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abstract

In 2013 Prof. Dr. Bux, Prof. Dr. Köhl and Dr. Witzel published an article on
higher finiteness properties of reductive arithmetic groups in positive character-
istic ([BKW13]). An essential tool in their work is the transmission of algebraic
reduction theory into pure geometry:

Given a semisimple linear algebraic group G and a finite product of local function
fields kf , they created a reduction theory on the building accociated to Gpkf q.
Later on Prof. Dr. Bux asked, whether they created the right kind of geometric
reduction theory and if there is a universally valid reduction theory on arbitrary
CATp0q-spaces. As an intermediate step reaching this highly ambitious aim he
asked for a second example:

In this work we create an analogous reduction theory on the product of a sym-
metric space and a building associated to Gpknq, where kn is a finite product of
local number fields.
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INTRODUCTION

Consider SLnpRq, the symmetric space X8 :“ SLnpRq{SOnpRq and the
action of SLnpZq on X8. Reduction theory describes a fundamental domain
in X8.

Generalizing reduction theory to arithmetic groups, Godement found an
adelic formulation treating all places simultaneously [God64]: Let k be a
global number field, G be a semisimple group (think of SLn), and let A be
the ring of adeles of k. Then Gpkq is discrete in GpAq and Godement found
a coarse fundamental domain for the action of Gpkq on GpAq. Later, Behr
and Harder transferred this to the case when k is not a global number field,
but a function field [Har69].

In 2012 Bux-Köhl-Witzel gave a geometric reformulation of Behr-Harder for
the S-arithmetic case (see [BKW13]). They introduced a so called reduction
datum explained in Section 1.1.

Now the natural question arises, whether this geometric reformulation can
be transferred back to the case of a number field.

To gain an insight on what a reduction datum is we present the simplest
number field case we can think of: Let G be SL2 and let S, a finite set of
places, contain the absolute real valuation only, i.e. consider SL2pZq acting
on the hyperbolic upper half plane H2 by Möbius transformation. In that
case there exists a constant r P R such that H2 is covered by horoballs of
height r centered at the rational points at infinity of H2, i.e. each point
x P H2 is contained in at least one SL2pZq-translate of some chosen horoball
of height r, see Figure 1.

vii



Introduction

Figure 1: Horoballs of height r covering H2 allow assignments of any point
x P H2 to some set of rational vertices at infinity of H2.

Hence, using the constant r, we can assign to each x P H2 a set of rational
vertices, namely the centers of those horoballs of height r that contain x.
We call the constant r P R a lower reduction bound. On the other hand we
may sufficiently increase the height of those horoballs, lets say to height R,
such that each point x P H2 is contained in at most one SL2pZq-translate
of some chosen horoball of height R, see Figure 2.

Figure 2: Horoballs of height R not quite covering H2 allow assignments of
most but not all points x P H2 to a unique rational vertex at infinity of H2.

Hence, using the constant R, we may not assign to each x P H2 some
rational vertex, but if we can, we may do uniquely. In that case we call the
constant R P R an upper reduction bound.
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Currently we can not be precise on what a reduction datum is, because the
rank of this example is to small. But roughly speaking a reduction datum
determines a lower reduction bound and an upper reduction bound on some
CATp0q-space XS depending on G and a finite set of places S, i.e. it assigns
to most points in XS a unique rational simplex in its boundary.

More figuratively spoken, one could describe a reduction datum as follows:

Imagine you are somewhere on earth and it is completely dark
outside. All you see are the stars far far away. A reduction
datum tells you which stars you are close to.

In this work we proof an analogous statement of [BKW13, Theorem 1.9],
i.e. a generalization of the previous example.
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chapter 1

STATEMENT

During the next three sections we introduce the reader to the topic of this
thesis and recapitulate the groundwork that has already been laid. More
specifically we do the following:

In Section 1.1 we explain what a reduction datum is. After setting some
basic notation we illustrate the geometry discussed in this work and, in
the very end, state the main theorem of geometric reduction theory. In
Section 1.2 we restate important statements of algebraic reduction theory
as presented in [God64]. In Section 1.3 we give a short overview of the
essential steps taken in this thesis. Moreover we try to illustrate the close
relation between geometric reduction theory and algebraic reduction theory.

1.1 Geometric reduction theory

Let k be a global number field and G be a linear algebraic, connected,
semisimple, k-isotropic k-group. Replacing G by its Weil restriction from
k to Q we may assume k “ Q without loss of generality (see for example
[Wei61, Section 1.3]) which we do throughout this work.

For any finite set of places S including the archimedean place8 we consider
the ring of S-adeles

AS “ Rˆ
ź

pPSzt8u

Qp ˆ
ź

pRS

Zp.

AS1 ãÑ AS is a directed system indexed by the family of finite sets of places
ordered by inclusion. The ring of adeles A is by definition its direct limit.

Now we fix a finite set of places S including the archimedean place 8. For
a non-archimedean place p P S we define Xp to be the Bruhat-Tits building
associated to GpQpq. For the archimedean place we denote by X8 the
symmetric space associated to GpRq. The product space

XS “ X8 ˆ
ź

pPSzt8u

Xp

is a CATp0q-space by [AB08, Theorem 11.16]. The group GpAq acts iso-
metrically on XS (components not in S act trivially) and hence on its visual
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1. Statement

boundary BpXSq. Likewise GpASq, GpQq and an S-arithmetic lattice Γ act
on XS and BpXSq.

Denote by ∆ the spherical building for GpQq with set of chambers Cp∆q
and set of vertices Vp∆q. The idea of a reduction datum is to assign to
most points x P XS a unique simplex in ∆ that is close to x:

To have a notion of distance from points in XS to points in ∆ we assume
to have an isometric embedding of ∆ into BpXSq. Moreover we suppose
to have a family thv : XS Ñ R | v P Vp∆qu of rescaled Busemann functions
with hv centered at v for all v P Vp∆q, i.e.

hvpxq “ lim
tÑ8

pt´ dpx, γvptqqq

where γv : XS Ñ R is a geodesic with visual endpoint γvp8q “ v for all
v P Vp∆q. Furthermore we assume to have a family A of totally geodesic
flat subspaces in XS (think of an apartment system) such that:

(A) For each chamber c P Cp∆q the union of all flat subspaces Σ1 P A with
c in their visual boundary covers XS.

For a chamber c P Cp∆q we consider the function

hcpxq :“ max thvpxq | v P Vpcqu .

Given some Σ1 P A containing c in its visual boundary and a real parameter
s P R, we consider the closed and convex set

YΣ1,cpsq :“ tx P Σ1 | hcpxq ď su .

We denote the union over all those subsets by

Ycpsq :“
ď

Σ1PA
cĂBpΣ1q

YΣ1,cpsq
pAq
“ tx P XS | hcpxq ď su .

Because YΣ1,cpsq is closed and convex in Σ1 there is a closest point projection

prsΣ1,c : Σ1 Ñ YΣ1,cpsq,

see Figure 1.1. By Condition (A) we may choose for each x P XS some
Σ1 P A containing x and hence consider prsΣ1,cpxq for each s P R. We require
the following condition to be satisfied:

(B) For any c P Cp∆q and v P Vpcq the values hvpprsΣ1,cpxqq “: bsc,vpxq are
independent of the flat Σ1 containing x.

2



1.1. Geometric reduction theory

wv

hw

hv

x

pr0Σ1,cpxq

YΣ1,cp0q

c

Figure 1.1: Closest point projection on the set of points with height less
or equal to zero for all Busemann functions centered at some vertex in c.

With the above setup we may define for each x P XS and c P Cp∆q the set

σspx,cq :“
 

v P Vpcq
ˇ

ˇ bsc,vpxq “ s
(

,

i.e. we collect those vertices v P Vpcq such that the inequality hvpprsΣ1,cpxqq ď s
is sharp, see Figure 1.2.

wv

hw

hv

c

YΣ1,cp0q

σ0px, cq “ tvu
σ0px, cq “ tv, wu

σ0px, cq “ tu
σ0px, cq “ twu

Figure 1.2: Apartment separated into the sets of points that are 0-close
to either all vertices of c, only one vertex of c or non of its vertices.
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1. Statement

We say that a chamber c P Cp∆q s-reduces x P XS if σspx, cq “ Vpcq. For
a chamber c P Cp∆q and a flat Σ1 P A with c in its visual boundary we
consider the set

NΣ1,cpsq :“ tx P Σ1 | x is s-reduced by cu ,

and call it a thin Minkowski cone (above c of height s). Moreover we con-
sider the union of all thin Minkowski cones above c of height s

Ncpsq :“
ď

Σ1PA
cĂBpΣ1q

NΣ1,cpsq
pAq,pBq
“ tx P XS | x is s-reduced by cu ,

and call it a thick Minkowski cone (above c of height s). See Figure 1.3 to
get an impression of what these sets are. It is drawn in case of G “ SL2

with S containing the absolute real value only.

thin Minkowski cone

coarse Minkowski cone

thick Minkowski cone

Figure 1.3: Minkowski cones for G “ SL2.

Now one might ask why we allow the family of Busemann functions to
be rescaled. The reason stems from the following. We want the family
of thin Minkowski cones above some chamber c P Cp∆q, and hence the
corresponding family of thick Minkowski cones, to behave like a filtration
in s P R, i.e. we want to avoid a situation as presented in Figure 1.4. Instead
we ask for a situation as presented in Figure 1.5. Formally we require the
following condition to be satisfied:

4



1.1. Geometric reduction theory

(C) For c P Cp∆q and Σ1 P A with c in their visual boundary we have

piq NΣ1,cps2q Ă NΣ1,cps1q if and only if s1 ă s2;

piiq Σ1 “
Ť

sPRNΣ1,cpsq.

In case of (unit speed) Busemann functions condition (C) fails for example
if ∆ corresponds to E6, E7, E8 or Dn.

wv

thv “ 1}

thw “ 1}

YΣ1,cp0q

YΣ1,cp1q

hw

hv

c

thv “ hwu

NΣ1,cp1qNΣ1,cp0q

Figure 1.4: (Thin) Minkowski cones
of height 0 and 1 without adjusted
velocity of Busemann functions.

wv

thv “ 1}
thw “ 1}

YΣ1,cp0q

YΣ1,cp1q

hw
hv

c thv “ hwu

NΣ1,cp1qNΣ1,cp0q

Figure 1.5: (Thin) Minkowski cones
of height 0 and 1 with adjusted ve-
locity of Busemann functions.

Now we define a reduction datum, analogue to how it was introduced in
[BKW13]: A reduction datum consists of a family of flat subspaces A in XS

satisfiying condition (A) together with a family thv : XS Ñ R | v P Vp∆qu
of rescaled Busemann functions satisfying condition (B) and (C) and two
real constants r ă R such that:

Each point x P XS is r-reduced by some chamber c P Cp∆q
and for each such chamber the set σRpx, cq is contained in any
chamber c1 P Cp∆q that r-reduces x.

By [BKW13, Observation 1.7] we may alternatively formulate the above
condition as follows:

XS is covered by the family of thick Minkowski cones of height
r, i.e. XS “ YcPCp∆qNcprq. Moreover x P Ncprq XNc1prq implies
σRpx, cq “ σRpx, c

1q for all x P XS and c, c1 P Cp∆q,

5



1. Statement

see Figure 1.6. We call the constant r P R a lower reduction bound and the
related constant R P R an upper r-reduction bound.

wv

u

c

c1x

prRΣ1,cpxq

tx P Σ1 | x is R-reduced by cu tx P Σ1 | x is r-reduced by cu

tx P Σ1 | x is r-reduced by c1uYΣ1,cpRq

σRpx, cq “ twu Ă Vpc1q

Figure 1.6: Minkowski cones with non-empty intersection and a common
simplex at both their boundaries.

A reduction datum is called Γ-invariant if for each γ P Γ, each vertex
v P Vp∆q and each point x P XS we have hγ¨vpγ ¨ xq “ hvpxq. A Γ-invariant
reduction datum is called Γ-cocompact if for each s ě r the set

Ys :“

¨

˝

ď

cPCp∆q

NcprqzYcpsq

˛

‚

C

“tx P XS | hcpxq ď s for all c P Cp∆q r-reducing xu

is relatively compact modulo the action of Γ, see Figure 1.7. Furthermore
we say that a subset B Ă XS can be uniformly r-reduced if there is a
chamber c P Cp∆q that r-reduces all points of B simultaneously. Given a
non-negative real number d we call a reduction datum d-uniform if every
subset B Ă XS of diameter at most d can be uniformly r-reduced. With
these notations we may formulate the main theorem of geometric reduction
theory as follows:

Theorem 1.1.1. For every diameter d, there is a d-uniform, Γ-invariant
and Γ-cocompact reduction datum on XS.

6



1.1. Geometric reduction theory

Figure 1.7: YR for SL2pZq acting on H2 (marked gray).

The purpose of a reduction datum

For the sake of a better understanding of a reduction datum, we highlight
the relation between the precise definition and the idea given in the in-
truduction. Moreover, due to a hint of Prof. Dr. Hoffmann concerning the
work of James Arthur (see the subsection below), we state an almost anal-
ogous version of Theorem 1.1.1 formulated in the language of characteristic
functions.

Given a reduction datum with constants r, R P R the thick Minkowski
cones Ncprq and NcpRq differ only by some compact action, i.e. there exists
a compact set K Ă GpASq depending on c with NcpRq Ă Ncprq Ă K¨NcpRq,
see Figure 1.6. However the informations they contribute are significantly
different. On the one hand the constant r enabels us to assign to each
x P XS a non-empty set of rational chambers, namely those chambers
such that their thick Minkowski cones of height r contain x. However the
assignement does not necessarily attach unique chambers. On the other
hand the same procedure with R instead of r does not assign to each x P XS

some chamber, but if it does, it does uniquely. The uniqueness follows
because the definition of a reduction datum implies NcpRq X Nc1pRq “ H
for c ‰ c1.

Now the actual purpose of a reduction datum is to do something in between
these two properties. It does not assign to all points a unique chamber, but
to most points a unique simplex, namely the simplex σRpx, cq for some
c P Cp∆q with x P Ncprq. (In that case we regard σRpx, cq as the set of
vertices v P Vpcq such that x is far away from the wall of Ncprq, that is

7



1. Statement

opposite to v, see Figure 1.8.) Now most means all points that are contained
in some thick Minkowski cone Ncprq such that σRpx, cq is non-empty, i.e. to
all points x P XSzY̊R with

Y̊s :“ tx P XS | hcpxq ă s for all c P Cp∆q r-reducing xu .

We say most, because Y̊R is relatively compact modulo the action of Γ.

Next let τ be an arbitrary simplex in ∆ and denote by Aτ the set of points
that are assigned to τ , i.e.

Aτ :“ tx P XS | D c P Cp∆q with x P Ncprq and σRpx, cq “ τu .

wv

c

x

far

YΣ1,cpRq NΣ1,cprq NΣ1,cpRq

wall of NΣ1,cprq, that is opposite to v

Figure 1.8: Minkowski cones of height r respectivelyR with identical bound-
ary but associated walls, that are far apart from each other.

Now let 1Aτ (resp. 1 ˝
Y R

) denote the characteristic funtion of Aτ (resp. Y̊R).

The following statement more or less resembles Theorem 1.1.1:

Lemma 1.1.2. The sum
ř

τ

1Aτ ` 1Y̊R equals 1.

8



1.2. Algebraic reduction theory

The work of James Arthur

While proofreading the complete work, Prof. Dr. Hoffmann perceived the
similarity between Theorem 1.1.1 and [Art78, Lemma 6.4]. Therein Arthur
discribes a GpQq-invariant partition of GpAq into disjoint subsets indexed
by the parabolic subgroups of G, i.e. by the simplices of ∆. Restricted to
GpASq this partition can be visualized in XS:

The maximal compact subgroups of GpASq are in one-to-one-correspondence
with the set of vertices in XS, which are tuples pxpqpPS, consisting of points
xp of the symmetric space at archimedean places p and vertices xp at non-
archimedean places. Namely the stabilizer of a vertex in XS is a maxi-
mal compact subgroup in GpASq and vice versa. Moreover, there are only
finitely many conjugacy classes of maximal compact subgroups. The set
of these classes is in one-to-one-correspondence with the set of types of
vertices.

Arthur has an independent definition of what is called Busemann function
in the geometric context, but it works only on a conjugacy class of spe-
cial maximal compact subgroups. Now choose a special maximal compact
subgroup K in GpASq and let ˚ P XS denote the stabilized vertex. The
embedding GpASq{K ãÑ XS, g ¨ K ÞÑ g ¨ ˚ covers only one GpASq-orbit
of vertices. Arthur’s partition of GpASq can now be seen as a partition of
that image in XS.

A priori, it is not clear how to interpolate this partition all over XS, not
even if it is possible. Theorem 1.1.1, respectively Lemma 1.1.2, states that
it is possible and the proof shows how to do it.

1.2 Algebraic reduction theory

In Section 1.2 we give an overview on the history of algebraic reduction
theory from its origin until the work of Siegel in 1959. In Section 1.2 we
present the state of algebraic reduction theory in 1964.

The history of algebraic reduction theory

There are different opinions about the origin of (algebraic) reduction theory
but the author sees the start in AD 1801. That year Gauß published his
famous work Disquisitiones arithmeticae. Therein he examined positive
definite quadratic forms in two variables with real entries and determinant 1.
For the corresponding action of SL2pZq he discovered a coarse fundamental
domain (see [Gau06, p. 135]). In today’s language this means a coarse

9



1. Statement

fundamental domain for the action of the arithmetic group SL2pZq on its
associated symmetric space SL2pRq{SO2pRq.

We visualize this fundamental domain by means of SL2pRq acting on H2 by
Möbius transformation. Therewith one may identify the connected com-
ponent of the set of positive definite quadratic forms in two variables with
determinant 1 with H2 equivariently. Hence the coarse fundamental domain
appears as one in H2, see Figure 1.9.

Figure 1.9: Coarse fundamental domain for SL2pZq acting on H2 by Gauß.

Unsurprisingly the name reduction theory goes back to Gauß as well. By
formas reductas he denoted those quadratic forms contained in the funda-
mental domain.

The theory was developed further by Hermite in 1850. In Lettres de M. Ch.
Hermite à M. Jacobi he discovered a coarse fundamental domain for the
action of SLnpZq on the set of positive definite quadratic forms in n variables
with real entries and determinant 1 (see [Her50, p. 272ff]). In other words
he discovered a coarse fundamental domain for the action of the arithmetic
group SLnpZq on its associated symmetric space SLnpRq{SOnpRq. For the
special case of n “ 2 that fundamental domain is visualized in Figure 1.10.

10



1.2. Algebraic reduction theory

Figure 1.10: Coarse fundamental domain for SL2pZq acting on H2 by
Hermite.

The next step is due to Minkowski. In 1910, one year after he died, his
work Geometrie der Zahlen was published. Therein he proved that one
may sharpen the inequalities, Hermite had used, to describe a smaller fun-
damental domain (see [Min10, p. 198]). Moreover Minkowski proved the
new fundamental domain to be of finite volume. In Figure 1.11 we illus-
trate this fundamental domain for the special case of n “ 2.

Figure 1.11: Fundamental domain for SL2pZq acting on H2 by Minkowski.

Half a century later, in 1959, Siegel has weakend the conditions further. In
[Sie59, §13 ´ 18] he examined non-degenerate, indefinite quadratic forms
in p ` q variables. More precisely he examined the action of Opp, qqpZq on
a specially constructed action space and determined a coarse fundamen-
tal domain. Today we would say that he determined a coarse fundamen-
tal domain for the action of Opp, qqpZq on its associated symmetric space
Opp, qqpRq{ pOppqpRq ˆOpqqpRqq.

11



1. Statement

The state of algebraic reduction theory in 1964

In the early sixties of the twentieth century Borel and Harish-Chandra
proved results on fundamental domains for linear algebraic groups defined
over Q (see [Bor62] and [BHC62]). About the same time Mostow and
Tamagawa proved similar results for special cases, but the methods they
used were simpler (see [MT62]). Later, Godement and Weil found out
how these methods can be modified in order to prove with their help the
remaining cases. In this section we summarize essential results as they were
presented in [God64]. However we remark that in [God64] the group GpAq
acts from the right while in this work it acts from the left. This causes
minor differences in the formulation.

The apartments in ∆ correspond to maximal Q-split tori in G, its simplices
to parabolic Q-subgroups ordered by reverse inclusion. The stabilizer of a
chamber c P Cp∆q, denoted by Pc, is a minimal Q-parabolic subgroup, the
stabilizer of a vertex v P Vp∆q, denoted by Pv, is a maximal Q-parabolic
subgroup.

Choose a chamber c P Cp∆q and call it standard chamber. Moreover call its
vertices v, w,... P Vpcq standard vertices. Let Tmax ď Pc be a maximal torus
in Pc defined over Q. It does not need to split over Q nor Qp. Therefore we
moreover consider a maximal Q-split torus T ď Tmax and maximal Qp-split
tori T ď Tp ď Tmax for p ‰ 8. For a linear algebraic group H we denote
by XpHq its set of Q-characters. Following [God64, p. 257-08] there is a set
of simple roots (simple system) tϕc

v | v P Vpcqu Ă XpTq belonging to the
panels of c. Since

XpTq bQ “ XpPcq bQ, (1.1)

([Har69, p. 47]) we may regard each ϕc
v as an element of XpPcqbQ. More-

over tϕc
v | v P Vpcqu is a basis for XpTq bQ, see Figure 1.12.

Let ‖´‖: Aˆ Ñ R denote the idele-norm, i.e. ‖´‖ “
ś

p|´|p where |´|p
denotes the standard norm on Qp. For a linear algebraic group H we define
HpAq˝ to be the subgroup of elements h P HpAq with ‖χphq‖ “ 1 for all
χ P XpHq. By [God64, §8] there are compact subsets

E Ă GpAq with GpAq “ PcpAq ¨ E and (1.2)

F Ă PcpAq˝ with PcpAq˝ “ PcpQq ¨ F. (1.3)

12



1.2. Algebraic reduction theory

wv

ϕc
wϕc

v

c

Figure 1.12: Set of simple roots (simple system) for G “ SL3.

Let T8 denote the group of elements t “ ptpqp P TpAq with tp “ 1 for all
p ‰ 8 and its connected component by T`8. For a positive real number
s P Rą0 we consider the subset T`8psq of elements t P T`8 with ‖ϕc

vptq‖ “
ϕc
vptq ě s for all v P Vpcq. With the above notation we may extract from

[God64, §10] the following theorem:

Theorem 1.2.1. There is a constant C1 ą 0 such that

GpAq “ GpQq ¨ F ¨T`8pC1q ¨ E.

Moreover [God64, LEMME 3] can be rephrased as follows:

Theorem 1.2.2. For any positive constant C1 there is another positive
constant C2 such that the following holds:

Let f, f 1 P F, e, e1 P E, t, t1 P T`8pC1q and q P GpQq with
q ¨ fte “ f 1t1e1. If ϕc

vptq ě C2 for some v P Vpcq, then we have
q P PvpQq.

Furthermore we know from [God64, p. 11f] that the equations

PcpAq “ PcpAq˝ ¨TpAq and (1.4)

TpAq “ TpAq˝ ¨T`8 (1.5)

hold. Therefore the following lemma is valid:

13



1. Statement

Lemma 1.2.3. GpAq “ PcpQq ¨ F ¨T`8 ¨ E.

Proof.

GpAq (1.2)
“ PcpAq ¨ E

(1.4)
“ PcpAq˝ ¨TpAq ¨ E

(1.5)
“ PcpAq˝ ¨TpAq˝ ¨T`8 ¨ E

(1.1)
“ PcpAq˝ ¨T`8 ¨ E

(1.3)
“ PcpQq ¨ F ¨T`8 ¨ E.

The following lemma illustrates the relation between Γ, PcpQq and GpQq:

Lemma 1.2.4 ([God64, THÉORÈME 11]). The set ΓzGpQq{PcpQq of
double cosets is finite.

Let V be a finite dimensional vector space that is, as algebraic variety, de-
fined over Q. Now V pAq “ V pQqbQA and GLpV qpAq identifies canonically
with GLpV pAqq (see [God64, p. 2]). A non-zero element x P V pAq is called
primitive, if there exists an element g P GLpV pAqq with gpxq P V pQq. We
denote by V pAq1 the set of primitive elements. By definition GLpV pAqq acts
on V pAq1.

Lemma 1.2.5 ([God64, p. 2]). There exists a map ~ ´ ~ : V pAq1 Ñ Rą0

(called height), that is compatible with the idele norm, i.e. ~a¨x~ “ ‖a‖¨~x~
for all a P Aˆ and x P V pAq1.

1.3 Strategy of the proof

This section provides a preview of the most important steps that we take
in this work to prove Theorem 1.1.1.

For any place p we choose a maximal compact subgroup Kp in GpQpq

respectively GpRq. For p P S there is a unique point ˚p P Xp, respectively
˚8 P X8, with stabilizer Kp. Next we let Xp denote the GpQpq-orbit of ˚p,
respectively the GpRq-orbit of ˚8, i.e.

Xp “ GpQpq ¨ ˚p – GpQpq{Kp;

X8 “ GpRq ¨ ˚8 – GpRq{K8.

For non-archimedean places p P S there are only finitely many GpQpq-orbits
of vertices in Xp. Hence there is a uniform upper bound for the distance of
any point in Xp to Xp, i.e. Xp and Xp are in finite hausdorff distance.
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1.3. Strategy of the proof

For the archimedean place p “ 8 it is even easier. Because GpRq acts tran-
sitively on X8, the orbit space X8 and X8 are not only in finite hausdorff
distance, they are even equal.

By definition the compact subgroup K :“
ś

pPSKp ˆ
ś

pRS GpZpq is the
stabilizer of ˚ :“

ś

pPS ˚p P XS in GpASq. Now we pretend GpASq{KS to
be XS: Define

XS :“
ź

pPS

Xp “ GpASq ¨ ˚ – GpASq{KS.

Since S is finite, XS and XS are in finite hausdorff distance.

As seen in Section 1.1, geometric reduction theory onXS is about Busemann
functions on XS. Thanks to what we have done so far, we may reduce the
problem to the subset XS: Busemann functions on XS are determined by
their values on XS. Hence we may even look for functions on GpASq that
are invariant under multiplication by K from the right. Since the resulting
Busemann functions shall be centered at the vertices of ∆ we have only
little choice:

In Section 2.1 we detect characters $v : Pv Ñ GL1 for each v P Vpcq and
enlarge these to so called scaling functions on GpAq. Initially we push
them forward GpQq-invariantly to all remaining vertices of ∆. Afterwards
we make them invariant under multiplication by K from the right. It turns
out that those scaling functions are restrictions of Busemann functions on
XS centered at the vertices of ∆.

With this family of Busemann functions we prove Theorem 1.1.1. That is
where algebraic reduction theory comes into play. Using a duality between
the roots tϕc

v | v P Vpcqu and the weights t$v | v P Vpcqu we can make it a
problem on roots. Rescaling the Busemann functions such that condition
(C) holds, we may apply Theorem 1.2.1 and Theorem 1.2.2. Eventually
the existence of a lower reduction bound r is a consequence of Theorem
1.2.1 and the existence of an upper reduction bound R is a consequence of
Theorem 1.2.2.
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chapter 2

PRELIMINARY

In the coming five sections we do the main work of this thesis. We follow the
strategy as presented in Section 1.3, or more precisely we do the following:

In Section 2.1 we establish so called scaling functions Sv : GpAq Ñ R for
each vertex v P Vp∆q. These we use to reformulate the main statements of
algebraic reduction theory in Section 2.2. In particular a first connection
between geometric reduction theory and algebraic reduction theory will be-
come clear. In Section 2.3 we present a set of flat subspaces in XS that
satisfies condition (A). We use these flat subspaces in Section 2.4 to ex-
plain that the logarithm of each scaling function restricted to GpASq is the
restriction of some Busemann function on XS. After modifying those Buse-
mann functions we prove almost analogous but purely geometric statements
of Theorem 1.2.1 and Theorem 1.2.2 in Section 2.5.

2.1 Scaling functions, roots and weights

Given a parabolic subgroup P ď G and a character $ : PÑ GL1 we call a
function S$ : GpAq Ñ R a scaling function for $ if

S$pp ¨ gq “ ‖$ppq‖ ¨ S$pgq

for all p P PpAq and g P GpAq. Purpose of this section is to prove
the existence of non-trivial weights $v : Pv Ñ GL1, almost dual roots
ϕcv : Pc Ñ GL1 and corresponding scaling functions for all c P Cp∆q and
v P Vpcq where Vpcq denotes the set of vertices of c. Moreover we want the
family of scaling functions to be GpQq-invariant, i.e. S$q¨vpq ¨ gq “ S$vpgq
and Sϕq¨cq¨vpq ¨gq “ Sϕcvpgq for all q P GpQq, g P GpAq, c P Cp∆q and v P Vpcq.
Additionally each scaling function shall be invariant under multiplication
by K from the right. In the first subsection we deal with the standard ver-
tices and establish standard roots, weights and scaling functions. During
the subsection afterwards we take those standard functions and push them
forward GpQq-invariantly to all remaining vertices of ∆.
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2. Preliminary

Scaling functions related to standard vertices

Fix a standard vertex v P Vpcq. Denote by p the Lie algebra of Pv and
by g the Lie algebra of G. We consider the

`

dimpgq
dimppq

˘

-dimensional vector

space Vg :“ ^dimppqg and its one-dimensional subspace Vp :“ ^dimppqp.
As G acts on Vg via the adjoint representation p^dimppq Adq “: ρ so does
Pv on Vp. Because Vp is one-dimensional, there is a (non-trivial) weight
$v : Pv Ñ GL1 with

ρppqpaq “ $vppq ¨ a (2.1)

for all p P Pv and a P Vp. Next we proof ϕc
v P XpPcq: We call a root

λ P XpTq positive if gλ Ď uc. Now uc decomposes into uc “ ‘
λPΦ

gλ, where

Φ is the set of positive roots. Moreover Φ is partially ordered via φ ď ψ if
and only if there exists λ P Φ with ψ “ φ` λ. For ϕc

v P XpTq set

Φ1 :“ tλ P Ψ | λ ě ϕc
vu ;

Φ2 :“ tλ P Ψ | λ ą ϕc
vu .

Now
À

λPΦ1 gλ “: u1 and
À

λPΦ2 gλ “: u2 are ideals in pc and ϕc
vppq “

detpAdu1{u2qppq P XpPcq. So far we have

roots tϕc
w P XpPcq | w P Vpcqu and

weights t$w P XpPvq | w P Vpcqu .

We claim those roots and weights to be almost dual. To explain what
we mean by almost dual we consider XpPcq b Q as Q-vector space, i.e.
additively, and endow it with an inner product x´,´y that is invariant
under the action of the Weyl group W “ NpT q{ZpT q. Depending on the
context, we regard tϕc

v | v P Vpcqu either as a set of characters or as a set of
reflections. Moreover we regard W as generated by those reflections.

Now set $c
v : Pc Ñ GL1 to be the restriction of $v onto Pc. Now there are

rational numbers cvw P Q and nvw P Q such that

ϕc
v “

ź

wPVpcq

p$c
wq

cvw and $c
v “

ź

wPVpcq

pϕc
wq

nvw (2.2)

(compare for example [BKW13, 11.4]).
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2.1. Scaling functions, roots and weights

Moreover we have

0 ď nvw for all v,w;
0 ă nvv for all v;
0 ă cvv for all v;

x$c
w, ϕ

c
vy “ 0 if w ‰ v;

x$c
w, ϕ

c
vy ą 0 if w “ v;

xϕc
w, ϕ

c
vy ď 0 if w ‰ v;

x$c
w, $

c
vy ě 0 if w ‰ v.

(2.3)

That is the reason to call the bases almost dual, see Figure 2.1.

wv

$c
w$c

v

ϕc
wϕc

v

c

Figure 2.1: Set of simple roots and corresponding set of weights.

To construct scaling functions for each weight, we apply Lemma 1.2.5 and
use the fact that $v occurs as a weight of some representation: Choose
some primitive x P VppAq and set

S1
$v

: GpAq ÝÑ Rą0,

g ÞÝÑ ~ρpg´1
qpxq~´1.

Lemma 2.1.1. S1
$v

is a scaling function for $v.

Proof. For arbitrary p P PvpAq and g P GpAq we have

S1
$v
pp ¨ gq “ ~ρpg´1 ¨ p´1qpxq~´1

(2.1)
“ ~ρpg´1qp$vpp

´1q ¨ xq~´1

1.2.5
“ ‖$vppq‖ ¨ ~ρpg´1q ¨ x~´1

“ ‖$vppq‖ ¨ S1
$v
pgq.
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2. Preliminary

Up to now S1
$v

does not need to be invariant under right multiplication by
K. Therefore we average over K, i.e. we choose some Haar-measure dω on
GpAq and set

S2
$v

: GpAq ÝÑ R`,

g ÞÝÑ

ż

kPK

S1
$v
pg ¨ kq dω. (2.4)

By Lemma 2.1.1 S2
$v

is a scaling function for $v that is invariant under
right multiplication by K. However, it turns out that S2

$v
is still not good

enough for our purpose. Each g P GpAq splits into g “ gS ¨ gS with

pgSqp :“

#

gp if p P S,

1 if p R S,
and pgSqp :“

#

1 if p P S,

gp if p R S.

In Section 2.4 we need scaling functions to respect this decomposition, i.e.
we need S$vpgS ¨ gSq “ S$vpgSq ¨S$vpgSq for all g P GpAq. Therefore we set

S$v : GpAq ÝÑ R`;

g ÞÝÑ

ˆ

S2
$v
pgSq

S2
$v
p1q

˙

¨

ˆ

S2
$v
pgSq

S2
$v
p1q

˙

.
(2.5)

Theorem 2.1.2. S$v satisfies the following conditions:

(i) S$vpp ¨ gq “ ‖$vppq‖ ¨ S$vpgq for all p P PvpAq, g P GpAq;

(ii) S$vpg ¨ kq “ S$vpgq for all g P GpAq, k P K;

(iii) S$vp1q “ 1;

(iv) S$vppq “ ‖$vppq‖ for all p P PvpAq;

(v) S$vpgS ¨ gSq “ S$vpgSq ¨ S$vpgSq for all g P GpAq.

Proof. By Lemma 2.1.1, equation (2.4) and equation (2.5), S$v clearly sat-
isfies (i), (ii), (iii) and (v). Condition (iv) is a direct consequence of (i) and
(iii).

Next we deal with the roots. Due to equation (2.2) we set

Sϕc
v

:“
ź

wPVpcq

pS$wq
cvw . (2.6)

We obtain an analogous statement for the standard roots as for the standard
weights:
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2.1. Scaling functions, roots and weights

Lemma 2.1.3. Sϕc
v

satisfies the following conditions:

(i) Sϕc
v
pp ¨ gq “ ‖ϕc

vppq‖ ¨ Sϕc
v
pgq for all p P PvpAq, g P GpAq;

(ii) Sϕc
v
pg ¨ kq “ Sϕc

v
pgq for all g P GpAq, k P K;

(iii) Sϕc
v
p1q “ 1;

(iv) Sϕc
v
ppq “ ‖ϕc

vppq‖ for all p P PvpAq;

(v) Sϕc
v
pgS ¨ gSq “ Sϕc

v
pgSq ¨ Sϕc

v
pgSq for all g P GpAq.

Proof. This follows from Theorem 2.1.2 and the equations (2.2) and (2.6).

Scaling functions related to arbitrary vertices

Until now we have roots, weights and corresponding scaling functions only
for standard vertices. The idea to continue is to transfer them GpQq-
invariantly to all remaining vertices of ∆:

GpQq acts typepreserving and chamber-transitive on ∆. Hence, given a
chamber c P Cp∆q and a vertex v P Vpcq, there exists an element q P GpQq
and a unique v P Vpcq, such that c “ q ¨ c (and PcpAq “ q ¨PcpAq ¨ q´1) and
v “ q ¨ v. For such quadruple pc, v, q, vq we define ϕcv P XpPcq via

ϕcv : PcpAq ÝÑ GL1pAq,
p ÞÝÑ ϕc

vpq
´1pqq.

To prove that ϕcv is well defined pick two elements q, q̂ P GpQq with q¨c “ q̂¨c,
i.e. q´1q̂ P PcpQq and some p P PcpQq. Now

ϕc
vpq

´1pqq “ ϕc
vpq̂

´1qq ¨ ϕc
vpq

´1pqq ¨ ϕc
vpq

´1q̂q “ ϕc
vpq̂

´1pq̂q.

Hence ϕcv is well defined. Accordingly we define

$v : PvpAq ÝÑ GL1pAq,
p ÞÝÑ $vpq

´1pqq.
(2.7)

By an analogous calculation one proves $v to be well defined. Now set

S$v : GpAq ÝÑ R`
g ÞÝÑ S$vpq

´1
¨ gq.

(2.8)

Well-definedness follows obviously from Theorem 2.1.2 (i) and ‖Qˆ‖ “ 1.
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2. Preliminary

Lemma 2.1.4. Given v P Vp∆q, p P PvpAq, g P GpAq, q1 P GpQq and
k P K the following assertions hold:

(i) S$q1¨vpq
1 ¨ gq “ S$vpgq;

(ii) S$vpp ¨ gq “ ‖$vppq‖ ¨ S$vpgq;

(iii) S$vpg ¨ kq “ S$vpgq.

Proof. Claim (i), i.e. the GpQq-invariance, holds by definition (2.8). Now
claim (ii) results from (2.7) and Theorem 2.1.2 (i). The invariance under
right multiplication by K, i.e. claim (iii), follows from Theorem 2.1.2 (ii).

Analogously to equation (2.6) we define

Sϕcv :“
ź

wPVpcq
w“q¨w

pS$wqcvw . (2.9)

Alternatively we could write

Sϕcv : GpAq ÝÑ R`,
g ÞÝÑ Sϕc

v
pq´1

¨ gq.
(2.10)

Again we recieve an analogous statement for the roots as for the weights:

Lemma 2.1.5. Given a chamber c P Cp∆q, some vertex v P Vpcq and arbi-
trary p P PvpAq, g P GpAq, q1 P GpQq and k P K the following assertions
hold:

(i) S
ϕq
1¨c

q1¨v

pq1 ¨ gq “ Sϕcvpgq;

(ii) Sϕcvpp ¨ gq “ ‖ϕcvppq‖ ¨ Sϕvpgq;

(iii) Sϕcvpg ¨ kq “ Sϕcvpgq.

We skip the proof because it resembles the proof of Lemma 2.1.4.
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2.2. Algebraic reduction theory in terms of scaling functions

2.2 Algebraic reduction theory in terms of
scaling functions

In this section we recast Theorem 1.2.1 and Theorem 1.2.2 in terms of
scaling functions. Thereafter we prove a compactness criterion. Because
we want to phrase these results additively, we apply the logarithm first:
For each chamber c P Cp∆q and each vertex v P Vpcq we consider

log ˝S$v : GpAq Ñ R and

log ˝Sϕcv : GpAq Ñ R.

Because E Ă GpAq is compact the following constants exist:

cmin,1 :“ min tlogpSϕc
v
peqq, logpS$vpeqq | e P E, v P Vpcqu ;

cmax,1 :“ max tlogpSϕc
v
peqq, logpS$vpeqq | e P E, v P Vpcqu .

(2.11)

Lemma 2.2.1. By Lemma 1.2.3 GpAq “ PcpQq¨F ¨T`8 ¨E. Given g P GpAq
with g “ p ¨ f ¨ t ¨ e the following assertions hold for each v P Vpcq and all
c¯ P R:

(i) If log pS$vpgqq ě c´ we have $vptq ě exppc´ ´ cmax,1q.

(ii) If log pS$vpgqq ď c` we have $vptq ď exppc` ´ cmin 1,q.

(iii) If log pSϕc
v
pgqq ě c´ we have ϕc

vptq ě exppc´ ´ cmax,1q.

(iv) If log pSϕc
v
pgqq ď c` we have ϕc

vptq ď exppc` ´ cmin,1q.

Proof. The calculations for (i), (ii) (iii) and (iv) are all analogue. Therefore
we only present the first:

c´ ď log pS$vpgqq

“ log pS$vpp ¨ f ¨ t ¨ eqq

2.1.2piq
“ log p‖$vpp ¨ f ¨ tq‖q ` log pS$vpeqq

‖Qˆ‖“1
FĂPpAq˝
“ log p‖$vptq‖q ` log pS$vpeqq

ď log p‖$vptq‖q ` cmax,1.

Applying Lemma 2.2.1 we may formulate the main theorems of Section 1.2
in terms of scaling functions. In this language Theorem 1.2.1 reads as
follows:
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2. Preliminary

Theorem 2.2.2. There is a constant r̂ P R such that for each g P GpAq
there exists a chamber c P Cp∆q with logpSϕcvpgqq ě r̂ for all v P Vpcq.

Proof. By Theorem 1.2.1 there is a positive real number C1 ą 0 such that
GpAq “ GpQq ¨F ¨T`8pC1q ¨E. With respect to this decomposition we write
g “ q ¨ f ¨ t ¨ e for each g P GpAq. For such decomposition choose c “ q ¨ c.
Then we have:

logpSϕcvpgqq “ logpSϕcvpq ¨ f ¨ t ¨ eqq
2.1.5piq
“ logpSϕc

v
pf ¨ t ¨ eqq

2.1.3piq
“ logp‖ϕc

vptq‖q ` logpSϕc
v
peqq

ě logpC1q ` cmin,1

for all v “ q ¨ v P Vpcq. Now set r̂ :“ logpC1q ` cmin,1.

Moreover Theorem 1.2.2 translates to:

Theorem 2.2.3. For any constant r̂ P R there is another constant R̂ P R
such that the following holds:

Let c, c1 P Cp∆q, v P Vpcq and g P GpAq with

logpSϕcwpgqq ě r̂ for all w P Vpcq;
logpSϕcvpgqq ě R̂;

logpSϕc1
w1
pgqq ě r̂ for all w1 P Vpc1q.

Then v P Vpc1q.

Proof. Let r̂ P R be an arbitrary constant. Now set C1 :“ exppr̂ ´ cmax,1q

and apply Theorem 1.2.2 to obtain a corresponding constant C2 P R`. Next
define R̂ :“ logpC2q ` cmax,1.

Now let c, c1 P Cp∆q, v P Vpcq and g P GpAq satisfy the condition above.
Moreover choose q, q1 P GpQq and v P Vpcq with c “ q ¨ c, c1 “ q1 ¨ c and
v “ q ¨ v. In that case we have

logpSϕc
w
pq´1

¨ gqq
(2.8)
“ logpSϕcwpgqq ě r̂ for all w “ q ¨w P Vpcq;

logpSϕc
v
pq´1

¨ gqq
(2.8)
“ logpSϕcvpgqq ě R̂;

logpSϕc
w
pq1´1

¨ gqq
(2.8)
“ logpSϕc1

w1
pgqq ě r̂ for all w1 “ q1 ¨w P Vpc1q.

(2.12)
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2.2. Algebraic reduction theory in terms of scaling functions

By Lemma 1.2.3 we may write

q´1
¨ g “ p ¨ f ¨ t ¨ e and q1´1

¨ g “ p1 ¨ f 1 ¨ t1 ¨ e1 (2.13)

with p, p1 P PcpQq, f, f 1 P F, t, t1 P T`8 and e, e1 P E. We deduce from
equation (2.12) and Lemma 2.2.1 that

ϕc
wptq ě C1 for all w P Vpcq;
ϕc
vptq ě C2;

ϕc
wpt

1
q ě C1 for all w P Vpcq

and hence t, t1 P T`8pC1q. By equation (2.13) we moreover have
`

p´1
¨ pq´1

¨ q1q ¨ p1
˘

¨ f 1t1e1 “ fte.

Thus Theorem 1.2.2 implies pp´1 ¨ pq´1 ¨ q1q ¨ p1q P PvpQq. Since p, p1 P PcpQq
we even have pq´1 ¨ q1q P PvpQq. Therefore

v “ q ¨ v “ q ¨ pq´1
¨ q1q ¨ v “ q1 ¨ v P Vpq1 ¨ cq “ Vpc1q.

Theorem 2.2.4 (Compactness Criterion). Given a subset H Ă GpAq
the following assertions are equivalent:

(i) H is relatively compact modulo GpQq.

(ii) There exist real constants c´, c` P R such that for each h P H there
exists a chamber c P Cp∆q with

c´ ď log
`

Sϕcvphq
˘

and log pS$vphqq ď c`

for all v P Vpcq.

(iii) There exist real constants c̃´, c̃` P R such that for each h P H there
exists a chamber c P Cp∆q with

c̃´ ď log pS$vphqq ď c̃`

for all v P Vpcq.

(iv) There exist real constants ĉ´, ĉ` P R such that for each h P H there
exists a chamber c P Cp∆q with

ĉ´ ď log
`

Sϕcvphq
˘

ď ĉ`

for all v P Vpcq.
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2. Preliminary

Proof. piq ñ piiq: Let B Ă GpAq be compact with H Ă GpQq ¨B. Define

c´ :“ min tmintlogpS$vpbqq, logpSϕc
v
pbqqu | b P B, v P Vpcqu ;

c` :“ max tmaxtlogpS$vpbqq, logpSϕc
v
pbqqu | b P B, v P Vpcqu .

Given an h “ q ¨ b P H choose c :“ q ¨ c. Then we have

c´ ď logpSϕc
v
pbqq

2.1.5piq
“ logpSϕcvphqq;

c` ě logpS$vpbqq
2.1.4piq
“ logpS$vphqq.

piiq ñ piiiq: Let c´, c` P R be as in the above theorem and h P H. By
assumption there is a chamber c P Cp∆q with

c´ ď log
`

Sϕcvphq
˘

and log pS$vphqq ď c`

for all v P Vpcq. Now choose q P GpQq with c “ q¨c and write q´1¨h “ p¨f ¨t¨e
with respect to the decomposition of GpAq in Lemma 1.2.3. Then we have

log pS$vphqq
(2.8)
“ log pS$vpp ¨ f ¨ t ¨ eqq

2.1.2piq
“ logp‖$vpp ¨ f ¨ tq‖q ` log pS$vpeqq

(2.2)
“

ř

wPVpcq
nvw ¨ log p‖ϕc

wpp ¨ f ¨ tq‖q ` log pS$vpeqq

(2.11)
nvwě0
ě

ř

wPVpcq
nvw ¨ plogp‖ϕc

wpp ¨ f ¨ tq‖q ` log pSϕc
w
peqq ´ cmax,1q ` cmin,1

2.1.5
piq,piiq

ě
ř

wPVpcq
nvw ¨

´

log
´

Sϕq¨cq¨wphq
¯

´ cmax,1

¯

` cmin,1

nvwě0
ě

ř

wPVpcq
nvw ¨ pc´ ´ cmax,1q ` cmin,1

“: c̃´.

Last set c̃` :“ c`.

piiiq ñ pivq: Let c̃´, c̃` P R be as in the theorem and h P H. By assumption
there is a chamber c P Cp∆q with

c̃´ ď logpS$vphqq ď c̃`
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2.2. Algebraic reduction theory in terms of scaling functions

for all v P Vpcq. Now choose q P GpQq with c “ q ¨ c. For v “ q ¨ v we have

log
`

Sϕcvphq
˘

2.1.5piq
“ log pSϕc

v
pq´1 ¨ hqq

(2.6)
“

ř

wPVpcq
cvw ¨ log pS$wpq

´1 ¨ hqq

“
ř

wPVpcq
cvwě0

cvw¨ log pS$wpq
´1 ¨ hqq `

ř

wPVpcq
cvwă0

cvw ¨ log pS$wpq
´1 ¨ hqq .

Using the condition we conclude that

ĉ´ :“
ř

wPVpcq
cvwě0

cvw ¨ c̃´ `
ř

wPVpcq
cvwă0

cvw ¨ c̃`

ď log
`

Sϕcvphq
˘

ď
ř

wPVpcq
cvwě0

cvw ¨ c̃` `
ř

wPVpcq
cvwă0

cvw ¨ c̃´

“: ĉ`

for all v P Vpcq.

pivq ñ piq: Given ĉ´, ĉ` P R as in the theorem we define

B :“

"

t P T`8

ˇ

ˇ

ˇ

ˇ

exppĉ´ ´ cmax,1q ď ϕc
vptq ď exppĉ` ´ cmin,1q

for all v P Vpcq

*

.

The set B is compact because T`8 is of Q-rank |Vpcq|. We show that H is
contained in GpQq ¨ F ¨B ¨ E:

Let h P H. By assumption there is a chamber c “ q ¨ c P Vp∆q with

ĉ´ ď log
`

Sϕcv
˘

phq
(2.8)
“ log pSϕc

v
q pq´1

¨ hq ď ĉ`

for all v P Vpcq. With respect to the segmentation of GpAq in Lemma 1.2.3
we write q´1 ¨ h “ p ¨ f ¨ t ¨ e and conclude from Lemma 2.2.1 that

exppĉ´ ´ cmax,1q ď ϕc
vptq ď exppĉ` ´ cmin,1q

for all v P Vpcq, i.e. t P B. Hence

h “ q ¨ p ¨ f ¨ t ¨ e P GpQq ¨ F ¨B ¨ E.

Since E and F are compact the proof is done.
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2.3 The set of apartments

In this section we search for a family A of flat subspaces in XS “
ś

pPS Xp

that satisfies condition (A). We deal with this problem for the archimedean
place and the non-archimedean places individually. Finally we prove A to
serve as an appropriate substitution of an apartment system on XS. This
is going to be a decisive step to show that condition (B) is true.

Theorem 2.3.1 ([Bor69, Theorem 11.4]). Let U denote the unipotent
radical of Pc and ZpTq the centralizer of T in G. Then Pc can be writ-
ten as semi-direct product Pc “ U ¸ ZpTq. If M denotes the connected

component of
´

Ş

χPXpZpTqq kerχ
¯

, we moreover have ZpTq “ M ¨ T. Fi-

nally Pc “ U¸ pM ¨Tq.

Given a non-archimedean place p P S, the space Xp is a building and thus
carries an apartment system Ap. To rewrite Ap let Σp denote the apart-
ment corresponding to the maximal Qp-split torus Tp in Pc. We assume
˚p P Σp without loss of generality. Since GpQpq acts strongly transitive on
Xp the translates of Σp under the action of PcpQpq cover Xp. Applying
Theorem 2.3.1 we even know that the translates of Σp under the action of
UpQpqMpQpq cover Xp, since TpQpq, as a subgroup of TppQpq, stabilizes
Σp. For simplicity we denote this set of translates by Ac

p (compare [BKW13,
p. 42]). Now Ap “

Ť

qPGpQq q ¨Ac
p.

We want to deal with the archimedean case similarly. However X8 is no
building, it carries no apartment system, GpRq does not act strongly tran-
sitive. In order to obtain a substitution we need the following lemma:

Lemma 2.3.2 (Corollary of [BS73, Proposition 1.5]). The following asser-
tions hold:

(i) PcpRq acts transitively on X8.

(ii) Let x8 “ u8m8t8 ¨ ˚8 P X8 with u8 P UpRq, m8 P MpRq and
t8 P TpRq˝. Then t8 is unique.

Now set Σ8 :“ TpRq˝ ¨ ˚8. It is flat and totally geodesic in X8, provided
k8 K pc. Due to Lemma 2.3.2 (i) its UpRqMpRq-translates cover X8.
Therefore we define

Ac
8 :“ tu8m8 ¨ Σ8 | u8 P UpRq, m8 PMpRqu .

The idea is to use Ac
8 as an archimedean analogue of Ac

p. Therefore we
set A8 :“ YqPGpQq q ¨ Ac

8. Slightly abusing notation we call its elements
archimedean apartments.
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2.3. The set of apartments

So far we have an apartment system on each factor of XS. To obtain an
apartment system on XS we define the standard apartment Σ :“

ś

pPS Σp,
obtain ˚ P Σ, and set

Ac :“ tum ¨ Σ | u P UpASq,m PMpASqu . (2.14)

For an arbitrary chamber c “ q ¨ c P Cp∆q we set Ac :“ q ¨Ac. We remark
that for any chamber c P Cp∆q the flat subspaces of Ac cover XS. Now set

A :“
ď

cPCp∆q

Ac. (2.15)

Up to now we did not embed ∆ into BpXSq. Hence we can not say c P Cp∆q
to be in the visual boundary of any apartment in Ac. Though, in Corollary
2.4.8, we embed ∆ into BpXSq such that Ac contains only apartments that
contain c in their visual boundary. This is going to prove that condition
(A) holds.

Theorem 2.3.3. Given a chamber c P Cp∆q and two apartments Σ1,Σ2 P
Ac there is an isometry i : Σ1 Ñ Σ2 fixing the intersection.

Proof. The apartments Σ1 and Σ2 are products of flat subspaces, i.e. Σ1 “
ś

pPS Σ1p and Σ2 “
ś

pPS Σ2p. Therefore we may consider this problem for
the archimedean place and the non-archimedean places individually:

For a non-archimedean place p the space Xp is a building and the subspaces
Σ1p and Σ2p are apartments therein. Hence there is an isometry of coxeter
complexes ip : Σ1p Ñ Σ2p fixing the intersection.

For the archimedean place 8 the space X8 is no building. Therefore there
is no abstract isometry from Σ18 to Σ28 just by definition. Though, by defi-
nition of Ac, there are elements q P GpQq and u18m

1
8, u

2
8m

2
8 P UpRqMpRq

such that

Σ18 “ q ¨ u18m
1
8 ¨ Σ8 and

Σ28 “ q ¨ u28m
2
8 ¨ Σ8.

Thus q ¨ u8m8 ¨ q
´1 :“ q ¨ pu28m

2
8qpu

1
8m

1
8q
´1 ¨ q´1 identifies Σ18 with Σ28

isometrically. Moreover it fixes the intersection: Given q ¨u18m
1
8 ¨ pt

1
8 ¨˚8q “

q ¨ u28m
2
8 ¨ pt

2
8 ¨ ˚8q P Σ18 XΣ28 we know by Lemma 2.3.2 (ii) that t18 “ t28.

Hence we have

q ¨ u8m8 ¨ q
´1
¨ q ¨ u18m

1
8 ¨ pt

1
8 ¨ ˚8q “ q ¨ u28m

2
8 ¨ pt

1
8 ¨ ˚8q

“ q ¨ u28m
2
8 ¨ pt

2
8 ¨ ˚8q

“ q ¨ u18m
1
8 ¨ pt

1
8 ¨ ˚8q.
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2.4 Busemann functions

In this section we construct a family of Γ-invariant rescaled Busemann func-
tions on XS, which is in one-to-one correspondence with the set of vertices
Vp∆q, that is closely related to the family of scaling functions discussed in
Section 2.1. Moreover we embed ∆ isometrically into the visual boundary
of XS such that each vertex v P Vp∆q is the center of some Busemann
function and vice versa. The basic idea of the approach is the following:

In Section 1.3 we have seen that XS and XS are in finite hausdorff-distance.
Hence Busemann functions on XS are determined by their values on XS.
Moreover XS – GpASq{K. For this reason we have established a family of
scaling functions tS$v : GpAq Ñ R` | v P Vp∆qu in Section 2.1, such that
each is invariant under multiplication by K from the right. In the following
subsection we are going to prove the standard scaling functions to be re-
strictions of Busemann functions centered at the standard vertices. During
the subsection thereafter we deal with all remaining vertices. It turns out
that the family of Busemann functions, in contrast to the family of scaling
functions, is Γ-invariant, but not GpQq-invariant.

Busemann functions related to standard vertices

For each standard vertex v P Vpcq define

log ˝S$v : GpASq{K ÝÑ R,
g ¨K ÞÝÑ logpS$vpgqq.

(2.16)

Lemma 2.4.1 (compare [BKW13, Lemma 12.1]). Given a standard vertex
v P Vpcq there exists an affine function hv : Σ Ñ R that agrees with log ˝Sv

on ΣX XS.

Proof. First we remark that

ΣX XS “ Σ8 X X8 ˆ
ź

pPSzt8u

Σp X Xp

“ TpRq ¨ ˚8 ˆ
ź

pPSzt8u

TppQpq ¨ ˚p

“

¨

˝TpRq ˆ
ź

pPSzt8u

TppQpq

˛

‚¨ ˚.

Now let p P PcpASq be arbitrary. For each v P Vpcq we obtain

log ˝S$vpp ¨Kq
(2.16)
“ logpS$vppqq

2.1.2pivq
“ logp‖$vppq‖q. (2.17)

30



2.4. Busemann functions

Considering this statement just for p “ ptpqpPS P TpRq ˆ
ś

pPSzt8uTppQpq

the claim follows.

Affine functions are restrictions of Busemann functions up to rescaling,
hence there is a geodesic, possibly of non-unit speed, defining hv. Fur-
thermore Σ is flat in XS, and hence geodesics in Σ are geodesics in XS.
Therefore we may consider hv as a rescaled Busemann function on XS.

Theorem 2.4.2. hv : XS Ñ R agrees with log ˝S$v on XS.

Proof. By Section 2.3 we know thatXS is coverd by UpASqMpASq-translates
of Σ. Hence

XS “ UpASqMpASq ¨ pΣX XSq .

By Theorem 2.1.2 (i) and the definition of U and M we know that S$v is
invariant under left multiplication by UpASqMpASq and hence, by (2.16),

log ˝S$vpum ¨ g ¨Kq “ log ˝S$vpg ¨Kq, (2.18)

for all um P UpASqMpASq and all g P GpASq. If we can prove the
rescaled Busemann function hv to be invariant under left multiplication
by UpASqMpASq as well, the claim follows from Lemma 2.4.1.

Let um P UpASqMpASq be arbitrary. By (2.17) the center of hv coin-
cides with the visual endpoint of the weight $v. As such it is fixed by
UpASqMpASq. Since Busemann functions are determined by their center
and the value of one point it suffices to prove equality of hvp´q and hvpum´q
at one point. To determine such point we remark that XS “

ś

pPS Xp is

a product of CATp0q-spaces. Therefore the rescaled Busemann function hv
decomposes into a sum of rescaled Busemann functions, i.e. hv “

ř

pPS hv,p.

For the archimedean place we have hv,8px8q “ hv,8pu8m8 ¨x8q for all x8 P
X8 by [Leu95, Lemma 1.3]. Considering a non-archimedean place p ‰ 8 we
know that Σp and upmp ¨Σp are apartments in Xp that share a sector. Hence
there exists a point ap P Σp X Xp with upmp ¨ ap P pΣp X upmp ¨ Σp X Xpq.
Now define um P UpASqMpASq and a P XS by

upmp “

#

1mm if p “ 8,

upmp if p ‰ 8,
and ap “

#

˚8 if p “ 8,

ap
1 if p ‰ 8.
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2. Preliminary

We conclude that

hvpum ¨ aq “
ř

pPS

hv,ppupmp ¨ apq

“ hv,8pu8m8 ¨ a8q `
ř

pPSzt8u

hv,ppupmp ¨ apq

“ hv,8pa8q `
ř

pPSzt8u

hv,ppupmp ¨ apq

“ hvpum ¨ aq

um¨aPΣXXS
2.4.1
“ log ˝S$vpum ¨ aq

(2.18)
“ log ˝S$vpaq

aPΣXXS
2.4.1
“ hvpaq.

Busemann functions related to arbitrary vertices

In this subsection we want to create a family of Busemann functions such
that each rational vertex is the center of one and only one Busemann func-
tion. Moreover this family shall be closely related to the family of scaling
functions discussed in Section 2.1.

At first glance it seems plausible to use the chamber transitive action of
GpQq on ∆ to transfer the standard Busemann functions GpQq-invariantly
to all remaining vertices. Though a second glance reveals this procedure
to cause troubles: To analyze a potential connection between a family of
Busemann functions on XS and the family of scaling functions on GpAq,
we would like to use GpASq{K – XS evenly distributed in XS. Now
GpQq ć GpASq. Hence the best we can do is to use GpQq XGpASq “ Γ
to transfer the standard Busemann functions. Now another problem oc-
curs. Transferring the standard vertices using Γ only, we might not reach
all rational vertices. However, by Lemma 1.2.4, there is a finite set of rep-
resentatives tq1,...,qmu for the set of double cosets ΓzGpQq{PcpQq. Since
PcpQq fixes c we therefore have for each vertex v P Vp∆q some γ P Γ, some
qi P tq1, ..., qmu and a unique v P Vpcq such that v “ γ ¨qi ¨v. Thus we define

hγ,qi,vpxq :“ hv
`

q´1
i ¨ γ´1

¨ x
˘

“ hv
`

pq´1
i ¨ γ´1

qS ¨ x
˘

(2.19)

for all x P XS. This definition causes hγ,qi,v to be centered at the visual
endpoint of $γ¨qi¨v and the family

 

hγ,qi,v
ˇ

ˇ γ P Γ, qi P tq1, ..., qmu, v P Vpcq
(
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2.4. Busemann functions

to be Γ-invariant in the sense that

hγ1¨γ,qi,vpγ
1
¨ xq “ hγ,qi,vpxq (2.20)

for all γ, γ1 P Γ, qi P tq1, ..., qmu, v P Vpcq and x P XS. Now we encounter a
problem: Given two descriptions γ1 ¨ qi ¨ v “ γ ¨ qj ¨ v of the same vertex, the
rescaled Busemann functions hγ1,qi,v and hγ,qj ,v have the same speed and a
common center but do not need to coincide:

Lemma 2.4.3. Let γ, γ1 P Γ, qi, qj P tq1, ..., qmu and v P Vpcq such that
γ1 ¨ qi ¨ v “ γ ¨ qj ¨ v. Then

hγ1,qi,v ´ hγ,qj ,v “ log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

.

Proof. Since Busemann functions are determined by their center and the
value of one point, it suffices to prove the difference at ˚ P XS:

hγ1,qi,vp˚q

(2.19)
“ hv

`

pq´1
i γ1´1qS ¨ ˚

˘

2.4.2
“ log ˝S$v

`

pq´1
i γ1´1qS ¨K

˘

(2.16)
“ log

`

S$v

`

pq´1
i γ1´1qS

˘˘

‖Qˆ‖“1
“ log

`

S$v

`

pq´1
i γ1´1qS

˘˘

` log
`

‖$vpq
´1
j γ´1γ1qiq‖

˘

“ log
`

S$v

`

pq´1
i γ1´1qS

˘˘

` log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

` log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

2.1.2piq
“ logpS$vppq

´1
j γ´1qSq ` log

`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

(2.16)
“ log ˝S$vppq

´1
j γ´1qS ¨Kq ` log

`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

2.4.2
“ hvppq

´1
j γ´1qS ¨ ˚q ` log

`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

(2.19)
“ hγ,qj ,vp˚q ` log

`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

.

(2.21)

Fortunately we may prove that the constant log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

does
not depend on a particular choice of γ respectively γ1, i.e. given γ1, γ2, γ P Γ,
qi, qj P tq1, ..., qmu and v P Vpcq with γ1 ¨ qi ¨ v “ γ2 ¨ qi ¨ v “ γ ¨ qj ¨ v we have

log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

“ log
`

‖$vppq
´1
j γ´1γ2qiqSq‖

˘

. (2.22)

To prove equation (2.22) we need the following lemma. Therefore we remark
that

ZS “ tq P Q | |q|p ď 1 for all p R Su ;

ZˆS “ tq P Q | |q|p “ 1 for all p R Su .
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Lemma 2.4.4. Let H be a linear algebraic group, $ P XpHq and Γ1 an
S-arithmetic lattice in H. For γ P Γ1 we have ‖p$pγqqS‖ “ ‖p$pγqqS‖ “ 1.

Proof. Since γ P Γ1 we have $pγqn P ZˆS for some n P N. Therefore

‖p$pγqqS‖ “
ź

pRS

|$pγq|p “ 1.

Moreover we have

‖p$pγqqS‖
‖Qˆ‖“1
“ ‖p$pγqqS‖ ¨ ‖$pγq‖´1

“ ‖p$pγqqS‖ ¨ ‖p$pγqqS‖´1 ¨ ‖p$pγqqS‖´1

“ ‖p$pγqq´1
S
‖

“ 1.

Corollary 2.4.5. Given γ1, γ2, γ P Γ, qi, qj P tq1, ..., qmu and v P Vpcq with
γ1 ¨ qi ¨ v “ γ2 ¨ qi ¨ v “ γ ¨ qj ¨ v we have

log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

“ log
`

‖$vppq
´1
j γ´1γ2qiqSq‖

˘

,

i.e. equation (2.22) holds.

Proof. By assumption γ´1
1 γ2 P Pqi¨vpOSq and hence we deduce from Lemma

2.4.4 that

log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

2.4.4
“ log

`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

` logp‖$qi¨vppγ
´1
1 γ2qSq‖q

(2.7)
“ log

`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

` logp‖$vppq
´1
i γ´1

1 γ2qiqSq‖q
“ log

`

‖$vppq
´1
j γ´1γ2qiqSq‖

˘

.

Now we may adjust the 0-level of all Busemann functions centered at the
same vertex to one another. We do the same trick as Leuzinger did in
[Leu95, Section 3], i.e. we choose a representative in each Γ-conjugacy class
of maximal parabolic Q-subgroups.

Given v P Vpcq and i P t1, ...,mu we define kpi,vq P t1, ...,mu to be the
smallest index such that there exists some γi,v P Γ with qi ¨ v “ γi,vqkpi,vq ¨ v.
By Corollary 2.4.5 we may set

spi,vq :“ log
`

‖$vppq
´1
i ¨ γi,v ¨ qkpi,vqqSq‖

˘

. (2.23)
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2.4. Busemann functions

It turns out that it suffices to adapt the 0-level of some Busemann function
hγ,qi,v by the constant spi, vq, i.e. independently of γ. We define

h̃γ,qi,v :“ hγ,qi,v ` spi, vq. (2.24)

Lemma 2.4.6. If γ1 ¨ qi ¨ v “ γ ¨ qj ¨ v we have h̃γ1,qi,v “ h̃γ,qj ,v.

Proof. By assumption we have kpi, vq “ kpj, vq “: k. More precisely there
exists γi,v P Γ such that

γi,v ¨ qk ¨ v “ qi ¨ v;

γ´1
¨ γ1 ¨ γi,v ¨ qk ¨ v “ qj ¨ v.

Hence we may set γj,v :“ γ´1 ¨ γ1 ¨ γi,v and obtain

h̃γ1,qi,v
(2.24)
“ hγ1,qi,v` spi, vq

2.4.3
“ hγ,qj ,v ` log

`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

` spi, vq

(2.24)
“ h̃γ,qj ,v ´ spj, vq

` log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

` spi, vq

(2.23)
“ h̃γ,qj ,v ` log

`

‖$vppq
´1
k γ´1

j,v qjqSq‖
˘

` log
`

‖$vppq
´1
j γ´1γ1qiqSq‖

˘

` log
`

‖$vppq
´1
i γi,vqkqSq‖

˘

“ h̃γ,qj ,v ` log
`

‖$vppq
´1
k γ´1

j,v qj ¨ q
´1
j γ´1γ1qi ¨ q

´1
i γi,vqkqS‖

˘

“ h̃γ,qj ,v ` log p‖$vp1q‖q .

Given an arbitrary vertex v P Vp∆q and some description v “ γ ¨ qi ¨ v we
use Lemma 2.4.6 to define

h̃v :“ h̃γ,qi,v. (2.25)

Next we do two things at the same time: We investigate the relation between
!

h̃v

ˇ

ˇ

ˇ
v P Vp∆q

)

and tSv | v P ∆u and, simultaneously, prove the announced

assertion the family of Busemann functions not to be GpQq-invariant. For
simplicity we assume q1 “ 1 from now on.
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Theorem 2.4.7. Given a vertex v “ γ1 ¨ qi ¨ v, some γ P Γ, p P PvpAq,
g P GpAq and x P XS the following assertions hold:

(i) h̃γ¨vpγ ¨ xq “ h̃vpxq;

(ii) h̃vpg ¨ ˚q “ log pS$vpgqq ´ log
´

S$v

´´

q´1
kpi,vq

¯

S

¯¯

;

(iii) h̃vpg ¨ ˚q “ log pS$vpgSqq;

(iv) h̃vpp ¨ xq “ log p‖$vppSq‖q ` h̃vpxq;

(v) h̃qi¨vpqi ¨ xq “ h̃vpxq ` spi, vq.

Proof. Claim (i) holds by (2.20), (2.24) and (2.25). We proof assertion (ii)
by direct calculation:

h̃v pg ¨ ˚q

(2.25)
“ h̃γ,qi,v pg ¨ ˚q

(2.24)
“ hγ,qi,v pg ¨ ˚q ` spi, vq

(2.19)
“ hv

``

q´1
i ¨ γ´1 ¨ g

˘

S
¨ ˚
˘

` spi, vq

2.4.2
“ log ˝S$v

``

q´1
i ¨ γ´1 ¨ g

˘

S
¨K

˘

` spi, vq

(2.16)
“ log

`

S$v

``

q´1
i ¨ γ´1 ¨ g

˘

S

˘˘

` spi, vq

(2.23)
“ log

`

S$v

``

q´1
i ¨ γ´1 ¨ g

˘

S

˘˘

` log
´
∥∥∥$v

´´

q´1
kpi,vqγ

´1
i,v qi

¯

S

¯
∥∥∥¯

2.1.2piq
“ log

´

S$v

´´

q´1
kpi,vqγ

´1
i,v γ

´1 ¨ g
¯

S

¯¯

` log
´

S$v

´´

q´1
kpi,vq

¯

S

¯¯

´ log
´

S$v

´´

q´1
kpi,vq

¯

S

¯¯

2.1.2pvq
“ log

´

S$v

´

q´1
kpi,vq ¨

`

γ´1
i,v γ

´1 ¨ g
˘

S

¯¯

´ log
´

S$v

´´

q´1
kpi,vq

¯

S

¯¯

2.1.2piiq
“ log

´

S$v

´

q´1
kpi,vqγ

´1
i,v γ

´1 ¨ gS

¯¯

´ log
´

S$v

´´

q´1
kpi,vq

¯

S

¯¯

2.1.4piq
“ log pS$vpgSqq ´ log

´

S$v

´´

q´1
kpi,vq

¯

S

¯¯

.

Now (iii) follows from (ii), Theorem 2.1.2 (iii) and the assumption q1 “ 1.
To prove (iv) we remark that both sides, the left hand side and the right
hand side of the equation, are rescaled Busemann functions of the same
speed with a common center. Hence it suffices to prove the equation for
a singular x, e.g. x “ ˚. Now (iv) is a direct consequence of (ii) and
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2.4. Busemann functions

Theorem 2.1.2 (iv). To prove (v) we may equivalently prove h̃qi¨vpyq “
h̃vpq

´1
i ¨yq`spi, vq for all y P XS. As before it suffices to prove the assertion

for y “ ˚:

h̃qi¨vp˚q

2.4.7piiq
“ log

`

S$qi¨vp1q
˘

´ log
´

S$v

´´

q´1
kpi,v

¯

S

¯¯

(2.8)
“ log

`

S$vppq
´1
i qS ¨ pq

´1
i qSq

˘

´ log
´

S$v

´´

q´1
kpi,vq

¯

S

¯¯

2.1.2pvq
“ log

`

S$vppq
´1
i qSq

˘

` log
`

S$vppq
´1
i qSq

˘

´ log
´

S$v

´´

q´1
kpi,vq

¯

S

¯¯

2.1.2
piq,piiq
“ log

`

S$vppq
´1
i qSq

˘

` log
`
∥∥$v

``

q´1
i γı,vqkpi,vq

˘

S

˘
∥∥˘

2.4.7piiiq
(2.23)
“ h̃vpqi ¨ ˚q ` spi, vq.

Corollary 2.4.8. Let v P Vp∆q and c P Cp∆q. The following assertions
hold:

(i) Let ev P BpXSq denote the visual endpoint of $v, i.e. the center of h̃v.
The map v ÞÑ ev induces an isometric embedding of ∆ into BpXSq.

(ii) Each Σ1 P Ac contains c in its visual boundary. Hence, by equation
(2.15), condition (A) is true.

Proof. Given a spherical apartment of ∆, the distance between two of its
vertices is given by the angles between the corresponding weights. Thus
claim (i) holds on each spherical apartment by definition of ev. The assertion
now follows from the fact that any two points in ∆ are contained in a
common apartment. Now (ii) follows from (i).

We finish this section with a result which we need to prove that the family
of rescaled Busemann functions satisfies condition (B).

Lemma 2.4.9. Consider c P Cp∆q, v P Vpcq and two apartments Σ1,Σ2 P Ac

with non-empty intersection. The isometry i : Σ1 Ñ Σ2 from Theorem 2.3.3
makes the following diagramm commutative:

R

Σ2Σ1

h̃vh̃v

i
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2. Preliminary

Proof. By assumption Σ1 and Σ2 share a point. Hence, by Lemma 2.4.8,
they share a sector defining c. By Theorem 2.3.3 the isometry i : Σ1 Ñ Σ2

fixis that sector and thus the chamber c. Because Busemann functions are
determined by their center and the value of one point the claim follows.

2.5 From algebraic reduction theory to pure
geometry

The main goal of this section is to proof Theorem 2.5.7. It provides an
algebraic description of the purely geometrically defined Minkowski cones
introduced in Section 1.1. In the course of this section we are going to
repeat the definition.

The current family of rescaled Busemann functions
!

h̃v

ˇ

ˇ

ˇ
v P Vp∆q

)

might

not satisfy condition (C). Therefore we need to rescale each h̃v. As illus-
trated in Figure 1.5 there are lots of different possibilities changing the
speed such that condition (C) is satisfied but there is one significant that
behaves particularly well: For an arbitrary chamber c P Cp∆q and an arbi-
trary vertex v P Vpcq we define

µcv :“
ÿ

wPVpcq
w“q¨w

cvw ¨ h̃w : XS Ñ R.

For each qi P tq1, ..., qmu we moreover set

cpi,vq :“
ÿ

wPVpcq

cvw ¨ spi,wq.

We obtain a statement analogous to Theorem 2.4.7:

Lemma 2.5.1. Given a chamber c “ γ1 ¨ qi ¨ c, a vertex v “ γ1 ¨ qi ¨ v, some
γ P Γ, p P PcpAq, g P GpAq and x, y P XS the following assertions hold:

(i) µγ¨cγ¨vpγ ¨ xq “ µcvpxq;

(ii) µcvpg ¨ ˚q “ logpSϕcvpgSqq ´ log
´

Sϕc
v

´´

q´1
kpi,vq

¯

S

¯¯

;

(iii) µc
vpg ¨ ˚q “ logpSϕc

v
pgSqq;

(iv) µcvpp ¨ xq “ logp‖ϕcvppSq‖q ` µcvpxq;

(v) µqi¨cqi¨vpqi ¨ xq “ µc
vpxq ` cpi, vq;
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2.5. From algebraic reduction theory to pure geometry

(vi) There is a constant aµ P Rě0, independent of x, y P XS, c P Cp∆q and
v P Vpcq, such that

µcvpyq ´ aµ ¨ dXSpx, yq ď µcvpxq ď µcvpyq ` aµ ¨ dXSpx, yq.

Proof. The assertions (i) to (v) follow directly from equations (2.2), (2.9)
and Theorem 2.4.7. The existence of a constant aµ as in (vi) and its inde-
pendence from x and y follows, since µcv is the sum of rescaled Busemann
functions. The independence from c P Cp∆q and v P Vpcq holds, because
the speed of all rescaled Busemann functions depends on the length of the
finite number of standard roots tϕc

w | w P Vp∆qu only, as (iv) proves.

Next we define x1 :“ t1 ¨ ˚ with t1 P TpASq such that µc
vpx1q “ 1 for all

v P Vpcq.

Lemma 2.5.2. For v P Vpcq the constant sv :“ ph̃vpx1qq
´1 “

´

ř

wPVpcq nvw

¯´1

is strictly positive, compare Figure 2.2.

wv

hw
hv

µc
w

µc
v

c

x1

˚

Figure 2.2: Rescaled Busemann functions, related to the set of simple
roots, and rescaled Busemann functions, related to the corresponding set
of weights, such that x1 is in each level of height 1.
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2. Preliminary

Proof. Calculation proves the claim.

s´1
v “ h̃vpt1 ¨ ˚q

2.4.7piiiq
“ log pS$vpt1qq

2.1.2pivq
“ log p‖$vpt1q‖q

(2.2)
“ log

˜

ś

wPVpcq
‖pϕc

wpt1qq‖nvw

¸

2.1.3pivq
“ log

˜

ś

wPVpcq
pSϕc

w
pt1qq

nvw

¸

2.5.1piiiq
“

ř

wPVpcq
nvw ¨ µ

c
wpt1 ¨ ˚q

“
ř

wPVpcq
nvw

(2.3)
ą 0.

For an arbitrary vertex v “ γ ¨ qi ¨ v P Vp∆q define

hv :“ sv ¨ h̃v. (2.26)

This causes hvpx1q “ 1 for all v P Vpcq. In the course of this section we
prove that thv | v P Vp∆qu satisfies condition (B) and (C).

Next repeat some notation already given in Section 1.1: For c P Cp∆q let

hcpxq :“ max thvpxq | v P Vpcqu .

Moreover, for an apartment Σ1 P Ac and a real parameter s P R, we set

YΣ1,cpsq :“ tx P Σ1 | hcpxq ď su . (2.27)

It is a closed and convex subset of Σ1. Hence there is a closest point projection

prsΣ1,c : Σ1 Ñ YΣ1,cpsq.

Given some point x P Σ1 its projection point prsΣ1,cpxq is defined by

(I) prsΣ1,cpxq P YΣ1,cpsq;

(II) dpx, prsΣ1,cpxqq “ dpx, YΣ1,cpsqq.
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2.5. From algebraic reduction theory to pure geometry

Given two apartments Σ1,Σ2 P Ac the isometry i : Σ1 Ñ Σ2 of Lemma 2.4.9
identifies YΣ1,cpsq with YΣ2,cpsq. Hence

i ˝ prsΣ1,c “ prsΣ2,c ˝ i. (2.28)

Lemma 2.5.3. Let c P Cp∆q, x P XS and Σ1,Σ2 P Ac both containing x.
Then

hvpprΣ1,cpxqq “ hvpprΣ2,cpxqq,

i.e. condition (B) is satisfied.

Proof. Because x is in the intersection of Σ1 and Σ2 it is fixed by i. Hence

hvpprΣ1,cpxqq
2.4.9
“ hvpi ˝ prΣ1,cpxqq

(2.28)
“ hvpprΣ2,c ˝ipxqq
“ hvpprΣ2,cpxqq.

By Corollary 2.4.8 (ii) condition (A) is true, i.e. for each chamber c P Cp∆q
the set of apartments Ac covers XS. Given a point x P XS we may therefore
choose an apartment Σ1 P Ac containing it. By Lemma 2.5.3 the value
hvpprsΣ1,cpxqq “: bsc,vpxq is independent of that choice. Thus we may define:

σspx,cq :“
 

v P Vp∆q
ˇ

ˇ bsc,vpxq “ s
(

. (2.29)

We say that a point x P XS is s-reduced by c P Cp∆q if σspx, cq “ Vpcq.
See again Figure 1.2. A subset B Ă XS is uniformly s-reduced if there is
a chamber c P Cp∆q that s-reduces all points of B simultaneously. For an
apartment Σ1 P Ac we set

NΣ1,cpsq :“ tx P Σ1 | x is s-reduced by cu (2.30)

and call it a thin Minkowski cone (above c of height s). It is the normal
cone above YΣ1,cpsq, i.e. it consists precisely of those points in Σ1 whose
projection point lies in the tip of YΣ1,cpsq. Moreover we define

Ncpsq :“ tx P XS | x is s-reduced by cu “
ď

Σ1PAc
NΣ1,cpsq (2.31)

and call it a thick Minkowski cone (above c of height s), see Figure 1.3.
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2. Preliminary

Next we set

ZΣ1,cpsq :“ tx P Σ1 | µcvpxq ě s for all v P Vpcqu ; (2.32)

Zcpsq :“ tx P XS | µ
c
vpxq ě s for all v P Vpcqu “

ď

Σ1PAc
ZΣ1,cpsq. (2.33)

By Theorem 2.5.1 (iv) one could loosely call ZΣ,cpsq a geometric analogue
of T`8psq discussed in Theorem 1.2.1.

To translate algebraic reduction theory into geometric reduction theory we
want both families, tNcpsq | s P Ru and tZcpsq | s P Ru, to be nested filtra-
tions, i.e. given c P Cp∆q and s P R we require the existence of s1, s2 P R
with

Zcps1q Ă Ncpsq Ă Zcps2q; (2.34)

Ncps1q Ă Zcpsq Ă Ncps2q, (2.35)

compare [BKW13, Observation 12.7]. Obviously Zcpsq is a filtration in s
and hence equation (2.34) holds. Now (2.35) holds if and only if Ncpsq is a
filtration in s, i.e. if and only if condition (C) holds. Though it is not clear
that Ncpsq is a filtration in s and hence equation (2.35) requires a proof.
That is where the particular change of speed, see equation (2.26), comes
into play. Instead of proving nestedness we even prove equality, i.e. we
prove Ncpsq to be equal to Zcpsq for all c P Cp∆q and all s P R: Consider

Σ0 :“ ΣX

¨

˝

č

vPVpcq

ker pµc
vq

˛

‚“ ΣX

¨

˝

č

vPVpcq

ker
´

h̃v

¯

˛

‚. (2.36)

It is the tip of YΣ,cp0q, respectively NΣ,cp0q.

Lemma 2.5.4. For each s P R and x P Σ we have

(i) YΣ,cpsq “ YΣ,cp0q ` s ¨ x1;

(ii) prsΣ,cpx` s ¨ x1q “ pr0
Σ,cpxq ` s ¨ x1.

If we additionally consider some um P UpASqMpASq we recieve

(iii) Yum¨Σ,cpsq “ um ¨ YΣ,cpsq;

(iv) prsum¨Σ,cpum ¨ xq “ um ¨ prsΣ,cpxq.
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2.5. From algebraic reduction theory to pure geometry

Now let c P Cp∆q, Σ1 P Ac and γ P Γ be arbitrary. Then

(v) Yγ¨Σ1,γ¨cpsq “ γ ¨ YΣ1,cpsq;

(vi) prsγ¨Σ1,γ¨cpγ ¨ xq “ γ ¨ prsΣ1,cpxq.

Proof. Claim (i) follows from the definition of x1 and the linearity of Buse-
mann functions. Assertion (ii) is a direct consequence of (i).

Assertion (iii) results from Theorem 2.4.7 (iv) and the definition of U and
M. Now (iv) follows from (iii).

We deduce assertion (v) from the Γ-invariance of the family of Busemann
functions thv | v P Vp∆qu (see Theorem 2.4.7 (i)). Now (vi) results from (v).

By Lemma 2.5.1 (iii) and Lemma 2.1.3 (iii), respectively Theorem 2.4.7
(iii) and Theorem 2.1.2 (iii) we have ˚ P Σ0. Considering ˚ as the origin
of Σ those µc

v and h̃v for v P Vpcq become linear functions on Σ. Regard-
ing tϕc

v | v P Vpcqu and t$c
v | v P Vpcqu as elements of the Q-vector space

XpPcq b Q defining reflections, compare Section 2.1, we may recast Theo-
rem 2.4.7 (iv) respectively Lemma 2.5.1 (iv) as follows:

hvpt ¨ ˚q “ sv ¨ x$
c
v , ty and

µc
vpt ¨ ˚q “ xϕc

v , ty
(2.37)

for all t P TpASq. Hence we have

Σ0 “
č

vPVpcq

pϕc
vq
K
“

č

wPVpcq

p$c
wq
K (2.38)

and thus Σ decomposes into

Σ “ Σ0 ‘ span tϕc
v | v P Vpcqu

“ Σ0 ‘ span t$v | v P Vpcqu .
(2.39)
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2. Preliminary

Theorem 2.5.5. NΣ,cpsq “ ZΣ,cpsq for all s P R (see Figure 2.3).

wv

hw
hv

µc
w

µc
v

c

x1

x0

NΣ,cp1q “ ZΣ,cp1qNΣ,cp0q “ ZΣ,cp0q

Figure 2.3: Changing the speed of all Busemann functions causes the Min-
kowski cone NΣ,cpsq to conincide with ZΣ,cpsq for all s P R.

Proof. First we prove the special case of s “ 0:

YΣ,cp0q

(2.27)
“ tx P Σ | hwpxq ď 0 for all w P Vpcqu

(2.36)
(2.37)
(2.39)
“

$

’

’

’

&

’

’

’

%

¨

˝

ÿ

vPVpcq

av ¨ ϕ
c
v

˛

‚` x0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

$w,
ř

vPVpcq
av ¨ ϕ

c
v

G

ď 0

for all w P Vpcq, x0 P Σ0

,

/

/

/

.

/

/

/

-

(2.3)
“

$

&

%

¨

˝

ÿ

vPVpcq

av ¨ ϕ
c
v

˛

‚` x0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

av ď 0 for all v P Vpcq,
x0 P Σ0

,

.

-

.

(2.40)

NΣ,cp0q

(2.30)
“

 

x P Σ
ˇ

ˇ hwppr0
Σ,cpxqq “ 0 for all w P Vpcq

(

(2.36)
(2.39)
“

$

’

’

&

’

’

%

¨

˝

ÿ

wPVpcq

bw ¨$w

˛

‚` x0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pr0
Σ,c

˜

ř

wPVpcq
bw ¨$w ` x0

¸

P Σ0,

x0 P Σ0

,

/

/

.

/

/

-
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2.5. From algebraic reduction theory to pure geometry

(2.38)
“

#˜

ř

wPVpcq
bw ¨$w

¸

` x0

ˇ

ˇ

ˇ

ˇ

ˇ

pr0
Σ,c

˜

ř

wPVpcq
bw ¨$w

¸

P Σ0, x0 P Σ0

+

p‹q
“

$

’

’

&

’

’

%

¨

˝

ÿ

wPVpcq

bw ¨$w

˛

‚` x0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

YΣ,cp0q Ă

#C

ř

wPVpcq
bw ¨$w,´

G

ď 0

+

,

x0 P Σ0

,

/

/

.

/

/

-

(2.40)
“

$

’

’

’

&

’

’

’

%

˜

ř

wPVpcq
bw ¨$w

¸

` x0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ř

wPVpcq
bw ¨$w,

ř

vPVpcq
av ¨ ϕ

c
v

G

ď 0

for all av ď 0 and v P Vpcq, x0 P Σ0

,

/

/

/

.

/

/

/

-

(2.3)
“

$

’

’

’

&

’

’

’

%

¨

˝

ÿ

wPVpcq

bw ¨$w

˛

‚` x0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ř

wPVpcq
bw ¨$w, ϕ

c
v

G

ě 0

for all v P Vpcq, x0 P Σ0

,

/

/

/

.

/

/

/

-

(2.36)
(2.37)
(2.39)
“ tx P Σ | µc

vpxq ě 0 for all v P Vpcqu
(2.33)
“ ZΣ,cp0q.

p‹q Figure 2.4 shows a point projected onto the tip of YΣ,cp0q. Figure 2.5
shows a point not projected onto the tip of YΣ,cp0q.

The general case for arbitrary s P R results from the special case:

NΣ,cpsq

(2.30)
“

 

x P Σ
ˇ

ˇ hvpprsΣ,cpxqq “ s for all v P Vpcq
(

(2.26)
“

 

x P Σ
ˇ

ˇ hvpprsΣ,cpxqq “ hvps ¨ x1q for all v P Vpcq
(

2.5.4piiq
“

 

x P Σ
ˇ

ˇ hvppr0
Σ,cpx´ s ¨ x1qq “ 0 for all v P Vpcq

(

“ s ¨ x1 `
 

x P Σ
ˇ

ˇ hvppr0
Σ,cpxqq “ 0 for all v P Vpcq

(

(2.30)
“ s ¨ x1 `NΣ,cp0q

special
case
“ s ¨ x1 ` ZΣ,cp0q

Defx1
“ ZΣ,cpsq.
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wv

c

$w$v

YΣ,cp0q

Figure 2.4: A point that is pro-
jected onto the tip of YΣ,cp0q.

wv

c

ϕc
wϕc

v

YΣ,cp0q

Figure 2.5: A point that is not
projected onto the tip of YΣ,cp0q.

To deal with the general case of an arbitrary chamber c P Cp∆q we have to
choose for each qi P tq1, ..., qmu a vector zi P Σ such that

hvpziq “ sv ¨ spi, vq for all v P Vpcq. (2.41)

Direct calculation shows that

µc
vpziq “ cpi, vq for all v P Vpcq. (2.42)

Lemma 2.5.6. For all γ P Γ, qi P tq1, ..., qmu, um P UpASqMpASq, x P XS

and s P R the following holds:

(i) Zγ¨qi¨um¨Σ,γ¨qi¨cpsq “ γ ¨ qi ¨ um ¨ pZΣ,cpsq ´ ziq;

(ii) Yγ¨qi¨um¨Σ,γ¨qi¨cpsq “ γ ¨ qi ¨ um ¨ pYΣ,cpsq ´ ziq;

(iii) prsγ¨qi¨um¨Σ,γ¨qi¨cpγ ¨ qi ¨ um ¨ xq “ γ ¨ qi ¨ um ¨ pprsΣ,cpx` ziq ´ ziq;

(iv) Nγ¨qi¨um¨Σ,γ¨qi¨cpsq “ γ ¨ qi ¨ um ¨ pNΣ,cpsq ´ ziq.
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2.5. From algebraic reduction theory to pure geometry

Proof. Assertion (i) essentially follows from Lemma 2.5.1:

Zγ¨qi¨um¨Σ,γ¨qi¨cpsq

(2.32)
“ tx P γ ¨ qi ¨ um ¨ Σ | µ

γ¨qi¨c
γ¨qi¨vpxq ě s for all v P Vpcqu

“ tγ ¨ qi ¨ um ¨ y | y P Σ, µγ¨qi¨cγ¨qi¨vpγ ¨ qi ¨ um ¨ yq ě s for all v P Vpcqu
2.5.1
piq,pvq
“ tγ ¨ qi ¨ um ¨ y | y P Σ, µc

vpyq ě s´ cpi, vq for all v P Vpcqu
(2.42)
“ γ ¨ qi ¨ um ¨ ty P Σ | µc

vpy ` ziq ě s for all v P Vpcqu
“ γ ¨ qi ¨ um ¨ pty P Σ | µc

vpyq ě s for all v P Vpcqu ´ ziq
(2.32)
“ γ ¨ qi ¨ um ¨ pZΣ,cpsq ´ ziq.

Assertion (ii) follows similarly from Theorem 2.4.7:

Yγ¨qi¨um¨Σ,γ¨qi¨cpsq
(2.27)
“ tx P γ ¨ qi ¨ um ¨ Σ | hγ¨qi¨vpxq ď s for all v P Vpcqu
“ tγ ¨ qi ¨ um ¨ y | y P Σ, hγ¨qivpγ ¨ qi ¨ um ¨ yq ď s for all v P Vpcqu

2.4.7piq,pvq
(2.26)
“ tγ ¨ qi ¨ um ¨ y | y P Σ, hvpyq ď s´ sv ¨ spi, vq for all v P Vpcqu

(2.41)
“ γ ¨ qi ¨ um ¨ ty P Σ | hvpy ` ziq ď s for all v P Vpcqu
“ γ ¨ qi ¨ um ¨ pty P Σ | hvpyq ď s for all v P Vpcqu ´ ziq

(2.27)
“ γ ¨ qi ¨ um ¨ pYΣ,cpsq ´ ziq.

Assertion (iii) follows from assertion (ii). We have to prove that each point
on the right hand side satisfies the conditions (I) and (II) from the left hand
side. Since (I) is obvious we only present the calculation for (II):

dpγ ¨ qi ¨ um ¨ x, γ ¨ qi ¨ um ¨ pprsΣ,cpx` ziq ´ ziqq

“ dpx` zi, prsΣ,cpx` ziqq

“ dpx` zi, YΣ,cpsqq

“ dpγ ¨ qi ¨ um ¨ x, γ ¨ qi ¨ um ¨ pYΣ,cpsq ´ ziqq

2.5.6piiq
“ dpγ ¨ qi ¨ um ¨ x, Yγ¨qi¨um¨Σ,γ¨qi¨cpsqq.
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Assertion (iv) is a consequence of Theorem 2.4.7 and assertion (iii):

Nγ¨qi¨um¨Σ,γ¨qi¨cpsq

(2.30)
“

"

x P γ ¨ qi ¨ um ¨ Σ

ˇ

ˇ

ˇ

ˇ

hγ¨qi¨vpprsγ¨qi¨um¨Σ,γ¨qi¨cpxqq “ s

for all v P Vpcq

*

“

"

γ ¨ qi ¨ um ¨ y

ˇ

ˇ

ˇ

ˇ

hγ¨qi¨vpprsγ¨qi¨um¨Σ,γ¨qi¨cpγ ¨ qi ¨ um ¨ yqq “ s

for all v P Vpcq, y P Σ

*

2.5.6piiiq
“

"

γ ¨ qi ¨ um ¨ y

ˇ

ˇ

ˇ

ˇ

hγ¨qi¨vpγ ¨ qi ¨ um ¨ pprsΣ,cpy ` ziq ´ ziqq “ s

for all v P Vpcq, y P Σ

*

2.4.7piq,pvq
(2.26)
“

"

γ ¨ qi ¨ um ¨ y

ˇ

ˇ

ˇ

ˇ

hvpprsΣ,cpy ` ziq ´ ziq “ s´ sv ¨ spi, vq

for all v P Vpcq, y P Σ

*

(2.41)
“ γ ¨ qi ¨ um ¨

 

y P Σ
ˇ

ˇ hvpprsΣ,cpy ` ziqq “ s for all v P Vpcq
(

“ γ ¨ qi ¨ um ¨
` 

y P Σ
ˇ

ˇ hvpprsΣ,cpyqq “ s for all v P Vpcq
(

´ zi
˘

(2.30)
“ γ ¨ qi ¨ um ¨ pNΣ,cpsq ´ ziq.

Theorem 2.5.7. For all c P Cp∆q and all s P R we have Zcpsq “ Ncpsq.

Proof. Given a chamber c “ γ ¨ qi ¨ c we have

Ncpsq
(2.31)
“

Ť

Σ1PAc
NΣ1,cpsq

(2.14)
“

Ť

umPUpASqMpASq
Nγ¨qi¨um¨Σ,γ¨qi¨cpsq

2.5.6pivq
“ Y

umPUpASqMpASq
γ ¨ qi ¨ um ¨ pNΣ,cpsq ´ ziq

2.5.5
“

Ť

umPUpASqMpASq
γ ¨ qi ¨ um ¨ pZΣ,cpsq ´ ziq

2.5.6piq
“ Y

umPUpASqMpASq
Zγ¨qi¨um¨Σ,γ¨qi¨cpsq

(2.14)
“

Ť

Σ1Pγ¨qi¨Ac

ZΣ1,cpsq

(2.33)
“ Zcpsq.
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2.5. From algebraic reduction theory to pure geometry

Since ZΣ1,cpsq is a filtration in s for all c P Cp∆q and all Σ1 P Ac, Theorem
2.5.7 demonstrates that thv | v P Vp∆qu fulfills condition (C). We go on to
the last lemma of this section. It partially generalizes Theorem 2.5.5 and
is proven similarly.

Lemma 2.5.8. For each x P XS, c P Cp∆q and s P R the following holds:

If v P σspx, cq we have µcvpxq ě s.

Proof. We consider the special case c “ c first. By Section 2.3 we know
that UpASqMpASq ¨ Σ “ XS. Hence, given an x P XS we have x “ um ¨ y
for some um P UpASqMpASq and y P Σ. We conclude that

v P σspx, cq

(2.29)
ô hv

`

prsum¨Σ,cpum ¨ yq
˘

“ s

2.4.7pivq
2.5.4pivq
ô hv

`

prsΣ,c pyq
˘

“ s

2.5.4piiq
(2.26)
ô hv

`

pr0
Σ,cpy ´ s ¨ x1q

˘

“ 0

(2.37)
ô

@

$v, pr0
Σ,cpy ´ s ¨ x1q

D

“ 0

p‹q
ñ y ´ s ¨ x1 “

ř

wPVpcq
bw ¨$w ` x0 with bv ě 0, x0 P Σ0

(2.3)
(2.37)
ô µc

vpy ´ s ¨ x1q ě 0

ô µc
vpyq ě s

2.5.1pivq
ô µc

vpxq ě s.

(‹): See Figure 2.6.
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2. Preliminary

wv

c

$w$v

YΣ,cp0q

 

hvppr0
Σ,cpxqq “ 0

(

“ tx | v P σ0px, cqu

Figure 2.6: The set of points in Σ that are 0-close to v.

Now consider an arbitrary chamber c “ γ ¨ qi ¨ c with v “ γ ¨ qi ¨ v. Moreover
write x “ γ ¨ qi ¨ um ¨ y with um P UpASqMpASq and y P Σ.

v P σspx, cq

ô γ ¨ qi ¨ v P σspγ ¨ qi ¨ um ¨ y, γ ¨ qi ¨ cq

(2.29)
ô hγ¨qi¨vpprsγ¨qi¨um¨Σ,γ¨qi¨cpγ ¨ qi ¨ um ¨ yqq “ s

2.5.6piiiq
ô hγ¨qi¨vpγ ¨ qi ¨ um ¨ pprsΣ,cpy ` ziq ´ ziqq “ s

2.4.7piq,pvq
(2.26)
ô hvpprsΣ,cpy ` ziq ´ ziq ` sv ¨ spi, vq “ s

(2.41)
ô hvpprsΣ,cpy ` ziqq “ s

(2.29)
ô v P σspy ` zi, cq

special
case
ñ µc

vpy ` ziq ě s

(2.42)
ô µc

vpyq ` cpi, vq ě s

2.5.1piq,
pivq,pvq
ô µγ¨qi¨cγ¨qi¨vpγ ¨ qi ¨ um ¨ yq ě s

ô µcvpxq ě s.

50



chapter 3

PROOF AND CONCLUSION

3.1 Proof

In this section we prove Theorem 1.1.1.

Theorem 3.1.1. Consider the Γ-invariant family thv | v P Vp∆qu of rescaled
Busemann functions. For this family and an arbitrary d P R` there is a
constant r P R, which we call a lower d-reduction bound, such that the fol-
lowing holds:

Every ball of diameter at most d is uniformly r-reduced by some
chamber c.

Moreover, given any lower reduction bound r P R, there is corresponding
constant R P R, which we call an upper r-reduction bound, such that:

For any chamber c that r-reduces x, the simplex σRpx, cq is contained
in any chamber c1 that r-reduces x.

Proof. To prove the first part, we have to argue the existence of a constant
r P R, such that each ball of diameter at most d is contained in Ncprq
for some chamber c P Cp∆q. By Theorem 2.5.7 we may equivalently prove
each ball of diameter at most d to be contained in Zcprq for some chamber
c P Cp∆q. This last assertion results from Lemma 2.5.1 and Theorem 2.2.2:

First we apply Lemma 2.5.1 (vi) to reduce the problem to balls of diameter
d “ 0, i.e. to points in XS, see Figure 3.1. Because XS and XS are in finite
hausdorff-distance we may apply the same argument again to reduce the
problem to points in XS. Next recall that XS – GpASq{K. Now Theorem
2.2.2 comes into play: There exists a constant r̂ P R such that given an
arbitrary g P GpAq there exists a chamber c P Cp∆q with logpSϕcvpgqq ě r̂
for all v P Vpcq. Now we set

cmin,2 :“ min
!

log
´

Sϕc
v

´´

q´1
kpi,vq

¯

S

¯¯
ˇ

ˇ

ˇ
i P t1, ...,mu, v P Vpcq

)

,

cmax,2 :“ max
!

log
´

Sϕc
v

´´

q´1
kpi,vq

¯

S

¯¯ ˇ

ˇ

ˇ
i P t1, ...,mu, v P Vpcq

)

,

and choose some r ď r̂ ´ cmax,2.
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3. Proof and Conclusion

For g P GpASq Lemma 2.5.1 (ii) implies

µcvpg ¨ ˚q “ logpSϕcvpgqq ´ log
´

Sϕc
v

´´

q´1
kpi,vq

¯

S

¯¯

ě r.

wv

d

hw
hv

c

Zcpsq Zcps` tdq

Figure 3.1: Minkowski cones of height s ` td contain each ball of radius d
whose center is located in the corresponding cone of height s.

To prove the second assertion we let r P R be any lower reduction bound.
Next we choose some r̂ ď r ` cmin,2 and consider a corresponding con-

stant R̂ that satisfies the condition in Theorem 2.2.3. Last we choose some
R ě R̂ ´ cmin,2. With this choice the assertion holds:

Let g P GpASq and g ¨ ˚ P XS be r-reduced by two chambers c, c1 P Cp∆q,
i.e.

g ¨ ˚ P Ncprq XNc1prq
2.5.7
ô g ¨ ˚ P Zcprq X Zc1prq

(2.33)
ô

#

µcwpg ¨ ˚q ě r for all w P Vpcq,
µc
1

w1pg ¨ ˚q ě r for all w1 P Vpc1q,

2.5.1piiq
ñ

#

logpSϕcwpgqq ě r̂ for all w P Vpcq,
logpSϕc1

w1
pgqq ě r̂ for all w1 P Vpc1q.

(3.1)

Given v P Vpcq with v P σRpg ¨ ˚, cq we moreover have

v P σRpg ¨ ˚, cq
2.5.8
ñ µcvpg ¨ ˚q ě R

2.5.1piiq
ñ logpSϕcvpgqq ě R̂.

By equation (3.1) and Theorem 2.2.3 we have v P Vpc1q.
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3.1. Proof

We have just proven the existence of a Γ-invariant, d-uniform reduction
datum. It remains to verify the Γ-cocompactness. Therefore we investigate
the following commutative diagram:

GpAqGpASq

ΓzGpASq GpQqzGpAq

πS π

ι

ι

We start to examine the projections π and πS: Because GpQq is discret in
GpAq, the map π is a covering map with fiber GpQq. Hence, given some
g P GpAq, there exists a neighbourhood Uπpgq of πpgq such that

π´1
pUπpgqq “

.
ď

qPGpQq

q ¨ Eg “ GpQq ¨ Eg

and π : Eg Ñ Uπpgq is a homeomorphism. Since GpAq, and hence GpQqzGpAq,
is locally compact, we may assume Eg and Uπpgq to be compact without loss
of generality.

Lemma 3.1.2. A subset H Ă GpAq is (relatively) compact modulo GpQq
if and only if πpHq Ă GpQqzGpAq is (relatively) compact.

Proof. Assume πpHq to be compact. In that case there exist finitely many
elements h1, ..., hn P H such that

πpHq Ă
n
ď

i“1

Uπphiq

with Uπphiq as above and hence

H Ă π´1
pπpHqq Ă GpQq ¨

˜

n
ď

i“1

Ehi

¸

.

The other direction is clear, since the image of compact sets is compact.

Since Γ is discrete in GpASq one equivalently proves the analogous lemma:

Lemma 3.1.3. A subset HS Ă GpASq is (relatively) compact modulo Γ if
and only if πSpHSq Ă ΓzGpASq is (relatively) compact.

53



3. Proof and Conclusion

Next we investigate the inclusions ι and ι:

Lemma 3.1.4. ι : GpASq ãÑ GpAq and ι : ΓzGpASq ãÑ GpQqzGpAq are
injective and open.

Proof. Obviously both maps are injective. Moreover ι : GpASq ãÑ GpAq
is open because GpZpq is open in GpQpq for all p R S. To prove that
ι : ΓzGpASq ãÑ GpQqzGpAq is open choose some open set U Ă ΓzGpASq.
By definition of the quotient topology ιpUq is open in GpQqzGpAq if and
only if its preimage π´1pιpUqq is open in GpAq. That the preimage is in
fact open follows because ι : GpASq ãÑ GpAq is open:

π´1
pιpUqq “ π´1

pιpπSpπ
´1
S pUqqqq “ π´1

pπpιpπ´1
S pUqqqq “ GpQq ¨ ιpπ´1

S pUqq.

Lemma 3.1.5. Let X, Y be topological spaces and f : X ãÑ Y an injective
open map. A subset Z Ă X is compact if and only if its image fpZq Ă Y
is compact.

Proof. Let Z Ă X such that fpZq Ă Y is compact. Now choose an open
covering tUi | i P Iu of Z. Since f : X ãÑ Y is open tfpUiq | i P Iu is an open
covering of fpZq. Hence there is a finite subcovering tfpUiq | 1 ď i ď nu.
The claim now follows from the injectivity of f :

Z “ f´1
pfpZqq Ă f´1

˜

n
ď

i“1

fpUiq

¸

“

n
ď

i“1

f´1
pfpUiqq “

n
ď

i“1

Ui.

Corollary 3.1.6. A subset HS Ă GpASq is (relatively) compact modulo Γ
if and only if its image ιpHSq Ă GpAq is (relatively) compact modulo GpQq.

Proof. This results from Lemma 3.1.2, Lemma 3.1.3, Lemma 3.1.4 and
Lemma 3.1.5.

Theorem 3.1.7. Given a lower reduction bound r and some s ě r the set

Ys :“ tx P XS | hcpxq ď s for all c P Cp∆q that r-reduce xu

is Γ-invariant and relatively compact modulo Γ.
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3.2. Conclusion

Proof. The set Ys is Γ-invariant due to Lemma 2.5.6 (iv) and the Γ-invariance
of the family thv | v P Vp∆qu. It remains to show that Ys is relatively com-
pact modulo Γ:

Because XS and XS are in finite hausdorff-distance, it is enough to prove
the Γ-invariant set Ys X XS to be relatively compact modulo Γ. Alter-
natively we may, since XS – GpASq{K, search for a Γ-invariant subset
HS Ă GpASq with HS ¨ ˚ “ Ys X XS, that is relatively compact modulo Γ.
By Corollary 3.1.6 it even suffices to show such HS to be relatively compact
in GpAq modulo the action of GpQq:

Consider the Γ-invariant set HS :“ th P GpASq | h ¨ ˚ P Ysu and pick an
arbitrary h P HS. Since r is a lower reduction bound there is a chamber
c P Cp∆q that r-reduces h ¨ ˚, i.e. h ¨ ˚ P Ncprq. We deduce from Theorem
2.5.7 and the assumption that

r ď µcvph ¨ ˚q and hvph ¨ ˚q ď s

for all v P Vpcq. Because sv is positive by Lemma 2.5.2, we conclude that

logpSϕcvphqq
2.5.1piiq

ě r ` cmin,2,

logpS$vphqq
2.4.7piiq
(2.26)

ď s{sv ` cmax,2

for v “ q ¨ v P Vpcq. The compactness criterion, Theorem 2.2.4, implies HS

to be relatively compact in GpAq modulo the action of GpQq.

3.2 Conclusion

In this work we have, as announced in the abstract, created a reduction the-
ory on XS analogously to like it was done in [BKW13]. Though we cannot
consider it as an intermediate step to some universally valid geometric re-
duction theory as we hoped for. Indeed the final goal to create a universaly
valid reduction theory on CATp0q-spaces someday, seems to have become
impossible, or is at least brought into even more remote future:

We percieved that one may not assume the Busemann functions to be of
unit speed without loss of generality. Counterexamples (E6, E7, E8 and Dn)
prove that one must adapt the velocity of all Busemann functions in order
to satisfy condition (C). Unfortunatelly that adaption highly depends on
the structure of ∆ at infinity of XS. Given an arbitrary CATp0q-space there
is no such structure.
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C.;: Journal für die reine und angewandte Mathematik. 40 1850,
1850.

[Leu95] Enrico Leuzinger. An exhaustion of locally symmetric spaces by
compact submanifolds with corners. Invent. Math., 121(2):389–
410, 1995.

[Min10] Hermann Minkowski. Geometrie der Zahlen. B. G. Teubner,
Leipzig und Berlin, 1910.

[MT62] G. D. Mostow and T. Tamagawa. On the compactness of
arithmetically defined homogeneous spaces. Ann. of Math. (2),
76:446–463, 1962.

[Sie59] Carl Ludwig Siegel. Zur Reduktionstheorie quadratischer For-
men. Publications of the Mathematical Society of Japan, Vol. 5.
The Mathematical Society of Japan, Tokyo, 1959.
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