis-
fied.”

Instead of specifying the configuration rules by
hand, we propose a machine learning approach that
learns to score different configurations or products
with respect to a set of requirements specified by a
user. Our larger goal is to develop intelligent assis-

tants that can engage with users in a dialogue and
incrementally elicit their requirements, such that the
set of possible configurations meeting these require-
ments is stepwise reduced.

We frame the task of supporting the search for
products as a ranking problem in which a set of prod-
ucts or possible configurations needs to be ordered
according to how well they match a set of user re-
quirements. This approach is similar in spirit to re-
search in the field of information retrieval and rec-
ommender systems. We assume user requirements to
be specified in terms of certain values vy, ..,v, cor-
responding to a set of attributes Aq,..., A,. These
attribute-value pairs (A; = vy,..., A, = v,) can be
seen as a set of constraints that any solution needs to
fulfill. However, given these requirements, two cases
are thinkable:

e There is no product that meets all constraints at
the same time, i.e., the constraints are not fully
satisfiable.

e Given a set of requirements, there are still too
many possible products and/or configurations
that meet these requirements, i.e., the given re-
quirements underspecify the product.

Our goal is to always present a ranked list of prod-
ucts and /or product configurations to a user. Using a
machine learning approach overcomes both problems
mentioned above in the sense that a learned approach
will induce weights from training data that quantify
how severe it is to violate a certain user requirement.
In the case that the given set of requirements under-
specifies a product, a machine learning approach can
include other features or product characteristics in
the form of priors to come up with a suitable ranking
of products.

Using a machine learning approach and in partic-
ular a learning to rank approach has a number of
advantages:

1. Arbitrary features can be flexibly incorporated
into the model, without the need to write rules by
hand. Priors can be incorporated as well in order
to model that certain products are in stock, for
instance, that certain products are more popular
than others, or that the company has a certain
priority to sell particular products.

2. Functions can be learned for specific application
domains or even for specific customers, e.g., by
interpolating the scores of different scoring func-
tions.

3. Functions can be retrained continuously on the
basis of information about which products cus-
tomers actually bought.

In order to provide a proof-of-concept for our ap-
proach, we consider the domain of industrial connec-
tors as products to be configured. Industrial connec-
tors consist of an insert with a number of contacts
and a housing that contains the insert and that is
embedded into some appliance. Relevant parameters
for the insert are number of contacts, amperage and
voltage, among others. Relevant parameters for the
housing are material, lever type and degree of protec-
tion, inter alia (see section 3.1).

As our main contribution in this paper, we present
a learning-to-rank approach for complex technical
products. We present results using different machine
learning approaches as well as the methodology that
has been followed in order to elicit training data from
experts.

The paper is structured as follows: In the next sec-
tion, we describe the problem more formally as well as
the proposed formulation as a learning-to-rank prob-
lem. We further describe the features used and the
methodology for acquiring training data. In Section
3, we describe our experimental settings and results.
Before concluding, we discuss related work.

2 Ranking SVM Approach to
Product Configuration

2.1 Problem Statement

Our problem can be formalized as follows: Given a
set of product configurations P and a set of attributes
A ={Ay,..., A} describing these products, our goal
is to induce a function f that scores products in P
according to the degree to which they satisfy the
specific requirements of a user given as an n-tuple
(a1,a2,...;an) € A7U{L}x Ao U{L} x...x A, U{L}.

Here, L is used to denote that the user has not
specified any preference with respect to the corre-
sponding attribute. In the following we show how
this problem can be formulated as a learning-to-rank
problem.

2.2 Formulation as a learning-to-rank
problem

Following Joachims [2], we formalize the task as a
ranking problem. We define a user requirement as a
tuple r = (a1, a2, ...,an) € AJU{L} x AoU{L} x...x
Ap U{Ll}, and a pairwise (preference) ranking >, of
products in P such that p; >, p; if p; matches the
requirements specified in r better than p;. Then, our
goal is to induce a ranking function f such that:

VTV(i,j)GPZ f(pi,T)Zf(Pjar)@Pi erj

We approach this problem using the framework of
Ranking SVM provided by Joachims [2]. The func-
tion f is assumed a linear model parametrized by a
weight vector w that assigns a weight to all features:

fpi,r) = @" O(p;,r)
where O(p;,) is a feature vector that describes the

match between p; and 7.
Given R = {(i,j) s.t. p; >, p;}, the model solves

. 1 T
mm(ﬁ,f) - §wﬁ " C(igeR&’j
s.t. Y(i,j) € R: (WTO(pi,) > (WTO(p;, 7)) + 1(_)51'71'
1

with C > 0 and W as parameter vector. & ; is the
loss term, with & ; > 0.

2.3 Feature Extraction

In this section we describe the different types of fea-
tures we use in our model. The features in principle
describe the degree of match between a product p € P
and a given user requirement 7.

We distinguish between i) prior features, and ii)
requirement-specific features. Intuitively, the prior
features capture some aspect of a product indepen-
dently of a user requirement. This captures the gen-
eral a priori likelihood that some customer will be sat-
isfied with a given product, no matter what his/her
particular need is. The second type of features cap-
tures the degree of relevance of a product with respect
to the particular requirements of a user. We describe
these types of features in more detail in the following:

2.3.1 Prior features

Prior features capture the likelihood that a given cus-
tomer will like product p € P, given some intrinsic
characteristic of the product that is independent of
the given requirement.

A certain subset of these features is binary and spe-
cific for some product attribute A. The binary fea-
tures BF(p) can be formalized as follows:

1 if p has value v for attribute A @)

0 otherwise

BFi(p) = {

2.3.2 Requirement-specific features

Requirement-specific features describe the degree of
match between some product p and a given customer
requirement 7. We denote with r[A] the value of at-
tribute A as specified by a customer in his/her re-
quirement r. We denote with p[A] the value of at-
tribute A for product p. Requirement-specific fea-
tures capture the agreement or disagreement between
the values r[A] and p[A4] as follows:

RSZ/UI _ {1 if r[A] = v and p[4] = v 3)

0 otherwise

For the special case of numeric attributes N C A,

we define continuous requirement features RS;JV/ v as
follows:)
RS = A(v,0) (4)

Here, A(v,v') is the distance between v and v’ in
some metric space. We use the signed L, distance:
Aq(v,v") =v —0'. As an example for a requirement-
specific feature, we address the material of the hous-
ing. In our dataset, the material can have the follow-
ing values:

1. metal
2. polyamide
3. high-grade steel

For example, if a user has indicated that she wants
a metallic housing and the corresponding housing is
metallic, then the feature RS™etal/metal wil] have
the value 1 while all other features RS™¢**!/? with
i # metal will be 0. This models the case that the
material of a housing matches perfectly the require-
ment of a user.

In contrast, if a user has indicated a preference
for a metallic housing but the housing is made of
polyamide, then the feature RS™etal/polyamide]|

Table 1: Number of features for our products in rela-
tion to the different feature groups.

Insert Housing

Binary Features 12 17
Prior Features 12 24
Requirement-specific Features 18 93
RSy Features 4 0
Total 42 134

have a value of 1 and all the other features RS™¢tal/t
with i # polyamide will have a value of 0.

In this way, the machine learning approach can in-
duce how severe the violation of a certain constraint
is and allow solutions which would not be possible
if all constraints had to be met. Table 1 presents
an overview of the features that are used in order to
represent inserts and housings.

2.4 Acquiring Training Data

In this section we explain how training data is elicited
from domain experts who are product managers or
salesforce personnel in the domain of industrial con-
nectors. The procedure followed to acquire training
data was as follows:

1. We interviewed 12 domain experts asking them
to provide a specification of test cases including
requirements that a user might have. This re-
sulted in a set of 40 development cases D.

2. We asked a different set of domain experts to
propose a best matching product configuration
for a specific development case d € D.

3. Then we asked a different set of domain experts
to propose alternative matching products and as-
sign a score to each product configuration along
a scale ranging from 5 (best match) to 1 (lowest
match).

Overall, using this methodology we acquired 783
ratings for inserts and 1849 for housings.

3 Experiments

3.1 Industrial Connectors: Back-

ground and Dataset

For the experiments reported in this paper, we rely
on a dataset of industrial connectors. In mechanical

engineering, traffic engineering, automation technol-
ogy or in the energy sector, for instance, industrial
connectors are needed to transmit data, electricity or
compressed air. One connector consists mainly of two
inserts and two housings, each of which can be con-
figured according to various individual attributes and
rules of their combination. These will be described
in the following. For this study, we do not consider
additional material for connectors such as screws or
cables.

Insert configurations An insert supplies the basis
for the connector. The insert can transmit electricity
or data or compressed air by a number of contacts.
An insert can be specified by the following attributes:

e Number of contacts

e Voltage and amperage, if the inserts deals with
electricity

e Termination technology
e Gender and size

In order to yield a viable configuration, inserts to be
combined must be of the same size, number of con-
tacts, voltage and amperage. Another rule is that
inserts to be combined must be of opposite gender.

Housing configurations Housings are described
by:

e Material

e Lever type

e Number of cable entries and their size
e Type and size

e Degree of protection

A housing configuration needs two housings which
have the same material, lever type, degree of protec-
tion and size. In our dataset we have four different
types of housings: One type is a top housing and
three types are for the bottom part. Every housing
configuration requires a combination of one top and
one bottom part.

Combining inserts and housings into connec-
tors In order to build an operable connector from
inserts and housings, the insert configuration has to
match the housing configuration with respect to their
size.

In this dataset, we have about 3000 housing config-
urations and 300 insert configurations. Each housing
and insert configuration is characterized by 46 and 40
attributes, respectively.

3.2 Evaluation Measures

We assess the quality of the ranked configurations
produced by the system with regard to two aspects:

e Overall ranking: Is our ranking model capable
of producing a relevant order in the sense that
good results are ranked at the top of the list,
whereas bad results have lower ranks?

e k-best suggestions: Under the assumption
that customers will not be willing to explore the
entire list of suggestions, this aspect focuses on
the quality of those suggestions that are most
likely to be considered as relevant by the cus-
tomer, i.e., suggestions that are ranked at the k
best ranks. With respect to these suggestions, we
ask two questions: First, are the configurations
that were assigned high expert ratings among the
top-k suggestions provided by the model? Sec-
ond, are the singular best configurations accord-
ing to the experts among the top-k suggestions?
Both these questions investigate the suitability
of the model in an end-to-end recommendation
system that is capable of replicating experts’ rec-
ommendations.

To answer these questions, we use the metrics
of nDCG (normalized discounted cumulative gain),
precision-at-rank and recall-at-rank to evaluate the
ranking. These metrics are typically used in informa-
tion retrieval studies (see Manning et al. [3]). In all
metrics, k is used to denote the rank that limits the
number of configurations to be evaluated such that
only suggestions at ranks 1, ..., k are considered. For
instance, k = 5 means that we analyze the proposed
configurations at ranks 1 to 5.

3.2.1 Normalized Discounted Cumulative
Gain

nDCG considers relevance values and the order of the
results list. The metric uses a function which pro-
gressively reduces the relevance value. This means
that lower ranks have lower values (see Jarvelin and
Kekéaldinen [4]). In a first step, the DCGy (Dis-
counted Cumulative Gain) is computed as follows:

The term rel; describes the relevance of the result at
position i. In addition, we compute an ideal order
of the list, called IDCG. To normalize the DCG, we
have to compare the DCG values with the ideal values
as follows:

DCGy

nDCGr = 156G,

(6)

3.2.2 Precision-at-rank

Precision-at-rank indicates how many relevant sug-
gestions are at the top of the ranking. In our ap-
proach, a configuration is considered relevant if its
expert rating is at least 3 (cf. Section 2.4). All other
configurations with values below 3 are considered ir-
relevant, as they do not meet the customer’s needs to
a sufficient extent. With respect to rank k, precision-
at-rank is computed as follows:

k
1 .
Pry = z g Correct() (7)

=0

1 if score; >3

0 otherwise

Correct (i) = { (8)

3.2.3 Recall-at-rank

We use a slightly non-standard version of Recall@k in
which we check whether the best configuration iden-
tified by the experts is among the top k results.

3.3 Results

We report results using a 5-fold cross-validation
regime (i.e., training on four folds and testing on
the previously held-out fold). As ranking model,
we use the RankingSVM that is available as part of
the SVM'@"¥ toolbox with standard parameters (C =
0.01) and a linear kernel. We compare the perfor-
mance of the RankingSVM approach in terms of the
above mentioned measures to six other learning-to-
rank approaches: RankBoost [5], Coordinate Ascent
[6], AdaRank [7], ListNet [8] and Random Forests [9].
We use the versions of these learners implemented
in the RankLib library version 2.5, also with stan-
dard parameters. We perform separate experiments
for inserts and housings. Figures 1 and 2 show the
results in terms of nDCG over increasing values of k
for inserts and housings, respectively. Figures 3 and 4
show the results in terms of Precision@k over increas-
ing values of k for inserts and housings, respectively.
Figures 5 and 6 show the corresponding results for
RecallQk.

—&— RankingSVM
—&—RankBoost
== AdaRank

—=— CoordAscent

0,7 == LinearRegression

~&—RandomForest

ListNet

Figure 1: NDCGQ@k for inserts over different values
of k.

== RankingSVM
—#—RankBoost
= AdaRank

= CoordAscent
0,7 == LinearRegression

0,65 ~&~—RandomForest
ListNet
0,6

NDCG

Figure 2: NDCGQF for housings over different values
of k.

We discuss results with respect to the evaluation
questions introduced in Section 3.2:

1) Are the configurations ranked in the correct or-
der?

For both inserts and housings, the performance in
terms of nDCG is remarkably high with values over
0.9 (see Figures 1 and 2), showing a strong correla-
tion with the preference ordering provided by experts.
In comparsion to the results of the other approaches,
RankingSVM consistently stands out: For the inserts
(see Figure 1), CoordinateAscent and AdaRank reach
a value over 0.9 at & = 10, wheareas ListNet only
achieves a value of 0.83, which is 10% below Rank-
ingSVM. LinearRegression, RankBoost and Random-
Forest show strong overall performance as well, ob-
taining an nCDG between 0.85 and 0.9.

In case of housings (see Figure 2), the performance
values of ListNet, CoordinateAscent and Random-
Forest strongly oscillate until k& = 10. This is in
contrast to inserts, where the values hold a level or
slightly improve with an increasing k. RankBoost,
RandomForest and CoordinateAscent reach a level of
0.88 at k = 10, whereas AdaRank, ListNet and Lin-
earRegression stay below 0.84. In contrast, Rank-
ingSVM constantly performs beyond 0.9 for all k.
This is the best result for housings across all learners.
Therefore, we can conclude that, both for inserts and

—#— RankingSVM
—#— RankBoost

—#— AdaRank

—— CoordAscent

—— LinearRegression

—&—RandomForest

—— ListNet

1 2 3 4 5 6 7 8 9 10
Precision

Figure 3: Precision@k for inserts over different values
of k.

0,95

i
0,85 —&—RankingSVM

—#—RankBoost

0,75 ——AdaRank

—<CoordAscent

0,65 === LinearRegression

~®—RandomForest
0,55
0,5

~+—ListNet
T T T T T
1 2 3 4 5 6 7 8 9 10
Precision

Figure 4: Precision@Fk for housings over different val-
ues of k.

== RankingSVM
—#—RankBoost
== AdaRank
= CoordAscent

== LinearRegression

03 ~@—RandomForest
~+=—ListNet

T T T T T
1 2 3 4 5 6 7 8 9 10
Recall

Figure 5: Recall@Qk for inserts over different values of

k.

housings, the rankings produced by the RankingSVM
approach contain the relevant product configurations
at the top of the ranked list. Moroever, RankingSVM
shows the most robust performance compared to all
other approaches, i.e., the most stable results for dif-
ferent values of k.

2) Are the highest ratings at the top of the ranking?

Precision values start at 0.9 for inserts (see Figure
3) for all approaches except for ListNet and decrease
quickly as k increases, as expected. At k = 5, the pre-
cision is higher than 0.6 for the RankingSVM, then
decreases quickly until less than 0.5 at £ = 10. The
rapid decrease of precision for inserts is expected as
the different inserts differ substantially in terms of

—4—RankingSVM
- ost

== AdaRank

—=—CoordAscent

== LinearRegression

~&—RandomForest

—— ListNet

Recall

Figure 6: Recall@k for housings over different values
of k.

their characteristics. Thus, there are only few inserts
that are appropriate for each user-specified require-
ment.

For housings (see Figure 4), in contrast, the start-
ing point differs between the different approaches. At
k = 1, RankBoost obtains the highest value of 0.95,
while the majority of the other approaches exhibits
values between 0.85 and 0.91. The RankingSVM ap-
proach achieves a precision of 0.9 at k = 1, which
decreases to 0.72 at k = 5 and 0.61 at £ = 10. At
k = 10, all approaches obtain similar performance
between 0.59 and 0.63. Except for AdaRank (show-
ing a positive outlier at k = 4), the precision curves
are highly similar across all approaches, which sug-
gests that learning-to-rank approaches generally bear
a strong potential to provide highly precise recom-
mendations at the top of the ranked lists.

3) Are the best configurations among the first re-
sults?

The results for recall on inserts are very remark-
able (see Figure 5), with starting points between 0.4
and 0.5 for most of the approaches (and even 0.51
for RankBoost and RankingForest). Given that we
investigate singular best results here, these values in-
dicate that the best configuration is ranked at k =1
in over 50% of the cases, which is a very good value.

Relative to all other approaches, only ListNet un-
derperforms with a recall of 0.65 at £ = 10. De-
parting from a relatively low recall of 0.34 at k = 1,
RankingSVM achieves the overall best result across
all approaches at k = 8. At k£ = 10, the RankingSVM
yields a recall of 0.87, which means that the best so-
lution can be found among the first ten recommenda-
tions in in 87% of the cases. The CoordinateAscent
approach yields the best result at kK = 5 (0.8), but is
slightly inferior to RankingSVM at k = 10 (0.84 vs.
0.87).

On housings (see Figure 6), the RankingSVM ob-
tains a rather low recall overall. At & = 1, AdaRank
has the best performance of 0.3, while the other ap-

proaches achieve values between 0.15 and 0.25. It is
interesting to note that AdaRank and LinearRegres-
sion reach values beyond 0.8 at k£ = 5. This is a very
high value and was not expected, because our test
data contains many similar housing configurations,
on the one hand, and rather weak requirement spec-
ifications for housings, on the other. At k = 10, Lin-
earRegression and AdaRank obtain a recall of more
than 0.95, which means that in more than 95% of
the cases we find the best result among the first ten
suggestions. This is a very good result and shows
that learning-to-rank approaches can effectively sup-
port product configuration by providing high-quality
recommendations to customers.

3.4 Discussion

The results presented above point out two important
variations: On the one hand, different performance
levels can be observed for inserts and housings. On
the other hand, the relative performance differs across
the various ranking approaches evaluated here as well.
This shows that not every ranking system can be ex-
pected to obtain the same performance for different
products. For instance, while RankingSVM and Co-
ordinateAscent stand out for inserts, they underper-
form on housing configurations. This suggests that,
depending on the objectives underlying the particular
configuration task, different ranking approaches may
turn out effective.

In our case, we are mostly interested in a consis-
tent overall ranking of product recommendations that
(i) effectively reproduces experts’ ratings and, at the
same time, (ii) avoids patronizing the user by an im-
moderate focus on the top-ranked results only. We
argue that some of the parameters that are relevant
to the customer’s final choice are possibly not fully
exposed yet by the time of their specification (e.g.,
differences in price or shipment conditions); in such
cases, it is of great importance that the recommen-
dations presented to the user reflect a sound relative
order, as this enables the customer to override indi-
vidual suggestions by relying on the next-best alter-
native.

Moreover, in the configuration task investigated
here, inserts are the main components of industrial
connectors in that they have to meet the key re-
quirements of the application intended by the cus-
tomer, whereas housings potentially offer more de-
grees of freedom. For instance, in many electronic
applications, customer requirements are primarily de-
termined by specific constraints on the inserts. Apart
from being compatible with the specification of the in-
serts, housings often do not impose any further con-

straints on the entire configuration in these cases.
This is also reflected in our data set, which contains
a considerable proportion of cases with only one or
two requirements for housings.

Against this background, we consider RankingSVM
most appropriate for the configuration task at hand,
as this ranking approach clearly outperforms all oth-
ers in terms of overall ranking performance and shows
a superior recall curve for inserts (whereas in case of
precision, all approaches are largely on a par).

4 Related Work

In information retrieval, the goal is to return a set of
documents ranked by relevance with respect to the in-
formation need of a user which is typically expressed
as a keyword query. Recently, the problem has been
framed as a learning-to-rank problem and techniques
from machine learning have been applied in order to
learn a ranking function from relevance rankings of
documents given a query (see Joachims [2], Robertson
and Zaragoza [10], Piwowarski and Zaragoza [11]).

In the field of recommender systems, the goal is to
learn a function that ranks items based on how likely
a user will like them. The task of recommendation has
also been formalized as a learning-to-rank problem,
e.g., by Karatzoglou et al. [12].

Falkner et al. [13] apply classical recommenda-
tion techniques to the product configuration task.
The authors propose different methods in order to
support the configuration process, including exclu-
sion/inclusion of features, ranking of features and
entropy-based feature selection. In this case, the fea-
tures describe decision criteria, i.e., the attributes a
customer can use in order to specify her requirements.
Falkner et al. focus on situations where no solution
satisfies all constraints, using model-based diagnosis
such as Max-CSP (Petit et al. [14]) or preferred ex-
planations which can be solved by FastDiag (Felfernig
et al. [15]). Beyond that, our approach presented in
this paper also offers solutions in cases where the user
requirements do not fully specify the desired product.

Tiithonen and Felfernig [16] show approaches of
case-based recommendation techniques in relation to
product configuration. They use an approach based
on Naive Bayes classification in order to suggest in-
dividualized product and service offers.

Apart from these efforts to integrate recommen-
dation techniques into product configuration tasks,
there is — to the best of our knowledge — no previous
work that uses learning-to-rank models in this class of
problems. Therefore, we consider our approach as a
promising first step towards a practical combination

of recommendation and machine learning techniques
in product configuration.

5 Conclusion and Future Work

We have addressed the task of supporting users in
finding product configurations that meet their re-
quirements. We have formulated the problem as an
SVM optimization problem and proposed a learning-
to-rank approach in order to induce a function that
scores configurations according to how well they
match the user requirements on the basis of a prefer-
ence relation. We have described a methodology for
eliciting preferences from domain experts and trained
and evaluated our approach on a dataset consisting
of 40 real use cases provided by domain experts from
electrical engineering.

Comparing the performance of our SVMRank ap-
proach to the performance of six further classifiers, we
have shown that the performance of our model is very
positive, both in terms of correlation with the pref-
erence rankings provided by experts, as well as with
respect to precision-at-rank and recall-at-rank met-
rics. Most remarkably, we have shown that the best
configuration provided by experts for each use case
can be retrieved within the top 10 results in 85% of
the cases for connector inserts, and within the top 7
results in 90% of the cases for housings. These re-
sults show that learning-to-rank approaches bear a
strong potential to be applied in end-to-end product
configuration tasks.

In future work, we aim at integrating our learning-
to-rank model into an intelligent assistant that en-
gages with customers in natural language. This will
pave the way towards an intuitive interface for non-
expert customers in order to incrementally specify
their requirements with regard to high-end techno-
logical products.

Acknowledgment

The second and third author acknowledge funding
from the Cluster of Excellence Cognitive Interaction
Technology 'CITEC’ (EXC 277), Bielefeld University.

References

[1] G. Hedin, L. Ohlsson, and J. McKenna, “Prod-
uct configuration using object oriented gram-
mars,” in System Configuration Management.
Springer, 1998, pp. 107-126.

[2] T. Joachims, “Training linear svms in linear
time,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery
and data mining. ACM, 2006, pp. 217-226.

[3] C. D. Manning, P. Raghavan, and H. Schiitze,
Introduction to information retrieval. Cam-
bridge University Press, 2008.

[4] K. Jarvelin and J. Kekéldinen, “Ir evalua-
tion methods for retrieving highly relevant doc-
uments,” in Proceedings of the 23rd annual
international ACM SIGIR conference on Re-
search and development in information retrieval.
ACM, 2000, pp. 41-48.

[6] Y. Freund, R. Iyer, R. E. Schapire, and
Y. Singer, “An efficient boosting algorithm for
combining preferences,” The Journal of machine
learning research, vol. 4, pp. 933-969, 2003.

[6] D. Metzler and W. B. Croft, “Linear feature-
based models for information retrieval,” Infor-
mation Retrieval, vol. 10, no. 3, pp. 257-274,
2007.

[7] J. Xuand H. Li, “Adarank: a boosting algorithm
for information retrieval,” in Proceedings of the
30th annual international ACM SIGIR confer-
ence on Research and development in informa-
tion retrieval. ACM, 2007, pp. 391-398.

[8] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li,
“Learning to rank: from pairwise approach to
listwise approach,” in Proceedings of the 24th

international conference on Machine learning.
ACM, 2007, pp- 129-136.

[9] L. Breiman, “Random forests,” Machine learn-
ing, vol. 45, no. 1, pp. 5-32, 2001.

[10] S. Robertson and H. Zaragoza, “On rank-based
effectiveness measures and optimization,” Infor-
mation Retrieval, vol. 10, no. 3, pp. 321-339,
2007.

[11] B. Piwowarski and H. Zaragoza, “Predictive user
click models based on click-through history,” in
Proceedings of the sizteenth ACM conference on
Conference on information and knowledge man-
agement. ACM, 2007, pp. 175-182.

[12]

[13]

[15]

[16]

A. Karatzoglou, L. Baltrunas, and Y. Shi,
“Learning to rank for recommender systems,” in
Proceedings of the Tth ACM conference on Rec-
ommender systems. ACM, 2013, pp. 493-494.

A. Falkner, A. Felfernig, and A. Haag, “Rec-
ommendation technologies for configurable prod-
ucts,” AI Magazine, vol. 32, no. 3, pp. 99-108,
2011.

T. Petit, C. Bessiere, and J.-C. Régin, “A gen-
eral conflict-set based framework for partial con-
straint satisfaction,” algorithms, vol. 15, p. 13,
2003.

A. Felfernig, M. Schubert, and C. Zehentner,
“An efficient diagnosis algorithm for inconsistent
constraint sets,” Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing,
vol. 26, no. 01, pp. 53-62, 2012.

J. Tiithonen and A. Felfernig, “Towards recom-
mending configurable offerings,” International
Journal of Mass Customisation, vol. 3, no. 4, pp.
389-406, 2010.

