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Abstract
In the present thesis we approach the questions of deconfinement properties as well as
transport properties of mesons in the Quark Gluon Plasma close to the transition tem-
perature in the framework of Lattice QCD. Expectations for the underlying mesonic
spectral functions are substantiated by combining non-interacting spectral functions
and phenomenological results. Especially, non-interacting meson spectral functions are
presented, in the continuum and on the lattice for degenerate quark masses, and the
computations extended to the case of non-degenerate quark masses. With these expec-
tations at hand, we extract spectral information from meson correlator data obtained in
numerical computations of Lattice QCD, both in the quenched approximation and with
2 + 1 dynamical flavors.

In the light quark sector quenched correlation function data at three temperatures
T = 1.1Tc, 1.2Tc and 1.4Tc, with three increasingly finer lattices per temperature, are
extrapolated to the continuum. At finite cutoff, large lattices with clover-improved Wil-
son valence fermions were used, which permits stable continuum extrapolations in a2.
The electrical conductivity, the dilepton rate and the soft photon rate are computed by
extracting the underlying spectral function from the extrapolated correlation function
data via a phenomenologically motivated fit Ansatz. Systematic uncertainties of the
Ansatz and the fit procedure are investigated and discussed, notably by using additional
perturbative input of the spectral function shape, and with a glance at possible quasipar-
ticle and hydrodynamical descriptions, respectively. As an additional exploratory study
we also utilize the method of Backus and Gilbert as a model independent approach to
the reconstruction of spectral functions from correlator data at the lowest temperature
T = 1.1Tc. The results are compared to the results from the fit procedure. Additionally,
the Backus Gilbert method yields an estimate for the resolution of the procedure, given
the statistical uncertainty of the correlation function data, which is compared to the
results obtained by the systematic checks conducted in the fit procedure.

In the heavy quark sector deconfinement properties are analyzed by performing a 2+1
dynamical flavor study on 643 × 64 and 643 × 16 lattices at two values of the coupling,
using a HISQ sea quark action and a Standard Wilson valence quark action, extract-
ing meson correlation functions of strange (ss̄), strange-charmed (sc̄) and charm (cc̄)
quark content. Comparing temporal as well as screening correlation functions around
the transition region with corresponding vacuum correlation functions, in conjunction
with phenomenological expectations, facilitates statements about the shapes of the cor-
responding spectral functions, and thus the properties of the investigated mesons with
respect to the chiral/deconfinement transition. Screening masses are extracted, and the
results are compared to a pure HISQ computation on slightly smaller lattices, especially
with respect to cutoff effects and possible systematic effects due to the mixing of differ-
ent actions.
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1 Introduction

The Standard Model (SM) of particle physics, as we know it today, describes the smallest
constituents of matter, their ways of interacting in conjunction with their corresponding
force carriers, and the particles that arise from these interactions and are held together
by these forces. As such, the four known forces in nature are the gravitational force,
the electromagnetic force, the weak force and the strong force. Except for the first
one, all of these are successfully set up as quantum field theories, namely Quantum
Chromo Dynamics (QCD) and the unification of weak and electrodynamical interac-
tion, the Glashow-Salam-Weinberg model. They are gauge theories, and therefore share
a fundamental symmetry, the invariance under global gauge transformations acting on
the theory’s respective fields. Demanding this symmetry to hold locally, i.e. for each
point in space time separately, provides a compelling mechanism to generate the fun-
damental interactions that can occur between these particles. This is the reason why,

Particles
Generation Fermions Bosons

Quarks Leptons Mediators
1st u d e νe γ
2nd c s µ νµ W+/−, Z
3rd t b τ ντ g

Table 1.1: Elementary particles in the Standard Model. Note that the quarks have
fractional electromagnetic charge, with the left column having e = 2/3 and
the right column e = −1/3.

albeit being called a ’model’, the SM constitutes our most fundamental knowledge of
nature, and computations and arguments based on this model are usually referred to as
’from first principles’. In general, it turns out that all force carrying particles are spin-1
bosons, thus obeying the Bose statistics, while the rest of the elementary particles are
fermions, featuring a half integer spin and obeying the Fermi statistics. To sum up the
elementary particle content of the SM, shown in Tab. 1.1, the forces of the electroweak
interactions are mediated by the massless photon (the force carrier of the electromag-
netic part of that theory), one massive and uncharged boson, the Z0, and two charged
and massive bosons W+ and W−. In fact, the latter are extremely heavy, mZ ≈ 90.1GeV
and mW ≈ 80.4GeV [1]. Massive gauge bosons are only possible due to the presence of
an additional particle, the Higgs boson, which was found in 2012 at LHC after a long
search [2, 3]. The strong force is carried by eight massless gluons. The fermionic section
of the SM is subdivided into leptons and quarks. The former class contains electrons,
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1 Introduction

Figure 1.1: The meson (left) and baryon (right) octets according to the eightfold way.
Pictures taken from [4].

muons and taus, together with their corresponding neutrinos. Analogously, there are
three families of quarks, with two flavors per family, which are, ordered by increasing
mass, the up and down, the strange and charm and the bottom and top quarks. While
the up and down quarks are very light, mu ≈ 2.3MeV and md ≈ 4.8MeV, the strange
quark has an intermediate mass of ms ≈ 95MeV. The c, b and t quark come with much
higher masses of mc ≈ 1, 275GeV, mb & 4GeV and mt & 160GeV [1].

The strong force binds the hadrons, which in turn can be subdivided into mesons as
a (bosonic) bound state of quark and antiquark (qq̄), and baryons, which are fermionic
bound states of three quarks. A remarkably simple way to classify these quark bound
states was found in 1964 by Gell-Mann and Ne’eman independently, called the eightfold
way [5]. It categorizes composite particles by their quark content, especially strangeness
(the abundance of a strange quark) and electric charge, see for example the meson octet
and the baryon octet in Fig. 1.1. Such patterns are manifestations of the underlying
flavor SU(Nf ) symmetry of a theory with Nf quark flavors, which would be perfectly
realized only if the quarks were all mass-degenerate. However, even in this case a part of
the flavor symmetry, the chiral symmetry, is spontaneously broken by the QCD dynam-
ics, and with the masses of the light quarks in nature being comparatively small, at least
the pions may be viewed as the occurring Goldstone bosons, which goes along with their
relatively small masses of mπ ≈ 135− 140MeV [6, 7]. The quarks are characterized, in
addition to their fractional electrical charge, by a quantum number called color, without
which baryon states, like the proton or the neutron, would be forbidden by the Pauli
exclusion principle. The underlying symmetry is the defining SU(Nc) gauge symmetry
of the theory, which, with Nc = 3 color degrees of freedom termed red, green and blue,
leads to a total of eight two-colored gluon states mediating between the quarks. It turns
out that color is not a directly observable quantum number, unlike the electric charge,
and indeed the meson (qq̄) and baryon qqq structures are allowed because they are color
neutral.
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This phenomenon is known as confinement, and so far not rigorously proven. However,
it can be qualitatively understood by noting that the gluons, themselves carrying color
charge, can interact with each other, which is a consequence of the non-Abelian nature
of the gauge group SU(3). The electric field, mediated by the (not electrically charged)
photon spreads out in space when emitted from an electric charge, but the gluon field
between two (color charged) quarks can be pictured to form a narrow flux tube, with its
energy content increasing as the distance between the two quarks increases. Because it
is thus not possible to separate two color charges by an infinite amount, confinement can
be seen as a long range feature of the theory. The space-time discretized formulation of
the above gauge theory, Lattice Gauge Theory, can determine this long range behavior
of a quark-antiquark pair, but in that case the connection to the continuous physics of
nature is far from trivial [6, 8, 9]. At short ranges, on the other hand, QCD shows the
remarkable feature of asymptotic freedom, which states that the force loses its attribute
of being ’strong’ at short distances, or, equivalently, large energy scales. This implies
that the coupling constant really is a function of the energy scale involved in the pro-
cess under consideration, a fact that can be observed in Deep Inelastic Scattering (DIS)
experiments [10, 11].

The above considerations are very idealistic in the sense that they describe QCD in the
vacuum, which is completely empty apart from quantum fluctuations. It is a complicated
theory, far from being completely understood, and thus a research field in its own right.
In addition, there are phenomena that can be investigated only when understanding
QCD in a more thermodynamical context, i.e. not only considering single, fundamental
processes, but also systems of many particles at finite temperature and particle densities.
As such, it turns out that theoretically there is a rich phase structure as a function of
temperature and density, with phase transition lines separating these different phases.
A phase that has long been speculated about is the Quark Gluon Plasma, a state of
matter that would be realized at extremely high temperatures of T & 150MeV, roughly
150, 000 times the temperature of the sun’s core [12], and vanishing net baryon density.
In contrast to the ’hadronic phase’ laid out above, it features liberated quark degrees of
freedom inside the hot spatial volume, which are not confined to hadrons. Such a state
is expected to have existed in the early universe [13], and has been discovered to occur
in collision experiments colliding heavy nuclei [14]. The properties of the transition be-
tween the two phases are hence under intense research, with respect to the details of the
deconfinement mechanism that takes place, as well as the restoration of chiral symmetry.

A complete description of the Quark Gluon Plasma calls not only for the determina-
tion of its equilibrium properties, but also of its transport properties, which parameterize
the relaxation into equilibrium. Of special interest in the current work are the transport
coefficients, specifically the electrical conductivity, of the Quark Gluon Plasma, as well
as the fate of mesons in the plasma, thus addressing the question of existence and stabil-
ity of particles inside the hot medium. Transport coefficients are fundamental properties
of the medium, and allow for a more detailed view on the nature of interactions that
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1 Introduction

take place. For example, a low shear viscosity and electrical conductivity generally hint
at the medium being a strongly coupled plasma, which behaves more like an ideal liquid.
Especially the observation of large elliptic flow, i.e. the reaction of the Quark Gluon
Plasma to pressure anisotropies created by nuclei colliding non-centrally, in conjunction
with the success of its description by hydrodynamics, gives rise to a small shear viscos-
ity to entropy ratio η/s [15, 16]. The fate of mesons in the plasma is of great interest,
because the absence of states that otherwise exist in the hadronic medium signals the
onset of deconfinement and chiral transition, and can, for example, serve as temperature
probes in the experiment [17, 18, 19].

Both transport properties and the existence or absence of particles in the plasma
are linked to spectral functions, which encode the spectrum of the theory with respect
to given quantum numbers. They are thus central quantities to obtain, and there are
different approaches to extract them from QCD [12, 20, 21]. In the current work, we
extract spectral functions from numerical Lattice QCD data, which constitutes a non-
perturbative and mathematically rigorous approach to QCD, to help alleviating the
addressed questions.
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2 Quantum Chromo Dynamics on the
lattice

2.1 Fundamentals of QCD

The following is a short outline of QCD in a continuous space time. It quickly introduces
the necessary concepts and quantities to be able to introduce the discretized formulation
of QCD in the next section. Great sources that include the following, and everything
that is missing, are introductory standard textbooks [6, 8, 11].

The fundamental Lagrangian of QCD at vanishing temperature and density in a
Minkowski space time is given, with all indices and sums explicitly written, by

LQCD =

Nf∑
f=1

Nc∑
a=b=1

4∑
α=β=1

ψ̄faα(x)
(
i /D

αβ
ab −mfδαβδab

)
ψfbβ(x)

− 1

4

N2
c−1∑
a=1

F a
µν(x)F µν

a (x).

(2.1)

To shorten the notation, we switch to Einstein convention, thus summing over pairs of
equally named indices and dropping the summation symbols. The first term constitutes
the fermionic part of the action, with the coupling to gauge fields realized by the covariant
derivative

/D
αβ
ab = γµαβDµ,ab = γµαβ

(
∂µδab − ig

λcab
2
Acµ(x)

)
, (2.2)

with the bare gauge coupling g and the Dirac matrices fulfilling the anticommutation
relation in Minkowski time through the flat metric gµν = diag(1,−1,−1,−1)

{γµ, γν} ≡ γµγν + γνγµ = gµν . (2.3)

In the covariant derivative, the gauge field Aµ(x) ≡ λa

2
Aaµ(x) consists of the SU(Nc)

generators λa, which are elements of the algebra su(3) and define the group via their
commutation relations [

λa, λb
]
≡ λaλb − λbλa = ifabcλc (2.4)

and their structure constants fabc. Thus, the single top index labels the generator, while
the two bottom indices label its respective matrix element. Usually, in this work we
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2 Quantum Chromo Dynamics on the lattice

adapt three colors, Nc = 3. The covariant derivative results from the postulate that the
Lagrangian should be invariant with respect to local, i.e. space time dependent, gauge
transformations

ψaα(x)→ Vab(x)ψbα(x), ψ̄aα(x)→ ψ̄b,α(x)V †ba(x)

Aµab(x)→ V (x)Aµab(x)V †(x)− i

g
[∂µV (x)]V †(x).

(2.5)

The gauge dynamics is contained in the second term, with the field strength tensor
explicitly reading

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.6)

To connect to Lattice QCD, we perform a Wick rotation t → −iτ to Euclidean time,
which affects the above relations. In Euclidean space time, the flat metric is a unit
matrix, gµν → δµν , the Dirac matrices change to the Euclidean Dirac matrices, and the
Lagrangian is given by

LEQCD =

Nf∑
f=1

ψ̄faα(x)
(
/D
αβ
ab +mfδαβδab

)
ψfb,β(x) (2.7)

+
1

4
F a
µν(x)F a

µν(x), (2.8)

with the covariant derivative now reading

/D
E
ab,αβ = γEµ,αβD

E
µ = γEµ,αβ

(
∂µδab − ig

λcab
2
Acµ(x)

)
. (2.9)

The partition function can be written as a path integral, Boltzmann-weighted with the
action SE. Keeping the temporal and spatial extends of space time finite, and dropping
the Euclidean ’E’ on the quantities under consideration, we write

S =

∫ β

0

dτ

∫
V

d3xL (2.10)

and thus have the partition function

Z =

∫ ∏
µ

DAµ
∫ ∏

f

Dψf ψ̄fe−
∫ β
0 dτ

∫
V d3xL. (2.11)

With finite extends β and V in space time, the theory is interpreted as a system at
finite temperature T = 1/β and a finite volume V . In analogy to statistical mechanics,
expectation values of an operator, which in general is a function of gauge and Dirac
fields, are defined by

〈O(A,ψ, ψ̄)〉 =
1

Z

∫ ∏
µ

DAµ
∫ ∏

f

Dψf ψ̄fe−SO(A,ψ, ψ̄). (2.12)
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2.2 Lattice QCD building blocks

2.2 Lattice QCD building blocks

The considerations of the last section provide the basis to introduce the foundational
method utilized in this work to actually compute results in the theory of QCD. We
start with the introduction of a suitable discretized gauge action and a naive construct
for the fermionic part of the action. Certain pathologies of the latter will have to be
cured, leading to the Wilson Dirac action and the formulation of staggered fermions. A
discussion on the discretization errors and principal issues regarding the respective ac-
tion’s symmetries is followed by systematic improvements of the former. More detailed
treatments of the presented foundations can be found in e.g. [6, 8, 9].

On top of the theory presented above, we introduce a discretization of space time by
demanding that the, formerly continuous, four vector xµ satisfies

xµ = anµ, nµ ∈ [0, Nµ − 1] ∀ µ = 1, 2, 3, 4. (2.13)

The space time locations are thus restricted to the points, or sites, nµ on the lattice,
being homogeneously scattered with distance a across the whole four volume a4ΠµNµ.
In practice the three spatial extents are chosen to be equal, N1 = N2 = N3 ≡ Nσ, and
the theory thus is set in a spatial volume of V = (aNσ)3, while the temporal extent,
together with the lattice spacing, defines the temperature of the system T = 1/(aNτ ).
As a consequence of discretizing space time, the effect of a Fourier transform on an
arbitrary function of xµ,

f (pµ) =

∫ ∞
−∞

dxµe−ipµxµf (xµ) −→
∑
nµ

e−ipµanµf (anµ)

⇒ f

(
pµ +

2π

a
êν

)
=
∑
nµ

e−ipµanµe2πinνf (anµ) = f (pµ) ,

(2.14)

with êν being a unit vector in the specific direction ν, constrains the corresponding
momenta to the finite Brillouin Zone. Effectively, the maximum momentum p ∼ 1/a
acts as a regulator and renders computations on the lattice UV safe. The same idea
’reversed’,

f(xµ)
!

= sf(xµ + aNν êν) = eiapνNνf(xµ), (2.15)

where the index ν is arbitrary and not summed over, shows that putting the system in
a box of finite volume, yields discretized momenta. By adjusting the parameter s, the
corresponding allowed momenta for different boundary conditions are

periodic boundary conditions (s = +1): apνNν = 2πk ⇒ pν = 2π
aNν

k,

antiperiodic boundary conditions (s = −1): apνNν = (2k + 1)π ⇒ pν = (2k+1)π
aNν

.
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2 Quantum Chromo Dynamics on the lattice

Note that, as the temporal extent is fixed in a theory with definite temperature, the
discretization in temporal Fourier space is manifest, and leads to the Matsubara frequen-
cies ωn = 2πkT for Bosonic fields and ωn = 2π(2k + 1)T for fermionic fields. Another
direct consequence of introducing a lattice structure is that the continuous space time
symmetry is broken down to the discrete symmetries of a four dimensional cube.

2.2.1 Gauge action

A suitable discrete expression for the continuum gauge action in (2.1) can be given by
the standard Wilson action

SG(U) =
2Nc

g2

∑
n

∑
µ<ν

< tr (1− Uµν(n)) , (2.16)

where the plaquette is the smallest possible closed loop build by the link variables,

Uµ,ν(n) ≡ Uµ(n)Uν(n+ êµ)U−µ(n+ êµ + êν)U−ν(n+ êν)

= Uµ(n)Uν(n+ êµ)U †µ(n+ êν)U
†
ν(n).

(2.17)

The link itself is given by

Uµ(n) = Peig
∫ n+aêµ
n dxνAν(x) ≈ eiagAµ(n). (2.18)

This means that the su(3) algebra valued gauge fields Aµ(n) are, in the lattice version
of the theory, represented by SU(3) matrices, which themselves transform under local
gauge transformations,

Uµ(n) −→ V (n)Uµ(n)V †(n+ êµ). (2.19)

The action SG is gauge invariant, because (2.17) constitutes a closed loop of gauge
links and their transformation behavior implies that the trace of this object is gauge
invariant. Apart from this necessary condition, furthermore the naive limit a → 0 of
SG can be taken by utilizing the Baker-Campbell-Hausdorff formula eAeB = eA+B+ 1

2
[A,B]

on the plaquette (2.17), using (2.18), and Taylor expanding the fields Aµ(n + êν) =
Aµ(n) + a∂νAµ(n) +O (a2). The result is

Uµ,ν(n) = eiga
2{∂µAν(n)−∂νAµ(n)+ig[Aµ(n),Aν(n)]}+O(a3), (2.20)

which can be plugged in the above expression for SG to show

SG(U) −→ a4
∑
n

∑
µ,ν

tr {Fµν(n)Fµν(n)}+O
(
a2
)

+O
(
g2a2

)
. (2.21)

This not only demonstrates the recovery of the correct expression, but also eludicates
the discretization errors, compared to the correct continuum expression in (2.1), to be
of the order a2, and loop corrections to enter as O(g2). Note that the sum relates to the
continuous space time integral as

a4
∑
n

a→0−→
∫ β

0

dτ

∫
V

d3x. (2.22)
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2.2 Lattice QCD building blocks

2.2.2 The Wilson fermion action

In order to add fermions to the discretized theory, a gauge invariant expression for the
fermionic part in (2.1) has to be found, which of course should as well reduce to the
continuum expression in the naive limit. By simply discretizing the derivative of the
fermion field, ∂µψ(n) −→ ψ(n+êµ)−ψ(n−êµ)

2a
, and introducing link variables to render the

construct gauge invariant, the fermionic part in (2.1) naively yields

SF = a4
∑
n

∑
f

ψ̄af,α(n)

(
γαβµ

Uab
µ (n)ψbf,β(n+ êµ)− Uab

−µψ
b
f,β(n− êµ)

2a
+ δabmψ

b
f,β(n)

)
.

(2.23)

Analogous to the standard gauge action above, the continuum action can be retrieved
by expanding

Uµ(n) ≈ eigaAµ(n) = 1 + igaAµ(n) +O
(
a2g2

)
and ψ(n± aêµ) = ψ(n)± a∂µψ(n)êµ +O

(
a2
) (2.24)

to yield

SF −→ a4
∑
n

∑
f

ψ̄faα(n)
(
/D
αβ
ab +mfδαβδab

)
ψfb,β(n) +O

(
a2
)
. (2.25)

While this is a very simple and handy expression, it suffers from a fundamental flaw.

The inverse of the Dirac matrix M ≡
(
/D
αβ
ab +mfδαβδab

)
is the fermion propagator,

which in momentum space on the lattice for massless, non-interacting fermions is given
by

M−1(p) =
−ia−1

∑
µ γµ sin(apµ)

a−2
∑

µ sin2(apµ)
. (2.26)

With the extend of the Brillouin zone given by 2π/a as seen above, and the allowed
momenta ranging from −π/a to π/a symmetrically around zero momentum, we find
that this propagator not only has one pole at vanishing momentum, but in fact blows
up for any combination of momentum components of 0 or ±π/a. These additional,
unphysical poles are called doublers. In order to cure this problem, Wilson proposed to
add another operator to the Dirac matrix, which reads

δMab
SW (n,m) = −a

∑
µ

Uab
µ (n)δn+êµ,m − 2δabδnm + Uab

−µ(n)δn−êµ,m

2a2
(2.27)

and (technically) is a discretized version of the Laplace operator. Note that, on the one
hand it vanishes linearly in the continuum limit and thus leads to the continuum action
with discretization errors of order O(a), while on the other hand it lifts the doubler
contributions in the edges of the Brillouin zone, by making them very heavy (see the

11



2 Quantum Chromo Dynamics on the lattice

term without gauge links in the middle of (2.27)). In terms of the momentum space
propagator, the full standard Wilson version of (2.26) reads

M−1
SW (p) =

−ia−1
∑

µ γµ sin(apµ) + 4a−2
∑

µ sin2(apµ/2)

a−2
∑

µ sin2(apµ) + 4a−2
[∑

µ sin2(apµ/2)
]2 , (2.28)

which explicitly shows how the additional poles are lifted. The fermion mass in lattice
units is usually expressed via the so called hopping parameter

am ≡ 1

2

(
1

κ
− 1

κc

)
, (2.29)

where κc is the critical hopping parameter, i.e. the parameter where the fermions become
massless. For the free theory κc = 1/8, while in the interacting theory the value has
to be found by tuning the pion to vanishing mass. The standard Wilson Dirac matrix
is commonly written in terms of the hopping parameter and rescaled fermion fields,
ψ(n)→ ψ(n)/

√
am+ 4, such that the final expression reads

Mαβ,ab
SW (n,m) = δnmδαβ

− κ
∑
µ

{(
δαβ − γαβµ

)
Uab
µ (n)δn+êµ,m +

(
δαβ + γαβµ

)
Uab
−µ(n)δn−êµ,m

}
.

(2.30)

The errors of the standard Wilson action are of the order O(a), which can be improved
by the Symanzik improvement programme. The general idea is to formally expand the
action of the system in a power series of the lattice spacing a. To improve a given
order, all (continuum) operators with the corresponding dimension are collected and
reduced to a minimal set using symmetries or equations of motion. The remaining set
of operators is then discretized and added to the action, that is to be improved [6, 22].
The improvement is then done up to constants multiplying the newly found improving
operators. They have to be tuned by a suitable procedure, which depends on the theory
under consideration, see e.g. [23].

In the current work we can partly take advantage of the fact that it is relatively simple
to improve the standard Wilson action to yield errors of order O (a2) [24]. First, only
one operator is needed to improve the action, which is given by

δS = cswa
5
∑
n

∑
µ<ν

ψ̄(n)
1

2
σµνF̃µν(n)ψ(n), (2.31)

where σµν = [γµ, γν ] /(2i), and the operator F̃µν(n) is given by

F̃µν(n) = − i

8a2
(Qµ,ν(n)−Qν,µ(n)) ,

with Qµ,ν(n) ≡ Uµ,ν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n)
(2.32)

12



2.2 Lattice QCD building blocks

and Uµ,ν(n) being the corresponding plaquette of links (2.17). The four plaquettes of
the sum Qµ,ν(n) are arranged around the space time point n like the four quadrants in
a two dimensional function plot around the zero point, and thus somewhat reminiscent
of a four leaf clover. Second, the constant to tune, csw, also called the Sheikoleslami–
Wohlert coefficient, has been computed for a theory without dynamical sea quarks in the
framework of the Schroedinger functional, both perturbatively and non-perturbatively
on the lattice [25, 26], with the non-perturbative expression given by

csw(g2) =
1− 0.656g2 − 0.152g4 − 0.054g6

1− 0.922g2
. (2.33)

Note that the coefficient csw depends on the bare coupling g2 of the theory. For complete-
ness, we mention that there exist also non-perturbative computations of the coefficient
for two and three flavors of dynamical Wilson quarks, which have the same rational struc-
ture, see [27, 28]. The value at tree level is thus, independent of the number of dynamical
flavors, given by csw = 1. Perturbation theory on the lattice suffers from bad convergence
behavior, which is caused by ultraviolet divergencies of specific diagrams, the tadpoles
[29, 30]. These can be cured by substituting the link variables Uµ(x)→ Uµ(x)/u0, with
u0 the tadpole factor. It is not unique, but a definition that utilizes the plaquette and
allows to measure u0 in a numerical computation is u4

0 = (〈Uµν〉/N). The gauge action
can be improved by using this, and the Wilson-clover action can be tadpole improved
at tree level by choosing csw = 1/u3

0 [30].

2.2.3 The staggered formulation

By adding the Wilson term to remove the doublers, note that we explicitly broke chiral
symmetry in the action, because the additional term ∼ δabδnm/a behaves like a mass
term and at finite lattice spacing thus spoils chiral symmetry, as {γ5, 1} 6= 0. There is a
no-go theorem by Nielsen and Ninomiya [31], which states that it is in fact impossible to
have both properties, an action that is doubler free and at the same time chirally sym-
metric, in a lattice discretization. However, note that in the Wilson action the doublers
really are completely removed, and the whole chiral symmetry is explicitly broken. A
less extreme course would be to accept contributions from doublers to a small extent,
but at the same time retain a certain amount of chiral symmetry. This is for example
given in the staggered formulation of lattice fermions, which is presented in the following.

Instead of lifting the doublers from the theory, like done in the Wilson approach
described above, the idea of the staggered action is to reduce the size of the Brillouin
zone so the doublers are simply removed from the momentum domain of the theory. This
is possible by starting out with a lattice and placing different components of spinors on
different lattice sites [6, 8, 32]. Because this mixes space time and Dirac indices, the

space time dimension fixes the number of quarks described by such an action to Nf = 2
d
2 ,

13



2 Quantum Chromo Dynamics on the lattice

where d is the space time dimension. Concretely, we introduce a transformation

ψ(n)→

(
4∏
i=1

γnii

)
ψ(n) ≡ Γ(n)ψ(n)

ψ̄(n)→ ψ̄(n)

(
1∏
i=4

γnii

)
≡ ψ̄Γ†(n)

(2.34)

on the spinors of the (free) naive action (2.23), leading to

S = a4
∑
n

ψ̄(n)

(
4∑

µ=1

ηµ(n)
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+mψ(n)

)
where ηµ(n) =(−1)

∑µ−1
j=0 nj , n0 ≡ 0.

(2.35)

Instead of the γ matrices, the action now features phases η, and thus the whole La-
grangian is diagonal in Dirac space, which implies that 3 of the 4 components can be
dropped as well. Introducing gauge fields the interacting staggered action then reads

S = a4
∑
n

χ̄(n)

(
4∑

µ=1

ηµ(n)
Uµ(n)χ(n+ µ̂)− U−µ(n)χ(n− µ̂)

2a
+mχ(n)

)
, (2.36)

where χ and χ̄ are one-component of ψ and ψ̄, respectively. This means that there are
now 16 one component fields, that are in turn interpreted as 4 fermionic flavors, each
with 4 components. Technically, the degrees of freedom described by this action are now
distributed over the sites of a hypercube of the original lattice, and the reinterpretation
as quark degrees of freedom can be done by constructing linear combinations of χ and
χ̄. Assuming an even number of sites in each direction of the lattice, different sites
can be addressed via 2hµ + sµ, the first four vector labeling the hypercube, the latter
one labeling the corners of the corresponding hypercube, hence sµ = 0 or sµ = 1. Due
to γ2

µ = 1 ∀ µ, the phases and especially transformation (2.34) are independent of the
position of the hypercube,

Γ(2h+ s) = Γ(s), η(2h+ s) = η(s). (2.37)

One then defines new quark fields via

qα,t(h) ≡ 1

4

∑
s

Γα,t(s)Us(2h+ s)χ(2h+ s)

q̄α,t(h) ≡ 1

4

∑
s

χ̄(2h+ s)U †s (2h+ s)
(
Γα,t
)†

(s),
(2.38)

where α is a Dirac index and t labels four different quark degrees of freedom, called
tastes in order to distinguish them from usual flavour. The staggered action can then
be written as [6, 32]

Sstaggered = b4
∑
h

q̄α,ta (h)
{
mδtt′δαβδab + γαβµ Dab

µ δtt′ + γαβ5 (ξµξ5)tt
′
Cab
µ

}
qβ,t

′

b (h), (2.39)

14



2.3 Extracting physics from Lattice QCD

where b = 2a is the new lattice spacing, and using V ab
µ (h, h′) = Uac

µ (h+ êµ)U cb
µ (h)δn+2êµ,h′

without summing µ, the operators are given by

Dab
µ =

1

4

(
V ab
µ −

(
V ab
µ

)†)
,

Cab
µ =

1

4

(
V ab
µ − 2δabêµ +

(
V ab
µ

)†)
.

(2.40)

Hence one has four fermion tastes on each hypercube, being separated from neighboring
hypercubes by two lattice spacings. Thus the Brillouin zone is effectively cut in half,
and the four tastes do not have doublers themselves.

However, apart from pure discretization errors, this action is also plaqued by mixing
of the different tastes, caused by the third term. These effects are drastically reduced
in the Highly Improved Staggered Quark action (HISQ), which is used in this work to
perform computations with dynamical quarks. Details can be looked up in [33]. The
action generally has the same structure as (2.39), but is Symanzik improved and features
heavily smeared gauge links, which greatly reduce the interaction of the tastes, and leave
the action to be free of O (a2) errors at tree level. Additionally, a conceptual problem
is that there are four tastes when using the action (2.39), and it is principally desirable
to be able to work with single fermion flavors. With a glance at Sec. 2.4, which deals
with the details of how to conduct a numerical computation in more technical detail,
we state here merely that fermions enter the path integral as the determinant of the
Dirac matrix, and the power of the determinant determines the fermion content. Thus,
a typical measure to get rid of the three other tastes/flavors is to take the fourth root
of the fermion determinant. While this fourth root trick was and is still today debated
[34], continuum extrapolations from lattice studies with different quark discretizations,
or comparisons to experimental results, show that the staggered formulation works in
principal, and in fact it is often used with small dynamical quark masses and reasonably
large lattices for its numerical cheapness, see e.g. [35, 36, 37].

2.3 Extracting physics from Lattice QCD

Computations performed with a lattice regulator are an outstanding tool for the theory
of strong interactions. However, the theory, as outlined in the foregoing sections, is not
strictly a theory that can make predictions, or can be compared to experimental results.
First, the lattice has a finite volume. This is a disadvantage in the sense that, at too
small lattice extents, one could face finite volume effects that affect observables under
consideration. Especially, from statistical mechanics it is known that e.g. studies of crit-
ical phenomena only capture the essential features of the latter in the limit of infinite
volume, see e.g. [38, 39]. For this reason the limit of infinite volume is addressed as the
thermodynamic limit. However, in practice it often suffices to choose the volume in a lat-
tice computation to be large enough. Second, and much more fundamental and intricate,
the continuum limit of measured observables has to be performed in order to recover
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2 Quantum Chromo Dynamics on the lattice

the physics we are actually interested in. As such, it amounts to the removal of the
regulator and thus constitutes the necessary renormalization of the theory, which ren-
ders otherwise divergent computations finite. In the derivation of the discretized actions
this limit was taken simply by sending the lattice spacing a → 0 in the corresponding
analytical expressions. This naive continuum limit cannot be performed directly in a
numerical computation, as the only input parameters are the bare coupling g2

0 = 6/β
in pure gauge theory, and additionally the bare quark masses amu,0, amd,0, ams,0... in
a dynamical theory. Note that the bare coupling constant in QCD is massless, as can
be verified by counting the powers of terms in the Lagrangian that explicitly contain
the coupling. To quantify the relation of observables to the lattice spacing, consider an
observable in lattice units that, for simplicity, only depends on the bare coupling g0,

Ô(g0) = adO(g0, a) ⇔ O(g0, a) = a−dÔ(g0), (2.41)

with d the dimension of the observable. By explicitly separating the dimensionful factor,
it is clear that in order for the dimensionful observable to be finite in the limit of vanishing
lattice spacing,

O(g0, a)
a→0−→ Ocont (finite), (2.42)

the bare gauge coupling needs to be a function of the lattice spacing, g0 = g0(a), and
has to be tuned accordingly. Details about the a-dependence of g0(a) can be inferred by
noting that the continuum result is of course independent of a, and close enough to the
continuum limit almost a constant, such that for small a we find the Renormalization
Group Equation (RGE)

a
d

da
O(g0(a), a) =

(
a
∂

∂a
+ a

∂g0

∂a

∂

∂g0

)
O(g0(a), a)

≡
(
a
∂

∂a
− β(g0)

∂

∂g0

)
O(g0(a), a).

(2.43)

The beta function β(g0) = −a∂g0

∂a
controls the change of g0(a) with varying lattice spacing

and can be computed perturbatively for small a as a power series in g0, and the result
leads to the differential equation

β(g0) = −a∂g0

∂a
= −β0g

3
0 − β1g

5
0 +O

(
g7

0

)
, (2.44)

where the coefficients are given by [9, 40]

β0 =
1

16π2

(
11Nc

3
− 2Nf

3

)
,

β1 =

(
1

16π2

)2(
34N2

c

3
− 10NcNf

3
− (N2

c − 1)Nf

Nc

)
.

(2.45)
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2.3 Extracting physics from Lattice QCD

The solution to the differential equation is given by

a(g2
0) =

1

Λ

(
β0g

2
0

)− β1
2β2

0 e
− 1

2β0g
2
0

(
1 +O

(
g2

0

))
, (2.46)

where Λ is the constant from the integration. It generates a scale for the lattice spacing,
which depends on the details of the renormalization like the discretization of the gauge
action. This is sometimes termed dimensional transmutation [9], and opens the possibil-
ity to assign physical units to the results of lattice computations, which can carry over
to the continuum limit and thus allow for absolute predictions. Without this property,
the only predictive power of Lattice QCD would be reduced to ratios of observables, in
which the scales cancel.

From (2.44) we see that the slope of the beta function around g0 = 0 is negative,
which means that for small enough lattice spacing, the bare coupling decreases with

a, and clearly one possibility is g0
a→0−→ 0 as the lattice spacing vanishes. Conversely,

the continuum limit on the lattice is reached by sending the bare coupling to zero.
Additionally, the fields in the theory, and thus the operators composed out of them,
need to be renormalized in order to yield correct results upon removal of the cutoff in
the continuum limit. In our case, the only operator that needs to be renormalized is the
(point-to-point) electromagnetic current on the lattice, which will be introduced later.
Here we only mention that it can be renormalized by multiplying with the hopping
parameter and the renormalization factor ZV ,

Jren =
2κ

a3
ZV J0. (2.47)

The computation of renormalization factors can be done perturbatively or non-per-
turbatively on the lattice, and especially for the vector current there exists a non-
perturbatively determination for the quenched theory [41], valid in a range of 6.0 ≤
β ≤ 24.0 given by

ZV (g0) =
1− 0.7663g2

0 + 0.0488g4
0

1− 0.6369g2
0

. (2.48)

The scale entering the relation of lattice spacing and bare coupling (2.46) has to be
fixed at finite lattice spacing. In general this can be done by matching lattice results to
already known, dimensionful results, e.g. the proton mass from experiment, estimators
of the string tension

√
σ of the heavy quark potential,

Vq̄q(r) = −α
r

+ σr, (2.49)

or the Kaon decay constant fK . In this work, several lattices are used where the scale
has been set differently. We refer to the corresponding discussion of lattice setups in
Sec. 6 and Sec. 7 for details.
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2.4 Numerical approach to Lattice QCD

With the discretized actions presented in Sec. 2.2, we now shortly address the question
how to evaluate the expectation value

〈O(U, ψ, ψ̄)〉 =
1

Z

∫ ∏
µ

DUµ
∫ ∏

f

Dψf ψ̄fe−S(U,ψ,ψ̄)O(U, ψ, ψ̄) (2.50)

in a numerical setup. The details of the material can be looked up in standard literature,
e.g. [6, 11, 32, 42].

2.4.1 General considerations

Splitting the action into its pure gauge part and a part governing the dynamics of
fermions, S = SG(U) + SF (U, ψ, ψ̄), and noting that the fermionic part has a bilinear
structure SF ∼ ψ̄Mψ, the integration of the Grassmannian fermion fields can be done
analytically. Since the operator O(U, ψ, ψ̄) in our context will always be a function of
fermionic and corresponding antifermionic fields, the Wick theorem allows to express the
operator O(U, ψ, ψ̄) by contractions of inverse Dirac matrices M−1(U), see e.g. [11, 42].
The resulting expression is given by

〈O(U, ψ, ψ̄)〉 =
1

Z

∫ ∏
µ

DUµe−SG(U) detM(U)O(M−1(U)). (2.51)

The integration over the SU(3) valued gauge fields Uµ(n) cannot be performed analyt-
ically and is done numerically in the framework of Lattice QCD. Because the integral
is highly dimensional, the basic tool to use is a Monte Carlo integration in gauge field
space [6, 8]. The general idea is to draw configurations of gauge links Uµ(n) connecting
all sites on the lattice at random, with a distribution weighted by the Boltzmann factor

1

Z
e−SG(U) detM(U). (2.52)

The acquired configurations of gauge links are then used to perform the MC integration,
i.e. the resulting integral is just the average of the operator under consideration with
respect to the statistical ensemble {U (i)

µ (n)} of size N ,

〈O(U)〉 =
1

N

∑
i

O(U (i)). (2.53)

Technically, the evolution in the configuration space is done by forming a Markov chain
of gauge link configurations, for which it can be proven that, starting from an initial
configuration, it is possible to drive the chain to resembling the probability distribution
(2.52). This process is called thermalization, and a thermalized chain of configurations
is then used to evaluate the integral according to (2.53).
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2.4.2 Methods without fermions

The concrete procedure, and the algorithms used, in the production of gauge field sam-
ples depend on the choice of how to handle the fermion determinant. One possibility is to
discard the fermion determinant altogether, called the quenched approximation, leaving
only e−SG as the Boltzmann factor in the integral and probability distribution, which
in turn is treatable by basic Markov chain generating algorithms like the Metropolis
algorithm, and a combination of the heatbath algorithm and overrelaxation steps [43,
44, 45], with the latter combination used in this work for a study performed on quenched
lattices. It should suffice here to note that the general procedure of these algorithms is
to input a (thermalized or unthermalized) configuration of gauge fields, perform small
changes to a patch of single gauge fields Uµ(n), and then check how the Boltzmann

factor subsequently got affected by these changes, i.e. if S
(i)
G ≥ S

(i+1)
G , then the change

is accepted and the new gauge configuration in the chain is {U (i+1)
µ (n)}. If the action

increases under the changes, then with a probability p ∼ e
−
(
S

(i+1)
G −S(i)

G

)
the change is still

accepted, otherwise the new configuration is discarded.

2.4.3 A Method including fermions

However, these local updates of small patches are unfeasible for a non vanishing fermion
determinant, because it is highly non local, and thus the whole determinant has to be
recomputed per local update. This makes global updates, i.e. changes to all gauge links in
a given configuration, the preferred way to go. These cannot be done by simply changing
all links at once, as the probability of acceptance would drop close to zero. The strategy
in this case is to rewrite the determinant as an exponentiated bosonic action [46],

detM(U) =
√

detM †M =

∫
DΦ†DΦe−Φ†(M†(U)M(U))−1/2Φ, (2.54)

with M †(U)M(U) being used to ensure hermiticity of the construct in the bosonic inte-
gral. Introducing momenta Pµ, conjugate to these pseudofermions and with a gaussian
distribution, the total action becomes

H(U,Φ,Φ†, P ) =
1

2

∑
n,µ

P 2
µ(n) + S

(
U,Φ,Φ†

)
, (2.55)

with the sum running over all lattice sites. The thus obtained expression is a classical
Hamiltonian, and the corresponding equations of motion yield a set of differential equa-
tions to be solved along a surface of (up to numerical uncertainties) constant energy,
see [6, 8, 47] for a more detailed description of the procedure and the algorithms used.
The dynamics of the pseudofermion and gauge fields, performed across the whole lattice,
thus constitutes a global update of the gauge configuration. The energy difference δH
between two subsequent configurations can be used to also perform an acceptance test
at the end of one such trajectory in SU(3) gauge link space, rendering the procedure
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2 Quantum Chromo Dynamics on the lattice

exact. The acceptance rate then depends on the length of the trajectory and the details,
e.g. the step size, of the algorithm that solves the differential equations emerging from
(2.55). A rule of thumb is to keep it at a reasonable rate of ∼ 50− 80% [47].

In the current work, some of our gauge ensembles are produced using the Hybrid Monte
Carlo algorithm described above. However, in order to work with an uneven number of
dynamical fermions, expression (2.54) shows the need to approximate fractional powers
of the (products of the) Dirac matrix. This is done by approximating

M−α ≈ r(M) =
∑
n

αn
M + βn

, (2.56)

to which the algorithm owes its given name Rational Hybrid Monte Carlo (RHMC) [48].
The same is also needed when reducing the number of quarks in the staggered/HISQ
formulations by the fourth root trick, as explained in Sec.2.2.3. The algorithm that
computes the coefficients of the approximation was invented by Remez [48], and for
definiteness we state here that the dynamical computations in the course of this work
are performed with the MILC codebase [49], which includes the used HISQ and RHMC
and Remez algorithm implementations.

2.5 Statistical methods for data analysis

Numerical lattice gauge theory computations are intrinsically statistical by nature. The
use of Monte Carlo techniques for the integration of equation (2.50) leaves us with statis-
tical samples, i.e. one number for each observable to compute per gauge configuration.
The result is then in theory obtained by averaging over all obtained samples,∫

dUe−S(U)O(U)∫
dUe−S(U)

≡ 〈O〉. (2.57)

In the following we present necessary and useful methods for error estimation of statis-
tical estimators. They can be found in many fundamental texts, e.g. [6, 30].

2.5.1 Single quantity estimators

At this point the r.h.s. of (2.57) represents an expectation value with respect to the
underlying theoretical distribution of O. A suitable estimator for this quantity, in order
to infer (2.57) from a finite sample in the context of Monte Carlo integration, is given
by the usual (unbiased) average, or mean,

〈O〉 ←− Ô ≡ 1

N

N∑
n

On, (2.58)

with On the observed value of the n − th sample and N the total number of samples.
It is unbiased because the expectation of a single measurement is 〈On〉 = 〈O〉, and thus
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also 〈Ô〉 = 〈O〉. A measure of the deviation of each sample On from the theoretical
expectation value, or the spread of the measurements, can be defined via

〈(δO)2〉 ≡ 〈(O − 〈O〉)2〉 ←− 1

N

N∑
n

(
On − Ô

)2

≡ σ̃2. (2.59)

Care has to be taken when using this estimator, as 〈σ̃2〉 = N−1
N
〈(δO)2〉, and thus it

is biased. It is included here as a prestep to an unbiased estimator for the variance,
because it will become important in the context of the bootstrap method. Rendering
(2.59) unbiased is easily done by choosing

σ̂2 ≡ N

N − 1
σ̃2 =

1

N − 1

N∑
n

(
On − Ô

)2

. (2.60)

At present, a more interesting quantity is the expected deviation of the estimator Ô
from its theoretical expectation value, which constitutes the statistical error that one
has to state when computing observables via (2.57). For uncorrelated measurements,
i.e. 〈OnOm〉 = 〈On〉〈OM〉 = 〈O〉2, one finds

〈
(
Ô − 〈O〉

)2

〉 =
1

N
〈(δO)2〉 ←− 1

N (N − 1)

N∑
n

(
On − Ô

)2

, (2.61)

with the last expression being an unbiased estimator obtained from (2.59) and (2.60).
This shows that the estimator for the expectation value is consistent, meaning that it
approaches zero with increasing number of samples. If one has more than one observable
that one wants to infer from a given statistics of data, then one can read (2.60) or (2.61)
in a more general way and write e.g.

〈
(
Ô1 − 〈O1〉

)(
Ô2 − 〈O2〉

)
〉 =

1

N
〈δO1δO2〉

←− 1

N (N − 1)

N∑
n

(
O1,n − Ô1,n

)(
O2,n − Ô2,n

) (2.62)

for (2.62) and denote it as the covariance of the data. Non vanishing statistical co-
variance should be taken into account in many computational tasks such as χ2 fitting.
Also, there are many applications where it plays an essential role, see e.g. MEM or the
method of Backus and Gilbert.

2.5.2 Estimators for composite quantities

In many cases one wants to infer a theoretical quantity that is a function of, for the
sake of simplicity, say, two different variables. Hence, in practice these two variables
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2 Quantum Chromo Dynamics on the lattice

correspond to two different ensembles of measurements. Let f (a, b) be a function of two
different random variables a and b, while e.g. δa = a − 〈a〉 denotes the deviation of
the variable a from its expectation value, and analogously for b. Then the squared total
deviation of f (a, b) can be computed by Taylor expanding

〈(δf)2〉 = 〈[f (a+ δa, b+ δb)− f (a, b)]2〉

= 〈
[
f (a, b) +

∂f

∂a
δa+

∂f

∂b
δb− f (a, b) +O

(
δ2
)]2

〉

= 〈
[
∂f

∂a

]2

(δa)2 +

[
∂f

∂b

]2

(δb)2 + 2
∂f

∂a

∂f

∂b
δaδb+O

(
δ3
)
〉.

(2.63)

Dropping terms of order O (δ3) and higher, as well as identifying 〈(δa)2〉, 〈(δb)2〉, 〈δaδb〉
with the variances and the covariance of a and b, respectively, one arrives at the general
error formula

〈(δf)2〉 =

[
∂f

∂a

]2

〈(δa)2〉+

[
∂f

∂b

]2

〈(δb)2〉+ 2
∂f

∂a

∂f

∂b
〈δaδb〉. (2.64)

Note that without the covariance term, this result is just the gaussian propagated er-
ror. Equation (2.64) is especially useful for constructing errorbands of extrapolating or
interpolating fits, as long as the covariance term is available or computable.

With respect to the last remark, there are two resampling techniques that are used in
this work and which should be addressed here, namely the Bootstrap and the Jackknife.
Both are very powerful tools to infer statistics of (essentially arbitrary) functions of
random variables. Denote such a function of Nrv random variables f

(
O(1), . . . ,O(Nrv)

)
.

Further assume that there are N given samples, or measurements, for each random
variable O(r). Then the Jackknife works by subdividing each sample set into M groups
of size n = N/M . Defining the average of each group

γ̂
(r)
i ≡

1

n

in∑
j=(i−1)n

O(r)
j ∀ i = 1, . . . ,M, r = 1, . . . , Nrv, (2.65)

and further defining the average of all M subsets but one,

Γ̂
(r)
i ≡

1

M − 1

M∑
j=1
j 6=i

γ̂
(r)
j , ∀ r = 1, . . . , Nrv, (2.66)

the function f(O(1), . . . ,O(Nrv)) is then evaluated using estimators Γ̂
(r)
i ,

fJK
i ≡ f(Γ̂

(1)
i , . . . , Γ̂

(Nrv)
i ) ∀ i = 1, . . . ,M. (2.67)
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2.5 Statistical methods for data analysis

The M latter quantities fJK
i are called partial Jackknife estimators, and are used to

construct estimators for the average 〈f〉 and the deviation 〈(δf)2〉 as follows. Denoting
the usual mean of the function by

〈f〉 ←− f̂ ≡ f(Ô(1), . . . , Ô(Nrv)), (2.68)

the Jackknife estimators for mean and deviation are

〈f〉 ←− f̂JK ≡Mf̂ − M − 1

M

M∑
i=1

fJK
i , (2.69)

〈(δf)2〉 ←− M − 1

M

M∑
i=1

(
fJK
i − f̂JK

)2

. (2.70)

The Jackknife estimator for the mean is unbiased in the sense that corrections corre-
sponding to the finite size of the sample are of second order in the sample size,

〈f〉 = f̂JK +O
(

1

N2

)
, (2.71)

while in general the naive estimator (2.68) has corrections of order O (1/N). In practice,
this affects mainly cases where the sample size is small, e.g. N � 100, whence the bias
becomes as large as the statistical error or even larger.

Considering the same function f , random variables O(r) and their respective samples
of size N each, the Bootstrap starts by drawing, with repetition, N values from each
sample, thus creating Nrv new samples. This process is repeated Nbs times, until one is
left with Nbs different ’dummy’ samples of size N for each of the Nrv random variables. A
blocking procedure, as in the Jackknife method, can be used analogously by subdividing
each ’original’ sample in M groups beforehand and always drawing whole groups of size
N/M with repetition. Using the ’dummy’ samples one can now infer

fBS
i ≡ f

(
O(1)
i , . . . ,O(Nrv)

i

)
∀ i = 1, . . . , Nbs. (2.72)

The original sample does not play a role anymore and is explicitly excluded. The O(r)
i

mimic independent measurements of the O(r) and thus the fBS
i mimic independent de-

terminations of f , as well. As an estimator f̂ for the mean of f one can use either (2.68),
average the bootstrap ensemble fBS

i , or use a bias corrected estimator

f̂BS ≡ f̂ + f̂ − 1

Nbs

Nbs∑
i=1

fBS
i . (2.73)

An unbiased estimator for the deviation of f̂BS can be obtained by computing the spread
of these new measurements, compare (2.59),

〈(δf)2〉 ←− 1

Nbs

Nbs∑
i=1

(
fBS
i − f̂

)2

. (2.74)
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Note here that this really is the deviation of the bootstrap measurements from the mean
and thus does not have a prefactor 1/N2

bs but merely 1/Nbs. Analogously we can define
the generalized covariance with two different quantities f1 and f2, sharing the same
underlying statistical ensemble, to be

〈δf1δf2〉 ←−
1

Nbs

Nbs∑
i=1

(
fBS

1,i − f̂1

)(
fBS

2,i − f̂2

)
. (2.75)

Care has to be taken when the observables O(r) are correlated among each other.
This is the case when observing e.g. correlator data G(t) → G(ti) ≡ G(i), with the
whole correlator consisting of i = 1, . . . , Nt different random variables. Then each G(i)

corresponds to an observable O(i), and, independent of the details of the operations
done to or functions used on the correlator, the resampling should always be done with
all correlator points involved as a whole, i.e. a new sample should be drawn with all
i = 1, . . . , Nt corresponding to the same statistical sample. Although this remark might
seem trivial, it is well worth mentioning, as the resampling methods then respect the
statistical correlation between the different correlator points and e.g. the results of a fit,
done within the resampling process, will reflect the correlation of the data points and
thus be more reliable. To make this a bit more explicit, consider that both resampling
methods probe the underlying probability distribution by systematically leaving out a
part of the drawn ensemble, in case of the Jackknife, or by randomly shifting the relative
weight of single samples, as done in the bootstrap by drawing from the original ensemble
with repetition. When statistically correlated observables are resampled together, then
features that appear for a given subsample or bootstrap sample in one observable, will
also appear in the other observables, dependent on the amount of correlation.

2.5.3 Non vanishing autocorrelation

As has already been mentioned in the beginning of this chapter, the raw data used
in this work stems from Monte Carlo integrations, and the samples drawn from those
are snapshots of a time series. This implies that the samples are generally subject to
autocorrelations. Considering the i− th sample of an observable Oi, its covariance with
the same observable sampled at a later stage i+ t in the time series is given by

At (O) = 〈(Oi − 〈Oi〉) (Oi+t − 〈Oi+t〉)〉
= 〈OiOi+t〉 − 〈Oi〉〈Oi+t〉 = 〈OiOi+t〉 − 〈Oi〉2.

(2.76)

Normalizing this with the variance 〈O2〉 − 〈O〉2 = A0 (O), its leading term is expected
to be exponentially suppressed in t,

At (O)

A0 (O)
∼ e−t/τ0 + e−t/τ1 + · · · . (2.77)
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2.6 Spectroscopy

The quantities τn are called autocorrelation times, where the sum on the r.h.s. is domi-
nated by the exponential with the largest autocorrelation time. The occurrence of non
vanishing autocorrelation times in observables should be checked, as both the standard
estimators (2.58, 2.60) and the estimators obtained from resampling methods generally
require uncorrelated data as input. The latter have the advantage that choosing a fixed
group size n = N/M larger than the autocorrelation time is a way to get rid of correla-
tions in an intrinsic way. Of course, this amounts to effectively reducing the sample sizes
to n from the original N . For the former, one can compute the integrated autocorrelation
time

τint =
1

2
+

1

A0 (O)

N∑
i=1

Ai (O) (2.78)

and scale the fluctuation of the data (2.60)

〈(δO)2〉 −→ 2τint〈(δO)2〉 (2.79)

in order to account for these additional correlations.

2.6 Spectroscopy

The lattice regularization of a theory really serves two purposes. First of all, it renders
the theory well-defined with regards to ambiguities in the evaluation of the path integral
[8, 9]. In this sense it is a prestep of the necessary renormalization procedure. Second,
it yields the theory in a form that is naturally tractable by numerical methods, and
thus potentially calculable without any approximations made. A very fundamental job
of Lattice QCD is to determine the properties of the hadrons in the spectrum, e.g. the
occurring bound and excited states depending on number of flavors, number of colors,
values of the quark masses etc, as well as decay constants, form factors and parton dis-
tribution functions, see for example [6, 30, 32, 50, 51, 52, 53] for introductions, reviews
and concrete examples.

We present in this chapter the very basic methods of Lattice QCD spectroscopy.
They constitute the foundation from which advanced methods are developed to com-
pute a multitude of quantities such as (excited) hadron masses. As we use methods of
spectroscopy for the very specific purpose of tuning valence quark masses, to fit masses
of the sea quarks, used in the production of the gauge configurations, we only cover a
rather small range of methods and very basic principles to perform the needed fits to
extract ground state masses from correlation function data.

2.6.1 Extraction of energies

The bound states of QCD are naturally characterized by their quantum numbers, i.e.
their behavior under symmetry operations. This classification scheme is used in exper-
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2 Quantum Chromo Dynamics on the lattice

channel Dirac structure particle example
S 1 a0, K

∗

V γi ρ, K∗, J/ψ
PS γ5 π, K, η
AV γiγ5 a1, K1

Table 2.1: The naming scheme of the Dirac structure and examples of corresponding
physical particles.

iments to identify measured particles, and encompasses the quantum numbers of total
spin (J), parity (P ) and charge conjugation (C). On the lattice, mesons are modeled
as quark-antiquark bound states and can be classified with respect to their Dirac struc-
ture to be either scalars (S), vectors (V), pseudoscalars (PS) or axial vectors (AV), see
Tab. 2.1 for an overview of the Dirac structure and the associated physical particle
states. Since the vector and axial vector have three spatial components i = 1, 2, 3, which
are degenerate at zero momentum due to homogeneity of space, we usually average over
the three spatial directions. The Dirac structure fixes the spin and parity of the meson,
while the behavior under charge conjugation is related to the charge of the particle, and
hence the quark content. In order to measure a certain mesonic state, it is necessary
to construct interpolating operators O that have the quantum numbers of the physi-
cal particle under consideration, and at the same time have a strong overlap with the
physical states. This is generally a non trivial task, as can be seen in spectroscopy of
excited states, where superpositions of operators as well as more complicated operators
in general, are used to improve the signal [6, 32]. The most simple operators, however,
suffice for the extraction of ground state masses as performed in the course of this work.
They generally consist of two Dirac spinors and an insertion point for gamma matrices,

OH(x) = ψ̄1(x)ΓHψ2(x). (2.80)

In order to make this interpolator represent a certain physical state, we have to set the
gamma matrix and the quark content, such that the symmetry properties of the physical
state are fulfilled. As an example, consider the ρ particle. The physical ρ is a spin-1
particle, so the ΓH has to at least contain a matrix γi, to account for the spin-1 Dirac
structure. From the negative parity of the state, we know that the interpolator thus
needs to have a vector structure, as opposed to an axial vector structure, and hence
ΓH = γi with no further modification. Considering the quark content, the ρ consists
of a u and a d quark, which is a realization of an isospin-1

2
system. Addition of the

isospins thus yields a triplet of total isospin I = 1, containing three states, and a singlet
of total isospin I = 0, containing one state. The singlet configuration is attributed to the
physical ω state, which leaves the three triplet states to constitute the sought ρ. Indeed,
the three possible values of the z-component of the isospin, Iz = −1, 0,+1, amount to
quark contents [54]

Iz = −1 : a−1ūγid
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2.6 Spectroscopy

Iz = 0 : a0ūγiu+ b0d̄γid

Iz = +1 : a+1d̄γiu,

which realize states of total charge −1 (the ρ−), total charge 0 (the ρ0) and total charge
+1 (the ρ+), respectively. The factors a and b are the Clebsch-Gordan coefficients for ad-
dition of two spin-1

2
states. In Lattice computations the up and down quark are usually

taken to have degenerate masses, which in turn degenerates ρ+ and ρ−, and simplifies
the structure of the ρ0.

The basic techniques used to extract information from correlation functions of inter-
polating operators, however, are oblivious of the structure of the operators as well as the
nature of the physical states. The desired initial and final state are expressed as their
respective interpolating operators, i.e. |Si,f〉 = O†i,f |0〉. By inserting a unit operator in
energy basis between the overlap of final and initial state as well as making explicit the
time translation of the final state, we obtain [6, 9, 32]

〈Sf ||Si〉 = 〈0|Of (τ)O†i (0)|0〉 =
∑
n

An〈0|eHτOf (0)e−Hτ |n〉〈n|O†i (0)|0〉. (2.81)

Evaluating the (hermitian!) Hamiltonian H on the respective energy states, H|n〉 =
En|n〉, and choosing by convention E0 ≡ 0, we arrive at

〈Sf ||Si〉 =
∑
n

Ane−Enτ 〈0|Of |n〉〈n|O†i |0〉. (2.82)

Note that by choosing the vacuum energy to be zero, the energy of the state is actually an
energy difference, namely the energy needed to produce a particle in the ground state.
This formula has a very vivid interpretation. It states that the overlap of the initial
state and the final state is really a superposition of contributions. The unit operator
sums over all states in the Hilbert space, and thus the term 〈0|Of |n〉〈n|O†i |0〉 potentially
couples to every state in the spectrum that is compatible with the quantum numbers of
O. Specifically, when the energy of the state that we want to measure is high enough
to open decay channels, intermediate scattering states are expected to be dominating
contributions in (2.82). This has serious implications for the extraction of energies and
masses via this approach, see e.g. [55]. However, if the state we are looking for is clearly
separated from other contributions, the exponential suppresses the latter at large times
and the sum can be truncated after the first term to obtain an estimate for the ground
state,

〈Sf ||Si〉
τ→∞−→ A1e−E1τ 〈0|Of |1〉〈1|O†i |0〉. (2.83)

By fitting the numerical correlator data to an Ansatz manifesting this exponential decay
for large enough times, one may hope to extract both the matrix element as well as the
ground state energy. Note however that in general this depends on the value of the over-
lap, characterized by the matrix element; having on the lattice only a finite time extent,
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2 Quantum Chromo Dynamics on the lattice

it may well happen that the ground state is contaminated by higher states, making it
challenging to extract even the first energy level with good accuracy [32].

When explicitly choosing an Ansatz to fit the correlator data, then on the lattice one
has to take into account the finite lattice extent in time direction, which is written in
terms of the temperature as T = 1/(aNτ ). The consequence of this is twofold, namely
[56]

1. because of the periodicity one not only has the contribution (2.83) propagating
from the source forward in time, Ae−mτ , but also a contribution going backward
from the source, Ae−m(1/T−τ).

2. both backward and forward contribution actually appear infinitely often, coming
with additional factors e−(m/T )n, with n = 1, 2, . . . , which represent their respective
contributions when wrapping n times around the lattice.

The full resulting expression, which is used for meson correlator fits throughout this
thesis, is given by

G(τ) ≡
(
Ae−mτ + Ae−m(1/T−τ)

) ∞∑
n=0

e−(m/T )n

=
A

1− e−m/T
(
e−mτ + e−m(1/T−τ)

)
= A

cosh [m(τ − 1/(2T ))]

sinh [m/(2T )]
.

(2.84)

As a side remark, this obviously leads to the correlator being a symmetric or antisym-
metric function of the time variable around τ = 1/(2T ). Up to statistical fluctuations
the correlator data of course also has to show this behavior, and hence all of our corre-
lator data are (anti)symmetrized with respect to the midpoint unless otherwise noted.

The representation of Euclidean correlation functions via their respective spectral
density is the topic of Sec. 4.1, but it is instructive in the context of equations (2.82) and
(2.84) to anticipate one point already here. For a finite temporal extent, the correlation
function results from the spectral function via the integral

G(τ) =
1

2π

∫ ∞
0

dω
cosh [ω(τ − 1/(2T ))]

sinh [ω/(2T )]
ρ(ω). (2.85)

Assuming a spectral density consisting of a series of δ peaks, located at respective
frequencies ωn, the correlation function becomes

G(τ) =
1

2π

∫ ∞
0

dω
cosh [ω(τ − 1/(2T ))]

sinh [ω/(2T )]

∑
n

Anδ(ω − ωn)

=
∑
n

An
cosh [ωn(τ − 1/(2T ))]

sinh [ωn/(2T )]
,

(2.86)
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i.e. Dirac delta peaks are a way to represent well defined particle states in the cor-
responding spectral function. Note however, that this is somewhat idealized at finite

temperature. In the limit K(ω, T )
T→0−→ e−ωnτ , the strict zero temperature result (2.82)

is recovered.

As already mentioned above, there can be difficulties when attempting to extract a
ground state mass using a fit Ansatz with only one state. A superposition as in (2.86)
can help to catch the effects of not yet decayed excited state signals. However, extracting
excited states in this manner usually suffers from large uncertainties on the coefficients
An and ωn, and combinations of different operators are used to obtain reliable estimators
[57].

There is another very common way to compute ground state masses of bound states,
which will be addressed here. Instead of merely looking at the correlator, one can
consider the ratio of correlators

G(τ + l)

G(τ)
≈ e−m(τ+l)

e−mτ
⇔ meff ≡ −

1

l
ln
G(τ + l)

G(τ)
, (2.87)

by taking (2.83) at two points separated by a lag l, or by taking all finite size effects
into account and solving the expression

G(τ + l)

G(τ)
=

cosh [m (τ + l − 1/(2T ))]

cosh [m (τ − 1/(2T ))]
(2.88)

numerically for the so called effective mass meff. The effective mass is usually computed
with a lag l = 1 or l = 2 and saturates at large enough times τ to the ground state mass
value. A constant can then be fitted in order to extract the mass. Another application of
this quantity is to look closely where it starts to saturate in order to identify a suitable
fit range for τ in (2.84).

2.6.2 A general remark on χ2 fits

When extracting quantities like bound state masses via one of the techniques mentioned
above, the question about their reliability immediately arises. One way to assign a
measure of uncertainty to any statistically obtained quantity is of course to employ the
statistical tools presented in Section 2.5. Generally, the fit should in such a case be
performed fully correlated,

χ2 =
∑
ij

(G(τi)− f(τi, ~p))C
−1(τi, τj) (G(τj)− f(τj, ~p)) , (2.89)

i.e. including the off diagonal terms of the covariance matrix C(τi, τj) of the data points,
because then we get a reliable estimate of the χ2, as well as the errors and correlations of
the fit parameters ~p. The importance of properly computed errors on the fit parameters
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is evident, while e.g. proper correlations of the fit parameters enable us to perform a
correct error propagation for composite quantities, as in (2.64). The value of χ2/dof is
an indicator of whether the input data and the model used are compatible. A value of
χ2/dof� 1 means that probably there are non negligible terms that have not been ac-
counted for (correlations in the data), while a χ2/dof� 1 simply means that the model
does not describe the data. Thus, it is very desirable to have access to these quantities.

There are cases in which the inclusion of the covariance matrix in the fit is not pos-
sible, and thus we need to find another way to properly estimate the quantities sought
above. One such situation can arise in the case of fits to correlator data via the Ansatz
(2.84), where the condition number κ ∼ σmax/σmin of the covariance matrix in the inter-
esting fit region [τmin, 1/(2T )] can grow very large, e.g. κ & 1015. The condition number
corresponds to the fraction of largest and smallest eigenvalue of the covariance matrix.
Inverting such an ill-conditioned matrix can introduce large fluctuations and leads to a
very unstable fit. One possible solution is given in [58], where a smoothing or averaging
of the smallest eigenvalues is proposed in order to achieve an increase in σmin. This
method has the disadvantage of altering the χ2 term, which of course means that the
fit-problem itself is altered. This introduces an unknown systematical error. Another
approach is to enclose the fitting procedure in a bootstrap as described in Sec. 2.5. By
choosing Nbs bootstrap samples and fitting every single one of those, we obtain Nbs es-
timators for the fit parameters. From these, estimators for average and variance can be
obtained. By combining the samples of different fit parameters via (2.75) we can even
compute the correlation of the fit parameters. The only quantity that is unfortunately
lost during such a procedure is the sum of squares, χ2, and its meaningfulness with
respect to statements about the quality of the fit. Nevertheless, the bootstrap provides
a very stable and reliable method of performing error analysis of fits to sets of correlated
data, like lattice correlation function data G(τ), and is thus the preferred fitting method
within this work when the covariance matrix is (too) ill-conditioned.

2.6.3 Construction of correlation functions

In the following section we discuss how the interpolating fields O are combined to cor-
relation functions, given the gauge configurations produced according to the methods
reviewed in section 2.4, and we refer to the same standard textbooks and review articles
for more details and context.

The interpolating fields are inserted to form a two point function between the source
and sink points xi and xf , respectively, in space time. In practical lattice calculations,
the source operator is located to (τi, ~xi) = (0,~0), while the sink is ’probed’ at any desired
point (τ, ~x) on the lattice. The most general case is to have the operators at both the
source and sink points contain identical quarks, i.e. to drop the indices attached to
the spinors in (2.80). Starting from the definition of the path integral, the integral
with respect to the fermionic degrees of freedom is carried out analytically via the Wick
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theorem,

〈OH(x)O†H(0)〉 =
1

Z

∫
DUDψ̄Dψ

(
OH(x)O†H(0)

)
e−(SG+SF)

=
1

Z

∫
DUe−SG det (M) tr

[
M−1(x, 0)ΓHM

−1(0, x)Γ†H

]
− 1

Z

∫
DUe−SG det (M) tr

[
M−1(0, 0)Γ†H

]
tr
[
M−1(x, x)ΓH

] (2.90)

with the traces running over both color and spinor indices. The result for degener-
ate quark flavors in the interpolator thus yields a contribution that depicts the quarks
propagating from the source to the sink, and a contribution in which one quark is as-
sociated with the sink and source, respectively. The latter is known as the quark line
disconnected contribution, and only occurs if the quarks and antiquarks used in the
interpolating field have the same flavor. This is a consequence of the Wick contractions,
which reflects that physics does not allow a change of flavor. In many lattice calculations
the disconnected part is left out, because it is very noisy and thus requires very high
statistics in the gauge field average to be accurately determined. Luckily, the OZI rule
states that contributions, which can be split by only cutting gloun lines, are increasingly
suppressed with increasing quark mass [54], and especially for charmonia are very small
compared to the connected part [59]. For masses closer to the strange quark mass, such
contractions are small for the vector channel, while the pseudoscalar channel could show
a stronger dependence on disconnected parts due to mixing of the underlying physical
states, see [60]. However, in this study we still drop disconnected contributions also in
this case.

The connected part of (2.90) consists of two inverted Dirac matrices, one connects the
source with the sink and the other one connects the sink with the source, and thus goes
backward. Using the γ5 hermiticity, rewrite

M−1(0, x) = γ5

[
M−1(x, 0)

]†
γ5, (2.91)

and thus one inversion on a given gauge background field suffices for such simple ob-
servables. In order to have states of definite momentum, we take the Fourier transform
of the correlation function, and obtain the mixed representation,

G(τT, ~p) =
1√
V

∑
~x

e−i~x·~pG(τT, ~x). (2.92)

This implies that a projection to vanishing momentum is just a sum over all spatial
lattice sites,

G(τT,~0) =
1√
V

∑
~x

G(τT, ~x). (2.93)
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3 Phenomenology of the thermal
medium

The Quark Gluon Plasma, or QGP, is a state of matter that has long been speculated
about. QCD is, by all experimental evidence known to be, while theoretically strongly
conjectured to be, a theory that confines its elementary degrees of freedom in composite
particles. However, depending on the temperature and the density of a system, strongly
interacting matter can be in different phases, with fundamentally different properties.
See Fig. 3.1 for a sketch of the phase diagram in temperature and baryon density, fo-
cusing on the two phases that are relevant for the current work. In the following we
want to characterize these different phases in more detail, mainly from the theoretical
side, but as well as experimentally. With respect to theory, we want to present the
main ideas behind QCD at vanishing, small and high temperature, along with the im-
portant theoretical probes that are argued to allow for a qualitative and quantitative
understanding of nature in the framework of lattice field theory. Regarding experiments
and phenomenology, it is imperative to identify different stages of heavy ion collisions
and to subsequently develop an understanding of processes happening when crossing the
boundaries of different phases, in order to connect them to the theoretical expectations.

3.1 Heavy Ion Collisions

Experimentally the properties of the QGP are sought by conducting particle collisions.
The most important and largest facilities are the Large Hadron Collider (LHC) in Geneva
at CERN, the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Labo-
ratory, the developing FAIR project at the Gesellschaft für Schwerionenforschung (GSI)
and the Nuclotron based Ion Collider fAcility (NICA) at the Joint Institute for Nuclear
Research. Experiments to test the strong interactions are in these institutions usually
performed by building up two particle beams running concurrently in accelerator rings,
ionized by stripping off most of the electrons, and made to collide at special points in
the ring. These points are surrounded by detector chambers, detecting different parti-
cles, which originate as the end products from reactions between the two colliding ion
beams. The energies reached suffice to create a state of matter that is observed at very
high temperatures and particle densities. The existence of such a phase was speculated
about for decades [62, 63, 64], and finally in the early 2000s it was found in experiments
performed at RHIC [14].

In a particle collision one encounters several different regimes after the two Lorentz
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3 Phenomenology of the thermal medium

Figure 3.1: A rough sketch of the phases, expected in HIC, that are relevant for the
current work. Shown are the hadronic and the QGP phase, as well as the
transition line, as a function of temperature and density, separating them.
The computations conducted in this work are at vanishing baryon density,
i.e. to the very left of the plot. The picture is taken from [61].

contracted discs have approached on another. For two colliding protons (pp collision)
one finds that, with a spatial extension of l ≈ 1fm for each collision partner in its rest-
frame, due to the Lorentz contraction in the detector frame we have l � 1fm. Due to
time dilation, the time it takes for the information of the collision to propagate through
the nucleons, depend on the energy of the collision,

√
s/(2m)τ0 � τ0, and with a high

enough energy the two protons move through each other while interacting. This leaves
a trail of energetic bubbles along the beam axis, which cool down after initial expansion
and hadronize to yield particles hitting the detector far away from the original colli-
sion region [39]. Concretely, they estimate an energy density of εpp ≈ 0.36GeV/fm3

for a realistic beam energy of
√
s = 20GeV inside the bubbles. While this is twice as

high as nuclear matter, and certainly can be made larger by operating the collider at
higher energies, the volume of the interacting matter will be rather small for thermo-
dynamical purposes. However, the energy density is also proportional to the third root
of the number of nucleons participating in the collision, ε ∼

1
3
√
A, and utilizing heavy

nuclei like gold or lead (AA collisions) thus leads to both a larger reaction region and
a higher energy density at the same input energy. The further qualitative expectation
of the droplet is that quarks and gluons from the nucleons, forming the incident nuclei,
are essentially percolating and it becomes increasingly difficult, with higher and higher
beam energies

√
s, to consider them as single, well defined partons. Correspondingly,

the resulting matter is a strongly correlated ’Glasma’, which subsequently cools and
expands [39]. The basic idea is that, the medium becoming increasingly dilute, it again
makes sense to speak of partons in the droplet, and a thermalized patch of quarks and
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3.2 Probes of Heavy Ion Collisions

gluons appears, which form the QGP. Upon further cooling and expansion, the temper-
ature and density of the plasma decrease, and quarks of the plasma start to form light
hadron states such as pions and kaons. This reorganization of the plasma’s light quark
background into colorless particles is the point of the confinement/deconfinement tran-
sition. Because the net baryon density in the collision region decreases with the center
of mass energy

√
s, and thus in experiments there is the possibility to tune the baryon

density accordingly [42, 65], we assume from here on a vanishing density. This is the
region typically explored by the experiments performed at RHIC and LHC, while the
FAIR project and NICA aim at higher baryon densities [66, 67]. Somewhat interestingly,
due to the smallness of the light quark masses, the appearance of pions also marks the
spontaneous breaking of chiral symmetry, where they play the role of the corresponding
Goldstone bosons. These two transitions thus happen at the pseudocritical temperature
of Tc = 154(9)MeV, determined by continuum extrapolated, non-perturbative lattice
QCD results [36]. The errors in this estimate stem mainly from the fact that at zero
baryon density the transition is a smooth crossover, so the very definition of the transi-
tion point itself is problematic, and one rather faces a transition region.

Generally, at the end of the QGP evolution, the frozen out hadrons (e.g. pions and
kaons) are detected in the experiment, as well as particles that come from earlier stages
of the collisions. Examples are highly energetic single quarks or gluons that hadronize
into jets [11, 68], and dilepton (e+e− and µ+µ−) pairs and photons that are created at
all stages of particle collisions. Because dileptons and photons interact electromagneti-
cally, after being produced in a process they cross the interaction region mostly without
further modification [12]. This makes them ideal probes and in the following we will
concentrate on how an experimental dilepton yield can be accessed theoretically, and
what we can learn from it about the QGP.

3.2 Probes of Heavy Ion Collisions

In order to study the phenomena happening in particle collisions, and especially the prop-
erties of the QGP formed in Heavy Ion Collisions (HIC), physical probes are needed.
As already indicated in the foregoing section, the only probes available are the particles
produced during the whole collision process, which escape the interaction region and are
examined in the detector. Also, as pure pp collisions do not create a QGP, the observed
yields in this case are the outcomes of vacuum processes. In order to observe possible
effects stemming from a Quark Gluon Plasma, an important observable in experiments
is the Nuclear Modification Factor RAA, which is just the value of an observable from
an HIC (i.e. an AA collision) divided by the (up scaled) value of that observable coming
from a pp collision. In the following we will introduce the concepts behind charmonium
as a probe (and the same holds essentially also for bottomonium), which is generally
susceptible to in-medium dynamics that directly relate to the deconfinement properties
of the medium, due to the large mass of its constituent charm quarks. Particles with
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3 Phenomenology of the thermal medium

Figure 3.2: A sketch of the dilepton production rate in highly energetic Heavy Ion Col-
lisions. The picture is taken from [69].

lighter constituent quarks, like the up and down, and, to some degree, the strange quark,
are naturally more susceptible to the chiral aspect of the transition, see e.g. [70, 71].
Also, we introduce in-medium, or thermal, low mass dileptons and photons, which are
in the present study investigated as probes for dissipative features of the Quark Gluon
Plasma. Because low mass dileptons stem from hadrons comparatively lighter than e.g.
charmonium, their study effectively probes the chiral aspect of the Quark Gluon Plasma,
as mentioned above. Additionally, since heavy quark pairs usually have high branching
ratios to decay into dileptons, from the point of view of experiments, charmonia yield
strong signals in the dilepton production rate as a function of the dilepton pair mass,
see the sketch in Fig. 3.2 from [69], and thus the measured dilepton rate is the central
experimental evidence for both of the probes treated in this work.

3.2.1 Dilepton and photon rates

The low mass dileptons and photons, that are emitted from the QGP phase, stem mainly
from quark-antiquark annihilation processes inside the plasma [69]. The number of
leptons produced per phase space volume inside the heat bath of quarks and gluons can
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3.2 Probes of Heavy Ion Collisions

be factored into a leptonic and a hadronic part, such that [69, 72]

d8Nl+l−

d4xd4q
= Lµν(q)Wµν(q), (3.1)

with the leptonic part

Lµν(q) =
(4πα)2

M4

∫
d3p+

(2π)32p0,+

∫
d3p−

(2π)32p0,−
×

× tr
{(
/p+
−m

)
γµ

(
/p− +m

)
γν

}
δ(4)(q − p+ − p−)

= − α2

6π3M2

(
gµν −

qµqν
M2

)
,

(3.2)

where α = 1/137 is the electromagnetic fine structure constant, the lepton energies

p0,± =
√
m2
l + ~p±

2 and the dilepton invariant mass M2 = (p+ + p−)2. The coupling to

the hadronic sector is realized by the other part, which connects the production rate
(3.1) with the QCD electromagnetic current,

jemµ =
∑
f

Qf q̄γµq, (3.3)

via the Fourier transform of the (real time) electromagnetic current correlator [72]

Wµν(q) =

∫
d4xe−iqx〈jemµ (x)jemν (0)〉. (3.4)

Note that in the current (3.3) the sum runs over all flavors, where Qf is the electric charge
of the corresponding quark, and by restricting the sum to light flavors, for example, the
hadronic contribution is sensitive to low mass dileptons from the plasma phase. As will
be elaborated later in more detail in Sec. 4.1, the real time current correlation function
is directly related to the underlying spectral function, and hence the space integrated
dilepton rate in turn is given by [72, 73]

d4Nl+l−

dq4
= Cem

α2gµνρµν(q)

6π3q2(eβq0 − 1)
. (3.5)

Note that the Dirac delta in the leptonic expression (3.2) enforces M2 = q2. Similarly,
the photon rate is [64, 72]

q0
d3Nγ

dq3
= Cem

αρT (q0 = |~q|, T )

4π2 (eβq0 − 1)
, (3.6)

with ρT the component of the spectral function polarized transversally with respect to
spatial momentum ~q, and Cem =

∑
f Q

2
f is the sum of squared charges of the quarks

contained in the current. Note that we have explicitly inserted it in these formulas, i.e.
in this work the correlation functions obtained from lattice computations, and therefore
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3 Phenomenology of the thermal medium

generally the spectral functions, do not carry this factor by convention. However, for
physical predictions, we can just multiply e.g. 5/9 for two flavors or 6/9 for three
flavors. The dependence of expression (3.1) on (the Fourier transform of) the QCD
electromagnetic current is a central relation in the current work. The Euclidean time
version of this current correlator can be calculated in Lattice Gauge Theory, and thus
is non-perturbatively accessible from theory. However, the problem in that case is to
relate the Euclidean correlator to the spectral density. Unlike the direct relation (3.5),
the spectral function yields the Euclidean (imaginary time) correlator from an integral
equation,

G(τ) =
1

2π

∫ ∞
0

dq0ρ(q, T )K(τ, q0, T ), (3.7)

which weights the spectral function with a kernel

K(τ, q0, T ) =
cosh (q0 [τ − 1/(2T )])

sinh (q0/(2T ))
. (3.8)

This equation is the pillar on which deep theoretical understanding of the features of
the Quark Gluon Plasma is based. Its solution, i.e. obtaining the spectral density ρ(q0)
from a given correlation function G(τ), is a highly nontrivial problem, and especially the
extraction of non-perturbative information from a discrete set of input data, obtained
from lattice computations, is the topic of the rest of this work. The intimate and direct
connection of the spectral density with the measured dilepton production rate sketched
above demonstrates how signals, that show up as bumps for e.g. J/ψ particle and the
ρ resonance in Fig. 3.2, will also be visible in the spectral density. In fact, for vanishing
momentum, M2 = q2

0, the dilepton rate equals the spectral density as a function of q0

apart from a constant factor and the Bose distribution nB(q0) = 1/
(
eβq0 − 1

)
. This

illustrates how definite particle states will appear as peaks in the spectral function, with
a width antiproportional to the state’s lifetime.

3.2.2 Charmonium as a probe

Before the QGP was finally discovered, a now famous paper proposed to use the suppres-
sion of charmonium (cc̄) yields in heavy ion collisions as an indicator of QGP formation
[63]. The authors argued that the anti-screening mechanism in vacuum QCD, which
supposedly leads to confinement of color charges, would be replaced in a thermalized
medium by a screening mechanism analogous to Debye screening in a plasma. Taking
the potential that binds the charm and anti-charm quarks together at zero temperature
to be the Cornell potential,

V (r) = −α(r)

r
+ σr, (3.9)

we see from the component linear in the binding radius r that for σ > 0 liberation of the
quarks into single particles as such can never occur. However, embedded in a deconfined
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3.2 Probes of Heavy Ion Collisions

medium the interactions would be modified by color charges that surround it, to yield

V (r) −→ V (r)e−r/rD(T ). (3.10)

Here rD(T ) is the effective screening radius, and from the above expression we see that
the interactions between the charm and anti-charm quarks are strongly suppressed for
r & rD(T ), compared to the vacuum potential. The Debye radius shrinks with rising
temperature, leading to a dissociation of the quark antiquark pair as soon as the Debye
radius becomes smaller than the corresponding binding radius of the meson. Considering
that there is a series of well known excited bound states, which have a higher energy
and generally exhibit a larger binding radius rn, the higher their energy is, these are
thus expected to dissociate as soon as rn > rD(T ). If one can theoretically determine
the radii rn of the states as well as the Debye radius rD induced by the medium, or
alternatively directly compute the dissociation temperatures Tn of the corresponding
states, the abundance or absence of such states at different times in a HIC event would
constitute a simple thermometer to measure the temperature of the QGP [17]. The
theoretical idea of Debye screening in the QGP is very pictorial and simple, and our
presentation on the matter remains rather qualitative. However, it suffices to outline a
number of important points to be addressed in the first place, if charmonia and their
suppression are to be utilized as a probe in the experiment:

1. Are there other mechanisms that affect charmonium states inside a QGP, i.e. ad-
ditional suppression or competing enhancement effects?

2. What about the other stages of a HIC event? Is there any suppression/enhancement
of cc̄ pairs before the equilibrated plasma phase or afterwards, upon the freezeout
to hadrons?

3. How to precisely define dissociation temperatures?

An example for the first point is the expected Loss of Feed-Down in an equilibrated
QGP, see [74, 75] and references therein. Excited charmonium states in the vacuum
have finite branching fractions to decay into the charmonium ground state. When a
ground state charmonium yield is compared in RAA, then one has to take into account
that not all of the measured charmonia in the vacuum correspond to primary charmo-
nia produced in the initial collision, but also stem from decay of higher excited states.
This is complicated by the fact that in a QGP, because of the sequential melting picture
laid out above, this feed-down is decreased, as the excited states may dissociate before
being able to feed the lower states. This also emphasizes the need for an accurate and
consistent definition of dissociation temperatures.

The second point constitutes a large class of effects, which are all together termed
Cold Nuclear Matter (CNM) effects. These include modifications of the parton distri-
bution function (pdf) of the nucleon inside the colliding hadrons, compared to the pdf
of a single nucleon in a pp collision, scattering contributions inside the nuclei, and the
early absorption of produced charmonia before they reach the QGP phase, see e.g. [74,
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3 Phenomenology of the thermal medium

76]. Because these effects are all caused by the much larger size of a gold or led nucleus
compared to a proton, they can be studied by performing proton on nucleus (pA) colli-
sions.

Concerning the definition of a dissociation temperature, one has many different pos-
sibilities. As examples we give here the free energy of a heavy quark-antiquark pair,
which saturates at some distance r, and the value F (r =∞, T ) can serve as an indicator
when the state has melted. A definition that is very close to this idea is revolving the
interquark potential V (r, T ), which can be computed in QCD in the framework of a hard
thermal loop resummation [77, 78]. The result is in general complex, with the real part
governing the screening behavior, and the imaginary part describing scattering of the
light medium constituents with the heavy quarks. This is a very active area of research
in the context of non-relativistic heavy quark physics, and the potential can also be
matched to, or used in conjunction with, Lattice QCD results. See e.g. [79] for a quan-
titative description and application. Another possibility relies on directly extracting (at
least the relevant part of) the spectral function of corresponding correlation functions
and monitoring the disappearance of a peak [74]. For more details on the physics of
heavy quarks and an extensive review on the corresponding approaches, see e.g. [52].

The complications presented above are very conceptual, and a lot of experimental
knowledge, theoretical models and careful argumentation is needed to successfully com-
pare results obtained from purely theoretical QCD to experimental yields, which renders
it a field in its own right. In Lattice QCD, we have the Quark Gluon Plasma at hand in
a non-perturbative fashion, that is yet unspoiled by the above complications. Therefore,
we can directly explore the theory using numerical techniques, and, for example, the de-
termination of dissociation temperatures of quarkonium bound states already embodies
a very tough problem on its own, see e.g. [12].
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4 Spectral functions

Spectral functions are the central quantity to study in this work. As we have seen explic-
itly in Sec. 2.6.1, physical particles of certain quantum numbers are related to different
correlation function channels. A spectral function encodes the entire underlying prop-
erties of a given channel, and in the following sections we eludicate, in a very general
framework, the connections of the unique, channel specific spectral function to different
correlation functions. The latter hence constitute, from this perspective, different ways
to view the underlying spectral function. From there, we present and perform compu-
tations of non-interacting spectral functions for a range of channels in QCD, both in
the continuum formulation, as well as in a discretized lattice framework using Wilson
fermions. They already contain basic features and shapes, which are, as a next step,
combined with phenomenological computations in order to develop an idea what the
spectral functions should look and behave like in the fully interacting case. Finally, we
will provide solutions for the light quark vector current from perturbative methods in
hot QCD, and quickly review a possible solution from the AdS/CFT correspondence.

4.1 Correlators and spectral functions

The relations that are presented in this section are worked out in many basic textbooks
on finite temperature quantum field theory and review articles/papers [12, 19, 42, 80]
and doctoral theses [81, 82], which we follow closely. The goal is to introduce the real
time correlator, which we already encountered shortly in the last section, the retarded
correlator, which is conceptually important for the use of linear response theory treated
in Sec. 4.3.2 to estimate our expectations on the approximate behavior of spectral func-
tions, and finally the Euclidean correlator, which is an important output observable of
numerical computations of Lattice QCD.

To start, note that every expectation value in this section is to be understood as a
thermal average at inverse temperature β, i.e. we define

〈A(x)〉 ≡ 〈A(x)〉β =
∑
n

〈n|ρ̂(β)A(x)|n〉, (4.1)

with the statistical ensemble density

ρ̂(β) = Z−1 exp(−βĤ), (4.2)
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4 Spectral functions

which is not to be confused with the spectral function ρ, the partition function Z, and
the sum counting all eigenstates of the Hamiltonian Ĥ. For convenience, we drop the
hats on all other operators, as they should be identifiable from context. Furthermore, we
exemplarily show the connections for operators that depend only on one time coordinate,
as opposed to a four dimensional space time. This keeps the discussion simpler, and we
will reintroduce it when coming to the Euclidean correlator. In the last section we have
already seen the real time correlation function of the electromagnetic current in QCD,
and more generally we can write

G>(t) ≡ 〈A(t)A(0)〉, G<(t) ≡ 〈A(0)A(t)〉 = G>(−t), (4.3)

where the last equality follows from homogeneity of time. Time translation A(t) =
eiHtA(0)e−iHt and a unit operator I =

∑
n |n〉〈n| can be used to express G>(t) as a sum

over states,

G>(t) =
1

Z

∑
mn

e−βEneit(En−Em) ‖〈n|A(0)|m〉‖2 , (4.4)

with the Boltzmann weight exp(−βEn) and the (real) time dependence showing as os-
cillations. However, note that allowing t to take complex values, the correlator diverges
unless −β ≤ Im(t) ≤ 0 for G>(t) and 0 ≤ Im(t) ≤ β for G<(t). From translation in
imaginary time we additionally have the Kubo-Martin-Schwinger (KMS) relation,

G>(t) = G<(t+ iβ). (4.5)

We form the linear combination

G(t) = i (G>(t)−G<(t)) , (4.6)

with the spectral function being defined as its Fourier transform,

ρ(ω) =
1

2πi

∫ ∞
−∞

dteiωtG(t) =
1

2π

∫ ∞
−∞

dteiωt (G>(t)−G<(t))

= G>(ω)−G<(ω).

(4.7)

Using the KMS relation, it follows for the Fourier transforms that G<(ω) = G>(−ω) =
e−βωG>(ω), and thus they can be written as

G>(ω) =
eβω

eβω − 1
ρ(ω), G<(ω) =

1

eβω − 1
ρ(ω). (4.8)

This leads to the Fourier transform of the explicit expression (4.4)

ρ(ω) =
1

Z

∑
m,n

e−βEn {δ(ω + En − Em)− δ(ω + Em − En)} ‖〈n|A(0)|m〉‖2 , (4.9)
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which reveals the general peak structure of the spectral function, as well as its symmetry
properties ρ(−ω) = ρ(ω) and Im(ρ(ω)) = 0. The retarded correlator is defined as the
Fourier transform of G(t) over the positive half axis,

GR(ω) =

∫ ∞
0

dteiωtG(t) =
i

2π

∫ ∞
0

dt

∫ ∞
−∞

dω′ei(ω−ω
′+iε)t [G>(ω′)−G<(ω′)]

=

∫ ∞
−∞

dω′
ρ(ω′)

ω − ω′ + iε
,

(4.10)

where we introduced a small but finite quantity ε to ensure convergence of the integral.
By using (4.7) and the definition of the retarded correlator (4.10) we can write equation
(4.7) as

ρ(ω) =
1

2πi

(
GR(ω)−GR†(ω)

)
=

1

π
ImGR(ω), (4.11)

which is the desired connection between the retarded correlation function and the spec-
tral density.

Coming to the Euclidean correlation function, note that the structure of the correlators
above in imaginary direction is characterized by the finite size β of the interval, the
periodicity and thus the KMS relation. As such, the Euclidean correlator is defined as
the forward real time correlator on the imaginary axis,

GE(τ) = G>(−it), (4.12)

and to make a connection to the Euclidean correlation functions from lattice computa-
tions, we generalize to a 3 + 1 dimensional space time, x = (t, ~x) and p = (ω, ~p). The
Euclidean version of the current correlator (3.4) reads

GH(τ, ~x) = 〈JH(τ, ~x)J†H(0,~0)〉, (4.13)

where the symbolic index H denotes different Dirac structures in the current J , see
Sec. 2.6. The Euclidean correlator is most useful when projected to definite momentum,

GH(τ, ~p) =

∫
d3xe−i~p~x〈JH(τ, ~x)J†H(0,~0)〉, (4.14)

and it is straightforward to connect it to the forward propagator in momentum space
by expressing it as its Fourier transform,

GH(τ, ~p) =

∫
d3xe−i~p~xG>(−it, ~x) =

∫
d3x

∫ ∞
−∞

dω

2π

∫
d3q ei(~q−~p)~x−ωτG>(ω, ~q)

=

∫ ∞
−∞

dω

2π
e−ωτG>(ω, ~p).

(4.15)
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Splitting the integration at zero and transforming the integral over the negative half axis
to be over the positive half axis, we utilize equation (4.8) and G>(−ω) = e−βωG>(ω) to
arrive at

GH(τ, ~p) =

∫ ∞
0

dω

2π

(
eω(β−τ) + eωτ

eβω − 1

)
ρ(ω, ~p)

=

∫ ∞
0

dω

2π

cosh (ω(τ − β/2))

sinh(ωβ/2)
ρ(ω, ~p)

≡
∫ ∞

0

dω

2π
K(τ, ω, T )ρ(ω, ~p),

(4.16)

where the spectral function still depends on the spatial momentum we wish to project
to; in this work this is generally ~p = 0. Note that we left the temperature dependence
of the spectral function implicit. Sometimes it is more useful to consider the relation
written in units of temperature,

GH(τ, T )

T 3
=

1

2πT 2

∫ ∞
0

d
(ω
T

)
K (τT, ω/T ) ρ(ω/T ). (4.17)

In these derivations, the spatial coordinates were treated on the same footing, but it is
possible to follow an analogous idea and project out two spatial directions (by convention
these are the x and y coordinates) and the temporal direction, leaving the z direction
as the relevant space time coordinate. This approach leads to the screening correlator,
with ~pT = (px, py), ~xT = (x, y),

Gscr
H (z, T ) =

∫ 1/T

0

dτ

∫
dxdyei(ωnτ−~pT ~xT ) 〈JH(τ, ~x)J†H(0,~0)〉

∣∣∣∣
ωn=0,~pT=0

, (4.18)

and is sketched in e.g. [19]. In order to derive it, note that the periodicity implied by
the KMS relation (4.5) leads to the discrete Matsubara frequencies ωn = 2πnT when
Fourier transforming the Euclidean correlator in frequency, and the resulting expression
reads

GH(iωn, ~p) =

∫
d3x

∫
dτeiωnτ−i~p~xGH(τ, ~x). (4.19)

With GH(τ, ~x) = G>(−iτ, ~x) from (4.12), and its connection to the spectral function
(4.8), we arrive at

GH(iωn, ~p) =

∫
d3q

∫ ∞
−∞

dωδ(~p− ~q)e
(iωn−ω)β − 1

1− e−βω
ρ(ω, ~q)

iωn − ω

=

∫ ∞
−∞

dω
ρ(ω, ~p)

ω − iωn
.

(4.20)
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Comparing this expression with the integral connection between GR(ω) and ρ(ω) in
equation (4.10), we can connect it with the Euclidean correlator GH(iωn) via analytic
continuation,

GH(iωn → ω + iε) = GR(ω). (4.21)

Correspondingly, the imaginary part of the Euclidean correlator is related to the spectral
function analogously to (4.11),

ρ(ω) =
1

π
ImGH(iωn → ω + iε). (4.22)

Returning to the computation of the screening correlator, we can put equation (4.20)
to good use in the following. Performing the integrations (4.18) by inserting appropriate
Fourier transforms, the screening correlator reads,

Gscr
H (iωn, ~pT , z) =

∫ β

0

dτ

∫
d2xT eiωnτ−i

~PT ~xTGH(τ, ~x)

=

∫
dpz

∫
d2qT

1

β

∑
n′

δn,n′δ(~pT − ~qT )eipzzGH (iωn′ , ~qT , pz)

=

∫
dpze

ipzzGH (iωn, ~p) ,

(4.23)

where
∫ β

0
eiτ(ωn−ωn′ ) = βδn,n′ from the frequency transform yields the Kronecker Delta.

Inserting (4.20) and writing

GH(iωn, ~p) =

∫ ∞
−∞

dω
ρ(ω, ~p)

ω − iωn
= 2

∫ ∞
0

dω
ρ(ω, ~p)

ω2 + ω2
n

ω, (4.24)

in the limits ~pT → 0 and ωn → 0, we finally have an expression that is to be contrasted
to (4.16),

Gscr
H (z, T ) =

∫ ∞
0

2

ω
dω

∫ ∞
−∞

dpze
ipzzρ(ω, pz, T ). (4.25)

4.2 Non-interacting spectral functions

With the theoretical concept of the spectral function at hand, as introduced in the
foregoing section, and its connection with the retarded and the Euclidean correlation
functions, respectively, we can present computations of mesonic spectral function in the
non-interacting limit. Because of asymptotic freedom, this corresponds to evaluating
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correlation functions at infinitely high temperature. These free spectral functions are
an important intermediate step towards the extraction of spectral information from in-
teracting correlation functions. In this section we derive expressions for free mesonic
spectral functions in the continuum, which can be computed analytically and thus allow
for an analysis of the general structure of spectral functions and correlation functions,
respectively. These computations have been first done in [83, 84] for degenerate quark
masses, and will be extended to non-degenerate quark masses in the next section.

4.2.1 Free continuum spectral functions – degenerate quark masses

Starting out with a general correlation function in the channel H,

GH(τ, ~x) = 〈JH(τ, ~x)J†H(0,~0)〉, (4.26)

we can write to lowest order in the loop expansion in Fourier space

GH(P ) = −T
∑
n

∫
d3k

(2π)3
tr
[
S(K)ΓHS(P +K)γ0Γ†Hγ0

]
, (4.27)

with P = (iωl, ~P ) and ωl the (bosonic) Matsubara frequencies ω = 2πlT of the meson.
The momentum dependent quantity

S(P ) = − 1

iω̃nγ0 − γipi −m
= −

∫ ∞
−∞

dω

2π

ρF (P )

iω̃n − ω
(4.28)

is the quark propagator with its corresponding fermionic Matsubara frequency ω̃n =
(2n + 1)πT . The underlying non interacting quark spectral function is easily obtained
by comparing the left hand side and the right hand side, giving

ρF (K) = ρ(K)( /K +m) = 2πsgn(k0)δ(K2
0 − ω2

K)( /K +m), (4.29)

with ρ(K) being free of any γ structure and the energy of a propagating quark given

by ωK =
√
~K2 +m2. As has been shown in section 4.1, from the Euclidean correlator

in 4-momentum space (4.27) we can arrive at an expression for the free meson spectral
function by considering its imaginary part, analytically continued to the real frequency
axis. Plugging in the spectral representation of the fermionic propagator yields

ρH(P = (ω, ~p),m) = 2ImGH(iωn → ω + i0+, ~p)

= Nc

∫
d4k

(2π)4
ρ(K)ρ(R)tr

{
( /K +m)ΓH(/R +m)γ0Γ†Hγ0

}
{nF (k0)− nF (r0)} ,

(4.30)

where R = K+P and nF (k0) is the Fermi distribution at temperature T . Apart from the
tree level approximation, this is a very general result, which results in the non interacting
mesonic spectral function as a function of the frequency ω, the meson’s momentum ~p, the
temperature T , the quark mass m and the specific channel ΓH = 1, γi, γµ, γ5, γ5γi, γ5γµ.
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4.2 Non-interacting spectral functions

ΓH a
(1)
H a

(2)
H a

(3)
H

ρS I 1 −1 1
ρPS γ5 1 −1 −1
ρV,00 γ0 1 1 1
ρV,ii γi 3 −1 −3
ρV,µµ γµ 2 −2 −4
ρAV,00 γ5γ0 1 1 −1
ρAV,ii γ5γi 3 −1 3
ρAV,µµ γ5γµ 2 −2 4

Table 4.1: The coefficients of the Dirac structure occurring in the non interacting spectral
functions.

It is easier to consider certain special cases, namely vanishing momentum, vanishing
mass, and the simplest case of vanishing mass and momentum, although in principle the
integrals can be performed and expressed in terms of polylogarithms. Since in this work
we exclusively investigate spectral functions at vanishing external spatial momentum
~p = 0, we will start from formula (4.30). An additional advantage of starting out so
early in the computation is, that we will gain inside into how the different regimes of the
spectral function arise mathematically, and can try to draw conclusive implications for
the physics of meson states. The computation involves several different steps, starting
with the trace over the γ-matrices, which we conventionally take to be defined by

γ0† = γ0, γi† = −γi, γ†5 = γ5, {γµ, γν} = 2gµν , (4.31)

and the metric tensor having the ’mostly minus’ signature gµν = diag(1,−1,−1,−1).
Since in the trace only the terms proportional to ∼ /K /R and ∼ m2 yield an even number
of γ-matrices, the result can be cast into the form

tr
{

( /K +m)ΓH(/R +m)γ0Γ†Hγ0

}
= a

(1)
H K0R0 + a

(2)
H
~K · ~R + a

(3)
H m2, (4.32)

with the coefficients a
(i)
H for the corresponding channel H given in Tab. 4.2.1. Next, the

fermion propagators contain Dirac delta functions which cancel most of the integrals.
In order to see this, rewrite

δ(K2
0 − ω2

K)δ(R2
0 − ω2

R) =
1

4ωKωR
[δ(K0 − ωK) + δ(K0 + ωK)]

× [δ(R0 − ωR) + δ(R0 + ωR)] ,
(4.33)
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and the expression for the meson spectral function becomes

ρH(ω) = 2πNc

∫
~K

{
+

(
a

(1)
H + a

(2)
H

~K · ~R
ωKωR

+ a
(3)
H

m2

ωKωR

)
[nF (ωK)− nF (ωR)] δ(ω + ωK − ωR)

+

(
a

(1)
H − a

(2)
H

~K · ~R
ωKωR

− a(3)
H

m2

ωKωR

)
[1− nF (ωK)− nF (ωR)] δ(ω − ωK − ωR)

−(ω → −ω)

}
.

(4.34)

In the limit ~p → 0 the two energies degenerate, ωK → ωR, and the integration in the
second and fourth line of (4.34) can be performed by standard techniques. The Dirac
delta function fixes the quark energies to be ωK/R = ω/2 each, and thus this part of
the spectral function describes the state of a quark-antiquark pair at a total energy ω.
In the first and third line of the spatial integration, however, the Dirac delta function
contains no integration variable anymore in the case ωK → ωR. To investigate this, for
now leave a small momentum ~p in ωR and Taylor expand around ~p = 0,

ωR =

√
(~k + ~p)2 +m2 = ωK

√
1 +

2kpx+ p2

ω2
K

= ωK +
kpx

ωK
+O(p2)

≡ ωK + α +O(p2),

(4.35)

with x = cos(θ) the angle between the two vectors. Applying this to the product of
Dirac delta function and difference of Fermi distributions above, we find

[nF (ωK)− nF (ωK + α)] δ(ω − α) = −nF (ωK + α)− nF (ωK)

α
αδ(ω − α), (4.36)

and we can identify the difference quotient with the derivative,

d

dωK
nF (ωK) = lim

α→0

nF (ωK + α)− nF (ωK)

α
. (4.37)

On the other hand, we can identify in the other term

αδ(ω − α) ≡ ωδ(ω − α), (4.38)

in the sense that the integration (4.17), which finally yields the Euclidean correlator
from the spectral function, for small frequencies reads∫

dω
1

ω
αδ(ω − α)f(ω) = f(α)

α→0−→ f(0) =

∫
dω

1

ω
ωδ(ω)f(ω) (4.39)
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4.2 Non-interacting spectral functions

for an arbitrary function f(ω). Collecting all factors and performing the above proce-
dures for all four terms in (4.34), we arrive at the massive free spectral function in the
limit of vanishing momentum,

ρH(ω,m) =
Nc

8π

√
1− 4m2

ω2
ω2 (nF (−ω/2)− nF (ω/2))

×
{(

a
(1)
H − a

(2)
H

)
+

4m2

ω2

(
a

(2)
H − a

(3)
H

)}
Θ(ω2 − 4m2)

+ 2πωδ(ω)Nc

{(
a

(1)
H + a

(3)
H

)
I1 +

(
a

(2)
H − a

(3)
H

)
I2

}
.

(4.40)

The coefficients a
(n)
H are the results of the traces over the different possible products of

gamma matrices. They are hence channel dependent and can be computed via (4.32).
For brevity, the results are given in Tab. 4.2.1. The integrals

I1 = −2

∫
d3K

(2π)3

d

dω ~K

nF (ω ~K), and I2 = −2

∫
d3K

(2π)3

~K2

ω2
~K

d

dω ~K

nF (ω ~K), (4.41)

can be analytically computed in the case of vanishing mass. Owing to the Dirac delta
function multiplying both I1 and I2, they only contribute to the behavior of the spectral
function at zero frequency. Observe that this contribution vanishes identically in the
pseudoscalar channel due to the coefficients a

(n)
H canceling completely, while all other

channels maintain a finite contribution. Comparing the integrands of (4.41), we see that
~K2/( ~K2+m2) < ~K2/ ~K2 = 1, and hence I2 < I1. Inserting the corresponding coefficients
into (4.40), the vector current spectral function ρV thus exhibits a negative Delta peak
at zero frequency, while the remaining channels show a positive peak.

Sending the mass to zero, utilizing the free dispersion relation ω2
~K

= ~K2 +m2, we see

that the remaining integrals degenerate, I1 = I2 = T 2/6, and equation (4.40) yields that
also in the scalar channel the contribution at ω = 0 vanishes identically at vanishing
mass. This is an effect of the restauration of chiral symmetry above the chiral transi-
tion temperature, which degenerates the scalar and pseudoscalar spectral functions, and
hence also their correlation functions. More generally for massless quarks, rewriting the
term involving the fermi distribution,

nF (ω) =
1

1 + eω/T

⇒ 1− 2nF (ω/2) =
eω/(2T ) − 1

eω/(2T ) + 1
= tanh(ω/(4T )),

(4.42)

we get in the zero mass limit of equation (4.40)

ρH(ω) =
Nc

8π
ω2 tanh(ω/(4T ))

(
a

(1)
H − a

(2)
H

)
+
πNc

3
T 2ωδ(ω)

(
a

(1)
H + a

(2)
H

)
. (4.43)

Since the coefficient a
(3)
H drops out, also the spectral functions for the vector and axi-

alvector degenerate. The integration of this expression can be performed analytically to
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yield the corresponding free, massless correlation functions at zero momentum. Inserting
(4.43) into the mixed representation relationship (4.17), we obtain

GH(τ, ~p = 0,m = 0)

=
NcT

3

6

{
(a

(1)
H + a

(2)
H ) +

3

2
(a

(1)
H − a

(2)
H )

3u+ u cos(2u)− 2 sin(2u)

sin3(u)

}
,

(4.44)

with u = 2πT (τ − 1/(2T )). The first term in this expression originates from the Dirac
delta term in the spectral function, and thus constitutes the constant contribution of the
free correlation function. As can be seen from the coefficients, it vanishes for the pseu-
doscalar, the scalar and the full vector channel. The second term carries the imaginary
time dependence and diverges in the limit u → −π (τ → 0). At the midpoint, Taylor
expansion to the order O(u3) in both nominator and denominator yields

GH(u)
u→0−→ NcT

3

3
a

(1)
H , (4.45)

showing that all correlation functions remain strictly positive. Of special interest in the
context of the current work is the vector channel with its single components ρV,00 ≡ ρ00,
ρV,ii ≡ ρii and ρV,µµ ≡ ρV . Working with the coefficients from Tab. 4.2.1, we find for
Nc = 3

ρ00 = 2πT 2ωδ(ω),

ρii =
3

2π
ω2 tanh(ω/(4T )) + 2πT 2ωδ(ω),

ρV =
3

2π
ω2 tanh(ω/(4T ))

(4.46)

Apparently, the contribution proportional to the Dirac delta function appears in the
temporal and the spatial channels, but exactly cancels out in the combination ρV =
ρii − ρ00. Because the temporal direction is determined by charge conservation, the
corresponding correlation function, given by (4.26) with H = 0 and Fourier transformed
to the mixed representation, is a constant and defines the charge susceptibility χq,

G00(τ, ~p = 0) =

∫ ∞
0

dω

2π
ρ00(ω)K(ω, τ, T ) = T 3 ≡ χqT. (4.47)

4.2.2 Free continuum spectral functions – non-degenerate quark
masses

The results developed so far describe so called hidden flavor meson states at both finite
and zero quark mass, as two quarks of equal flavor are involved. However, open flavor
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4.2 Non-interacting spectral functions

mesons contain two different quark flavors, and therefore different quark masses, so that
for the two fermionic frequencies we get

ωK =

√
~K2 +m2

1

ωR =

√
~R2 +m2

2

~p→0−→
√
~K2 +m2

2 6= ωK

(4.48)

in the limit of vanishing momentum. The effects of non-degenerate quark masses in a
free meson should now, for the first time, be investigated by extending the computations
of the free continuum spectral functions [83, 84], keeping this difference in mind. Note,
however, that we take the external spatial momentum to be zero from the beginning.
We first focus on the structure of the Dirac delta functions and the sign functions and
define for the rest

f(K0, ~K) ≡ tr
{

( /K +m1)ΓH(/R +m2)γ0Γ†Hγ0

}
{nF (K0)− nF (K0 + ω)} (4.49)

The frequency integration is carried out strictly over K0 by using R0 = K0 +ω, and the
resulting expression is given by

ρH(ω) =
Nc

(2π)2

∫ ∞
−∞

dK0d3Kf(K0, ~K)

×δ(K2
0 − ω2

K)δ((K0 + ω)2 − ω2
R)sgn(K0)sgn(K0 + ω).

(4.50)

The sign functions yield an overall minus for K0 ∈ [−ω, 0], so we decompose∫ ∞
−∞

dK0f(K0, ~K)δ(K2
0 − ω2

K)δ((K0 + ω)2 − ω2
R)sgn(K0)sgn(K0 + ω)

= +

∫ −ω
−∞

dK0

2ωK
f(K0, ~K) [δ(K0 − ωK) + δ(K0 + ωK)] δ((K0 + ω)2 − ω2

R)

−
∫ 0

−ω

dK0

2ωK
f(K0, ~K) [δ(K0 − ωK) + δ(K0 + ωK)] δ((K0 + ω)2 − ω2

R)

+

∫ ∞
0

dK0

2ωK
f(K0, ~K) [δ(K0 − ωK) + δ(K0 + ωK)] δ((K0 + ω)2 − ω2

R).

(4.51)

Because in every integral we exclusively have either K0 < 0 or K0 > 0, one of the two
Dirac deltas always evaluates to zero, and Heaviside functions need to be inserted to
keep track of whether 0 < ωK < ∞, or ω < ωK < ∞, or 0 < ωK < ω follows from
the other Dirac delta function. The resulting expression for the whole spectral function
reads

ρH(ω) = +
Nc

(2π)2

∫
d3K

2ωK

{
f(K0 = −ωK , ~K)δ((−ωK + ω)2 − ω2

R)Θ(ωK − ω)

−f(K0 = −ωK , ~K)δ((−ωK + ω)2 − ω2
R) [Θ(ωK)−Θ(ωK − ω)]

+f(K0 = ωK , ~K)δ((ωK + ω)2 − ω2
R)Θ(ωK)

}
.

(4.52)
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Since one of the quarks must be heavier than the other, without loss of generality we
assume m1 > m2 for the rest of the computation. This implies ωK > ωR for all ~K in the
integration range, and thus the last line of (4.52) vanishes upon evaluation of the Dirac
delta function. The remaining Dirac delta function is transformed to read

δ
(
(−ωK + ω)2 − ω2

R

)
→ ωK

ω
δ

(
~K2 −

[
1

4ω2

(
m2

1 −m2
2 + ω2

)2 − ω2

])
, (4.53)

and since f(−ωK , ~K) only depends on ~K2, the angular integration is trivial. The Heav-
iside functions can be combined to yield an overall plus sign for ωK > ω and an overall
minus sign for 0 < ωK < ω. Changing the integration variable to be ~K2 instead of | ~K|,
we get

ρH(ω) =
4πNc

(2π)2

∫ ∞
0

d ~K2 | ~K|
4
δ

(
K2 − [

1

4ω2
(m2

1 −m2
2 + ω2)2 −m2

1]

)
×f(K0 = −ωK , K2) [Θ(ωK − ω)−Θ(ω − ωK)] .

(4.54)

From here the Dirac delta function determines the value of | ~K|, and the conditions in
the stepfunctions can be rewritten in terms of m1, m2 and ω. Notice that, depending
on the masses, the expression for ~K2 can become negative. To avoid imaginary parts
showing up in the spectral function, we introduce another constraint,

Θ

(
1

4ω2
(m2

1 −m2
2 + ω2)2 −m2

1

)
= Θ (ω − (m1 +m2)) + Θ (m1 −m2 − ω) , (4.55)

and by furthermore rearranging the expression to be directly comparable to the mass-
degenerate case (4.40), we arrive at the final expression

ρH(ω) =
Nc

32π

√(
m2

1 −m2
2

ω2
+ 1

)2

− 4m2
1

ω2
ω2 [nF (−ωK)− nF (−ωK + ω)]

×

[
(a

(1)
H − a

(2)
H ) + 2a

(2)
H

m2
1 +m2

2

ω2
− 4a

(3)
H

m1m2

ω2
− (a

(1)
H + a

(2)
H )

(
m2

1 −m2
2

ω2

)2
]

×
[
Θ

(
ω −

√
m2

1 −m2
2

)
−Θ

(√
m2

1 −m2
2 − ω

)]
×
[
Θ (ω − (m1 +m2)) + Θ (m1 −m2 − ω)

]
,

(4.56)

with ωK = 1
2ω
|m2

1 −m2
2 + ω2| m1>m2= 1

2ω
(m2

1 −m2
2 + ω2).

An especially intriguing feature in the mass-degenerate case is the appearance of a
Dirac delta peak, or zero mode, at vanishing frequency in the limit of zero external
momentum. As discussed in the derivation of that result, the peak with its prefactors
I1 and I2 appears, because the two frequencies ωK and ωR become degenerate when
the external 3-momentum ~p vanishes. In the case of non-degenerate quark masses, this
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never happens and all Dirac delta functions are completely integrated out. From a phys-
ical point of view, this means that in the corresponding correlation functions there is
no constant mode, independent of the channel under consideration. But if there is no
constant contribution in the free case, then we do not expect one to arise upon the onset
of interactions. Concretely, we can see on the level of the spectral function, that the
’mixed’ vector current is not conserved in this case.

Comparing the results (4.40) and (4.56), it becomes clear that in the limit m1 → m2,
we reobtain the correct expression for all ω > 0. The corresponding expression at de-
generate masses for the Dirac delta peak obviously cannot be obtained anymore from
(4.56), since the integration over the momentum is already carried out. However, it is
very instructive to look at the spectral functions of the vector and pseudoscalar channels
for several different masses m1/T at fixed m2/T = 1 in Fig. 4.1, and at fixed m2/T = 0
in Figs. 4.2. The former allows us to study the limit of finite, but degenerate masses,
while the latter gives insight of how a meson with one massless quark connects to the
massless free spectral function (4.43).

For the spatially polarized vector channel spectral function ρV,ii, at high frequencies we
see in Fig. 4.1 the same ’typical continuum’ behavior as in the case of degenerate masses,
starting at ω/T = (m1 + m2)/T

m1→m2−→ 2m/T . While the region between (m1 + m2)/T
and (m1 −m2)/T is zero, as here the square root would yield imaginary values, there
exists a finite contribution below (m1 − m2)/T . This regime merely arises due to a
difference in the quark masses, and thus is not present otherwise. Following the plotted
functions of decreasing m1/T , we see how this contribution forms an increasingly sharp
peak, with its center moving towards zero frequency. This is the mechanism that in the
strict limit m1 → m2 constitutes the Dirac delta peak at zero frequency. Essentially
the same behavior is observed in the axialvector and scalar channels, with the ’bump’
contribution at low frequencies being a bit larger than in the vector channel.

In Fig. 4.1 we show the very same plots also for the temporal component of the vector
current correlator. It becomes apparent that the Dirac delta peak at low frequency
appears in the same way as for the spatial part when taking the limit of degenerate
masses. At high frequencies the spectral function stays finite and saturates for ω →∞,
which can be seen from the general large frequency limit of (4.56),

ρH(ω,m1,m2)
ω→∞−→ Nc

32π

[
2a

(2)
H (m2

1 +m2
2)− 4a

(3)
H m1m2 + (a

(1)
H − a

(2)
H )ω2

]
(4.57)

with a
(1)
H = a

(2)
H = a

(3)
H = 1 for the temporal component H = 00. This part cleanly

vanishes for m1 → m2, leaving only the Dirac delta peak as predicted by equation (4.40).

Because the contribution below ω/T = m1 −m2 is systematically larger for ρ00 than
for ρii, we find that their difference ρV is indeed negative in this frequency region, and
forms the negative zero mode in the limit of degenerate masses, as predicted by (4.40).
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Figure 4.1: The free spectral function ρ/ω of different quantum number channels in the
continuum and with non-degenerate quark masses. The second mass is fixed
to m2/T = 1. Note that the pseudoscalar channel does not build up a Dirac
delta contribution for m1 → m2.

The pseudoscalar channel shows a positive contribution below ω = m1 −m2. In con-
trast to the scalar, axialvector or vector channels, ρPS at degenerate masses does not
exhibit a Dirac delta peak at vanishing frequency, and accordingly we see in Fig. 4.1
how the positive contribution becomes very small and finally vanishes for m1 → m2.
However, it is intriguing to see that for non degenerate masses, there is an enhancement
in the low frequency region, although it is much smaller compared to the corresponding
enhancements in the vector channel.

After having investigated how the limit m1 → m2 6= 0 works to yield equation (4.40),
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Figure 4.2: The free spectral function ρ/ω in the continuum and with non-degenerate
quark masses, for vanishing fixed mass m2/T = 0. Note that m2 → 0
constitutes the chiral limit, and hence we only show the pseudoscalar and
the vector, since their positive parity partners, scalar and axialvector, are
exactly the same, also at finite m1.

we take another step and also consider this limit with m2 = 0. This case is interesting
because it fits in as an intermediate step between the fully massive, but mass-degenerate,
spectral function and the massless spectral function. Physically, this might be an ide-
alization of a heavy-light quark pair in the chiral limit. Many features in this case are
analogous to the case of finite m2, but an intriguing exception is found in the vector
current spectral function ρV , see Fig. 4.2. Where in the former case the limit m1 → m2

was achieved with a negative contribution for ω < m1−m2, leading to a negative peak,
the spectral function stays strictly positive for all frequencies when one massless quark is
involved. Note that m2 → 0 is indeed the formal chiral limit, as then the coefficient a

(3)
H

drops out and consequently the pseudoscalar and scalar, and the vector and axialvector
channels, respectively, degenerate.

4.2.3 Free lattice spectral functions for Wilson quarks

While the preceding section dealt with meson spectral functions at infinite temperature
in the continuum, the purpose of this chapter is to introduce the same quantities in a
lattice regularized version. To be specific, the discretization scheme adopted is that of
standard Wilson fermions on a lattice. As we will see, certain features are present in

55
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both formulations of QCD, while especially the cutoff, introduced by putting the quarks
on a lattice, will lead to a drastically different behavior in the region of large frequencies
compared to the continuum results. Because lattice artifacts are also seen in correlators
resulting from fully interacting numerical lattice computations, the free lattice correla-
tor is more comparable to the latter than the free continuum expression would be. Free
spectral functions on the lattice have first been computed by Stickan et. al. [84, 85] as
well as Aarts and Resco [83], and the notation in this section is that of Aarts, although
the differences between the notation in above works are minor.

The starting point is (4.27) in the mixed representation, i.e. in terms of τ instead
of the Matsubara frequency ωl. Discretization in space-time introduces bounds in the
integration over the momenta, while introducing a finite size also in the spatial direction,
additionally to the already present bound in temporal direction, discretizes the momenta
in the integration. The free Euclidean meson correlation function for Wilson fermions
is thus given by

GH(τ, ~P ) = −Nc

L3

∑
~K

tr
[
S(τ, ~K)ΓHS(−τ, ~P + ~K)γ0Γ†Hγ0

]
, (4.58)

where ~Ki = 2πn/Nσ with integer ni ∈ [−Nσ/2+1, Nσ] and periodic boundary conditions

for S(τ, ~K) in these directions. The latter can be decomposed to read [86]

S(τ, ~K) = γ4S4(τ, ~K) +
3∑
i=1

γiSi(τ, ~K) + ISu(τ, ~K), (4.59)

with the single components given by

S4(τ, ~K) = S4( ~K) cosh

([
τT − 1

2

]
E ~K

)
,

Si(τ, ~K) = Si( ~K) sinh

([
τT − 1

2

]
E ~K

)
,

Su(τ, ~K) = Su( ~K) sinh

([
τT − 1

2

]
E ~K

)
− δτ,0

2(1 +M ~K)
.

(4.60)

In this mixed representation, the particle energy E ~K is given by

cosh(E ~K) = 1 +
K2
~K

+M2
~K

2(1 +M2
~K

)
, (4.61)

with K ~K =
∑3

i=1 γi sin(Ki) and M ~K =
∑3

i=1(1 − cos(Ki)) + m, while the purely mo-
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4.2 Non-interacting spectral functions

mentum dependent components of the propagator are

S4( ~K) =
sinh(E ~K)

2E ~K cosh(E ~K/2T )
,

Si( ~K) =
i sin(Ki)

2E ~K cosh(E ~K/2T )
,

Su( ~K) = −
1− cosh(E ~K) +M ~K

2E ~K cosh(E ~K/2T )
,

(4.62)

with E ~K = (1 +M ~K) sinh(E ~K). Using the relation S(−τ, ~K) = γ5S
†(τ, ~K)γ5, and com-

puting the traces over the Dirac matrices as in the continuum case, the free lattice
correlation function is given by

GH(τ, ~p) =
4Nc

L

∑
~K

{
a

(1)
H S4(τ, ~K)S†4(τ, ~K + ~P )− a(2)

H

∑
i

Si(τ, ~K)S†i (τ,
~K + ~P )

−a(3)
H Su(τ, ~K)S†u(τ, ~K + ~P )

}
,

(4.63)

with the coefficients a
(n)
H from Tab. 4.2.1. With the purely momentum dependent compo-

nents (4.62) of the quark propagators, the spectral function of the lattice correlator can
be written analogous to (4.34), with the very same structure of Dirac delta functions,

ρ(ω, ~P ) =
2Nc

L3

∑
~K

sinh
( ω

2T

){

+

[
a

(1)
H S4( ~K)S†4(~R) + a

(2)
H

∑
i

Si( ~K)S†i (
~R) + a

(3)
H Su( ~K)S†u(~R)

]
δ(ω + E ~K − E~R)

+

[
a

(1)
H S4( ~K)S†4(~R)− a(2)

H

∑
i

Si( ~K)S†i (
~R)− a(3)

H Su( ~K)S†u(~R)

]
δ(ω − E ~K − E~R)

+(ω → −ω)}

(4.64)

with ~R ≡ ~K + ~P . Both the expressions (4.63) and (4.64) can be evaluated numerically
to yield the discretized free correlation and spectral functions, respectively, for given Nσ

and Nτ .

When evaluating the spectral function, the Dirac delta functions are used to pick
those contributions from the sum over momenta, which fit the correct energy difference.
As such, they are unity for a small frequency range [ω, ω + ∆ω], and zero otherwise,
an approach known as the Binning method. Because of the discreteness of the sum, the
number of sums and differences of energies which fall into this interval depends strongly
on Nσ, and too small a spatial extent leads to strong fluctuations in the resulting spectral
function. To circumvent this, values of Nσ = 4098 with a sufficiently good resolution of
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Figure 4.3: The free spectral functions as obtained from formula (4.64) via binning,
for degenerate quark masses m1 = m2 = T and in units of the temperature.
The dashed lines denote the corresponding free continuum spectral functions.
Note that the non-interacting scalar and axial vector lie on top of each other,
as the scalar (and also the pseudoscalar) spectralfunction is multiplied by
two.

∆ω = 1/500 are used in the following demonstrations. The temporal extent is fixed to
Nτ = 16, but can be essentially chosen arbitrarily.

Extensive discussions on the features of non-interacting spectral functions in Lattice
QCD and especially the lattice effects can be found in [83, 85]. Here, we only want
to discuss some features of the free lattice spectral functions in comparison with the
continuum one, and thus choose to keep the frequency in units of the temperature. For
definiteness, we choose to set Nτ = 16 to fix the value of the cutoff. To start, we show
the massive lattice spectral functions with m1/T = m2/T = 1 for the pseudoscalar,
scalar, vector and axial vector channels in Fig. 4.3. The dashed lines of the respective
same colors denote the free continuum result (4.40). We normalize the spectral functions
by the square of the frequency to stress the difference of the large frequency behavior
between the continuum and the lattice. The influence of the cutoff becomes explicit
at very large frequencies, leads to kinks in the spectral shape of the pseudoscalar and
vector, and finally drops ρ(ω)/ω2 → 0, compared to the quadratic behavior ρ(ω)/ω2 ∼ 1
seen in the continuum at arbitrarily high frequencies. At very low frequencies, however,
the structure of the free spectral functions is very similar in the continuum and on the
lattice. In contrast to the continuum expressions, the expressions evaluated numerically
on the lattice via the binning method can be easily adjusted from the case of degenerate
masses in (4.64) to yield the free lattice spectral functions of open flavor mesons, simply
by picking different quark masses in M ~K and M~R. In Fig. 4.4 (left) we show the same
spectral functions as above, but set m1/T = 5. In the low frequency region appear
structures very similar to the corresponding continuum case at non-degenerate quark
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Figure 4.4: The free lattice spectral functions as obtained from formula (4.64) via binning
for non-degenerate quark masses. Top: The whole frequency range and
a blowup, the dashed lines are the corresponding free continuum results.
Middle and bottom: Illustration of the limit m1/T → m2/T for a range of
channels. Note that it works in the same way as for the free continuum
spectral functions.

masses, and a blowup of the region 0 ≤ ω/T ≤ 10 is shown in Fig. 4.4 (right). There
are two interesting points to note, namely

• the gap between the bump at low frequency and the onset of the large frequency
behavior is shifted to smaller frequencies on the lattice, compared to the contin-
uum,

• and the spectral function of the axialvector channel ρAV,ii now deviates from 2ρS,
especially at low frequencies, in the characteristic bump contribution, where the
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deviation is quite pronounced.

Overall, it becomes clear that the free spectral functions on the lattice are, apart from
the cutoff, qualitatively very comparable to the free spectral functions in the continuum,
both for degenerate and non-degenerate quark masses. As a side remark, shifts of
structures between the continuum and discretized versions of free spectral functions,
as we find them in case of non-degenerate quark masses above, also occur similarly for
free spectral functions at finite momenta, see [83, 84, 85]. To conclude, we study the
limit of degenerate masses, as done in Fig. 4.1 for the continuum spectral functions, and
show the same channels as above, for different m1 and fixed m2/T = 1, in Fig. 4.4. The
spectral functions shown are normalized as ρ/(ωT ), and it becomes apparent that the
limit of degenerate quark masses is reached in the same way as in the continuum, with
the the frequency structure becoming increasingly peaked.

4.3 Towards interacting spectral functions

While the preceding section dealt with the analytically tractable case of free mesonic
spectral functions, we now formalize our expectations of spectral functions which are
subjected to a finite interaction strength. We identify elementary building blocks of
which spectral functions can generally consist, and present phenomenological results for
light and heavy quarks utilizing kinetic theory and linear response theory. As a re-
sult, these motivations yield continuum formulas for how the shapes of mesonic spectral
functions change under the influence of interactions, compared to the free case. Even
stronger, these hints can in turn serve as definite Ansaetze for the low frequency region
of mesonic spectral functions, thus helping to extract them from non-perturbative lat-
tice data. We conclude the discussion with a presentation of thermal moments and their
relevance for the low frequency region of spectral functions.

4.3.1 Spectral function structure

In section 4.2 we have seen two distinct parts that the meson spectral functions at in-
finite temperature can generally be made of. First, there is a zero mode at vanishing
frequency and, second, a continuum contribution which sets in after a threshold given
by the sum of the two constituent quark masses. On the other hand, at the zero tem-
perature the spectral functions consists of structures that reflect the presence of particle
states. These can be either narrow peaks, as motivated in equation (2.85) for well de-
fined bound states, or rather broad Lorentz structures, as in the case of the ρ resonance.
Especially the bound states in the spectrum are thus given by Dirac delta peaks located
in energy space at the mass of the corresponding states. Furthermore, a heavy meson,
which just above the transition temperature might still be bound, will have disappeared
at infinite temperature, as the corresponding free spectral functions do not show any
bound state peaks. Since this process will not be discontinuous, it is intuitive to assume
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Figure 4.5: The schematic expectation of the interacting spectral function. The plot
illustrates the different building blocks (zero mode, bound state, continuum).
Note that the units of ω here are arbitrary and the plot carries no quantitative
information.

that bound state peaks of heavy quark states deform gradually at increasing tempera-
ture, getting smaller in magnitude and broader in extent, until one cannot recognize a
bound state at the corresponding frequency anymore. Note that meson states consisting
of lighter quarks, e.g. pions, will already in the transition region be heavily affected,
as they are closely linked to the chiral aspects of the transition. We will solidify this
melting behavior of peaks in the next section. Note that there still is a continuum con-
tribution at zero temperature, which dominates the correlator at small distances. The
asymptotic behavior is given by ρ(ω) ∼ ω2 for large frequencies, see e.g. [87], and thus
the same as at infinite temperature. The threshold for the onset of this continuum is
heuristically given by the energy at which light quark antiquark pair creation permits the
decay into other colorless hadron pairs [88], e.g. cc̄ −→ DD̄ in the case of charmonium,
where D ∼ uc̄. Conversely, adding a medium and increasing the temperature from zero
to higher values will make the continuum contribution shift to lower frequencies with
rising temperature, until it reaches its minimum threshold 2mq, which is the threshold
at infinite temperature, see Sec. 4.2.

Putting it all together, by physical arguments we assume the shape of the interacting
spectral function at finite temperature to be that of a peak structure in the low frequency
region, a number of bound state peaks in the intermediate and high frequency region,
and finally the continuum contribution. This result is schematically plotted in Fig. 4.5.

4.3.2 Light and heavy quarks from kinetic theory

After this rather pictorial discussion, which formed a first picture of what features are to
be expected in a mesonic spectral function at finite temperature, we now want to tweak
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the details of this picture. A very important conclusion will be drawn about the shape of
the transport peak, as well as the connection made between the low frequency regime of
the spectral function and transport properties of the system. These considerations are
described in standard textbooks [42, 64, 80, 89], as well as important works and review
papers [12, 20, 90].

When a physical system is somehow pulled out of equilibrium, it is generally expected
to relax back into the stable equilibrium state. In the framework of linear response it is
possible to quantify the first order reaction of a system to a time dependent perturbation.
Let the full Hamiltonian be

H ′(t) = H + V (t), (4.65)

with H the unperturbed Hamiltonian and V (t) encodes the details of how exactly the
perturbation disturbs the system. If we are interested in the time evolution of a certain
operator A(t), denote a state, modified by the perturbation, in the Schroedinger picture
as

|ψ̄S(t)〉 = e−iHtU(t, t0)|ψS(0)〉, (4.66)

with the influence of the perturbation over time, starting at t0, encoded in the operator

U(t, t0) = 1− i
∫ t

t0

dt′VH(t′) +O
(
V 2
H

)
(4.67)

and the usual transition from Heisenberg picture to Schroedinger picture governed by the
unperturbed Hamiltonian, ψS(t) = e−iHtψS(0) ≡ e−iHtψH , and analogous for operators.
Then we can quantify the influence of V (t) on an expectation value of an operator O(t)
by subtracting the unperturbed expectation value and using (4.67),

δ〈O(t)〉 ≡ 〈ψ̄S(t)|O(t)|ψ̄S(t)〉 − 〈ψS(t)|O(t)|ψS(t)〉

= −i
∫ ∞
t0

dt′Θ(t′ − t)〈ψH | [OH(t), VH(t′)] |ψH〉.
(4.68)

Since this holds especially for all eigenstates of the operator H, the relation holds also
with expectation values corresponding to the thermal bath, i.e.∑

n

〈n|ρ̂ [OH(t), VH(t′] |n〉 = trρ̂ [OH(t), VH(t′)] ≡ 〈[OH(t), VH(t′)]〉. (4.69)

The commutator together with the restricting step function is another way to define the
retarded correlator that was encountered earlier, in time t,

GR(t− t′) = Θ(t′ − t)〈[OH(t), VH(t′)]〉. (4.70)

Choosing the perturbation to entail a specific time dependence , VH(t)→ f(t)VH(t), the
change of O(t) in (4.68) is technically just a convolution of the retarded correlator and
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f(t), and in Fourier space thus just becomes the product of the two. In this context, we
define the static susceptibility to be the retarded correlator at vanishing frequency,

δ〈O(ω = 0)〉 = GR(ω = 0)f(ω = 0) ≡ χsf0, (4.71)

and with an adiabatic perturbation f(t) = f0eεtΘ(−t) we obtain the retarded correlation
function by integrating with

∫∞
0

dteiωt,

GR(ω) = χs +
iω

f0

∫ ∞
0

dteiωtδ〈O(t)〉. (4.72)

This shows how, conversely, the behavior of the system relaxating back from the per-
turbed state to equilibrium, to first order determines the retarded correlator and thus,
via equation (4.11), carries information about the spectral function. Very concretely,
this formalism opens the possibility to input model assumptions and gain information
on the spectral function, where the validity of the results of course strongly depends on
the nature of the model. In a macroscopic framework, hydrodynamics describes the re-
laxation via transport coefficients, which appear as the proportionality prefactors of the
first order perturbations. Thus, the first order responses of the system can be obtained
from the underlying spectral function.

As a simple example, consider the diffusion of a massive particle subject to a thermal
medium. A simple hydrodynamic model treats this via number density conservation,

∂n(t, ~x)

∂t
= −∇ ·~j, (4.73)

with the reaction to a change given as the spatial flux that drives the system back into
equilibrium, i.e. ~j = −D∇n(t, ~x), and thus the particle number is determined by the
diffusion equation

∂n(t, ~x)

∂t
= D∇2n(t, ~x). (4.74)

In this context the coefficient D is the diffusion constant, a transport coefficient that
describes how strong the original perturbation is washed out by the dynamics of the
system. Perturbing the system with a chemical potential as the source of imbalance,
which amounts to choosing f(t)VH(t) = −eεtΘ(−t)

∫
d3xµ(~x)n(t, ~x) as the perturbation,

we thus identify

O
∧
= n, V

∧
= n, f0

∧
= µ. (4.75)

The solution to (4.74) is given in Fourier space by

n(ω, ~p) =
n(0, ~p)

−iω +D~p2
, (4.76)
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and writing the initial condition in terms of equation (4.71), we arrive via the central
relation (4.72) at the predicted retarded correlation function

GR(ω, ~p) = χs(~p) + iω
χs(~p)

−iω +D~p2
= χs(~p)

(D~p2)
2

+ iωD~p2

ω2 + (D~p2)2 . (4.77)

The imaginary part of this expression corresponds to the density current spectral func-
tion, and by projecting it to the longitudinal spectral function, ρL(ω, ~p) = ω2

~p2 ρ(ω, ~p), we
can obtain the diffusion constant D in the limit of low frequency and momentum,

ρL(ω, ~p) =
χs
π

Dω3

ω2 + (D~p2)2

⇔ Dχs = π lim
ω→0

lim
~p→0

ρL(ω, ~p)

ω
.

(4.78)

An analogous computation, see e.g. [12, 20] involves the electromagnetic current jem
µ

(3.3) and is based on extending the current ~j with Ohm’s law ~jem = σ ~E. Since the
current correlator is related to the dilepton rate, as seen in Sec. 3.2.1, so is the electrical
conductivity, and the resulting expression is

σ =
Cem

6
lim
ω→0

ρV,ii(ω, ~p = 0)

ω
. (4.79)

Note that we explicitly put a factor of Cem, see Sec. 3.2.1. Note also that this result is
exact, in the sense that the conductivity is a first order coefficient by definition and the
hydrodynamical approach is a low energy/long distance approach, anyway, that encodes
microscopic features in the macroscopic concept of transport. Relations like (4.79) and
(4.78), which relate transport coefficients to the spectral functions at zero frequency,
are called Kubo formulas [64]. Thus, having the electrical conductivity as the slope of
the spectral function at zero frequency leaves the determination of the spectral function
itself, if possible in an ab-initio way, as a formidable challenge.

The thoughts followed above utilized rather general, macroscopic hydrodynamical ar-
guments. Note how the resulting expression for the longitudinally polarized spectral
function ρL(ω, 0)/ω resembles a constant at low frequencies. When we introduce further
assumptions, we might be able to get another impression on the subsequent low fre-
quency behavior. As such, assume that the mean free path of the transported charges is
long compared to the thermal scale, i.e. the interaction of the charges under considera-
tion with the medium is to be characterized as rather weak. This implies that they form
definite quasiparticle states, which demands further assumptions about their properties.

To start out, assume that the particle under consideration is much more massive
than the surrounding medium constituents, e.g. a heavy quark. The characteristic time
scale for diffusion processes is M/T 2 [12, 90], and hence, with the above assumption,
is easily larger than the characteristic time scale of the medium, 1/T . This statement
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implies that the transport process will show up in the spectral function at frequencies
ω ∼ 1/(M/T 2) = T 2/M � T , and hence we can again utilize the linear response formula
to relate corresponding model assumptions to the shape of the spectral density at small
frequencies. A classical model that describes the movement of a particle distinctly
heavier than its surrounding medium is given by the classical Langevin equations [12,
89, 90]. They constitute a set of equations of motion,

∂ ~x(t)

∂t
=

~p(t)

M
,

∂~p

∂t
= ~ξ(t)− ηp(t), (4.80)

with different components of the noise vector ~ξ taken to be uncorrelated at differing
times, i.e. 〈ξi(t)ξj(t′)〉 = κδijδ(t − t′), where κ is the fluctuation coefficient and the
strength of the (directed) drag is given by η. The latter two are related by the fluctuation-
dissipation relation η = κ/(2MT ). For times that are long compared to the inverse
drag 1/η, the diffusion equation (4.74) holds and can be expressed by a probability
distribution, as the heavy quark moves via Brownian motion induced by the Langevin
equation. The probability P (~x, t) to meet it at a distance ~x at time t from the origin
(~0, 0) is known to be a gaussian,

P (~x, t) =
1

(2πσ2(t))3/2
e
− ~x2

σ2(t)

with σ(t) = 2Dt− 2D

η

(
1− e−ηt

)
.

(4.81)

Here D is the diffusion constant from the diffusion equation, which is related to the
fluctuation coefficient and the drag coefficient by the Einstein relation D = T/(Mη) =
2T 2/κ. The particle number as a function of time and space is thus given by the
convolution

N(t, ~x) =

∫
dx′P (t, ~x− ~x′)N(0, ~x′), (4.82)

and the relation to the corresponding retarded correlation function can be made by
plugging the probability distribution into equation (4.72). The static susceptibility χs
can be found by assuming that initially the distribution of the heavy quarks is given by

f(0, ~x, ~p) = eβ(µ(~x)−M−~p2/(2M)), (4.83)

with a small perturbing chemical potential µ(~x) = µ+ δµ(~x), and can be shown to read

χs = 4Nc

(
M

2πβ

) 3
2

e−βM cosh (βµ) . (4.84)

The important result in the context of this thesis is the shape of the spectral function
of the corresponding current correlation function, which for vanishing momentum reads

ρJJ(ω)

ω
∼ χs

η

ω2 + η2
. (4.85)
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Figure 4.6: The solution for the longitudinal spectral function of the light quark current
correlator, as predicted by the corresponding Boltzmann equation. We are
especially interested in the zero momentum limit k̄ = 0, the thick dashed
line. The picture is taken from [20].

Thus, the assumption of a heavy quasiparticle, on top of the hydrodynamical consti-
tutive equations, leads to a Breit-Wigner peak centered around ω = 0. This feature is
very interesting to compare to the findings of the low frequency structure of free mesonic
spectral functions in Sec. 4.2. The low frequency region in the spatially polarized vector
channel (as well as the axialvector and scalar channels) was found to be characterized
by a sharp Dirac delta peak at vanishing frequency. The Breit-Wigner peak for small
drift η is an approximating representation of the Dirac delta function,

δη(ω) ≡ 1

π

η

η2 + ω2

η→0−→ δ(ω), (4.86)

and becomes an exact Dirac delta in the limit of vanishing drift. Conversely, this shows
an explicit possibility of how an exact Dirac delta peak in the free theory can become
washed out, or smeared out, by effects of interactions. We want to merely refer here to
a computation that shows the same result for the case of light quarks. Just as a diffus-
ing heavy quark is characterized by a different time scale than its surrounding plasma,
M2/T compared to 1/T , so is the central assumption in the case of light quarks, that
subsequent particle collisions occur on a time scale large compared to the medium scale.
In this case the former is characterized by 1/(g4T ), with g being the coupling constant
of QCD [20, 91]. To be large compared to 1/T , clearly g � 1. A weakly interacting
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picture like this can be dealt with in the form of a linearized Boltzmann equation, as
done in [20]. There, the resulting equation is solved numerically and the spectral density
of the quark current correlator is shown in Fig. 4.6. Clearly, for vanishing momentum,
which is the interesting case for us, it exhibits a very similar shape as we found in the
case of a diffusing heavy quark. However, also the cases of finite momenta are of inter-
est for us, since we explicitly see how the discontinuities of the free cases are washed
out in the respective solutions from the Boltzmann equation, to yield smooth structures.

Concerning the structure of spectral functions under investigation, already outlined
in the former section, this insight solidifies the idea that the Dirac delta peaks, which we
found at low and intermediate frequencies for infinite and zero temperature, respectively,
gradually deform and acquire a finite width and height. These results have serious im-
plications for the analysis of light and heavy quark spectral functions in the course of the
current work, for the obtained shape of a Breit-Wigner peak can be explicitly used as
an Ansatz of the spectral shape in the low frequency region, and also for heavy mesons
we thus expect contributions to the correlator to arise from the low frequency region,
and the intermediate frequency region, stemming from molten Dirac delta structures.
Concerning modifications of the free meson spectral functions at non-degenerate quark
masses, we do not have explicit phenomenological predictions of what should happen to
the characteristic bump structure at low to intermediate frequencies. However, as a first
approximation we expect that, while interactions will certainly modify the structure, it
will generally still remain at finite interactions.

4.3.3 Analytical results

The free theory results for the spectral function computed in Sec. 4.2 are the spectral
functions at infinite temperature. From a perturbative point of view, these are the lead-
ing order results of corresponding expansions in the coupling g. Without going into the
details of perturbative methods in QCD, we want to mention some important results for
light/massless quarks, and try to bring them into the context of the current work. We
will utilize some of these to compare our own results to, while some will be incorporated
into our approaches as additional input to perform systematic checks and/or improve-
ments. We merely mention here, that there exist also recent perturbative results for the
massive vector current in thermal QCD, see [92].

Compared to perturbation theory at zero temperature, a new feature at finite tem-
perature is that the scale of the temperature T plays an additional role. It turns out
that external momenta in the expansion need to be classified by two momentum scales,
the so called hard scale, p ∼ T , and the soft scale p ∼ gT . It can be shown that if
the momenta of all external legs are hard, then loop corrections are of the order O(g2),
as is the case in zero temperature perturbative QCD, and subsequently the expansion
can be performed order by order [80, 93]. However, if at least one of the external legs
has a momentum of the order of the soft scale, then loop corrections contribute already

67



4 Spectral functions

at the order O(g), i.e. at the same order as the tree level contributions. These con-
tributions can be extracted from the corresponding diagrams, and the entirety of these
hard thermal loops need to be taken into account in order to fully describe all effects of
order O(g). This procedure is called Hard Thermal Loop resummation (HTL), and the
systematic treatment of such resummations has been developed in [93]. To be specific,
the three different perturbative results that are used in the course of this work are listed
in the following.

1. The first is a longstanding result which computes the soft dilepton rate to full
leading order in the QCD coupling constant [94], and hence was an immediate
followup of the development of the HTL resummation techniques.

2. Another perturbative result for the spectral function is given in [95], where an
approximation of the spectral function is achieved by combining the perturbative
zero temperature result [87] which is known up to 5-loop order, with the thermal
contribution being merely the free thermal result,

ρii(ω) =
3ω2

2π
tanh

( ω
2T

)
R(ω2) + 2πχfree

q ωδ(ω), (4.87)

where R(ω2) is the 5-loop vacuum contribution. Note that the latter leads to a
very accurate behavior in the regime of large frequencies ω/T � 3, while due to
the lack of HTL resummation the thermal effects incorporated in the low frequency
region is the Dirac delta structure at ω = 0, that is already in the free result.

3. Somewhat different in its philosophy, we show in Fig. 4.7 (left) the result of a
thermal computation to 2-loop order, valid in higher frequency region ω/T & 3
[96], and a treatment of the low frequency regime ω/T � 1, done in [73], which
relies on the assumption of a weakly coupled surrounding plasma. Because there
is no systematic treatment for the region ω/T ∼ 1, an interpolation between
these two computations is used, but of course does not strictly arise from physical
reasoning1.

Plots of these solutions are shown in Fig. 4.7 (left). As can be seen, the HTL spectral
function (1) diverges when plotted as ρ/ω, and thus it has a behavior ρ ∼ ωx with
x < 1 for small frequencies. Solution (2) accomplishes the limit with x > 1, as it simply
vanishes in ρ/ω, while solution (3) indeed fulfills x = 1 and yields a finite intercept.

An entirely different approach to computing the underlying spectral functions is based
on the famous AdS/CFT correspondence, which is a statement about the connection of
conformal field theories on the one hand, and black hole dynamics in AdS5 × S5 space
on the other hand. Thus, theories that exhibit a gravity dual can serve as models to
investigate the features of field theories using string theory techniques. Since QCD does
not have a gravity dual (theories with energy dependent coupling are not conformal

1Thanks to Mikko Laine for providing the solution.

68



4.3 Towards interacting spectral functions

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  1  2  3  4  5  6

ω/T

1.1Tc

ρ1/(ωT)
ρ2/(ωT)
ρ3/(ωT)

Figure 4.7: Left : The perturbative solutions ρ/ω of the current current correlator from
listings (1)-(3) for T = 1.1Tc. Right : The shape of the spectral function
in the strongly interacting case as obtained from the AdS/CFT correspon-
dence. The plot is taken from [97]. Note that all spectral functions exhibit
a distinctly different behavior in the low frequency region.

[98]), one popular model is N = 4 Super Yang-Mills (SYM) theory, where the relevant
coupling on the AdS side is the ’t Hooft coupling, which can be related to the SYM cou-
pling and the number of colors as λ = g2

SYMNc = gsN . It turns out that for large λ, the
correspondence is strongest, and the string theory proofs to be very effective to compute,
as it results in a weakly coupled string theory on AdS5×S5, that, in this limit, becomes
classical supergravity. However, the corresponding field theory is strongly coupled, and
due to the conjectured duality it thus becomes accessible by solving the supergravity
theory [98, 99, 100]. A current-current correlator, similar to the electromagnetic current
correlator considered above, can be computed in this framework [97], and is shown in
Fig. 4.7 (right). Note that while ρ/ω features a finite intercept at ω = 0, it also exhibits
a flat behavior at small frequencies, which is attributed to the nature of a strongly inter-
acting system, see [12, 20] and references therein. Thus, this ’featurelessness’ in the low
frequency region of the spectral density seems generally to be associated with theories
which are strongly coupled, while a pronounced peak structure is typical for computa-
tions originating from a description via quasiparticles, see the discussion in Sec. 4.3.2
and e.g. [12]. Since there are strong experimental hints that the QGP is a strongly
interacting medium, both paradigms are under discussion, motivating to see how well a
quasiparticle description works out from the perspective of Lattice QCD.
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spectral functions

With the expectations for interacting mesonic spectral functions at hand, we proceed
to elaborate in more detail the problems faced when extracting spectral functions in
QCD, and also try to work out the problems more generally with a view on the method
of Backus and Gilbert. Finally we describe the methods that are actually used in this
work to extract information from meson correlation functions for both light and heavy
quarks.

5.1 A short primer on ill-posed problems

5.1.1 The integration kernel

The integration kernel in units of the temperature,

K(τT, ω/T ) =
cosh(ω/T [τT − 1/2])

sinh(ω/(2T ))
, (5.1)

acts as a weight in the mixed representation connection (4.17) of the Euclidean correlator
and its corresponding spectral function. As can be seen in Fig. 5.1, K(τT, ω/T )� 0 for
a large range of frequencies, which means that operation (4.17) is effectively a smearing
operation, and the translation from the level of the spectral function to the correlator
level is in this sense distorted. From a mathematician’s viewpoint, this identifies the
problem of obtaining the spectral function from Euclidean correlator data as being ill-
posed. Additionally, because usually O(10) correlator data points are available as a
product of state of the art numerical lattice computations, while the spectral function
needs to be resolved much finer, and this lack of information makes the problem even
more severe [101, 102]. However, even with a continuous input correlation function,
no exact method of inverting relation (4.17) is known, and the correlation function is
generally found to be quite insensitive to the detailed features of the spectral function
in the small frequency region [73, 103, 104]. This can be seen by Taylor expanding the
kernel (5.1) around ω/T = 0 for small frequencies,

K(τT, ω/T ) =
1 + (ω/T )2 (τT − 1/2)2/2 +O((ω/T )4)

ω/(2T ) +O((ω/T )3)

=
2T

ω
+
ω

T

(
(τT )2 − τT +

1

4

)
+O

[(ω
T

)3
]
,

(5.2)
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Figure 5.1: The integration kernel as a function of ω/T , shown for several values of τT
in a double logarithmic plot. Note the much stronger suppression of large
frequencies at τT = 0.5 compared to τT = 0.05. The horizontal line marks
unity.

which reveals the power of the divergence of the weighting kernel at zero frequency to
be of O(1/ω). Obviously, a nonzero and finite limit is only possible for ρ(ω) ∼ ω for
small frequencies. However, this also implies that the integral (4.17) in the low frequency
region takes the shape∫

small ω

d
(ω
T

)
ρ(ω/T )K(ω/T, τT ) ∼

∫
small ω

d
(ω
T

) ρ(ω/T )

ω/T
. (5.3)

It turns out that this expression constitutes a sum rule, and hence its resulting value
is fixed [73]. The authors compute an explicit expression in the framework of kinetic
theory, which however is independent of the value of the coupling, and is given by∫

small ω

d
(ω
T

) ρ (ω
T

)
ωT

=
2π

3
NcCemT

2. (5.4)

Note that the integration is restricted to the region of the transport peak at low frequen-
cies. Also, we want to cite here the original result, but note that in our convention the
factor Cem would be absent. With the contribution of the small frequency region to the
correlator fixed, independent of the actual shape of the spectral function, it is possibly
very difficult to constrain it from correlation function data.

In order to assess the kernel’s further effects on the integration, for large frequencies
ω/T we expand it to yield

K(τT, ω/T )
ω→∞−→ e−ωτ , (5.5)

which also constitutes the zero temperature limit for fixed frequency ω. The exponential
decay of the kernel for large frequencies implies that the regime of large frequencies is
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highly suppressed in the integration and thus does not yield a contribution to the corre-
lation function. This effect becomes stronger with increasing distance τ , such that the
correlation function at the midpoint is, out of all distances, least affected by the large
frequency regime. For this reason, information that resides in the small frequency region
of the spectral function is most explicitly contained in the large distance region of the
correlation function.

5.1.2 Model independent approaches to ill-posed problems

The above considerations referred to the very specific problem that we face in Lattice
QCD when trying to extract spectral information from finite, discrete correlation func-
tion data. However, it is generally worthwhile to consider the problem also from a
different, more general, angle, and the following ideas will be especially useful to have
when discussing and using the method of Backus and Gilbert.

The problem of extracting the spectral function, as we face it in QCD, is one special
case of a very broad class of problems. Generalizing far enough, we can imagine two
operations, with one of them being the opposite of the other. In mathematical terms
we thus have a mapping and its inverse. Let the problem of performing one of the
two operations be straightforward in the sense that it might be technically difficult to
solve, i.e. the mapping is cumbersome to perform, but conceptually possible without
restriction. Hadamard sorted out three criteria to define, from the conceptual side,
whether a problem is to be considered as such, and he called those problems well-posed
[105]:

1. the solution to the problem exists,

2. the solution to the problem is unique,

3. the solution to the problem depends continuously on the input data.

We name this operation the forward problem. It turns out that many inverse problems,
as described above, suffer from the fact that the second operation, called the inverse
problem, does not meet at least one of those three points. The act of inversion is then
declared as an ill-posed problem. The need to handle these inversion problems led to a
rich and increasingly general mathematical theory [106]. Examples of ill-posed problems
in modern science and technology can be found in many areas, be it computer tomog-
raphy in medicine, tomography in crystallographics, earth crust scans in geology, image
deblurring, etc. An interesting overview and discussion of specific applications can be
found in [107].

The problem that we face in course of this work is classified as an inverse problem, and
can be mathematically described as a Fredholm equation of 1st kind. Such an equation
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is generally given by [108] ∫ b

a

dtK(s, t)f(t) = g(s). (5.6)

The parallel to the connection between the Euclidean correlator and the spectral func-
tion, equation (4.17), is immediate, by simply setting a = 0, letting b→∞ and choosing
the kernel accordingly. Thus, for a given r.h.s. g(s), we are looking for a function f(t)
that reproduces it when acted upon by the operation

∫
dtK(s, t). The Kernel K(s, t) is

called a smoothing kernel, because it has the general property of integrating out small
scale effects in f . This can be seen by considering ’high modes’ in f(t), i.e. quickly
oscillating contributions δf(t) = a sin(ωt). The Riemann-Lebesgue Lemma states that∫
dtK(s, t)δf(t) can become arbitrarily small for arbitrarily high oscillation frequency

ω, and thus ’high modes’ lead to an arbitrarily small change in g(s) [109, 110]. This
constitutes a loss of information when going from f(t) to g(s), and correspondingly,
one generally cannot hope to reconstruct the details when reversing the operation and
reconstructing f(t) from g(s). Quite the opposite, turning around the situation and
attempting to find f(t) by a standard inversion method, we face the same effect and
small changes on g(s) might lead to a huge influence on f(t) that is hard to pin down.
In this sense it is especially an admixture of the last two criteria above, which make
these problems so difficult to solve.

The above statement and the general problems when inverting integral equations
can be made explicit by first discretizing the problem and rewriting it as a system of
equations, ∫ b

a

dtK(s, t)f(t) = g(s) −→
∑
j

Aijxj = bi. (5.7)

The matrix A ∈ Rm×n inhibits an expansion called Singular Value Decomposition (SVD)
[111], which is given by

A ≡ UΣV T =
n∑
i

~uiσi~v
T
i , (5.8)

where the matrices fulfill UTU = I, V TV = I and Σ = diag (σ1, σ2, ..., σn). The column
vectors ~ui, ~vi are called left and right singular vectors, while the σi are the singular values
of the matrix A. The ill-posedness of a problem shows in this discretized framework by
the fact that the singular values of the smoothing matrix A decrease to zero with rising
index i. Expanding the solution vector ~x =

∑
i

(
~vTi · ~x

)
~vi into a basis of right singular

vectors, we get from (5.8)

A~x =
n∑
ij

~uiσi
(
~vTj · ~x

)
δij =

n∑
i

~uiσi
(
~vTi · ~x

)
. (5.9)
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Thus, the smaller the singular values σi become, the more damped out the corresponding
contribution of A~x to ~b. Inverting the matrix A, we see the expected amplification of
details presented above, namely

~x = A−1~b = V Σ−1UT~b =
n∑
i

~uTi ·~b
σi

~vi. (5.10)

In this context the smallness of the singular values causes of course numerical problems,
which in practice can have a strong impact on the stability of a solution: the modes
with smallest singular values dominate the solution, small perturbations lead to huge
fluctuations in the solution. To be more precise, this phenomenon arises as soon as
the modulus of the expansion coefficients |~uTi ·~b| remains much larger than the singular
values, and the matrix A is said to be ill-conditioned [111].

Another tool in this context is Tikhonov Regularization. It is useful for solving ill-
posed problems numerically, as well as for analytic investigation of general properties of
ill-posed problems. In the current work we are mainly interested in the latter, instead
of actually performing computations with the Tikhonov method, and extract general
features of model independent approaches to solving ill-posed problems. Its framework
consists of solving the least squares problem [106, 112]

min
~x

(∥∥∥A~x−~b∥∥∥2

+ λ2 ‖L~x‖2

)
(5.11)

with respect to ~x. The operator L can be essentially any operator, typical choices in-
clude the unit matrix and the first or second derivative operator. Thus, the additional
operator poses constraints of smoothness or differentiability on the solution, and this
way regularizes a wildly oscillating ~x. The amount of regularization added to the so-
lution is controlled via the parameter λ. There are plenty of algorithmic methods to
solve a given problem in this way, but in order to draw generic conclusions, we have to
invoke an extension of the SVD, the Generalized Singular Value Decomposition (GSVD),
which makes a statement about a pair of matrices (A,L) ∈ (Rm×n,Rp×n), involving cor-
responding generalized singular values γi [111]. It can be shown that, for a sufficiently
ill-conditioned matrix A and well conditioned regulator L as in(5.11), the generalized
singular values are in correspondence to the singular values, γi = σi

√
1− σ2

i ≈ σi for
small enough σi, and the solution to (5.11) is given by

~xreg(~b, λ) =

p∑
i=1

fi
~uTi ·~b
σi

~wi +
n∑

i=p+1

(
~uTi ·~b

)
~wi. (5.12)

Here, the numbers fi are so called filter factors, given by fi =
γ2
i

γ2
i +λ2 for L 6= I, which

cancel the contributions from small singular values for a large enough regularization
parameter λ. The vectors wi are the columns of a well conditioned matrix W ∈ Rn×n,
appearing in the corresponding decomposition of A and L.
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So far we have mainly used discretized problems and solution strategies explicitly
to both make the matter mathematically easier, and account for the discrete nature
of the inverse problem we are facing in QCD. One very crucial fact is missing in our
presentation so far: the data that we obtain from a Monte Carlo computation are in
general the results of a statistical process, and thus subject to statistical errors. Writing
the right hand side as ~be = ~b + ~e, with ~b being the unperturbed r.h.s. as appearing
in the considerations above, and ~e being a vector of errors on the data, one can show
that the expectation value of the modulus of the perturbed coefficients, i.e. |~uTi · ~be|,
levels off and thus is dominated by the errors |~uTi · ~e| ∼ ‖e‖ [111], independent of

the unperturbed r.h.s. ~b. This implies that the errors on the input data are actually
the prime source of ill-posedness of the problem. However, there exists a very general
statement, called the Discrete Picard Condition [113]. It states that, if the modulus of

the unperturbed coefficients |~uTi ·~b| in (5.12) on average decay to zero faster than the

singular values σi, then the regularized solution xreg(~be, λ) approximates the unperturbed

and unregularized solution xexact = xreg(~b, 0). To make this more specific, the difference
of these two solutions is given by [111]

~xreg(~be, λ)− ~xreg(~b, 0) =(
p∑
i=1

fi
~uTi · ~e
σi

~wi +
n∑

i=p+1

(
~uTi · ~e

)
~wi

)
+

p∑
i=1

(fi − 1)
~uTi ·~b
σi

~wi.
(5.13)

The above is a measure of the error made as a function of the amount of regularization
applied to the problem. If there is a large degree of regularization, i.e. λ is large, then
the filter factors fi ∼ 0, and the dominating term is the last one, reflecting a large error
due to the applied regularization, while the terms related to the errors of the data are
suppressed. Choosing a small λ we force the filter factors to be close to unity, thus
filtering out the last term in (5.13) and ending up with an error that is dominated by
the error on the input data, which signals the instabilities of the unregularized, ill-posed
problem. The framework of Tikhonov regularization minimizes the sum of the problem

norm
∥∥∥A~x−~b∥∥∥2

and the scaled regulator norm λ ‖L~x‖2, and one sees that, with larger

regularization factor λ, the regularizing term dominates and thus gains more weight
in the minimization. This introduces the regularization error on the level of the mini-

mizing functional (5.11). When plotting ‖L~x‖2 against
∥∥∥A~x−~b∥∥∥2

, the resulting curve,

parameterized by λ, is called L-curve. It directly reflects how in an almost unregular-
ized solution the regularizing term grows large, and vice versa. The name stems from
its characteristic shape when viewed in a log− log fashion, as shown in Fig. 5.2. This is
usually used as a method to determine an ’ideal’ regularization parameter λ0, by choos-
ing it such that the resulting point of the L-curve is close to the kink of the ’L’, thus
keeping both norms close to a simultaneous minimum. See [114] for a more elaborate
treatment of the L-curve.

To sum up, in the course of solving an ill-posed problem in the framework of Tikhonov
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Figure 5.2: The L-curve as a function of λ. A balanced solution would be located at the
kink, i.e. close to the intersection of the two dotted lines. The picture is
taken from [111].

regularization, the arguments above show that we are always computing a wrong solu-
tion, in the sense that we always suffer from at least one kind of error. Only by tuning
the regularization parameter we decide, according to (5.13), which error is realized to
what extent. The L-curve is often called tradeoff curve, for apparent reasons, and the
tradeoff is always between an underregularized solution, suffering from instabilities of
the underlying original problem, and an overregularized solution, which is smoothed by
the regularization term, but is further away from the problem we are actually interested
in to solve. The method of Backus and Gilbert, which is presented in Sec. 5.5, is of a
very similar nature, as one also tries to minimize a sum of two terms, of which one is the
actual problem, and the other is a reglulator, and as a consequence one can construct
tradeoff curves and observe the phenomena of overregularization and underregulariza-
tion. The treatment of Tikhonov regularization laid out in this chapter is thus useful to
gain an understanding also of the method of Backus and Gilbert.

Finally, we mention another model-independent, numerical method that became very
popular and has been widely used to extract spectral functions in QCD, given correlation
function data, which is the Maximum Entropy Method (MEM) [115] and its successive
improvements [116, 117, 118]. The method is Bayesian, i.e. fundamentally probabilistic,
and takes additional input information via a default model, on which the final solution
then depends. A characteristic feature of this method is that the quality of the obtained
solution is quantifiable, in the sense that MEM yields the most probable solution to a
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problem. We will compare the results of our studies to corresponding results obtained
by the Maximum Entropy Method.

5.2 Thermal moments and the transport contribution

Thermal moments are defined as the coefficients of the Taylor expansion of the correla-
tion function around the midpoint [119],

GH(τT ) =
∞∑
n=0

G
(n)
H

(
1

2
− τT

)n
, (5.14)

where G
(n)
H =

1

n!

dnGH(τT )

d(τT )n

∣∣∣∣
τT=1/2

=
1

n!

∞∫
0

dω

2π

(ω
T

)n ρH(ω)

sinh(ω/(2T ))
. (5.15)

Because the correlation functions under consideration in this work are symmetric with
respect to the midpoint, all odd thermal moments vanish identically. Essentially we are
interested in the first two non vanishing thermal moments. The zeroth moment G

(0)
H is

simply the value of the correlation function at the midpoint, while the second moment
G

(2)
H is the curvature of the correlation function at the midpoint. There is a very physical

reason in considering thermal moments in the analyses to come, as they are especially
sensitive to the low frequency region of the spectral function. On the one hand, the
weight function

K(n)(ω/T ) ≡ (ω/T )n

n! sinh(ω/(2T ))
, (5.16)

for n = 0 equal to the kernel K(τT = 1/2, ω/T ), generally falls off faster than the
kernel at τT < 1/2 for large frequencies ω/T , thus it filters out more contribution from
the spectral functions at high frequencies than the latter. On the other hand, at small
frequencies the weights for n > 0 have a vanishing intercept at ω/T = 0, but then first
increase before gradually going over into their exponentially decaying behavior at large
frequencies. This is depicted in Fig. 5.3 (left), which explains their sensitivity to the
region of low frequencies. As can be seen in the plot, the corresponding maxima of the
weight functions shift to the right with increasing n. In order to quantify this point,
consider the derivative with respect to ω/T to find the maximum as a function of the
order n,

d

d(ω/T )

(ω/T )n

sinh(ω/(2T ))
=

n(ω/T )n−1

sinh(ω/(2T ))
− (ω/T )n

2 sinh(ω/(2T )) tanh(ω/(2T ))
!

= 0 (5.17)

⇔ 2n tanh(ω/(2T ))
!

= ω/T, (5.18)

thus leading to a self-consistent equation. Graphical solutions for n = 0, 2, 4 are shown
in Fig. 5.3 (right), with the maxima thus lying at ω/T = 0 for n = 0 and ω/T ≈ 3.8, 8.0
for n = 2, 4, respectively. From both pictures we see that the zeroth moment is sensitive
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Figure 5.3: Left : The integrations kernels of the thermal moments for n = 0, 2, 4. Right :
The solutions of the self consistent equation (5.18) for n = 0, 2, 4.

to the region ω/T = 0, and falls off quite rapidly. The second thermal moment rises
steeply to its maximum value, and thus we expect it to still contain a large amount of
information concerning the region of low frequencies. Contrasting this with the large
value of ω/T ≈ 8 for the location of the maximum of the fourth thermal moment, and
the course of the corresponding weight function K(4)(ω/T ), which becomes larger than
K(2)(ω/T ) only around ω/T ≈ 3.5, i.e. when the latter reaches its maximum and starts
to fall off, we qualitatively expect it to not grasp the details of the low frequency region
as well as the second thermal moment does.

The thermal moments are not only helpful to gain more information about the low
frequency region of the spectral function, but can be linked directly to physical modes
in the spectrum. When considering the free spectral functions as in Sec. 4.2, we found
that some of them, in the massive case specifically in the vector, axialvector and scalar
channels, while in the massless case only the former two channels, gave rise to contri-
butions proportional to a Dirac delta function, ρlow ∼ ωδ(ω). As such, this zero mode
is located exactly at ω/T = 0 and upon integration leads to a constant contribution to
the respective correlation function [120]. To put it explicitly, the reason for this is the
behavior of the kernel for low frequencies, given by equation (5.2), such that

ωδ(ω)K(ω, τ, T )
ω→0−→ 2Tδ(ω). (5.19)

Upon evaluation of the Dirac delta, the constant 2T remains and obviously affects the
correlator at all distances τ . We follow [120] closely to pictorially explain the physical
origin of this contribution. Consider a quark-antiquark pair of degenerate quarks with
zero spatial momentum, as a free quark system, i.e. while strictly there is no interaction
in the system to form a mesonic bound state, we still formally consider them to be
a meson-like system with an energy E = 2mq, hence lacking any interaction energy.
Looking at the sketch of this meson-like temporal correlation function in Fig. 5.4 (a),
we see that it thus exhibits a behavior

G(τ) ∼ exp(−mqτ) exp(−mqτ) = exp(−2mqτ). (5.20)
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Figure 5.4: The two possible contributions to the meson-like correlator. Note that the
contribution in (b) really denotes the wrapping of only one quark propagator;
the wrapping of both propagators corresponds to the backwards contribution
(see Sec. 2.6.1), which does not play a role in this qualitative discussion. The
picture is taken from [120].

This contribution directly joins the quarks’ source and sink and is independent of the
temporal extent of the system. However, if the temporal extent of the system is finite,
Lt = 1/T , then either of the two quarks can connect to the other by wrapping around
the boundary, see Fig. 5.4 (b), which leads to a correlation of the form

G(τ) ∼ exp(−mqτ) exp(−mq(1/T − τ)) = exp(−mq/T ). (5.21)

This contribution is independent of the time variable, thus can strongly affect the corre-
lation function at large distances, and directly results from the finiteness of the temporal
direction. While arguing this way is a bit hand-waving due to the idealization of a free
quark system, and thus purely qualitative, it nevertheless connects the appearance of
zero modes in the free spectral functions to the finiteness of the temporal extent of the
system. Since consequently the wrapping contribution influences the structure of the
spectral function at low frequencies, it certainly will influence the transport properties
of the interacting system. Consider, however, that a more detailed picture, e.g. the
question why this contribution is absent in some quantum number channels, can only
be acquired by computing the free spectral function from first principles, as we did in
Sec. 4.2.

In the non-interacting case the zero mode, if present, is entirely contained in the
zeroth thermal moment, i.e. the midpoint of the correlation function, because of the
exact Dirac delta function in the spectral function at ω/T = 0. A practical consequence
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is that by subtracting the midpoint value from a free correlation function, i.e. writing

Gfree,sub
H (τ) = Gfree

H (τ)−G(0),free
H , (5.22)

we are guaranteed to have subtracted the entire zero mode contribution from the cor-
relation function. However, we emphasize that generally also contributions from larger
frequencies are subtracted in this manner, already in the free case, as can be seen from
the definition of the moments (5.15).

So far the discussion referred solely to the case of no interactions between the particles
of the system. Turning on interactions has a very profound effect on the shape of the
spectral function, as we have seen in the foregoing section. Consider here the expected
effects on the level of the correlation function. As such, the discussion above for the
origin of the constant mode in the free quark system resulted from the absence of any
interaction term mixing the two exponential quark correlations, with the time dependent
contribution of the backward running ’wrapping’ quark propagator just canceling the
corresponding contribution of the forward running quark, leaving the constant. In an
interacting theory, the two quarks are expected to form physical bound states, with an
interaction energy that certainly depends on the distance between the two quarks. We
correspondingly modify (5.21) to read

E(τ) = mqτ +mq

(
1

T
− τ
)

+ Ebind(τ)

⇒ G(τ) ∼ exp
(
−mq

T
− Ebind(τ)

)
.

(5.23)

From the simple wrapping picture we thus obtain a binding energy of the two quarks
which depends on the time variable, and the factorization into two distinct contribu-
tions does not work anymore. An immediate consequence of this is that the zero mode
contribution is not strictly a constant in that case, which we have seen in the last sec-
tion on more formal grounds, as, on the level of the spectral function, the zero mode
is expected to be modified to become a peak of finite width upon the onset of inter-
actions. If, in practice, the peak is very narrow, then the integration yields a merely
weakly time dependent term, which is consequently called a smeared zero mode [119,
120]. Lattice studies have shown in the past that this mode constitutes a large share of
the temperature dependence of Euclidean temporal meson correlators [120, 121], to an
extent that modifications of bound states yield a comparatively weak signal in studies
of the temperature dependence of correlation functions [122, 123, 124].

For the thermal moments this means that, as opposed to the non-interacting case, the
transport contribution is not solely contained in the zeroth thermal moment, but due
to the smearing also higher moments carry their share. Consequently, while in the free
case the subtraction of the zeroth thermal moment (5.22) canceled all of the transport
contribution, this feature is lost in the interacting case. To sum up, by performing a
midpoint subtraction on interacting correlation functions,

Gsub
H (τ) = GH(τ)−G(0)

H , (5.24)
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we can effectively reduce the impact of the wrapping contribution on the correlation
function data, while suffering from two distinct uncertainties:

1. We subtract contributions from the correlator that originate from regions higher
up in the spectrum, instead of only the zero mode. This happens already in the
free case.

2. We merely subtract a part of the zero mode contribution, and are not able to make
precise quantitative statements about how much information is left unsubtracted
in the higher moments, e.g. the second and fourth thermal moment. This is an
effect of non-vanishing interactions.

These will have to be kept in mind when performing midpoint subtractions, and the
identification of these two effects will help to understand the behavior of the corre-
sponding correlation functions. Also, for correlators of open flavor mesons, we expect
that a subtraction of the midpoint is even less effective, because the characteristic bump
contribution is located at a frequencies strictly larger than zero, i.e. not centered around
ω/T = 0 like the smeared zero mode.

5.3 Analysis of heavy quark correlators

Previous sections dealt with an analysis of free spectral functions, as well as phenomeno-
logical computations and motivations, that constitute our rough expectations of the ef-
fects of an interacting medium. Because the free case is analytically computable and
thus well understood in terms of the low frequency structure of the spectral functions,
this is a natural way to interpret and to build up first expectations of measurements of
observables. In order to asses the changes that happen to the spectral function when the
corresponding particle is subject to a thermal medium, as opposed the the zero temper-
ature vacuum, we can compare their corresponding temporal and screening correlation
functions, which are the most immediate observables to extract from a lattice computa-
tion.

5.3.1 The reconstructed correlator

Because (4.17) has a generally simple structure, as it is a one dimensional weighted inte-
gration, with the structure of the weighting kernel presented in section 4.3, it is possible
to make indirect statements about features of the underlying spectral function just from
the temporal correlation function data. However, a direct comparison suffers from a
fundamental obstacle with regard to the extraction of information from the underlying
spectrum. Concerning temporal correlation functions for different temperatures, the
kernel functions in the integration (4.17), which converts the spectral function to the
corresponding correlation function, generally differ due to their explicit temperature de-
pendence. This means that the temperature dependence of correlation functions really is
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a mix of the temperature dependence of the spectral density and the integration kernel.
Thus, comparing two correlation functions G(τ, T ) and G(τ, T ′) at temperatures T > T ′

directly thus does not guarantee that observed changes really stem solely from differ-
ences in the underlying spectral distributions ρ(ω, T ) and ρ(ω, T ′). A way to circumvent
this problem is to define the so called reconstructed correlator [122, 125]

Grec(τ, T, T
′) =

1

2π

∫ ∞
0

dωK(ω, τ, T )ρ(ω, T ′), (5.25)

which substitutes the kernel dependence of G(τ, T ′) with that from G(τ, T ), while leav-
ing the spectral function untouched. Comparing G(τ, T ) to Grec(τ, T, T

′) then implies
that any difference in the correlators must result from differences in the spectral func-
tions alone. Since equation (5.25) already requires knowledge of the complete spectral
function to compute the reconstructed correlator, we utilize a general relation between
integration kernels at different temperatures [119, 126], which for temporal distances
τ, τ ′ and frequency ω implicitly in lattice units, reads

K(τ, T ) =
cosh(ω [τ −Nτ/2])

sinh(ωNτ/2)
=

N ′τ−Nτ+τ∑
τ ′=τ,τ ′+=Nτ

cosh(ω [τ ′ −N ′τ/2]

sinh(ωN ′τ/2)

=

N ′τ−Nτ+τ∑
τ ′=τ,τ ′+=Nτ

K(τ ′, T ′)

(5.26)

where the temperature is proportional to the inverse number of points in temporal
direction. A restriction of this formula is that the higher temperature needs to be an
integer multiple of the lower one, i.e. N ′τ = nNτ , and τ and τ ′ range from 0 to Nτ − 1
and N ′τ − 1, respectively. Inserting (5.26) into (5.25) immediately yields

Grec(τ, T ) =

N ′τ−Nτ+τ∑
τ ′=τ,τ ′+=Nτ

G(τ ′, T ′), (5.27)

and hence the reconstructed correlator can be computed directly from the correlator
data in the vacuum. As a remark, note that in a ratio of an in-medium correlator and
its corresponding vacuum correlator we can expect cancellations of cutoff effects present
in both correlators.

It is instructive to quickly prove relation (5.26). We shift the starting value of the
sum to τ ′ = 0, and get

cosh(ω [τ −Nτ/2])

sinh(ωNτ/2)
=

N ′τ−Nτ∑
τ ′=0

cosh [ω (τ −Nτ/2) + ω (τ ′ − (N ′τ −Nτ )/2)]

sinh(ωN ′τ/2)
. (5.28)

The argument of the hyperbolic cosine on the r.h.s. can be split to yield

cosh(. . . ) = cosh [ω(τ ′ − (N ′τ −Nτ )/2)] cosh [ω(τ −Nτ/2)]

+ sinh [ω(τ ′ − (N ′τ −Nτ )/2)] sinh [ω(τ −Nτ/2)] ,
(5.29)
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of which the term involving the hyperbolic sine completely cancels when summed over,

N ′τ−Nτ∑
τ ′=0

sinh [ω(τ ′ − (N ′τ −Nτ )/2)] = 0, (5.30)

due to symmetry, and the result is

K(τ, T )
!

=
cosh(ω [τ −Nτ/2])

sinh(ωN ′τ/2)

N ′τ−Nτ∑
τ ′=0

cosh [ω(τ ′ − (N ′τ −Nτ )/2]

⇐⇒
N ′τ−Nτ∑
τ ′=0

cosh [ω(τ ′ − (N ′τ −Nτ )/2] sinh(ωNτ/2)
!

= sinh(ωN ′τ/2).

(5.31)

Writing the l.h.s. as exponentials and multiplying out, many terms cancel and the
remaining ones can be written as

sinh(ωN ′τ/2) =
1

2

N ′τ−Nτ∑
τ ′=0

{sinh [ω(τ ′ −N ′τ/2 +Nτ )]− sinh [ω(τ ′ −N ′τ/2)]} , (5.32)

which in turn cancel to a large degree when summed, because

N ′τ−Nτ∑
τ ′=0

sinh [ω(τ ′ −N ′τ/2)] = − sinh(ωN ′τ/2),

N ′τ−Nτ∑
τ ′=0

sinh [ω(τ ′ −N ′τ/2 +Nτ )] = sinh(ωN ′τ/2).

(5.33)

This proves relation (5.26) to be true for all integer n = T/T ′.

5.3.2 The screening correlator

Addressing the complications of comparing temporal correlation functions in another
way, note that the compactification of the time direction for a practical computation
will generally imply Nτ � Nσ. Thus, investigating the screening correlation functions
instead has the advantage to yield more data points, which potentially increases the
accuracy of further analyses. Apart from this purely numerical benefit, the extent in the
spatial directions is of course also larger in physical units, which makes the screening cor-
relator a good probe for in-medium effects, which are expected to show up most clearly
for z > 1/T [37]. Also, this implies that ground state screening mass spectroscopy
becomes possible at such large separations. Furthermore, the relation of the spectral
function and the respective screening correlator, as presented in section 4.1 (specifi-
cally equation (4.25)), only depends on temperature through the spectral function itself.
Hence, in contrast to the temporal correlation function, the former directly allows for a
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meaningful comparison of different temperatures, without the need for a ’reconstructed
screening correlator’. This also implies that the restriction of an integer temperature ra-
tio can be dropped, and theoretically a continuous range of temperatures can be scanned
using only one designated zero temperature lattice. As a last, but important point, note
that a potential zero mode contribution ∼ ωδ(ω) in ρ(ω, pz), as it appears in the free
continuum spectral function ρ(ω), does not in general lead to a z-independent constant
contribution in the screening correlation function [37]. To see this, we explicitly split
off this contribution from the spectral function by writing ρ(ω, pz) ≡ ωδ(ω) + ρ̃(ω, pz),
where ρ̃(ω, pz) denotes the spectral function without the zero mode contribution, and
perform the integration (4.25) over the zero mode only,

δGscr
H (z, T ) =

∫ ∞
0

2

ω
dω

∫ ∞
−∞

dpze
ipzzωδ(ω)

=

∫ ∞
0

dω2δ(ω)

∫ ∞
−∞

dpze
ipzz = 2πδ(z).

(5.34)

This is merely a contact term and only contributes to z = 0. Indeed, it was found that
screening correlators in dynamical lattice computations across the deconfinement/chiral
restoration transition are much more sensitive to the forming medium and carry a strong
temperature dependence across the transition [37].

Aside from merely comparing screening correlators directly, there is another way to
extract details of the underlying spectral properties of spatial meson correlation func-
tions. Note that equation (4.25) has a more complicated structure than the relation
(4.17) of the spectral function to the temporal correlator in momentum space, which
is just one weighted integral. A possible way to detect bound state modifications as
a function of the temperature, when comparing screening correlators, lies in the corre-
sponding change of their mass when subjected to a thermal medium. In the vacuum,
the screening correlator and the temporal correlator are degenerate, with their ground
state mass given by the characteristic exponential decay at large distances, Mscr ≡Mqq̄.
Because at non vanishing temperature the temporal direction is compactified with an-
tiperiodic boundary conditions for fermions, at infinite temperature the screening mass

is then given by M free
scr = 2

√
m2
q + (πT )2, where the fermionic Matsubara zero mode πT

enters the expression due to the temporal integration [127]. These two cases are thus
extreme cases, and by extracting screening masses from spatial correlation functions at
finite temperature, the respective proximity to either of the two regimes serves as an
indicator whether the system behaves more like in the free case or is still tightly bound.

5.4 Fitting to an Ansatz

We now come to a method that, instead of inferring features of the spectral function
indirectly, and therefore merely qualitatively, allows for direct access to a functional
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form of the spectral function. As was elaborated in Sec. 5.1.2, the inversion of equation
(4.17) is an underdetermined problem. In the present work we choose the necessary
additional information to enter in the form of an Ansatz, which is inspired and phe-
nomenologically motivated by our elaborations in Sec. 4.2 and 4.3. Fixing the shape
of the solution by supplying an Ansatz with two or three degrees of freedom is a very
strong assumption, and the method of least squares fitting consequently is the natu-
ral tool to be employed. Because now the number of degrees of freedom determining
the spectral function has drastically decreased, the problem has in this sense turned
into an over-determined problem, where the choice of the Ansatz consequently plays an
essential role, and will be assessed critically by using different functional shapes in the fit.

To be more concrete, the data supplied to the fit will be temporal Euclidean correlation
functions, extrapolated to the continuum. Of special interest in this case is the vector
channel spectral function and its components, ρV = ρii − ρ00, that relate via the QCD
electromagnetic current to the dilepton rate and the electrical conductivity of the QGP,
as described in Sec. 3.2.1. In order to extract the vector spectral function via equation
(4.17) in this case, we can construct an Ansatz for its spatial part:

ρans(ω, T ) =χqcBW
ωΓ

ω2 + (Γ/2)2
+

3

2π
(1 + k)ω2 tanh

( ω
4T

)
≡ρBW(ω, T ) + (1 + k)ρfree

V (ω, T ).

(5.35)

It consists of two constituents: a Breit-Wigner peak, governing the behavior in the
low ω region via its height cBW and width Γ as fit parameters, and a modified version
of the free, massless continuum spectral function, with a third fit parameter k. This
Ansatz is inspired by the known relations for massless continuum spectral functions in
the non-interacting case, derived in Sec. 4.2.1,

ρfree
ii (ω, T ) = 2πT 2ωδ(ω) +

3

2π
ω2 tanh(

ω

4T
) (5.36)

ρfree
00 (ω, T ) = 2πT 2ωδ(ω) (5.37)

ρfree
V (ω, T ) = ρfree

ii (ω, T )− ρfree
00 (ω, T ). (5.38)

The computations presented in Sec. 4.3 gave hints that the δ-functions in these expres-
sions are expected to be washed out upon the onset of interactions, and yielded the
functional shape of a Breit-Wigner peak with its maximum at ω/T = 0 under this melt-
ing effect. These are very concrete hints at the expected shape of the spectral function
for low frequencies, and especially lead to a nontrivial shape in this region. However, the
temporal component of the vector channel correlator is the correlation of the net quark
and antiquark number, and the net number of quarks is conserved at vanishing quark
chemical potential. Hence, the correlator G00(τT ), which was found to be a constant
in the free case in Sec. 4.2.1, is also a constant in the interacting case, and thus the
corresponding spectral function also remains an exact Dirac delta peak, with only the
overall value of the quark number susceptibility χq being modified.
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On the other hand, for large frequencies we know that with rising ω we can expect to
enter the regime where perturbative computations show an increasingly better perfor-
mance, and asymptotic freedom guarantees that for very large frequencies, the spectral
function is approaching the free solution. Hence, for large frequencies we draw inspi-
ration from the free case, and set the spectral function there to be the free spectral
function ρfree

V , corrected by a deviation factor (1 + k). This solution of course never
approaches the fully free case, and it can be shown that in leading order perturbation
theory k = αs/π [96]. Since asymptotic freedom really influences the physical coupling
αs → 0, choosing k to be a constant in ω is clearly only an approximation. However,
since the set in of asymptotic freedom is to be expected at comparatively large frequen-
cies, and the kernel suppresses the large frequency region in the integral the more, the
larger τT , the dependence of k on ω will not play a crucial role in our fit procedure.
This does not mean that there is no room for improvement, as is shown later by utilizing
higher order perturbative input, as well.

5.5 The method of Backus and Gilbert

This section deals with a specific way of solving Fredholm equations, which was invented
by Backus and Gilbert in the 60’s for solving geophysical inverse problems [128]. This
method has proven to be very successful in reconstructing the earth’s internal properties
given some ’gross earth data’, and notably has been used in astrophysics for extracting
γ-ray spectra of γ-ray bursts [129]. The derivation of the method presented here relies
mainly on [108, 129].

It differs from Tikhonov regularization, presented heuristically in Sec. 5.1.2 to demon-
strate some selected mathematical aspects of ill-posed problems, by the functionals that
are to be minimized, as well as by being a linear method. The latter means that the
reconstructed spectral function is built of the sum of the input data points Gn ≡ G(τn),
each multiplied by a certain basis function qn(ω),

ρ̂(ω) =
N∑
n=1

qn(ω)Gn. (5.39)

Considering the initial problem, we can informally integrate over both sides with respect
to τ and an integration kernel H(ω, τ), such that∫

dτH(ω′, τ)G(τ) =

∫
dτH(ω′, τ)

∫
dωK(τ, ω)ρ(ω)

=

∫
dω

∫
dτH(ω′, τ)K(τ, ω)ρ(ω) =

∫
dωδ(ω′, ω)ρ(ω)

(5.40)

Ideally, the right hand side would yield ρ(ω′), i.e. the kernel H(ω′, τ) would be the
inverse of the problem’s integration kernel K(τ, ω). A linear method formulates this
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idea in a discretized way,∫
dτH(ω′, τ)G(τ) ∼

∑
n

qn(ω′)G(τn) = ρ̂(ω′) =

∫
dωδ̂(ω′, ω)ρ(ω). (5.41)

The last step describes the solution obtained by the numerical inversion procedure as a
smeared out version of the correct solution. The weight function δ̂(ω′, ω) that performs
this smearing operation is called the resolution kernel or resolution function. Comparing
with (5.40), one has to find functions qn(ω) for which∑

n

qn(ω′)K(τn, ω) = δ̂(ω′, ω) (5.42)

resembles a true δ-function as much as possible. Specifically, the method of Backus and
Gilbert seeks to minimize the quantity

A =

∫
dω′(ω − ω′)2

[
δ̂(ω, ω′)

]2

=

∫
dω′(ω − ω′)2

[∑
n

qn(ω)Kn(ω′)

]2

(5.43)

=
∑
n,m

qn(ω)

∫
dω′(ω − ω′)2Kn(ω′)Km(ω′)qm(ω) (5.44)

≡ ~q(ω) W ~q(ω). (5.45)

This quantity is referred to as the spread of the solution. By choosing an appropriate
function of ω and ω′ as a weight in the integration over the resolution function δ̂(ω, ω′),
in this case (ω − ω′)2, the minimization procedure suppresses δ̂(ω, ω′) for ω 6= ω′ and
admits it more contribution when ω = ω′, thus leading to δ̂(ω, ω′) acquiring the shape
of a smeared peak. As a δ-function in general is also required to have unit area, the
integral ∫

dω′δ̂(ω, ω′) =
∑
n

qn(ω)

∫
dω′Kn(ω′) ≡ ~q(ω) · ~R (5.46)

is introduced as an additional constraint.

Minimizing the functional A alone is a direct approach of inversion, as can be seen
from (5.40). Hence, only minimizing (5.45) will result in a completely unregularized
treatment, because it lacks the needed regularizing term, see Sec. 5.1.2. The method of
Backus and Gilbert seeks to additionally minimize the statistical variance of the solution
that is caused by the statistical uncertainty of the data. Writing Ḡn = Gn + δGn, the
latter is given by δGn, which satisfies

〈Ḡn〉 = Gn, 〈δGn〉 = 0 and 〈δGnδGm〉 = cov(Gn, Gm) (5.47)
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under the statistical ensemble average 〈·〉. To see the connection of the respective fluc-
tuations of solution and data, consider

〈
[
¯̂ρ(ω)

]2〉 = 〈
∑
n

qn(ω)Ḡn

∑
m

qm(ω)Ḡm〉 =
∑
n,m

qn(ω)〈ḠnḠm〉qm(ω)

=
∑
n,m

qn(ω)〈GnGm + δGnGm +GnδGm + δGnδGm〉qm(ω)

= ρ̂2(ω) +
∑
n,m

qn(ω)Snmqm(ω)

= ρ̂2(ω) + ~q(ω) S ~q(ω),

(5.48)

with Snm = cov(Gn, Gm). The variance of the estimator of the solution is then given by

Var(¯̂ρ(ω)) = 〈
[
¯̂ρ(ω)− ρ̂(ω)

]2〉 = 〈
[
¯̂ρ(ω)

]2〉 − 〈ρ̂(ω)〉2

= ρ̂2(ω) + ~q(ω) S ~q(ω)− ρ̂2(ω)

= ~q(ω) S ~q(ω) ≡ B,
(5.49)

and constitutes the needed regulator B of the solution. It is important to stress that this
is the error on the solution as caused by the statistical uncertainty of the data. While it
is an integral part of the uncertainty of the solution ρ̂, it does not state anything about
the uncertainties from the regularization, loss of information etc.

With the calculations done above, the core of the Backus-Gilbert method is set up
and the solution vector ~q is obtained by forming the normal equations and introducing a
Lagrange multiplier to take the constraint (5.46) into account. In order to have control
over the amount of regularization, the functional that is to be minimized is chosen to be

A cos(θ) + νB sin(θ) = ~qW ~q cos(θ) + ν~q S ~q sin(θ) ≡ ~q L ~q, (5.50)

L = W cos(θ) + ν S sin(θ),

with θ ∈ [0, π
2
]. Hence, for each ω, the solution can be continuously tuned from being

unregularized to being fully regularized within finite bounds of the parameter θ. The
factor ν is supposed to make the two matrices W and S of roughly the same order
by choosing ν = trW/trS; the respective contributions of the two quadratic forms
thus lie on a circle parameterized by θ, as opposed to lying on an ellipse. With these
modifications the normal equations are given by

∇q

(
~q L ~q + λ

[
~q · ~R− 1

])
= ~q L + L ~q + λ~R = 0, (5.51)

d

dλ

(
~q L ~q + λ

[
~q · ~R− 1

])
= ~q · ~R− 1 = 0. (5.52)

From (5.51) we get, bearing in mind that L is a symmetric matrix,

L ~q = −λ
2
~R ⇔ ~q = −λ

2
L−1 ~R (5.53)
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while multiplying this with ~R and using the constraint (5.52) yields the Lagrange mul-
tiplier and, by eliminating it, the solution:

~R · ~q = −λ
2
~R L−1 ~R ⇔ λ = −2(~R L−1 ~R)−1

⇒ ~q =
L−1 ~R

~R L−1 ~R
.

(5.54)

The expected spectral function ρ̂ can then be constructed via (5.39).

As ~q depends on ω and θ through the matrix L , note that first, A and B depend
implicitly on the angle θ, and second, for every point in frequency space at which we want
to construct the spectral function, one such solution has to be computed. Especially, for
each frequency we have to make a choice about the regularizing parameter θ. From this
point of view, the challenge in utilizing the method of Backus and Gilbert lies in finding
a suitable mapping θ(ω), that

• brings us as close as possible to the ’real’ solution ρ(ω), with the spread kernel
δ̂(ω, ω′) being as narrow in ω′ as possible and thus the spread (5.45) being as small
as possible for that frequency ω,

• at the same time provides a minimum statistical variance Var(ρ̂) for all ω.

To connect to the theory on Fredholm equations and other methods for solving these,
as presented earlier, consider choosing a value θ & 0 for a fixed ω. Then the regulating
term ∼ B will be suppressed in (5.50), and accordingly, mainly the spread term ∼ A
will be minimized at that specific frequency. Thus, the resolution will be high. On the
other hand, the statistical variance of the solution will be rather large, which displays
that our solution is dominated by the errors of the input data. According to (5.13), this
is expected if the solution is underregularized. If, in contrast, we choose θ . π

2
, then the

variance will generally be small but we lose the resolution, i.e. the value of ρ̂(ω) will be
very different from the true solution ρ(ω). This analogously displays overregularization,
and the solution is not dominated by the error on the input data, but by a regularization
error that we introduce. Hence, the choice of the regularizing parameter θ is a tradeoff
between both kinds of errors. The L-curve for that specific frequency ω in this case is
built by plotting, in log− log scale, the variance of the solution B against the spread of
the solution A.
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6 Analysis of strange and charm
mesons on dynamical lattices

6.1 Tuning of the quark masses

6.1.1 Lattice setup

In this section the behavior of heavy flavor bound states across the deconfinement transi-
tion is studied using lattice computations featuring two dynamical light and one dynam-
ical strange degree of freedom. The lattice action used to generate the sea quarks is the
Highly Improved Staggered Quark (HISQ) action, presented in Sec. 2.2. The gauge field
samples used in the integration over the SU(3) manifold are produced using the Rational
Hybrid Monte Carlo (RHMC) algorithm, discussed in Sec. 2.4. The trajectory length in
all production runs is tuned to yield an acceptance rate of the RHMC of 65− 70%. In
contrast to similar studies recently performed in Lattice QCD with dynamical quarks
[37, 60], we choose to use a different formulation of valence quarks, the (unimproved)
standard Wilson formulation of Lattice QCD. The reasons for this are the conceptually
easier spectroscopy that can be done, compared to the staggered formulation, and the
resulting intrinsic complications like mixing of different states in taste space [8, 130]. A
very immediate problem is also posed by the periodic boundary conditions when doing
staggered spectroscopy, because the correlation functions generally have both oscillating
and non-oscillating contributions. To separate these, the backwards propagating corre-
lator needs to be neglected, and thus correlators of definite physical quantum numbers
cannot be reliably constructed at large distances [60]. However, we crosscheck our find-
ings to similar studies using HISQ for both sea and valence quarks, in order to check for
possible effects due to using different actions for sea and valence quarks.

The scale used in this study was set in [36, 131] by fitting data of the Kaon decay
constant fK to an Ansatz

afK(β) =
c0f(β) + c2(10/β)f 3(β)

1 + d2(10/β)f 2(β)
, (6.1)

where f(β) is the scaling function from the renormalization group (2.46), and here
β = 10/g2. The setup used featured Nσ = 32− 48 lattices with 2 + 1 dynamical HISQ
fermions and a light to strange quark mass ratio of ml/ms = 1/20. For the conversion
to physical units, a value of fK = 156.1/

√
2MeV, measured by the PDG, was used, and

the fK scale is reported to absorb cutoff effects into the scale to a significant amount
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6 Analysis of strange and charm mesons on dynamical lattices

T Ns Nτ β csw a−1 ml
ms

0.24Tc 64 64 7.010 0.0 2.319 GeV 1/27
0.95Tc 64 16 7.010 0.0 2.319 GeV 1/27
0.28Tc 64 64 7.188 0.0 2.736 GeV 1/27
1.11Tc 64 16 7.188 0.0 2.736 GeV 1/27

Table 6.1: The lattices used in the study of strange mesons and charmonia using 2 + 1
dynamical quarks.

[131]. The corresponding critical temperature was determined in [36], with the ratio of
sea quark masses down scaled to ml/ms = 1/27 via a scaling analysis, by locating the
peak positions of the chiral susceptibility, and subsequently extrapolating the resulting
values to the continuum, yielding Tc = 154(9)MeV. The corresponding lattice spacings
and temperatures for the lattices used in this study are shown in Tab. 6.1.

Returning to our study using a Wilson quark action, the computations are performed
on different lattices with spatial extent Nσ = 64 and Nτ = 16, 64 at two couplings. For
the lattices with smaller time extent, this corresponds to T ∼ 0.95Tc and T ∼ 1.1Tc,
respectively. Details about the lattices are collected in Tab. 6.1. Correlation functions
of mesons are studied for strange flavor (ss̄), charmonium (cc̄) and strange charmed
open flavor (sc̄) by setting the corresponding bare quark masses in the inversion of the
Dirac matrix. Because of the different nature of the bare quark mass parameters in the
staggered and Wilson formulation of Lattice QCD, one has to find a definite way to
compare them and find corresponding hopping parameters κ for each quark to serve as
an input in the valence Wilson quark action. The way this correspondence is found is
described in the next section.

In order to investigate the behavior of strange mesons and charmonia through the
QGP transition, the different quark mass parameters need to be set for each value of the
coupling, such that they yield the same physics when translating observables from lattice
units to physical units. This defines a Line of Constant Physics (LCP). In practice, each
quark mass parameter is tuned, at zero temperature, to reproduce a certain observable
which can be measured by lattice computations, with a typical choice being (combina-
tions of) meson masses [36, 132]. A convention adopted in [36] tunes the strange quark
mass for each coupling by requiring that the mass of the fictitious ηss̄ meson, which is
the pseudoscalar strange meson state with JPC = 0−+, matches the mass of its lowest
order chiral perturbation theory estimate, Mηss̄ ≡

√
2M2

K −M2
π . Note that the physical

η and η′ are known to demand to take into consideration disconnected diagrams, and
hence it is usual practice in this case to tune to this fictitious particle [18, 60]. Having
done this, the light quark mass is then obtained by taking shares of the strange quark
mass, typical values used in thermodynamical studies being ml/ms = 1/5, ...1/27. This
allows for a controlled approach to the physical mass value ml = ms/27, which is quite
close to the chiral limit and thus very expensive to compute on large lattices. For every
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Figure 6.1: The masses resulting from one state fits to the zero temperature correlator
data at β = 7.010 and different hopping parameters, as a function of the
fit interval. Left : The pseudoscalar channel used to tune the bare strange
quark mass. Right : The pseudoscalar and vector channels used to tune the
bare charm quark mass.

other quark that is to be incorporated, another particle’s mass has to be matched ac-
cordingly, with large freedom in the explicit choice of the particle to match to. For the
value of the bare charm quark mass, a typical choice is the spin averaged charmonium
mass Mcc̄ ≡

(
Mηc + 3MJ/ψ

)
/4.

In the present work we adopt the scheme outlined above for the light and strange sea
quark masses. To be more precise, the strange (HISQ) sea quark mass is tuned along
the LCP used in [36, 60], and then the light quark mass is chosen to be ml = ms/27.
In order to find a correspondence between the bare quark masses of the HISQ action
and our valence Wilson quark action, we follow the same idea and compute the physical
masses of ηss̄, /ψ and ηc in lattice units, given the respective lattice cutoff. For the
value of the bare strange quark mass, we choose to match to the ’physical’ fictitious ηss̄
meson mass Mηss̄ = 686 MeV, by using physical Kaon and Pion masses. For the bare
charm quark mass, we choose to match to the physical spin averaged charmonium mass
Mcc̄ = 3.067 GeV. We then tune the hopping parameter κ in the valence quark action
to reproduce Mηss̄ and Mcc̄, yielding the corresponding hopping parameters κs and κch,
respectively.

6.1.2 Tuning of the masses

We now present the tuning of the Wilson valence quark masses to the HISQ sea quark
masses at zero temperature. In order to tune the quark masses appropriately, we set
up computations at several values of the hopping parameter κ scattered around the ex-
pected values corresponding to the quark mass that is to be tuned.

The meson masses themselves are obtained from the correlation functions of the cor-
responding channels by performing the one state fit technique described in section 2.6.1.
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Figure 6.2: The tuning of the valence quark masses to reconstruct physical meson masses,
at a inverse coupling of β = 7.188. Top Left : The extrapolation to the
physical pion mass in lattice units, and the chiral critical point. Top Right :
The interpolation that yields the correct strange quark mass to reproduce
the ηss̄. Bottom: The hopping parameters in the case of the charm quark
are scattered in a very small interval around the expected one, enabling us
to perform a linear fit.

An exemplary plot of the resulting mass as a function of the fit boundary is shown in
Fig. 6.1. The fits yield a broad and reliable fit interval around τinit ∼ 20, which we
use to fix the mass. However, we naturally expect the data points for different hopping
parameters to be correlated, since they originate from the very same gauge field samples
used in the Monte Carlo integration. To account for this correlation properly, we per-
form the fits for each hopping parameter on a large number Nbs of bootstrap samples,
formed from the original data. The result is Nbs bootstrap estimators for the respective
meson ground state mass for each κ. In the course of our tuning procedure the nec-
essary interpolations and extrapolations between the different hopping parameters are
then performed per sample, and the quantities resulting from this respect the original
correlation of the data.

Because we scanned over a large range of hopping parameters for β = 7.188, it is
in this case actually possible to additionally compute the critical hopping parameter
κc, which determines the point of the chiral critical transition, as well as the hopping
parameter κl, corresponding to the bare mass of the light quarks. Because in the chiral
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Figure 6.3: The tuning of the strange (left) and charm (right) valence quark masses to
reconstruct physical meson masses, at an inverse coupling of β = 7.010.

limit the mass of the pion will vanish, κc is obtained by extrapolating the pseudoscalar
mass to zero. To determine κl, we choose to extrapolate to the physical pion mass value
mπ = 135 MeV. All performed interpolations and extrapolations for β = 7.188 are shown
in Fig. 6.2, while the corresponding interpolations for β = 7.010 are shown in Fig. 6.3.
In the (top left) plot four estimations of the pion mass are used to extrapolate to the
light quark mass and the chiral critical matching points. In order to perform a reliable
extrapolation, we resort to the well known GMOR relation (see e.g. [7, 133])

M2
π ∼ (mu +md) = 2ml, (6.2)

which is valid for small quark masses, and actually is the tree level result of the pion
mass from chiral perturbation theory [7, 134]. Using this as theoretical input, the ex-
trapolation can be done linearly in (aM(1/κ))2. Note that for all four points, the GMOR
relation holds very well and allows for a clean extrapolation to the chiral limit and the
pion mass. In Fig. 6.2 (top right) six different hopping parameters, scattered in the
strange mass region, are shown. The GMOR relation does not hold here anymore and
we choose to interpolate using a quadratic polynomial in 1/κ, fitting to the data in aM ,
to tune the strange quark mass. Our approach is again a little bit different in Fig. 6.2
(bottom), where the tuning of the charm quark is shown. Because it is very cheap to per-
form inversions at such large hopping parameters, we can afford to first approximately
locate the matching region and then generate four data points very closely scattered
around the expected matching point. As can be seen, the data behave perfectly linear
in the interpolation region, and thus we choose to interpolate using a linear fit in 1/κ to
the data given in aM . In the case of β = 7.010, three data points were generated right
away very close to the correct value also when tuning the strange quark mass, which
allows linear interpolations, see Fig. 6.3.

The resulting values for the hopping parameters are shown in Tab. 6.2. As an easy
crosscheck we use the fact that the light sea quarks were not tuned, but their mass set to
ml = ms/27. Via the correspondence of mass and hopping parameters for Wilson quarks
(2.29), we use the value of κc to find, neglecting possible additive renormalizations of
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6 Analysis of strange and charm mesons on dynamical lattices

β κc κl κs κch
7.010 − − 0.156134(10) 0.134146(23)
7.188 0.155778(16) 0.155716(15) 0.154234(6) 0.136954(27)

Table 6.2: The hopping parameters resulting from the tuning procedure for the two
couplings β considered. Note that the errors are statistical, but include the
correlations of the original data.

Ns Nτ β ss̄ sc̄ cc̄
64 64 7.010 380 380 380
64 16 7.010 814 814 814
64 64 7.188 752 746 752
64 16 7.188 830 829 834

Table 6.3: The number of correlation function samples for the correctly tuned hopping
parameters on different lattices.

the quark masses,

κl =

(
ml

msκs
+

1− ml
ms

κc

)−1

= 0.155720, (6.3)

which matches the value found by tuning to the physical pion mass quite well. To
proceed with our analysis on strange and charm mesons in the transition region, the
tuning results for κs and κch are in the follwing used to generate large numbers of
correlation function samples for both couplings, on both the zero temperature and the
finite temperature lattices. The statistics acquired in these runs is shown in Tab. 6.3.

6.2 Indirect spectral information from correlation
functions

With the prerequisites presented in the foregoing section, in the following we show the
results of correlation function measurements on dynamical lattices, and discuss what can
be inferred from them with respect to the structure of the underlying spectral function
and a possible melting of the states at finite temperature. To be precise, we only look
at ratios of correlation functions, which are computed from the underlying raw data
samples by enclosing them in a bootstrap method as described in Sec. 2.5, which allows
for a reliable computation of the statistical errors of the ratio forming procedure. The
number of bootstrap samples drawn is large enough to ensure stability in all observables,
and we usually used Nbs = 10000− 20000.
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6.2 Indirect spectral information from correlation functions

PS(γ5) V 12(γi) S(I) A12(γ5γi)
strange ηss̄ Φ f1(1420)

strange/charm Ds D∗s D∗s0 Ds1

charm ηc J/ψ χc0 χc1

Table 6.4: The investigated channels and their corresponding physical states, dependent
on the flavor content.

6.2.1 Screening correlators

We start with the presentation and discussion of the ratio of in-medium screening corre-
lators to zero temperature screening correlators in Fig. 6.4. Deviations from unity thus
correspond to a modification of the corresponding finite temperature screening corre-
lator. Per figure a definite flavor content of the pseudoscalar (PS), vector (V12) and
scalar (S), axialvector (A12) channels are shown in the left and the right plot, respec-
tively. Each plot contains the two investigated temperatures T = 0.95Tc and T = 1.11Tc.
The flavor contents shown are purely strange mesons, (open) strange-charmed mesons,
and charmonium. For a correspondence of the quantum channels to physical particle
states see Tab. 6.4. From the figure, we can say that generally, the heavier the total
quark content, the weaker the modifications of the finite temperature screening correla-
tors turn out to be.

For the S-wave channels, the purely strange mesons and the mixed charmed strange
mesons are affected already below Tc, with a maximum at the largest distance of roughly
20% and roughly 10%, respectively. The corresponding screening correlators above Tc
shows in both cases a more drastic fall by roughly 60% and 40%, respectively. The purely
charmed S-wave channels show no significant modification throughout all distances, and
are within error bars independent of the temperature. While in almost all cases there
are no visible differences between the modification of the pseudoscalar channel and the
vector channel, for purely strange flavor content above Tc there is a clear enhancement
at intermediate distances: the vector channel remains around unity until z ≈ 0.4fm,
then starts to decrease, staying well above the pseudoscalar ratio for z ≈ 2fm, while the
pseudoscalar ratio deviates from unity already at very small distances. This effect is not
seen in the same channels below Tc. Note that for the charmed strange flavor content,
the 10% deviation from unity at maximum distance, that is observed below Tc, is to be
contrasted to a gradual decrease of the ratio above Tc to a maximum of 40%. This indi-
cates that the charmed strange ground states are already quite strongly affected by the
medium just above the transition. Dynamical lattice studies of quantum number fluctu-
ations across the deconfinement transition have recently suggested that strange-charmed
and purely strange mesons melt already at the transition [35, 135], which is in accord
with the strong modifications of the screening correlators that we find on the lattices in
this work. Conversely, the strong 20% effect of the purely strange mesons already below
Tc shows how sensitive screening correlators are with respect to thermal modifications,
especially in comparison to the temporal correlation functions investigated below. The
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Figure 6.4: The ratios of the screening correlators at finite temperature and at zero
temperature. The corresponding mesons consist of strange quarks only, one
strange and one charm, and charm quarks only from top to bottom. On the
left the S-wave channels are shown, while on the right P-wave channels are
shown.

pseudoscalar and vector channels of purely charmed meson correlators are shown at the
(bottom left) of Fig. 6.4. It is evident that there is no significant modification due to the
thermal medium within the error. Hence, we argue that, given the apparent sensitivity
of the measured screening correlators to such modifications, no temperature dependence
of the corresponding physical states close to the transition region can be seen in our
S-wave channels at charm quark mass.

Comparing our S-wave screening correlators to an extensive recent study [60], per-
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6.2 Indirect spectral information from correlation functions

Figure 6.5: Top: The negative parity part of the vector screening correlators for several
temperatures, taken from [60]. Note the smaller physical distance z in the
x-axis, compared to our Wilson screening correlators. Bottom: The negative
parity part of the pseudoscalar.

formed on slightly smaller lattices with size 483 × 12 and 2 + 1 dynamical HISQ quarks
in the sea and HISQ valence quarks, they find very similar behavior in all channels for
two comparable temperatures, and we show their results of the vector and pseudoscalar
screening correlation functions in Fig. 6.5 for comparison. Note that due to the use of
HISQ valence quarks in their study, they have to avoid contributions of opposite parity
showing up in the large distance region of their screening correlators, see [60]. In prac-
tice, their maximum distance for the two temperatures is z ≈ 1.5fm in case of S-wave
correlators, which is roughly half of the maximum distance available in the current work.
However, unfortunately the purely strange pseudoscalar correlator is not shown in their
study.

Turning to the P-wave ratios, we show them in Fig. 6.4 (right) only up to z ≈ 1.3fm,
because at larger distances the signal becomes considerably worse. First of all their be-
havior differs from all S-wave states by the ratio being larger than unity throughout all
temperatures and channels for strange and charmed strange mesons. Quite pictorially,
a ratio growing with distance means a weaker falloff of the screening correlator above
Tc compared to the vacuum correlator. This implies that for a ratio larger than unity
the screening mass of the state is smaller than the mass in the vacuum, and vice versa a
ratio smaller than unity predicts a larger screening mass compared to the particle’s mass
at zero temperature. Hence, without performing fits, we can state that our resulting
P-wave screening masses shrink across the transition region.

However, we perform simple ground state fits to the S-wave screening correlators for

99



6 Analysis of strange and charm mesons on dynamical lattices

 0.5

 1

 1.5

 2

 2.5

 3

 100  150  200  250  300  350  400  450  500

M [GeV]

T [MeV]

ss-

1
++

0
++

1
−−

0
−+

 2

 2.5

 3

 3.5

 100  150  200  250  300  350  400  450  500

M [GeV]

T [MeV]

sc-

1
+

0
+

1
−

0
−

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 100  150  200  250  300  350  400  450  500

M [GeV]

T [MeV]

cc-

1
++

0
++

1
−−

0
−+

Figure 6.6: The screening masses of S-wave channels from [60], together with our findings
in black. The yellow band marks the transition region. The horizontal
lines on the left depict the corresponding zero temperature masses obtained
from HISQ valence quarks. The leftmost black data points are our zero
temperature masses obtained with Wilson valence quarks.

comparison with [60], and plot our found screening masses into their study1 on the tem-
perature dependence of screening masses across and above the transition, see Fig. 6.6.
One sees that their screening masses in the P-wave channels decrease in the transition re-
gion, marked by the yellow band, to later bend over and increase towards their predicted
free behavior. The masses in the S-wave channels increase already in the transition re-
gion, with the increase in the charm sector Fig. 6.6 (right) being visibly less pronounced
than for smaller quark masses, which reflects that they are less modified in the transi-
tion region in comparison. The same behavior was also found in earlier dynamical 2 + 1
flavor computations for light quark mesons [136] and 2 flavor computations [137] for the
S-wave channels. Our fit results are shown as the black data points, with the circles cor-
responding to the vector channel and the rectangles corresponding to the pseudoscalar
channel. The black data points to the very left depict the corresponding zero temper-
ature results from our finest lattice, and the horizontal lines depict the corresponding
zero temperature masses in the HISQ study.

Our findings are consistent with respect to the relative behavior of the screening
masses in the older study, but all masses, except for the ss̄ pseudoscalar, are shifted up-
wards (pseudoscalar) or downwards (vector) compared to the results of the HISQ study,
effectively reducing the splitting between these to channels in comparison. These two
studies are conceptually very comparable, in the sense that the same scale is used, and
also the same definitions were used for the LCPs of the strange and the charm quark.
This leaves two possible reasons for these deviations, namely the different volumes used
in the studies, as well as different cutoff effects. Considering that the valence quark
sector is in our study covered by the standard Wilson fermion action, which has cutoff
errors of O(a), to be compared to the HISQ action, which leaves O(a2) errors at tree
level and has very strongly reduced taste breaking effects compared to the standard stag-
gered action, see Sec. 2.2.3, we think it is plausible that a large share of the deviations
in the meson masses come from actual cutoff effects that are present in our action. This

1Thanks to Yu Maezawa for providing the data.
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6.2 Indirect spectral information from correlation functions

is confirmed by the more pronounced mass shift in the cc̄ pseudoscalar, compared to
the shifts in the lighter quark sectors. Note also that the quite good agreement in the
corresponding screening correlator ratios G(z, T )/G(z, T = 0) of the S-wave channels
suggests that indeed cutoff errors seem to largely cancel in such ratios.

We return to the P-wave screening correlators and discuss the detailed behavior of
the single screening correlation functions. Note that the deviations from unity for the
purely strange and charmed strange mesons are quite large compared to the correspond-
ing S-wave channels, considering that the maximum distance shown is z ≈ 1.3fm. Also
the error is larger in comparison, which shows that the signal is harder to extract for the
P-wave channels already at comparatively small distances. Like for the S-wave chan-
nels, we find significant enhancements already below Tc, accompanied by corresponding
stronger modifications above Tc. This is a clear sign that the P-wave states on our
lattices are as well influenced by the thermal medium in the transition region. The
charmonium correlator ratios show a slight enhancement of at maximum 20% at inter-
mediate distances above Tc, which is not seen below the transition, and is comparable in
magnitude to the deviation of the charmed strange P-wave correlators below Tc. Also,
this signal decreases again towards z ≈ 1.3fm, where after the signal is lost.

6.2.2 Temporal correlators

After the analysis of the screening correlators we turn to the analysis of the temporal cor-
relation functions. As discussed in Sec. 5.3, for a study on the temperature dependence
of the latter, the reconstructed correlator is the tool of choice. As the correspondence
(4.17) is just an integration over the spectral function with respect to the frequency,
to yield the correlation function, conclusions about the spectral function can be drawn
by merely investigating the latter as a function of τT . Quite pictorially, because of the
integrand structure, we expect modifications at large distances τT to reflect modifica-
tions in the low to intermediate frequency range of the spectral function. Of course, this
does not allow for precise, quantitative statements, but a qualitative understanding of
the behavior of different particles across the deconfinement transition can nevertheless
be gained. Using the findings of the analytically solved free correlation functions from
Sec. 4.2 in the continuum and on the lattice, we know that at finite, and degenerate,
quark masses we expect smeared zero modes to arise in the vector, scalar and axialvec-
tor channel, while the pseudoscalar will not acquire a transport contribution above Tc.
In the case of non-degenerate quark masses, we have seen that all four channels un-
der consideration develop a contribution at low to intermediate frequencies, at strictly
ω > 0, whose magnitude depends on the difference of the quark masses and is not easily
estimated. However, we expect them to be still present in the interacting case, though
somewhat modified, analogous to the case of degenerate quark masses, see Sec. 4.3.2.
Note that the distance in all plots is given in units of τT , in contrast to the study on
screening correlators, which compared the distance in Fermi to facilitate a comparison
to the corresponding HISQ study on slightly smaller lattices.
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6 Analysis of strange and charm mesons on dynamical lattices

In Figs. 6.7-6.9 we show the ratios G(τT )/Grec(τT ) of the temporal correlators at finite
temperature to the corresponding reconstructed correlators, which were extracted from
the respective vacuum correlator data by applying equation (5.26). As for the screening
correlators, we have flavor contents of purely strange mesons, strange-charmed mesons
and purely charm mesons. In each plot we show the ratios at both available temper-
atures. In addition to the ratio, we also plot the ratio with the respective midpoints
subtracted from both correlation functions,

Gsub(τT )

Gsub
rec(τT )

=
G(τT )−G(τT = 0.5)

Grec(τT )−Grec(τT = 0.5)
. (6.4)

As has been discussed in Sec. 5.2, the midpoint subtraction procedure can subtract a part
of the constant, or zero mode, contribution to the correlation function, which shadows
the details of the bound state modifications. However, we will see in the analysis that in
practice it turns out to be difficult to differentiate between effects in the correlator that
come from modifications of the bound states, and effects that result from transport or,
more generally, low frequency contributions in the spectral function. We thus introduce
another observable which was used in [119]

∆G(τT ) = G(τT )−Grec(τT ) =

∫ ∞
0

dω

2π
∆ρ(ω/T )K(ω/T, τT ), (6.5)

with ∆ρ(ω/T ) = ρ(ω/T ) − ρ(ω/T ′), and T the temperature in the transition region
and T ′ the temperature from the corresponding vacuum case. A negative correlator
difference for some range of τT thus implies that there must be a range of frequencies
where the difference in spectral functions ∆ρ(ω/T ) must be negative, i.e. contributions
vanish at higher temperature compared to (nearly) zero temperature. On the other
hand, a positive difference does not necessarily rule out that there are negative regions
in ∆ρ(ω/T ). By expanding the correlator difference into its thermal moments,

∆G(τT ) = ∆G(0) + ∆G(2)

(
τT − 1

2

)2

+O

[(
τT − 1

2

)4
]
, (6.6)

with ∆G(n) = G(n)−G(n)
rec, we gain more insight in the structure of the dominating contri-

butions at large distances. Since we generally expect the occurrence of contributions in
the low frequency region, and the disappearance of contributions at larger frequency, we
conclude that the former will lead to a positive spectral function difference ∆ρ(ω/T ) at a
range of ω/T , while analogously the latter will lead to a negative ∆ρ(ω/T ). Because the
thermal moments are essentially the correlation function, ’filtered’ by the kernel to pass
a certain frequency range (see Fig. 5.3 (left)), they give us a more fine grained handle
on the sign of ∆ρ(ω/T ) than the complete difference of correlation functions ∆G(τT ).
Specifically, a value of ∆G(2) < 0 indicates a decrease in the spectral function across the
transition, that can only be caused by vanishing bound state peaks, while ∆G(τT ) as a
whole might still be positive. In order to make quantitative statements about the signs
of ∆G(0) and ∆G(2), in all cases we perform a fit to the difference correlator ∆G(τT ),
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6.2 Indirect spectral information from correlation functions

with expression (6.6) as a fit Ansatz, which thus yields the intercept ∆G(0) and the
curvature ∆G(2) as resulting fit parameters. The fits are performed on each bootstrap
sample, and the resulting bootstrap intercepts and curvatures are used to obtain esti-
mates that respect the correlation of the data. The results are listed in Tab. 6.5, and
for some interesting cases we show the whole correlator difference ∆G(τT ) in Fig. 6.10.

A very general feature of the ratios is, just as for the screening correlators, that with
increasing quark mass the deviations from unity decrease, i.e. the heavier the particle,
the less affected it is by the temperature. Furthermore, the P-wave channels clearly
show a much stronger reaction at large distances τT than the corresponding S-wave
channels, and with no exception are modified to be larger than unity, which per se hints
at a dominating transport contribution, or the analogous low frequency contribution at
non-degenerate quark masses.

We start to discuss mesons with pure strange quark content, which yields the clearest
signal in the S-wave channels. The pseudoscalar ratio below the transition is modified
very slightly at τT & 0.3 to be smaller than unity, although the errors at the mid-
point are almost as large as the deviation. Above the transition temperature we find a
gradual decrease starting at τT ≈ 0.1, resulting in a maximum deviation from unity of
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Figure 6.7: The ratio G/Grec for all channels and ss̄ flavor content. Note that, if needed,
the points are offset in τT relatively to each other for visual clarity.

11% at the midpoint. Since there is no transport contribution arising in this channel,
we interpret the observed drop as stemming solely from a modification of the bound
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6 Analysis of strange and charm mesons on dynamical lattices

states. Interestingly, the corresponding midpoint subtracted ratio is again shifted up-
wards towards unity, which can be understood as follows. Because the spectral function
above Tc is not expected to be modified by the medium at low frequencies, we could
conclude that the zeroth thermal moment contains essentially the same contributions
at both temperatures from this region. But this argument assumes a strong separation
of scales in the structure of the spectral function, i.e. that there are no contributions
to the midpoint coming from the region where the bound states are located. The up-
wards shift of the subtracted ratio shows that there are contributions in G

(0)
rec that are

not contained in G(0). Since the bound states have clearly been modified above Tc com-
pared to T = 0.95Tc, we interpret this as bound state contributions that are contained
in G

(0)
rec, have vanished above Tc, and are thus not present in G(0). This mechanism is

essentially the first concluding remark from Sec. 5.2. The same effect is also seen in
earlier quenched calculations of charmonium [119], but at comparatively higher temper-
atures of T & 1.4Tc. For illustrative purposes, this is also reflected by the correlator
difference ∆G(τT ), which is entirely negative for T = 1.11Tc as shown in Fig. 6.10,
and also shows a statistically significant negative curvature, see Tab. 6.5. In the vector
channel the ratio increases at both temperatures, reaching roughly 6% deviation above
Tc, and roughly 4% below Tc. This is attributed to an appearing transport contribu-
tion, which apparently takes effect already just below the transition. The subtracted
ratio at T = 0.95Tc stays compatible with unity, while subtracted ratio above Tc drops
below unity for τT & 0.15 to a maximum deviation of 3− 4% from unity at the largest
distance. This indicates that the midpoint subtraction indeed eliminates a large part
of the appearing zero mode. However, since the appearance of a zero mode and also
potential bound state modifications might happen simultaneously in the vector channel,
we cannot draw such firm conclusions as for the pseudoscalar channel by looking at the
ratios alone. We have found in Sec 6.2.1 that the corresponding screening correlators
show a strong reaction to crossing the critical region, and furthermore we see from the
fit to the corresponding difference correlator ∆G(τT ) in Tab. 6.5 that ∆G(2) < 0, which
is an unambiguous sign for a modification of the bound states in this channel. Although
it is not possible to quantitatively determine whether the ground state has (completely)
melted, we certainly see a modification and state here the possibility that the subtracted
ratio suffers from contributions of the bound states in G

(0)
rec, similar to the pseudoscalar

channel, and its deviation from unity might thus be underestimated. Additionally, the
appearing smeared zero mode might contribute to the higher moment G(2), rendering
∆G(2) larger than it actually would be if there was no smeared zero mode. This mecha-
nism is the second remark from the end of Sec. 5.2.

The changes in the case of strange-charmed mesons, shown in Fig. 6.8, are much
smaller than for purely strange mesons. In the pseudoscalar channel, we find no signif-
icant modification below Tc, and a very slight modification of G/Grec above Tc around
τT ≈ 0.3, being compatible with unity around the midpoint again. The subtracted ratio
above Tc shows a modification of 1 − 2% at the largest distance. From the clear signal
in the analysis of screening correlators above we concluded that the strange-charmed
pseudoscalar meson has probably dissociated above the transition, which is not visi-
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Figure 6.8: The ratio G/Grec for all channels and sc̄ flavor content. Note that, if needed,
the points are offset in τT relatively to each other for visual clarity.

ble in the correlator ratio here. We find confirmation of this in the resulting value of
a3∆G(2) = −1.72(0.98) · 10−03. A possible explanation for the weak signal is a cancel-
lation of two effects: the modification of bound states is canceled by a modification of
the low to intermediate frequency region of the spectral function. Here we assume that
the contribution that arises at low to intermediate frequencies, computed in Sec. 4.2
and Sec. 4.2.3 for infinite temperature (and especially is found also in the pseudoscalar
channel) is modified at finite temperature, but such that it still shows an effect in the
correlator. That there is a remnant of this contribution in the correlator at finite interac-
tions can be seen also in Fig. 6.10 (bottom left) compared to (top left), where the whole
difference correlator is shifted upwards compared to the purely strange pseudoscalar.
Because the contribution does not originate from a Dirac delta peak, and thus even in
the free case does not lead to a constant in the correlator, one cannot argue that it is
successfully removed to a large degree by midpoint subtraction. Indeed, we see that the
midpoint subtracted ratios do not improve on this matter, but also above Tc stay almost
compatible with unity. There is a slightly clearer signal in the vector channel above Tc,
with G/Grec at T = 1.11Tc dropping below unity for 0.15 . τT . 0.4, and rising above
unity for τT & 0.4. The corresponding subtracted ratio follows the decreasing trend,
but stays below unity with a maximum of 1− 2% at the maximum distance. In Sec. 4.2
we found that the low frequency contribution appearing in the free case is generally
smaller, for constant quark masses, in the pseudoscalar channel than in the other chan-
nels (see Fig. 4.1 and Fig. 4.2). Correspondingly, it is possible that the stronger signal
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Figure 6.9: The ratio G/Grec for all channels in the case of charmonium. Note that, if
needed, the points are offset in τT relatively to each other for visual clarity.

in G(τT )/Grec(τT ) at large distances, compared to the pseudoscalar channel, is caused
by this contribution. Considering our earlier finding that the pseudoscalar and vector
channel both show an equally strong deviation from unity in their screening correlators
above Tc, the latter seem not to be as susceptible to such low frequency modifications as
temporal correlators. This is the analogue of the statement for hidden mesons elaborated
in Sec. 5.3, that the temperature dependence across the transition is carried mainly by
the appearing smeared zero mode, which is absent in the screening correlator [37]. From
the fit to the difference correlator we find a3∆G(2) = −1.21(0.42) · 10−03 above Tc and
a3∆G(2) = −1.67(4.42) · 10−04 below Tc, which hints at vanishing contributions in the
correlator when crossing the transition region. We conclude that we have a weak signal
of bound state modifications in both S-wave channels, which is also predicted by a very
recent study on QCD thermodynamics of open charmed mesons [135].

The ratios in the S-wave channels for pure charm quark content show a very faint
signal, being almost compatible with unity for all τT . This is also reflected in the fits
to the correlator difference, which yields both ∆G(0) and ∆G(2) compatible with zero
for T = 0.95Tc and ∆G(2) compatible with zero for T = 1.11Tc. The slight rise of the
ratios above Tc close to and at the midpoint could be a sign of a transport contribu-
tion in the vector channel, but it is hardly significant within errors, and it is observed
in both the vector and the pseudoscalar channel, which should not exhibit a transport
peak; we thus conclude that there is no significant signal in these two channels. There
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Figure 6.10: Plots of (G−Grec) in lattice units, for pseudoscalar and vector channels of
both strange and strange-charmed flavor content. We use this observable
to essentially probe for the sign of the differences of thermal moments and
its statistical significance, which are oblivious of the specific units. As such,
especially a visible negative intercept or negative curvature at τT = 0.5
hint at disappearing contributions in the spectral function

are a number of lattice studies conducted on charmonium. While at higher temperature
T & 1.4Tc recent studies, performed on large lattices in the quenched approximation and
using either MEM and/or ratios to reconstructed correlators, find hints for both bound
state modifications as well as appearing transport contributions in charmonia [119, 126],
an earlier study performing MEM on anisotropic lattices [123] finds no modification of
the pseudoscalar charmonium up to T = 2Tc. Two flavor computations on anisotropic
lattices, also utilizing MEM, contrast this by finding bound state modifications up to
roughly T = 2Tc, where the states finally melt [138]. Additionally, they also measure
appearing transport contributions in the vector channel. A very recent 2 + 1 flavor
MEM study finds no variation in the pseudoscalar channel up to 1.5Tc, and a transport
contribution appearing above Tc [139, 140]. An interesting contrast to this is a study
using MEM on a known sum rule for spectral functions [141], which yields continuous
input data, and thus circumvents the use of the quenched approximation in conjunction
with large lattices or the use of dynamical quarks on smaller, but anisotropic lattices.
They find sizable S-wave bound state modifications already at T ∼ 1.1Tc. These MEM
results should be compared to very recent results from pNRQCD, utilizing 2 + 1 flavor
lattice input to extract both real and imaginary part of the interquark potential [79].
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β/qq̄ ss̄ sc̄ cc̄
PS

7.010 −1.51(1.15) · 10−03 3.5(54.4) · 10−07 1.38(3.82) · 10−07

7.010 1.22(1.45) · 10−02 −1.04(9.20) · 10−04 −2.6(21.0) · 10−05

7.188 −6.76(0.87) · 10−03 −2.18(8.82) · 10−06 9.34(6.39) · 10−07

7.188 −2.60(0.86) · 10−02 −1.72(0.98) · 10−03 1.78(3.08) · 10−04

V123
7.010 2.12(0.62) · 10−04 3.90(2.31) · 10−06 2.77(2.92) · 10−07

7.010 −6.34(18.0) · 10−04 −1.67(4.24) · 10−04 −6.05(15.6) · 10−05

7.188 3.66(0.46) · 10−04 1.23(0.33) · 10−05 1.12(0.43) · 10−06

7.188 −5.57(1.18) · 10−03 −1.21(0.42) · 10−03 −4.8(21.4) · 10−05

S
7.010 1.59(0.24) · 10−03 1.39(0.22) · 10−05 3.55(2.18) · 10−07

7.010 7.96(6.01) · 10−03 7.50(5.05) · 10−04 1.72(6.65) · 10−05

7.188 4.06(0.22) · 10−03 6.17(0.44) · 10−05 2.85(0.42) · 10−06

7.188 9.57(4.28) · 10−03 2.42(0.64) · 10−03 −2.7(12.3) · 10−05

A123
7.010 5.11(0.44) · 10−04 1.18(0.14) · 10−05 4.07(1.54) · 10−07

7.010 7.8(15.8) · 10−04 5.64(2.82) · 10−04 1.05(4.06) · 10−05

7.188 9.97(0.42) · 10−04 4.34(0.28) · 10−05 2.73(0.35) · 10−06

7.188 1.55(1.13) · 10−03 1.40(0.34) · 10−03 −3.11(7.21) · 10−05

Table 6.5: Results of the fits to a3 (G(τT )−Grec(τT )). The first row of each β corre-
sponds to a3∆G(0), the second row corresponds to a3∆G(2). All values are
given in units of the lattice spacing for reference. Note that adopting another
normalization in ∆G(τT ) is a constant factor, and thus does not change the
fit results relative to each other, and especially does not affect the sign.

They determine the melting temperature of the vector ground state of charm mesons to
be T ≈ 1.37(+0.08

−0.07)Tc. With an exception of the study utilizing sum rule input, which
is based on an operator product expansion, our result that charmonium S-wave states
show no significant modification across the transition region T ∼ 0.95 − 1.11Tc is thus
in accord with results of other studies, obtained by different methods.

The P-wave channels of all quark contents show quite strong and very clear signals
at all distances, as opposed to their corresponding screening correlators. The strong
increases hint at dominating transport contributions that appear both below and above
the transition temperature. Upon subtracting the midpoint, the deviations from unity
are drastically reduced compared to the unsubtracted ratios, in part being perfectly
compatible with unity, as in the case of charm quark mesons or the axialvector channel
of purely strange mesons. For purely strange and strange-charmed quark contents, the
fits to the correlator difference in Tab. 6.5 show ∆G(0) > 0 very significantly both above
and below the transition, and, with larger relative errors, the same holds also for ∆G(2).
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This does not strictly imply that there are no negative contributions to ∆ρ(ω/T ), be-
cause the appearing strong low frequency contributions could shadow modifications of
bound state peaks in the correlation function, as we have seen before in the S-wave
channels. Indeed, the analysis of screening correlators in Sec. 6.2.1 revealed that there
are modifications of bound states at the observed temperatures, and combining these
information leads to the conclusion that P-wave states of purely strange and strange-
charmed quark content, are, both for low frequencies, as well as concerning their bound
state structure, strongly modified already in the transition region. This coincides with
physical expectation, as the P-wave states should show an equal or stronger modification
compared to corresponding S-wave states at the same temperature. For purely charmed
P-wave states, we see modifications in the ratio G(τT )/Grec(τT ) at very large distances
τT & 0.38, which are in magnitude at the midpoint similar to the strange-charmed P-
wave states. However, the behavior of the corresponding screening correlators in Fig. 6.4
(bottom and center) is quite different over the range of z shown, and we conclude that
if there is a modification of the charmonium screening correlators, it might not occur in
the observed interval z . 1.3fm, and is thus expected to be less pronounced in magni-
tude compared to the strange-charmed case. The values of ∆G(2) (in the (bottom right)
section of Tab. 6.5) are all compatible with zero, and the intercepts ∆G(0) are all sig-
nificantly larger than zero, which confirms that there are definitely distinguishable low
frequency modifications at play. Thus, concerning the bound state structure, we cannot
make a statement whether it is modified or not at the highest temperature T = 1.11Tc
measured on the used lattices. Earlier quenched [123] and two flavor [138] lattice QCD
computations combined with MEM find that P-wave channels of charmonium are heav-
ily modified, i.e. dissolve, at T ≈ 1.1− 1.2Tc.

6.2.3 Conclusions

We summarize our procedure and results on the interpretation of correlator data mea-
sured in lattice computations with 2 + 1 dynamical quark flavors. After tuning the
strange and charm valence quark masses, used in the inversion of the Wilson Dirac ma-
trix on gauge fields produced with HISQ sea quarks, to reproduce certain meson ground
state masses, we perform computations of temporal and screening correlation functions
of strange, charm, and mixed strange-charmed quark content, for pseudoscalar, vec-
tor, scalar and axial vector quantum numbers, both slightly below the pseudocritical
temperature and slightly above. For strange and strange-charmed mesons we generally
find significant modifications of screening correlators already in the transition region,
which shows that they are indeed very sensitive probes compared to temporal correla-
tion functions. A Comparison with a recent study using the HISQ action on smaller
lattices reveals a very similar behavior in the screening correlators, and a qualitatively
comparable behavior of screening masses through the transition region. However, sys-
tematic cutoff effects are identified in the extracted masses, which reduce the splitting
between the vector and pseudoscalar channels, with the strongest effects in the charm
quark sector.
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Furthermore, we combine the results of screening correlator ratios GT≈Tc
scr /GT≈0

scr , ra-

tios to reconstructed temporal correlators, G/Grec and (G−G(0))/(Grec−G(0)
rec), as well

as the differences between temporal and reconstructed correlator, (G − Grec). We find
that, except for the case of charmonium, all channels, which we expect from the free
theory to develop a contribution at low frequencies, indeed do so in the vicinity of the
transition. These turn out to be dominating effects in the P-wave channels. At the same
time, we find modifications of the corresponding bound states in all channels of strange
and strange charmed flavored mesons above the transition temperature. For charmo-
nium, in case of the S-wave channels we detect no clear signal for any modification of
the underlying spectral functions on the lattices investigated, while there is a small,
but measurable, enhancement of the P-wave correlators around the transition temper-
ature. It is argued to stem from arising transport contributions. There is no signal for
bound state modifications, which however does not exclude them to take effect above
the transition temperature.
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7 Light quarks in the continuum from
quenched lattices

After assessing the spectral function for strange and charm mesons in the last chapter,
we now turn to the case of light quarks. Unlike in the former case, the lattices used in
this study do not contain quarks in the sea, i.e. there are no inherent dynamical effects
from virtual quarks. While the quenched approximation is a drawback compared to the
former case, we are on the upside able to use its computational cheapness to gain a se-
ries of advantages. First, we have lattices at three different temperature scales above Tc,
which enables us to investigate a possible temperature dependence of the physics. Sec-
ond, we have gauge configurations with three different, rather fine, lattice spacings per
temperature, which allows us to perform extrapolations to the continuum, thus removing
the lattice cutoff, and to extract non perturbative continuum physics. Third, while the
dynamical lattices with 16 data points in temporal direction at high temperatures are
rather small, the temporal extents of the finest lattice for each temperature ranges from
48 to 64, a factor 3−4 in comparison. This opens the possibility for an entirely different
kind of analysis, which focuses on directly extracting details of the spectral function, in-
stead of merely observing indirect information using the reconstructed correlator, which
only sees the spectral function after integration, and thus results in a merely qualitative
view on the underlying spectral structure.

In the following we will present our setup of quenched lattices and the details of the
continuum extrapolation procedure. A central point is the extraction of thermal mo-
ments from the correlator data that, extrapolated to the continuum, provide information
about the low frequency region of the spectral function. The obtained continuum cor-
relators are then used to perform further fits with an Ansatz that was presented in
Sec. 5.4. In order to assess systematics, we perform fits with different Ansaetze to do
cross checks and gain additional information about the performance and stability of the
fit procedure. In the end we present results for the dilepton rate, the soft photon rate
and the electrical conductivity at all three temperatures. This work is going to appear
in near future [142]. In the context of this work only vector correlation functions at
vanishing momentum are considered and extrapolated to the continuum limit. However,
we have also continuum extrapolated vector correlator data at finite momenta, which
are used in [143] to extract, for the first time, the photon rate at non vanishing frequency.
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7 Light quarks in the continuum from quenched lattices

7.1 Continuum correlation functions from the lattice

7.1.1 Lattice setup

The central observable used in this analysis is the Euclidean correlation function GV (τ, ~p)
of the light electromagnetic vector current of QCD,

Jµ(τ, ~x) =
∑
f

Qf ψ̄f (τ, ~x)γµψf (τ, ~x), (7.1)

with f indexing the flavors. Having the quantum numbers of a vector, it corresponds to
the physical ρ, ω and Φ particles. As discussed in Sec. 3, GV (τ, ~p) also carries information
about dilepton production inside the Quark Gluon Plasma. The connection between
the current and the correlator on the lattice is given by considering the component
H = {0, i, µ} of the renormalized vector channel, and combining it to yield the Euclidean
correlation function in position space,

JH = ZV ψ̄(x)γHψ(x) (7.2)

→ GHH(τ, ~x) = 〈JH(τ, ~x)J†H(0,~0)〉. (7.3)

The indicesHH = ii andHH = µµ then are the sum of the spatial components and of all
components of the vector correlation function, respectively. For notational convenience
we often write HH = µµ ≡ V and call it the full vector correlator. The point to point
correlators (7.3) are projected to definite momentum ~p by a discrete Fourier transform
over all spatial coordinates on the lattice,

GH(τ, ~p) =
∑
~x

GH(τ, ~x)ei~p~x. (7.4)

In this study we constrain ourselves to the case ~p = 0 and thus set ~p = 0 implicitly
when dropping the momentum in the function arguments. The full vector correlator is

Nτ Nσ β κ 1/a[GeV] # conf .

T = 1.1Tc

32 96 7.192 0.13440 9.65 314
48 144 7.544 0.13383 13.21 358
64 192 7.793 0.13345 19.30 242

T = 1.2Tc

28 96 7.192 0.13440 9.65 232
42 144 7.544 0.13383 13.21 417
56 192 7.793 0.13345 19.30 273

T = 1.4Tc

24 128 7.192 0.13440 9.65 340
32 128 7.457 0.13390 12.86 255
48 128 7.793 0.13340 19.30 456

Table 7.1: Parameters of all lattices for all temperatures used in this study.
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7.1 Continuum correlation functions from the lattice

in Euclidean metric obtained from the correlation function (7.4) by summing spatially
and temporally polarized components, i.e.

GV (τ) =
3∑
i=1

Gii(τ) +G00(τ) ≡ Gii(τ) +G00(τ). (7.5)

In the following we do not consider single spatial components, and the indexHH = ii will
always denote the sum over all spatial components. The temporal component HH = 00
is the quark number susceptibility χq = −G00/T . As we are especially interested in the
spatial correlation function Gii(τ), we form a ratio of correlation functions

Rii(τ) =
T 2

χq

Gii(τ)

Gfree,lat
V (τ)

, (7.6)

where Gii is normalized by both the free, massless correlator on the lattice, which can
be computed similarly to the spectral function presented already in Sec. 4.2 [84, 85],
and the quark number susceptibility χq/T

2 in units of temperature. The reason for
this choice of normalization is purely technical, specifically the division by χq/T

2 rids
us of the need to actually renormalize the spatial current correlator Gii(τ), while the
division by Gfree,lat

V (τ) cancels the exponential falloff of the interacting correlator to a
large extent, which increases the numerical stability in the continuum extrapolation.
Strictly speaking, any function resembling this exponential falloff works out for this
task, but we specifically decided to use the free lattice correlator over the free contin-
uum one in order to already cancel cutoff effects in the process of the extrapolation itself.

The lattice calculations of the vector correlator were performed in [144, 145], by using
the standard Wilson gauge action to produce a background sea of purely (SU(3)) gluonic
degrees of freedom, see Sec. 2.2 for details of the discretization. In order to equilibrate
the ensemble, a mixture of local heatbath and overrelaxation steps was used, which
provide an efficient way to equilibrate quickly and also reduce correlations between the
resulting subsequent gauge configurations [43, 44, 45]. For the Dirac matrix, i.e. the re-
alization of the valence quarks, we chose the non-perturbatively improved Wilson-Clover
action, with the values of the corresponding improvement coefficient csw(β) known for
the quenched approximation as a function of the coupling β = 6/g2(a) in the chiral
limit, see Sec. 2.2.2 and [26] for reference.

The lattice spacing was set in [144] for the lattices with temperatures T = 1.1Tc and
T = 1.2Tc by using an Ansatz

ln(r0/a) = ln(1/f(β))
1 + c1/β + c2/β

2

1 + c3/β + c4/β
, (7.7)

with f(β) being a scaling function from the renormalization group, see equation (2.46),
and the Sommer scale parameter r0 = 0.49(2)fm, as determined in [146]. They obtained
r0/a on lattices with β . 6.9 by fixing the force dV/dr between two static quarks,

r2
0F (r0) ≡ 1.65. (7.8)
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7 Light quarks in the continuum from quenched lattices

Then equation (7.7) was used in [144] to extrapolate to the needed values of β in Tab. 7.1.
To determine the critical temperature Tc in the continuum, the critical coupling βc(Nτ )
was obtained for several Nτ by finding the peak position of the Polyakov Loop sus-
ceptibility. At 1.4Tc, the scale setting was done in [82]. The temperature scale was
set by determining the string tension

√
σ of the interquark potential (2.49), and us-

ing
√
σ = 428MeV and Tc/

√
σ = 0.630 from [147]. The lattice spacing was fixed by

parameterizing

a
√
σ(g) = f(g2)

1 + c2r
2(g) + c4r

4(g) + c6r
6(g)

λ/
√
σ

, (7.9)

with r(g) = f(g2)/f(g2(β = 6.0)) and f(g2) again being the scaling function from
above. Note that these two methods of scale setting are performed by performing ex-
clusively pure gauge computations, and thus yield a very precise scale for computations
on quenched lattices.

The bare gauge couplings g2(a) = 6/β(a), on the lattices to be extrapolated to the
continuum for the actual study of the vector current spectral function, are then tuned
to yield the three different temperatures desired, T = 1/(aNτ ) = 1.1Tc, 1.2Tc and
T = 1.4Tc. As mentioned above, for each of these temperatures, three increasingly finer
lattices were produced to allow for extrapolations to the continuum, see Tab. 7.1. Va-
lence quark masses were estimated via the improved Axial Ward Identity (AWI) mass
[26], and the corresponding hopping parameters κ were fixed for each lattice such that
the valence quark masses are small, corresponding to mMS(µ = 2GeV ) ∼ O(10MeV ) in
the MS scheme. Note that for the two lowest temperatures the aspect ratio is fixed to
Ns/Nt = 3 and Ns/Nt = 3.42 for all lattices, respectively, ensuring a constant physical
volume, while for the T = 1.4Tc lattices the aspect ratio decreases with decreasing cutoff
a. However, finite volume effects were verified to be small in the corresponding study
[145].

7.1.2 Extrapolation to the continuum

In order to be able to compare the correlation functions on differently spaced lattices,
we adopt a normalization of the Euclidean time τ → τT ∈ [0, 1], as done in the study
of the dynamical lattices. The continuum extrapolation itself contains several technical
steps to ensure a high quality extrapolation, facilitate a robust and reliable estimation of
the initial Monte Carlo error carrying over to the final statistical error of the continuum
data, and also extract information about the statistical correlation of the continuum
data between different lattice distances τT . As such, for each temperature

1. we form Nbs bootstrap samples of each of the original data sets at different lattice
spacings a, as described in Sec. 2.5. Each bootstrap sample, labeled n, has the
same size Ndata as the original data set.
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Figure 7.1: The extrapolation shown for a choice of temporal slices τT and the corre-
sponding result.

2. We compute the average for each bootstrap sample per lattice distance

G
(n)
ii (τT, a)/T 3 ← 〈G(n,k)

ii (τT, a)/T 3〉k (7.10)

and G
(n)
00 (τT, a)/T 3 ← 〈G(n,k)

00 (τT, a)/T 3〉k, (7.11)

where k ∈ [1, Ndata] numbers the configurations drawn within a boostrap sample,

then perform a constant fit to G
(n)
00 to obtain the constant χ

(n)
q (a)/T 2,

3. and compose the ratio

Rii(τT, a) =
1

Gfree,lat
V (τT, a)

G
(n)
ii (τT, a)

χ
(n)
q (a)/T 2

. (7.12)

4. Because the temporal extents differ for all the temperatures considered, the max-
imum number of data points, and thus the maximum amount of information to
obtain in the continuum, is the number of data points on the respective finest
lattice, Nmax

τ . Since for each τT available on the finest lattice we rarely find cor-
responding points at the same τT on the coarser lattices, we perform a natural
cubic spline interpolation of the ratio R

(n)
ii (τT, a) in τT .

5. With three data points, corresponding to the three different lattice spacings a, and
the fact that our valence quark action has a cutoff error of O(a2), we can perform
a linear extrapolation in a2 ∼ 1/N2

τ , such that

R
(n)
ii (τT, a = 0) = lim

Nτ→∞

(
1 +

C(τT )

N2
τ

+O(
1

N3
τ

)

)
R

(n)
ii (τT, a = 0), (7.13)

with C(τT ) parameterizing the slope of the linear extrapolation. In practice terms
of order O(1/N3

τ ) and higher are neglected.

At the end of this procedure, we are left with Nbs continuum extrapolated bootstrap
samples R

(n)
ii (τT ) for each distance τT = k/Nmax

τ , k ∈ [0, Nmax
τ − 1]. The extrapolation
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Figure 7.2: All three lattice correlators and the resulting continuum extrapolated corre-
lator for the data sets at T = 1.1Tc, T = 1.2Tc and T = 1.4Tc, respectively.
Note that the finest lattice agrees with the continuum extrapolation down
to τT ∼ 0.2 in all cases. The single black data point at τT = 0 indicates the
continuum extrapolated result for the inverted quark number susceptibility.

β 7.192 7.457 7.544 7.793
ZV 0.8421 0.8512 0.8539 0.8612

Table 7.2: Non-perturbative renormalization constants of the vector channel ZV , for the
four values of the coupling used in this study.

is demonstrated in Fig. 7.1, where a collection of τT at different lattice spacings on
the right hand side is linearly extrapolated in 1/N2

τ to become the result pointed to on
the left hand side of the figure. The extrapolation itself works reliably, and the errors
inferred by equation (2.74) are reasonable, and of the order of 1% or less.

For the quark number susceptibility the above procedure is repeated, bearing in mind
that in this case the correlation function G

(n)
00 (τT )/T 3 has to be renormalized for each

single lattice spacing according to equation (2.47), with the renormalization constants,
obtained from equation (2.48), given in Tab. 7.2 for convenience. The results for the
continumm extrapolated quark number susceptibility χq are listed in Tab. 7.3.

For completeness, Fig. 7.2 shows the extrapolations for all three temperatures. The
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7.1 Continuum correlation functions from the lattice

T 1.1Tc 1.2Tc 1.4Tc
χq/T

2 0.8586(16) 0.8966(17) 0.8967(12)

Table 7.3: The values of the quark number susceptibility χq/T
2 in the continuum.

single red data point at τT = 0 is the continuum extrapolated inverse quark number
susceptibility in units of temperature. Note that it is indeed approached by the extrap-
olated ratio in the limit τT → 0,

Gii

Gfree
V

=
GV − χqT
Gfree
V

τT→0−→ Gfree
V

Gfree
V

− 0 = 1, (7.14)

because the kernel fulfills

K(ω/T, τT = 0) = [tanh(ω/(2T ))]−1 ω→∞−→ 1 (7.15)

for large frequencies, and thus the divergence of both the free and the interacting cor-
relators, occurring at zero distance, is dominated on the spectral function level by the
large frequency regime of the integration, with the consequence that the interacting cor-
relator becomes free. In this sense asymptotic freedom governs the correlator at small
distances, which reflects our argument to use the free spectral function as an Ansatz for
the high frequency region. It is assuring that our extrapolated continuum data shows
this behavior.

As outlined in Sec. 2.5, because the bootstrap encompasses the whole extrapolation
procedure, the covariances/correlations between data points at different τT are preserved

in the process and thus present in the continuum bootstrap samples R
(n)
ii (τT ). This

enables us to compute the covariance matrix of the continuum data via (2.75), which in
the current notation reads

Mjk =
1

Nbs

Nbs∑
n

(
R

(n)
ii (τTj)− R̂ii(τTj)

)(
R

(n)
ii (τTk)− R̂ii(τTk)

)
, (7.16)

with R̂ii(τTj) representing the sample averaged ratio at coordinate τTj. In Sec. 2.6 we
expressed a warning when performing fits with a full covariance matrix, because they
tend to be unstable under certain circumstances. However, in this case the continuum
covariance matrices we get from the extrapolation, are well behaved for all temperatures,
and indeed permit stable fits. When we fit a spectral function Ansatz to the continuum
data, of course we will have to choose a range to fit to, τT ∈ [τTmin, 0.5]. Without
going into the details how to do this, which will be eludicated later, we state here
that the covariance matrices for all three temperatures have a condition number κ ∼
σmax/σmin ∼ O(106), with σX being the largest and smallest eigenvalue of the matrix with
the corresponding elements in τT ∈ [τTmin, 0.5]. Fig. 7.3 (right) shows the eigenvalues of
the covariance matrix exemplarily for all temperatures, and it is clear that the eigenvalues
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Figure 7.3: Left : A heat map of the entries of the estimated continuum correlation
matrix for all points τT > 0.1 at 1.1Tc. The axes label the row and column
entry, resp. Hence, the midpoint τTj = τTk = 0.5 is located in the bottom
right corner. Right : The eigenvalues of the covariance matrices of the data.
Note that they decrease in a regular fashion, without strong fluctuations.
The whole span covered is ∼ O (106).

decrease in a regular fashion, without strong fluctuations. On the other hand, Fig. 7.3
(left) shows the corresponding normalized covariance matrix, or correlation matrix,

Cij =
Mij√
MiiMjj

, (no sum) (7.17)

Clearly, the correlation, being unity along the diagonal by definition, is quite strong
among several neighboring data points. Over the whole range shown in the heat map,
the numerical value of the correlation remains strictly larger than 1/2, which serves as
a strong indication that the correlations between the points should not be neglected in
the fit procedure.

A comparison of the continuum ratios for all three temperatures is shown in Fig. 7.4
(right). The results for the two highest temperatures overlap to a large extent, while
the extrapolation for T = 1.1Tc lies distinctly higher than the former two. On the other
hand, the continuum extrapolated correlator Gii/T

3 can be obtained by multiplying the
continuum ratio Rii(τT ) by the extrapolated continuum χq/T

2 and the free continuum
correlator. For all three temperatures Gii/T

3 is shown in Fig. 7.4 (left). They show
a nearly perfect overlap for a range of τT ∈ [0.1 : 0.5]. However, at large distances
they differ distinctly from the free continuum correlator Gfree

ii /T 3. Since neither Gii/T
3,

nor Gfree
V /T 3 show a dependence on T, the reason for R1.1Tc

ii deviating from the almost
overlapping R1.2Tc

ii and R1.4Tc
ii must be the quark number susceptibility χq/T

2 differing
in the two cases. However, note that this difference is, although significant with respect
to the errorbars, rather small. From this and the agreement of the correlators in Fig. 7.4
we expect the underlying spectral functions also to be very similar for all three tempera-
tures, already indicating that temperature effects in the dilepton rates and the electrical
conductivities will be rather small, as well.
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Figure 7.4: Left : Continuum extrapolated correlation functions for all three tempera-
tures. Shown are the renormalized spatial components. The solid line is the
corresponding free correlation function. Right : The continuum extrapola-
tions for all three temperatures.

7.1.3 Extracting thermal moments from the data

As has been discussed in Sec. 5.2 and Sec. 5.1.1, the information about the small ω
region resides in the large τT region of the correlator [104], i.e. around its midpoint
τT ∼ 1/2. Because we face a problem whose solution relies strongly on providing
additional information, the idea is to gain knowledge also about the curvature of the
correlation function, or, to be more specific, of the ratio Rii(τT ). In order to supply
this information, the idea is to also compute the second thermal moment (5.15) of the
correlator data and account for it in the fit procedure as an additional data point. We
choose to form a ratio of midpoint subtracted correlation functions,

∆H(τT ) =
GH(τT )−G(0)

H

Gfree
H (τT )−G(0),free

H

, (7.18)

for the same reasons as in the case of the correlation function itself. By taking the
expansion of the correlator into its thermal moments (5.15), plugging it into (7.18) and
expanding the denominator, we arrive at

∆H(τT ) =
G

(2)
H (τT − 1

2
)2 +G

(4)
H (τT − 1

2
)4 +O

[
(τT − 1

2
)6
]

G
(2),free
H (τT − 1

2
)2 +G

(4),free
H (τT − 1

2
)4 +O

[
(τT − 1

2
)6
]

=
G

(2)
H

G
(2),free
H

1 +R
(4,2)
H

(
τT − 1

2

)2
+O

[
(τT − 1

2
)4
]

1 +R
(4,2)
H,free

(
τT − 1

2

)2
+O

[
(τT − 1

2
)4
]

=
G

(2)
H

G
(2),free
H

{
1 +

(
R

(4,2)
H −R(4,2)

H,free

)(1

2
− τT

)2

+O

[(
1

2
− τT

)4
]}

,

(7.19)

with R
(n,m)
X = G

(n)
X /G

(m)
X . (7.20)
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Figure 7.5: The necessary extrapolation in τT to obtain ∆ii for the case T = 1.1Tc. The
fit interval is τT ∈ [0.2, 0.45], i.e. the point at the far right is not included
in the fit.

At the midpoint this quantity obviously satisfies

T 2

χq
∆H(τT )

τT→1/2−→ T 2

χq

G
(2)
H

G
(2),free
H

, (7.21)

and we are left with a ratio similar to (7.6). This leaves us with two more steps that
are to be performed to extract the thermal moments. First, we need to extrapolate
the midpoint subtracted correlation function (7.18) to the continuum. This is done by
computing T 2

χq
∆H(τT, a) at each lattice spacing for all available distances τT < 0.5,

and subsequently extrapolating these to the continuum analogously to the extrapolation
procedure outlined above. This yields T 2

χq
∆H(τT ). Second, because we cannot evaluate

the midpoint subtracted correlator for τT = 1/2 directly, the limit (7.21) has to be taken
by using the expansion (7.19) as an Ansatz for an extrapolating fit to τT = 0.5. Note
that all spatial and full thermal moments except for the first are degenerate, i.e.

G
(n)
ii = G

(n)
V ∀ n > 0 ⇔ ∆V (τT ) = ∆ii(τT ). (7.22)

Working with the spatial channel H = ii for definiteness, the two unknown parameters
in the fit are the second thermal moment G

(2),free
ii /G

(2)
ii and the ratio of fourth thermal

moment to the second thermal moment R
(4,2)
ii . Fig. 7.5 shows the extrapolation exem-

plarily for the case T = 1.1Tc.

The advantage in constructing the midpoint subtracted correlator ratio from the data
from scratch, and consequently having to perform an additional continuum extrapola-
tion, is that the desired second thermal moment then appears in the Ansatz (7.19) as
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7.2 Spectral function via Ansatz and fit

T ∆ii R
(4,2)
ii χ2/dof

1.1Tc 1.244(14) 10.26(12) 0.67
1.2Tc 1.203(12) 10.06(11) 0.50
1.4Tc 1.200(9) 10.14(5) 0.89

Table 7.4: The results for the extrapolation in τT to obtain ∆ii. The extrapolating fits
have been performed using the full covariance matrix of the data.

the intercept. A quicker route might be to expand analogously

Gii(τT )

Gfree
ii

=
G

(0)
ii +G

(2)
ii

(
τT − 1

2

)2
+O

[
(τT − 1

2
)4
]

G
(0)
ii,free +G

(2)
ii,free

(
τT − 1

2

)2
+O

[
(τT − 1

2
)4
]

=
G

(0)
ii

G
(0)
ii,free

{
1 +

(
R

(2,0)
ii −R(2,0)

ii,free

)(
τT − 1

2

)2

+O
[
(τT − 1

2
)4

]}
,

(7.23)

and use it as an Ansatz to perform a fit to the ratio data Rii(τT ) from (7.6). Note that,
since the free continuum correlators are available analytically, the above ratio can be
easily converted to be normalized by the full free correlator G

(0),free
V , and so in principal

no additional continuum extrapolation is needed to extract G
(2)
H from the data. However,

the second thermal moment shows up in Ansatz (7.23) as its curvature, while the Ansatz
(7.19) contains the second thermal moment as its intercept, which is simply more reliable
to obtain from a fit. Also, analogously, higher thermal moments are better extracted
from (7.19). Hence, we conclude that an extra continuum extrapolation of the midpoint
subtracted correlator ratio is profitable to facilitate a reliable extraction of the thermal
moments. The necessary thermal moments of the free theory are, for the vector channel,
given by G

(2),free
H /T 3 = 28π2/5 and R

(4,2)
H,free = 155π2/147 [82]. The results for ∆ii for

all temperatures are shown in Tab. 7.4. See e.g. [82, 145] for other discussions on this
method.

7.2 Spectral function via Ansatz and fit

In this section we present the results of fitting the Ansatz (5.35) to the continuum
extrapolated lattice data, as presented in the foregoing section. To be more precise on
the fit procedure itself, an estimator for the spectral function is obtained from relation
(4.17) by χ2-minimizing the Ansatz ρans from (5.35) with respect to the continuum

121



7 Light quarks in the continuum from quenched lattices

extrapolated ratio data from equation (7.6), i.e.

Rii(τT ) =
T 2

χqGfree
V (τT )

∞∫
0

dω

2π
ρii(ω, T )K(ω, τ, T )

=
T 3

2πGfree
V (τT )

∞∫
0

d
(ω
T

){cBWT
Γ

ω/T(
ω
Γ

)2
+ 1

4

+ (1 + k) ρfree
V (ω/T )

}
K(ω/T, τT )

=
T 3

2πGfree
V (τT )

∞∫
0

d
(ω
T

) cBWT
Γ

ω/T(
ω
Γ

)2
+ 1

4

K(ω/T, τT ) + (1 + k) .

(7.24)

Note that the free, massless continuum correlation function Gfree
V (τT ), given by

Gfree
V (τT ) =

1

2π

∞∫
0

d
(ω
T

)
ρfree
V (ω/T )K(ω/T, τT ) (7.25)

appears in the numerator of the r.h.s. after the integration over ω/T is performed. It
thus cancels with the normalizing free spectral function and the free part of the Ansatz
simplifies to a constant in the fit.

Analogously to the Ansatz for the correlation function above, we also have to develop
a corresponding expression for the second thermal moment, as it too is supposed to be
included in the fit. This is done by replacing the structure of the integrand above by the
defining structure of the second thermal moment, as given in (5.15) for n = 2. Explicitly,

this amounts to replacing the kernel K(ω/T, τT )→ 1
2!

(ω/T )2

sinh(ω/(2T ))
, leading to

T 2

χq
∆ii =

T 3

2!2πG
(2),free
ii (τT )

∞∫
0

d
(ω
T

) cBWT
Γ

ω/T(
ω
Γ

)2
+ 1

4

(ω/T )2

sinh(ω/(2T ))
+ (1 + k) . (7.26)

The fit itself is performed by taking into account all statistical correlations among the
data points, with the covariance matrix M of the extrapolated continuum ratio R̂ii(τT )
from (7.16). It became apparent in Sec. 7.1.2 that it is non-negligible in the construction
of the χ2 function. The same Ansatz has been used in [145], on the 1.4Tc data set also
used in this work, but with a slightly different extrapolation procedure, and a fit that
was done with only the diagonal parts of the covariance matrix. It yielded a very small
value of χ2/dof, which was attributed by the authors to neglecting correlations among
the data. The need for including covariances will be further backed in our analysis by a
systematic cross check.
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7.2 Spectral function via Ansatz and fit

The electrical conductivity can be obtained from the spectral function at the origin
via the Kubo relation (4.79), which is proportional to the ratio of the fit parameters
CBW and Γ/T , written as follows,

σ

CemT
=

2

3T
χq
cBW

Γ
. (7.27)

Consequently, the soft photon rate can also be obtained and written in terms of the
electrical conductivity, with (3.6) and ρT = ρii/3,

lim
ω→0

ω
dRγ

d3p
=
αemCem

2π2

(
σ

CemT

)
T 2, (7.28)

and is presented at the end of this work, including the systematics developed in the
following sections.

When estimating the systematics of our procedure, an essential source of uncertainty
is the fit Ansatz itself. Because of the general lack of information in an ill-posed inversion
problem, and the fact that we apparently add strong information by the choice of our
Ansatz, it is not excluded that other Ansaetze fit the data as well. In the next section
we thus supplement the analysis by developing several structural changes in our Ansatz,
and discuss what conclusion could be drawn from the respective modified Ansatz. Fi-
nally, the fit procedure is applied using each new Ansatz, and the results are presented.

7.2.1 Spectral function Ansatz: Breit-Wigner peak + free
continuum

In the fit of our Ansatz ρans to the extrapolated continuum data we want to provide
as much physical information as possible. From the continuum extrapolations shown in
Fig. 7.2 we see that for all three temperatures the extrapolation results almost agree with
the data on the corresponding finest lattice from the midpoint down to τT ' 0.15−0.20.
This is also where the coarsest lattice starts to bend upwards. As the ratios are sup-
posed to approach Rii −→ T 2/χq in the limit τT −→ 0, the ’bending up’ when going
to shorter distances is a cutoff effect. Since we want to be sure to include only contin-
uum data into our fit procedure, we aim for τT ∼ 0.2 and in practice take the distance
which yields the χ2/dof closest to unity when fitting Ansatz ρans. This amounts to
τTmin = 0.187, 0.232, 0.229 for T = 1.1Tc, 1.2Tc, 1.4Tc, respectively, which will also be
used as a definite choice of fit intervals for all following fits.

The fits of ρans to the continuum extrapolated correlator data show a good convergence
behavior and yield as a result the three fit parameters Γ, cBW , k and their respective
statistical fit errors, see Tab. 7.5. The relative statistical fit errors of the parameters are
roughly 25 − 40% for cBWT/Γ and 20 − 30% for Γ/T . Note that the former has been
calculated taking into account the correlation of the two parameters. The dimensionless
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Figure 7.6: The spectral functions resulting from the fit using ρans and ρcut (see Sec. 7.2.4)
for all temperatures. The dotted lines are the Breit-Wigner and the free con-
tributions separately to guide the eye. Note the consistently higher intercept
of the spectral functions with the cut applied. Bottom right: The final re-
sults for the electrical conductivity for all three temperatures as resulting
from Ansatz ρans and an upper systematical error from the ansatz ρcut (see
Sec. 7.2.4) (left, blue), and as resulting from Ansatz ρR (right, red).

modification k to the large frequency free behavior is small, but distinctly larger than
zero in all cases. However, within errors there is no visible trend for the available range
of temperatures. The values of χ2/dof vary around unity and show that the fit to the
data performs reliably. Using these parameters and their correlation matrix we construct
the resulting spectral function, normalized by the frequency, with its corresponding sta-
tistical errorband in Fig. 7.6 (left) and (top right). The HTL result [93], introduced in
Sec. 4.3.3, is also plotted and lies mostly below our estimate of the spectral function.
In the low frequency region it cannot reproduce a (finite) transport peak, as its low ω

T σ/(CemT ) Γ/T cBWT/Γ k χ2/dof
1.1Tc 0.302(88) 2.86(1.16) 0.528(154) 0.038(8) 1.15
1.2Tc 0.254(51) 3.91(1.25) 0.425(85) 0.029(9) 0.52
1.4Tc 0.266(48) 3.33(89) 0.445(80) 0.040(7) 1.13

Table 7.5: Results of fitting the Ansatz ρans for all three temperatures.

124



7.2 Spectral function via Ansatz and fit

behavior is ρHTL ∼ ωx, with x < 1. As an intermediate step in our analysis, we also
give the electrical conductivity from this Ansatz in Tab. 7.5 for all three temperatures
with the corresponding fitting error.

7.2.2 Spectral function Ansatz: flat transport region + free
continuum

The Ansatz used so far is motivated by kinetic theory computations and argumentations.
On the other hand, in the strong coupling limit the vector spectral function can be
obtained from the AdS/CFT correspondence, see Sec. 4.3.3. The resulting spectral
function in the low frequency region usually has no peak structure [97], consisting of
a flat, ’featureless’ shape in ρ/ω and then going over into the typical large frequency
behavior. A simple Ansatz roughly showing this behavior is given by

ρflat(ω) =aχqω
(

1− Θ̃(ω, ω0,∆0)
)

+ (1 + k)ρfree(ω)Θ̃(ω, ω1,∆1),
(7.29)

with ωi and ∆i chosen such that ρ/ω then results in the desired shape. The functions

Θ̃(ωi,∆i) are smoothed Heaviside functions

Θ̃(ω, ωi,∆i) =

(
1 + exp

(
ω2
i − ω2

ω∆i

))−1

, (7.30)

which become sharp Heaviside functions in the limit ∆i → 0. The cut on the first term
is needed to make sure the large frequency regime is not affected by the low frequency
constant contribution, and vice versa. This is of course a very rough model: not only is
there a certain arbitrariness in the choice of ωi and ∆i, but in general there are many
possible expressions that approximately describe the desired functional shape. Also, de-
tails like the exponentially damped oscillations are not built into this model. For these
reasons we do not give definite results for the electrical conductivity or the soft photon
rate, and merely utilize the model to test a non-peaked, flat low frequency region in ρ/ω.
Technically, this change of the Ansatz, compared to the previous case, aims at making
a statement about the resolution of our fit method regarding the low frequency region
of the spectral function.

When fitting ρflat to the data, we tune the cut positions ωi and the smoothing pa-
rameters ∆i in such a way that the result from the fit roughly describes the character-
istic, featureless ADS/CFT solution. The fits work well for a range of cuts at ωi and
smoothing parameters ∆i. Throughout all temperatures they yield good fit qualities of
χ2/dof ∼ 1.1 for T = 1.1Tc,1.4Tc and χ2/dof ∼ 0.5 for T = 1.2Tc, see Fig. 7.7 for the
resulting spectral functions. The interpretation of this is first, that qualitatively this
type of solution, being featureless in the low frequency region, fits our data just as well
as a broad Breit-Wigner peak, motivated by kinetic theory, does. This implies that our

125



7 Light quarks in the continuum from quenched lattices

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8

ρflat/(ωT)

ω/T

1.1Tc
1.2Tc
1.4Tc

Figure 7.7: The spectral function resulting from the fit of the (coarse) model ρflat for all
temperatures.

method, with regard to the available data, does not have the resolution to differentiate
between these two extreme shapes with regard to the quality of the fit. The second
point to make is that the solution from this type of Ansatz always yields an electrical
conductivity, that is close to the lower bound of the results presented in Tab. 7.5, i.e.
when using ρans.

7.2.3 Crosscheck at low frequency

As a rather technical crosscheck, instead of using a Breit-Wigner peak for the low fre-
quency part of the spectral function, we change it to be a real δ function with variable
height, i.e. the Ansatz employed in this section is given by

ρδ(ω) = aχqωδ(ω) + (1 + k)ρfree
V (ω). (7.31)

Up to the parameters k and a, this is just the free case. Theoretically, when turning
off interactions, the conductivity should approach infinity, since no force changes the
state of motion of a charge. Using the Kubo formula, this is clearly reflected in the
above Ansatz ρδ for ω → 0, i.e. it is not compatible with a finite conductivity. Thus,
performing the fit using this Ansatz we can check whether this wrong assumption works
out with our interacting data, which should definitely yield a finite conductivity.

Performing the fit with Ansatz ρδ we find that the procedure yields values of χ2/dof ∼
1.5 for the two lower temperatures, and χ2/dof ∼ 2.5, for 1.4Tc, which also quantita-
tively shows a decrease in fit quality. Looking at the correlators resulting from the fitted
parameters, shown in Fig. 7.8 (left) for all temperatures, we see that the reconstructed
curves underestimate the correlator data points systematically by an amount of one
standard deviation or more. Specifically, the fitted second thermal moments, shown at
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Figure 7.8: Resulting correlators when fitting with a genuine delta peak in the low fre-
quency region. The points at τT > 0.5 are the second thermal moments and
their fit results, respectively. Left : Fit including the covariance of the data.
Note how the second thermal moments are described much worse than the
corresponding correlator data points. Right : Fit without the covariance of
the data. Note how the uncorrelated fit yields a much better reconstruction
of the correlator data than the correlated fit.

τT = 0.535 in the plot, drastically deviate from the data. We conclude that the Ansatz
does not describe the data sufficiently, and also place an emphasis on the importance
of accurately determined thermal moments for the analysis. However, one peculiarity
in this case is that, when we perform the fit without the covariance matrix in the min-
imizing χ2 term, i.e. minimizing only with respect to the diagonal (variance) terms,
we end up with a function that reconstructs the data points reasonably well at large
distances, see Fig. 7.8 (right), with a χ2/dof ∼ O(0.1). The latter is a typical sign for
missing correlations in the fit procedure, see the discussion in Sec. 2.6.2. In this case, the
second thermal moment is not quite as well reproduced compared to the data points of
the ratio Rii(τT ), but still distinctly better than in the fully correlated case. Reversing
the argument, we see that the a priori insufficient fit Ansatz ρδ, which yields no finite
conductivity by construction, fails to describe the data only if the information of the full
covariance matrix is incorporated in the fit. In this sense we find that including covari-
ances in the fit procedure measurably enhances our resolution of the spectral function
in the low frequency region.

7.2.4 Uncertainties from the high frequency region

In order to check for uncertainties arising from the way we model the high frequency
behavior in ρans, we introduce a low-frequency cutoff multiplied to ρfree

V , as proposed in
[145], so that in total the modified Ansatz is given by

ρcut(ω, ω0,∆0) = ρBW(ω)

+ (1 + k)ρfree
V (ω)Θ̃(ω, ω0,∆0).

(7.32)
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Figure 7.9: The increase of electrical conductivity upon increase of the cutoff ω0/T in
(7.30). It reaches its maximum around ω0/T ' 3 for all three temperatures.
The smoothing parameter is fixed to ∆0/T = 0.5 throughout the analysis.

The cutoff factor Θ̃(ω, ω0,∆ω) is a representation of the Heaviside function for ∆ω −→ 0,
see equation (7.30) Consider that our choice in ρans to account for the large frequency
regime is essentially the free vector spectral function. However, this function has positive
contributions for all positive frequencies ω > 0, and it influences the Breit-Wigner peak
for small frequencies. Thus we probe for this influence by cutting off its low frequency
part and observing how the fit results react on this.

In order to fit the function ρcut to the continuum extrapolated data, we first of all set
the width of the smeared Heaviside function to ∆0/T = 0.5. We varied the value of ∆0/T
and found that the result does not strongly depend on it. Applying the cut to different
frequencies ω0/T , however, has direct effect on the resulting electrical conductivity,
illustrated in Fig. 7.9. As can be seen, the electrical conductivity, and thus the intercept
of the spectral function normalized by the frequency, ρ(ω/T )/(ωT ), rises slightly when
moving the cut to higher frequencies, showing that the peak rises in height. Around
ω0/T ' 3 also Γ/T starts to rise sharply, i.e. at that point the peak is becoming much
broader to compensate for the missing free contribution in the low ω regime, and thus
σ ∼ cBW/Γ falls off again. The fit itself still works well over a long range of ω0 in
the sense that χ2/dof does not change much. However, raising ω0/T further will finally
make the model not fit the data anymore. This can be understood by noting that for low
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7.2 Spectral function via Ansatz and fit

frequency and large width, such that ω/Γ� 1, the Breit-Wigner peak can be expanded,

ρ(ω/T )

ωT
∼ Γ/T

(Γ/T )2 + (ω/T )2
=
T

Γ

1

1 + (ω/Γ)2
≈ T

Γ

(
1−O

[
ω2

Γ2

])
, (7.33)

and thus the leading order contributes a constant. As we saw in the fit to the Ansatz
ρflat, this behavior leads to an equally good fit as a peaked structure at low frequencies.
Of course, when finally ω0/T becomes too large, this Ansatz does not mimic ρflat any-
more, because too much of the continuum contribution is suppressed, and hence the fit
performs worse. For the electrical conductivity, we can include its maximal deviation
from the result obtained using the untruncated Ansatz as an upper systematical error,
see Fig. 7.6 (bottom right). The corresponding spectral function ρcut, with the cut ap-
plied at ω0/T = 3, is shown in Fig. 7.6 (top) and (bottom right) for all three temperatures.

In our standard Ansatz ρans we model the large frequency behavior as a scaled non-
interacting continuum spectral function, which is just the tree level result from pertur-
bation theory. Another approach would thus be to instead incorporate a higher order
perturbative calculation of the vector channel spectral function, to be used as the large
frequency part of our Ansatz for the spectral function. To this end, we pick the large
frequency part of the high order solution shown in equation (4.87). In this case we still
incorporate a factor multiplying the perturbative spectral function, C, to account for
modifications from the surrounding medium, uncertainties in the renormalization etc.
The modified Ansatz thus is given by

ρR(ω, T ) = ρBW(ω, T ) + Cρimpr(ω, T ),

with ρimpr =
3ω2

2π
tanh

( ω
2T

)
R(ω2).

(7.34)

Fitting our data with the Ansatz ρR and listing the results in Tab. 7.6, we generally
find that the transport peak becomes a bit narrower and higher, when compared to ρans,
with the most pronounced effect at T = 1.1Tc, where the peak rises one third in height.
However, the strong effect at 1.1Tc is accompanied by huge errors of both the transport
peak’s width and height, of 50 − 80%. The resulting spectral functions for all three
temperatures are shown in Fig. 7.10. The parameter C is slightly smaller than unity in
all cases, and for 1.1Tc and 1.4Tc it is even compatible with unity within its errors. From
(7.34) we see, comparing to the large frequency part of ρans(ω), that the factor (1 + k)
corresponds to a factor of CR(ω2) in the improved case. On the one hand this makes the
improvement of the large frequency part explicit, as what was the correction coefficient

T σ/(CemT ) Γ/T cBWT/Γ C χ2/dof
1.1Tc 0.452(251) 1.62(1.09) 0.790(438) 0.993(7) 1.11
1.2Tc 0.301(87) 2.89(1.18) 0.504(145) 0.984(8) 0.53
1.4Tc 0.326(87) 2.38(85) 0.548(146) 0.996(7) 1.12

Table 7.6: Results of fitting the Ansatz ρR for all three temperatures.

129



7 Light quarks in the continuum from quenched lattices

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7  8

ρR/(ωT)

ω/T

1.1Tc
1.2Tc
1.4Tc

Figure 7.10: The resulting spectral function when utilizing perturbative input.

before now depends on the frequency. On the other hand, from a purely technical point
of view, the remaining correction constant C becomes less important for the fit itself, as
its deviation from unity is small, and partly negligible within its errors. To state a final
result from this Ansatz, we plotted the maximum and minimum electrical conductivity,
with errors coming from the fit, as the respective right bar of the paired bars in Fig. 7.6
(Bottom right).

7.2.5 Discussion

Comparing the three models ρans, ρflat and ρR in Fig. 7.11 (top left), we see that the area
under the spectral functions will likely become very similar above a certain frequency.
For example, the smallness of ρflat/(ωT ) close to the origin, compared to the more peaked
solutions, is made up for in the region above ω/T ≈ 1. Indeed, we found that from a
rather sharp peak to a fully flat behavior, all solutions are equally good ones in terms of
stability and χ2. This is in essence the sum rule mentioned in Sec. 5.1.1, and to further
investigate this, Fig. 7.11 (top right) shows the primitive integral of ρ/(ωT ) for all three
cases. We find that above ω/T & 3 the areas under the curves are almost the same.
Explicitly, the sum rule states that the area under ρ/ω in the peak region is in our case
given by ∫

small ω

d
(ω
T

) ρ (ω
T

)
ωT

=
2π

3
Nc, (7.35)

where we suppressed a factor of Cem, which is not contained in our definition of the
spectral function. We plot this value as a straight line for reference. This reflects the
equally good fit results of the different Ansaetze ρans, ρflat and ρR, and shines a light on
the predicted difficulty of fixing the shape of the low frequency regime of the spectral
function unambiguously. The area fixing sum rule also reflects the small electrical con-
ductivities obtained by fitting ρflat, compared to the other Ansaetze, that inhibit peaked
structures. Concerning the width of the peaks, in both Ansaetze ρans and ρR, which
feature a Breit-Wigner peak at small frequency, we generally find Γ/2 ∼ O(T ) in all of
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Figure 7.11: Top left : The solutions of different Ansaetze compared for T = 1.1Tc. Note
that the difference between ρR and ρans is most pronounced at T = 1.1Tc.
Top right : Integrating ρ/(ωT ) up to ωmax, i.e. numerically computing its
primitive function for T = 1.1Tc. Bottom: The thermal moments for all T
and their respective reconstructions from the fit, shown for all three models
ρans, ρflat and ρR.

our fits. As has been shortly discussed in Sec. 4.3.2, a width of this order is typical for a
strongly coupled regime, and the corresponding scale for a weakly coupled plasma would
be Γ/2 ∼ O(gT ) or smaller [12]. Thus our fitting results, obtained using the Ansaetze
motivated from kinetic theory and from the AdS/CFT correspondence, both suggest a
rather strongly coupled medium from 1.1Tc to 1.4Tc.

We find that utilizing the covariance of the data points in the fit generally increases
the resolution of the procedure with respect to the low frequency region, as described in
Sec. 7.2.3, and also generally enhances the quality of the fit, in the sense that the errors
on the resulting parameters are smaller compared to fits without the covariance matrix.
The role of the second thermal moment as a constraint in the fit, however, turns out
to be a more subtle one: On the one hand, when ignoring the covariance of the data,
fitting with the second thermal moment as a constraint essentially also shows the effect
of reducing the errors on the resulting fit parameters, as opposed to not constraining
the fit with the thermal moment. But this effect does not appear when fitting with the
full covariance of the data, showing that the information on the curvature of the corre-
lation function is already largely contained in the statistical correlation. On the other
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Figure 7.12: Left : The thermal dilepton rate as obtained from ρR as a function of ω/T ,
accompanied by the HTL rate and the non interacting Born rate. Right :
The final results for the electrical conductivity. They incorporate the full
systematics, i.e. the minimum and maximum conductivities, respectively,
of ρans and ρR.

hand, in the fit of ρδ(ω), done with the full covariance of the data, the badly reproduced
second thermal moment still serves as a very strong indication that the fit breaks down.
This observation motivates us to also show the reconstruction of the extrapolated sec-
ond thermal moment and the ratio of fourth to second thermal moments in Fig. 7.11
(bottom) for all temperatures. The reconstructed values from the fits (apart from ρδ(ω))
generally are in accord with the second thermal moments extracted from the data, which
underlines that our fits work well from the point of view of fit quality. Although the
second thermal moment is especially sensitive to the low frequency region of the spectral
function, at the current state of data accuracy we cannot clearly differentiate between
the models ρans, ρR and ρflat using this observable. Considering that for T = 1.1Tc
and T = 1.4Tc the thermal moment for ρflat deviates from the data visibly, but within
errors, increasing the accuracy of the thermal moments data might provide a handle
for this. The ratios R

(4,2)
ii are not included in the fit as a constraint, but a posteriori

(re)constructed from the data and resulting fit parameters, respectively. They compare
within errors, although for T = 1.1Tc and T = 1.4Tc the results from the fit do not
compare well. Note that the value from ρδ compares as well as any other reconstructed
value, unlike in the case of the second moments discussed above. As expected in Sec. 5.2
from a rather qualitative argument, we thus see here explicitly that the ratios of fourth
to second thermal moment are indeed far less sensitive to the low frequency region than
the second thermal moments.

Our final results for the electrical conductivity for all three temperatures are summa-
rized in Fig. 7.12 (Right). In the plot we show the respective minimum and maximum
value resulting from the two Ansaetze ρans and ρR, to incorporate the full systematics
found in our analysis. They are comparable to recent studies using MEM and dynamical
clover-improved Wilson sea quarks at finite lattice spacing [18, 148, 149]. For a com-
parison of different calculations of the electrical conductivity see [150]. The resulting
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7.2 Spectral function via Ansatz and fit

thermal dilepton rates, obtained from the spectral function ρR via the first expression
of (3.5), are shown in Fig. 7.12 (left) for all three temperatures and a sum of squared
charges of Cem =

∑
i q

2
i = 5/9, corresponding to two valence quark flavors u and d. Our

rates are qualitatively comparable to the rate obtained by an HTL calculation [93], see
Sec. 4.3.3, in the large frequency region, as well as to the leading order (Born) rate.
However, compared to the HTL computation, our results show an enhancement in the
intermediate region ω/T ∼ 2 and a qualitatively different behavior for small frequency,
as the leading term for ω → 0 is different (see also Fig. 7.6). Finally, the soft photon
rate is obtained for all temperatures from the electrical conductivity via (7.28), and
Cem = 5/9, as

ω
dRγ

dp3

∣∣∣∣
1.1Tc

= {5.00− 17.48} × 10−5T 2
c ,

ω
dRγ

dp3

∣∣∣∣
1.2Tc

= {6.01− 11.48} × 10−5T 2
c ,

ω
dRγ

dp3

∣∣∣∣
1.4Tc

= {8.78− 16.71} × 10−5T 2
c .

The soft photon rates at the two higher temperatures show a slight trend to rise with
temperature, but this is within errors, and for the lower bound alone this trend is true
for all T . However, the lowest temperature suffers from a large upper bound, that is
also seen in the determined electrical conductivity.

7.2.6 Conclusion and outlook

Using non-perturbatively improved Wilson Clover valence fermions we performed contin-
uum extrapolations of light vector channel correlation functions at three temperatures.
The extrapolations yield reliable results with errors at the sub-percent level. A con-
sequence of bootstrapping the extrapolation is that the covariance matrix of the data
can be computed and is shown to permit stable fits. Employing a phenomenologically
motivated Ansatz for the corresponding spectral function, these are used to perform
a fully correlated χ2-minimization and to obtain results for the spectral functions and
thus the electrical conductivities via a Kubo relation, the thermal dilepton rates and
the soft photon rates. The second thermal moments, obtained from a separate contin-
uum extrapolation, are found to be sensitive to the low frequency region of the spectral
function, while the ratios of the fourth to the second thermal moment are sensitive to a
region at larger frequency. Different systematics related to the Ansatz are investigated.
We find an essential improvement of the fit with respect to the low frequency region
when performing the fit fully correlated, as opposed to neglecting the covariances of the
data. Fitting a form of Ansatz inspired by the phenomenology of a strongly coupled
QGP shows a comparable fit quality to the Ansatz motivated by a quasiparticle descrip-
tion, which implies that our procedure at this time does not resolve a difference between
these two differently shaped spectral functions. This difficulty is reflected by the fact
that the different spectral functions, extracted from our non-perturbative data, all fulfill
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a sumrule that is valid in the low frequency region. However, by observing the resulting
peak widths from the fits of a Breit-Wigner peak, we find that they are of the order of
Γ/2 ∼ O(T ), as opposed to the smaller scale Γ/2 ∼ O(gT ), which reveals that both
the peaked Ansaetze and the flat Ansatz hint at a strongly coupled medium. The use
of a perturbative estimate for the large frequency part of the spectral function is found
to generally increase the upper bound of the electrical conductivity. The electrical con-
ductivities are in accordance with earlier results obtained by MEM and χ2-minimization
methods. We find no significant temperature dependence in the temperature range in-
vestigated, as was expected from the weak temperature dependence of the correlation
functions. The thermal dilepton rates are compared to the HTL and leading order rates
and show almost no temperature dependence in the analyzed temperature region, either.
The lower bound on the determined soft photon rates clearly follows a trend by rising
with temperature. However, the overall large errors, especially at T = 1.1Tc, make it
difficult to determine a general trend.

The use of a higher order perturbative estimate for the large frequency behavior of
our Ansatz opens two concrete possibilities. First, because for two temperatures the
resulting C is compatible with unity within errors, we mark that in this sense further
improvements might make it superfluous and thus reduce the number of parameters
in the fit. Second, the low frequency behavior of the perturbative estimate is merely
leading order. By incorporating additional perturbative input there, the resolution of
the fit in the low frequency region might increase. Furthermore, although the quenched
approximation has its merits by permitting generally high statistics and large lattices,
in order to extract physics, large dynamical lattices are needed.

7.3 The Method of Backus and Gilbert

After approaching the problems of reconstructing spectral functions by performing fits
to different Ansaetze, we now present a study that uses the method of Backus and
Gilbert to reconstruct spectral function directly from data. While it does not rely on
strong assumptions such as specific Ansaetze and yields a quantitative estimate for how
well it can resolve the spectral function, given a specific set of data, note that this is
an exploratory study, performed merely on a single data set, and serves as a first step
to lay out its possible uses in future work. In the literature, the method of Backus and
Gilbert has recently been employed in two studies [151, 152]. An especially interest-
ing application is shown in [152], where the Backus Gilbert method is used to compare
spectral functions, obtained by phenomenological computations, with spectral functions
obtained from lattice calculations. The authors argue that for a meaningful comparison,
phenomenological spectral functions should be filtered by the resolution function, pro-
vided by the Backus Gilbert method. This is a way to imprint the concept of resolution,
that is naturally obtained within the Backus Gilbert method from non-perturbative lat-
tice data, onto phenomenological models, which usually lack this concept. Concretely,
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they compute δ̂(ω′/T, ω/T ), then convolute

ρ̂pheno(ω′/T ) =

∫
d
(ω
T

)
δ̂(ω′/T, ω/T )ρpheno(ω/T ), (7.36)

and compare ρ̂pheno to the spectral function obtained in lattice calculations.

We will use the Backus Gilbert method in a much more direct way, by extracting
solutions and the corresponding resolution function. As it turns out, a very interesting
question is how to find a useful mapping θ(ω/T ) to fix the local regularization param-
eter for each single solution in frequency space. In the following, we first present some
important preliminaries with respect to the application of the method, before turning
to the application itself.

7.3.1 Practical considerations

For brevity we introduce the notation ω̄ ≡ ω/T , and the Fredholm equation connecting
the Euclidean correlator and the spectral function becomes

G(τT ) =
1

2π

∫ ∞
0

d
(ω
T

)
K(ω/T, τT )ρ(ω/T ) (7.37)

≡ 1

2π

∫ ∞
0

dω̄K(ω̄, τT )ρ(ω̄). (7.38)

Computation of ~R and W require integrations of the kernel with respect to ω̄, see (5.43)
and (5.46). Because the kernel has a pole of order one at ω̄ = 0, it has to be regularized
in order to make the above integrals convergent. An immediate modification would be
to rewrite ∫ ∞

0

dω̄K(ω̄, τT )ρ(ω̄) =

∫ ∞
0

dω̄K(ω̄, τT )α(ω̄)
ρ(ω̄)

α(ω̄)

=

∫ ∞
0

dω̄K ′(ω̄, τT )ρ′(ω̄),

(7.39)

and choose α(ω̄) accordingly. In the course of this thesis we work with two different
kernel modifications,

K1 ≡ K(ω̄, τT )α1(ω̄) =
cosh(ω̄(1/2− τT ))

sinh(ω̄/2)
tanh(ω̄/2), (7.40)

K2 ≡ K(ω̄, τT )α2(ω̄) =
cosh(ω̄(1/2− τT ))

sinh(ω̄/2)

ω̄2

tanh(ω̄/2)
. (7.41)

Kernel K1 merely cures the divergence for ω̄ → 0, leaving the high frequency behavior

untouched, as tanh(ω̄/2)
ω̄→∞−−−→ 1. Kernel K2 achieves the same for the low frequency

region, and additionally changes the expected large ω̄ (leading order) behavior of ρ ∼ ω̄2
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to ρ′ ∼ const in (7.39). The known asymptotics for ω̄ →∞ is thus explicitly given to the
method as additional information, which in turn only has to resolve the deviation from
this asymptotic behavior. Note that the integrals ~R and W for kernel K2 have to be
solved numerically, while the integral ~R for kernel K1 is given by the handy expression

Ri =

∫ ∞
0

dω̄

2π
K1(ω̄, τTi) =

1

2 cos(π(1/2− τTi)
. (7.42)

Additionally, because the method of Backus and Gilbert in general imposes no built
in constraint on the positivity of the spectral function, we are free to subtract another
function H(τT ) and write

G(τT )−H(τT ) =

∫ ∞
0

dω̄K(ω̄, τT ) {ρ(ω̄)− h(ω̄)} ≡
∫ ∞

0

dω̄K(ω̄, τT )ρ(−)(ω̄),

with

∫ ∞
0

dω̄h(ω̄)K(τT, ω̄) = H(τT ).

(7.43)

A possible use of this is to take out the large frequency behavior of ρ, analogous to using
Kernel K2. In order to remove the first order pole in K(ω̄, τT ), we will in this case adopt
K1 ≡ K(ω̄, τT )α1(ω̄), as the large frequency behavior is already accounted for:∫ ∞

0

dω̄K(ω̄, τT )ρ(−)(ω̄) ≡
∫ ∞

0

dω̄K1(ω̄, τT )ρ′(ω̄). (7.44)

The complete spectral function would then be given by

ρ(ω̄) = α1(ω̄)ρ′(ω̄) + h(ω̄), (7.45)

i.e. especially we need both the correlator H and its spectral function h in order to
perform the subtraction and later construct the full result. The corresponding variance
(5.49) in this case transforms like

Var(ρ(ω̄)) = 〈(ρ(ω̄))2〉 − 〈ρ(ω̄)〉2

= 〈[α1(ω̄)ρ′(ω̄) + h(ω̄)]
2〉 − 〈α1(ω̄)ρ′(ω̄) + h(ω̄)〉2

= α2
1(ω̄)Var(ρ′(ω̄)).

(7.46)

Concerning the choice of spectral functions h(ω̄), we can subtract more than just the tree
level asymptotics for ω̄ → ∞ by using the perturbatively computed spectral functions
and correlators introduced in Sec. 4.3.3. The perturbative solution (4.87), relying on
the 5-loop result, yields a much more refined large frequency behavior already at finite
ω̄, compared to dividing out the tree level ω̄2 behavior that is only valid asymptotically.
We actually utilize only the high frequency part and discard the free theory peak, as we
have in the fitting procedure, see (7.34). We (mis)label this contribution ’vacuum’. The
thermal, interpolated computation, enumerated (3) in Sec. 4.3.3, adds a real transport
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7.3 The Method of Backus and Gilbert

peak in the low frequency region. We label this contribution ’thermal’. By providing
our method with both inputs as additional information, we will see whether a transport
peak appears or, respectively, the existent transport peak gets modified in course of
minimizing (5.50) for each ω̄.

Having a closer look at the interior of the Backus-Gilbert method, we classify three
distinct components that form a given solution.

• The first one is the kernel, which influences the spread integral (5.43) and the
constraint (5.46), forming the minimizing functional A when contracted with ~q(ω̄).

• The second component is the covariance of the data, which constitutes the matrix S
in (5.49), and, together with the vectors ~q(ω̄), represents the minimizing functional
B. The vectors ~q(ω̄) themselves are hence only dependent on the kernel and the
covariances, but not on the averaged data points. This implies that both the spread
and the variance of the solution do not depend on the averaged data points.

• The averaged data points are the third component, and are needed only when
constructing the solution ρ(ω̄).

Before turning to the analysis, we still have to motivate a prescription for choosing
θ(ω̄) for each ω̄. As mentioned earlier, the best solution for a tradeoff problem is usually
sought in the kink of the L-curve, i.e. at the point with largest curvature. Because
there is one L-curve for each frequency ω̄, and remembering that both A and B depend
implicitly on θ, we choose to minimize

A2(ω̄, θ) sin(φ) + B2(ω̄, θ) cos(φ), (7.47)

with respect to θ for each ω̄. The newly introduced angle φ ∈ [0, π/2] is independent
of ω̄ and thus leaves us with one parameter to tune the amount of regularization in the
procedure globally, i.e. for all ω̄ at once. A large φ suppresses the variance term, and
thus means small overall regularization, as mainly the resolution term is subject to the
minimization. A small φ consequently implies strong regularization, while the statistical
uncertainty is reduced. Reducing a very large number Nω̄ of angles θ(ω̄) to choose
from to a single angle φ via a prescription like this of course is a very strong implicit
assumption, because it decreases the degrees of freedom of the problem essentially to
one. In some cases we decided to minimize the sum of squared distances to the input
data, ∑

τT

(
Ginput(τT )−Gφ(τT )

)2
, (7.48)

from all the solutions parameterized by φ, which determines the angle φ whose tuning of
resolution and variance fits the data best in order to obtain an ’optimal’ solution. Note,
however, that strictly speaking all φ produce valid results, as all solutions on the L-curve
are, theoretically, valid solutions of the problem. However, we expect the extreme cases
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7 Light quarks in the continuum from quenched lattices

φ = 0 and φ = π/2 to be fully overregularized and underregularized, respectively. As
such, they will yield solutions that do not reconstruct the input data well, because an
underregularized solution will tend to oscillate wildly and be very unstable, while an
overregularized solution will have extremely broad resolution and thus severely smear
out the solution. Hence, we expect to find a well fitting solution somewhere between
these two extremes. This approach gives us control over the global amount of regulariza-
tion and its effect on the solution, very much like the single parameter λ in the Tikhonov
regularization, see Sec. 5.1.2.

7.3.2 Results
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Figure 7.13: Top left : The resolution function δ, corresponding to case 1, for a number
of frequencies. Top right : The resulting spectral function in log− log scale.
Bottom: Reconstruction of the input correlator Gii.

In what follows from here, we apply the method of Backus and Gilbert to our con-
tinuum extrapolated correlator data Gii(τT ) at T = 1.1Tc, see Sec. 7.1.2, by using the
two different kernels K1 and K2 to compare the general features of the solutions, i.e.
resolution, variance and the dependence of the solution ρ, as well as its reconstructed cor-
relator Gφ(τT ), on the global regularization parameter φ. With these results at hand we
proceed to work with the perturbative estimates to increase the amount of information
given to the method. To name the different cases, we thus investigate:
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Case 1 the kernel K1 and data Gii as input,

Case 2 the kernel K2 and data Gii as input,

Case 3 the kernel K1 and data Gii −Gvacuum
V as input,

Case 4 the kernel K1 and data Gii −Gthermal
V as input.

A range φ ∈ [10−5, 1.57079] is considered, leading from a highly regularized regime to
an almost unregularized regime. Generally, all distances in the interval 0.1 < τT ≤ 0.5
are used as input data.

We start with case 1 and consider the reconstruction of the input correlator in Fig. 7.13
(bottom). In fact, no angle φ can make the correlator Gφ fit the input data for all
distances. The only effect of changing φ is a constant factor (visually, the almost constant
shift between the solutions in logarithmic scale), while the curvature of Gφ is generally
not large enough to describe the input data. The reason for this can be found in the
resolution function δ̂(ω̄1, ω̄2), shown for several ω̄1 in Fig. 7.13 (top left), as a function
of ω̄2. For definiteness these resolution functions are obtained at φ = 0.1. While for
small ω̄1 we see clear peak structures, centered around ω̄2 = ω̄1, they obviously become
broader in ω̄2 with growing ω̄1, the resolution is becoming increasingly asymmetric, and
the peak is not centered around ω̄2 = ω̄1 anymore. Looking at the solution ρ/ω̄, shown
in Fig. 7.13 (top right), we observe

1. that it falls off beyond ω̄ ∼ 20 − 50, depending on the amount of regularization
applied, instead of keeping a roughly linearly rising behavior, as is expected by the
asymptotic behavior ρ(ω̄) ∼ ω̄2. This is of course attributed to the observed loss
of resolution (or ’signal’) in this regime.

2. that the solution depends strongly on the regularization parameter φ even for
very small frequencies, in the sense that the solutions ρ(ω̄) for increasing φ are
constantly growing. Subsequently, the reconstructions plotted in Fig. 7.13 (right)
also depend strongly on φ,

The strong dependence on the regularization parameter also in the low frequency region
and the failure in reconstructing the curvature of the correlation function, which is hence
attributed to the early loss of signal in the spectral function, leads us to the conclusion
that no meaningful solution can be extracted utilizing the data Gii(τT ) and the kernel
K1 alone.

In order to improve the method, it was proposed above to supply information about
the large frequency behavior of the solution explicitly, by dividing out the asymptotic
ω̄2 dependence. This is realized by using kernel K2 in the Backus Gilbert procedure
together with the continuum extrapolated input data Gii. In Fig. 7.14 (top left) the
resolution kernels δ̂(ω̄1, ω̄2) are plotted for several frequencies ω̄1 at φ = 10−1. The loss
of signal observed in the former case also occurs in this case, but at somewhat higher fre-
quency ω̄1 than in case 1. This indicates that we were successful in providing additional
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Figure 7.14: Top left : The resolution function δ, corresponding to case 2, for a number
of frequencies. Top right : The resulting spectral function in log− log scale.
Bottom: Difference of the correlator to the correlator reconstruction.

information to the Backus Gilbert method by modification of the kernel. In Fig. 7.14
(top right) the solution is shown. The plot reveals that the high frequency region shows
an oscillating behavior and, at some ω̄, whose precise value depends on φ, drops in a loss
of signal as observed in the former case. Analogously to the resolutions, the drop occurs
at larger frequencies. Thus, the observed improvement of resolution directly shows in the
resulting solutions ρ(ω̄). In addition, the dependence of ρ(ω̄) on φ in the low frequency
region is very weak, as opposed to case 1. Its course is very flat and does not exhibit
a peak structure. The amplitude of the oscillations at large frequency depends on the
amount of regularization. They are generally strongest (and set in earliest) for solutions
featuring a smaller overall regularization, i.e. larger φ. Also, the free and massless con-
tinuum spectral function is shown to guide the eye. As can be seen in the figure, the
solution oscillates around the free spectral function, before finally losing signal and drop-
ping. The reconstruction of the correlation functions is shown in Fig. 7.14 (bottom), but
this time the difference of the reconstruction and the input data is visualized for clarity.
It works obviously much better than before and yields good results for large distances
and for a wide range of regularization parameters. For small distances τT , we see that
only the very small value of φ = 10−5 reconstructs the correlator successfully, which
corresponds to a large degree of regularization and the spread term is highly suppressed
in the minimization of (7.47), and thus the solution is dominated by the regularization
error. It thus seems that for larger φ the large frequency region of the spectral function is
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not stable enough for a reconstruction, because it suffers from too much oscillation. On
the other hand, consider that in the plot the difference of reconstruction and input data
is shown, and hence for the small distances the deviations are of the order of less than 1%.

We now undertake the final step and incorporate the two perturbative solutions as
additional input via (7.43) and (7.44). Note that the subtraction of either of the per-
turbative solutions has no effect on the covariances of the data, because they are no
statistical quantities, i.e.

〈
{
Gi −Gpert

i − (Ĝi −Gpert
i )

}{
Gj −Gpert

j − (Ĝj −Gpert
j )

}
〉

= 〈
(
Gi − Ĝi

)(
Gj − Ĝj

)
〉.

(7.49)

Furthermore, because the vectors ~q(ω̄) depend only on the covariances and the specific
kernel, they are the same as the corresponding vectors obtained by using kernel K1 and
the data Gii alone, i.e. case 1. The solution of the subtracted problem can be split using
(5.39),

ρ−(ω̄) = ~q(ω̄) ·
(
~Gii(τT )− ~Gpert(τT )

)
≡ ρ1(ω̄)− ~q(ω̄) · ~Gpert(τT ), (7.50)

where ρ1 is the solution of case 1, obtained with the same kernel K1, but without
subtracting the perturbative part. We see that the resulting spectral function is a
modified version of this first result above, which suffered from a resolution problem for
rather small values of ω̄, and thus did not permit a reconstruction of the correlator.
Since the relative difference of our non-perturbative data and the perturbative spectral
function is small compared to either correlator, we read (7.50) as a rather small correction
to the full spectral function, which is constructed by adding the perturbative input onto
it via (7.45),

ρ(ω̄) = ρ(−) + ρpert(ω̄) = ρpert(ω̄) + ~q(ω̄) ·
(
~Gii(τT )− ~Gpert(τT )

)
. (7.51)

The solutions ρ(−) are shown in Fig. 7.15 (top left), for case 3, i.e. subtracting the
vacuum perturbative result, and in Fig. 7.16 (top left), for case 4, i.e. with the thermal
perturbative result subtracted. The modifications for moderate choices of the regular-
ization parameter φ indeed show up as slight changes from the respective perturbative
result, increasing the spectral function in the low frequency region for the vacuum case,
while the strong peak of the thermal perturbative result is slightly reduced. In the
large frequency region, we see that there still are modifications by the Backus Gilbert
method, but, considering that the complete spectral function ρ(ω̄) is dominated by the
perturbative contribution ρpert at large frequencies, these contributions do not alter the
complete spectral function much. This can be explicitly seen in the respective top right
plot in the figures, where the solution ρ/(ωT ) indeed behaves very stable in the large
frequency region with respect to changing φ. The region around ω̄ ∼ 1 is still sensitive
to the amount of regularization applied. The reconstruction of the correlators from these
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Figure 7.15: Top left : The difference ρ(−)(ω̄) = ρ(ω̄) − ρvacuum(ω̄). Note the relatively
small modifications for moderate choices of φ. Top right and bottom: The
solution ρ(ω̄) and its reconstructed correlators.

spectral functions accordingly works well, compared to case 1, see Fig. 7.16 (bottom) and
Fig. 7.15 (bottom). However, in both cases the reconstruction depends stronger on the
regularization parameter φ than in case 2, and particularly, in case 3 this dependence
is slightly stronger than in case 4.

In order to make a definite choice of the regularization parameter, minimizing (7.48)
can find the best φ in both cases, resulting in the parameters presented in Tab. 7.7.
We furthermore plot the tradeoff curves, or L-curves, which display the balance be-
tween variance and resolution, in Fig. 7.17 (top left). Note that these tradeoff curves
are valid for case 1, case 3 and case 4, because they all share the same solution vec-
tors ~q(ω̄), as shown in equation (7.49). Marked in the four curves, which correspond to

Scheme φ χ2/dof
K1 & (Gii −Gvac) 0.084 0.042

K1 & (Gii −Gthermal) 0.076 0.009

Table 7.7: The best φ for case 3 and case 4, obtained by fitting the correlator recon-
struction to the input data, under the restriction of the global minimization
prescription (7.47).
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Figure 7.16: Top left : The difference ρ(−)(ω̄) = ρ(ω̄) − ρthermal(ω̄). Note the relatively
small modifications for moderate choices of φ. Top right and bottom: The
solution ρ(ω̄) and its reconstructed correlators.

ω̄ = 0, 1, 2, 3, are the points that result from several choices of the local regularization
parameter θ(ω̄), fixed by the global parameter φ. The violet filled triangle corresponds
to the best φ of case 3, found above, and indeed lies for all ω̄ close to the kink of the
tradeoff curve. Note how the tradeoff curves at different ω̄ vary in shape. In order to
assess this effect in more detail, we plot the found parameterizations θ(ω̄) for a range
of increasing φ = 10−5, 10−3, 8.4 · 10−2, 10−1, 1.57079, from top to bottom, as black lines
in Fig. 7.17 (top right). The y-axis denotes the exponent of the local regularization
parameter θ in base 10, i.e. y = −3 ↔ θ = 10−3. Color coded in this plot is the
variance Var(θ, ω̄), which shows an intriguing structure of ’valleys’ with a low variance,
for small ω̄ and small θ. At larger frequencies, these valleys disappear and the variance
is almost a constant in ω̄ for fixed θ. It can be seen that the found curves θ(ω̄) follow
this structure at lower frequencies, and flatten out for larger frequencies. The same plot,
but with the spread A color coded in the background, is shown in Fig. 7.17 (bottom),
featuring a quite similar structure overall. Note how the spread inevitably increases at
large frequencies, which shows the loss of resolution in that region, which is worse for
a more regularized solution. Together with the corresponding plot for the variance, the
tradeoff that has to be made between spread and variance becomes explicit in the plots.
The course of θ(ω̄) is characterized by the global minimization prescription (7.47), which
we chose in the beginning of this study, inspired by the typical treatment of ill-posed
problems in the framework of Tikhonov regularization. However, instead of looking for
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Figure 7.17: Top left : The tradeoff curves for ω̄ = 0, 1, 2 and 3. Note how the curves
shift with ω̄. Top right : The local regularization parameter θ as a func-
tion of ω̄. Color coded in the background is the corresponding statistical
variance B. Bottom: The same plots, with the spread A color coded in the
background. Note how the spread is inevitably becoming large for large ω̄.

the corresponding kink in the L-curve, these plots suggest other choices to fix θ(ω̄). For
example, one could take θ = constω̄, or fix θ(ω̄) to be a line of either constant variance
or constant spread.

7.3.3 Conclusion and comparison to the fit procedure

The method of Backus and Gilbert is applied to the continuum extrapolated correlator
data set Gii(τT ) at T = 1.1Tc, making four different choices of Kernels and/or utilizing
perturbative additional input. A definite choice for the local regularization parameter
θ(ω̄) is made by minimizing, for all ω̄ at once, the squared sum of spread and statis-
tical variance via one global regularization parameter φ. The perturbative input has
no influence on the covariance of the data, and thus the spread and variance only de-
pend on the kernel used. For both used kernels, we measure the resolution at a specific
choice of φ, and subsequently investigate the resulting spectral function ρ/(ωT ) and its
respective correlator reconstruction Gφ(τT ). We find that using kernel K1, without any
additional information supplied, yields no unambiguous solution ρ/(ωT ) due to a strong
loss of resolution at higher frequencies, and thus no reliable correlator reconstruction.
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7.3 The Method of Backus and Gilbert

Using kernel K2 without additional input and kernel K1 with two kinds of perturbative
input, respectively, we find overall much better correlator reconstructions. The additive
perturbative inputs fix the large frequency behavior by construction, and the method
of Backus and Gilbert is found to merely provide corrections to the respective pertur-
bative spectral function. The fact that these corrections are small for large frequencies
suggests to focus on the low frequency region in this case. From here, we now refer
to the solution to case n as ρn for clarity. Providing only the kernel K2 also shows to
improve the spectral function ρ2/(ωT ) at large frequencies compared to ρ1/(ωT ), but
suffers from the loss of resolution more directly compared to fixing the large frequency
region with additive input. In the region of small ω̄, we find good qualitative agreement
between the behavior of ρ3/(ωT ) and ρ2/(ωT ), which both reproduce a flat region with
a finite intercept. The solution ρ4/(ωT ) shows a slight reduction of the input peak at
low frequencies, and because ρ3/(ωT ) and ρ4/(ωT ) still show a vastly different low fre-
quency behavior, we conclude that there is a very strong dependence of the solution on
the details of the additional input information. The investigation of L-curves, for single
frequencies, and planes of spread and variance, as a function of θ and ω̄, eludicates the
tradeoff aspect of the method, with respect to the possible choices of the mapping θ(ω̄).

We now turn to comparing the results of this section to the results from the fit pro-
cedure conducted in Sec. 7.2. In Fig. 7.18 (right) the solutions of the Breit-Wigner
ansatz ρans/(ωT ) and the Ansatz ρflat/(ωT ) from the fit procedure are plotted as their
respective errorbands. Additionally, we plot the solutions ρ3/(ωT ) and ρ4/(ωT ), with
φ taken according to Tab. 7.7, and their respective errorbands computed via (7.46). It
is clearly visible how the statistical error of ρ4/(ωT ) becomes very small for ω̄ → 0,
which indicates how strongly the perturbative input fixes the result in this case. The
solution ρ3/(ωT ) is qualitatively comparable to ρflat/(ωT ), but has a smaller intercept
at ω/T = 0 and lies overall lower for ω/T . 1. The differently shaped spectral functions
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Figure 7.18: Left : A gaussian fit to the resolution function for kernel K1. Right : A com-
parison of ρ3/(ωT ), ρ4/(ωT ) and the fit results ρans/(ωT ) and ρflat/(ωT ).

in this plot, which all constitute valid solutions to the Fredholm equation, illustrate how
difficult it is to fix the exact shape in the low frequency region. However, in the fit
procedure, Ansaetze with a deliberately different low frequency region were chosen to

145



7 Light quarks in the continuum from quenched lattices

assess the resolution of the procedure, but the Backus Gilbert Method provides us with a
direct, and measurable, expression of the resolution. To investigate the resolution in the
low frequency region in a more precise fashion, we measure of the width of the resolution
peak. We choose to fit a gaussian g(ω̄) = A exp(−ω̄2/b2) to the peak at ω̄1 = 0 for kernel
K1, see Fig. 7.18 (left). Although the shape of the peak is not so well described by a
gaussian, we take the resulting width b ≈ 3T as an approximate measure of resolution in
the low frequency region. From the plots of our solutions ρ/(ωT ) we see that the high fre-
quency behavior, characterized by the free and the perturbative solutions, respectively,
effectively sets in around ω/T & 3. Because in the fit procedure we come to the same
result by investigating the effect of the sum rule on the spectral functions resulting from
the fit, we confirm the limited resolution around ω̄ = 0 using the Backus Gilbert method.

146



8 Summary and conclusions

In this work we studied the in-medium modification of hadronic correlation functions and
determined spectral and transport properties from meson operators containing different
quark flavors, from degenerate light, strange and charmed mesons as well as open-charm.

We presented results from phenomenological computations to formulate our expecta-
tions of spectral functions from in-medium mesons in general, and to shape a picture
of the qualitative change of in-medium spectral functions from the corresponding non-
interacting spectral functions. The existing computations of the latter for hidden flavor
were extended to account for open flavor, i.e. non-degenerate quark masses, in the
continuum and in the Wilson fermion formulation. The computed expression for the
non-interacting open flavor meson spectral functions shows that a structure at small,
but distinctly finite, frequency appears. This is, in the relevant channels, shown to con-
stitute the corresponding zero mode in the limit of degenerate quark masses. We moti-
vated Ansaetze for the vector meson spectral function to fit to the vector correlators in
the light quark sector, featuring both the typical shapes resulting from a hydrodynami-
cal description at strong coupling, as well as a quasiparticle description at weak coupling.

At temperatures in the deconfined phase the vector correlators in the light quark sector
do not contain any bound state contributions and the corresponding spectral functions
show a perturbative-like behavior already at moderate frequencies. Using continuum
extrapolated correlators in the quenched approximation at vanishing momentum, this
enables us to determine a continuum estimate of the dilepton rate, the soft photon rate,
the electrical conductivity, and also, for the first time, their temperature dependence in
the range between 1.1Tc and 1.4Tc. Continuum extrapolations can be, and have been,
performed at non vanishing momentum, for the first time giving rise to the photon rate
at larger frequencies from continuum extrapolated lattice data, and are a part of future
work. The continuum extrapolated vector current data exhibit almost no temperature
dependence, and the fits to the latter show the difficulties of fixing the low frequency
behavior of the spectral function. Although we measurably enhanced the resolution
by performing fully correlated fits, and the use of second thermal moments provides
valuable additional information, both the peaked low frequency region, motivated by a
quasiparticle description, and flat low frequency region, motivated by hydrodynamical
considerations, turn out to reproduce the input correlator data equally well. However,
the resulting width of the peaked solutions is Γ/2 ∼ O(T ), and thus parametrically large
enough to still hint at a rather strongly coupled plasma in the investigated temperature
region. Utilizing perturbative input for the large frequency region shows to potentially
reduce the number of parameters needed in our Ansatz. At all temperatures we compute
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8 Summary and conclusions

the electrical conductivity, the dilepton rate and the soft photon rate. The method of
Backus and Gilbert confirms the difficulties of fixing the small frequency shape of the
spectral function in a twofold way. First, we retrieve both peaked and flat solutions
from the method, depending on the input information, and second, the method yields
a quantitative estimate of its resolution in the low frequency region, which we find to
be ∆ω = 3T around vanishing frequency. This is in accord with our findings from the
fitted spectral functions, inserted into a low frequency sum rule.

Using these different Ansaetze and analyses we were able to reliably estimate the
systematic uncertainties of the electric conductivity, dilepton and soft-photons rates in
this temperature regime. Although still based on the quenched approximation, these
results and the methodology elaborated here will serve as important foundations for
future studies including dynamical fermions, where a continuum extrapolation so far is
out of reach, but may be possible with future computing resources. The mild tempera-
ture dependence observed in this study may be related to the quenched approximation
where the deconfinement transition is of first order and effects of this transition turn in
very close to Tc. This may change when including light dynamical degrees of freedom.
Close to the transition region, one could expect that these will become important and
furthermore the transition changes from first order to a cross-over for physical quark
masses.

In the heavy quark sector, it is expected that bound states survive in the QGP and
for charmonium and bottomonium states, one expects a sequential melting pattern. The
interesting temperature region for the melting of charmonia is between 1.0Tc and 1.5Tc.
A further important topic concerns strange mesons and open-charm mesons and the
question about their thermal modifications around the transition region and if they are
melted already within this region. As the present study was performed at temperatures
of 0.95Tc and 1.11Tc, i.e. very close below and above the transition region, dynamical
light quark degrees of freedom are important and we used gauge field configurations
generated with physical 2 + 1 HISQ flavors for this study, together with corresponding
zero temperature calculations. Although limited to one lattice size, this combination
allowed to study the medium modifications of spatial correlation functions and screen-
ing masses, as well as the modification of temporal correlators using the ratio G/Grec,
which effectively removes most cutoff effects, and allows for a qualitative discussion of
modifications of bound states and the spectral and transport properties in this sector
in comparison to the vacuum. We use a standard Wilson action on top of the HISQ
sea to compute meson correlation functions, and yet the extracted screening correla-
tion functions are very comparable to earlier computations using HISQ sea and valence
quarks on slightly smaller lattices. The screening correlators turn indeed out to be very
sensitive to in-medium effects, especially when compared to the temporal correlation
functions. For strange and strange-charm flavored mesons this indicates strong bound
state modifications already in the transition region. The screening masses extracted at
both temperatures show differences compared to the pure HISQ study, which are espe-
cially strong in the case of charmonium. This might indicate that the used lattices are
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yet too coarse to perform charmonium spectroscopy, or effects coming from our Wilson-
on-HISQ approach. However, apart from a shift, the extracted screening masses of the
S-wave channel with all flavor contents show the expected behavior in the transition
region. The analysis of temporal correlation functions shows overall much smaller mod-
ifications above Tc, but still we find signs for appearing zero mode contributions in all
relevant investigated mesons, and a modification of bound states for the S-wave channels
of strange and strange-charmed correlators already slightly above Tc.

As an outlook, we propose to increase the statistics of the open flavor mesons on
the dynamical lattices to reduce the statistical error, from which especially the study
of G/Grec would profit, and also include the quark line disconnected contribution to
the correlators, as soon as the statistics is high enough. Complementary to that, it
is important to gain a more refined understanding of the lattice spacing artifacts, as
well as the systematical effects that arise from the Wilson-on-HISQ approach. The
former can be reduced by utilizing improvements of the valence quark action, possibly
by determining csw in non-perturbative lattice calculations for this specific setup. The
latter is one aspect of cutoff errors in general, and comparisons to correlation functions
at both vanishing and finite temperature, as well as corresponding (screening) masses,
computed on the same gauge field background with HISQ valence quarks, can lead to
a quantitative understanding of the effects induced by the mixing of different actions.
Such a study is underway. With an understanding of these effects at hand, computations
at smaller lattice spacings, and subsequently continuum extrapolations of the extracted
correlation functions, become possible.
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