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The (non-)robustness of influential cheap
talk equilibria when the sender’s
preferences are state-independent

Christoph Diehl 1 and Christoph Kuzmics 2
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Abstract
Chakraborty and Harbaugh (2010) prove the existence of influential cheap talk equilibria
in one sender one receiver games when the state is multidimensional and the preferences
of the sender are state-independent. We show that only the babbling equilibrium survives
the introduction of any small degree of uncertainty about the sender’s preferences in the
spirit of Harsanyi (1973). Introducing small costs of lying as in Kartik (2009), i.e. a small
preference for sending the actual state as the message, while removing some influential
equilibria, makes others robust to payoff uncertainty. Finally, modelling a small desire
to be truthful endogenously, i.e. by taking into account how the receiver interprets the
message, may make some influential equilibria robust, but may also remove all influential
equilibria.

JEL codes: C72, D82, D83

Keywords: cheap talk, communication, information transmission

1 Introduction

This paper is concerned with the strategic information transmission (as first analyzed in Craw-
ford and Sobel (1982)) between one informed sender and one uninformed receiver. The sender
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can attempt to communicate her information to the sender before the sender takes an action.
The receiver would, ideally, like to make his choice of action dependent on the state of the
world, but in a way, that differs from the sender’s ideal choice of action. Thus, there is a
conflict of interest. Communication is costless (termed “cheap” in the literature). Messages
the sender transmits to the receiver have no intrinsic meaning, or no intrinsic meaning can be
verified, and only possibly take on meaning (reveal information) in equilibrium.

One of the main findings of the cheap talk literature, started by Crawford and Sobel (1982), is
that influential communication in one sender one receiver games is typically only possible if the
conflict of interest is not too large.3 This has been shown in the equilibrium characterization by
Crawford and Sobel (1982) and expanded by Goltsman, Hörner, Pavlov, and Squintani (2009).
If the conflict of interest is large, credible communication seemed only possible if messages are
verifiable or costly (for a survey of this literature, see Sobel (2013)).

Chakraborty and Harbaugh (2010) propose and analyze a one sender one receiver game with
a multi-dimensional state space with an extreme form of conflict of interest. The receiver is
essentially as modelled in Crawford and Sobel (1982), but the informed sender actually does
not at all care about the state itself:4 The sender’s preference is state-independent.

Surprisingly, and by a beautiful argument - which eventually allows the use of the Borsuk-Ulam
theorem (a fundamental fixed-point theorem; see Appendix B for a version and an application
of that theorem) - Chakraborty and Harbaugh (2010) show that, in their model, influential
cheap talk equilibria always exist.

To analyze games of incomplete information, such as those of the cheap talk literature, in
addition to specifying players, strategies, and consequences (payoffs) to complete the model one
has to make informational assumptions. The informational assumptions made in Chakraborty
and Harbaugh (2010), as also in Crawford and Sobel (1982), are as follows. The utility functions
of both sender and receiver are common knowledge, as is the receiver’s “subjective” belief about
the state.

In fact Chakraborty and Harbaugh (2010) relax these informational assumptions in a robustness
exercise in two different ways, and show, for each case, that the game so modified still exhibits
influential equilibria. Both robustness exercises allow the sender to have possibly different utility
functions. In both cases the sender knows her utility function and the receiver’s subjective belief
about the sender’s utility function is common knowledge. In one specification this commonly
known distribution has finite support with the number of positive probability utility functions
less than the dimensionality of the state space. In the second specification this commonly
known distribution places a sufficiently large atom on a single utility function.

As the state space is a compact subset of, at least, two-dimensional Euclidean space and as there
are, in principle, an infinite number of possible utility functions the sender could have (even
an infinite number of utility functions that are all very close to each other) we feel a different

3In an influential equilibrium the sender is able to influence the receiver’s choice of action by the sender’s
choice of message.

4For multiple sender one receiver models Battaglini (2002) showed that a multi-dimensional state space
implies the existence of equilibria with full information revelation. For one sender one receiver models this is
not typically true.
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robustness check should also be undertaken. In this paper we assume that the receiver, while
possibly having a good general idea about the sender’s preferences does not believe that any
particular utility function (out of the infinitely many possible ones) has positive probability.
We call this the Chakraborty and Harbaugh (2010) model with Harsanyi-Uncertainty, as the
uncertainty is very much as it is in the purification argument of Harsanyi (1973).5 Completing
this model by assuming that the receiver’s subjective belief about the sender’s utility function
is common knowledge, we then find that this modified game has no influential equilibria. This
result does not depend on the choice of the set of possible utility functions (as long as a belief
without atom can be specified) nor on the exact shape of the distribution of these beliefs.

We then ask if there are any other models that are “close” to the original Chakraborty and
Harbaugh (2010) model and are such that at least some influential equilibria survive and are
robust to Harsanyi-Uncertainty. The most likely candidate for a model with this property seems
to us to be one in which the sender has an additional small preference for being truthful. Costs
for “lying” within the cheap-talk literature were pioneered by Kartik (2009). We investigate two
models with small costs of lying. One, very much following Kartik (2009), is such that messages
have an a priori exogenously fixed meaning and the extent of lying can be measured by how far
the sent message is from the true state. In this model, while some influential equilibria vanish,
all those identified by Chakraborty and Harbaugh (2010) (based on hyperplanes) survive and, in
fact, are now robust to Harsanyi-Uncertainty. In the second model the sender cares about lying
in as much as she cares about how the receiver interprets her message. She, thus, gives a small
weight to what is essentially the utility of the receiver. In this model, depending on the details
of the other features of the model (i.e. the sender’s original state-independent utility function
as well as the commonly known ex-ante distribution over the states), it can happen that all
influential equilibria of Chakraborty and Harbaugh (2010) (based on hyperplanes) survive, that
only some survive, and that none survive. Those that do survive, if any, are then robust to
Harsanyi-Uncertainty.

The paper is organized as follows. We begin by restating the model of Chakraborty and
Harbaugh (2010) and stating our modification to that model in Section 2. Section 3 demon-
strates the main finding of Chakraborty and Harbaugh (2010), as well as the non-robustness
to Harsanyi-Uncertainty of all influential equilibria, by means of the simplest possible example.
The main result of our paper is then stated and proven in Section 4. Section 5 discusses the im-
plications of adding a small cost of, exogenously or endogenously defined, lying. The appendix
concludes by providing a discussion of some related points. Appendix A shows by example that
not all cheap-talk games suffer from this non-robustness. The example is a simple special case
of Crawford and Sobel (1982) with almost common interest. Appendix B provides a theorem
that states that, if the Harsanyi-Uncertainty in the Chakraborty and Harbaugh (2010) model
is only about the receiver, then the game always has an influential equilibrium. Appendix
C provides an argument that demonstrates that, even if the sender’s preference is common
knowledge, there may be higher order belief uncertainty (about the receiver’s belief about the

5Harsanyi (1973) uses, what we here call, Harsanyi-Uncertainty to show that mixed equilibria, in which the
players are indifferent between at least two pure strategies, can be thought of as pure strategy equilibria in the
game played by, at least in the minds of the players, infinitely many possible “types”. As explained in Section 3,
the influential equilibria in Chakraborty and Harbaugh (2010) also rely on indifference. One way to state our
result is that the influential equilibria in Chakraborty and Harbaugh (2010), even though they are actually in
pure strategies, cannot be purified in the sense of Harsanyi (1973). Alternatively, one could also say that the
influential equilibria in Chakraborty and Harbaugh (2010) are not regular in the sense of Harsanyi (1973).

3



state), in the spirit of Bergemann and Morris (2005), that again implies the non-robustness of
all influential equilibria.

2 The model

A sender (female) is privately informed about the realization of θ ∈ Θ, where Θ is a convex
and compact subset of RN with non-empty interior and N ≥ 2. The sender can send a costless
message m from a finite set of messages M to a receiver (male). The receiver observes the
message and then takes an action in action space A = Θ. A sender strategy is thus a mapping
from state space Θ to the set of messagesM , while a receiver strategy is a mapping from message
space M to action space Θ. The utility function of the receiver is given by v(a, θ) = −(a− θ)2.
This implies that, in any equilibrium, the receiver, “knowing” the sender’s strategy, plays, as
his best response, the (conditional) expectation of θ. The prior of the receiver is described
by the distribution function F with full support on Θ. The utility of the sender is a function
u : A → R that does not depend on the realization of the state variable θ.

The equilibrium concept is Bayesian Nash. A Bayesian Nash equilibrium is termed influential
if there are at least two messages (sent with positive probability according to F ) which induce
different actions.67

Up to this point, the model we presented here is exactly the model introduced by Chakraborty
and Harbaugh (2010). We now add uncertainty about the preferences of the sender in the
following way to the model. There is a set of possible utility functions U for the sender. The
sender is privately informed about her utility function u ∈ U . The receiver has a prior belief
given by distribution function φ, a distribution over the set U which has no atoms.8 We call this
extended model the Chakraborty and Harbaugh (2010) model with Harsanyi-Uncertainty, as
the way we introduce uncertainty is essentially as in Harsanyi (1973), the “purification” paper.

3 The main example

For our main example suppose that Θ = [0, 1]2 (i.e. N = 2) and that the sender’s preferences
are linear. That is, for any a ∈ Θ, we have u(a) = a1 +xa2. The “indifference slope” x is known
to the sender, but not known to the receiver. The receiver has a non-atomic prior φ over x in
the interval [x0 − ε, x0 + ε] for some fixed and commonly known x0 ∈ R and ε > 0. In terms of
our general model we have U = {u(a) = a1 + xa2|x ∈ [x0 − ε, x0 + ε]}. Suppose, further, that

6Note that in any equilibrium the receiver will never want to randomize between two actions. His best
response (for messages sent with positive probability) is always unique. In fact, for the purpose of this paper it
is without loss of generality to restrict attention to pure strategies for both the sender and the receiver.

7Sobel (2013) differentiates between an influential and an informative equilibrium. In an influential equilib-
rium different messages induce different actions, while in an informative equilibrium different messages induce
different sender beliefs. In our context the two notions are identical.

8We assume the necessary technical assumptions on U are satisfied, such that a non-atomic distribution
exists.
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the set of messages M consists of exactly two elements m+ and m−.

Consider first the case in which there is no uncertainty about the sender’s preference. For such
a case Chakraborty and Harbaugh (2010) show that there is an equilibrium of the following
kind, as illustrated in Figure 1 (a). There is a hyperplane h that divides the state space Θ
into two regions. In region 1 (say, above the hyperplane) the sender sends message m+, which
induces action a+, while in the other remaining region 2 the sender sends message m− inducing
action a−. The two actions are simply (and necessarily in equilibrium) the updated expected
state given the sender’s strategy. Chakraborty and Harbaugh (2010) show, by a nice argument
appealing to the Borsuk-Ulam theorem, that the hyperplane can be chosen (rotated around
any arbitrary state c) such as to make the sender exactly indifferent between actions a+ and
a−. Therefore, they show that an influential equilibrium exists.

Suppose now there is Harsanyi-Uncertainty about the slope of the indifference curve as modelled
above. This case is illustrated in Figure 1 (b). Now consider the following strategy. The state
space is divided into two regions (by, for instance, but not necessarily, a hyperplane). As before,
the sender sends message m+ in region 1 and message m− in region 2. It is now possible that
there is a preference-type of the sender who is indifferent between the two induced actions a+
and a−. Note, however, that this is true for only exactly a single one of these preference-types
of senders. All other preference-types have a strict preference for one or the other action. This
means all other preference-types (and they have cumulative probability 1 in this model) will
want to deviate to a strategy that involves sending one and the same message irrespective of the
state. Thus, there is no such influential equilibrium in the model with Harsanyi-Uncertainty.

4 The main result

We now state and prove the main theorem. In order to do so, we first define Condition (S), as
stated in the online appendix of Chakraborty and Harbaugh (2010).

The set of possible utility functions U (that the sender might have, from the point of view of
the receiver) satisfies Condition (S) if for any two actions a and a′ , if u′(a) = u

′
(a
′
) for u′ ∈ U ,

then u(a) 6= u(a
′
) for all u ∈ U , u 6= u

′ . For example, the linear preference model in our main
example (Section 3) satisfies this property. More generally, Condition (S) holds for preferences
whose indifference curves satisfy a single crossing property. The following theorem is the main
result of this paper.

Theorem 1. Consider a sender-receiver game as defined in Section 2. Suppose the set of
possible utility functions for the sender, U , satisfies Condition (S) and suppose that φ, the
receiver’s prior belief over U , is non-atomic. Then there does not exist an influential equilibrium
in this game.

Proof. The proof is by contradiction. Suppose there exists an influential equilibrium. Hence,
there exist messages m1 and m2 that are sent with positive probability (under F and φ) and
induce different actions, a1 = E(θ|m1) 6= a2 = E(θ|m2). In other words, for each message
there is a set of senders (with positive probability under φ) that send this message in a set of
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states that also has positive probability under F . Action ai, for i ∈ {1, 2}, is then the receiver’s
unique (and pure) best response to receiving message mi (given the senders’ strategies).

The strategy profile given is thus such that the receiver behaves optimally. We now turn to the
(various types of) senders. In order for a sender to use message m+ in some states and message
m− in other states (and given the sender has state-independent preferences) the sender must be
exactly indifferent between both induced actions a+ and a−. We thus must, at a minimum, have
that there is a sender-type u′ ∈ U such that u′(a+) = u′(a−). But then Condition (S) implies
that for all u ∈ U , u 6= u

′ , we have u(a1) 6= u(a2). Given that distribution φ is non-atomic, the
“event” u 6= u′ has probability one under φ. This means that a unit measure of senders has a
strict preference to send only one of the two messages (over the other) irrespective of the state.
This, in turn, implies that the receiver’s best response to both messages must be the same. We
thus arrive at a contradiction.

Comments:

1. Note that, in the Chakraborty and Harbaugh (2010) model, there may be influential
equilibria not based on hyperplanes (see also Section 5). That is, there may be influential
equilibria in addition to those identified in the proof of the main result of Chakraborty
and Harbaugh (2010). Theorem 1 shows that these are also not robust to Harsanyi-
Uncertainty.

2. An example sketched in Figure 2 explains why a condition like Condition (S) is needed for
the non-existence of an influential equilibrium. Take an interior point c and a hyperplane
h which splits the state space in two halves. The indifference curves of the different
sender types are the dotted lines.9 Importantly all indifference curves intersect at two
places (violating Condition (S)), which are exactly the best response actions a+ and a−
of the receiver to receiving message m+ (state is above line h) and m− (state is below line
h). Thus, there is an influential equilibrium. Condition (S) rules out such situations.

3. Nevertheless, it is straightforward to generalize Theorem 1 to a somewhat weaker con-
dition than Condition (S): Say Condition (S

′
) holds if for any two actions a and a

′ ,
Pφ(u ∈ U|u(a) 6= u(a

′
)) = 1. The proof is the same.

4. Theorem 1 and the Condition (S
′
) version of Theorem 1 give sufficient conditions for the

non-existence of influential equilibria. It might be interesting to investigate necessary
conditions for the non-existence.

5. Note that, in Theorem 1, the set of possible sender preferences U , apart from the assump-
tion that it admits a non-atomic distribution and satisfies Condition (S) or (S’), can be
anything. Of course we have in mind that there is a modeler’s choice of u0 ∈ U (as, for
instance, chosen by Chakraborty and Harbaugh (2010) as a good guess for the sender’s
preferences), and that all other possible u ∈ U are close to u0. For instance, all u ∈ U
are such that the maximal pointwise difference to u0 is below some small positive real
number ε. Theorem 1 implies that even if all u ∈ U are close to u0 (and close to each

9One may think of a continuum of indifference curves between the left-most and the right-most curve.
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(a) No uncertainty (b) Uncertainty

Figure 1: Uncertainty vs. no uncertainty in the linear case

Figure 2: Existence of influential equilibrium despite Harsanyi-Uncertainty

7



other) the sender-receiver game with Harsanyi-Uncertainty does not have an influential
equilibrium.

6. Note, finally, that if indeed all u ∈ U are ε-close to some u0 ∈ U then any influential
equilibrium of the game with sender preference u0 and without uncertainty about the
sender’s preference, remains an ε-equilibrium of the sender-receiver game with Harsanyi-
Uncertainty.

5 Adding small costs of lying

In this section we introduce small costs of lying (i.e. of not being truthful) as pioneered within
the cheap-talk literature by Kartik (2009). This will, however, also allow us to talk about other
small deviations from the original model. In each of these models we then ask the additional
question as to what would happen if we introduce Harsanyi-Uncertainty to the respective model.
In a nutshell we find the following.

If we modify the original Chakraborty and Harbaugh (2010) model by making the single change
that the set of messages is infinite (and equal to the state space) then all influential equilibria
of the original Chakraborty and Harbaugh (2010) model remain to be equilibria in the modified
model. Additional influential equilibria (with infinitely many sent messages) appear. Never-
theless, if we introduce Harsanyi-Uncertainty in this modified model all influential equilibria
disappear.

If in addition to adopting a message space equal to the state space we introduce small costs of
“lying” as in Kartik (2009) some influential equilibria disappear, but those that Chakraborty
and Harbaugh (2010) identified in their main result do survive. Moreover, these are then robust
to a small degree of Harsanyi-Uncertainty.

If we give “lying” an endogenous meaning, taking into account how the receiver interprets
messages in equilibrium, then this so modified model may not have any influential equilibria
even without the introduction of Harsanyi-Uncertainty. In fact, how many influential equilibria
survive this modelling change depends on both the utility function of the sender as well as the
commonly known ex-ante distribution F over the state space.

Finally, the “endogenous” lying model also demonstrates that one cannot generally expect
influential equilibria to exist in games in which the sender has a general form of “almost”
state-independent preferences (again, even without the introduction of Harsanyi-Uncertainty).

5.1 Exogenous costs of lying

Kartik (2009), in order to make sense of what one could call “lying”, supposes that state space
and message space are the same. Honesty then corresponds to sending the true state. Therefore,
the notion of honesty Kartik (2009) uses is exogenously determined. Costs for lying grow in
the distance between the true state and the sent message.
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This means that in order to follow Kartik (2009), we have to change the Chakraborty and
Harbaugh (2010) model by allowing more than a finite number of messages. Suppose that the
message space is, like the action space, the same as the state space Θ, which in turn is, as in
the Chakraborty and Harbaugh (2010) model, a convex and compact subset of RN with N ≥ 2.
Before making any additional changes to the model, it bears fruit to investigate the impact of
this single change to the analysis.

To simplify the discussion we shall focus on the special case, as in our main example, in which
Θ = [0, 1]2 (i.e. N = 2) and the sender’s preferences are linear. There is a commonly known
ex-ante distribution over the state space, denoted by F , with full support on Θ. Suppose that,
for any a ∈ A = Θ, the sender’s utility is given by u(a) = a1 + a2.

Consider an influential equilibrium of the original Chakraborty and Harbaugh (2010) model,
with message space {m+,m−} (i.e. only two messages are available). We now claim that the
model with message space equal to the state space also exhibits the very same equilibrium. In
this equilibrium the sender sends only two distinct messages with positive probability, denoted
by m+,m− ∈ Θ. The sender sends message m◦, for ◦ ∈ {+,−}, in exactly the same states
in which the sender does so in the original game. The receiver reacts to these two messages
in exactly the same way as in the original game as well. The only thing we need to add is
the behavior of the receiver if he receives another message. Suppose we choose the receiver’s
choice for all messages in Θ other than m+ and m− to the action (0, 0) (the lower left corner
of the state (and action) space). Then the receiver best responds to the sender’s strategy, and
the sender best responds to the receiver’s strategy. That is, we found a Nash equilibrium of
the new game. Note, furthermore, that it is not easy to refine this equilibrium away. As no
sender type would like to deviate (in fact all sender types have the exact same incentives not to
deviate) to a message other than m+ and m−, refinements such as the intuitive criterion have
no bite.

Note, but this is not important for the point we want to make in this subsection, that the new
model with a continuum of messages does exhibit some new influential equilibria. In fact, there
is an influential equilibrium in which a continuum of different messages is sent, at least for
some special cases of the distribution F . Suppose F is uniformly distributed on the unit-square
Θ. Suppose the sender sends a different message for every line in Θ that is parallel to the 45
degree line. Then the receiver’s best response for each message is some point on the line that
is orthogonal to the 45 degree line and goes through the point (1

2
, 1
2
). This is an influential

equilibrium.

Note that if we introduce Harsanyi-Uncertainty in this model we again “lose” all influential
equilibria.

Having established that all original Chakraborty and Harbaugh (2010) equilibria survive the
single modification of the message space to be equal to the state space, we can introduce a
second change to the original model by supposing that the sender has costs of “lying”. Following
Kartik (2009) we now have that the payoff function of the sender is given by π(a, θ,m) =
u(a)− ε‖θ−m‖. Here, ε ≥ 0 scales the importance of the lying cost part in the payoff function
and ‖ · ‖ is the Euclidean distance. If ε > 0 the payoff of the sender ceases to be state-
independent, it becomes state- and message-dependent. If the sent message m ∈M equals the
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true state θ, the sender is honest and does not face any lying costs. For all other messages
m 6= θ, the sender is said to lie. This is payoff relevant for positive ε.

Figure 3: An influential equilibrium of the original Chakraborty and Harbaugh (2010) model
that is not based on a hyperplane. This equilibrium is not robust to adding a small cost of
lying.

Note first that there are some influential equilibria in the original Chakraborty and Harbaugh
(2010) model that certainly do not survive this modification. Suppose the commonly known
ex-ante distribution over states F is uniform on the unit square. Consider the straight line
from state (1, 0) to state (0, 1). The sender is indifferent between any two actions on this line.
The ex-ante expected state, (1

2
, 1
2
), is also on this line. Now take an arbitrary point c 6= (1

2
, 1
2
)

on this line. Take a circle around this point such that the full circle lies within Θ. Then there
is an influential equilibrium, in which the sender sends message m1 if the state is within the
circle and message m2 if it is not. There are many influential equilibria of similar construction.
None of these, however, survive the introduction of a small cost of lying (this is also true for
the endogenous lying model of the next section). The reason for this is that, given the utility
function π(a, θ,m) = u(a) − ε‖θ − m‖, the set of states for which the sender is indifferent
between two induced actions, is a hyperplane (i.e. a straight line), and not a circle as the
previous equilibrium would have required.

Now consider again the influential equilibrium with two messages m+ and m− from before. We
now claim that this remains to be an equilibrium in the most recent modification of the game.
In the previous models the messages m+ and m− were necessarily distinct, but otherwise could
be anything. Now we have to choose these messages carefully. Denote the set of states in
which message m◦, for ◦ ∈ {+,−}, is sent by Θ◦. Recall from Section 3 that a straight line (a
hyperplane) separates the two subsets and that the union of the two subsets is the entire state
space. Now take any line within Θ that is orthogonal to this hyperplane. Now choose m+ and
m− to be on this line and equidistant from the point where this line intersects the hyperplane.
Then it is true that no sender type wants to deviate from sending the message as prescribed in
the equilibrium. Figure 4 illustrates the equilibrium construction.
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Figure 4: An original Chakraborty and Harbaugh (2010) influential equilibrium can be made
an equilibrium of the modified game with exogenous lying costs, by sending two messages that
are equidistant to the hyperplane and lie on a perpendicular to that hyperplane.

In fact it is true that in all states other than those exactly on the hyperplane the sender now
has a strict preference to send the prescribed message. This implies that the so constructed
equilibrium in this modified model is in fact robust to (has a nearby equilibrium after) the
introduction of a small (relative to the given ε) degree of Harsanyi-Uncertainty.

It is interesting to note that introducing exogenous costs of lying to the Chakraborty and
Harbaugh (2010) model admits those and essentially only those influential equilibria that
Chakraborty and Harbaugh (2010) constructed in their existence proof.

5.2 Endogenous costs of lying

Now consider a model in which “lying” only takes on meaning in equilibrium. (Kartik, 2009,
Footnote 9, page 1364) states: “One might suggest that psychological costs of lying should take
into account the receiver’s endogenous interpretation of a message. Although this is interesting,
I leave it for future research.” Note that under such an interpretation the sender does not a
priori care about the name of the message she sends. She cares about how the receiver interprets
this message. We, thus, modify her state-independent utility function by adding a relatively
small term that captures this idea. To do so, we return to the sender having only two messages
at her disposal. The sender’s payoff function is now given by π(a, θ) = u(a)−ε‖a−θ‖.10 Hence,
the payoff function is not message-dependent, but action-dependent and, in a relatively small
way, state-dependent.

10Note that the second part of the sender’s utility function is identical to the receiver’s utility function. One
could also consider that the sender also cares about the receiver’s perceived variance over the states induced by
a message. We conjecture that this would not change the analysis much.
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Consider, throughout this section, the case in which the state space is a subset of two-dimensional
Euclidean space, and the function u is linear.

The key feature to help us understand equilibria in this modified model is the following. Suppose
ε (the utility weight on lying costs) is very small. Then in any influential equilibrium the two
induced actions a+ and a− must be such that u(a+) is very close to u(a−). In other words a+
and a−, while not exactly on it, must be very close to an indifference line of u. Now fixing two
distinct such equilibrium actions a+ and a− (induced by messages m+ and m−, respectively),
a close inspection of the payoff function π(a, θ) reveals that the set of states for which the
sender is indifferent between the two messages is a straight line through the state space that
is orthogonal to the line through the two points a+ and a− and is, thus, orthogonal to the
indifference line of u in the limit as ε tends to zero.11

In the existence proof of Chakraborty and Harbaugh (2010) the line separating the states
between those in which the sender sends message m+ and those in which she sends message
m− can, in principle, have any angle to the indifference line of u. Thus, the modified model,
imposes a new restriction on the influential equilibria. How much this reduces the number
of influential equilibria depends on the details, i.e. on the specific function u and the specific
commonly known ex-ante distribution over states F .

Consider first the case in which Θ = [0, 1]2, F is uniform, and u(a) = a1 + a2. Then any
influential equilibrium identified by Chakraborty and Harbaugh (2010) (in their proof based
on hyperplanes) remains to be an influential equilibrium in the modified model. Moreover,
as almost all types of sender in such an equilibrium have a strict preference for sending the
equilibrium message, any such equilibrium is robust to a small degree of Harsanyi-Uncertainty.

Consider as a second example the case just as before with one change. The original utility
function u is now given by u(a) = 2a1 +a2. Then, of the infinite number of influential equilibria
of the Chakraborty and Harbaugh (2010) model, only two survive this modification.

Consider a candidate equilibrium in which messages m+ and m− induce actions a+ and a−.
From the considerations above we know that the set of states for which the sender is indifferent
between the two messages, denoted Ψ(a+, a−), is a line that (in the limit as ε tends to zero) has
slope 1

2
. That is, there is a d ∈ R such that θ ∈ Ψ(a+, a−) if and only if θ2 = 1

2
θ1 + d. For any

such line Ψ(a+, a−) one can compute the expected state conditional on message m+, denoted
ã+ (sent if the state is above this line), and m−, denoted ã− (sent if the state is below this
line). For the candidate equilibrium to actually be an equilibrium we need these conditional
expected states to be equal to the originally chosen actions a+ and a−.

For d ∈ [1
2
, 1] the expected state conditional on messagem+ is given by ã+ =

(
2
3
(1− d), 2

3
+ 1

3
d
)
.

The overall expected state is
(
1
2
, 1
2

)
and the expected state conditional on message m− must

then be on the line through these two points. This line, however, has a slope of −2 (which
is the slope of the indifference line of u that a+ and a− must lie on) if and only if d = 1

2
.

One can show analogously that for d ∈ [−1
2
, 0] the expected state conditional on message m− is

ã− =
(
2
3
(1− d), 1

6
+ 1

3
d
)
. The only case for which there is an equilibrium is when d = 0. Finally,

11A close inspection of the payoff function π(a, θ) also reveals that the set of states for which the sender is
indifferent between the two messages is a straight line that may have essentially any intercept, even in the limit
as ε tends to zero.
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(a) second example (b) third example

Figure 5: The expected state conditional on message m+, denoted ã+ as a function of the
intercept parameter d in the latter two examples of cheap talk games with vanishing endogenous
costs of lying.

one can show that for the case where d ∈ [0, 1
2
], the expected state conditional on message m+

is given by ã+ =

(
1
2
(1−d)− 1

6
3
4
−d ,

1
2( 11

12
− d

2
−d2)

3
4
−d

)
. One can show that the line through this point and

the ex-ante expected state has the required slope of −2 only if d = 0 or d = 1
2
. See Figure 5a

for a depiction of ã+ as a function of d.

Thus, altogether there are only two influential equilibria in this game. These two, however, are
robust to the introduction of a small degree of Harsanyi-Uncertainty.12

Consider as the third and final example that the state space is [−1, 1]2, the original utility
function u given by u(a) = a1, and the commonly known ex-ante distribution over states F
has density f(θ1, θ2) = 1

4
(1− θ1θ2). Thus the sender (without lying costs) cares only about one

dimension of the action space, and there is (negative) correlation between the two coordinates
of the state. The marginal distribution of each of the two coordinates of the state is uniform.

In this case the ex-ante expected state is (0, 0) and the indifference lines of u are vertical lines.
Thus any influential equilibrium must induce actions on the vertical line through (0, 0), i.e.
must have a1 = 0. As in the previous two examples we must have that the set of states,
Ψ(a+, a−), for which the sender is indifferent between sending the two messages, is orthogonal
to the indifference line of the original utility function u. In the present case, this means
that Ψ(a+, a−) is a horizontal line, i.e. described by θ2 = d for some d ∈ [−1, 1]. Given the
negative correlation of the two coordinates in the state, the expected state conditional on θ2 > d

12To be more precise these two equilibria are the limit equilibria of the case where ε tends to zero. Furthermore,
these two equilibria would remain limit equilibria if we also added Harsanyi-Uncertainty and took the limit of
that uncertainty to zero as well.
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(i.e. conditional on message m+) is given by ã+ =
(
−1

6
(1 + d), 1

2
(1 + d)

)
and is, thus, never in

Ψ(a+, a−) (except for d = −1, which corresponds to the babbling equilibrium). This is depicted
in Figure 5b. Thus, this game does not have an influential equilibrium.

Note that adding a small degree of Harsanyi-Uncertainty cannot create an equilibrium where
there was none before.

A Uncertainty about the bias in Crawford and Sobel

We have shown that the influential cheap talk equilibria of Chakraborty and Harbaugh (2010)
do not survive the introduction of Harsanyi-Uncertainty about the type of the sender. In this
section we show that this is not a general problem that all sender-receiver games suffer from.
To see this we use a simple example in the spirit of Crawford and Sobel (1982) with a possibly
biased sender in which information transmission can still happen despite uncertainty about this
bias.

The state space is Θ = [−1, 1]. The prior of the receiver is given by a distribution F (with
density f) over Θ that is symmetric around zero.13 The sender is privately informed about the
realization of the state θ ∈ Θ and can send a costless message m ∈M = {H,L} to the receiver.
The receiver observes the message of the sender and takes an action a ∈ A = Θ = [−1, 1].
The sender has utility function u(a, θ, b) = −(θ + b − a)2 and the receiver utility function
v(a, θ) = −(θ − a)2. Here, b denotes the sender’s bias relative to the receiver. Recall that
a denotes the action taken by the receiver, and θ the state. Suppose, first, it was common
knowledge that the sender’s bias is equal to zero. Thus, the game is one of complete common
interest. This game has an influential equilibrium in which senders with state below zero send
message L and senders with state above zero send message H. The receiver chooses actions
which are equal to the conditional expectation of the state conditioning on the observed message
and given the sender’s strategy. For the case of a uniform prior F , for instance, the receiver
chooses action aH = 1

2
upon receiving message H and aL = −1

2
upon receiving message L.

We now introduce Harsanyi-Uncertainty about the bias into this example of a Crawford and
Sobel (1982) sender-receiver game.14 The sender knows her bias precisely, in addition to know-
ing the state. The receiver does neither know the true state nor the precise bias b. Instead, the
receiver only has a prior φ (with density function ϕ) over an interval [−ε,+ε] of possible biases
of the sender for ε positive but small. The prior φ is assumed to be symmetric around 0 and
orthogonal to the prior F over the state space.15

We shall now compute an influential equilibrium that is close to the equilibrium without bias
uncertainty given above. Suppose that the receiver plays action aH if he observes message
H and action aL if he observes message L with (without loss of generality) aL < aH . Then

13The assumption of symmetry is not important for the result. It allows us, however, to dramatically simplify
the equilibrium calculations.

14Papers with uncertainty about the bias in the cheap talk literature include Morgan and Stocken (2003), Li
and Madarász (2008), and Dimitrakas and Sarafidis (2005).

15In other words the receiver’s joint prior about state and bias is the product of the two marginal priors. Bias
and state are, in the receiver’s view, independently drawn.
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the behavior of the sender must be as follows. If the state θ is below a cut-off of q(b), which
depends on the sender’s bias, then she sends message L, otherwise she sends message H. The
cut-off must be such that the sender with bias b and state equal to this cut-off q(b) is indifferent
between the two messages. This consideration leads to q(b) = aH+aL

2
− b. The symmetry in the

two distributions implies that aL = −aH . This in turn implies that the cutoff is q(b) = −b and
independent of the two actions.16 It then remains to calculate the equilibrium action aH . It is
given by the conditional expectation, from the sender’s point of view, of the state q(b) given
that message H is sent, i.e. given that θ > q(b). For ε small enough, this can be expressed as
the double-integral

2

∫ ε

b=−ε

∫ 1

θ=−b
θf(θ)ϕ(b)dθdb,

where the 2 is the reciprocal of the probability that θ > q(b) (derived from the symmetry in
the two distributions). For the special case of two uniform distributions for F and φ we obtain
aH = 1

2
− ε2

6
and aL = −aH . Thus, except for the receiver’s actions being just slightly closer to

the center than under the case without bias-uncertainty, the equilibrium has hardly changed.
In particular, as ε tends to zero the influential equilibrium of the game with bias-uncertainty
converges to the original influential equilibrium of the game without bias-uncertainty. To see
this not only for the double-uniform prior case, note that, generally, the condition θ > q(b) =
−b, as ε tends to zero, tends to the condition θ > 0, which is the condition employed in the
model without bias uncertainty.

B Different receiver types

Suppose there is no Harsanyi-Uncertainty about the preferences of the sender. That is, as in
Chakraborty and Harbaugh (2010), there is only one type of sender with state-independent
utility function u : A → R, where A = Θ and Θ is a convex and compact subset of RN with
N ≥ 2. Instead, there are possibly infinitely many different receiver types in terms of the
receiver’s subjective belief F over the state space Θ. That is, there is a set F of distributions
over the state space. Each receiver privately knows his distribution F . The sender is not
informed about the receiver’s prior, but holds her own prior ψ over the set F . This prior ψ is
commonly known and can be a continuous distribution or can have atoms, or can even be a
finite distribution.

Theorem 2. Consider a sender-receiver game as defined in Section 2 with the information
structure as given in Section B. Then this game has an influential equilibrium.

Proof. The proof follows the existence result of Chakraborty and Harbaugh. Fix an arbitrary
c ∈ int(Θ) which exists as Θ is nonempty. Let hs,c be the hyperplane through c with “orienta-
tion” s ∈ SN−1. The orientation is orthogonal to the hyperplane and has (Euclidean) length 1.
Thus, SN−1 is the unit sphere in RN . The hyperplane splits (essentially partitions) the state
space into two nonempty regions R1(hs,c) and R2(hs,c). The expert sends message m1 if θ ∈ R1

and m2 if θ ∈ R2. Receiver type F best responds to the sender’s strategy by choosing optimal
action aFi (hs,c) ∈ Ri(hs,c) upon receiving message mi (for i ∈ {1, 2}).

16Without symmetry in the distributions this would not be true, and calculations would be more cumbersome.
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The sender, with given fixed prior ψ, computes, for i ∈ {1, 2}, her expected utility ui(hs,c) =
Eψ
[
aFi (hs,c)

]
. For a fixed interior point c, each ui(hs,c) is a continuous function in s ∈ SN−1.

For opposite orientations s,−s ∈ SN−1, we have R1(hs,c) = R2(h−s,c) and R2(hs,c) = R1(h−s,c)
implying u1(hs,c) = u2(h−s,c) and u1(h−s,c) = u2(hs,c).

Consider the difference between the two utilities: ∆(·, c) : SN−1 → R, where ∆(s, c) = u1(hs,c)−
u2(hs,c). The property that ∆(s, c) = −∆(−s, c) makes this a (continuous) odd map in s. The
Borsuk-Ulam theorem17 then implies that there is a s∗ ∈ SN−1 such that ∆(s∗) = 0. Thus,
there exists for every interior c an orientation s∗ ∈ SN−1 such that u1(hs∗,c) − u2(hs∗,c) = 0.
Thus, we have found an influential cheap talk equilibrium.

C Higher-order belief uncertainty

In the spirit of Bergemann and Morris (2005) and the so-termed “Wilson-doctrine” one could
ask how robust the influential equilibria of Chakraborty and Harbaugh (2010) are to higher-
order belief uncertainty. The previous subsection demonstrates that the influential equilibria
of Chakraborty and Harbaugh (2010) are robust to uncertainty that the sender might have
about the receiver’s belief. In this small section we argue that essentially any higher-order
belief uncertainty with a continuum of sender-types will again remove all influential equilibria
of Chakraborty and Harbaugh (2010).

The argument is not more complex than our argument, presented in Section 4, to show that
the influential equilibria of Chakraborty and Harbaugh (2010) are non-robust to Harsanyi-
Uncertainty. It does, however, require a bit more notation. Let θ ∈ Θ be the state, privately
known to the sender. Let F ∈ F be the subjective belief of the receiver about the state,
privately known to the receiver. Let u be the sender’s utility function, commonly known to
sender and receiver. Let ψ ∈ Ψ be the subjective belief of the sender about the receiver’s
subjective belief, privately known by the sender. Let, finally, µ be the belief of the receiver
about the sender’s private belief ψ, commonly known to sender and receiver.

This model shares with the original Chakraborty and Harbaugh (2010) model and the model
of Section B that there is common knowledge of the sender’s utility function. It differs from
the Chakraborty and Harbaugh (2010) model, but still agrees with the model of Section B,
in so far as the receiver’s belief about the state is not common knowledge. It differs from the
model of Section B in so far as the sender’s belief about the receiver’s belief is not common
knowledge. Thus, there are again, as in the model of Section 2 and unlike the model of Section
B, multiple types of senders.

Now suppose that there is an influential equilibrium with at least two used messages m+ and
m−. Suppose each message m◦, for ◦ ∈ {+,−} induces optimal receiver actions aF◦ (different
for different receiver beliefs F ). The sender evaluates the expected utility of these actions
according to her private belief ψ ∈ Ψ about the distribution over the receiver’s private belief F
by Eψu(aF◦ ). Suppose further that the commonly known belief of the receiver, µ, over the private

17The Borsuk-Ulam theorem implies that all continuous odd functions f : SN−1 → R have a zero, i.e. there
exists s∗ such that f(s∗) = 0.
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beliefs of the sender is non-atomic and the set Ψ satisfies some condition like Condition (S).
Then, if one sender-type ψ is indifferent between the two messages, i.e. Eψu(aF+) = Eψu(aF−),
no other sender-type ψ′ is indifferent. That is, for all ψ′ ∈ Ψ with ψ′ 6= ψ we have that
Eψ′u(aF+) 6= Eψ′u(aF−). By the same argument as in the proof of Theorem 1 almost all sender-
types will want to deviate from the proposed strategy. Thus, this game (with higher-order
belief uncertainty as described here) has no influential equilibria.
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