
M A S T E R T H E S I S
intelligent systems

D E S I G N S PA C E
E X P L O R AT I O N O F
A S S O C I AT I V E
M E M O R I E S U S I N G
S P I K I N G N E U R O N S
W I T H R E S P E C T T O
N E U R O M O R P H I C
H A R D WA R E
I M P L E M E N TAT I O N S

A N D R E A S S T Ö C K E L

Bielefeld University,
Faculty of Technology,
Cognitronics and Sensor Systems Group

supervised by

P R O F. D R . - I N G . U L R I C H R Ü C K E RT,
M . S C . T H O M A S S C H Ö P P I N G

december 21 , 2015 m16

Copyright c© 2016 Andreas Stöckel

In its entirety, this document is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License. Individual figures –
unless an external source is explicitly specified – are licensed under a
Creative Commons Attribution 4.0 International License. They may – in
addition to what is permitted by copyright law – be reused and modified
for any purpose, as long as a reference to this document is provided.

The Smart Thesis template used in this document was written by Jan
Philip Göpfert and Andreas Stöckel and is inspired by the Classic Thesis
template developed by André Miede.

The source code of this document and all described software tools are
available at: https://github.com/hbp-sanncs/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/hbp-sanncs/

I slung the travelsack over my shoulder and cinched it tight
across my back. Then I thumbed on my sympathy lamp, picked
up the hatchet, and began to run.

I had a dragon to kill.

— kvothe in “the name of the wind”

abstract

Artificial neural networks are well-established models for
key functions of biological brains, such as low-level sensory pro-
cessing and memory. In particular, networks of artificial spiking
neurons emulate the time dynamics, high parallelisation and
asynchronicity of their biological counterparts. Large scale hard-
ware simulators for such networks – neuromorphic computers
– are developed as part of the Human Brain Project, with the
ultimate goal to gain insights regarding the neural foundations
of cognitive processes.

In this thesis, we focus on one key cognitive function of
biological brains, associative memory. We implement the well-
understood Willshaw model for artificial spiking neural net-
works, thoroughly explore the design space for the implementa-
tion, provide fast design space exploration software and evaluate
our implementation in software simulation as well as neuromor-
phic hardware.

Thereby we provide an approach to manually or automati-
cally infer viable parameters for an associative memory on dif-
ferent hardware and software platforms. The performance of
the associative memory was found to vary significantly between
individual neuromorphic hardware platforms and numerical
simulations. The network is thus a suitable benchmark for neu-
romorphic systems.

v

acknowledgements

This thesis would not have been possible without the sup-
port of numerous individuals. First of all, I would like to thank
Prof. Ulrich Rückert for the unique opportunity to contribute to
the Human Brain Project, and Thomas Schöpping and Dr. Michael
Thies for an introduction to the topic, guiding me along the right
path and handing me valuable suggestions over the last year.

I would also like to dedicate my thanks to the researchers at
the Electronic Visions group at the Kirchhoff-Institute for Physics
in Heidelberg, the Advanced Processor Technologies Research
Group at the University of Manchester, and everyone else in-
volved in the neuromorphic hardware and software platforms
for answering my multitudinous questions and beavering away
on the problems I encountered.

On a technical side, none of this document would exist in
this form without the work of thousands of volunteers who
spent an astounding amount of time to contribute to the libre
software projects used in writing and researching this thesis,
including, but not limited to GCC, GNOME, the Linux kernel,
Fedora, Octave, Matplotlib, Qt, LATEX, Gimp and Inkscape. Thank
you for helping to create a free and better world.

Furthermore, I wholeheartedly thank my parents for both the
material and emotional support during my five-and-a-half-year
exile in Bielefeld.

Last but not least, I express my sincere gratitude to all who
read earlier revisions of this document and assisted me with their
priceless feedback: Michael Thies, Thomas Schöpping, Benjamin
Paaßen, Jan Philip Göpfert, Adriana Dreyer, Christoph Jenzen
and Daniel Stöckel.

vii

contents

C O N T E N T S

Contents ix

List of Figures xiii

List of Tables xv

List of Algorithms xv

1 Introduction 1
1.1 Motivation and goals . 1

1.1.1 Neuromorphic hardware systems in the Human
Brain Project . 1

1.1.2 Willshaw associative memory as a spiking neural
network . 2

1.1.3 Associative memories as hardware benchmark . 3
1.1.4 Goals of this thesis 4

1.2 Structure . 4
1.3 Notational conventions 5

2 Background and Related Work 7
2.1 History of artificial neural network models 7

2.1.1 First generation: binary McCulloch-Pitts cells . 8
2.1.2 Second generation: firing-rate coded neural net-

works . 9
2.1.3 Third generation: spiking neural networks . . . 10

2.2 Biophysical neuron model 11
2.2.1 Passive electrophysiological properties of the

neuron membrane 11
2.2.2 Action potentials 14
2.2.3 Chemical synapses 15

2.3 Simplified neuron and synapse models 16
2.3.1 Neuron model base equation 17
2.3.2 Synapse models . 17
2.3.3 Excitatory and inhibitory synapses 18
2.3.4 Linear integrate-and-fire neuron model 19
2.3.5 Non-linear integrate-and-fire models 19
2.3.6 Two-dimensional Hodgkin-Huxley approxima-

tions: the AdEx model 21
2.4 Neuromorphic hardware 24

2.4.1 NM-MC1: The many-core system 24
2.4.2 NM-PM1: The physical model 25
2.4.3 Spikey . 26
2.4.4 Software stack . 27

ix

contents

2.5 The Willshaw associative memory model (BiNAM) . . 28
2.5.1 Artificial associative memory models 29
2.5.2 Formal description of the Willshaw model . . . 30
2.5.3 Choice of the threshold θ 32
2.5.4 Storage capacity and sparsity 32
2.5.5 Neural network implementation 34
2.5.6 Impact of noise 36

2.6 Summary and outlook . 37

3 Spiking Associative Memory Architecture and Testing 39
3.1 Neural network topology and data encoding 39

3.1.1 Input-/output spike sequences 40
3.1.2 Data encoding and input noise parametrisation 43
3.1.3 Neuron populations 45
3.1.4 Required neuron behaviour 47

3.2 Memory evaluation measures 48
3.2.1 Storage capacity 48
3.2.2 Robustness in case of noise 49
3.2.3 Latency and throughput 50
3.2.4 Energy . 51

3.3 Data generation . 52
3.3.1 Dataset parametrisation 52
3.3.2 Expected behaviour in reaction to uncorrelated

random data . 52
3.3.3 Random data generation algorithm 54
3.3.4 Balanced data . 55
3.3.5 Balanced data generation algorithm 58

3.4 Conclusion . 61

4 Neuron Parameter Evaluation and Optimisation 63
4.1 Design space exploration 63

4.1.1 On the terms “design space” and “exploration” 63
4.1.2 Full network evaluation 65
4.1.3 Single neuron evaluation 65
4.1.4 Parameter constraints and intra-dependencies . . 67

4.2 Single neuron simulation 70
4.2.1 Neuron simulation loop 70
4.2.2 Numerical integration of the AdEx model . . . 72
4.2.3 Differential equation integrators 73
4.2.4 Integrator benchmark 75

4.3 Approach 1: spike train 76
4.3.1 Concept . 77
4.3.2 Descriptor and input spike train generation . . . 77
4.3.3 Evaluation . 78

4.4 Approach 2: single group, single output spike 79
4.4.1 Concept . 79
4.4.2 Deterministic input spike train generation . . . 80
4.4.3 Evaluation measure 81

x

contents

4.4.4 Effective threshold potential 83
4.5 Approach 3: single group, multiple output spikes . . . 84

4.5.1 General idea . 84
4.5.2 Fractional spike count 86
4.5.3 Minimal apical voltage difference 86
4.5.4 Minimal membrane potential perturbation . . . 89

4.6 Neuron evaluation software framework 90
4.6.1 Architectural overview 90
4.6.2 Frontend applications 92
4.6.3 High performance single neuron simulator . . . 93

4.7 Evaluation method comparison 94
4.7.1 Evaluation measure properties 94
4.7.2 Empirical comparison 95
4.7.3 Automated parameter optimisation 98

4.8 Conclusion . 101

5 Full Network Simulation Experiments 103
5.1 Methodology and software architecture 103

5.1.1 PyNNLess . 103
5.1.2 PyNAM . 105
5.1.3 Limitations of the hardware platforms 106

5.2 Neuron parameter evaluation 107
5.2.1 Methodology . 107
5.2.2 Neuron parameter sweep on NM-MC1 108
5.2.3 Neuron parameter sweep on Spikey 111
5.2.4 Discussion . 111

5.3 System parameter sweeps 114
5.3.1 Methodology . 114
5.3.2 Experimental results 115
5.3.3 Discussion . 117

5.4 Conclusion . 117

6 Conclusion and Outlook 119
6.1 Summary . 119
6.2 Future work . 120

6.2.1 Large scale simulations and benchmarking . . . 120
6.2.2 Neglected design space parameters 120
6.2.3 Extensions of the BiNAM network 120
6.2.4 Neuron evaluation and parameter optimisation . 121
6.2.5 Fractional spike count measure 121

6.3 Conclusion . 122

A Code Examples 123
A.1 Single neuron integrator interface 123
A.2 PyNNLess code example 124
A.3 PyNAM experiment descriptor 124

B Tables 125

xi

contents

B.1 Runge-Kutta coefficients 125
B.2 Integrator runtime profiles 126
B.3 Integrator benchmark 126

C Single Neuron Evaluation Comparison 131

Acronyms 137

Symbols 141

Bibliography 147

xii

list of figures

L I S T O F F I G U R E S

1.1 Photos of the Spikey neuromorphic hardware system . . . 2

2.1 Drawings by Santiago Ramón y Cajal 8
2.2 Sketch of a McCulloch-Pitts artificial neuron 8
2.3 Sketch of a schematised model neuron 9
2.4 McCulloch-Pitts artificial neuron as Boolean operators . . 9
2.5 Sketch of a classical artificial neuron 10
2.6 Membrane potential change caused by selectively perme-

able ion channel . 11
2.7 Model equivalent circuit diagram of the neuron membrane

for three ion channels . 12
2.8 Membrane potential over time for varying membrane con-

ductances . 13
2.9 Annotated sketch of an action potential 14
2.10 Chemical synapse schematic 15
2.11 Sketches of spiking neuron behavioural patterns 16
2.12 One dimensional integrate-and-fire model bifurcation pat-

terns . 20
2.13 Comparison between the LIF and AdEx neuron models . 22
2.14 NM-PM1 wafer high level architecture overview 25
2.15 Neuromorphic hardware system software stack and data flow 27
2.16 Pattern completion in a Hopfield associative memory . . . 28
2.17 BiNAM training example 30
2.18 BiNAM recall example . 31
2.19 BiNAM information and false positive count over number

of trained samples . 33
2.20 BiNAM pattern completion experiment 35
2.21 Neural network implementation of the BiNAM 35
2.22 Information measure and error count over noise 36

3.1 Comparison between a single neuron BiNAM implementa-
tion and its population counterpart 39

3.2 Spiking BiNAM implementation and spike train nomencla-
ture . 41

3.3 Comparison between a classical and spiking neural network 41
3.4 Example of input sample pipelining 43
3.5 Sketch of a burst with increasing interspike interval 44
3.6 Parametrisation of an example input spike burst with jitter 45
3.7 Sketch of the critical time window measure 51
3.8 Estimated number of false positives 54
3.9 Example bit vectors and their set representation 55
3.10 Comparison of the BiNAM matrix occupancy for different

data generation methods . 56

xiii

list of figures

3.11 Example of correlation introduced by data balancing . . . 56
3.12 Random versus balanced data generation 57
3.13 Balanced data generation algorithm example 1 58
3.14 Linear correlation coefficient with and without index selec-

tion bias . 59
3.15 Balanced data generation algorithm example 2 60
3.16 Balanced data generation algorithm example 3 61

4.1 Membrane potential over time for a neuron with degenerate
parameters causing low latency 65

4.2 Sketch of the input spike train fusion model 66
4.3 Example of a spike train evaluation 77
4.4 Conceptual overview of the single group, single output

spike measure . 80
4.5 Comparison of single neuron simulation spike train gener-

ation methods . 81
4.6 Examples of heavy-tailed sigmoids and the threshold eval-

uation . 82
4.7 Idealised sketch of the SGMO measure 85
4.8 Sketch of the fractional spike count decomposition 86
4.9 Unsuccessful fractional spike count calculation strategy . 88
4.10 Minimal membrane potential perturbation measure examples 91
4.11 Architectural overview of the AdExpSim framework . . . 92
4.12 Screenshots of the AdExpSimGui tool 93
4.13 Design space exploration results 97

5.1 Overview of the full network evaluation software stack . . 104
5.2 First NM-MC1 and NEST neuron parameter sweep 108
5.3 Second NM-MC1 and NEST neuron parameter sweep . . 109
5.4 NM-MC1 and NEST errors and latencies 110
5.5 Spikey parameter sweep overview 112
5.6 Spikey parameter sweep latencies 113
5.7 Results of the spike time noise parameter sweep 115
5.8 Results of the synaptic weight noise and time window sweeps116

xiv

list of tables

L I S T O F TA B L E S

2.1 LIF and AdEx model parameters and state variables . . . 23

3.1 Network and input/output parametrisation 46

4.1 Overview of variables in the design space 64
4.2 Nominal parameter constraints of the NM-PM1 platform . 68
4.3 Overview of parameters and state variables in the AdEx

model with reduced DoF 69
4.4 Neuron simulator benchmark results 75
4.5 Spike train evaluation method meta-parameter list 78
4.6 Group descriptor example 78
4.7 Expected behaviour of the evaluation methods 94
4.8 Initial neuron parameters 95
4.9 Neuron parameter space exploration experiment runtimes 96
4.10 Scenarios for neuron parameter optimisation 99
4.11 Results of the neuron parameter optimisation experiment 100
4.12 Optimised LIF neuron parameters 100

B.1 Constant step size integrator Runge-Kutta coefficients . . 125
B.2 Adaptive step size integrator Runge-Kutta coefficients . . 125
B.3 Simulator profile with IEEE 754 exponential 126
B.4 Simulator profile with approximated exponential 126
B.5 Integrator performance for the AdExp model 127
B.6 Integrator performance for the IfCondExp model 128
B.7 Integrator performance for the AdExp model with approxi-

mated exponential . 129

L I S T O F A L G O R I T H M S

3.1 Input burst generation algorithm 47
3.2 Uncorrelated random data generation 55
3.3 Uncorrelated, random and unique data generation 59

4.1 Basic single neuron simulator loop 71

xv

1I N T R O D U C T I O N

Associative memories are believed to be one of the core mechanisms in
human cognition: they allow us to classify sensory input in a fraction
of a second and guide our thoughts along chains of semantic links
[Pal13]. The Willshaw associative memory model (also Binary Neural
Associative Memory, BiNAM) is one of the best understood, biologi-
cally plausible associative memory models [Ste61; WBL69; Pal80]. In
conjunction with the neuromorphic hardware systems developed as
part of the Human Brain Project (HBP) [Hum15b], an implementation
of this model as spiking neural networks might provide a building
block for the large-scale simulation of cognitive systems and serve as a
benchmarking network which can be used to analyse the performance
of said neuromorphic hardware. The goals of this thesis are to char-
acterise the design space of a spiking Willshaw associative memory
implementation and to develop measures and tools which can be used
for both design space exploration and hardware benchmarking.

This chapter provides a high-level overview of this document:
Section 1.1 elaborates on the motivation and goals sketched in the
previous paragraph, Section 1.2 outlines the structure of the subsequent
chapters and Section 1.3 closes with some remarks on notational
conventions.

1 .1 motivation and goals

Here, we draw a sketch of the topical framework that encompasses
this thesis, and, in doing so, present and motivate the overall goals.
The following sections can only give a rough overview. Mentioned
topics are discussed in greater detail in the following chapters – see
the structure overview in Section 1.2 for more information.

1 .1 .1 Neuromorphic hardware systems in the Human Brain Project

The Human Brain Project (HBP) is a European research project which
aims at advancing the understanding of the structure and function
of the human brain at multi-level scales. A key goal of the project is
the development of neuromorphic hardware systems: special purpose
computers designed to enable the simulation of large, brain-like circuits
and to provide scientists with means to validate hypotheses regarding
brain function [Hum15a].

In contrast to the firing-rate coded artificial neural networks, which
today are ubiquitous in the field of machine learning, the HBP neuro-
morphic platforms are based on spiking neural networks. Although
still greatly simplified, spiking neural networks model processes in

1

introduction

(a) Spikey tabletop device (b) Spikey chip bonded to the circuit board

Figure 1.1: Photos of the Spikey neuromorphic hardware system developed by
the Electronic Visions group at Heidelberg University. Size of the assembled
device in (a) is about 8× 7× 3 cm; the picture of the actual chip in (b) is
copied from http://www.kip.uni-heidelberg.de/spikey.

biological nervous systems more accurately than their firing-rate coun-
terparts: neurons are represented as independent dynamic processes
with asynchronous communication via electric pulses (spikes).

The two neuromorphic hardware systems developed in the HBPA more technical de-
scription of the neuro-

morphic systems can be
found in Section 2.4.

possess fundamentally different architectures. The “many-core system”
NM-MC1 built at the University of Manchester is a fully digital com-
puter, constructed around the SpiNNaker chip [Fur+13]. In contrast,
the “physical model” (NM-PM1) built at Heidelberg University, is
an analogue-digital mixed signal system composed of entire silicon
wafers of HICANN (High Input Count Analogue Neural Network)
chips [Sch+10; Brü+11]. Both systems offer significantly faster simu-
lation times for large spiking neural networks compared to software
simulations on supercomputers, with NM-MC1 executing large net-
works at biological timescale and NM-PM1 with a speedup of 10 000
compared to biological timescale.

A third system – which is used in addition to the already mentioned
ones – is the Spikey neuromorphic system (Figure 1.1). The Spikey chip
at its core is a predecessor of the HICANN in NM-PM1. As such, it
shares the same speedup factor of 10 000, but is limited to a single chip
and features a less complex neuron model [Pfe+13]. Since Spikey has
been in development for almost a decade now, both its hardware and
software are in a relatively mature state.

1 .1 .2 Willshaw associative memory as a spiking neural network

Due to their time dynamic and asynchronous nature, spiking neuralArtificial neural networks
in general and spiking

neural networks in par-
ticular are discussed

in Sections 2.1 to 2.3.

networks are difficult to design: every neuron possesses a multitude
of parameters, and small changes in a single neuron parameter can
dramatically influence the behaviour of the network as a whole. This
is already true for the most simple class of network topologies, so

2

http://www.kip.uni-heidelberg.de/spikey

1 .1 motivation and goals

called feed-forward networks, which do not allow recurrent connec-
tions (cycles in the network graph). On the other hand, it is reasonable
to assume that biological neural networks have evolved with a robust-
ness to neuronal variation. Indeed, the same neural circuits in two
animals have been found to produce similar output on the network-
level, although the intrinsic configuration of individual neurons varies
significantly between the animals [PBM04; MT11].

As the Willshaw associative memory model merely is a theoretical The Willshaw associative
memory model is described
in detail in Section 2.5.

concept, that was not designed with the perils of dynamical systems
in mind, it describes no mechanism that would allow for the compen-
sation of neuronal imprecisions. On the contrary, each output signal
is produced independently by a single artificial neuron. There is no
possible way in which coarsely estimated neuron parameters could be
absorbed by network-level effects. For the transition of the theoretical
memory architecture to a spiking neural network we could proceed
in two different ways. By designing robust sub-networks for each
theoretical neuron from which the desired behaviour emerges, or by
literally translating the theoretical model to a spiking neural network
and tuning the neuron parameters to precise values.

We have decided to take the second approach. We aim at small
and simple networks which only deviate slightly from the theoretical
model, to ensure that the exhaustive theoretical results regarding the
memory still apply. However, in order to find suitable neuron parame-
ters, we need to provide an at least semi-automatic method which lets
us choose “optimal” parameters for a given memory configuration.

1 .1 .3 Associative memories as hardware benchmark

The above decision on the spiking network architecture opens the
door for another application. Since the network is scalable, possesses
a highly regular and simple structure, and its theoretical behaviour
under perfect conditions is well understood, it can serve as a hardware
benchmark. Such a benchmark can be used to compare the perfor-
mance of the individual platforms, and to quantify the influence of
hard- and software changes.

Providing an assessable benchmarking network is important, as
the HBP hardware platforms (excluding Spikey) are currently in an
early stage of development and running even simple networks reliably
on all platforms is likely to be enough of a challenge. Ideally, sweeps
along multiple parameter axes of the design space can be performed.
This would allow to find regions for which the system shows abnor-
mal behaviour. For example, varying the memory size might uncover
scaling issues.

3

introduction

1 .1 .4 Goals of this thesis

The top-level goal of this thesis is to provide a working Willshaw asso-
ciative memory (BiNAM) implementation as spiking neural network
which can be executed on the mentioned neuromorphic hardware
systems. In order to fulfil this goal for varying memory configura-
tions (e. g. size, data properties), we need to find a way to explore the
network design space. This requires that we have defined the design
space itself and performance measures we can assign to every point in
the space.

Unfortunately, and unsurprisingly, the design space is high-di-
mensional, which prevents any exhaustive exploration. Therefore, we
intend to develop and evaluate estimations of the network performance.
These should allow an interactive exploration of a two-dimensional
projection of the design space and help to restrict the parameter space
to regions, in which time-consuming network simulations (potentially
accelerated by the neuromorphic hardware) are sensible. Additionally,
it should be possible to use the performance estimations for automatic
parameter optimisation.

These goals also come with a significant engineering task, as the
software tools for interactive design space exploration, parameter opti-
misation and execution on the hardware platforms have to be imple-
mented. Finally, we have to investigate whether the built tools can be
reliably used for benchmarking.

1 .2 structure

Whereas Section 1.1 approached the topics in this thesis from a bird’s-
eye perspective and in no particular order, this section linearly trudges
along the chapters and traces the golden thread which guides through
the pages to come.

In Chapter 2, we start by summarising the related work that sits
at the foundation of this thesis: we touch the relevant neurobiological
basics, introduce notable neuron and neural network models, and
present the neuromorphic hardware platforms and software simulators.
Finally, the Willshaw associative memory model (BiNAM) is described
and compared to other models.

In order to transition the theoretical BiNAM model to a spiking neu-
ral network, Chapter 3 defines a parametrised set of spiking BiNAM
implementations. Combined with the neuron model parameters, these
implementation parameters span the associative memory design space
we seek to explore. Various associative memory evaluation measures
are then proposed, which allow the assignment of a set of scores to
any given point in the design space. As a side-effect, these measures
allow comparison – and eventually benchmarking – of different hard-
ware and software platforms. The chapter concludes with thoughts on

4

1 .3 notational conventions

BiNAM test data generation. In its entirety, the material in Chapters 2
and 3 allows the construction of a complete BiNAM design space
exploration pipeline.

Armed solely with the methods described beforehand, however,
any even rudimentarily exhaustive design space exploration would be
infeasible, regardless of neuromorphic hardware acceleration. Thus,
Chapter 4 takes a step back and describes BiNAM performance esti-
mates of varying complexity, based on single neuron simulation. To
achieve the fastest possible execution speed, we compare the perfor-
mance of various numerical differential equation integration methods.
Finally, a method for fractional neuron output spike count estimation
is presented, which in conjunction with a naive Downhill-Simplex al-
gorithm effectively allows automated neuron parameter optimisation
with respect to a given set of network parameters. The presented work
can be used to limit the parameter space to interesting regions, which
can then be explored by means of expensive full network simulations.

Such simulations are conducted in Chapter 5, which describes
experiments testing the evaluation measures defined in Chapter 3 on
the neuromorphic hardware platforms. The hardware results are then
compared to software simulations and the coarse estimates from the
fourth chapter.

Finally, Chapter 6 summarises the insights obtained and lists possi-
ble future work that was out of scope for this thesis.

1 .3 notational conventions

This section informally lists some important notational conventions Margin notes contain ad-
ditional remarks or small
sketches which aim at
providing a better under-
standing of the material –
however, they can be safely
skipped; all relevant infor-
mation is presented in the
main text.

employed throughout the thesis.

Symbols Great care has been taken to consistently impose a single
meaning on most mathematical symbols. Exceptions to this rule are
“local variables”, including – but not limited to – the symbols i, j, k, `
which are used as generic indices, for example as summation indices,
loop counters or to point at a generic element of a set, tuple, vector or
matrix. The meaning of symbols used in more than one occasion can
be looked up in the symbol overview in the appendix.

Vector and matrix indices Vectors are marked as such with a vector
arrow and are generally assumed to be column vectors. If individual
matrix or vector elements are accessed, this is denoted as (~x)i (the
i-th component of ~x) or (M)ij (the element in the i-th row and j-
th column of the matrix M) respectively. An exception to this rule
are algorithms in pseudo-code where individual vector and matrix
elements are accessed in the “square brackets”-notation, for example
~x[i] and M[i, j]. Regardless of the notation, vector and matrix indices
follow the mathematical convention and always start with one.

5

introduction

Sets and tuples Sets are usually typeset in fraktur (e. g. b, B). Double-
struck letters (e. g. B, N, R) denote ranges of numbers. The operator
“‖” denotes the concatenation of two tuples: let a = (a1, . . . , ai) and
b = (b1, . . . , bj) denote two sequences of length |a| = i and |b| = j. The
operation a‖b is then defined as:

a‖b = (a1, . . . , ai, b1, . . . , bj) (1.1)

Discontinuities in differential equations Spiking neural network
models are generally formulated as differential equations. However,
they contain discontinuities which often are expressed in the literature
with the help of the Dirac delta δ(t):∫ ∞

−∞
f (t) · δ(t) dt = f (0) . (1.2)

Use of the Dirac delta may facilitate mathematical analysis, but in
the opinion of the author tends to obscure the actual concept that is
being described. We therefore use a less mathematical notation which
involves the “←” (read “gets”) operator. For example, a differential
equation with a discontinuity at time t0 is described as

u̇(t) = g · (u(t)− u0) , (1.3)

u(t)← u(t) + ∆u if t = t0 , (1.4)

and supposed to be equivalent to the more “correct” mathematical
notation

u̇(t) = g · (u0 − u(t)) + δ(t− t0) · ∆u . (1.5)

6

2B A C K G R O U N D A N D R E L AT E D W O R K

The study is to proceed on the basis of the conjecture that
every aspect of learning or any other feature of intelligence can
in principle be so precisely described that a machine can be
made to simulate it. [...] We think that a significant advance
can be made in one or more of these problems if a carefully
selected group of scientists work on it together for a summer.

— mccarthy et al . , 1955 , proposal for the

dartmouth conference

The primary goal of this thesis is to implement an associative memory
model as a spiking neural network on top of neuromorphic hard-
ware. In this chapter we aim at providing a terse summary of the
mentioned fields: Sections 2.1 to 2.3 address artificial neural network
models in general, the neurobiological concepts inspiring spiking neu-
ral networks, relevant spiking neuron models, and their parameters.
Section 2.4 focuses on the neuromorphic hardware systems in the
HBP. In Section 2.5 we discuss the notion of associative memories and
expand on the Willshaw associative memory model relied upon in this
thesis.

2 .1 history of artificial neural network models

In 1780 Luigi Galvani discovered that the injection of electric poten-
tials into animal muscle tissue causes contractions. He was the first
to notice that electricity could play a role in the animation – or live-
ness – of animals and laid the groundwork for research concerning
electrophysiology [Pic97].

Sixty-eight years later, in 1848, Emil du Bois-Reymond discovered
discrete electrical pulses generated by nerve cells [Pea01]. It took
another seventeen years until Julius Bernstein (supported by du Bois-
Reymond) could successfully record one of these action potentials or
spikes on paper. Today we know that action potentials are the primary
way of encoding information in the nervous system [Sch83].

At the end of the nineteenth century, technological advances in
microscopy and a new staining method invented by Camillo Golgi
allowed scientists to examine individual neurons in brain and spinal
tissue samples (Figure 2.1). In 1887 Santiago Ramón y Cajal was the
first to propose neurons as distinct base units of information processing
in biological systems. For their work Golgi and Cajal received the 1906
Nobel prize. Their discoveries gave rise to the neuron doctrine, the idea
that spinal cord and brain are made of basic building blocks – neurons
– and their support structures [Gli06].

7

background and related work

(a) Pyramid cells (b) Neurons in spinal marrow

Figure 2.1: Neural tissue prepared using Golgis method and drawn by Santi-
ago Ramón y Cajal around 1900. (a) shows pyramidal neurons in brain tissue,
(b) neurons of varying shape in the white spinal marrow substance [Caj04].

As the understanding of the neurobiological mechanisms advanced,
another question began to dawn in the scientific world: if animal – and
human – behaviour was solely determined by the electrophysiolog-
ical properties of neural networks, could it not be possible to build
machines that simulate processes in the brain up to cognition and
intelligence? In the 1940s researchers began to construct mathematical
models which mimic structural properties of biological neural net-
works. The development of artificial neural networks since then can
be broken down into three distinct generations [Maa97].

2 .1 .1 First generation: binary McCulloch-Pitts cells

In 1943 Warren McCulloch and Walter Pitts proposed the first artificial

xm

x2

x1

y
[...]

Figure 2.2: Sketch of a
McCulloch-Pitts neuron:

excitatory (arrow) and in-
hibitory (circle) inputs are

accumulated. If a threshold
θ is passed, the output y is
set to one, zero otherwise.

neural network model. In order to cope with the high diversity and
complexity of biological neurons, their model is based on several
simplifying assumptions: the nervous system is built of a network
of neurons, each consisting of a cell body (soma) and an axon. They
gather input from connected neurons through excitatory or inhibitory
synapses located at dendritic extensions of the soma (dendrites). If
the excitation of a neuron passes a threshold, the neuron responds
with a binary “all-or-none” spike, that travels along the axon to other
neurons, where it is received as input (Section 2.2 and Figure 2.3).
Furthermore, McCulloch and Pitts argue that transmission of signals
along the axon is almost instantaneous and considerable delay occurs
only at the synapses. This allows to disregard spike times and instead

8

2 .1 history of artificial neural network models

Dendrites

Nucleus

Cell body (soma)

Node of Ranvier

Schwann's cell Axon terminals

Myelin sheath

Axon

Figure 2.3: Sketch of a schematised biological model neuron. Input spikes
arrive at synapses located at the dendrites and are processed in the cell body.
Resulting output spikes travel along the axon to the axon terminals, which
connect to other neurons or a neuromuscular junction. Inspired by [Kan+12].

synchronously propagate binary values between neurons in discrete
time steps [MP43].

Mathematically, a single McCulloch-Pitts cell with binary input OR (y = x1 ∨ x2):

x1 y1x2

AND (y = x1 ∧ x2):

x1 y2x2

NOT (y = ¬x):

x y1
1

Figure 2.4: McCulloch-
Pitts artificial neuron as
Boolean operators.

vector ~x = (x1, . . . , xm)> ∈ Bm, output y ∈ B, and B = {0, 1} can be
described as follows (Figure 2.2)

y = H(~w> ·~x− θ) where H(x) =

{
1 if x ≥ 0

0 otherwise
. (2.1)

The weights ~w = (w1, . . . , wm)> ∈ {−1, 1}m model excitatory (wi = 1)
or inhibitory (wi = −1) synaptic connections to the input xi, the
threshold θ ∈ Z describes the minimum excitation that causes a “one”
as output. The function H(x) is also called “Heaviside step function”.

As shown in Figure 2.4, the cells can be used to construct the basic
operators of Boolean algebra. It follows that any computable function
can be described by a large network of McCulloch-Pitts cells – they
are Turing complete [CP96].

2 .1 .2 Second generation: firing-rate coded neural networks

In 1958 Frank Rosenblatt extended the binary McCulloch-Pitts cell to
the so called “perceptron”. Weights wi and neural input xi in Equa-
tion (2.1) are now real-valued instead of binary. Biologically, this change
can be motivated by the observation that some neurons operate in a
mode known as “tonic spiking” in which they output discrete spikes
at a certain rate that monotonously depends on the excitation of the
neuron (Figures 2.11(a) and 2.11(g)). The real valued input ~x ∈ Rm can
be interpreted as the average firing-rate of the pre-synaptic neuron, the

9

background and related work

weights ~w ∈ Rm describe the influence of a synapse on the excitation
of the neuron [Hay11].

Rosenblatt’s most important contribution, though, is a learning rule
which allows to train the weights ~w in such a way, that the perceptron
outputs a desired answer yk for a certain input ~xk, allowing to solve
linear classification and regression tasks [MP87].

In the context of the feed-forward multilayer perceptron (MLP),w1
w2

wmxm

x2

x1

y
[...]

Figure 2.5: Sketch of a
firing-rate coded artificial

neuron. Each neuron in
the network computes the

weighted sum of inputs
x1, . . . , xm, applies a non-

linearity f and outputs
an activation value y that

might be fed into other
neurons or act as part
of the network output.

the neuron model is generalised to the “firing-rate artificial neuron”,
replacing the Heaviside function H with an arbitrary non-linear, sig-
moid function f and fusing the threshold θ as an additional dimension
(“bias”) into the input ~x and the weights ~w (Figure 2.5)

y = f (~w> ·~x) . (2.2)

The weights ~w of the individual neurons in a MLP can be easily
trained using the back-propagation algorithm (a generalisation of
Rosenblatt’s perceptron learning rule). Today, with the broad avail-
ability of massively parallel computing hardware, large MLPs with
many hidden layers are employed with success in the field of “deep
learning” [HOT06].

2 .1 .3 Third generation: spiking neural networks

McCulloch and Pitts assumed that coarse, discrete timesteps are suffi-
cient for the propagation of neural output – a paradigm that is adopted
by second generation networks. Experiments suggest however, that ex-
act spike timing and spike time correlation within neuron populations
are used to encode information in the nervous system [SN94]. At the
end of the 1980s, these discoveries gave rise to the third generation
of neural networks, in which neurons are simulated as dynamical
systems with asynchronously generated binary spikes [Maa97].

Besides being closer to biology, spiking neural networks have sev-
eral practical advantages over their predecessors: whereas firing-rate
models require the transfer of the neuron state of every neuron in
every time step, the asynchronicity of spiking networks only requires
communication whenever a neuron generates a spike. Due to the loose
coupling of individual neurons, spiking networks lend themselves to
be simulated energy efficiently on massively parallel, asynchronous
hardware. Furthermore, given their time-dynamic nature, spiking neu-
ral networks intrinsically process time series of data.

On the other hand, simulation of neuron time dynamics is compu-
tationally intensive, training of spiking networks is more complicated
compared to their firing-rate counterpart and – at least for simple mod-
els – biological plausibility is still limited: usually neither spatiality, nor
the influence of neuromodulators are simulated. Nevertheless, spiking
neural networks may provide a useful simulation platform for entire
brain circuits [JL07] and may in the future allow to simulate deep
networks on specialised, energy efficient hardware [HM13; Sch15].

10

2 .2 biophysical neuron model

100 mmol
10 mmol
10 mmol

100 mmol

K+

Na+

Cl-

A-

10 mmol
100 mmol
110 mmol

K+

Na+

Cl-

220 mosm

v
(-) (+)

(a) Membrane without K+-channel

+
+

+

+
++++

+
+

+
+

+

+
+ + + +

+

+
+

v
(-) (+)

-
-

-

-
-

-
-

-
-

- - - - -

-
-

K+ channel

100 mmol
10 mmol
10 mmol

100 mmol

K+

Na+

Cl-

A-

10 mmol
100 mmol
110 mmol

K+

Na+

Cl-

Osmotic/electrical
forces

(b) Added K+-channel

Figure 2.6: Ion compositions in intra- and extracellular space and with closed
(a) and opened (b) selectively permeable ion channel. See Section 2.2.1 for a
description. Adapted from [Kan+12].

We continue with a description of the spiking neural network
models this thesis is based on in Section 2.3, but before, in Section 2.2,
we quickly explore their biological basis.

2 .2 biophysical neuron model

Biological observations of neuronal behaviour have (amongst others)
been captured in the biophysically meaningful Hodgkin-Huxley (HH)
neuron model, introduced in 1952 [HH52]. It builds the basis of most
simplified spiking neural network models in neuroinformatics. In the
remainder of this section we discuss the relevant parts of this model.

2 .2 .1 Passive electrophysiological properties of the neuron membrane

The electrical properties of a single neuron are caused by a different ion Ions in the intra-/extracel-
lular fluid which usually
play a role in neurobiolog-
ical processes are: sodium
ions Na+, chloride Cl−,
potassium ions K+, cal-
cium ions Ca2+, as well as
negatively charged amino
acids A−.

compositions in intra- and extracellular fluid, and selectively perme-
able ion channels in the cell membrane. When measuring the electrical
potential between the intra- and extracellular space – the membrane
potential u – of an inactive neuron, one finds the intracellular space
being more negatively charged than the extracellular space [Kan+12].
This particular voltage is called the resting or leak potential EL.

An examination yields differences in the intra- and extracellu-
lar fluid ion-composition, with the intracellular composition being
maintained by ion pumps in the cell membrane. However, seemingly
contradictory to the previous result, both fluids are electrically neutral
and have the same osmotic concentration. Only if the membrane was
a perfect insulator – as assumed in Figure 2.6(a) –, there would be no
measurable potential.

11

background and related work

Eeq

gK+

EK+

gNa+

ENa+

gCl−

ECl−

Cm u(t)

Figure 2.7: Model equivalent circuit diagram of the neuron membrane for
three ion channels. The potential that can be measured across the terminals
on the left (without the capacitor) corresponds to the equilibrium potential as
described in equation Equation (2.4). Introducing a capacitor (dashed) with
capacitance Cm transforms the circuit into the time-dynamic neuron base
model in Equation (2.5).

Experiments show, that the membrane contains selectively per-The number of ions in-
volved in the generation

of the equilibrium poten-
tial is negligibly small

compared to the total num-
ber of ions in the cell.

meable ion channels. In its resting state, the membrane is mostly
permeable for potassium ions K+. Due to the difference between intra-
and extracellular ion concentration, an osmotic force causes K+ to flow
out of the cell. The total ionic current is proportional to the number
channels in the membrane, or its permeability for K+. Missing K+ cause
the intracellular fluid to become slightly negatively charged, creating
a countering electric force on the positively charged ions. As sketched
in Figure 2.6(b), the system converges towards an equilibrium state
with potential EEq in which osmotic and electric force are equal.

Consider the equilibrium potential EI for a membrane that is
permeable for an ion species I only. We refer to EI as the reversal
potential for I : its ionic current reverses at this potential. For intra- and
extracellular ion concentrations [I]in and [I]out, EI is given according
to the Nernst equation as

EI =
R · T
z · F · ln

(
[I]out

[I]in

)
, (2.3)

where R is the ideal gas constant, T the temperature in Kelvin, F Fara-
day’s constant, and z the ion charge in elementary charges [Kan+12].
Given the (relative) permeabilities or conductances gI of the cell mem-
brane for each ion species I , the equilibrium potential Eeq can be
calculated according to the Goldman–Hodgkin–Katz equation as

Eeq =
∑I gI · EI

∑I gI
=

∑I gI · EI
gtot

. (2.4)

The behaviour modelled by Equation (2.4) corresponds to an electricCorrespondence between
Fig. 2.7 and Eq. (2.4)

can be easily shown us-
ing Kirchhoff’s laws.

circuit, consisting of parallel voltage sources with voltage EI and a
series resistor with conductance gI for each ion channel (Figure 2.7).

Due to inertia in the system, the membrane potential adapts slowly
to any change, for example changes in the ion channel permeabilities.

12

2 .2 biophysical neuron model

0.00 0.05 0.10

Time t [s]

−0.08

−0.04

0.00

0.04

0.08
M

em
br

an
e

po
te

nt
ia

lu
(t

)
[V

]

Eeq

ECl−

ENa+

EK+

gK+ = 0.05 µS

0.00 0.05 0.10

Time t [s]

−0.08

−0.04

0.00

0.04

0.08

M
em

br
an

e
po

te
nt

ia
lu

(t
)

[V
]

Eeq

ECl−

ENa+

EK+

gK+ = 0.05 µS
gNa+ = 0.3 µS

0.00 0.05 0.10

Time t [s]

−0.08

−0.04

0.00

0.04

0.08

M
em

br
an

e
po

te
nt

ia
lu

(t
)

[V
]

Eeq
ECl−

ENa+

EK+

gK+ = 0.05 µS
gCl− = 0.1 µS

0.00 0.05 0.10

Time t [s]

−0.08

−0.04

0.00

0.04

0.08

M
em

br
an

e
po

te
nt

ia
lu

(t
)

[V
]

Eeq

ECl−

ENa+

EK+

gK+ = 0.05 µS
gNa+ = 0.05 µS
gCl− = 0.05 µS

Figure 2.8: Membrane potential over time for varying membrane con-
ductances, according to Equation (2.5). The reversal potentials are set to
EK+ = −88 mV, ENa+ = 61 mV and ECl− = −60 mV, the membrane capaci-
tance Cm to 1 nF.

As depicted in Figure 2.7, this time-dynamic can be modelled by
adding a capacitor with capacitance Cm – the membrane capacitance –
in parallel to the equivalent circuit.

The time differential of the voltage across the capacitor u̇(t) is By convention, positive
currents i(t) drive the
membrane potential to-
wards more negative val-
ues, negative currents
towards more positive
values.

proportional to the current i(t), which in turn is proportional to the
difference u(t)− Eeq. Hence, the circuit can be described as a linear
differential equation

−Cm · u̇(t) = i(t) = gtot · (u(t)− Eeq) = ∑I gI · (u(t)− EI) . (2.5)

Figure 2.8 shows the system for varying u0 and different membrane
conductances. In all four plots the membrane is always slightly per-
meable for potassium ions K+. If the membrane is not permeable for
any other ion, this causes u(t) to slowly converge towards EK+ . The
velocity of the convergence is proportional to gtot. Permeability for
chloride or sodium ions pulls u(t) towards their reversal potential.

13

background and related work

0 2 4 6 8 10

Time t [ms]

−100

−80

−60

−40

−20

0

20

40

60

80

M
em

br
an

e
po

te
nt

ia
lu
(t
)

[m
V

]

ECl−

ENa+

EK+

u(0) =−80 mV u(0) =−61 mV u(0) =−60 mV

Refractory period
Resting state

"Spike"

Hyperpolarisation

Depolarisation

Repolarisation

Figure 2.9: Annotated sketch of an action potential as produced by the
Hodgkin-Huxley (HH) model. The membrane potential of three neurons is
clamped to certain membrane potentials u(t) at t = 0. If a certain threshold
potential is reached, the neuron generates an action potential; below this
potential behaviour similar to a passive membrane can be observed.

2 .2 .2 Action potentials

A passive cell membrane is not sufficient to explain action potentials
and thus lacks an integral part of spiking neural networks – the spikes.
As soon as the neuron membrane potential surpasses a certain thresh-
old ETh, the neuron will suddenly depolarise up to a value Espike,
followed by a decrease below the resting potential EL (hyperpolarisa-
tion) to the reset potential Ereset. The neuron stays close to the reset
potential for a certain time span (known as “refractory period”), until
the membrane potential again converges towards EL (Figure 2.9).

Mechanistically, this behaviour is produced by voltage-gated sodiumIon channels are binary:
they can either be open

or closed – the HH model
therefore describes the ion

channel state probabilis-
tically over a population
of channels as three state

variables in addition to
the membrane potential.

and potassium ion channels (Na+, K+): the probability of open Na+

channels increases with the membrane potential, causing a positive
feedback loop and a depolarisation of the membrane up to Espike.
Meanwhile, the voltage-gated channels for K+ open with the same
mechanism, albeit a little slower, and the Na+ channels transition
into a closed and deactivated state, causing the sudden re- and hy-
perpolarisation. Facilitated by the hyperpolarisation the Na+ and K+

channels reset to their initial state, allowing the generation of new
action potentials [Kan+12].

An evolutionary (ultimate) explanation of action potentials is their
suitability for signal propagation along the axon. As the neuron mem-
brane is neither a perfect insulator nor the intracellular fluid a good
conductor, pure electric signals are dampened with increasing spa-

14

2 .2 biophysical neuron model

Axon terminal

Synaptic cleft

Dendrite

Synaptic vesicle

Voltage-gated
ion channel

Receptor

Neurotransmitter

Neurotransmitter
transporter

PRESYNAPTIC
NEURON

POSTSYNAPTIC
NEURON
POSTSYNAPTIC
NEURON

Figure 2.10: Chemical synapse, adapted from https://commons.wikimedia.
org/wiki/File:SynapseSchematic_en.svg. See text for description.

tial distance. “All-or-none” spikes on the other hand allow constant Spiking signals in biol-
ogy can be explained with
similar rationale as digital
representations in com-
puters: discrete signals
can recover from noise
without information loss,
whereas analogue signals
are irrecoverably altered.

signal renewal without information loss: as depicted in Figure 2.3,
portions of the axon are insulated with Myelin (decreasing the leak-
conductance and thus the potential gradient), allowing fast but lossy
electrical propagation of the signal. The Myelin sheath is regularly
interrupted by Nodes of Ranvier, where the neuronal ion-channel action
potential generation mechanism renews the action potential [Kan+12].

2 .2 .3 Chemical synapses

As already mentioned in the discussion of artificial neural network
models (Section 2.1), synapses are the basis for inter-neuron commu-
nication and thus neural networks. There are two types of biological
synapses: electrical synapses, which allow for a direct exchange of
intracellular fluid, and the more common chemical synapses, sketched
in Figure 2.10 and described in the following. If an action potential
arrives at the axon terminal of the presynaptic neuron, vesicles con-
taining a neurotransmitter fuse with the cell membrane and release
the transmitter into the synaptic cleft. The transmitter then docks onto
receptors located at the dendrites of the postsynaptic neuron, where
they – depending on the configuration of the dendritic part of the
synapse – trigger the opening or closing of ion channels and either
excite or inhibit the neuron (pull the membrane towards more positive
or negative potentials) [Kan+12].

Compared to the spike transmission along the axon, the delay oc-
curring at the synapse is rather large. The release of a neurotransmitter
furthermore low-pass filters the incoming spikes, stretching their effect
over longer time-periods.

15

https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg
https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg

background and related work

(a) tonic
spiking

(b) phasic
spiking

(c) tonic
bursting

(d) phasic
bursting

(e) mixed mode (f) spike frequency
adaptation

(g) Class 1
excitable

(h) Class 2
excitable

(i) spike latency (j) subthreshold
oscillations

(k) resonator (l) integrator

(m) rebound
spike

(n) rebound
burst

(o) threshold
variability

(p) bistability

(q) depolarising
after potentials

(r) accomodation (s) inhibition
induced spiking

(t) inhibition
induced bursting

input current

membrane potential
over time u(t)

DAP

Figure 2.11: Sketches of spiking neuron behavioural patterns. Each subgraph
shows membrane potential u(t) and input current Isyn(t) over time. See
[Izh04] for more information. Electronic version of the figure and reproduc-
tion permissions are freely available at http://www.izhikevich.com/.

2 .3 simplified neuron and synapse models

The previous sections sketched two extremes: the biophysically mean-
ingful Hodgkin-Huxley (HH) model, and the simplistic firing-rate
neuron models used in machine learning. While it is surely possible
to use the HH model as the underlying neuron model for artificial
spiking neural networks, its evaluation is computationally expensive
[Izh04] and mathematical analysis is complicated due to its intricate
dynamics.

16

http://www.izhikevich.com/

2 .3 simplified neuron and synapse models

To overcome these limitations, less complex neuron models have As discussed in [Izh04],
the HH model requires up
to two magnitudes more
floating point operations
for the same timespan as
comparably expressive, but
simpler models.

been developed. However, their reduced complexity often comes at
the cost of reduced expressiveness: Figure 2.11 shows the variety of
neuron behaviours observed in biological neurons that – given the
correct neuron parameters – can be described with the HH model. Yet,
the simplest neuron models only support basic modes of operation
(e. g. “tonic spiking”). In the remainder of this section we introduce the
synapse and neuron models used on the HBP neuromorphic hardware
platforms, list their parameters, and discuss their expressiveness. More
information on spiking neuron models can be found in [GK02].

2 .3 .1 Neuron model base equation

The representation of the cell membrane as a capacitor with capacitance A summary of the relevant
neuron model parameters
is given in Table 2.1 on
page 23.

Cm is the conceptual basis of most spiking neuron models. Over time
the capacitor is charged and discharged by two currents: the intrinsic
channel current Ichan(u, t), corresponding to the sum of ionic currents
through the ion channels, and the synaptic – or external – current
Isyn(u, t) modelling the ionic currents in the synapses as response to
external input

−Cm · u̇(t) = i(t) = Ichan (u(t), t) + Isyn (u(t), t) . (2.6)

The form of the channel current Ichan depends on the concrete neuron
model, whereas the synaptic current Isyn is determined by the synapse
model.

2 .3 .2 Synapse models

Generally, the synaptic current Isyn is the sum of currents induced by The synapse model is usu-
ally independent of the
neuron model – synapses
are solely a biologically
inspired way to inject a
current into a neuron.
However, the boundaries
will become fuzzy as we
introduce excitatory and
inhibitory synapses.

all synapses of a neuron (the number of synapses equals the fan-in of
the neuron in the network)

Isyn(u, t) = ∑
k

Ik
syn(u, t) . (2.7)

The current Ik
syn caused by each individual synapse k is determined by

the internal synapse state. This state is modified whenever the synapse
receives a pre-synaptic spike and steadily converges to a resting value.
The amplitude of the modification depends on the synapse weight wk.
The physical unit of wk depends on the synapse model. Two synapse
models are common: current-based and conductance-based synapses.

Current based synapses with exponential decay Synapses of this
type do not possess additional state variables – their sole state is the
current Ik

syn itself. This model is particularly interesting as Ik
syn does not

depend on u, which in some cases enables fully analytical solutions of
the differential in Equation (2.6). Whenever an input spike is received

17

background and related work

at time t, the current is increased by wk (in ampere). The synaptic
current then exponentially decays to zero over time with time constant
τk, modelling the low-pass behaviour mentioned in Section 2.2.3. A
single current based synapse k can be described as

Ik
syn(t)← Ik

syn(t) + wk on spike for k at t (2.8)

−d/dt τk · Ik
syn(t) = Ik

syn(t) . (2.9)

Conductance based synapses with exponential decay This synapse
model is biologically more plausible as it models the transmitter gated
membrane channels in biological synapses to a certain extent. As it
is available on all neuromorphic hardware platforms, it is the model
of choice in this thesis. In contrast to the current based channel, each
synapse has a conductance gk as internal state. An input spike at time
t increases the conductance by wk (in siemens). As with the current
based model, the state variable decays with the synapse-specific time
constant τk.

gk(t)← gk(t) + wk on spike for k at t (2.10)

−d/dt τk · gk(t) = gk(t) (2.11)

The actual synaptic current Ik
syn depends on the state gk, the current

membrane potential u and the synaptic channel reversal potential Ek.

Ik
syn(u, t) = gk(t) · (u− Ek) (2.12)

Note that the dependency of Ik
syn on u renders finding a closed form so-

lution of the neuron differential equation impossible for any practically
useful channel current equation Ichan(u, t). An example synapse con-
ductivity trace over time with incoming pre-synaptic spikes is shown
in Figure 2.13.

2 .3 .3 Excitatory and inhibitory synapses

In theory, the reversal potential Ek and time constant τk could be chosenIn the software interfaces,
the synapse weight w

can be chosen individu-
ally per synapse. Usually,

positive w indicate exci-
tatory synapses, negative

w inhibitory synapses
(with weight |w|).

individually for each conductance based synapse. This is biologically
implausible, as the reversal potentials are defined by the fixed ion
concentration gradients for K+, Na+ and Cl−. Most simulators – in-
cluding the neuromorphic hardware systems – restrict the number
of different synapse types per neuron to two: an excitatory synapse
with parameters Ee, τe (corresponding to the Na+ ion channels), and
an inhibitory synapse with parameters Ei, τi (corresponding to the K+

ion channels).
Usually, the excitatory reversal potential is chosen as Ee ≥ ETh:

input spikes that arrive at an excitatory synapse push the membrane
potential u towards the threshold potential ETh and enable the gener-
ation of output spikes. Analogously, the inhibitory synapse reversal

18

2 .3 simplified neuron and synapse models

potential is chosen as Ei ≤ EL, allowing spikes reaching inhibitory
synapses to hyperpolarise the neuron.

The restriction of the number of synapse types simplifies the equa-
tion for Isyn: two state variables ge and gi have to be stored per neuron
and Isyn can be written as

Isyn(u, t) = ge(t) · (u− Ee) + gi(t) · (u− Ei) , (2.13)

where ge or gi are adapted according to Equation (2.10) for input spikes
reaching excitatory/inhibitory synapses. The conductances decay with
time constants τe and τi as described in Equation (2.11).

2 .3 .4 Linear integrate-and-fire neuron model

The linear integrate-and-fire (LIF) neuron model can be seen as a
minimal extension of Equation (2.6): the simulated neuron membrane
contains a leak channel with constant conductance gL, pulling the mem-
brane towards the resting potential EL. For excitatory and inhibitory
synapses as described in Section 2.3.3, the differential equation for the
membrane potential u(t) is given as

−Cm · u̇(t) = gL · (u(t)− EL) + Isyn(u(t), t) (2.14)

= gL · (u(t)− EL) + ge(t) · (u(t)− Ee) + gi(t) · (u(t)− Ei) .

The above equation does not account for spike generation and refrac- The output action po-
tential is not explicitly
formed as a spike in the
LIF model. For visuali-
sation purposes a spike
reaching up to a potential
Espike is often artificially
inserted at the threshold-
crossing.

toriness of the neuron. An output spike is generated, whenever the
membrane potential u(t) crosses a certain threshold ETh > EL. The
refractory period is modelled by tracking the last output spike time
tspike (initialised with −∞). While the condition t− tspike ≤ τref holds,
the membrane potential is clamped to the reset potential Ereset ≤ EL

tspike ← t if u(t) ≥ ETh (2.15)

u(t)← Ereset while t− tspike ≤ τref . (2.16)

The expressiveness of this model is severely limited: given a con-
stant input current Isyn(t), the model can only operate in the tonic
spiking mode (Figure 2.11). All state information is lost once an output
spike is issued and the membrane potential is reset [Izh04].

More complex behaviour such as bursting can only be realised
in conjunction with the synapse model. In combination with conduc-
tance based synapses, the LIF model is also referred to as IfCondExp
model. Despite its shortcomings the model is extensively used in spik-
ing neural network simulations. Furthermore, it is supported by all
neuromorphic hardware platforms in the Human Brain Project (HBP).

2 .3 .5 Non-linear integrate-and-fire models

The LIF neuron model has a severe instability in its dynamics: for
EL < u < ETh, given Isyn = 0, the differential u̇(u) in Equation (2.14)

19

background and related work

(a) LIF model (b) QIF model (c) EIF model

Figure 2.12: Sketch of one dimensional integrate-and-fire model bifurcation
patterns. The three graphs show u̇(u) and the stationary points u̇(u) = 0 for
non-zero Isyn. Filled circles indicate stable stationary points, unfilled circles
unstable stationary points. The reset mechanism is indicated by the unfilled
box at u = ETh and the dashed arrow pointing back at u. The dotted grey
lines show the same graph with a different choice for Isyn. Inspired by [Izh07].

evaluates to u̇(u) < 0, even for infinitesimally small ETh− u. As shown
in Figure 2.12(a), it is only once u reaches ETh that an output “spike”
is issued and the neuron is reset.

This behaviour has two major shortcomings. The model does not
produce a sharp spike-formed action potential with a sudden rise
in the membrane potential, and the biological phenomenon of spike
latency (Figure 2.11(i), [Izh04]) is not modelled: for a single short input
current pulse the neuron might not spike immediately, but with a
certain delay that decreases with the amplitude of the pulse.

Spike generation and spike latency are modelled by non-linearThe inner term in f merely
shifts and rescales the

membrane potential u,
such that EL maps to a di-
mensionless 0 and ETh to

1 (before EL is subtracted).

integrate-and-fire neurons

−Cm · u̇(t) = gL ·
(

f
(

u(t)− 2 · EL

ETh − EL

)
· (ETh − EL) + EL

)
+ Isyn ,

(2.17)

where f is some non-linear function. If f is chosen as the identity
function, Equations (2.14) and (2.17) are equivalent.

Examples for non-linear integrate-and-fire models are the quadratic
integrate-and-fire (QIF) and exponential integrate-and-fire (EIF) mod-
els: the corresponding functions f with free parameters f1, f2 are given
as

fQIF(u) = − f1 · (u− f2)
2 fEIF(u) = u− f1 · exp(u− f2) . (2.18)

As shown in Figures 2.12(b) and 2.12(c) the behaviour of these twoCare has to be taken when
performing numerical

integration of the equation,
as the non-linearity might

be numerically unstable.

models is qualitatively equivalent: as soon as u crosses a certain value
Eeff

Th, the potential is quickly pushed towards ETh. Analogously to the
LIF model, for u < Eeff

Th the membrane converges towards a stable
stationary point. Location and existence of the two stationary points
depends on the external input current Isyn.

20

2 .3 simplified neuron and synapse models

2 .3 .6 Two-dimensional Hodgkin-Huxley approximations: the AdEx model

The above integrate-and-fire neuron models are one-dimensional: their
state vector solely consists of the membrane potential u. As mentioned
at the end of Section 2.3.4, one-dimensional models cannot account for
many of the observed behavioural patterns in biological neurons, as
the neuron state u is reset along with each output spike. Surprisingly,
most of the relevant behaviour of the HH model (which has four state
variables) can be modelled with only two-dimensions.

The Izhikevich model is a well-established and computationally
cheap example of such an approximation [Izh04]. Another interesting
approximation is the multi-timescale adaptive threshold (MAT) model,
which minimally extends the LIF model with an adaptive threshold
ETh(t). Due to its linearity, the model is numerically stable and yet
very successful in approximating membrane potential traces recorded
from biological neurons [KTS09].

In this thesis we focus on the adaptive exponential integrate- The adaptation current
Ia(t) can be biologically
interpreted as a form of
habituation or short-time
plasticity [Kan+12].

and-fire (AdEx) model implemented in hardware in the HBP phys-
ical model system NM-PM1. Just as the above models, it is a two-
dimensional non-linear integrate-and-fire model which reproduces a
majority of the behavioural patterns observed in nature [BG05; GB09].
In addition to the membrane potential u(t), the AdEx model tracks an
adaptation current Ia(t), which hyperpolarises the neuron. The current
Ia(t) increases by a small constant b with every generated output spike

Ia(t)← Ia(t) + b on u(t) > ETh . (2.19)

The adaptation current Ia decays exponentially with a time constant The subthreshold adapta-
tion allows to model the
biological phenomenon of
“threshold variability”, see
Figure 2.11(o).

τa and additionally depends on the “subthreshold adaptation conduc-
tance” a ≥ 0 which controls the influence of the membrane potential
on the decay rate. For u(t) < EL the adaptation current decays faster,
while u(t) > EL prolongs the decay:

−d/dt τa · Ia(t) = Ia(t)− a · (u(t)− EL) . (2.20)

The model furthermore inherits the exponential spike genera- In the original AdEx paper
and corresponding code,
Eexp

Th is usually referred
to as ETh, and ETh is
replaced by a potential
Espike.

tion mechanism from the EIF model as described in Equations (2.17)
and (2.18). The final model equation is given as

−Cm · u̇(t) = gL · (u(t)− EL) + ITh(u(t)) + Ia(t) + Isyn(u(t), t) (2.21)

ITh(u) = gL · ∆Th · exp

(
u− Eexp

Th
∆Th

)
. (2.22)

The exponential threshold potential Eexp
Th controls the minimum mem-

brane potential u(t) at which the inner term of the exponential in
ITh(u) is positive. For larger membrane potentials an exponentially
rising current triggers an avalanche which causes the generation of an
output spike. The parameter ∆Th controls the slope of the exponential

21

background and related work

−80

−60

−40

−20

0

20

LI
F

u(
t)

[m
V

]

EL

Ee

ETh

−80

−60

−40

−20

0

20
A

dE
x

u(
t)

[m
V

]

EL

Ee

Eexp
Th

0 10 20 30 40 50 60 70 80

Time t [ms]

0.00
0.02
0.04
0.06
0.08
0.10
0.12

g E
(t

)
[µ

S]

Figure 2.13: Comparison between the LIF and AdEx neuron models. The
first two plots show the membrane potential of a LIF and an AdEx neuron,
the bottom plot the conductance of a conductance based excitatory synapse,
which receives 13 spikes in an interval of ∆t = 5 ms. Due to the adapta-
tion current, the output spike rate of the AdEx neuron decreases over time,
whereas the LIF neuron outputs spikes at a constant rate. The spike potential
at Espike = 20 mV is artificially inserted by the simulator for the LIF model,
the AdEx model intrinsically generates a spike onset.

current. While the rising spike onset is explicitly modelled, the falling
edge is not. The same reset mechanism as in the LIF model in Equa-
tion (2.16) is used, albeit the reset threshold ETh is chosen considerably
larger in the AdEx model.

Figure 2.13 depicts a comparison of the behaviour of a LIF and an
AdEx neuron with a conductance based synapse for a series of input
spikes with equidistant timing. As a result of the adaptation current
the output spike rate reduces over time.

The AdEx model can emulate the simpler LIF model by setting the
parameters a and b to zero and deactivating the exponential thresh-
old current ITh, which – depending on the implementation – can be
achieved by setting ∆Th to zero. Table 2.1 gives an overview of all
parameters in the AdEx and LIF model with conductance based exci-
tatory and inhibitory synapses.

22

2 .3 simplified neuron and synapse models

lif and adex model parameters and typical values

Potentials

description lif adex

EL Membrane leak or resting potential −65.0 −70.6 [mV]

ETh Threshold potential. If passed, the
neuron resets and issues an output
spike.

−50.0 −40.0 [mV]

Ereset Reset potential. Potential the mem-
brane is reset to during the refractory
period.

−65.0 −70.6 [mV]

� Ee Excitatory synapse reversal potential 0.0 0.0 [mV]

� Ei Inhibitory synapse reversal potential −70.0 −80.0 [mV]

Time constants

description lif adex

τref Duration of the refractory state 0.1 0.1 [ms]

� τe Excitatory synapse time constant 5.0 5.0 [ms]

� τi Inhibitory synapse time constant 5.0 5.0 [ms]

Membrane parameters

description lif adex

Cm Membrane capacitance 1.0 0.281 [nF]

gL Membrane leak conductance 0.05 0.03 [µS]

τm Membrane time constant
(τm = Cm/gL)

20.0 9.37 [ms]

AdEx adaptation and exponential current mechanism

description lif adex

◦ a Subthreshold adaptation / 4.0 [nS]

◦ b Spike-triggered adaptation current / 0.08 [nA]

◦ τa Adaptation current time constant / 144.0 [ms]

◦ Eexp
Th Exponential threshold potential / −50.4 [mV]

◦ ∆Th Exponential current slope / 2.0 [mV]

State variables

description lif adex

u(t) Membrane potential / / [V]

◦ Ia(t) Adaptation current / / [A]

� ge(t) Excitatory channel conductance / / [S]

� gi(t) Inhibitory channel conductance / / [S]

Table 2.1: Parameters of the LIF and AdEx neuron models and state variables
in conjunction with excitatory and inhibitory conductance based synapses.
The typical values reflect the biologically motivated default parameters in
PyNN 0.8. ◦ Only available in the AdExp model. � Synapse parameters.

23

background and related work

2 .4 neuromorphic hardware

Biological spiking neural networks, including the human brain, are
asynchronous, distributed, extremely parallel and stochastic. Classical
digital computers on the other hand are synchronous, centralised, of
limited parallelism and deterministic. They are conceivably ill-suited
for time and energy efficient simulation of large-scale spiking neural
networks. The term neuromorphic hardware refers to systems which
trade the versatility of general purpose computers with the architec-
tural properties of central nervous systems and are specifically devel-
oped for a certain range of neural network models. Neural networks
have been predominantly implemented in hardware in the 1950s and
1960s, when no powerful general purpose computers were available,
see for example [HMW60; WH60]. However, no system for brain-scale
networks has been developed to date.

Providing such neuromorphic hardware platforms is a central aimThe description of the
hardware systems in
this chapter follows

their specification, com-
ments regarding the cur-
rent state of the systems

at the time of writing
are given in Chapter 5.

of the HBP. Here, two complementary approaches are pursued. The
physical model NM-PM1 simulates individual neurons and synapses
as analogue physical model circuits. Conversely, the fully digital
many-core system NM-MC1 consists of a vast number of conven-
tional microprocessors, each of which simulates a small number of
neurons. In both systems spikes are propagated over a digital, packet
based, asynchronous and potentially unreliable communication net-
work [Hum15c]. In this section we describe NM-MC1, NM-PM1, its
single-chip predecessor “Spikey” and the software stack provided to
the end-user.

2 .4 .1 NM-MC1: The many-core system

The neuromorphic many-core system NM-MC1 is developed at the
University of Manchester and based on the SpiNNaker chip, a multi-
processor designed for real-time simulation of spiking neural networks
[Hum15c]. Each chip contains up to 18 ARM968 processors running
at a nominal frequency of 180 MHz, with one processor dedicated to
management purposes. Each processor has access to 32 KiB of instruc-
tion memory and 64 KiB data memory, while each chip connects to
128 MiB of external DDR SDRAM. Additionally, SpiNNaker features
six bidirectional inter-chip communication links with integrated router
used to exchange spike events over the network of chips during sim-
ulation. NM-MC1 consists of boards with 48 SpiNNaker chips each,
organised in a torus network topology. NM-MC1 will eventually con-
sist of ten cabinets with 120 boards each, resulting in a maximum of
979 200 processors for neural network simulation [Pai+13; Fur+13].

The system is theoretically capable of running any neuron model.
However, the processors do not feature a floating-point unit, so in or-
der to avoid the overhead of a software floating-point implementation,

24

2 .4 neuromorphic hardware

input signal

Wafer Reticle HICANN

neuron circuits (256)
synapse arrays (256x224)

output signal

Figure 2.14: NM-PM1 wafer high level architecture overview. A single wafer
in the NM-PM1 system consists of 384 HICANN chips, organised in reticles.
A HICANN consists of two analogue blocks, each built of a synapse array
and a neuron circuit. Each HICANN is connected to an on-chip network,
organised in horizontal buses (blue) receiving neuron output, and vertical
buses (red) transmitting input signals to the synapse drivers. Adapted from
[Pet+14].

the neuron time dynamics are simulated with fixed-point arithmetic.
As NM-MC1 is designed for the execution of spiking neural networks
at biological timescale, the number of neurons per core varies with
the computational complexity of the model. The system supports the
LIF model with both conductance and current based synapses, as well
as the Izhikevich neuron model [Hum15c; Izh04]. Algorithmically,
the LIF neuron dynamics are integrated using the Euler method at
1 ms timestep with 32-bit intermediate fixed-point values and 16-bit
fixed-point parameter storage, allowing up to 256 LIF neurons with
conductance based synapses in a single core [Ras+10]. Correspond-
ingly, NM-MC1 can simulate up to 250 million neurons, which is two
orders of magnitude smaller than the estimated number of neurons in
the human cortex [BS13].

2 .4 .2 NM-PM1: The physical model

The neuromorphic physical model NM-PM1 is developed at the Kirch- Research on HICANN and
NM-PM1 originated in
the European FACETS and
BrainScaleS projects and
is now continued in the
HBP.

hoff Institute for Physics at Heidelberg University. NM-PM1 is built
around the mixed-signal HICANN (High Input Count Analogue Neu-
ral Network) chip. Each HICANN consists of two blocks, each hosting
256 analogue neuron circuits and a 224 × 256 matrix of analogue
synapse circuits. Adjacent rows in the synapse matrix receive exter-
nal input via synapse drivers (112 per block), which are connected to

25

background and related work

a digital on-chip communication network. To provide neurons with
variable synapse count, up to 64 physical neuron circuits can be joined
to form a logical neuron, allowing up to 14 336 synapses per logical
neuron at the cost of reducing the number of logical neurons per block
to a minimum of four. Each synapse can store a 4-bit weight. Synapse
rows can be combined in order to achieve a higher weight resolution.

The analogue circuits on the chip emulate the dynamics of the
AdEx and LIF models with excitatory and inhibitory conductance
based synapses. Due to the analogue implementation it is important to
distinguish model and hardware parameters: individual hardware pa-
rameters are mostly configured as voltages in analogue floating gates.
The biological model parameters must be mapped onto these hardware
parameters, taking calibration values for the individual circuits into
account. As each neuron circuit can only be configured to use one ofAlternatively, the speedup

factor can specified by
the user, but then only

limited choices regarding
the membrane capaci-
tance Cm are possible.

two membrane capacitances, the mapping process must not only adapt
the model membrane potentials, currents, and conductivities to their
hardware voltage representation, but also rescale the time constants to
match the model membrane capacitance Cm. This results in a speedup
factor between 103 and 105 compared to biological timescale.

Apart from the 105 speedup factor, another salient property of NM-
PM1 is its wafer-scale integration: instead of separating the individual
HICANN chips from their silicon wafer after manufacturing, the wafer
is left intact. Connections between the largest lithographic units – the
reticles – are layered onto the wafer in a post-processing step. The
wafer-scale approach is feasible, as errors in the analogue circuitry are
tolerable (as they are in biological systems) and can be marked as suchWhile impressive, the

number of neurons in
NM-PM1 is still four

magnitudes smaller than
the estimated number
of neurons in the hu-

man brain, but already
close to the size of a

mouse cortex [BS13].

in software. Each wafer comprises 384 HICANNs, summing up to a
theoretical maximum of 1 966 080 neurons and 44 million synapses
[Pet+14]. An overview of the organisational topology is depicted in
Figure 2.14. In its final stage, NM-PM1 is planned to consist of 20
wafer systems, resulting in a total of 3.9 million neurons [Hum15c].
The executable system specification (ESS) allows to simulate parts of
NM-PM1 without access to the actual hardware [Brü+11].

2 .4 .3 Spikey

The Spikey analogue neuromorphic hardware system (Figure 1.1) has
been developed as part of the FACETS project at the University of
Heidelberg. As a predecessor to HICANN, the single Spikey chip in
the system offers a speedup factor of 10 000 compared to biological
timescale, and 384 analogue neurons, split into two blocks of 192 neu-
rons each. Each neuron implements a limited LIF model and connects
to 256 configurable analogue synapses with 4-bit weight resolution.
Synapses are organised in 256 lines per block, with each line passing
inputs from external or internal sources to the synapses. The neuron
parameters τref and gL can be chosen per neuron, all other neuron
parameters are shared by groups of 96 neurons [Pfe+13].

26

2 .4 neuromorphic hardware

Network description

sPyNNakerPyHMFSpikey PyNN

ESS NM-PM1 NM-MC1Spikey NEST

PyNN
populations, neurons,

spike sources, connections
voltage traces,
spike times

Analysis

user-provided software PyNN implementations backends

Figure 2.15: Neuromorphic hardware system software stack and data flow.
Users provide a network description to PyNN and request the recording of
certain variables. Implementations of the PyNN API (blue) then communicate
with the backend specific software (red). An interface for NEST is directly
included in PyNN.

2 .4 .4 Software stack

Usually, neuromorphic hardware platforms, their emulators, and soft-
ware simulators come with a native software interface specifically
tailored to the system. For neuromorphic hardware, the backends map
the network graph onto the neuromorphic substrate (place-and-route),
convert the abstract neuron model parameters to concrete hardware
parameters and perform the necessary communication tasks.

While the platform-provided libraries allow users to exploit spe-
cific platform features, their variety hinders the development of cross-
platform network simulations, as each platform has to be targeted
individually. To overcome this limitation, an API with the name PyNN
is developed as part of HBP [Dav+08]. As shown in Figure 2.15, PyNN
specifies a common software interface that allows to construct spiking
neural network graphs, inject spike sources and flag neuron spike
times and membrane potentials for recording. The individual develop-
ers of the hardware or software simulators provide an implementation
of the PyNN interface that communicates with the corresponding back-
end. This allows code written on top the PyNN framework to run on
arbitrary platforms, as long as it provides the required neuron models
and the parameters are in the supported range.

Platforms targeted in this thesis via PyNN are Spikey, NM-PM1
and its emulation ESS, NM-MC1 and the software simulator NEST.
NEST is developed at the Forschungszentrum Jülich as part of the
research on large scale simulation of brain models on conventional
high performance computing platforms in the HBP [GD07]. By design,
NEST is the most versatile and mathematically exact of the targeted
platforms and acts as a reference system in this thesis.

27

background and related work

(a) (b) (c) (d) (e)

Figure 2.16: Example of pattern completion with a Hopfield associative
memory. Column (a) shows 64× 64 1-bit images encoded as 4096-dimensional
column vectors ~xk. When presenting random 30% of the original image as
clue ~x to the memory (column (b)), it iteratively completes the patterns
((c)-(e)). Interference with four other stored images (not shown here) causes
imperfect reproduction of the originals. The experiment is repeated with a
BiNAM in Figure 2.20 (where all patterns are shown).

2 .5 the willshaw associative memory model (binam)

Along with artificial neural networks, technical implementations of
associative memories have been researched since the middle of the last
century, whereas the study of “associations” itself dates back to the
ancient Greece philosopher Aristotle [War16]. From our intuition it
seems to be obvious that associations are an integral part of cognition:
our brain constantly associates sensory input with internal states, such
as feelings and memories, even if the two associated items are only
connected remotely: consider the association of the smell of dry wood
with the feeling of warmth at a fireplace. Of course, associations do
not solely occur as a response to sensory input. Instead, they also
play an important role in internal reasoning: often our mind follows
a sequential chain of associations from one thought to the next until
it suddenly “snaps” to the missing piece we have been searching for
[Pal13].

Artificial associative memories aim at being high-level abstractions
of the above concepts and merely touch the question on how associ-
ations actually work in human cognition. On the other hand, many

28

2 .5 the willshaw associative memory model (binam)

associative memory models are implementable as neural networks and
could be useful building blocks in artificial brain models. This section
gives a quick conceptual overview of artificial associative memories
and continues with a thorough description of the Willshaw model, its
properties and implementation as a first-generation neural network.

2 .5 .1 Artificial associative memory models

Artificial associative memory models usually feature two phases: a
training phase in which input vectors ~xk and the corresponding asso-
ciation ~yk are presented to the model. In the recall phase an arbitrary
input vector ~x is fed into the system. In the optimal case the memory
responds with the previously trained ~yk corresponding to the trained
input ~xk to which ~x is closest according to a dissimilarity measure ð

f (~x) = ~yk where k = arg min
k

ð(~xk,~x) . (2.23)

This concept resembles content addressed memory: data is not ac-
cessed by a physical address but by data itself, comparable to a hash
map in computer science [Koh12]. Associative memories should also
be clearly distinguished from function approximation in machine
learning: the goal of associative memories is not to learn a generalised,
continuous mapping between ~x and ~y, but to respond with one of the
explicitly trained output vectors ~yk.

We distinguish two operational modes for associative memories:
auto-association, in which~xk = ~yk for all samples k, and hetero-association,
for which this equality is not presumed. As shown in Figure 2.16, auto-
association can be interpreted as pattern-completion: given an altered
(noisy) clue ~x of a previously trained vector ~xk, the output of the mem-
ory converges towards a state resembling the original ~xk. Conversely,
hetero-associations can be interpreted as semantic links between input
~xk and output ~yk [Pal13].

Hopfield networks, proposed in 1982, are one of the most famous
associative memory models: they consist of a fully-connected network
of McCulloch-Pitts cells (Section 2.1.1) and operate on binary input
and output vectors. During training, the synaptic weights wij are set
according to the Hebbian learning rule [Heb05]. A connection between
neuron i and j with i 6= j is set to wij = 1 if (~xk)i positively correlates
with (~yk)j. Otherwise wij is set to wij = −1

wij = sgn

(
∑

k

(
(~xk)i − 1

2

)
·
(
(~yk)j − 1

2

))
. (2.24)

With this correlation based training scheme, the recurrent, fully-con-
nected network acts as a dynamical system with the trained output
vector imprinted as attractors [Hop82; Hop07]. Given an initial state ~x,
the network is likely to converge to the trained output ~yk (Figure 2.16).

29

background and related work

k

k
5
4
3
2

5 4 3 2 1
0
1
0
1
0
0
0
0

1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0
1 0 1 0 0 0 0 0 0 1

0
0
0
1
0
0
1
0

0
0
1
0
0
0
0
1

0
1
0
0
0
0
0
1

1
0
0
0
1
0
0
0

1 0 1 0 0 0 0 0 0 1
1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1 0 1
1 1 0 0 1 0 1 0 1 0
1 1 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 1 1

Figure 2.17: Example of a 8× 10 storage matrix M after five samples (~xk,~yk)
with c = 2 ones in each input vector and d = 3 ones in each output vector
have been trained according to Equation (2.27). The dotted lines connect
input and output pairs.

2 .5 .2 Formal description of the Willshaw model

In contrast to Hopfield networks, the basic Willshaw associative mem-The output of the memory
can of course be fed back to
its input, which would re-

sult in a dynamical system
and cause lots of fascinat-
ing behaviour. This is out

of scope for this thesis.

ory model, or Binary Neural Associative Memory (BiNAM), does not
describe a dynamical system. The model can be traced back to a paper
by Steinbuch in 1961 [Ste61] and was independently described in 1969
by Willshaw et. al. as a parallel, non-local and fault-tolerant associative
network [WBL69]. It was further formalised and analysed by Palm
[Pal80]. Extensions of the model – especially for spiking networks –
have, amongst others, been proposed by Knoblauch [Kno03; Kno+14].
Yet, as expounded in the introduction, we stick to the basic model.

Mathematically a BiNAM can be defined as a binary storage matrix
M ∈ Bm×n, where B = {0, 1} is the base set of Boolean algebra, m
is the dimensionality of the binary input vector ~x ∈ Bm and n is the
dimensionality of the output vector ~y ∈ Bn.

Training When training an association between an input ~xk and
output ~yk, the storage matrix M is updated to a new M′

M′ = M ∨
(
~xk ·~y>k

)
, (2.25)

where “∨” is the element-wise “OR”-operation from standard BooleanThe condition ~xk = ~x`
⇔ k = ` ensures unique
input vectors: while it is
possible for multiple ~x to

map to the same ~y, it is
prohibited for identical
~x to map to multiple ~y.

algebra. If a set of N samples (~xk,~yk)

D = {(~xk,~yk) | k ∈ {1, . . . , N}} with ~xk = ~x` ⇔ k = ` (2.26)

is given in advance, a pre-calculated storage matrix M can be obtained
according to the following expression (Figure 2.17)

M =
N∨

j=1

~xj ·~y>j . (2.27)

30

2 .5 the willshaw associative memory model (binam)

5
4
3
2
1 0 1 0 1 0 0 0 0 2 2 0 0 2 0 1 0 2 0

1 2 0 0 1 0 2 0 2 0
0 1 0 2 0 1 0 2 1 2
1 2 0 1 1 2 0 1 2 1
2 1 2 0 0 1 0 0 1 2

0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 0 1
1 1 0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1 0 1
1 1 0 0 1 0 1 0 1 0
1 1 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 1 1k

Figure 2.18: Recalling the values associated to the ~xk previously trained
in Figure 2.17. The lower-right quadrant shows the intermediate results
ỹ>k = ~x>k · M before applying the threshold function Θc. Bold numbers
correspond to those values that would be set to one in the final output, the
grey backdrop signals a false-positive. The dotted lines connect rows in M
with their corresponding factors in the input data used when performing the
vector-matrix multiplication.

In this thesis we assume that such a pre-calculated storage matrix M is Generation of data D as
used in the experiments
conducted in this thesis
is discussed in detail in
Section 3.3.

already available – we do not try to implement online training of the
network. Additionally, and though not required for the operation of
the BiNAM, analysis of the memory is simplified significantly, if the
number of bits set to “one” in both input and output vector is constant.
We denote the number of “ones” in the input vectors ‖~xk‖1 as c and
the number of “ones” in the output vectors ‖~yk‖1 as d.

Recall In the recall phase, an arbitrary input vector ~x is given. The
output of the memory ~y can then be calculated as follows

~y = Θc(ỹ) = Θc

(
(~x> ·M)>

)
with c = ‖~x‖1 =

m

∑
i=0

(~x)i = ~x> ·~x ,

(2.28)

where Θθ : Nm −→ Bm is a step function with threshold θ, which maps Although the equation for
Θθ looks fairly innocent,
its realisation is the most
crucial requirement for
an operational spiking
BiNAM implementation.

the intermediate integer results of the matrix-vector multiplication ỹ
to binary values

(Θθ(~z))i = H
(
(~z)i − θ

)
. (2.29)

Figure 2.18 shows the recall rule applied to the storage matrix M
previously trained in Figure 2.17. As demonstrated, the recalled output
of the BiNAM is not perfect. A false positive has been introduced
(highlighted in grey): a one is present in component j of the recalled
output for ~xk, although the trained (~yk)j was set to zero.

31

background and related work

2 .5 .3 Choice of the threshold θ

Until now, the choice of θ = c in Equation (2.28) has not been motivated.
Consider a BiNAM trained for a single sample (~xk,~yk). The memory
matrix is now set to M = ~xk ·~y>k . Trying to recall ~yk by placing ~xk in
Equation (2.28) yields

ỹ = (~xk ·~y>k)> ·~xk = ~yk · (~x>k ·~xk) = ~yk · c . (2.30)

Consequently, if a single sample is stored in the memory, the network
returns an exact copy of the output vector ~y scaled by c. Due to the
additive superposition caused by the “∨” in the training phase, newly
trained samples can never lower the value of a single component i in
ỹ, but only cause an increase towards the upper limit c

(ỹ)i = (M> ·~xk)i ≤ (M′> ·~xk)i ≤ (1 ·~xk)i ≤ c , (2.31)

where 1 is the matrix of “ones” and

M′ = M ∨ (~x ·~y>) for any ~x ∈ Bm,~y ∈ Bn . (2.32)

Given these considerations, adaptively setting the threshold θ to the
maximum possible value c = ‖~xk‖1, is the most sensible solution, as it
minimises the chance of a false positive – a bit in ~y being set to one
although it should be zero – and yet prevents any false negatives: all
trained ones in the output are always present (see also Section 2.5.6).

2 .5 .4 Storage capacity and sparsity

One of the defining properties of any memory is the amount of infor-
mation that can be stored in the system. We refer to this measure as
storage capacity, or – according to information theory – information or
entropy. Let us first consider the case of a conventional binary memory
matrix M of the size m× n. Given a row index k ∈ {1, . . . , m} we can
access any stored output vector ~yk. Each cell in ~yk has two possible
states, so the total number of possible ~yk is 2n, and the number of
possible matrices M is (2n)m. According to information theory, the
number of bits I needed to represent that many states is [Sha48]

I = lb((2n)m) = m · lb(2n) = m · n , (2.33)

where lb is the binary logarithm. Given our constraint ‖~yk‖1 = d, the
amount of information is given as

I = lb
((

n
d

)m)
= m · lb

(
n
d

)
. (2.34)

The same idea for the calculation of I can be applied to associativeFor auto-associative stor-
age measures see [Pal80]. memories in the hetero-association mode [Pal80]. The only important

32

2 .5 the willshaw associative memory model (binam)

0 200 400 600 800 1000

Sample count N

0

1000

2000

3000

4000

5000
In

fo
rm

at
io

n
[b

it
s]

Conventional memory information

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

To
ta

lf
al

se
po

si
ti

ve
s

[b
it

s]

Maximum false positives

Conventional
memory sample
count

Figure 2.19: BiNAM information and false positive count over number of
trained samples. Data size is m = n = 96, with c = d = 8. The optimal
sample count is N = 172 with I = 4859. For a conventional memory the same
measures are N = 96 and I = 3 547.

difference between conventional and associative memories is the in-
dexing scheme: output vectors ~yk are not accessed by a row index k
but by a unique vector ~xk. In the case that all N trained samples can
be recalled perfectly, the storage capacity would be:

I = N · lb
(

n
d

)
(2.35)

However, as explained in Section 2.5.3, the probability of false positive The binomial coefficient(d + nk
fp

d

)
expresses the number of
ways in which the correct
d ones can be distributed
amongst the total number
of ones in the output.

bits in the output increases with the number of trained samples. Given
the number of false positives nk

fp for a specific sample k, the possible
number of states occupied by those wrong bits needs to be subtracted
in the information calculation:

I =
N

∑
k=1

lb
(

n
d

)
− lb

(
d + nk

fp

d

)
(2.36)

If nk
fn false negatives are present in the output for sample k (Sec-

tion 2.5.6), an adapted equation must be used [RS91]:

I =
N

∑
k=1

lb
(

n
d

)
− lb

(nk
fp + d− nk

fn

d− nk
fn

)
− lb

(n− nk
fp − d + nk

fn

nk
fn

)
(2.37)

As false positive and negative counts nk
fp and nk

fn are specific to the
stored dataset and the actual ~x used for the recall operations, the
storage capacity depends – in contrast to conventional memory – on
memory content. Figure 2.19 shows a simple experiment: a BiNAM
is trained with random data one sample at a time. After each sample
has been trained, the stored information is calculated according to
Equation (2.36), resulting in a characteristic information over sample

33

background and related work

count curve: the storage capacity I quickly increases with the numberAchieving a higher storage
capacity than conven-

tional memories can be
interpreted as intrinsic

data compression in the
BiNAM. Given the infor-
mation in the input ~x, the
~yk can be decompressed.

of stored samples N, up to a certain maximum, and then converges
to I = 0 for large sample counts. In this particular example both
the storage capacity I and the number of stored samples significantly
outperform the conventional memory.

However, this comes at a cost: for once, there is a chance of false
positives in the output (the memory is not perfect) and the high
storage capacity can only be reached if input and output vectors are
sparse: optimal performance is achieved if the number of ones c, d
are chosen logarithmic with respect to m, n. For non-sparse data the
memory matrix M converges to 1 too quickly, causing an increased
false positive count nk

fp.
Note that the above restriction does not imply that the BiNAM

will not operate properly for non-sparse data – the maximum storage
capacity and the corresponding optimal sample count will just be
smaller than that of conventional memories of the same size. An
example of dense data storage in a BiNAM is shown in Figure 2.20,
which repeats the introductory pattern completion experiment from
the beginning of this chapter with a BiNAM instead of a Hopfield
network. In contrast to the Hopfield network, the BiNAM recalls all
stored images perfectly in a single step.

Another conceptual property of the BiNAM model is that it can be
interpreted as a generalisation of a conventional memory. It gracefully
reduces to such a memory if the ~x are appointed to “column selectors”
which contain a single “one”, corresponding to c = ‖~x‖ = 1. Let,
without any loss of generality, assume that the ~xk are sorted such that
(~xk)k = 1 and N = m

M =
m∨

k=1

~xk ·~y>k = (~y1, . . .~ym)
> ⇒ M> ·~xk = ~yk . (2.38)

2 .5 .5 Neural network implementation

Since its inception, the BiNAM model has been proposed as “biolog-
ically plausible”: it can be easily implemented as a first- or second-
generation artificial neural network, and the corresponding topology
resembles certain structures in the brain [WBL69; Pal80]. Yet, before we
consider the implementation, two notes should be taken into account:
as already mentioned, our implementation is not capable of online
training. Furthermore, it does not provide dynamic threshold adapta-
tion. The impact of a fixed threshold θ is discussed in Section 2.5.6.

Due to its binary nature, the BiNAM model can be perfectly imple-Of course, the model can
also be implemented as
firing-rate network: in
this case, the threshold
function Θθ has to be

used as non-linearity f .

mented with the McCulloch-Pitts neuron model (Section 2.1.1). The
network as shown in Figure 2.21 consists of a single layer of n neurons
which receive the input signal ~x, either as external input or from a
sub-network. Each neuron corresponds to a single output component

34

2 .5 the willshaw associative memory model (binam)

(a) (b) (c) (a) (b) (c)

Figure 2.20: BiNAM pattern completion experiment with non-sparse vectors:
the binary 64 × 64 pixel images in the (a) columns are trained as 4096-
dimensional vectors ~xk. Random 30% of the “ones” in the original image are
then presented as clue ~x to the memory (b). The recalled result is shown in
(c). In this example all images are perfectly recalled by the BiNAM.

[...]

[...]

Figure 2.21: Neural network implementation of the BiNAM with McCulloch-
Pitts cells. The x1, . . . , xm correspond to the components of an input vector
~x, the y1, . . . , yn to the components of the output vector ~y. Dots in the in-
tersections between the neural input and the input components correspond
to an excitatory synapse. These are inserted for all i, j with (M)i,j = 1. The
threshold θ is fixed in this implementation.

35

background and related work

0.0 0.2 0.4 0.6 0.8 1.0

Noise p

0

1000

2000

3000

4000

5000

In
fo

rm
at

io
n

[b
it

s]

Missing bits (p0) Additional bits (p1)

Adaptive threshold Fixed threshold

0.0 0.2 0.4 0.6 0.8 1.0

Noise p

0

10

20

30

40

50

60

70

80

90

Fa
ls

e
po

si
ti

ve
s

[b
it

s]

0.0 0.2 0.4 0.6 0.8 1.0

Noise p

0

1

2

3

4

5

6

7

8

Fa
ls

e
ne

ga
ti

ve
s

[b
it

s]

Figure 2.22: Information measure and error count over noise parameters p0
and p1. A BiNAM of size m = n = 96 is trained with N = 172 samples with
c = d = 8 one-bits. The graphs show the total information and the averaged
false positive and false negative counts for the recall of all trained samples.
Addition and omission of bits are performed with probabilities p0 and p1.
The behaviour between fixed and adaptive threshold θ is compared. In the
fixed threshold case θ = m = 8.

in ~y. An excitatory synapse is added between input component i and
output neuron j if, and only if, (M)i,j = 1. The threshold θ should be
set to the average number of “ones” c in the trained input. Smaller or
larger values than c may be required if noise is present in ~x.

2 .5 .6 Impact of noise

Aside from the pattern completion example in Figure 2.20, perfect con-
ditions were assumed up to this point: the input vectors ~xk presented
to the network in the recall phase are the same as in the input data D

actually learned in the training phase. As noted above, even in this sce-
nario there is the possibility of false positives. This failure mode results

36

2 .6 summary and outlook

from the storage matrix continuously getting saturated during training.
If the “ones” in the training samples are uniformly distributed, the
memory matrix M asymptotically approaches the “ones” matrix 1

(Section 3.3.2).
There are two ways in which we can corrupt the originally trained

input vectors ~xk: by addition (additional bits are set to one) and by
omission (bits originally set to one are set to zero). In the case of
additive noise, the input vector ~x can be modelled as

(~x)i = (~xk)i ∨ η with Pr(η = 0) = 1− p1 and Pr(η = 1) = p1 , (2.39)

where p1 is the probability of an arbitrary input vector component
being set to one. In the omission (multiplicative) case, the input vector
~x can be modelled as

(~x)i = (~xk)i ∧ η with Pr(η = 0) = p0 and Pr(η = 1) = 1− p0 , (2.40)

where p0 is the probability of an arbitrary input vector component
being set to zero.

Figure 2.22 shows the impact of the two kinds of noise on storage
capacity, false positive and false negative counts. It furthermore distin-
guishes between an adaptive threshold θ = ‖~x‖1 and a fixed threshold
θ. For multiplicative noise and adaptive threshold, the information I
decreases almost linearly with p0. Counter-intuitively, the false-positive
count increases the more bits are omitted in the input. This is caused by
the missing input bits lowering the threshold θ. For a fixed threshold,
the false-positive count converges to zero with increasing p0, accom-
panied with an increase in the false-negative count. Correspondingly,
the information measure drops to zero.

Additive noise has a much stronger negative impact on the storage
capacity as its multiplicative counterpart. First of all, this is caused by
p1 and p0 not being directly comparable: due to sparsity, the probability
of adding an additional “one” to the input is higher than setting
an actual “one” to zero in the multiplicative case. If no adaptive
threshold is used, the false positive count quickly rises towards the
maximum. With adaptive threshold, the addition of input bits causes
false negatives as the increased threshold masks the correct “ones”. In
both cases the information measure I drops to zero.

To summarise the possible BiNAM failure modes: false positives
can always be produced, even without noise. False negatives occur
if input bits are missing and the threshold is not adapted (as in our
neural network implementation, Section 2.5.5), and if θ is increased
above c due to additional input bits.

2 .6 summary and outlook

This chapter provided a scenic overview of various fields of research.
We discussed neural network models, both from the view of neurobiol-
ogy and neuroinformatics, and their implementation in neuromorphic

37

background and related work

hardware. Furthermore, we have thoroughly investigated the Willshaw
associative memory and provided an implementation in the form of
an artificial, first-generation neural network.

In Chapter 3, we combine these building-blocks: we extend our
BiNAM implementation towards spiking neural networks and provide
the workflow for design space exploration. In Chapter 4, we dive back
into the details of the LIF and AdEx spiking neural network models to
find proper values for the neuron parameters listed in Table 2.1. Finally,
in Chapter 5, we pioneer into the realm of neuromorphic hardware
and boldly execute the model on platforms, on which no associative
memory has run before.

38

3S P I K I N G A S S O C I AT I V E M E M O RY
A R C H I T E C T U R E A N D T E S T I N G

The previous chapter introduced the Willshaw associative memory The spiking implemen-
tation of the Willshaw
associative memory is
no longer truly “binary”
(regarding weights and
timings). Therefore the
name “BiNAM” might be
a little misleading when
referring to spiking neu-
ral networks; however,
the same name is used in
this thesis for the sake of
consistency.

model (BiNAM) and the notion of spiking neural networks. In this
chapter we merge those two concepts: Section 3.1 describes the transi-
tion of the BiNAM architecture from a firing-rate coded to a spiking
neural network. Furthermore, to account for the spiking network time
dynamics, we specify the general testing procedure, how input and
output data are encoded as a sequence of spikes, and how noise in
the input data is parametrised in a spiking environment. Section 3.2
introduces multiple measures for the quantification of the network
performance, while Section 3.3 focuses on the generation of datasets
that can be used for network evaluation.

3 .1 neural network topology and data encoding

The most trivial way of implementing the Willshaw associative memory
model as spiking neural network is to directly employ the firing-rate
network topology introduced in Section 2.5.5: if an entry in the trained
storage matrix (M)ij is set to “one”, a synaptic connection between

Synapses

(a) Single neuron (b) Population of K = 2

Figure 3.1: Two possible implementations of a j-th BiNAM column as spiking
neural network: in (a) the network is implemented as a one-to-one translation
of the firing-rate neural network topology. In (b) each neuron is replaced by a
population of K neurons (K = 2 in this example); memory input and output
components are represented by K independent signals, y1

j , . . . , yK
j .

39

spiking associative memory architecture and testing

the neuron j in the output layer and input i in the input layer is
established. This basic topology is sketched in Figure 3.1(a). Another
possible topology is shown in Figure 3.1(b): instead of single neurons,
a population of neurons represents each output component, with input
and output being transmitted via connection bundles. This topology
is presented in detail in Section 3.1.3.

Difficulties in building a spiking neural network arise from the
time dynamics: we need to think about how input and output data are
represented as a sequence of spikes in the time domain. We consider
this problem in more detail in Sections 3.1.1 and 3.1.2.

Furthermore, synapse weights are no longer dimensionless scalars
which can be trivially mapped to the ones and zeros in M. Instead, each
synapse possesses a conductivity measured in siemens. While zeros in
M can be mapped to a synapse with zero conductivity (corresponding
to no synapse at all), the conductivity w representing a “one” in M
needs to be carefully selected.

Another problem concerns the threshold in the BiNAM recall ruleEven if we had to im-
plement a BiNAM as a

firing-rate neural network
with fixed non-linearity,

the threshold could be
easily implemented with

a sub-network trained
for this task via back-

propagation. Such a simple
training of spiking neural

networks is not possible.

from Equation (2.28): whereas the McCulloch-Pitts neuron model
provided a perfect threshold function, single neurons in a spiking
neural network do not offer such a well-behaved transfer function. The
transfer function is specified as dynamical system which can only be
affected by neuron parameter adaptation. This selection of neuron
parameters is non-trivial.

In Section 3.1.4, we discuss the neuron behaviour required for a
functioning BiNAM, given the data representation and the general
network topology from the previous sections. We could then try to
tune the neuron parameters and synapse weight w with respect to
these rules. This endeavour is the topic of the next chapter 4.

3 .1 .1 Input-/output spike sequences

Classical feed-forward firing-rate coded neural networks do not pos-
sess time-dynamics: they merely describe a mathematical function f
which maps vectorial input ~xk onto output ~yk. The network does not
possess any hidden state that may be influenced by previous compu-
tations, that is, there are no side-effects. Individual operations – for
example a recall in an associative memory – are strictly separated from
each other. When dealing with time-series of data, an evaluation of f
can usually be executed within a single simulation time step.

Spiking neural networks do not share these properties: there existsOf course, separation be-
tween individual sam-
ples could be forced by

repeatedly resetting the
simulation. Yet, this may

neither be practical (the
network state may be im-

portant), nor possible
(neuromorphic hardware).

no direct mapping between input and output; both are represented by
a stream of continuous spike times, with each spike influencing the
state of the involved neurons over time. For closed-loop operation this
asynchronicity is one of the defining properties of a spiking neural
network. For the sample based performance evaluation of our memory,
we need to group input and output spikes that belong to the same
sample (~xk,~yk). As network simulations and especially neuromorphic

40

3 .1 neural network topology and data encoding

INPUT LAYER
(Programmable spike source)

OUTPUT LAYER
(Threshold neurons)

j = 1 j = 2 j = 3 j = 4

i = 1

i = 2

i = 3

i = 4

i = 5

Figure 3.2: Test environment for the spiking implementation of a 5 × 4
BiNAM. The bold marks represent input/output spikes with examples of the
spike train nomenclature in Equation (3.1).

t = 1 t = 2 t = 3 t = 4 t = 5

i = 1
i = 2
i = 3
i = 4
j = 1
j = 2
j = 3
j = 4

t

Spikes per neuron
with index

In
pu

t
O

ut
pu

t

Discrete time-step t

Continuous time t

Output vector

Input vector

0

Classical network

Spiking network

Spike sample indices
(examples)

Figure 3.3: Conceptual comparison between the operation of a classical and
spiking neural network: the classical neural network maps between discrete
input and output vectors ~xk 7→ ~yk. Such a mapping has to be artificially
created on the input/output of a spiking network by assigning output spikes
to the closest past input spike. Dotted vertical lines indicate the first spike
belonging to a new sample.

41

spiking associative memory architecture and testing

hardware systems do not (or at least not consistently across platforms)
allow to dynamically inject spikes during runtime, the entire input
spike stream has to be assembled ahead of time and the network
output has to be matched in a post-processing step.

To describe our solution to this problem, we first need to specify
the spiking BiNAM test environment (Figure 3.2): an input layer, a
group of m programmable spike sources, emulates external input to
the network. Each source represents a single component i in ~xk and
produces a pre-programmed spike train tin

i , which can be described as
an ordered sequence of spike times tin

i,`

tin
i = (tin

i,1, tin
i,2, . . .) with tin

i,` ≤ tin
i,`′ ⇔ ` ≤ `′ . (3.1)

During test execution output spikes tout
j are recorded from the

output layer, which consists of n neurons performing the actual thresh-
olding operation. Analogously to the input spike times, tout

j,` denotes
the `-th spike for the j-th output component ~yk.

In order to assemble tin
i , input samples ~xk are converted into their

spike time representation (discussed in Section 3.1.2). Let kin
i,` denote

the sample index each spike tin
i,` belongs to. As depicted in Figure 3.3, a

simple approach for assigning output spikes tout
j,` to the sample k they

are most likely associated to, is by selecting kout
j,` as the sample index

of the latest input spike issued before tout
j,`

kout
j,` = kin

i,`′ with i, `′ = arg min
i,`′

{tout
j,` − tin

i,`′ | tout
j,` − tin

i,`′ > 0} . (3.2)

In case the network utilises the already mentioned “neuron population”-
topology from Section 3.1.3, there may be multiple neurons for a single
input/output component. For sake of simplicity regarding the above
equations, we assume that spikes from multiple neurons for the same
component j are fused into a single, virtual spike train.

Propagation of a signal through the network is usually not instanta-
neous. Thus, it can happen that an output spike is mapped to an input
spike that already belongs to a later sample. If the minimum delay ζ

between the first input and output spike of a sample is known, the
output spike train can be virtually shifted back by ζ for the calculation
of kout

j,` according to Equation (3.2)

i, `′ = arg min
i,`′

{tout
j,` − ζ − tin

i,`′ | tout
j,` − ζ − tin

i,`′ ≥ 0} . (3.3)

As shown in Figure 3.4, this potentially allows to pack input samples
tighter without risking misclassification due to output spikes already
being matched with the next sample. The technique can be used to
implement pipelining of the memory recall operations. Note however,
that due to the statefulness of the network, a higher input sample rate
will affect the output.

42

3 .1 neural network topology and data encoding

i = 1
i = 2
i = 3
i = 4
j = 1
j = 2
j = 3
j = 4

t

In
pu

t
O

ut
pu

t

0 T 2·T 3·T

i = 1
i = 2
i = 3
i = 4
j = 1
j = 2
j = 3
j = 4

t

In
pu

t
O

ut
pu

t

0 T' 2·T' 3·T'

Figure 3.4: Example of input sample pipelining: virtually shifting the output
spike times back by ζ allows higher input sample rate T′ while preserving
the spike-sample matching (colour coded). Note how the higher sample rate
affects the output.

3 .1 .2 Data encoding and input noise parametrisation

We now need to decide on how to encode a single one-bit as a time
sequence of spikes. In case the memory receives input from other
networks – or artificial test data – which follows this specification,
we expect our network to respond with another valid output spike
pattern in this encoding. A straight-forward approach is to represent
each one-bit in (~xk, ~yk) as a single spike. So in order to recall a vector
for input ~xk from the memory, we send a spike to all inputs i with
(~xk)i = 1 at a certain time t = T · k, where the constant T is the time
between two input samples. The output component (~yk)j is set to one,
if an output spike with assigned sample index kout

j,` = k exists.
We expand this data generation scheme in two ways: by represent-

ing ones with potentially more than a single spike, resulting in bursts,
and by modelling time noise, jitter, in the input.

Bursts Neurons in the cortex often operate in a phasic bursting mode
in which action potentials occur in groups of multiple spikes (Fig-
ure 3.5), henceforth called bursts [CG90]. From a theoretical point of
view signalling events using bursts has at least two advantages: they
increase the robustness in case of noise – for example if a single spike

43

spiking associative memory architecture and testing

out of multiple is lost (as it might happen in both biological and neuro-
morphic hardware systems), the information about the corresponding
event is not irrecoverably destroyed, and if false-positive single spikes
are received by a neuron, these can be filtered out [Lis97]. Secondly,
bursts allow to encode analogue values, either by variation of the spike
count or the spike frequency within the burst.

To interface with “bursting” networks our associative memory
implementation should support arbitrary integral burst sizes sin and
sout ≥ 1 chosen at design time. The network has to accept bursts of size
sin at the input, but it must also produce sout spikes for each one-bit in
the output.

When generating artificial bursts as test input, we parametrise

t

u(t)

Figure 3.5: Sketch of
a neuron membrane
potential over time

showing spikes from
a burst with decaying
interspike interval ∆t.

these with an equidistant interspike interval (ISI) ∆t. Note that this
is only a coarse model of actual data that might be encountered in
a large network, where the interspike interval may be inconsistent:
for example in the AdEx model, the interspike interval is likely to
increase over time (Section 2.3.6 and Figure 3.5). For small sin this
effect should be relatively subtle and selecting a constant ∆t as the
average interspike interval is a reasonable approximation.

On the output side, bursts imply fractional output values whenever
a number of spikes that differs from the expected burst size sout is
generated. We redefine the value of the output component (~yk)j as the
quotient of the number of actual number of spikes encountered in the
output time window, divided by the expected burst size sout

(~yk)j =
|{kout

j,` = k}|
sout . (3.4)

To cope with arbitrary “fractional bit values” in the theoretical BiNAM
storage capacity measure, we introduce an adapted version of the
corresponding storage capacity equation (2.37) in Section 3.2.1.

False negative and positive input spikes In Section 2.5.6, we dis-
cussed missing and additional one-bits in the input vectors, where the
corresponding events were modelled with probabilities p0 and p1. The
representation of one-bits as a series of sin spikes allows to insert and
remove individual spikes instead of bits. Thus p0 is used to describe
the probability of skipping a single spike from a burst representing a
“one”, while p1 describes the probability to issue a single spike from a
virtual burst when encoding a “zero”.

For large burst sizes sin the probability of an entire input burst
being removed or added is relatively small (p0 and p1 to the power of
sin). This is intentional, as the effects of entire bursts being removed and
added can be well studied within the theoretical BiNAM framework
(Section 2.5.6). For the spiking implementation we want to focus on
noise concerning individual spikes instead.

Jitter Due to the involved dynamic systems, it is implausible for spik-
ing neural networks to generate perfect timings. In order to emulate

44

3 .1 neural network topology and data encoding

t

Figure 3.6: Parametrisation of an example input spike burst of size sin = 5
with jitter as described in Equation (3.5). Bold marks correspond to the gener-
ated spike times t1, . . . , t5. The bell-shaped functions visualise the Gaussian
distributions from which the time offset µoffs

t (dashed) and the individual
spike times ti (blue) are sampled.

these imperfections, we add small time offsets, jitter, to the spikes. In Data show that cortical
neurons can reproduce
spike patters with millisec-
ond precision under labo-
ratory conditions [MS95].

our model we sample a random offset from a Gaussian distribution
with standard deviation σt for each spike time tin

i,`. Additionally, we
shift the entire burst by µoffs

t in order to model synaptic or spatial
delays. Again, µoffs

t is sampled from a Gaussian distribution with
standard deviation σoffs

t .
An input burst for the k-th sample can thus be described as a As time offsets are drawn

from a Gaussian distri-
bution, it might hold
t`−1 ≥ t`. To allow for
computationally efficient
processing, a generated
sequence of spike times
should be sorted in a soft-
ware implementation.

sequence of sin random variables (t1, . . . , tsin)

t` ∼ N
(

k · T + µoffs
t + ∆t · (`− 1), σt

)
with µoffs

t ∼ N (0, σoffs
t) . (3.5)

Note that the offset µoffs
t is not an independent random variable for

each ti. Instead, it is sampled once for all spike times ti within the
burst.

A diagram showing the involved variables is given in Figure 3.6,
along with an overview of all discussed parameters in Table 3.1 and
an algorithm for the generation of an input spike sequence for a single
input bit (~xk)i in Algorithm 3.1.

3 .1 .3 Neuron populations

Findings regarding neural codes in the cortex suggest that neuron spike The Poisson-distribution

Pλ(k) =
λk

k!
e−λ

describes the probability of
an event to occur k-times
in a certain time interval,
given its average rate is λ.

patterns can be modelled by a Poisson process [SK93]. This implies that
single spike times convey little information – the instantaneous activity
of neural circuitry can only be estimated when pooling responses from
multiple neurons. It thus seems likely that neural networks are built
redundantly, and information is encoded in the correlation of spike
patterns originating from a population of neurons [SN94].

With respect to our scenario, the following changes to the network
topology take these considerations into account: we replace each neu-

45

spiking associative memory architecture and testing

network and input/output parametrisation

Network and data parameters

m, n Number of input and output components.

c, d Number of “ones” in each input/output sample.

N Number of input samples.

K Number of neurons representing each output component.

Output data parameters

sout Output burst size: number of spikes produced by a single neuron
in an output burst which represents a “one”. For neuron popula-
tions (K > 1), each individual neuron is expected to produce this
number of spikes.

Input data parameters

sin Input burst size: number of spikes sent in an input burst to a
single neuron. For populations, each individual neuron receives
K input bursts of this size.

T Average time between input samples.

∆t Equidistant interspike interval between input spikes in a burst.

Input data noise parameters

σt Standard deviation of the Gaussian distribution the input spikes
are selected from.

σoffs
t Standard deviation of the random variable from which the spike

burst offset is chosen. Models synaptic or spatial signal delays.

p0 Probability of skipping a spike (false-negative) in an input burst
when generating a “one”.

p1 Probability of adding a superfluous (false-positive) spike from a
virtual input burst when generating a “zero”.

Table 3.1: Summary of network, input/output and input noise parameters.

ron uj with a population of K neurons u1
j , . . . , uK

j , in which each fires
a small number of sout spikes per one-bit in the output component
(~y)j. These neurons receive the same input and all output signals
y1

j , . . . , yK
j are fed in parallel to the next input. The signals are treated

as a single output yj for evaluation purposes. As the total number
of output spikes for an output component is now given as K · sout, a
relatively small burst size can be used (possibly sout = 1). Analogously
to Equation (3.4), the value of the output component j can be calculated
as

(~yk)j =
|{kout

j,` = k}|
K · sout . (3.6)

Besides biological plausibility this architecture has two other poten-
tial advantages: tuning the neuron parameters in such a way that they
produce a small number of spikes might turn out to be easier to ac-
complish than selecting neuron parameters which cause the neuron to

46

3 .1 neural network topology and data encoding

1: function GenerateInput(M, N, K, sin, T, ∆t, σt, σoffs
t , p0, p1)

2: init tin
m,k ← () ∀ m ∈ {1, . . . , M}, k ∈ {1, . . . , K}

3: for n← 1 to N do . Iterate over all samples
4: for m← 1 to m do . Iterate over all input components
5: if (~xn)m = 1 then . Set spike omission probability p
6: p← p0
7: else
8: p← 1− p1
9: end if

10: for k← 1 to K do . Iterate over all neurons in the population
11: toffs ← Normal(n · T, σoffs

t) . Select burst time offset
12: for `← 1 to sin do . Iterate over all spikes
13: if RandomSelect([0, 1))≥ p then
14: tin

m,k ← tin
m,k‖ Normal(toffs + (`− 1) · ∆t, σt)

15: kin
m,k ← kin

m,k‖n
16: end if
17: end for
18: end for
19: end for
20: end for
21: kin

m,k ← SortByKey(kin
m,k, tin

m,k) ∀m, k . Sort indices by spike times
22: tin

m,k ← Sort(tin
m,k) ∀m, k . Sort spike times

23: return tin, kin

24: end function

Algorithm 3.1: Input spike train generation algorithm. Generates the input
spike trains tin and indices kin for all neurons according to the data parameters
in Table 3.1. For a more consistent notation inside the algorithm, the input
dimensionality is denoted as M instead of m.

reliably produce an exact large number of output spikes. Furthermore,
the redundancy introduced by the neuron populations allows single
neurons to fail without severely impacting the network performance.

On the downside, the number of required neurons scales linearly
with K, the number of required synapses scales quadratically with K,
inevitably increasing both size and energy consumption of the network.
An example of the topology for K = 2 is sketched in Figure 3.1(b) on
page 39.

3 .1 .4 Required neuron behaviour

We have discussed two possible BiNAM spiking neural network topolo-
gies. We now need to specify the neuron behaviour required for the
operation of the network. Basically, there are two conditions each
neuron in the network must fulfil: the threshold condition and the reset
condition.

47

spiking associative memory architecture and testing

Threshold condition As specified in the BiNAM recall rule in Equa-
tion (2.28), the neuron needs to fulfil a thresholding behaviour: let
nin denote the number of input spikes within an input time frame of
approximately ∆t · sin. The number of output spikes the neuron should
produce in response to this input is then given as

nout(nin) =

{
sout if nin ≥ n1 = c · sin · K
0 if nin ≤ n0 = (c− 1) · sin · K

. (3.7)

For input spike counts in the interval (n0, n1), the neuron behaviour
is deliberately left undefined, as these values should not occur under
perfect conditions and a sharp threshold such as n0 = n1 − 1 would
be very demanding to realise.

It should also be stressed, that the neuron parameters for the real-
isation of the threshold behaviour can only be chosen for a constant
time frame ∆t · sin. At some point, if input spikes arrive in a shorter or
longer period of time, more or fewer output spikes will be certainly
generated due to the fixed neuron time dynamics. However, we can try
to maximise the tolerance to deviations from ∆t · sin until a violation
of the threshold condition in Equation (3.7) occurs.

Reset condition This condition is closely linked to the way in which
we test the network and match output spikes to the input events
(Section 3.1.1): a new sample k with input vector ~xk is presented to
the network in a fixed interval determined by T. All output spikes
are interpreted as a response to the sample k to which the last input
spike belonged. Correspondingly, the neuron dynamics must ensure
that the neuron (a) does not fire any additional output spikes as a
response to an input that is longer than T ago and (b) is guaranteed to
approximately reach its initial condition after a period T has passed –
otherwise input samples would influence later tests in an unwanted
and uncontrolled way.

3 .2 memory evaluation measures

The previous section described the network topology, overall testNote that the presented
measures are potentially

contradict each other: for
example, a network with
low energy consumption

may exhibit a high latency
and small robustness.

methodology and two abstract conditions the individual neurons need
to fulfil. In this section we discuss various measures for the evaluation
of the overall performance of the spiking associative memory imple-
mentation: storage capacity, robustness in case of noise, latency and
energy consumption.

3 .2 .1 Storage capacity

For a classical BiNAM the storage capacity evaluation measure has
been defined in Equation (2.37) on page 33 as entropy of the output

48

3 .2 memory evaluation measures

samples, minus the entropy of false positives and negatives for each
sample k. As the binomial coefficient used in the formula classically
describes a combinatorial process, it is only defined for integral false
positive and negative counts nk

fp and nk
fn. However, in the spiking neu-

ral network implementation, those values are derived from fractional
bit values (ŷk)j and are neither integral nor limited to the range ex-
pected by the storage capacity formula. The pragmatic solution would
be to round the bit values to zero and one. Yet this approach would
discard useful information about slight performance degradations.

We thus need to define how to adapt the entropy equation for non-
integral values and how to map fractional bit values onto range-limited
false positive and negative counts.

The first requirement can be fulfilled by replacing the faculty opera- An approximation of
ln(Γ(x)) is provided by
most programming en-
vironments as a single,
numerically stable func-
tion.

tions hidden inside the binomial coefficients with their complex-valued
generalisation, the gamma function Γ(x + 1) = x!. The real-valued
generalisation of the binomial coefficient is defined as

lb
(

n
k

)
= lb

(
n!

n! · (n− k)!

)
= lb

(
Γ(n + 1)

Γ(k + 1) · Γ(n− k + 1)

)
= lb(Γ(n + 1))− lb(Γ(k + 1))− lb(Γ(n− k + 1)) . (3.8)

Given the generalised binomial coefficient we can use the original en- Multiplying n and k in the
binomial coefficient by sout

seems like another solution
to eliminate fractional val-
ues. This would imply that
the fractional values carry
additional information.
Strictly speaking this is
true, but we never use this
information. Our sole goal
is to preserve early signs
of performance improve-
ment or degradation in the
storage capacity measure.

tropy equation (2.37) with fractional error counts. These are calculated
by clamping the fractional bit values to one and linearly accumulating
the distance between actual output (ŷk)j and expected output (~yk)j:

nk
fp = ∑

j:(~yk)j=0
min{1, (ŷk)j} nk

fn = ∑
j:(~yk)j=1

1−min{1, (ŷk)j} (3.9)

With these adaptations the storage capacity measure can be used in
conjunction with spiking BiNAM implementations. In case the neurons
fulfil the conditions listed in Section 3.1.4, the storage capacity measure
will return the same values as in the theoretical case, which potentially
limits the discriminatory power of the measure. As differentiating
between various environments is the primary objective of a benchmark,
the discriminatory power might be increased by injecting artificial
noise into the simulation and thus obtaining information about the
robustness of the current parameter set.

3 .2 .2 Robustness in case of noise

When comparing the robustness of two associative memory implemen-
tations in case of noise, we can measure the impact of a certain noise
parameter η on another evaluation measure – for example the storage
capacity – under variation of η. In the remaining section we specify
which kind of noise can be addressed and how it is parametrised for
testing.

49

spiking associative memory architecture and testing

Input noise Associative memories are usually designed around ad-
ditive/subtractive input noise: given an arbitrary input vector ~x, the as-
sociative memory should still be capable of returning the output ~yk
for the sample k with ‖~xk −~x‖ minimal. The robustness in case of this
kind of noise can be measured by varying the input noise parameters
p0 and p1. Another kind of input noise, jitter can be controlled as noise
parameters σt and σoffs

t , which control random offsets in the spike
timings and randomly model delays in pre-synaptic networks, as well
as synaptic or spatial delay. Both noise parameters were described in
Section 3.1.2.

Parameter noise In biological and analogue neuromorphic hardwareThe iterative digital-
to-analogue conversion

process used in the NM-
PM1 hardware system is

an additional source for
non-deterministic noise.

systems, there are slight deviations in the circuitry which result in two
neurons or synaptic connections with supposedly equal configuration
to behave differently. In systems based on numeric integration artefacts
are introduced by quantisation.

Both deviations can be modelled by artificially adding Gaussian
noise to the neuron parameters and synaptic weights: upon network
generation we sample a small noise term η from a Gaussian distribu-
tion with standard deviation σφ and add it to the given value for the
parameter φ. This operation is performed for each neuron and every
synaptic connection individually. Care must be taken to clamp the
noisy parameter values to their valid range.

State noise This term refers to noise present in the state variables
(membrane potential, synapse conductivities, adaptation current in
AdEx) of each neuron. In biological systems, spatially close synapses
can affect each other although they are not directly connected [BH97].
In analogue neuromorphic hardware systems, both thermal noise and
crosstalk between neighbouring circuits may superimpose noise onto
the neuron state. In software implementations quantisation artefacts
can be interpreted as noise superimposed on the state signal (cf. Signal-
to-quantisation-noise ratio (SQNR) [LD09]). Quantisation artefacts are
especially relevant in the many-core neuromorphic hardware system
which – in its current version – is based on fixed-point numbers with
limited resolution.

Artificially injecting this kind of noise into a neural network simu-
lation is not well supported by the software toolchain, so we are unable
to analyse the impact of state noise. It should however be kept in mind
that this kind of noise exists. The previously mentioned noise models
are thus incomplete and cannot be used as the sole explanation of
neuromorphic hardware system results.

3 .2 .3 Latency and throughput

For conventional digital systems, latency describes the time required
for the result of an issued operation to be available as output, whereas

50

3 .2 memory evaluation measures

throughput describes the rate new operations can be issued at.
A rather simplistic approach to measuring latency is the following:

let t̂in
k denote the time of the last input spike and t̂out

k the time of the
last output spike associated to a sample k (given that such an output
spike exists)

t̂in
k = max

i,`
{tin

i,`|kin
i,` = k} , t̂out

k = max
j,`
{tout

j,` |kout
j,` = k} . (3.10)

The latency for a single sample δk is now defined as

δk = t̂out
k − t̂in

k . (3.11)

The above definition has two problems. δ is only well-defined if an
output is produced for an input k. Furthermore, the actual throughput
of the system might be larger than implied by δ, since the neuron
parameters were chosen such that the neuron is ready for the next
input sample within a time window T. As by definition T > δ, the
effect of a low latency δ could be nullified by the delay imposed by T
until a next sample can be processed.

A combined measure of latency and throughput is critical time win-
1

p

0 T
T'

I

Figure 3.7: Sketch of the
critical time window
measure: Tcrit

p is defined
as sample interval T′ at
which the relative storage
capacity I drops below p.

dow analysis. Instead of presenting samples in the nominal interval T,
successively smaller T′ are tested, until the measured storage capacity
drops below a relative threshold p of the original storage capacity. The
corresponding time window length is called Tcrit

p . It corresponds to the
maximum frequency at which the memory can be operated without
significant impact on its storage capacity (Figure 3.7). This approach
can of course be combined with the pipelining from Section 3.1.1.

Certain memory usage patterns might cause interference, which
causes the value of Tcrit

p to depend on the input sample order – however
for large sample counts N this problem should be negligible.

3 .2 .4 Energy

Another common evaluation measure for any electronic system is
its energy consumption: lower energy consumption implies less heat
being dissipated, possibly allowing for higher packing density and
overall lower cost of operation. The following considerations should
be taken into account for measuring the energy consumption of the
associative memory.

For a numerical simulation on a traditional computer architecture,
power consumption is mostly influenced by the required simulation
time. In analogue neuromorphic hardware however, power consump-
tion is directly related to the neuron state. While modelling the energy
consumed by an analogue neuron is out of the scope of this thesis, the
required energy J can be roughly modelled as

J =
∫ ∞

t=0
(EL − u(t)) · i(t)dt , (3.12)

where i(t) are the accumulated currents flowing through the neuron
membrane.

51

spiking associative memory architecture and testing

3 .3 data generation

In the previous sections we have established the foundations for the
realisation of a BiNAM as spiking neural network: we have provided
the network topology, a representation of the input data, high-level
conditions the spiking neurons need to fulfil and a set of evaluation
measures which allow to evaluate the performance of the associative
memory. The last missing piece is to describe the actual (non-spiking)
data that should be used to test the BiNAM.

It is important to stress that we do not try to benchmark the BiNAM
itself – the theoretical limits of this particular associative memory have
already been thoroughly studied over the last forty years. Instead,
we test a set of particular BiNAM implementations. Generated data
should thus utilise the BiNAM to the full instead of modelling datasets
that may be found in biological systems.

Section 3.3.1 summarises the test data meta parameters. The most
obvious candidate for test data – uncorrelated, random bit vectors – is
discussed in Sections 3.3.2 and 3.3.3. We then discuss balanced datasets,
which evenly occupy the BiNAM and an algorithm which generates
such data in Sections 3.3.4 and 3.3.5.

3 .3 .1 Dataset parametrisation

A dataset D = {(~xk,~yk)} without duplicate input vectors ~xk as defined
in Equation (2.26) is parametrised by the number of samples N, the
dimensionality of the input and output vectors (m, n respectively)
and the number of bits set to one in those vectors: ‖~xk‖1 = c and
‖~yk‖1 = d. The storage capacity formula for hetero-association given
in Equation (2.37) requires the input and output data to be neither
inter- nor intracorrelated. Input and output vectors can be represented
as a N ×m matrix X and a N × n matrix Y.

While the perfect test data would produce a minimum number
of possible errors while still fulfilling the uncorrelatedness condition,
generating such data would require to solve a large binary linear
programming problem, which in the general case is NP-complete
[Kar72]. A feasible approach is thus to simply generate random input
and output vectors. We discuss the expected behaviour of random
data and its generation in the next two sections, followed by a more
sophisticated data generation algorithm which ensures uniform usage
of the network even for small memory sizes at the cost of violating the
uncorrelatedness rule.

3 .3 .2 Expected behaviour in reaction to uncorrelated random data

In order to analyse the expected behaviour of random data in the
BiNAM we first need to understand the conditions under which errors

52

3 .3 data generation

occur if non-noisy input data is given. As described in Section 2.5.6 the
only kind of errors in the output of a theoretical BiNAM with perfect
input are false positives. According to Equation (2.28), for an input ~xk a
false positive will arise at position j of the output (for which (~yk)j = 0)
exactly if

(M> ·~xk)j = ∑
i:(~xk)i=1

(M)ij
!
= ‖~xk‖1 = c . (3.13)

In other words: a false positive in output component j for a sample
(~xk,~yk) is generated if for each “one” at position i in ~xk there exists
a sample k′ with (~yk′)j = 1 and (~xk′)i = 1 [Pal80]. The condition
of an additional one occurring at position j in the output for ~xk is
henceforth abbreviated as C(k, j). If we neglect that there may be no
duplicate input vectors ~xk, the expected total number of false positives
per sample 〈nfp〉 can be easily calculated.

Let ℘ denote the probability of a single cell i, j in M being set to The probability ℘ is the
same for all cells i, j since
the bits are distributed
independently and uni-
formly across the input
and output vectors.

If we wanted to respect
the fact that there are
no duplicates in the en-
tirety of ~xk, we would
not be allowed to express
Pr((M)i,j = 0) as a prod-
uct: the individual events
are no longer independent.
However, the error intro-
duced by this assumption
is sufficiently small for
large memories [Pal80].

one after N samples have been trained

℘ = Pr((M)i,j = 1) = 1− Pr((M)i,j = 0) (3.14)

= 1−
N

∏
k=1

Pr((~xk)i = 0∨ (~yk)j = 0) (3.15)

= 1−
N

∏
k=1

(
1− Pr((~xk)i = 1∧ (~yk)j = 1)

)
(3.16)

= 1−
N

∏
k=1

(
1− Pr((~xk)i = 1) · Pr((~yk)j = 1)

)
(3.17)

= 1−
(

1− c · d
m · n

)N

. (3.18)

According to Equation (3.13) the probability Pr(C(k, j)) of a false
positive occurring in the j-th component of sample k can be described
as

Pr(C(k, j)) = Pr
(
(M> · (~xk))j = c

)
= Pr

(
m

∑
i=1

(M)i,j · (~xk)i = c

)
(3.19)

= Pr

(
m

∑
i=1

(∨N

`=1
(~x`)i · (~y`)j

)
· (~xk)i = c

)
. (3.20)

Since (~yk)j = 0 (otherwise a one in the j-th output component would
be a true positive), we can add the condition ` 6= k to the inner “∨”-
operation of Equation (3.20) without changing its value

Pr(C(k, j)) = Pr

(
m

∑
i=1

(∨N

`=1,` 6=k
(~x`)i · (~y`)j

)
· (~xk)i = c

)
. (3.21)

53

spiking associative memory architecture and testing

0 50 100 150 200

Number of trained samples N

0

5

10

15

20

Ex
pe

ct
ed

fa
ls

e
po

si
ti

ve
s
〈n

fp
〉

m = n = 16, c = d = 2
m = n = 16, c = d = 3
m = n = 16, c = d = 4

m = n = 32, c = d = 2
m = n = 32, c = d = 3
m = n = 32, c = d = 4

0 50 100 150 200

Number of trained samples N

0

5

10

15

20

Ex
pe

ct
ed

fa
ls

e
po

si
ti

ve
s
〈n

fp
〉

m = n = 16, c = d = 2
m = n = 16, c = d = 3
m = n = 16, c = d = 4

m = n = 32, c = d = 2
m = n = 32, c = d = 3
m = n = 32, c = d = 4

0 50 100 150 200

Number of trained samples N

0

100

200

300

400

500

600

In
fo

rm
at

io
n

I
[B

it
]

m = n = 16, c = d = 2
m = n = 16, c = d = 3
m = n = 16, c = d = 4

m = n = 32, c = d = 2
m = n = 32, c = d = 3
m = n = 32, c = d = 4

Figure 3.8: Estimated number of false positives per sample k and corre-
sponding information I for varying memory size m, n and number of bits set
c, d.

Now it is clearly visible that there is no dependence between M and
~xk in Equation (3.19). The final Pr(C(k, j)) is thus given as

Pr(C(k, j)) = Pr
(∧

i:(~xk)i=1
(M)i,j = 1

)
= ℘c =

(
1−

(
1− c · d

m · n

)N
)c

.

(3.22)

The expected number of false positives 〈nfp〉 per sample k for uncorre-For large m, n the er-
ror caused by allowing
duplicates in X dimin-

ishes. A proof is given in
appendix B of [Pal80].

lated, randomly generated input and output vectors is consequently

〈nfp〉 = (n− d) ·
(

1−
(

1− c · d
m · n

)N
)c

. (3.23)

Figure 3.8 shows 〈nfp〉 and the corresponding information estimate
for a varying number of samples N and different combinations of m,
n, c, d.

3 .3 .3 Random data generation algorithm

Input and output vector matrices X, Y are independently generated as
data blocks B = (~b1, . . . ,~bN)

>, where each~bi is an r-tuple containing
r1 ones and r0 = r− r1 zeros

~bi ∈ Br
r1
=
{
(b1, . . . , br)

∣∣∣ bj ∈ B, ∑r
j=1 bj = r1

}
. (3.24)

According to basic combinatorics the size of Br
r1

is

|Br
r1
| =

(
r
r1

)
=

(
r

r− r1

)
=

(
r
r0

)
. (3.25)

54

3 .3 data generation

1: init B← 0 ∈ BN×r . Result matrix
2: for i← 1 to N do
3: for j← r− r1 + 1 to r do
4: `← RandomSelect({1, . . . , j− 1}) . Uniformly select set entry
5: if B[i, `] = 1 then
6: B[i, j]← 1
7: else
8: B[i, `]← 1
9: end if

10: end for
11: end for

Algorithm 3.2: Algorithm for the generation of a block B of N uncorrelated
random vectors of length r, containing exactly r1 ones.

Each vector~b ∈ Br
r1

can be uniquely represented as set b containing (1, 0, 1, 0, 0)→ {0, 2}
(0, 0, 1, 0, 1)→ {2, 4}
(0, 1, 0, 0, 1)→ {1, 5}
Figure 3.9: Elements of B5

2
and their corresponding set
representation.

the indices of “ones” in~b (Figure 3.9)

b = {i | bi = 1} b ∈ br
r1
= {{i1, . . . , ir1} | ij ∈ {1, . . . , r}} . (3.26)

The set br
r1

is the set of all r1-sized sets over {1, . . . , r}, or – in mathe-
matical terms – the set of all r1-combinations of {1, . . . , r}. As shown
in Algorithm 3.2 a set of n random r1-combinations can be efficiently
generated in O(n · r1) time [BF87].

This algorithm does not ensure the absence of duplicates in the
input. While the probability of a duplicate is sufficiently small for
large m, one could expand the algorithm by a hash-table lookup and
retry if a vector has already been generated. Yet such a method may
not terminate if an exhaustively large dataset is generated. An alter-
native which is guaranteed to terminate is the algorithm presented in
Section 3.3.5.

3 .3 .4 Balanced data

For practical experiments with relatively small networks, uncorrelat-
edness does not guarantee a uniform occupancy of the storage matrix
bits, as the probability for two randomly generated samples to acti-
vate the same bits in M increases with smaller memories. This might
be a problem when benchmarking neuromorphic hardware systems,
where we would like to ensure that at any time during the test run all
neurons and synapses get approximately the same workload in order
to produce a more stable behaviour.

The introduction of the balancing condition – besides uncorrelated-
ness and uniqueness of the input vectors – allows to ensure this. For
any k′ ≤ N the column sums of a generated data block B (which may
either refer to the input data X or the output Y) must be balanced.

55

spiking associative memory architecture and testing

Random
(with duplicates)

Random
(no duplicates)

Balanced
(with duplicates)

Balanced
(no duplicates)

0

10

20

30

40

O
cc

up
an

cy

Figure 3.10: Comparison of the BiNAM matrix occupancy distribution for
different data generation methods: the occupancy measures how many times
a BiNAM matrix cell would be set to one during training. Training was
simulated for hetero-association with 100 samples in a 32× 32 BiNAM with
c = d = 16 one-bits for each vector. The box plots visualise the distribution
of the occupancy values for 1000 independent training runs over all matrix
cells (the box extends from the lower to the upper quartile, with a line at the
median, the whiskers depict the 1.5 interquartile range, crosses outliers).

Specifically, it must hold

max
j

{
∑k′

k=1 Bkj

}
−min

j

{
∑k′

k=1 Bkj

}
≤ 1 ∀k′ ≤ N . (3.27)

A potential effect of the balancing is shown in Figure 3.10: when
calculating how many times a cell in the BiNAM is set to one during
training – which can be computed as XT ·Y – the variance in occupancy
significantly reduces when balancing is enabled.

An alternative interpretation of the balancing rule is a prolonged
creation of false positives, which in return increases the information
that can be stored in the BiNAM: input and output data balancing
selects rows and columns in the BiNAM which have not yet been
used as often as others, lowering the probability of the false-positive
condition C(r, j). An experiment showing this effect is depicted in
Figure 3.12 – balanced vectors without duplicates for both input and
output data achieves the highest BiNAM storage capacity.

Unfortunately, these results must be taken with a grain of salt: from~b1 = (0, 1, 0, 0, 1, 1)
~b2 = (1, 0, 1, 1, 0, 0)
~b3 = (1, 1, 0, 0, 0, 1)
~b4 = (0, 0, 1, 1, 1, 0)

Figure 3.11: Correlation
introduced by data bal-
ancing for r = 6 and

r1 = 3: while the data
generation algorithm

can randomly select~b1
and~b3, samples~b2 and
~b4 are predetermined.

a strict mathematical point of view, balancing causes intracorrelation
in a dataset B (Figure 3.11). Therefore the storage capacity formula
from Equation (2.37) cannot be applied. However, we believe that
the introduced correlation (similarly to requiring no duplicates in
the input) is sufficiently small for any reasonably large number of
samples N. After all, an algorithm generating balanced data could still
generate all possible data vectors, though it limits the random selection
in each step to those vectors which fulfil the balancing condition in
Equation (3.27).

56

3 .3 data generation

0 20 40 60 80 100

Number of trained samples N

0

50

100

150

200

In
fo

rm
at

io
n

I
[B

it
]

Random, no duplicates
Trial with max. information
25/75%-quantile

Balanced, no duplicates
Expected information
Min./Max.

(a) Homogeneous data generation method. Both ~x and ~y are without duplicates.

0 20 40 60 80 100

Number of trained samples N

0

50

100

150

200

In
fo

rm
at

io
n

I
[B

it
]

~x: Balanced; ~y: Random ~x: Balanced; ~y: Balanced

(b) Heterogeneous data – ~x is without duplicates, ~y potentially with duplicates.

Figure 3.12: Random versus balanced data generation. 1000 trials in which
a 16 × 16 BiNAM with 3 ones in input/output is incrementally trained
with N samples were conducted. Samples are either generated randomly,
or randomly with balanced bit allocation. The bold line depicts the median
information, the dotted line the trial with maximum information and the
dashed line the prediction according to Equation (3.23). The 25/75%-quantile
and the minimum/maximum over all trials are shaded. (a) shows the experi-
ment for input and output data homogeneously generated with one of the
two methods, (b) explores the heterogeneous case.

57

spiking associative memory architecture and testing

1 2 3 4
Root (i = 6)

usage
0 0 1 3
0 0 0 0

5

6
0

child j

(a) Root node in the initial state of the
algorithm.

1 2 3 4
Root (i = 6)

usage
0 0 1 3
0 0 0 0

5

6
0

child j

child j 1 2 3
i = 4

0 1 2

1
2

(b) Updated tree after the selection of the
first “one” at index three.

Figure 3.13: Example of the data generation algorithm with r = 5 and r1 = 3.
The bold frame indicates the currently active node ℵ. In (a) none of the bits
have been used yet. Indices 1 or 2 (hatched) can not be chosen as this would
not leave a sufficient number of indices to choose from for the remaining
bits. In (b) the index 4 has been selected: the usage count is incremented, the
number of remaining permutations starting with 4 is decremented in the root
node. Only bit indices 2 and 3 are viable next child indices for the new node.

3 .3 .5 Balanced data generation algorithm

Subsequently we present a simple and fast algorithm for the genera-A “prefix-tree” or “Trie” is
a standard data-structure
in computer-science used

for compact storage of a
set of sequences. Common
prefixes are represented by

a single node. Whenever
the sequences diverge the

Trie branches [Knu98].

tion of N random and balanced bit vectors without duplicates. As in
Algorithm 3.2, the method is based on the set representation bk of a
bit vector~bk, and the one-bit indices are chosen one at a time.

The key idea of the algorithm is to induce an order on the possible
r1-combinations by representing them as a sequence of one-indices
(i1, . . . , ir1) with ij > ij′ ⇔ j′ > j. These sequences are organised in
a prefix-tree – Trie – of depth r1 + 1: each node represents the index
of a single one-bit, every possible path from the root node to a leaf
represents a unique combination. This properties allows to track how
many not-yet-generated combinations are reachable from a node.

For each Trie node ℵ with index i at level ` we initially calculate aThe root node ℵ⊥
can be seen as a vir-
tual node with index

i = r + 1 at level ` = 0.

table containing the number of possible combinations for each child
j < i and r̃ = r1 − ` remaining ones

ℵ→j = |bj
r̃| =

{
(j

r̃) if j ≥ r̃

0 if j < r̃
. (3.28)

Whenever a path along a child node ℵ[j] is traversed, the corresponding
table entry ℵ→j is decremented, as a new combination with this path
as prefix is being generated. Once ℵ→j is zero, the corresponding path
is ignored in future index selections (Figures 3.13 and 3.15).

For each of the N vectors, child indices j are randomly selected from
the possible child indices, moving the current-node cursor ℵ through
the Trie. As soon as the lowest Trie level is reached after r1 choices,
the cursor is reset to the root ℵ⊥ and the next vector is generated. An

58

3 .3 data generation

0 20 40 60 80 100 120

Bit index i

0

20

40

60

80

100

120

Bi
ti

nd
ex

j
Without selection bias

0.00

0.05

0.10

0 20 40 60 80 100 120

Bit index i

0

20

40

60

80

100

120
Bi

ti
nd

ex
j

With selection bias

0.00

0.05

0.10

Figure 3.14: Linear correlation coefficient for two bits i, j in 10000 generated
bit vectors with a length of r = 128 and r1 = 3 ones. The left plot shows the
result for data generated with disabled selection bias, the right with enabled
selection bias.

1: function Balancable(~u, i, r̃)
2: . Indices which allow balancing of at least r̃− 1 future ones
3: return

{
j
∣∣∣∑

j
j′=1 max{0, 1− ~u[j′] + min(~u)} ≥ r̃, j ∈ {1, . . . , i− 1}

}
4: end function

5: function Generate(N, r, r1)
6: init B← 0 ∈ BN×r . Result matrix
7: init ~u← 0 ∈Nr . Bit usage count vector
8: init ℵ⊥ . Initialise root node
9: for n← 1 to N do . Iterate over all N samples

10: ℵ ← ℵ⊥, i← r + 1 . Current node, start with root
11: for `← 0 to r1 − 1 do . Trie level `
12: r̃ ← r1 − ` . Number of remaining one-bits r̃
13: s← {j | ℵ→j > 0} . Indices with remaining paths
14: s← s∩ {j | ~u[j] = min{~u[j′] | j′ ∈ s}} . Balance bit usage
15: if Balancable(~u, i, r̃) ∩ s 6= ∅ then
16: s← Balancable(~u, i, r̃) ∩ s
17: end if
18: j← WeightedRandomSelect({(j,ℵ→j) | j ∈ s})
19: B[n, j]← 1 . Set output bit
20: ~u[j]← ~u[j] + 1 . Increment bit usage count
21: ℵ→j ← ℵ→j − 1 . Decrement remaining path count
22: ℵ ← ℵ[j], i← j . Go to child node j
23: end for
24: end for
25: end function

Algorithm 3.3: Algorithm for the generation of a block B of N unique, uncor-
related random vectors of length r, containing exactly r1 ones with balanced
bit allocation. Skipping lines 14–17 deactivates bit allocation balancing. Equa-
tion (3.28) describes how to initialise ℵ→j upon first access. See text for
description.

59

spiking associative memory architecture and testing

1 2 3 4
Root (i = 6)

usage
0 0 1 3
0 0 0 0

5

6
0

child j

child j 1 2 3
i = 4

0 1 2

1
2

child j 1
i = 2

1

0

1

(a) Child node j = 2 is selected and in-
serted.

1 2 3 4
Root (i = 6)

usage
0 0 1 3
0 0 0 0

5

6
0

child j

child j 1 2 3
i = 4

0 1 2

1
2

child j 1
i = 2

1

0

1

1

1

0

0

(b) The first r1-combination (4, 2, 1) has
been generated, the cursor is reset to ℵ⊥.

Figure 3.15: Continuation of the data generation algorithm example from
Figure 3.13. In (a) child node 2 has been selected. Consequently, the only
possible final node for this combination is j = 1. As indicated by the red
usage count in (b), the index 4 cannot be chosen, as there are possible bits
which have been used fewer times. The yellow usage count indicates an index
with minimal usage count, but whose selection would not allow to balance
the bit usage of larger indices. The remaining choice is to select bit index 5.

important detail is to bias the index selection by the number of possible
paths continuing with j, ℵ→j. Failing to add the selection bias results in
intracorrelation: if the first chosen bit index j is small, the next indices
that can be selected must be smaller than j, causing small bit indices
to appear in groups. This effect is shown in Figure 3.14: whereas there
is a strong linear intracorrelation between lower (and as a result of
balancing also higher) bit indices, the selection bias reduces the linear
correlation coefficient between arbitrary bit indices to a small, uniform
noise.

Until now the algorithm generates N random and unique r1-Note that in Figure 3.15(b)
(0, 0, 1, 1, 1) would be a
possible next vector, but

the algorithm can only
generate (0, 1, 1, 0, 1) or
(1, 0, 1, 0, 1) due to its

greedy balancing strategy.
We believe that fixing

this issue is not worth the
benefits: for reasonably

large r the probability for
such correlations is small.

combinations. It does not fulfil the balancing condition from Equa-
tion (3.27). Balancing can be achieved by keeping track of the usage
count of each bit index in a vector ~u ∈ Nr: whenever a bit index j is
selected, the corresponding entry (~u)j is incremented by one. We then
restrict the set of currently selectable bit indices s to those for which
the usage count is minimal

smin = s∩ {j | (~u)j = min{(~u)j′ | j′ ∈ s}} where s = {j | ℵ→j > 0} .
(3.29)

As shown in Figure 3.15(b), this basic approach has to be refined: it may
happen, that a bit index j has minimal usage. However, as we select the

60

3 .4 conclusion

1 2 3 4
Root (i = 6)

usage
0 0 1 3
0 0 0 0

5

6
0

child j

child j 1 2 3
i = 4

0 1 2

1
2

child j 1
i = 2

1

0

1

1

1

0

0

child j 1 2
i = 5

0 11

1
5

3 4
2 13

0

child j 1
i = 3

1
2
11

111 1 1

1

2

2

0

1 2
4

1

child j 1
i = 4

1
2
1

3
1

2

2

1

0

2

child j 1
i = 3

0
2
11

2 2 222
0

child j 1
i = 2

1

3

0

1

0

3 2 2 32
3

1

32

3

0

3 3 333
1
4

child j 1
i = 3

1
2
111

1

4

2

0

4 4
2

4444 4 4

Figure 3.16: In certain situations the only possible choice introduces tem-
porarily unbalanced vectors – either index 2, 3 or 4 must be chosen at the
current node, although their bit usage is not minimal.

largest j in each step, there might be cases in which its selection would
prevent a larger bit index to be balanced. We therefore calculate the bit
indices sbal which allow the selection of at least r̃ = r1 − ` remaining
ones with minimal usage

sbal =
{

j
∣∣∣ ∑j

j′=1 max{0, 1− (~u)j′ + min(~u)} ≥ r̃, j ∈ {1, . . . , i− 1}
}

.

(3.30)

The final selectable indices ssel are then given as

ssel =

{
smin ∩ sbal if smin ∩ sbal 6= ∅

smin otherwise
. (3.31)

Rationale for the second case is given in Figure 3.16: in intermediate
steps it may be necessary to generate a temporarily unbalanced bit
usage.

Algorithm 3.3 shows pseudo-code describing the method in its
entirety. With O(N · r1 · r) the runtime of the method linearly depends
on N and r, which is worse than the previously presented O(N · r1)

algorithm for non-balanced, non-unique samples.

3 .4 conclusion

This chapter outlined the design space of spiking BiNAM implemen-
tations: apart form the actual neuron parameters, the design space
consists of the data parameters, the population size and the chosen
input and output signal encoding (cf. Table 3.1). Furthermore, we

61

spiking associative memory architecture and testing

discussed the network testing procedure and possible evaluation mea-
sures, as well as different test sample generation schemes, for which
we presented efficient algorithms.

Regarding the latter, experiments show that balanced input and
output vectors (~xk,~yk) without duplicates produce a more uniform
activation of the synapses during experiments and achieve a higher
possible storage capacity than randomly selected vectors.

With the material presented in this chapter we could implement a
design space exploration pipeline which performs data generation, net-
work construction, actual simulation on either a software integrator or
one of the neuromorphic hardware systems, and evaluation according
to the proposed measures.

However, such full network simulations are time-consuming and
of limited feasibility for parameter optimisation with respect to one
of the measures. Chapter 4 will thus approach the problem from
a higher abstraction level and introduce estimations which predict
the performance of a given neuron parameter set Φ for the network
parameters listed above. We then move to the actual full network
experiments on neuromorphic hardware in Chapter 5.

62

4N E U R O N PA R A M E T E R E VA L UAT I O N A N D
O P T I M I S AT I O N

A primary goal of this thesis is to explore the design space of the spik-
ing BiNAM implementation presented in Chapter 3. In this chapter we
summarise and categorise the design space parameters introduced in
the preceding two chapters and discuss two strategies for design space
exploration: full network and single neuron evaluation. Whereas the
first strategy evaluates entire BiNAM networks according to memory
performance measures, this chapter focuses on the second strategy,
which examines how well a single neuron with parameters Φ matches
the threshold and reset conditions introduced in Section 3.1.4.

Section 4.1 elaborates on single neuron and full network evalua-
tions, and motivates single neuron evaluation as an approximation of
full network evaluation. Section 4.2 details the implementation of the
single neuron simulator, which is a building block of the individual
evaluation measures discussed in Sections 4.3 to 4.5. A glimpse at the
corresponding software toolchain is given in Section 4.6. This toolchain
is then used to compare the measures regarding their accuracy and
suitability for automated parameter optimisation in Section 4.7.

4 .1 design space exploration

This section compares two complementary strategies to design space
exploration: full network exploration on the one hand, introduced
in Chapter 3, and single neuron evaluation on the other hand, the
primary topic of this chapter. Before we set out to discuss design space
exploration, we need to clarify the notions of “design space” and “ex-
ploration”. The first part of this section summarises the design space
parameters described in Chapters 2 and 3, while the second and third
part elaborate on the already mentioned exploration strategies. The
fourth and final part discusses to what extent the design space dimen-
sionality can be reduced and which constraints have to be imposed on
the parameter combinations.

4 .1 .1 On the terms “design space” and “exploration”

The BiNAM design space can be partitioned into two disjunct sets of Detailed information on
the system parameters can
be found in the previous
chapter 3, both the LIF
and AdEx model and their
parameters are presented
in Section 2.3.

parameters: system and neuron parameters. System parameters specify
the spike time encoding of input and output data, the amount of noise
present on the platform, and the memory size and data characteristics.
The neuron parameters Φ control the behaviour of the dynamical
systems which constitute the network. Number and availability of
neuron parameters depends on the chosen model. Here, we either

63

neuron parameter evaluation and optimisation

design space overview

System parameters

network encoding noise

Memory size m, n Burst size sin, sout False pos./neg. p1, p0

Number of “ones” c, d Interspike interval ∆t Time noise σt, σoffs
t

Sample count N Sample interval T Neuronal noise σφ 2

Population size K

Neuron parameters

synapse membrane (lif) adex

Weight w Capacitance Cm ◦ Adaptation a, b

Rev. potentials Ee, Ei � Leak potential EL ◦ Time constant τa

Time constants τe, τi � Threshold ETh ◦ Exp. threshold Eexp
Th

Leak conductance gL Exp. slope ∆Th

Reset potential Ereset

Refractory period τref

Table 4.1: Overview of variables in the design space. � Inhibitory synapses
are not used in the BiNAM network, so the parameters Ei and τi can be
ignored. ◦ Superfluous degrees of freedom (Section 4.1.4). 2 There is an
individual noise parameter for each neuron parameter φ.

chose the linear integrate-and-fire (LIF) model or its extension, the
adaptive exponential integrate-and-fire (AdEx) model. From a practical
point of view, the most important distinction between neuron and
system parameters is that system parameters are constant, external
parameters, whereas the neuron parameters Φ must be tuned with
respect to the system parameters, such that they fulfil the task specified
by the memory parameters and encoding scheme, while constrained
by the noise in their environment. Table 4.1 summarises the 16 neuron
and 30 system parameters (14 plus 16 for neuronal noise).

At this point, we must distinguish two major applications of design
space exploration. Sweeping over a static, manually defined subspace
of the design space allows to compare the behaviour of the BiNAM on
different platforms, which is potentially useful as a platform bench-
mark. The second application of design space exploration is parameter
optimisation. Here, we try to find parameters, which optimise the
memory with respect to one or multiple evaluation measures like
those presented in Section 3.2. The optimisation process can be either
manual, in which case an interactive visualisation of the design space
is beneficial, or automated, in which case “smooth” gradients in the
evaluation measures are favourable. Automated parameter optimisa-
tion facilitates the adaptation of a BiNAM implementation to new
simulator platforms and topology parameters. In the remainder of this

64

4 .1 design space exploration

section we focus on optimisation of a neuron parameter vector Φ with
respect to constant system parameters. Optimisation of spiking neuron
parameters is a problem commonly considered as hard to solve [Pri07].

4 .1 .2 Full network evaluation

Full network evaluation is the empirical approach to design space At the time of writing,
setup and postprocessing
times are in the order
of seconds to minutes
for considerably large
networks simulated on the
NM-PM1 and NM-MC1
hardware systems.

exploration. For each distinct parameter vector a network simulation is
executed and the evaluation measures presented in Section 3.2 are cal-
culated: storage capacity, latency, robustness and energy consumption.
To visualise a two-dimensional sub-region of the parameter space, a
network simulation can be executed for each point in a pre-defined
two-dimensional grid. However, a major drawback of this method-
ology is the time required for network simulations. State-of-the-art
neuromorphic hardware or fewer calculation points can not sufficiently
alleviate this problem, because high setup and post-processing costs
still apply. Naively sweeping over parameter space dimensions is off
the table, as it is furthermore likely to waste vast portions of time in
“uninteresting” parameter space regions, in which the neurons do not
fulfil the threshold- and reset conditions required for an associative
memory.

Calculating evaluation measures in such regions of the design

Figure 4.1: Sketch of u(t)
for a neuron with degen-
erate parameters. Issuing
a single output spike im-
mediately following the
first input spike (dashed)
and then staying in the
refractory state minimises
the latency δ.

space would lead to trivial results. Of course, a neuron which fires a
single output spike whenever it receives an input spike – sketched in
Figure 4.1 – would minimise the latency measure, but is useless in an
actual associative memory. Classically, such degenerate solutions in
multi-objective optimisation problems can be avoided by the introduc-
tion of a compound goal function which combines the aforementioned
evaluation measures into a scalar optimality measure. Another means
is Pareto optimisation, where parameter vector sets are searched, for
which the variation of a single parameter dimension would degrade at
least one of the performance measures. However, Pareto optimisation
is less feasible for high-dimensional parameter spaces [Mie98].

4 .1 .3 Single neuron evaluation

The single neuron evaluation technique evades the perils of multi-
objective optimisation and focuses solely on compound measures
which quantify the “optimality” of neuron parameters. This approach
is possible, as the BiNAM itself, and the spiking BiNAM implemen-
tation presented in Chapter 3 in particular, are highly homogeneous.
Each individual neuron in the network is independently responsible
for a single output component (~y)i, or, in case of neuron populations, a
single signal in the output bundle. To provide an operational memory
with a storage capacity close to the theoretical optimum, each neuron

65

neuron parameter evaluation and optimisation

w4
w1

w2

w4

w3

w2

w1

(a) Individual inputs

w4
w1

w2

w4

w3

w2

w1

(b) Fused input

Figure 4.2: Sketch of the input spike train fusion model. (a) shows a single
neuron receiving input spikes with timings drawn from a Gaussian distribu-
tion with standard deviation σt. The small diagrams depict the individual
synapse conductivity over time. (b) shows an equivalent setup with a single
input: the input spike trains arriving at non-zero weight synapses are fused
into a single spike train with annotated weights.

in the network must equally adhere to the reset and threshold con-
ditions postulated in Section 3.1.4. Regarding the neuron model, an
input spike arriving at a synapse just increases the excitatory channel
conductance ge(t) of the post-synaptic neuron by the synaptic weight
wi. The input spikes can be fused into an equivalent compound spike
train, as long as they are annotated with the corresponding synaptic
weight (Figure 4.2).

To summarise, given equal input, neurons in the network are sup-In the BiNAM implemen-
tation, all synapses share
the same weight w. How-

ever, we do not need to
restrict our model that

far, as handling of differ-
ent synapse weights also

allows the handling of
synaptic weight noise σw.

posed to exhibit the same behaviour, and the input itself can be repre-
sented by a single spike train tin with annotated synaptic weights win.
Correspondingly, design space exploration is possible by simulating a
proxy neuron with parameters Φ, one excitatory synapse with adaptive
weight and an according input spike train (tin, win) which tests the
neuron properties. Since the network solely consists of non-interacting
copies of the proxy, its behavioural properties can be extrapolated to
the entire network. In case the network is simulated deterministically
by software, this reductionistic approach should accurately predict
the behaviour of the network, allowing time-efficient and interactive
design space exploration due to the vastly reduced complexity O(1) of
single neuron simulation compared to the simulation of a full network
in O(n).

However, by definition, the single neuron approach cannot account

66

4 .1 design space exploration

for imprecisions on neuromorphic hardware. Apart from noise that
might be introduced by analogue hardware on neuron parameters
and synapse weights, both analogue and digital systems can produce
non-uniform spike-time latencies and loose entire spike events due to
limited network capacity. This kind of noise is likely to manifest when
the data parameters m, n, c and d are increased. It is improbable that
the simple Gaussian noise model presented in Section 3.1.2 correctly
captures this behaviour. On an even more fundamental level, it is
unclear whether the hardware system – apart from noise – realises
a given parameter combination correctly. Thus, single neuron simu-
lation can in principle not replace the execution of full networks on
neuromorphic hardware. However, it allows to identify regions in the
parameter space in which neurons potentially fulfil the requirements
for neurons in an operational BiNAM spiking associative memory.
Subsequently, a full network evaluation can be performed in these
restricted regions.

4 .1 .4 Parameter constraints and intra-dependencies

With 16 dimensions, our parameter space does not lend itself to ex-
haustive exploration. However, by exploiting dependencies between
parameters, constraints and redundancies, a smaller subspace of feasi-
ble parameters can be identified.

Invalid parameter combinations The first category of constraints
in the AdEx model parameter space stems from the natural value
range of some parameters. It should be obvious, that all time constants,
capacitances and conductances must be larger than or equal zero. It
must hold

Cm > 0, gL > 0, τe > 0, τi > 0, τa > 0, τref ≥ 0, w ≥ 0, a ≥ 0 . (4.1)

The second category contains more debatable constraints. Perhaps
the model might still produce sensible results if these constraints are
violated, yet assumptions made in the following sections are no longer
valid. The first set of constraints imposes an order on the potential
parameters. For the AdEx model it should hold

ETh > Ee > Eexp
Th > EL ≥ Ei ≥ Ereset , (4.2)

for the LIF model, which does not possess the Eexp
Th parameter, it should

hold instead

Ee > ETh > EL ≥ Ei ≥ Ereset . (4.3)

The exponential slope ∆Th and the adaptation current b are subject to
the constraints

∆Th < Eexp
Th − EL, b ≥ 0 . (4.4)

67

neuron parameter evaluation and optimisation

nominal nm-pm1 adex parameter restrictions

Parameter Range Parameter Range

Cm 1 nF EL −125 mV to 45 mV

gL 1.9 nS to 22.2 nS Ee −125 mV to 45 mV

τe 1 ms to 100 ms Ei −125 mV to 45 mV

τi 1 ms to 100 ms ETh −125 mV to 45 mV

τa 20 ms to 780 ms Espike −125 mV to 45 mV

τref 0.16 ms to 10 ms Ereset −125 mV to 45 mV

a 0 nS to 10 nS ∆Th 0.4 mV to 3 mV

b 0 pA to 86 pA w 0 µS to 0.3 µS (4 bit)

Table 4.2: Nominal AdEx parameter constraints of the NM-PM1 platform
[Pet+14]. Only valid for a speedup of 10 000 and the specified Cm.

Violation of the first condition may result in unstable neuron behaviour;
see Section 4.4.4 for a derivation of the condition. Similarly, negative
adaptation currents b < 0 excite the neuron and can trigger a self-
amplifying cascade of output spikes.

Hardware constraints Numerical spiking network simulators offerThe parameter space of nu-
merical simulators is lim-

ited by floating point preci-
sion, or, in the case of NM-

MC1 the precision of the
16-bit integers in which

the parameters are stored.

an almost unlimited parameter space. This is not true for analogue
neuromorphic hardware systems such as Spikey and NM-PM1, where
the parameters are limited by physical constraints. Unfortunately, as
the mapping from model to hardware parameters is subject to cali-
bration, selected membrane capacitance and speedup factor, the exact
limitations vary. Table 4.2 shows the nominal parameter ranges for
NM-PM1 at the speedup of 10 000 and a model membrane capacitance
of 1 nF.

Superfluous degrees of freedom The LIF and AdEx neuron models
possess three superfluous degrees of freedom (DoFs). The membrane
capacitance Cm can be seen as a scaling factor for conductances and
currents, the leak potential EL solely offsets the membrane potentials
and the threshold potential ETh scales the membrane potential range.
Transformation of the parameters into a normalised space eliminates
Cm, EL and ETh while preserving the overall neuron behaviour.

The neuron simulator implemented for this thesis (Section 4.2)
eliminates the parameters Cm and EL, but not ETh. This allows to keep
voltage- and time-scaling and thus facilitates interpretation of interme-
diate values. In addition to DoF elimination, all divisions are factored
out of the differential equations, which turns exponential decay time
constants τ into decay rates λ. Table 4.3 shows the internal neuron
parameters and the corresponding parameter space transformation.
In the following we assume that these transformations are performed
transparently in the simulator.

68

4 .1 design space exploration

reduced dof adex and lif parameters and neuron state

Potentials

unit description transformation

ETh
′ [V] Threshold potential ETh − EL

Eexp
Th
′ [V] Spike potential Eexp

Th − EL

Ereset
′ [V] Reset potential Ereset − EL

Ee
′ [V] Excitatory reversal potential Ee − EL

Ei
′ [V] Inhibitory reversal potential Ei − EL

Decay rates

unit description transformation

fL [s−1] Membrane leak rate gL/Cm

λa [s−1] Adaptation decay rate 1/τa

λe [s−1] Excitatory channel decay rate 1/τe

λi [s−1] Inhibitory channel decay rate 1/τi

Other parameters

unit description transformation

fw [s−1] Synapse weight w/Cm

fa [s−1] Subthreshold adaptation a/Cm

∆b [V s−1] Spike-triggered adaptation b/Cm

τref [s] Refractory period τref

∆Th [V] Spike slope factor ∆Th

State variables

unit description transformation

u′(t) [V] Membrane potential u(t)− EL

∆a(t) [V s−1] Adaptation current Ia(t)/Cm

fe(t) [s−1] Excitatory channel frequency ge(t)/Cm

fi(t) [s−1] Inhibitory channel frequency gi(t)/Cm

Table 4.3: Overview of parameters and state variables in the AdEx model with
reduced degrees of freedom (DoFs) as used as intermediate representation in
the single neuron simulator.

69

neuron parameter evaluation and optimisation

4 .2 single neuron simulation

In this section we discuss the implementation of a high-performance
single neuron simulation for the AdEx model. This single neuron
simulator is given an input spike stream tin with annotated weights
win and utilised as a building block in the various incarnations of single
neuron evaluation measures presented in the subsequent sections 4.3
to 4.5. First, we outline the neuron simulation loop and challenges
associated with non-differentiable state changes in the neuron models,
followed by considerations regarding numerical integration specific
to the AdEx model. In the last part we discuss selected numerical
differential equation integrators and compare their performance.

4 .2 .1 Neuron simulation loop

As elaborated in the last section 4.1, the primary rationale for single
neuron evaluation is to provide an efficient mechanism for design
space exploration. While a single neuron could be simulated by any
spiking neural network simulator, these programs carry a significant
infrastructure and performance overhead for inter-neuron spike prop-
agation: individual neuron simulations have to be synchronised after
each time step to wait for input spikes generated by other parts of
the network. In the single neuron use-case, the input spike train tin is
predefined. The simulator can run in a tight loop without expensive
synchronisation [Mor+07]. A custom LIF and AdEx neuron model
integrator conceived for this special application is thus beneficial from
a time-performance point of view. Algorithmically, the implementation
of a spiking neuron simulator involves numerical integration of the
differential equations presented in Section 2.3. While generally the im-An introduction to differ-

ential equation integrators
is given in Section 4.2.3.

plementation of a differential equation integrator is straight-forward, a
few minor hurdles have to be overcome for an efficient single neuron
AdEx simulator.

A system of differential equations f is called autonomous if it does
not directly depend on t:

d/dt ~v(t) = f (~v(t)) . (4.5)

The evaluation of autonomous systems is potentially faster than that of
equivalent non-autonomous systems f (t,~v(t)). Since there are no time-
dependent terms which have to be re-evaluated, this is especially true
if the differential equation integrator performs multiple sub-timesteps.
Unfortunately, the differential equations describing the LIF and AdEx
model are non-autonomous: the refractory period mechanism (Equa-
tion (2.16)) and the input spike handling (Equation (2.10)) both depend
on the simulation time t. Another challenge for numerical integration
are the non-differentiable updates of the system state ~v for output
spike generation, at the end of the refractory period, and at the arrival

70

4 .2 single neuron simulation

1: given tin, win . Input spike times and weights
2: given e, h, tend . Target error, step size and simulation end time
3: given f (inRe f ,~v) . Neuron model specific differential equation
4: init ~v = (u, ∆a, fe, fi)

> . Neuron state
5: init tout ← () . Empty output spike sequence
6: init t← 0, tspike ← −τref . Initialise simulation and last spike time
7: init ispike ← 1 . Current input spike index
8: while t < tend do
9: tmax ← tend . Maximum integrator end time

10: if ispike ≤ |tin| then . Any unhandled input spike left?
11: if t ≥ tin[ispike] then . Handle input spikes
12: if win[ispike] > 0 then . Adapt the synaptic channel rates
13: fe ← fe + win[ispike]
14: else
15: fi ← fi − win[ispike]
16: end if
17: ispike ← ispike + 1 . Next input spike
18: continue . Repeat in case of multiple input spikes
19: end if
20: tmax ← min{tmax, tin[ispike]− t} . Stop at the next input spike
21: end if
22: inRe f ← (t− tspike) < τref . Test for refractory period
23: if inRe f then . Stop at the end of the refractory period
24: tmax ← min{tmax, τref + tspike}
25: end if
26: ~v, h← Integrate(f ◦ inRe f ,~v, min{h, tmax − t}, tmax − t, e)
27: if u > ETh then
28: tout ← tout‖(t) . Append the output spike time to the result
29: u← Ereset . Reset membrane potential
30: tspike ← t . Start refractory period
31: ∆a ← ∆a + ∆b . Spike-triggered adaptation
32: end if
33: t← t + h . Advance t by the actually taken timestep h
34: end while
35: return tout . Return the output spike times

Algorithm 4.1: Basic single neuron simulator loop. Given an input spike time
sequence tin with annotated weights win, the algorithm calculates output
spike times tout of a single AdEx neuron. The system of differential equations
is described in the functional f . inRe f specifies whether the neuron is in
the refractory state, during which the differential u̇ must be set to zero.
Implementations of the Integrate function are discussed in Section 4.2.3.

of input spikes. As the word suggests, non-differentiable behaviour is
problematic for off-the-shelf differential equation integrator.

Fortunately, workarounds for these limitations exist. The refractory
period is known in advance to end at tspike + τref, where tspike is the
time of the last output spike. Furthermore, in the special case of single
neuron simulation, the input spike times tin are known in advance. Two
of three non-differentiable state changes can be eliminated, and the
system of differential equations transformed to an autonomous system,

71

neuron parameter evaluation and optimisation

if the integrator stops at these state changes boundaries. This can be
accomplished by setting the maximum integrator timestep h to tmax− t,
where tmax is the time of the next input spike or end of the refractory
period, whichever is earlier. As soon as the integrator stops at this
boundary, the non-differentiable system state update is performed
outside the integrator. The voltage-dependent reset-mechanism can
also be performed outside the integrator. However, as demonstrated
in Section 4.2.4, internal coupling of the neuron state variables in
combination with temporary above-threshold membrane potentials
causes imprecisions during integration.

Both, the transformation to an autonomous system and externalMore technical details
of the simulator are dis-
cussed in Section 4.6.3.

non-differentiable updates, are employed in the neuron simulator
implemented for this thesis, and are outlined in Algorithm 4.1.

4 .2 .2 Numerical integration of the AdEx model

The AdEx model was not especially designed with suitability forThe basic LIF model does
not share these problems.

An advanced model de-
signed for efficient nu-

merical integration is the
MAT model [KTS09].

numeric integration in mind. Use of the exponential as non-linearity
poses two challenges worth discussing.

Threshold current limitation Spikes in the AdEx model are pro-
duced by a current ITh which rises exponentially with the membrane
potential u (Equation (2.21)):

ITh = gL · ∆Th · exp
(
(u− Eexp

Th) · ∆Th
−1
)

(4.6)

In a multi-step numerical differential equation integrator, naive inte-
gration of ITh may cause undesired side effects. Due to the exponential,
ITh reaches extreme values for membrane potentials u > Eexp

Th . Such po-
tentials may occur in a multi-step differential equation integrator, since
the non-differentiable membrane potential reset on u > ETh is only
performed after multiple sub-steps. Due to an exponential avalanche
inside the integrator, the membrane potential u and the coupled adap-
tation current Ia (Equation (2.20)) may overshoot and cause severe
numerical instabilities. A solution to this problem is the limitation of
ITh to a reasonable maximum Imax

Th which (under the assumption of
no other current) safely allows to cross the entire membrane potential
dynamic range Edyn = ETh − Ereset in one timestep h, but prevents an
uncontrolled exponential avalanche. Imax

Th is given as:

h · u̇(t) = h · gL · Imax
Th

Cm
≤ Edyn ⇔ Imax

Th ≤ Edyn ·
Cm

gL · h
. (4.7)

The actual threshold current used in the integrator ITh
′ is then defined

as ITh
′ = min

{
Imax
Th , ITh

}
.

72

4 .2 single neuron simulation

Fast exponential function Profiling shows that more than 25% of The utilised exponen-
tial function approxi-
mation is provided in
the “fastapprox”-library
[Min12].

the simulation time is spent in the evaluation of the exponential in
Equation (4.6) (Table B.3). Fortunately, approximations of the expo-
nential function exist, which exploit the bit-level layout of IEEE 754
floating point numbers to reduce the exponential to

ex = 2x′ = 2a · 2b with x′ = ln(2)−1 · x, a = bx′c, b = x′ − a , (4.8)

with the integer 2a being encoded as exponent, and the fractional 2b

approximated with a few multiplications. More details on exponential
function approximation can be found in [Sch99]. The results of a
profiling run with activated approximation is given in Table B.4. The
total runtime of the simulator decreases by 13%, whereas there is
no significant increase in the integration error (compare Tables B.5
and B.7). The benchmark is further discussed in Section 4.2.4.

4 .2 .3 Differential equation integrators

Neglecting any input, the state ~v ∈ Rα of a neuron at time t is given as For the AdEx model
with excitatory and in-
hibitory conductance based
synapses, the dimensional-
ity α of the state-vector ~v
is α = 4. The state-vector
~v consists of the compo-
nents ~v = (u, ∆a, fe, fi).

~v(t) =
∫ t

0
f (~v(t)) dt +~v0 with f (~v(t)) =

d~v(t)
dt

(4.9)

where~v0 ∈ Rα denotes the initial state of the neuron, and the functional
f : Rα −→ Rα specifies a model-dependent autonomous system of
differential equations. For most neuron models, the above integral
cannot be solved in a closed form. Instead, a numerical differential
equation integrator must be used, which approximates ~v(t) in discrete
steps of length h. The approximation error E is defined as difference
between the solution for ~v and numerical approximation ~v′:

E(t) = ‖~v(t)−~v′(t)‖ (4.10)

A differential equation integrator is conventionally referred to as n-th In other words: the ap-
proximation error reduces
exponentially with the or-
der of the integrator; or the
number of required steps
reduces exponentially with
the integrator order for a
constant error. Apparently
this explains why the first-
order Euler’s method is
often shunned.

order, if E(t) < ε · hn+1 for arbitrary, but constant ε [Pre+07a]. For effi-
cient neuron simulation, a differential equation integrator with sensible
ratio between error and computational effort should be selected.

Constant step size integrators Constant step size integrators are the
most basic form of differential equation integrators. Given the current
neuron state ~v ∈ Rα, the system of differential equations f and a step
size h, the integrator returns an updated ~v′:

~v′(t + h) = Integrate(f ,~v(t), h) (4.11)

Euler’s method linearly follows the gradient described by the differen-
tial equations f given the current state ~v(t)

~v′(t + h) = ~v(t) + h · f (~v(t)) . (4.12)

73

neuron parameter evaluation and optimisation

The family of Runge-Kutta integrators inserts i intermediate approxi-
mation steps to achieve a better approximation for non-linear ~v(t). The
general form of the Runge-Kutta method for autonomous differential
equations is given as [Sto+93]

~v′(t + h) = ~v(t) + h ·
i

∑
j=1

bj ·~k j ~k j = f

(
~v(t) + h ·

j−1

∑
`=1

aj` ·~k`
)

. (4.13)

Using the coefficients bj and aj` in Table B.1 this general equation
can be used to express a variety of differential equation integrators,
including the first-order Euler’s method, the second-order Midpoint
method, and the fourth-order Runge-Kutta method.

Adaptive step size integrators Adaptive step size integrators dy-
namically control the step size h in such a way, that the approximation
error E(t) is kept at a small constant value e. This allows to focus
computational effort on regions with disruptive changes, such as the
exponential spike generation in the AdEx model, while quickly pro-
gressing past gently sloped regions, such as the membrane potential
u slowly converging to EL. The algorithmic interface for an adaptive
step size integrator is expanded by a maximum step size hmax and the
target error e. The actual step size h′ is returned and must be passed
to the next iteration

h′,~v′(t + h′) = Integrate(f ,~v(t), h, hmax, e) (4.14)

The challenge lies in the efficient estimation of the error E(t). Naively,
two integration steps of size h/2 could be chained and compared to
the result of a whole step h. However, this approach is rather waste-
ful, since a total of three integration steps have to be performed. The
brilliant idea of the fifth-order Dormand-Prince integrator is to se-
lect the Runge-Kutta coefficients (Table B.2) in such a way, that the
intermediate Runge-Kutta steps can be repurposed to estimate E(t)
[DP80].

The implementation in this thesis is adapted from the adaptive
fifth-order Dormand-Prince integrator presented in Numerical Recipes
[Pre+07a]. However, a few modifications have been made. First of
all, terms solely required for non-autonomous differential equations
are eradicated. Secondly, a simple proportional step size controller is
used instead of a PI-controller. The most important change though
concerns the way in which new step sizes h′ are chosen depending
on the estimated error E(t). Instead of accounting for the fifth-order
approximation error by taking the fifth root

h′ = h ·
(

1
E

)1/5

, (4.15)

a simple linear scaling of h by 1/E is employed. Not only does the
computation of the fifth root induce a major computational overhead,
it also degrades the performance of the overall method – presumably
h′ is overestimated in the original version of the equation.

74

4 .2 single neuron simulation

neuron simulator benchmark results

Integrator LIF AdEx
t [ms] ∆u [mV] t [ms] ∆u [mV]

Euler

h = 1 µs 2071.354 0.223 2244.048 0.361
h = 10 µs 130.804 0.739 182.803 0.930
h = 100 µs 12.139 2.508 15.416 3.530
h = 1 ms 1.198 8.079 1.651 8.358

Midpoint

h = 1 µs 2412.932 0.033 2994.206 0.306
h = 10 µs 165.374 0.948 264.261 0.887
h = 100 µs 13.282 3.156 23.706 3.554
h = 1 ms 1.482 9.820 2.579 42.230

Runge-
Kutta

h = 1 µs 3873.598 0.033 5045.481 0.294
h = 10 µs 314.017 0.948 460.079 0.856
h = 100 µs 32.832 3.155 47.700 3.932
h = 1 ms 3.024 9.817 4.560 48.258

Dormand-
Prince

e = 1 µ 2286.730 0.033 2989.163 0.294
e = 10 µ 572.327 0.336 735.503 0.285
e = 100 µ 54.232 1.330 74.478 0.323
e = 1 m 7.367 4.200 10.839 0.437
e = 10 m 2.621 10.879 4.739 2.164
e = 100 m 3.019 13.645 4.205 3.610

Table 4.4: Neuron simulator benchmark results. The column ∆u shows the
RMSE for the membrane potential traces, the t column the total simulation
time. Highlighted numbers are explicitly referred to in the text.

4 .2 .4 Integrator benchmark

For constant error E mathematical theory promises an exponentially
smaller computational cost for higher order differential equation inte-
grators. Yet, it is not clear whether the overhead of more complex meth-
ods pays off in a practical usage scenario. To this end, a benchmark
comparing the different methods with varying precision is described
in the following.

Method A single neuron receives 100 random input spike bursts “Excitatory spike” and
“inhibitory spike” must be
read as “input spike with
annotated excitatory or in-
hibitory synaptic weight”.
The spikes themselves are
of course neither excitatory
nor inhibitory.

which either contain four excitatory spikes, four excitatory spikes and
two inhibitory spikes, or three excitatory spikes, each with Gaussian
jitter of σt = 1 ms within a time window of T = 100 ms. The corre-
sponding synaptic weights are chosen in such a way, that only the first
kind of bursts produces an output spike, totalling to an average of
33 output spikes over ten seconds of simulated time. The same spike
train is fed into a neuron simulated with different integrator setups.
The RMSE with nearest-neighbour interpolation between recorded
neuron state trace and ground truth is used as a quality measure. The
ground truth is produced by a fourth-order Runge-Kutta simulation
with h = 100 ns step size. Table 4.4 summarises the runtime t and volt-
age component RMSE ∆u. Results for the AdEx model were computed

75

neuron parameter evaluation and optimisation

with enabled exponential function approximation. See Appendix B.3The fourth-order Runge-
Kutta method serves as

the ground truth because
it can be implemented in

just six lines of code (LoC),
rendering any implemen-

tation error improbable
– in contrast to the 135

LoC adaptive Dormand-
Prince integrator.

for more detailed results.

Results As expected, the simulation time reduces for larger time
steps h and target errors e, while the resulting error rises. Furthermore,
the AdEx model is computationally more intensive than the LIF model.
However, the results clearly lack the theoretically predicted decrease
in error for higher order integrators. On the contrary, the error either
stays approximately the same or increases for higher-order integrators.
Astoundingly large errors are produced for a h = 1 ms time step
and the AdEx model for the Midpoint and Runge-Kutta integrators.
The adaptive step size Dormand-Prince integrator performs better
in conjunction with the more complex AdEx model, than with the
simpler LIF model. It does not show any severe increases in error.

Discussion The large errors produced by higher-order integrators
for the AdEx model can be accounted to the problem predicted in
Section 4.2.1. While a neuron simulated with Euler’s method just
resets when reaching the exponential spike generation mechanism,
taking multiple sub-steps during a phase of exponential membrane
potential growth allows to couple large membrane potentials into
the adaptation current a (Table B.5), which in return influences the
membrane potential after the reset. However, this does not explain
why for LIF neurons the higher-order constant step size integrators
are scarcely better than Euler’s method. On a brighter note, the results
clearly show that the time spent for implementing an adaptive step size
integrator was worthwhile. For e = 100 · 10−6 and the AdEx model, a
competitively small error of 0.3 mV can be reached ten to one hundred
times faster. Although the advantage is smaller for the LIF model,
the adaptive step size integrator is still about six to three times faster
than the Midpoint and Runge-Kutta methods, and as fast as Euler’s
method. For sensible error values, the adaptive step size Dormand-
Prince integrator is not worse performance-wise than constant step size
integrators, and clearly outperforms them when used in conjunction
with the AdEx model. Therefore, we select this integrator as basis for
neuron simulation.

4 .3 approach 1 : spike train

In the previous sections we established the design space and presented
a blueprint for a single neuron simulator. In the following we build
upon these concepts and describe three single neuron evaluation
measures, which assign abstract optimality values P to a parameter
vector Φ. This section describes the so called “spike train” measure.
We elaborate on the underlying idea, then describe the parameters
of the so called “group descriptor” and finally discuss the equations
describing the measure itself.

76

4 .3 approach 1 : spike train

Ia.

II.

III.

Input

Recorded output

Expected output

Evaluation ✓ ✗ ✓

Ib.

Figure 4.3: Example of a spike train evaluation. Bold vertical lines represent
single input/output spikes. Row Ia shows the input spike train, separated
into ng = 3 compartments generated according to the group descriptors
shown in Table 4.6 on the next page, a burst size of three and a group length
T. Row Ib shows the number of expected output spikes for each experiment
group. Row II depicts an examplatory result from a neuron. Accordance of
the actual result with the actual result is illustrated in row III.

4 .3 .1 Concept

The spike train measure is a flexible, empirical approach to single
neuron evaluation. It allows to test whether a neuron with parameters
Φ responds as expected to certain inputs. As shown in Figure 4.3,
the measure is separated into three stages. First, an input spike train,
separated into ng experiment groups of length T, is constructed. The
assembly of each group follows a group descriptor, which is randomly
chosen from a descriptor pool. The descriptor specifies the expected
output spike count and the number of excitatory and inhibitory input
bursts. In the second step the input is fed into a single neuron simula-
tion with parameters Φ. In the third step the recorded output spike
train is evaluated with respect to the expected spike count for each
compartment, resulting in an estimated probability Pst of the neuron
to fulfil the behaviour encoded in the group descriptors.

Generally, the measure can be used to examine the functionality
of a single neuron in an arbitrary feed-forward network. With an
appropriate pool of descriptors, it can be configured to test the BiNAM
threshold condition, and implicitly the reset condition (Section 3.1.4).
For large ng, it serves as a reliable prediction of network behaviour and
provides ground-truth data for the “single group” methods introduced
in Sections 4.4 and 4.5.

4 .3 .2 Descriptor and input spike train generation

The compartments of the randomly generated input spike train tin It is important to distin-
guish the number of spikes
and bursts. The expected
output ñout is measured in
spikes, the input in bursts
(each counting sin spikes).

with annotated weights win are generated according to a pool of exper-
iment group descriptors. The group descriptors specify the number of
excitatory and inhibitory input bursts nE and nI, as well as the number
of expected output spikes ñout. Individual input bursts are generated

77

neuron parameter evaluation and optimisation

spike train measure meta-parameters

Global parameters

ng Total number of experiment groups in the input spike train. Due to
the random sampling performed in the method, a larger number
of experiment groups results in a more accurate the result. Unless
noted differently ng is chosen as 100 in this thesis.

Experiment group descriptor parameters

nE Number of excitatory input bursts.

nI Number of inhibitory input bursts. Inhibitory input bursts could be
used in conjunction with more sophisticated networks.

ñout Number of expected output spikes.

wE Weight factor of the excitatory input bursts, allows to simulate a
larger synaptic weight for the excitatory synapse. Usually set to 1.0.

wI Weight factor of the inhibitory input bursts. Set to 1.0.

Table 4.5: Full list of meta-parameters in the “spike train” evaluation method.

according to the data encoding parameters in Section 3.1.2 and Ta-
ble 3.1. Note that the input bursts in a spike train compartment are
not time-sequential – they are fused, emulating the coincidental arrival
of single input bursts at nE excitatory and nI inhibitory synapses of
a neuron (Figure 4.2 and Section 4.1.3). Time offsets of single spikes
are solely controlled by the data encoding parameters σt, σoffs

t and ∆t.
The annotated weights in win are selected according to the specified
synapse weight w with superimposed Gaussian noise according to the
noise parameter σw. The group descriptor parameters wE and wI allow
to rescale the weights for individual groups. The experiment group
descriptors are summarised in Table 4.5.

Embedding the BiNAM threshold condition into the spike trainnE nI ñout

2 0 0
3 0 1

Table 4.6: Example of
group descriptors test-

ing the threshold be-
haviour for c = 3,

K = 1 and sout = 1.

measure framework requires two experiment group descriptors, one
with nE = c · K and an expected output spike count of ñout = sout,
and one with nE = (c− 1) · K and ñout = 0. An example is given in
Table 4.6. As the ng experiments are randomly sampled from these
two descriptors and temporarily multiplexed with an interval T into
a single input spike train, the reset condition is implicitly tested – if
it was not fulfilled, the individual experiments would influence each
other and the neuron would not produce the expected result.

4 .3 .3 Evaluation

Given the input (tin, win), the behaviour of a single neuron with pa-
rameters Φ is simulated and the output spike train tout is recorded.
Let ñout

i denote the expected number of output spikes for group i and

nout
i = |{tout

j | T · (i− 1) ≤ tout
j < T · i}| (4.16)

78

4 .4 approach 2 : single group, single output spike

denote the number of actual output spikes in the i-th spike train
compartment. The evaluation measure Pst is then defined as ratio of
successful experiments to the total number of experiments:

P i
st(Φ) =

{
1 if ñout

i = nout
i (Φ)

0 otherwise
(4.17)

Pst(Φ) =
1

ng
·

ng

∑
i=1
P i

st(Φ) (4.18)

For large ng the target function Pst(Φ) can be interpreted as the prob-
ability of the neuron with parameters Φ to exhibit the behaviour
described in the experiment group descriptor pool.

4 .4 approach 2 : single group, single output spike

The just presented spike train measure Pst has major drawbacks:
Pst(ng) is a discrete step function, which hinders automated, gradient
based optimisation, and depending on the magnitude of the noise
parameters, the number of randomly generated experiment groups
ng must be rather large to produce stable and exact output values.
This potentially results in long simulation times, which mitigates the
promised benefit of single neuron evaluations.

This section presents the “single group, single output spike” (SGSO) The “single group” part of
the name stems from each
independent simulation
run to correspond to an
experiment with a single
group in the spike train
measure.

measure, which performs a limited number of independent experi-
ments and calculates a smooth compound measure Psgso for the special
case that the number of output spikes encoding a “one” is exactly one.
In the following, we discuss the general idea, describe the input spike
trains used in the experiments, the equations for Psgso, and finally
focus on the notion of the “effective threshold potential” Eeff

Th.

4 .4 .1 Concept

The central idea of the SGSO measure is to analyse the distance be-
tween the maximum neuron membrane potential umax and the effective
threshold potential Eeff

Th. The latter is defined as the membrane poten-
tial that has to be surpassed for the neuron to inevitably generate an
output spike. For single output spikes, the BiNAM threshold condition
is fulfilled if umax reaches Eeff

Th for n1 input spikes, but stays below the
threshold for n0 input spikes (Equation (3.7)). In either case, there
should be a large margin between umax and Eeff

Th to increase robustness.
The limitation to a single output spike is enforced by repeating the
experiment for n1 input spikes with u(0) = Ereset and tspike = 0. This
puts the neuron into the refractory period and mimics the neuronal
state following an output spike. Given these initial conditions, the
neuron should not reach the threshold. The BiNAM reset condition
is tested by capturing the neuron state in all three experiments at

79

neuron parameter evaluation and optimisation

u(t)

t t t

Input spikes Membrane potential u(t)

u(t) u(t)

Figure 4.4: Conceptual overview of the single group, single output spike
measure. Three independent experiments are conducted, in which a neuron
with deactivated spiking mechanism is either presented n0 or n1 input spikes.
The degree to which the neuron fulfils the threshold condition is determined
by comparing the maximum membrane potential umax to the effective thresh-
old potential Eeff

Th. The neuron state at time T determines how well it fulfils
the reset condition.

the time T and comparing the result to the initial neuron state. The
method is sketched in Figure 4.4.

A major challenge of this methodology is that – by definition – theDeactivation of the spiking
mechanism is the actual
reason why the measure
can only handle a single

output spike. Expansions
of the measure allowing

multiple output spikes by
running follow-up exper-

iments which restarted
the simulation at the

threshold-crossing point
did not result in a satis-

factorily smooth measure.

neuron issues an output spike as soon as Eeff
Th is reached. As a result,

it would hold umax = ETh. This impedes a quantification of how much
the neuron surpasses the threshold, which in return hinders the goal
to optimise for a large margin and to provide a smooth evaluation
measure. The pragmatic solution to the problem is to simply deactivate
the neuron spiking mechanism. In the context of the LIF model, the
neuron must not reset once ETh is reached. For the AdEx model, the
exponential spike generation current must furthermore be limited to

ITh
′(u) = min{ITh(u), ITh(Eeff

Th)} . (4.19)

This prevents the membrane potential from rising to infinity but does
not obstruct neuron dynamics below the threshold.

4 .4 .2 Deterministic input spike train generation

A further distinguishing goal of the SGSO measure is determinism.
Until now, input spike train generation is based on a stochastic model
with noise parameters σt and σoffs

t . As shown in Figure 4.5(a), deter-
minism could be enforced by setting the spike time noise parameters
σt and σoffs

t to zero. Statistically, such a spike train would correspond
to averaging the spike times over an infinite number of randomly
generated spike trains. However, this does not account for the σt- and
σoffs

t -induced spread of spike times encountered when fusing multiple

80

4 .4 approach 2 : single group, single output spike

(a) No noise (b) Random bursts (c) Equidistant offset

Figure 4.5: Comparison of single neuron simulation spike train generation
methods. The three sketches show four bursts each (top) which are fused
into a single spike train for single neuron simulation (bottom). (a) shows four
bursts generated without noise and an interspike interval ∆t. The i-th spike of
each burst is at exactly the same time. (b) shows bursts randomly generated
according to the parameters σt and σoffs

t as specified in Section 3.1.2. The
resulting spike packets of the fused spike trains show a certain spread. (c)
deterministically emulates the spread of the spike packets by offsetting each
burst by a multiple of toffs.

random bursts in a single spike train – see Figure 4.5(b). This spread
can be emulated by adding a multiple of a constant offset toffs to each
burst in the input spike train. The offset is chosen as

toffs =
2 · (σt + σoffs

t)

nbursts
, (4.20)

where the denominator nbursts is the number of input bursts (either c or
c− 1), and the numerator 2 · (σt + σoffs

t) the width of the 68.2%-quantile
of the Gaussian distribution resulting from additive superposition of
the Gaussian distributions accounting for σt and σoffs

t . Figure 4.5(c)
sketches the effect of the equidistant offset.

4 .4 .3 Evaluation measure

With idea and input generation laid out, we proceed to the equations The free parameter τ in
Equation (4.21) controls
the slope of sigmoid func-
tion and consequently
the “softness” of pth. τ is
chosen according to

τ =
1− 2 · ∆p
2 · ∆u · ∆p

,

where ∆p is the value of
L at −∆u. Here these two
values are ∆u = 2 · 10−3

and ∆p = 0.2.

specifying Psgso. Let u1
max, u0

max denote the maximum membrane po-
tentials encountered in a single neuron simulation for c and c− 1 input
bursts respectively. The third potential ureset

max denotes the maximum
membrane potential for c input bursts with the neuron starting in its
refractory state. Let L(x | x0) denote a heavy-tailed sigmoid function

L(x | x0) =
1
2
·
(

1 +
τ · (x− x0)

1 + τ · |(x− x0)|

)
. (4.21)

An important property of L(x | x0) is its non-exponential falloff, caus-
ing the sigmoid to saturate slowly. Goal of this choice is to facilitate
parameter optimisation by providing a distinct gradient. Example

81

neuron parameter evaluation and optimisation

−10 −5 0 5 10

x

0.00

0.25

0.50

0.75

1.00

L
(x
|x

0,
τ
)

τ = 0.01
τ = 0.1

τ = 1
τ = 10

(a) Heavy-tailed sigmoids for varying τ

EL Eeff
Th

Ee

umax

0.00

0.25

0.50

0.75

1.00

p1 p0

(b) Illustration for the calculation of pth

Figure 4.6: Examples of heavy-tailed sigmoids and the threshold evaluation.
(a) shows examples of the heavy-tailed sigmoid function in Equation (4.21)
with x0 = 0. In contrast to other sigmoid functions, the heavy-tailed sigmoid
shows no exponential falloff. (b) visualises the calculation of pth in Equa-
tion (4.22) for given u1

max, u0
max and ureset

max . The measure pth results from the
multiplication of the values read off the sigmoids.

plots of L(x | x0) are shown in Figure 4.6(a). The first ingredient to
the evaluation measure, pth, describes accordance with the threshold
condition

pth = L(u1
max | Eeff

Th) · (1− L(u0
max | Eeff

Th)) · (1− L(ureset
max | Eeff

Th)). (4.22)

Figure 4.6(b) sketches the individual factors of the above equation for
fixed potentials. Large u1

max, and small u0
max and ureset

max result in a high
valuation in the compound measure pth.

The final ingredient to the measure is an estimation of how well
the reset condition is fulfilled. Let ~v1

T, ~v0
T and ~vreset

T denote neuron
state vector of the corresponding simulation runs at time T, and ~v0

the initial neuron state. Accordance with the reset condition preset is
measured as

preset = exp
(
−‖~v1

T −~v0‖ − ‖~v0
T −~v0‖ − ‖~vreset

T −~v0‖)
)

. (4.23)

The norm ‖ · ‖ should be chosen such that individual vector dimensions
are rescaled to similar value ranges. The final evaluation measure
Psgso(Φ) for a parameter vector Φ is defined as

Psgso(Φ) = pth(Φ) · preset(Φ) . (4.24)

82

4 .4 approach 2 : single group, single output spike

4 .4 .4 Effective threshold potential

The effective threshold potential Eeff
Th is defined as the membrane po-

tential at which a neuron inevitably produces an output spike (Sec-
tion 4.4.1). For the LIF model, it trivially holds Eeff

Th = ETh. For the
AdEx measure, Eeff

Th corresponds to the unstable stationary point in the
membrane potential bifurcation analysis (Figure 2.12(c)). Consider the
exponential current ITh in the AdEx model (Equation (2.22))

ITh = gL · ∆Th · exp
(
(u(t)− Eexp

Th) · ∆Th
−1
)

. (4.25)

For an absence of inhibitory currents (Ia(t) ≤ 0 and gi(t) = 0), and As discussed in Sec-
tion 4.1.4, the leak po-
tential is only an offset to
all membrane potentials.

a leak potential EL = 0, Eeff
Th is given as the membrane potential x at

which leak and threshold current cancel each other out

gL · x = gL · ∆Th · exp
(
(x− Eexp

Th) · ∆Th
−1
)

. (4.26)

We now discuss two ways in which the equation can be solved for x.

Lambert W function Rearranging Equation (4.26) yields The Lambert W function is
defined as
W(z) = X(x)⇔
z = X(x) · exp(X(x))
with a real-valued result if
z > − 1

e holds.

∆Th = x · exp
(
−(x− Eexp

Th) · ∆Th
−1
)

⇔ − exp
(
−Eexp

Th · ∆Th
−1
)
= −x · ∆Th

−1 · exp
(
−x · ∆Th

−1
)

. (4.27)

This equation can be solved with the Lambert W function [Cor+96]

Eeff
Th = x = −∆Th ·W

(
− exp

(
−Eexp

Th · ∆Th
−1
))

. (4.28)

W(z) possesses a real-valued solution for z > − 1
e . It must hold

exp
(
−Eeff

Th · ∆Th
−1
)
< exp(−1)⇔ Eeff

Th > ∆Th . (4.29)

For Eeff
Th ≤ ∆Th the threshold current ITh would always be larger than

the leak current. The neuron would be in an unstable state in which it
repeatedly generates output spikes.

Iterative calculation For a practical implementation of the calcula- Newton’s method is likely
to diverge if the loga-
rithm is not applied, as
the derivative still contains
an exponential function.

tion of Eeff
Th without the Lambert W function, Equation (4.26) can be

solved iteratively using Newton’s method. However, it is important to
apply the logarithm to the equation

f (x) = 0 = log (∆Th) + (x− ETh) · ∆Th
−1 − log (x) . (4.30)

The iterative solution is given as

x0 = ETh , (4.31)

xn+1 = xn −
f (xn)

f ′ (xn)
= xn −

log (∆Th) + (x− ETh) · ∆Th
−1 − log (x)

∆Th
−1 − x−1 ,

where ETh > 0 and ∆Th > 0. Under these circumstances the formula
usually converges to a solution with an accuracy of 1 nV in three to
four steps.

83

neuron parameter evaluation and optimisation

4 .5 approach 3 : single group, multiple output spikes

In contrast to the spike train measure, the SGSO measure produces
a smooth, non-discrete output. Yet, the former accurately models the
environment of a single neuron in a BiNAM network which receives a
new sample in an interval T. Furthermore, all properties of the neuron
are tested, including the spiking mechanism, refractory period and
the adaptation mechanism, and there is no limitation regarding the
number of output spikes.

Combining the advantageous properties of the previous two mea-
sures is the goal of the “single group, multiple output spikes” measure
(SGMO). It aims at respecting all neuron model characteristics, allow-
ing for an arbitrary expected output spike number, while still being
computationally inexpensive and guaranteeing a smooth evaluation
measure. Section 4.5.1 presents the general idea on how to tackle the
lofty goals mentioned above. It furthermore provides the defining
equations of the measure, which assume the existence of a fractional
spike count qout. An efficient algorithm for the calculation of the said
qout is covered in the second part, Section 4.5.2.

4 .5 .1 General idea

Again, the overall goal of the measure is to facilitate neuron parameter
optimisation with respect to the threshold and reset conditions (Sec-
tion 3.1.4). Optimisation of the threshold condition can be formulated
as minimisation of the error E in the following framework

E(Φ) = |ñout − nout(Φ, tin
1)|+ nout(Φ, tin

0) , (4.32)

where tin
1 and tin

0 are deterministic input spike trains (Section 4.4.2) for
which the neuron is expected to produce ñout and zero output spikes
respectively. An eminent disadvantage of the above equation are the
discrete spike counts nout, which cause the error function E(Φ) to take
the form of a step function.

The crucial idea is to replace discrete spike counts nout with frac-A fractional output spike
count qout = 3.5 should

for example be interpreted
as “the neuron outputs
three spikes, and is al-
ready half way to gen-

erating a fourth spike”.

tional spike counts qout ∈ R+, which encode both the integral number
of output spikes nout, as well as the estimated likelihood of another
output spike pout. Assuming the existence of such a measure qout, the
error equation can be reformulated as

E(Φ) = |o + ñout − qout(Φ, tin
1)|+ qout(Φ, tin

0) , (4.33)

where the offset o should theoretically be chosen as o = 1/2 to maximise
the margin between two discrete spike count steps: the neuron should
not be close to issuing ñout − 1 spikes, but also not too close to issuing
ñout + 1 spikes. In case qout is not linear with respect to the variation of
a single parameter dimension, another choice of o might yield a more
robust behaviour. The value chosen here is o = 0.3.

84

4 .5 approach 3 : single group, multiple output spikes

Parameter
0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
ts

pi
ke

co
un

t
nout qout S(nout) S(qout)

0.0

0.2

0.4

0.6

0.8

1.0

St
ud

en
t’s

 t-
di

st
ri

bu
ti

on
 S
(q
|

x 0
)

Figure 4.7: Idealised sketch of the SGMO measure. The output spike count
nout(φ) over a neuron parameter φ is smoothed to a fractional spike count
measure qout(φ) (here in its ideal linear form). The fractional spike count is
converted to a bell-shaped function (an unnormalised Student’s t-distribution)
with zero to one value range, which indicates how well the current spike
count matches the target spike count ñout.

The additive error value E(Φ) is rewritten as pseudo-probabilistic As with the previous
evaluation measure, the
semantic value of the
pseudo-probabilities is
fairly limited in a mathe-
matical sense and should
be seen as a normalisation
only.

value pth(Φ) consisting of the product of two unnormalised, bell-
shaped Student’s t-distributions with parameter ν = 1 (also known
as Cauchy distribution), which measure how close qout is to nout for
input tin

1 (sketched in Figure 4.7) and how close to zero for input tin
0

pth(Φ) =
1

1 +
(
o + ñout − qout(Φ, tin

1)
)2 ·

1

1 +
(
qout(Φ, tin

0)
)2 . (4.34)

Analogue to similar considerations in the SGSO measure, the use of
a heavy-tailed bell-shaped function ensures non-zero pth(Φ) with a
distinct gradient over vast regions of the parameter space. This gradient
might be sufficient to guide an automated parameter optimiser through
the neuron parameter space.

The final ingredient to the measure is an estimation of how well
the reset condition is fulfilled. Here, the same approach as in the SGSO
spike measure in Equation (4.23) is employed

preset(Φ) = exp(−‖~v1
T −~v0‖) , (4.35)

where ~v1
T is the state of the neuron at time T for input tin

1 and ~v0 is the
initial neuron state. Again, the norm ‖ · ‖ should rescale the individual
state vector components to a comparable value range. The resulting
evaluation measure value Psgmo(Φ) is given as

Psgmo(Φ) = pth(Φ) · preset(Φ) . (4.36)

85

neuron parameter evaluation and optimisation

4 .5 .2 Fractional spike count

With the basics of the single group, multiple output spike measureTo tighten the notation,
the spike train descriptor

tin is not explicitly de-
noted. Of course, a spike

train descriptor must
nonetheless be passed

to the underlying sin-
gle neuron simulation.

in place, we are ready to address the fractional spike count measure
qout(Φ) itself. This section first presents a widely unsuccessful ap-
proach to the calculation of the fractional spike count. The lessons
learned are then incorporated into the construction of a more robust
measure. Yet, before we begin, a more thorough definition of the
semantics of the seemingly paradoxical “fractional spike count” is
appropriate.

Properties of the fractional spike count For the sake of simplicity,

1

nout

pout

0

Figure 4.8: Sketch of the
fractional spike count

decomposition. The frac-
tional spike count measure

smoothly interpolates be-
tween the discrete steps in

nout (top graph) by adding
a fractional value pout

(bottom graph), which is
zero right at the point at
which an additional out-

put spike is generated and
close to one immediately

previous to that point.

let us consider a single variable parameter dimension with value φ.
All other parameters in the parameter vector Φ should assumed to
be constant. Of course, the same concepts apply to more than one
variable parameter dimension, yet this would be harder to visualise
and requires more elaborate mathematical notation. Furthermore, the
postulated properties may be slightly violated by the actually selected
fractional spike count measure. They are mere guidelines towards
designing such a measure.

The defining property of qout(φ) is its decomposability into the
discrete spike count nout(φ) ∈ N and an additive fractional part
pout(φ) ∈ [0, 1) ⊂ R. The latter can be interpreted as the likelihood of
an additional spike, which smoothly interpolates between the steps of
its discrete counterpart

qout(φ) = nout(φ) + pout(φ) . (4.37)

Given an infinitesimally small ε → 0, the fractional pout(φ) should
fulfil the following conditions

pout(φ) = 0⇔ nout(φ) > nout(φ− ε) ∨ nout(φ) > nout(φ + ε), (4.38)

pout(φ)→ 1⇔ nout(φ) < nout(φ− ε) ∨ nout(φ) < nout(φ + ε), (4.39)

or in other words, the upper corner points of the staircase nout are
located on the curve qout (Figure 4.8). In order to facilitate automatic
parameter optimisation, pout should be continuous and monotonous
for maximally large intervals [φ̌, φ̂] with

nout(φ) = nout(φ′) where φ̌ ≤ φ, φ′ ≤ φ̂ . (4.40)

With these properties in place, we discuss a simple, yet flawed method
for the calculation of pout.

4 .5 .3 Minimal apical voltage difference

The method we discuss here is based on an intriguingly simple observa-
tion, which in practice fails spectacularly. Consider two infinitesimally

86

4 .5 approach 3 : single group, multiple output spikes

close parameter values φ and φ′, with the value φ causing the neuron
to produce an additional spike compared to φ′. Put more precisely, it
holds

ñout(φ)− ñout(φ′) = 1 with |φ− φ′| → 0 . (4.41)

Repeatedly comparing the membrane potential traces u(t) for such The author never encoun-
tered a situation in which
the spike was not pro-
duced at the location of a
local maximum. Yet, since
the intricate dynamical
systems are rather com-
plex, no effort was made at
proving this conjecture, so
it should be taken with a
grain of salt.

parameter pairs φ and φ′ suggests that the additional spike is very
likely to be produced at a time t which corresponds to a local maximum
in the membrane potential trace for the parameter φ′. Thus, it seems
reasonable to assume that a necessary precondition for time points t
at which spikes may arise is u̇(t) = 0 and ü(t) < 0. With this thought
in mind, the fractional spike count component pout could be defined
as follows

pout = 1− min{Eeff
Th − u(t) | u̇(t) = 0∧ ü(t) < 0}

Eeff
Th − EL

, (4.42)

which expresses the normalised minimal voltage difference between Note that due to discon-
tinuity, the spikes them-
selves do not fulfil the
condition u̇(t) = 0. They
are thus filtered out.

the local maxima of the membrane potential and the effective threshold
potential Eeff

Th (Section 4.4.4). If the maximum membrane potential is
close to Eeff

Th, it is likely that an additional spike will be introduced,
and it holds pout = 1. If the maximum membrane potential is EL, the
likelihood of an additional spike is small, so pout = 0.

However, as shown in Figure 4.9, this idea fails on multiple levels.
While a maximum in the membrane potential trace at time t for a
parameter φ′ might be a necessary precondition for the production of
a spike for φ at time t, the reverse does not hold. Even the largest local
maximum in the membrane potential trace is by no means a sufficient
condition for the production of an additional spike for any φ. The most
spectacular failure of this assumption arises if variation of φ indeed
produces a spike at the predicted location, but in response a spike at
another location disappears.

The normalisation of pout poses another problem. For the parameter
value φ, at which a new spike has just been introduced, Equation (4.38)
requires pout to be set to zero. In practice the largest local maximum is
larger than EL, causing pout to be set to a value greater than zero.

Nevertheless, the measure possesses at least one positive trait. It
produces a smooth curve with subtle slope for nout(φ) = 0. This is
somewhat expected, since most disturbances in the neuron dynamics
are generated by the output spike generation mechanism.

To summarise, it should be apparent from these examples, that
running a single neuron simulation and trying to mingle some more
or less arbitrarily measured membrane potentials into a single value
pout is doomed to fail. Explicit membrane potential measurements are
neither expressive, nor properly normalisable. Thus, the next approach
is based on a fundamentally different idea.

87

neuron parameter evaluation and optimisation

0

1

2

3

4

5

6
nout(gL) qout(gL) pout(gL)

0.0 0.2 0.4 0.6 0.8 1.0
Parameter gL [µS]

0

1

(a) Minimal apical voltage difference fractional spike count

0 5 10 15 20 25 30

[ms]

−80

−60

−40

−20

0

20

u(
t)

[m
V

]

t

0 5 10 15 20 25 30

t [ms]

−80

−60

−40

−20

0

20

u(
t)

[m
V

]

gL µS(c) Neuron membrane potential trace for = 0.2002

gL µS(b) Neuron membrane potential trace for = 0.2006

(b)

(c)

Figure 4.9: Results for the unsuccessful “minimal apical voltage difference”
fractional spike count. (a) plots the number of output spikes nout(gL), the
fractional spike count measure pout(gL) and the pure fractional part qout(gL),
over the neuron parameter gL. The fractional spike count is calculated accord-
ing to Equation (4.42). The tested neuron is a LIF neuron which receives five
input spikes in a five millisecond interval starting at t = 0. As can be seen in
(a), pout exhibits severe discontinuities and non-monotonous behaviours. The
figures (b) and (c) show the membrane potential traces u(t) for the values of
gL indicated in (a). Filled circles show the location of the local maxima. As
can be seen, the discontinuity in pout is caused by the second spike “jumping”
to the position of the largest maximum (blue circles).

88

4 .5 approach 3 : single group, multiple output spikes

4 .5 .4 Minimal membrane potential perturbation

The notion of “likelihood of an additional spike” could be reformulated
as “what is the minimal amount of additional energy that must be
pumped into the neuron to produce another spike?”. An obvious way
of injecting energy into a spiking neuron is to offset the membrane
potential at a certain time t by a small voltage ∆u. The basic idea of
the approach to the fractional spike count measure presented here is
to find the minimal ∆u, which introduces an additional output spike.
However, two open questions remain: at which times t should the
perturbation take place and what is the possible value range of ∆u?

Searching a minimal ∆u over a dense grid of times t is not a viable
option, as this approach is not only slow, but would inflate the search
space unnecessarily since the neuronal behaviour usually does not
differ tremendously between two close points in time t and t′. The
events which influence the neuronal dynamical system the most are the
output spikes themselves. The membrane potential perturbation is thus
performed at the times of highest behavioural uncertainty, namely, at
the beginning of the simulation, and the end of each refractory period
in the original, undisturbed neuron simulation.

The possible value range for perturbations at time t is limited
by the original membrane potential u(t) and the effective threshold
potential Eeff

Th. It must hold ∆u(t) ∈ [0, Eeff
Th − u(t)]. Given these consid-

erations, the entire fractional spike count calculation can be expressed
mathematically as

pout(Φ) = 1−min

{
∆u

Eeff
Th − u(t + τref)

∣∣∣∣∣nout
pert(Φ, t + τref, ∆u) > nout(Φ),

∆u ∈ [0, Eeff
Th − u(t + τref)], t ∈ (−τref)‖tout

}
, (4.43)

where nout
pert(Φ, t, ∆u) is the output spike count for perturbation with The gist of the algorithm

as a whole is captured in
Equation (4.43). Exact de-
scriptions of the optimised
fractional spike count al-
gorithm are out of scope
for this thesis. Interested
readers can find the entire
implementation in the ac-
companying source code.
For example, an especially
crude trick was used for ef-
ficiently relaying ∆u to the
neuron simulator: t and
∆u are encoded as a special
input spike with ∆u stored
in the payload of a “NaN”
weight value.

offset ∆u at time t, tout are the original output spike times, and u(t)
refers to the original membrane potential trace.

Algorithmic implementations of Equation (4.43) should take vari-
ous optimisations into account. Most importantly, the search for the
minimum ∆u at time t should be implemented as a binary search. Fur-
thermore, since neuron dynamics only need to be simulated starting
from the time-point of the perturbation t, the algorithm should start
its minimum search at the largest t, and thus successively restrict the
search space for longer simulation durations. The next optimisation re-
sembles the concept of dynamic programming [Bel57]. For each tested
time t, the neuronal states ~v which did or did not lead to an additional
output spike are stored in a table. Whenever the simulator passes t it
compares the current neuron state to the corresponding table entry
allowing for early abortion. This approach has to be implemented
with great care, since all neuron states – including for example the

89

neuron parameter evaluation and optimisation

adaptation current Ia(t) – influence the generation of additional output
spikes.

As shown in Figure 4.10, the perturbation-based method is clearly
superior to the previous concept – at least for regions with nout > 0.
For nout = 0 pout (black) falls very quickly to or stays at zero, as can
be seen for example in the bottom portion of Figure 4.10(d). The prag-
matic solution taken here is to employ the previous measure (denoted
as pout′ in the figure) in regions with nout = 0. In combination (blue
graphs, qout), the two measures fulfil the behavioural constraints pos-
tulated above to a high degree. The pure fractional part of the measure
pout, which is mostly monotonous between steps, fills the entire range
between zero and one, and touches the upper corners of the underlying
step function nout. Minor deficiencies concern the non-linear interpola-
tion between the steps, the generation of plateaus as in Figure 4.10(f),
and very small, non-monotonous kinks as in Figure 4.10(b). However,
since an optimiser is most likely to adapt multiple dimensions con-
currently, at least one gradient should point into the correct direction.
Neither the plateaus, nor the occasional kink should thus present a
serious problem.

4 .6 neuron evaluation software framework

This section gives insight into the software framework and tools for
single neuron evaluation experiments. Following an overview of the
system architecture, the interactive parameter space exploration tool
AdExpSimGui and in particular the modular high performance neuron
simulator are discussed.

4 .6 .1 Architectural overview

The single neuron simulator and the three evaluation methods areThe entire framework, in-
cluding the CLI and GUI
applications, amounts to

more than 18 000 lines of
code, including inline doc-

umentation. The core li-
brary is solely based on the
C++ standard library and

can be used on any sys-
tem with a standard com-

pliant C++14 compiler.

implemented as part of the AdExpSim framework in the C++14 pro-
gramming language [ISO14]. Architecture and components of the
framework are sketched in Figure 4.11. Low-level facilities, such as
the generation of spike trains, normalisation of neuron parameters
and the LIF and AdEx neuron model simulator, are implemented as
part of a core library. On a higher abstraction level, the same library
implements the neuron evaluation measures presented in the previ-
ous sections, as well as classes for multi threaded parameter sweeps
(exploration) and optimisation. The input and output (I/O) library
provides functions for serialisation of the user-provided parameters to
JSON (JavaScript Object Notation, [Bra14]), as well as facilities for the
export of exploration data as surface plots.

90

4 .6 neuron evaluation software framework

0

2

4

6

8

10

12

14

16

nout

qout

pout

pout ′

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Parameter τref [ms]

0

1

0

1

2

3

4

5

6

nout

qout

pout

pout ′

0.2 0.4 0.6 0.8 1.0
Parameter gL [µS]

0

1

(a) LIF neuron, sweep gL [µS]

0

1

2

3

4

nout

qout

pout

pout ′

0.2 0.4 0.6 0.8 1.0
Parameter gL [µS]

0

1

(b) AdEx neuron, sweep gL [µS]

0

1

2

3

4

5

6

nout

qout

pout

pout ′

−65 −60 −55 −50 −45 −40 −35 −30
Parameter ETh [mV]

0

1

(c) LIF neuron, sweep ETh [mV]

0

1

2

3

4

nout

qout

pout

pout ′

−65 −60 −55 −50 −45 −40 −35 −30
Parameter ETh [mV]

0

1

(d) AdEx neuron, sweep ETh [mV]

0

2

4

6

8

10

12

14

16

nout

qout

pout

pout ′

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Parameter τref [ms]

0

1

(e) LIF neuron, sweep τref [ms]

0

2

4

6

8

10

nout

qout

pout

pout ′

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Parameter τref [ms]

0

1

(f) AdEx neuron, sweep τref [ms]

Figure 4.10: Minimal membrane potential perturbation measure examples,
comparison between LIF (left) and AdEx (right) neurons with sweeps over
different parameter dimensions.

91

neuron parameter evaluation and optimisation

Frontends

Framework libraries

Core

Simulator Exploration
Evaluation
measures
Multi
threaded
exploration

Common
Spike train
generator
Neuron
parameters

Types

Model
Integrators
Recorders
Controllers

➤

➤

➤

➤

➤

➤

➤

Multi
threaded
optimisation

➤

➤

➤

I/O

Parameter
serialisation

➤

Surface plot
export

➤

CLI

AdExpSim➤

GUI

AdExploration➤

AdExpOptimization➤

AdExpSimGui (Qt5)➤

Interactive exploration/simulation➤[...]➤

Figure 4.11: Architectural overview of the AdExpSim framework developed
for this thesis with distinction between the frontend applications and the
actual framework libraries, which implement the listed functionalities in a
reusable manner.

4 .6 .2 Frontend applications

The AdExpSim framework comes with a set of frontend applications.
The command line interface (CLI) applications are too numerous to
list in their entirety, but are usually thin wrappers around the core
library which expose an individual aspect of the core functionality to
end users. These programs require no interaction and facilitate batch
processing of exploration and optimisation tasks. Most of the programs
are designed to run a specific experiment and can be configured
directly in the source code.

The AdExpSimGui graphical user interface (GUI) application is an
interactive tool for design space exploration. The application itself is
based on the Qt5 application framework and the QCustomPlot plotting
library [Qt 15; Eic15]. The control panel shown in Figure 4.12(a) allows
users to setup neuron and evaluation measure parameters. Results of
a spike train evaluation for the current parameter vector, along with
the corresponding neuron voltage, conductance and current traces are
displayed in the simulation window depicted in Figure 4.12(b). Two
dimensional projections of the high-dimensional neuron parameter
space can be viewed in one or multiple exploration windows (Fig-
ure 4.12(c)). The user can interactively pan and zoom the design space,
and select the evaluation measure and the design space dimensions.
Changes to the neuron parameters are reflected in all exploration
windows at the same time. The exploration view highlights invalid
parameter combinations and parameters outside the range supported
by NM-PM1.

92

4 .6 neuron evaluation software framework

(a) Parameter control panel (b) Neuron simulation view

(c) Design space exploration view

Figure 4.12: Screenshots of the AdExpSimGui tool. (a) depicts the parameter
control panel, (b) shows the spike train neuron simulation window, and
(c) shows a design space exploration window. Dark colours correspond to
higher-rated parameters vectors, the red hatching to parameters outside the
hardware range, the grey hatching to invalid parameter combinations.

4 .6 .3 High performance single neuron simulator

The demands regarding the functionality of the high performance
single neuron simulator at the core of the AdExpSim framework vary
greatly between the individual evaluation measures. An incomplete list
of features includes the recording of voltage, current and conductance
traces, the tracking of local maxima, early abortion, simulation of both
the AdEx and LIF models, usage of various integrators, deactivation
of the spiking mechanism, as well as injection of perturbation voltages
at defined times. To this end, the simulator is implemented as a C++
template. This allows building individual simulator instances tailored
specifically to a feature set. The compiler can optimise each instance
to a high-performance and cache-oblivious loop consisting of a few
hundred assembler instructions. See Appendix A.1 for technical details.

93

neuron parameter evaluation and optimisation

expected evaluation measure behaviour

spike train sgso sgmo

Small ng Large ng

Reproducibility −∗ ◦∗ + +

Efficiency ◦ − + ◦
Interpretability + + − −

Realism + + − ◦
Smoothness − ◦ + +

Allows ñout > 1 X X X

Stochastic input X ∗ X ∗

Table 4.7: Informal classification of the expected behaviour for the three
evaluation methods presented in this chapter (+ good, ◦ mediocre, − bad).
Refer to the text for more information. ∗ Of course deterministic input spike
trains can be used, however, this reduces the realism of the measure.

4 .7 evaluation method comparison

This section aims at providing a direct comparison of the three eval-
uation measures. First, the expected properties of the measures are
summarised. Then, experiments and results concerning their actual
output and their suitability for optimisation are presented.

4 .7 .1 Evaluation measure properties

Important properties of the evaluation measures are their determinism
or reproducibility, the computational efficiency, the interpretability of the
results with respect to the full network evaluation measures, the realism
of the measure regarding the actual conditions in a spiking BiNAM
network, and the smoothness of the function for variations in the pa-
rameter space Φ. Table 4.7 informally summarises the properties of the
individual measures. These experimental hypotheses are elaborated in
the following.

For a small number of experiment groups ng � 100 and as-
suming non-zero noise parameters, the spike train measure is non-
deterministic, yet expected to be reasonably fast. The measure pos-
sesses a clear interpretation, namely the probability with which the
threshold and reset condition are fulfilled. As it samples directly from
the input model and simulates all aspects of the neuron, it can be
regarded as realistic. The output of the measure contains discrete steps.
For ng � 100 the reproducibility increases, while the size of the indi-
vidual steps in the output decreases at the cost of a higher simulation
time.

Both the SGSO and SGMO measure are reproducible and provide
smooth output. The pseudo-probabilistic values of the Psgso and Psgmo

94

4 .7 evaluation method comparison

initial neuron parameters

Synapse Membrane (LIF) AdEx

w = 0.03 µS Cm = 1.00 nF a = 4.00 nS
Ee = 0.00 mV gL = 0.08 µS b = 80.50 pA
τe = 5.00 ms EL = −70.00 mV τa = 144.00 ms

ETh = −54.00 mV ETh = 20.00 mV
Ereset = −80.00 mV Eexp

Th = −54.00 mV
τref = 0.00 ms ∆Th = 2.00 mV

Table 4.8: Initial neuron parameters as categorised in Table 4.1, for the
synapse, and the LIF and AdEx neuron. The specified LIF parameters are
also used for the AdEx neuron, with exception of ETh.

compound measures bears hardly any information that can be directly
translated to the performance of the neuron in the BiNAM, it solely
describes an abstract “optimality”. The SGSO measure discards poten-
tially important parts of the neuron model and its environment, and is
therefore expected to be the least realistic. It requires idealised deter-
ministic input spike trains, a deactivated spiking mechanism, idealised
assumptions regarding the effective threshold potential, and a capped
threshold current. The SGMO measure simulates all aspects of the
neuron, yet its realism is still limited by the use of the deterministic
input spike train.

4 .7 .2 Empirical comparison

The above characterisations are hypotheses for the expected behaviour
of the single neuron evaluation measures. In this section we conduct
and discuss parameter sweeps in order to empirically compare the
properties of the single neuron evaluation measures.

Method Two two-dimensional parameter sweeps (explorations) are gL = 0 µS and τe = 0 are
not valid according to the
design space constraints
(Section 4.1.4). Slightly
larger values were chosen
as a starting point instead.
Analogously, the initial
value for ETh is chosen as
EL + ∆Th + 1 mV to fulfil
the constraints.

performed, each for a LIF and an AdEx neuron. The first sweep varies
gL from 0.01 µS to 0.6 µS and τe from 1 ms to 100 ms. The second
sweep varies ETh from −67.9 mV to 0 mV and w from 0 µS to 1 µS. The
grid resolution of the exploration is set to 1024, resulting in a total
of 1 048 576 parameter evaluations. The neuron must output a single
spike for n1 = 3 input spikes and no output spike for n0 = 2 input
spikes. See Table 4.8 and Scenario I in Table 4.10 for the complete set of
neuron and system parameters. The spike train measure is executed
with two experiment group sizes, ng = 10 and ng = 100, referred to as
ST10 and ST100 in the following.

Results Table 4.9 shows the runtimes of the individual parameter
sweeps. Independent of the measure, there is an approximate factor

95

neuron parameter evaluation and optimisation

neuron parameter space exploration runtimes

Sweep over gL and τe Sweep over ETh and w

lif adex lif adex

ST10 648 s 1595 s 4368 s 12 595 s
ST100 6578 s 13 890 s 45 840 s 125 000 s

SGSO 206 s 310 s 2942 s 4844 s
SGMO 358 s 1014 s 7721 s 15 720 s

Table 4.9: Neuron parameter space exploration experiment runtimes for a
1024× 1024 parameter sweep. The shown times correspond to the total CPU
time, the wall-clock time is about 1/24 of the given values. The results for the
spike train measure with ng = 10 are averaged over two runs.

two in runtime between the LIF and the AdEx neuron evaluation. The
second sweep (over ETh and w) is about ten times slower than the
first. SGSO is clearly the fastest measure, being two-to-three times
faster than SGMO, which in return is two times faster than ST10 in
the first exploration run, and vice-versa in the second exploration.
Unsurprisingly, ST100 is ten times slower than ST10.

Figure 4.13 shows visualisations of the evaluation measures forAn interesting effect
that can be found in Ap-

pendix C is noise produced
by the ST100 measure in

conjunction with the AdEx
neuron for large gL and

small τe. This is believed
to be caused by the adap-

tive step size integrator
in conjunction with the

fast neuron dynamics in
this region. The author

assures that this kind of
noise is not unique to the

spike train measure. If
desired, it can be elim-
inated by employing a

constant step size inte-
grator at the cost of mag-
nitudes larger runtimes.

subregions of the first parameter sweep. Figures 4.13(a) and 4.13(b)
show two independent runs of ST10 for an AdEx neuron. The results
differ significantly from each other. There are clearly visible discrete
steps in the result. Upon first visual inspection, the SGMO measure
in Figure 4.13(c) replicates ST100 in Figure 4.13(a), while featuring a
clear gradient leading towards the centre region with high optimality.
In contrast, ST100 is uniform in vast regions of the design space. The
gradient of the SGMO measure is even clearer in Figure 4.13(e), where
the result for the LIF neuron is shown. Interestingly, the region with
maximum optimality is more concentrated than in the results for the
AdEx neuron. The result for the SGSO measure in Figure 4.13(f) is
visually distinct from the others, yet the location of the region with
high optimality is largely the same. The SGSO measure furthermore
shows a subtle gradient. Upon closer inspection it becomes apparent
that the maximum regions of the SGMO and SGSO measures do not
entirely cohere with those of ST100. They seem to extend a little further
towards larger gL. The complete set of results including the second
exploration can be found in Appendix C. Similar to the manually
picked examples shown here, all measures exhibit a pronounced region
with maximum optimality P . Unsurprisingly, SGSO and SGMO feature
a clear gradient, whereas ST100 does not.

Discussion A plausible explanation of the runtime differences be-
tween the individual exploration runs and the AdEx and LIF neuron
is the adaptive step size integrator. The exponential spike generation
mechanism of the AdEx neuron apparently requires smaller integra-

96

4 .7 evaluation method comparison

0.05 0.10 0.15 0.20
gL [µS]

5

10

15

20

25

30

35

40
τ e

[m
s]

(a) AdEx, ST10 (I)

0.05 0.10 0.15 0.20
gL [µS]

5

10

15

20

25

30

35

40

τ e
[m

s]

(b) AdEx, ST10 (II)

0.05 0.10 0.15 0.20
gL [µS]

5

10

15

20

25

30

35

40

τ e
[m

s]

(c) AdEx, SGMO

0.05 0.10 0.15 0.20
gL [µS]

5

10

15

20

25

30

35

40

τ e
[m

s]

(d) AdEx, ST100

0.05 0.10 0.15 0.20
gL [µS]

5

10

15

20

25

30

35

40

τ e
[m

s]

(e) LIF, SGMO

0.05 0.10 0.15 0.20
gL [µS]

5

10

15

20

25

30

35

40

τ e
[m

s]

(f) AdEx, SGSO

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.13: Selected results of the first design space exploration sweep (over
gL and τe). Colour-coded is the evaluation result P ∈ [0, 1]. The contour lines
correspond to the ticks on the colour bar. Only a portion of the design space
exploration is shown. Refer to the text for more details.

97

neuron parameter evaluation and optimisation

tion steps, causing a higher runtime. The sweep over ETh is likely to
produce many output spikes for small ETh, which explains the addi-
tional slowdown and especially the disproportionate runtime increase
for the SGMO measure: here, the runtime directly depends on the
number of output spikes. The differences in runtime should be seen
as a strong argument for the adaptive step size integrator, as it is
responsible for the major speedups in parameter space regions with
few output spikes.

The empirical results of the evaluation measures themselves fit
well into the conjectures made in Section 4.7.1. Most interestingly, the
SGMO measure indeed provides a very good approximation of the
ST100 measure at a fraction of a runtime, as well as a smooth gradient.
Compared to the AdEx neuron, the measures for the LIF neuron model
exhibit more smooth results, which is likely due to the exponential
attractor dynamics in the AdEx neuron. The visually distinct appear-
ance of the SGSO measure is likely caused by the multiplication of
four terms in Equations (4.22) to (4.24), which, despite the heavy-tailed
sigmoids, tends to generate small values. Careful tuning of the under-
lying distribution meta-parameters may improve the predictive power
of both the SGSO and the SGMO measure.

4 .7 .3 Automated parameter optimisation

The SGMO and SGSO measures exhibit a smooth gradient in two
dimensional parameters sweeps, like those shown above. The gradient
could be followed by a simple optimisation algorithm to find the
global subspace maximum. It is doubtful, that this property translates
to higher-dimensional subspaces, where it is likely that local maxima
are omnipresent. Furthermore, the claim, that the gradient supports
parameter optimisation has not been tested yet. In the following, we
perform a benchmarking experiment which tests the suitability of the
single neuron evaluation measures for the task they were designed for
– parameter optimisation.

Methods Goal of the experiment is to optimise the parameters ofAutomated parameter
optimisation itself is not

the focus of this thesis
and surly more advanced
experiments and optimi-
sation methods should be
employed in future work.

an LIF and an AdEx neuron with respect to the three single neuron
evaluation measures, ST100, SGSO and SGMO. The system parameters
are chosen according to three scenarios presented in Table 4.10. The
first scenario tests single output spikes, the second bursts of sin =

sout = 3 spikes, and the third a neuron population of K = 3 neurons.
For the LIF neuron, the only potential being optimised is ETh, for the
AdEx neuron Eeff

Th. Furthermore, Cm is kept constant. Starting point
of the optimisation are the initial neuron parameters Φ shown in
Table 4.8.

The optimisation method itself is a standard Nelder and Mead min-
imisation algorithm, a multidimensional generalisation of the bisection
method also known as Downhill Simplex [NM65]. Advantages of the

98

4 .7 evaluation method comparison

scenarios for neuron parameter optimisation

Relevant network parameters

scenario i scenario ii scenario iii

Ones in the input c 3 3 3
Population size K 1 1 3

Data encoding parameters

scenario i scenario ii scenario iii

Input burst size sin 1 3 3
Output burst size sout 1 3 3

Interspike interval ∆t 10 ms 10 ms 10 ms
Sample interval T 200 ms 200 ms 200 ms

Noise parameters

scenario i scenario ii scenario iii

Jitter σt 5 ms 5 ms 5 ms

Resulting input and output spike counts

scenario i scenario ii scenario iii

Upper threshold n1 3 9 27
Lower threshold n0 2 6 18

Output spike count ñout 1 3 3

Table 4.10: Scenarios for the neuron parameter optimisation test. The table
shows the chosen system parameters (Table 4.1) and the resulting input and
output target spike counts. The noise parameters p1, p0, σoffs

t , σw are set to
zero since they cannot be tested with the SGSO and SGMO measure, or, in
the case of σoffs

t , are not explicitly modelled. System parameters not listed
here are irrelevant for single neuron evaluation.

algorithm are its simplicity and implicit gradient calculation. A major
disadvantage is its slow convergence [Pre+07b]. The implementation
provided as part of AdExpSim features concurrent parallel execution
of slightly varying vectors and automated restart for the escape from
local minima, support for arbitrary parameter constraints and discrete
parameters, such as w in NM-PM1 and Spikey. Apart from this, the
algorithm follows the implementation presented in Numerical Recipes
[Pre+07b].

Results A striking property of the results shown in Table 4.11 is
incoherence of the evaluation measure optimality values. Optimis-
ing with ST100 as target measure results in optimality values below
those for unoptimised parameters for the SGMO and SGSO measures.
Optimisation with SGSO results in zero optimality according to the
SGMO measure for the LIF neuron. Yet, parameter vectors optimised
with SGSO receive a high lateral score from the ST100 measure. Op-
timisation for SGMO results in mediocre values for both ST100 and
SGSO. Still at least for Scenario I, optimisation significantly increases
the optimality value of the current target measure (bold values in the

99

neuron parameter evaluation and optimisation

initial evaluation measure optimality values

Scenario LIF AdEx

st100 sgso sgmo st100 sgso sgmo

Initial
i 0.78 0.43 0.89 0.46 0.11 0.51

ii 0.28 / 0.22 0.00 / 0.16
iii 0.00 / 0.00 0.00 / 0.00

final evaluation measure optimality values

Target measure/

Scenario

LIF AdEx

st100 sgso sgmo st100 sgso sgmo

ST100

i � 1.00 0.40 0.76 1.00 0.01 0.09
ii 0.52 / 0.00 0.46 / 0.00

iii 0.00 / 0.00 0.39 / 0.00

SGSO i 1.00 � 0.61 0.00 0.92 0.70 0.91

SGMO
i 0.73 0.33 � 0.98 0.56 0.50 0.92

ii 0.42 / 0.94 0.00 / 0.19
iii 0.44 / 0.97 0.00 / 0.00

Table 4.11: Initial and final neuron evaluation measure optimality values.
The top part of the table shows the initial evaluation measure optimality
values P prior to optimisation, with respect to the three system parameter
scenarios (rows). The bottom part of the table shows the same evaluation
measures after the parameters have been optimised with respect to a scenario
and target optimisation measure (rows). Bold values correspond to the final
values of the target measure. � The final neuron parameter vectors for these
results are shown in Table 4.12.

optimised lif neuron parameters

init. st100 sgso sgmo

Membrane cap. Cm [nF] 1.00 1.00 1.00 1.00
◦ Leak conductance gL [nS] 50.00 45.50 13.40 14.50

Leak potential EL [mV] -70.00 -70.00 -70.00 -70.00
◦ Threshold potential ETh [mV] -54.00 -52.50 -48.23 -65.80

Reset potential Ereset [mV] -80.00 -80.00 -80.00 -80.00
◦ Refractory period τref [ms] 0.00 0.00 0.00 0.00

Synapse potential Ee [mV] 0.00 0.00 0.00 0.00
◦ Synapse time τe [ms] 5.00 5.37 0.10 1.20
◦ Synapse weight w [nS] 30.00 36.25 1477 19.23

Table 4.12: Initial and optimised LIF neuron parameters. The corresponding
optimality values P are shown in Table 4.11, where they are marked with a
“�”-symbol. ◦ These parameter dimensions were optimised.

100

4 .8 conclusion

table). Remarkably, the SGMO measure is capable of finding “optimal”
solutions for the second and third scenario in conjunction with a LIF
neuron, starting from a small optimality values.

Table 4.12 shows the optimised LIF neuron parameters for the first
system parameter scenario. The chosen parameters differ significantly
between the target measures. The SGSO measure converges towards a
rather peculiar parameter combination, with a very small synapse time
constant τe, small leak conductance gL, and a relatively large synapse
weight. Yet, despite their differences, this parameter vector and the
parameter vector optimised by ST100, are evaluated with maximum
optimality by ST100.

Discussion The incoherence of the optimality values is most likely
influenced by three factors: deficiencies of the evaluation measures, a
lack of regularisation, and different semantics of the values. Problems
with the evaluation measures have already been observed in the previ-
ous experiments, where SGSO and SGMO do not entirely overlap with
ST100. The lack of parameter regularisation allows grotesque parameter
combinations, as those found for the LIF neuron and Scenario I, which
in return are likely to be rejected by other evaluation measures. The
semantics of the ST100 measure are entirely different from SGSO and
SGMO. A non-spiking neuron will always produce a value of Pst = 0.5,
as half of all spike groups are successful. Such a behaviour would be
scored with a near zero value by SGSO and SGMO. On the other hand,
the spike train measure is extremely harsh, as any deviation in the
output spike count of just a single spike out of multiple is counted as
failure.

Despite these issues, the results clearly show that parameter opti- The ST100 measure only
works as well as presented,
because the optimiser prob-
abilistically reinitialises
the parameter vectors
once they converge, which
causes the optimiser to
eventually “jump” over
the discrete steps in ST100.

misation is indeed feasible with the presented methods. All measures
find optimal (with respect to themselves) parameter combinations for
Scenario I. The fact that optimisation with SGMO finds such param-
eters for the LIF neuron in the intrinsically difficult scenarios II and
III hints at the power of smooth gradients in the parameter space in
conjunction with the chosen optimisation method. Nevertheless, fur-
ther improvement of SGMO is inevitable, since the parameters will not
fulfil the BiNAM requirements in practice (Pst < 0.5). As long as the
neuron should only produce a single output spike, the SGSO measure
seems to be a viable option for parameter selection.

4 .8 conclusion

In this chapter we described the design space, and presented and
compared three approaches to single neuron evaluation. A comprehen-
sive software framework has been developed for the simulation and
evaluation of single neurons. Two-dimensional parameter sweeps over
parts of the design space show a rather well-behaved landscape with
pronounced, coherent regions with high optimality. Nevertheless, the

101

neuron parameter evaluation and optimisation

parameter optimisation experiment demonstrates the perils of high-
dimensional parameter spaces. Although the SGMO measure does not
perform as well as anticipated, it and its underlying fractional spike
count measure seem to be viable approaches to neuron parameter
optimisation.

Until now, the predictive power of the single neuron evaluation
measures have not been examined regarding the ground truth, namely
full network simulation. This examination is one of the goals of the
next Chapter 5, in which we finally execute the BiNAM on actual
neuromorphic hardware and – amongst others – compare the full
network evaluation results with the predictions from the single neuron
evaluation.

102

5F U L L N E T W O R K S I M U L AT I O N E X P E R I M E N T S

This chapter puts the previous theoretical considerations regarding
BiNAM design space exploration and full network evaluation into
practice. We finally execute full spiking Willshaw associative memory
networks on neuromorphic hardware, assess the predictive power
of the single neuron evaluation measures presented in the previous
chapter and compare experimental results obtained from different
platforms.

In Section 5.1, we discuss the overall methodology for full network
simulation. This includes the software framework implemented to
this end and an overview of current hardware limitations. Section 5.2
revisits the neuron parameter sweeps presented in Section 4.7.2. In
contrast to the previous experiments, the sweeps are now backed by
entire memory networks, either executed on neuromorphic hardware
or in software simulation. Finally, Section 5.3 presents an analysis of
the suitability of BiNAM system parameter variation as a possible
neuromorphic system benchmark.

5 .1 methodology and software architecture

In theory, the methodology for the simulation and evaluation of full
BiNAM networks is rather straightforward. Given system and neuron
parameters Φ (Section 4.1.1), a test dataset D is generated according
to Algorithm 3.3. A BiNAM memory matrix M is then calculated for
this dataset (Equation (2.27)). The memory matrix is the basis for the
synaptic connections in the network graph (Section 3.1) and the input
spikes train descriptors tin, kin (Algorithm 3.1). The network is then
executed with the help of the PyNN abstraction layer (Section 2.4.4)
on an arbitrary hardware or software simulator. Finally, the recorded
output spike trains tout are analysed with respect to the evaluation
measures presented in Section 3.2.

For two reasons this approach is not feasible in practice: the first
being platform-specific inconsistencies in the PyNN software layer, and
the second an inefficient utilisation of the hardware resources. Two
software based solutions were developed to overcome these challenges,
PyNNLess and PyNAM, which are presented in the following.

5 .1 .1 PyNNLess

There are – often minor – inconsistencies in the implementation of the
PyNN specification for all targeted platforms, for both hardware and
software simulators. Furthermore, a total of three consecutive PyNN
versions have to be supported. Each version differs in functionality and

103

full network simulation experiments

PyNN 0.8 PyNN 0.7 PyNN 0.6

NEST

2.2 2.4–2.8

NM-PM1 NM-MC1Spikey

PyNNLess

JSON network description JSON result descriptor

ESS

PyNAM

Data/network generation Evaluation

JSON experiment description

forks simulator
instances

gather
results

.mat

Hardware platforms

1

2simulation

3

Figure 5.1: Overview of the software architecture for full network evaluation.
The PyNAM tool generates a series of the network graphs according to a JSON
experiment description file. The serialised, JSON-like network descriptors
are passed to PyNNLess, a platform agnostic wrapper around the PyNN
framework, which in return passes the recorded results back to PyNAM,
where they are analysed and stored in an HDF5-file (.mat). The encircled
numbers refer to the PyNAM execution stages.

semantics of the provided API. This renders the use of the exact sameThe encountered in-
consistencies are most
likely due to the early
state of the HBP soft-

ware stack and are likely
to be solved in the next

months. The experiments
presented in this thesis

are the first to run on all
HBP hardware platforms.

code across all platforms difficult. Generally, there are two possible
solutions to such a problem. Either the network execution stage in
the above pipeline is rewritten for each target platform, or another
software abstraction layer is added on top of PyNN, which levels the
discrepancies out.

To avoid redundancies and improve the modularity of the code,

A short usage example
of PyNNLess is pro-

vided in Appendix A.2.

the latter approach was chosen for the implementation of experiments
on neuromorphic hardware for this thesis. The result of this effort is
the PyNNLess Python library. Its functionality is provided as a data-
driven API [Red11]. The API receives a network descriptor as a simple
data structure, which consists of the neurons and their connectivity
as adjacency list, the input spike trains and the signals for recording.
After successful network execution, the library returns a data structure
containing the recorded output. PyNNLess supports all HBP neuro-
morphic hardware platforms, as well as the NM-PM1 emulator ESS
and the software simulator NEST (Figure 5.1).

104

5 .1 methodology and software architecture

5 .1 .2 PyNAM

Construction and evaluation of single BiNAM instances is a rather To guarantee reproducibil-
ity of the test runs, both
random data generation
and noise sampling must
be deterministic – two exe-
cutions of PyNAM should
execute the exact same
network.

modest task and was discussed in staggering detail in Chapter 3. In
practice however, we need to execute network simulations as part of a
system or neuron parameter sweep. Furthermore, due to probabilistic
sampling of the test dataset D and the input spike trains tin, as well as
potentially noisy analogue hardware systems, single experiments must
be repeated multiple times. In the optimal case, the outcome of an
experiment should always be a distribution of results. Consequently, a
rather large number of individual simulation runs is usually performed
for each experiment. Especially when investigating small networks,
sequential execution of individual simulations is not an option, as
the accumulated pre- and post-processing overhead on the hardware
systems would be larger than the execution time itself, while large
portions of the hardware resources would lie dormant.

To this end, the Python neural associative memory framework For the execution on
single-threaded software
simulators PyNAM gen-
erates at least as many
experiment groups as the
number of CPUs in the
system, allowing to exe-
cute the experiment groups
concurrently on all cores.

(PyNAM) has been developed. It implements the system parameters
and evaluation measures presented in Chapter 3, except for input
sample pipelining and energy consumption measurements. The tool
automatises the process of parameter sweeps and experiment repetition
and implements two experiment multiplexing schemes to mitigate
the effect of high setup times and to fully utilise available hardware
resources. These schemes are spatial and temporal multiplexing.

Spatial multiplexing is the processes of packing the individual
For platforms with global
neuron parameters (such
as Spikey), PyNAM en-
sures equality of these
parameters within each
experiment group.

network graphs of independent simulations into a single, concurrently
executed graph referred to as experiment group. The size of the experi-
ment group is limited by a platform-specific maximum neuron count.
While the individual networks in an experiment group are theoreti-
cally independent, they may in practice interfere with each other on
neuromorphic hardware systems, for example due to congestion of
the digital communication network. To mitigate such effects, PyNAM
randomly shuffles the order in which the individual simulations are
executed for each repeated run.

Temporal multiplexing refers to the reuse of the same network The pause between spike
trains is chosen as 10 · T,
where T is sample interval
of the last experiment.

graph for a sequence of simulation runs. This is only possible if sweeps
over input data encoding parameters are performed (Table 4.1). These
solely cause variations in the input datasets, but do not influence the
network graph itself. The generated input spike trains corresponding
to each individual parameter set are joined into a single compound
input spike train by the temporal multiplexing mechanism. Individual
parameter sets are separated by a long pause, allowing the neurons
to reset. Preceding the analysis, the output spike trains are split into
their individual compartments.

As indicated in Figure 5.1, PyNAM is separated into three phases: An example of the exper-
iment descriptor file is
shown in Appendix A.3.

construction and serialisation of the experiment groups according to
a JSON experiment description, execution of the experiment groups

105

full network simulation experiments

on the software or hardware simulator and the final demultiplexing
and analysis resulting in a single HDF5 file [HDF15]. The use of
PyNNLess as a middleware allows execution of the experiments on
all supported platforms. PyNAM furthermore automatically adapts
the spatial multiplex sizes according the limitations of the current
platform.

5 .1 .3 Limitations of the hardware platforms

An overview of the neuromorphic hardware systems and their nomi-
nal specifications has been given in Section 2.4. With the exception of
Spikey the systems were still in early development at the time of writ-
ing. The platforms were neither available in their final size, nor were
the software interfaces complete. This results in various limitations
regarding the subsequent experiments.

Limitations of NM-MC1 Currently the many core system NM-MC1,In PyNAM the maxi-
mum number of neurons
is limited to 1 500, as the

excessive use of population
objects in PyNAM dispro-
portionally slows down the
place-and-route algorithm.

as available to HBP researchers, consists of three 48-chip boards the-
oretically allowing the concurrent simulation of more than 100 000
individual neurons. However, due to limitations in the place-and-route
algorithm regarding population objects and how they are used by Py-
NAM, the maximum number of neurons is limited to one per processor
core, amounting to about 2100 LIF neurons. Apart from this restriction
– which is likely to be resolved in the near future – the system works
as intended.

Limitations of NM-PM1 and ESS Unfortunately, the same cannot
be said of the physical model NM-PM1. While the network basically
runs on the platform, known issues with the current revision of the
HICANN-chip cause a rather erratic behaviour of the platform. Due
to these issues, no reasonable experiments could be conducted on
NM-PM1. An older revision of the NM-PM1 software emulator, the
ESS, is used instead. However, due to detailed hardware emulation,
the system is far to slow for two-dimensional parameter sweeps.

Limitations of Spikey As already mentioned in Section 2.4.3, the
single-chip analogue neuromorphic hardware system Spikey (Fig-
ure 1.1 and Section 2.4.3) has rather severe restrictions regarding the
neuron parameter space of its 192 LIF neurons: the excitatory reversal
potential and membrane capacitance are constant at Ee = 0 mV and
Cm = 0.2 nF, and the parameters Ei, ETh, EL, Ereset are shared in blocks
of 96 neurons and limited to a maximum of −55 mV. The parame-
ters gL and τref can be set individually per neuron. The synapse time
constants τe and τi cannot be provided by the user. They implicitly
depend on the synaptic weight w and the membrane leak conductivity
gL [Pfe+13].

106

5 .2 neuron parameter evaluation

5 .2 neuron parameter evaluation

In Section 4.7.2, we performed two neuron parameter sweep experi-
ments aimed at empirical comparison of the single neuron evaluation
measures. However, these experiments can not assess the predictive
power of single neuron evaluation for the storage capacity I of entire
networks. In this section we aim at bridging this gap by repeating
the previous parameter sweeps with full BiNAM networks instead of
single neurons. The full network simulations are performed with LIF
neurons on the software simulator NEST, and independently on the
fully digital NM-MC1 and analogue Spikey hardware systems. This
allows both verification of the single neuron evaluation measures and
comparison of the hardware performance to the reference software
simulator.

Subsequently, we first elaborate on the experiment methodology,
followed by a description of the results for NM-MC1 and Spikey.
Finally, we discus the insights gained from the parameter sweeps.

5 .2 .1 Methodology

Analogously to the parameter sweeps in Section 4.7.2, the initial neu- This supposedly small
network size was chosen
in order to limit both the
time required for network
generation in PyNAM
and the NEST simulation
to sensible ranges.

ron parameters are selected according to Table 4.8. System parameters
which were already relevant for single neuron evaluation follow Sce-
nario I in Table 4.10. Additionally, the network size is selected as m = 16
input signals and n = 16 output neurons, with c = 3 one-bits in the
input data vectors ~xk (as assumed in the single neuron evaluation)
and d = 3 one-bits in ~yk. According to Equations (2.36) and (3.23) the

The optimal input sample
count is automatically
selected by PyNAM.

maximum storage capacity is reached for this data configuration at
N = 27 input samples. The particular dataset D generated by PyNAM,
achieves a maximum storage capacity of I = 227 bit with ten expected
false positives over all test samples.

The neuron parameter vectors are sampled from a uniformly
spaced 64× 64 grid. For each parameter vector, the false positive and
negative counts nfp, nfn, the information measure I, and the average
latency δ per sample are calculated. Information measure and false
negative/positive counts are normalised, to allow direct comparison
of the information I with the single neuron evaluation measures and
to improve the comparability of full network evaluations based on
distinct system parameters. The false positive count nfp is normalised The false positive normal-

isation is only piecewise
linear: there are 10 ex-
pected false positives, but
351 possible false positives.
Correspondingly [0, 10]
is mapped to [−1, 0] and
[10, 351] to [0, 1].

to the range [−1, 1], where nfp = −1 corresponds to “none of the ex-
pected false positives are generated”, nfp = 0 to “the expected number
of false positives was generated” and nfp = 1 to “all bits is in the
output were set to one”. False negative count and information are
expressed relative to the maximum possible false negative count and
the maximum information respectively.

107

full network simulation experiments

0.05 0.10 0.15 0.20
gL [µS]

5

10

15

20

τ e
[m

s]

(a) Relative information I (NEST)

0.05 0.10 0.15 0.20
gL [µS]

5

10

15

20

τ e
[m

s]

(b) Relative information I (NM-MC1)

0.05 0.10 0.15
gL [µS]

5

10

15

τ e
[m

s]

(c) Parameter optimality P (ST100)

0.05 0.10 0.15
gL [µS]

5

10

15

τ e
[m

s]

(d) Parameter optimality P (SGMO)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative information I/Parameter optimality P

Figure 5.2: Comparison of the gL/τe sweep on the NEST and NM-MC1
platforms with the single neuron evaluation results. Refer to Sections 5.2.1
and 5.2.2 for more information.

5 .2 .2 Neuron parameter sweep on NM-MC1

The first parameter sweep executed on NM-MC1 varies gL from 0.01 µSThe results for SGSO
are not compared. In-

terested readers are re-
ferred to the correspond-
ing data in Appendix C.

to 0.2 µS and τe from 0 ms to 20 ms. Most strikingly, the results for the
NEST software simulation and the NM-MC1 neuromorphic hardware
(Figures 5.2(a) and 5.2(b)) are almost identical. The region with high
optimality in the ST100 single neuron evaluation measure (Figure 5.2(c))
overlaps well with the high-information regions in the full network-
evaluation. However, ST100 slightly overestimates the parameter quality.
The same is true for the SGMO measure (Figure 5.2(d)) which is shifted
too far towards larger gL compared to ST100.

Minor discrepancies between NEST and NM-MC1 can be found
in the second parameter sweep, which varies w from 0.01 µS to 0.2 µS
and τe from 0 ms to 20 ms. As shown in Figure 5.3(a), the region of

108

5 .2 neuron parameter evaluation

−30 −25 −20 −15 −10
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40
w

[µ
S]

(a) Relative information I (NEST)

−30 −25 −20 −15 −10
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w
[µ

S]
(b) Relative information I (NM-MC1)

−30 −25 −20 −15
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

w
[µ

S]

(c) Parameter optimality P (ST100)

−30 −25 −20 −15
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

w
[µ

S]

(d) Parameter optimality P (SGMO)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative information I/Parameter optimality P

Figure 5.3: Comparison of the ETh/w sweep on the NEST and NM-MC1
platforms with the single neuron evaluation results. Refer to Sections 5.2.1
and 5.2.2 for more information.

maximal information is minimally larger on NEST than on NM-MC1
(Figure 5.3(b)). ST100 is again too optimistic in comparison to the
ground truth provided by NEST (Figure 5.3(c)). SGMO is shifted
towards smaller w, yet exhibits a gradient leading to a global maximum
in the region in which NEST shows the highest information.

Comparison of the false positive and false negative counts for the
second sweep in Figures 5.4(a) to 5.4(d) shows no striking difference
between NEST and NM-MC1 apart from a marginally smaller false
positive count for NEST in the region of maximal information. The
largest discrepancies between NEST and NM-MC1 can be found in Fig-
ures 5.4(e) and 5.4(f), which contain the latency plots. Whereas NEST
exhibits a smooth wavy grain pattern, the same pattern is interspersed
with noise on NM-MC1.

109

full network simulation experiments

−30 −25 −20 −15 −10
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w
[µ

S]

(a) False positives nfp (NEST)

−30 −25 −20 −15 −10
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w
[µ

S]

(b) False positives nfp (NM-MC1)

−30 −25 −20 −15 −10
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w
[µ

S]

(c) False negatives nfn (NEST)

−30 −25 −20 −15 −10
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w
[µ

S]

(d) False negatives nfn (NM-MC1)

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Normalised false positive/negative count

−30 −25 −20 −15 −10
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w
[µ

S]

(e) Latency δ (NEST)

−30 −25 −20 −15 −10
ETh [mV]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w
[µ

S]

(f) Latency δ (NM-MC1)

0 1 2 3 4 5 6 7 8 9 10
Average latency δ [ms]

Figure 5.4: Comparison of the latencies, false positive and false negative
counts for the ETh/w sweep on NEST and NM-MC1. Refer to Sections 5.2.1
and 5.2.2 for more information.

110

5 .2 neuron parameter evaluation

5 .2 .3 Neuron parameter sweep on Spikey

The excitatory channel time constant τe is not user-definable on Spikey.
Correspondingly, the gL/τe sweep cannot be performed. The threshold
potential ETh is furthermore limited to a maximum of −55 mV, which
lies outside the range of the previous sweep. A maximally large range
(with respect to EL at −70 mV) is chosen instead and ETh is varied
from −69 mV to −55 mV. The synaptic channel amplitude is reduced
along with ETh by lowering the w-range to 0.0 µS to 0.016 µS. Note
that the membrane capacitance of Spikey is Cm = 0.2 nF instead of the
previously used 1.0 nF.

The results of the parameter sweep on Spikey are shown in Fig-
ures 5.5 and 5.6. In contrast to the previous experiments, the storage
capacity measure differs significantly between the software simulator
NEST and the neuromorphic hardware (Figures 5.5(a) and 5.5(b)). In
the NEST simulation the region of highest information is spread along
a straight line, a behaviour once again reproduced by both ST100 and
SGMO, though the results for SGMO are skewed towards smaller w
(Figures 5.5(c) and 5.5(d)). Both NEST and the single neuron eval-
uation measures coherently indicate that the theoretical maximum
information/optimality cannot be reached for the given parameters.
The information graph for Spikey is distorted, extremely noisy and
has a smaller maximum information than the NEST simulation.

The comparison of the false positive measure between NEST and
Spikey in Figures 5.5(e) and 5.5(f) bears another interesting detail.
Whereas a graduated transition from regions with negative nfp (regions
with too few output spikes) to regions with positive nfp (regions with
too many output spikes) is present in the false positive count for NEST,
such a transition is almost completely missing on Spikey. The system
either produces no Spikes at all or too many spikes. Furthermore, the
latency measure in Figure 5.6 shows severe noise and larger latency
for Spikey compared to NEST.

5 .2 .4 Discussion

Above all, the experiments highlight two facts. Firstly, the spiking
neural network implementation of the Willshaw associative memory
described in Chapter 3 is operational on neuromorphic hardware,
albeit the results for Spikey are suboptimal. In contrast, the neuron
parameter sweep on NM-MC1 found an entire region in the parameter
space which achieves the theoretical maximum storage capacity (Fig-
ure 5.2(b)). Secondly, the single neuron evaluations cohere extremely
well with the full network storage capacity measure I as calculated by
the reference network simulator NEST. This supports the conjecture
put forth in Chapter 4: analysis of a single neuron in the network is
sufficient to predict the performance of the full network. Nevertheless,

111

full network simulation experiments

−68−66−64−62−60−58−56
ETh [mV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

w
[µ

S]

(a) Relative information I (NEST)

−68−66−64−62−60−58−56
ETh [mV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

w
[µ

S]

(b) Relative information I (Spikey)

−68−66−64−62−60−58−56
ETh [mV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

w
[µ

S]

(c) Parameter optimality P (ST100)

−68−66−64−62−60−58−56
ETh [mV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

w
[µ

S]

(d) Parameter optimality P (SGMO)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative information I/Parameter optimality P

−68−66−64−62−60−58−56
ETh [mV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

w
[µ

S]

(e) False positives nfp (NEST)

−68−66−64−62−60−58−56
ETh [mV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

w
[µ

S]

(f) False positives nfp (Spikey)

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
Normalised false positive count nfp

Figure 5.5: Comparison of the ETh/w sweep on the NEST and Spikey plat-
forms with the single neuron evaluation results and false positive counts.
Refer to Sections 5.2.1 and 5.2.3 for more information.

112

5 .2 neuron parameter evaluation

−68−66−64−62−60−58−56
ETh [mV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
w

[µ
S]

(a) Latency δ (NEST)

−68−66−64−62−60−58−56
ETh [mV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

w
[µ

S]
(b) Latency δ (Spikey)

0 5 10 15 20 25 30 35 40 45 50
Average latency δ [ms]

Figure 5.6: Latencies measured during the Spikey parameter sweep in com-
parison with the NEST simulation. Contour lines were not drawn in (b) for a
better overview. Refer to Sections 5.2.1 and 5.2.3 for more information.

as mentioned in the last chapter, further research is required to correct
the slightly deviating behaviour of the otherwise promising SGMO
measure.

The experiments show that NM-MC1 implements the reference
LIF neuron model extremely well. With the results of the differential
equation integrator benchmark in Section 4.2.4 in mind, the minor
deviations from the reference are well explainable with the constant
h = 1 ms step size in the NM-MC1 numerical neuron integrator. The
fact that all spikes in NM-MC1 are discretised to a one-millisecond
grid furthermore explains the noise in the memory latency.

The results for the analogue Spikey system are less fortunate. Even
though it is visible that Spikey approximately follows the behaviour of
the reference, the result is superimposed with severe noise. Possibly,
the use of neuron populations might improve the situation, as these
theoretically lessen the impact of single noisy neurons (Section 3.1.3).
Nevertheless, the main advantage of analogue neuromorphic hardware
must not be kept out of sight. Spikey is extremely fast: execution of
the above parameter sweep took about ten minutes on Spikey, forty
minutes on NM-MC1 and five hours on NEST, including all network
generation and analysis overhead. More complex biologically inspired
networks might not be as susceptible to noise as the BiNAM. How-
ever, it is exactly this susceptibility to noise or other deviations from
the norm which suggest that the BiNAM is a helpful benchmarking
network for neuromorphic platforms.

113

full network simulation experiments

5 .3 system parameter sweeps

While the above two-dimensional neuron parameter sweeps are clearly
suitable as a benchmark, their computation is rather time consuming
and the resulting three-dimensional graphs are hard to analyse. Of
course, an intriguingly simple way of comparing two platforms is to
just calculate the storage capacity for a constant neuron and system
parameter set. However, these parameters must possess a sufficiently
large discriminatory power: they should neither pose a barely solvable
nor a too trivial problem. A solution to this dilemma is to perform a
system parameter sweep which constructs a series of gradually more
difficult tests.

This idea is the basis of the so far not tested robustness measure
(Section 3.2.2), which sweeps over an arbitrary noise parameter σ,
and the critical time window analysis (Section 3.2.3), which varies
the time window T. In this section we analyse these measures with
respect to their suitability as hardware benchmark. To this end, ex-
emplary one-dimensional system parameter sweeps are performed
on the NEST software simulator, the NM-MC1 digital neuromorphic
hardware system, ESS as a replacement for NM-PM1 and Spikey as an
analogue neuromorphic hardware system. As before, we begin with
a short description of the methodology, followed by the results and a
discussion.

5 .3 .1 Methodology

The one dimensional system parameter sweeps performed in this sec-
tion measure the storage capacity I over a system parameter. The initial
system and neuron parameters are those already employed in the pre-
vious experiments. Their description can be found in Section 5.2.1.

To ensure a maximal value range for I, the neuron parameters
Φ must be optimised prior to the experiment with respect to the
initial system parameters. To bear any meaning as a benchmark, the
optimisation process targets the reference platform (NEST), and the
neuron parameters Φ are shared across all platforms. To this end, the
Spikey neuron parameter space, a strict subset of the parameter spaces
of the other platforms, must be used in the neuron parameter selection.
The LIF neuron membrane capacitance and threshold potential are
correspondingly set to Cm = 0.2 nF and ETh = −55 mV. According
to the neuron parameter sweep in Figure 5.5(a), a maximum in the
storage capacity is reached for w = 16 nS. A preliminary test run on
NEST shows that these parameters reach the theoretical maximum
storage capacity if the spike time jitter is reduced from σt = 5 ms to
2 ms in the initial system parameters.

In the following, the system parameters σt, σw and T are linearly
sampled from a given value range in fifty steps. For each sample, the

114

5 .3 system parameter sweeps

0 5 10 15 20
Spike time noise σt [ms]

0

50

100

150

200

250

In
fo

rm
at

io
n

I
[b

it
]

NM-MC1 ESS Spikey NEST

0 5 10 15 20
Spike time noise [ms]

0

5

10

Fa
ls

e
po

si
ti

ve
s

n f
p

[b
it

]

200

250

300

0 5 10 15 20
Spike time noise σt [ms]

0

10

20

30

40

50

60

70

80
Fa

ls
e

ne
ga

ti
ve

s
n f

n
[b

it
]

Figure 5.7: Results of the spike time noise parameter sweep. Shown are the
information and the corresponding false positive/false negative counts. Solid
lines correspond to the mean over eight runs, dotted lines to the ±0.5 · σ
standard deviation. The dashed lines show the maximum information and
the expected false positive count respectively.

memory storage capacity I is measured in eight independent runs,
over which mean and standard deviation of I are calculated.

5 .3 .2 Experimental results

In the first experiment, the standard deviation of the Gaussian spike
time noise σt is varied from 0 ms to 20 ms. The results are shown
in Figure 5.7. As expected, the information measure decreases with
increasing σt. NEST and NM-MC1 exhibit a very similar behaviour:
both start with the theoretical maximum information and slowly de-
crease towards zero information. Interestingly, ESS begins with zero
information at σt = 0 ms and rapidly reaches a relatively large yet not
maximal I at σt = 2 ms. It then converges towards the result for NEST
and NM-MC1. Spikey starts with a small I and converges to a value
which is slightly larger than the final result of the other measures.

115

full network simulation experiments

0.000 0.002 0.004 0.006 0.008 0.010
Synapse weight noise σw [µS]

0

50

100

150

200

In
fo

rm
at

io
n

I
[b

it
]

NM-MC1 ESS Spikey NEST

5 10 15 20

Time window T [ms]

0

50

100

150

200

250

In
fo

rm
at

io
n

I
[b

it
]

NM-MC1 ESS Spikey NEST

Figure 5.8: Results of the spike time noise and time window sweeps showing
the information I over the system parameters. Solid lines correspond to the
mean over eight runs, dotted lines to the ±0.5 · σ standard deviation. The
dashed line shows the maximum information.

Comparison of the false positive and false negative counts shows
that NEST, NM-MC1 and ESS exhibit a similar overall behaviour with
a decreasing false positive count and an increasing false negative count.
The zero information at σt = 0 ms for ESS is caused by a maximally
large initial false negative count nfn = 81. Spikey exhibits a different
behaviour, with an increasing false positive count and a constant zero
false negative count.

Figure 5.7 shows the information measure as a result of the sweep
over the synapse weight noise σw (from 0.0 nS to 10.0 nS) and the
time window T (from 2 ms to 20 ms). Unsurprisingly, the information
measure decreases with increasing synapse weight noise for NEST and
NM-MC1. Surprisingly, ESS exhibits very small values over the entire
sweep with a large standard deviation. For Spikey, the information
starts at a small value and unexpectedly increases slightly with larger
noise values.

The time window analysis exhibits the behaviour that was antici-
pated in Section 3.2.3, with a coherent decrease in the information for

116

5 .4 conclusion

smaller time windows T. Systematic differences in the performances
of the platforms are clearly visible.

5 .3 .3 Discussion

Just like the two-dimensional neuron parameter sweeps, the one di-
mensional system parameter sweeps are a valuable benchmark. They
show a clear separation between models with reference behaviour on
the one hand (NEST and NM-MC1), and Spikey and ESS on the other
hand. In two of the sweeps the performance exhibited by ESS is close
to the performance of NEST and NM-MC1, and significantly better
than the erratic performance displayed by Spikey, which is – as in the
previous experiment – characterised by a tremendously large false
positive count.

Furthermore, the sweeps uncover suboptimal and interesting be-
haviour of the platforms. Strikingly and for unknown reasons, ever
so slight variations in the synaptic weight cause a breakdown of ESS
performance. The same is true for zero spike time noise. However, a
plausible explanation for this behaviour exists: the platform seems
to fuse input spikes arriving at the exact same time. Since all spikes
arrive at the same time for σt = 0 ms, the neuron produces no output
spikes and thus exhibits the large false negative count.

However, the results also show that care has to be taken regarding
the range of the sweep. In case platforms show an erratic behaviour
they may achieve a larger I as platforms with a systematic behaviour,
as it is the case for the for large σt, for which Spikey exhibits a slightly
larger I than the other platforms.

5 .4 conclusion

In this chapter we have presented the software pipeline for full network
evaluation. This pipeline has been employed to conduct two sets of ex-
periments on both neuromorphic hardware and in software simulation.
The first set of experiments confirmed the predictive power of single
neuron evaluation, found a high accordance between the results from
NM-MC1 and NEST, and a certain dissonance between the results for
NEST and Spikey. The second experiment was similarly capable of
discriminating between the individual simulation platforms. As such,
the BiNAM is well suited as a benchmarking network.

Most important, yet almost unmentioned, is the fact, that the pri-
mary goal of this thesis – the implementation of an operational Will-
shaw associative memory as spiking neural network on neuromorphic
hardware – has been reached. Correspondingly, we can now proceed
to the final chapter.

117

6C O N C L U S I O N A N D O U T L O O K

In this final chapter we summarise the original work presented in the
previous chapters as well as the insights gained from the experiments.
The summary is followed by a catalogue of possible future work and
the final conclusion.

6 .1 summary

In Chapters 3 and 4, an entire pipeline for construction, execution
and evaluation of spiking implementations of the Willshaw associative
memory (BiNAM) has been described. This pipeline includes the
selection of the network topology, data encoding and appropriate
neuron parameters (Section 3.1 and Chapter 4), the generation of
memory test data (Section 3.3) and measures for the assessment of the
memory performance (Section 3.2).

Neuron parameter selection itself has been based on three single
neuron evaluation measures, discussed in Sections 4.3 to 4.5. The
SGMO measure employs the novel fractional spike count technique to
estimate a smooth, computationally efficient network performance
prediction, which is – despite pending issues (Sections 4.7.3 and 5.2) –
deemed suitable for parameter exploration and optimisation.

A comprehensive software collection accompanies this thesis. With
AdExpSim, a framework for high performance single neuron simu-
lation has been developed. Among other applications, it provides a
graphical tool for interactive design space exploration (Section 4.6).
The PyNNLess library allows simple, platform agnostic simulation of
spiking neural networks in Python (Section 5.1.1). Built on top of
PyNNLess is PyNAM, which conducts configurable parameter sweeps
over the entire design space by simulating full BiNAM networks on
any selected target platform (Section 5.1.2).

In Chapter 5, series of experiments on neuromorphic hardware sys-
tems and software simulators have been described, which conclusively
show that the presented pipeline indeed allows the construction of an
operational Willshaw associative memory. Full network design space
explorations cohere well with the single neuron evaluation measures,
underpinning their predictive power. Furthermore, one dimensional
system parameter sweeps highlight significant differences in the re-
sults for the individual hardware platforms, confirming the conjecture
that the BiNAM is suitable as a low-level benchmark for neuromorphic
hardware systems.

119

conclusion and outlook

6 .2 future work

For the time being, some of the threads taken up in this thesis could
not be spun to an end. Instead, a multitude of research topics has
emerged from the presented work. This section lists both important
tasks in the context of HBP and lesser, yet interesting, future work.

6 .2 .1 Large scale simulations and benchmarking

The most obvious open task is the systematic large scale simulation
and benchmarking of the BiNAM on neuromorphic hardware. The
feasibility of this task mainly depends on the availability and stability
of the neuromorphic hardware and its associated software stack. It
will be especially interesting to repeat the experiments on the new
HICANN chip revision for the NM-PM1 system. Large scale networks
encompassing thousands of neurons could additionally uncover scal-
ing issues in the hardware systems.

Regarding the software presented in this thesis, two open chal-A proposed solution to the
first software-wise chal-

lenge is the development of
a dedicated network gener-

ator in C++. For the sec-
ond problem, the PyNAM
tool must consolidate neu-

rons in the BiNAM into
larger population objects,

instead of issuing indi-
vidual populations for
each neuron. This was

not possible at the time of
writing due to issues with

the hardware bindings.

lenges must be overcome. While it is fully functional, the performance
of the BiNAM network generator implemented in PyNAM is a major
bottleneck and has to be improved. Generating parameter sweeps for
large networks may take multiple hours, in contrast to potentially
much shorter run times on neuromorphic hardware. Secondly, the ca-
pabilities of NM-MC1 are currently not utilised to the fullest. Further
optimisation is needed in both cases.

6 .2 .2 Neglected design space parameters

Some of the full network evaluation measures and design space pa-
rameters proposed in Chapter 3 could not be tested. This includes
the energy consumption, the impact of neuron populations, as well
as input sample pipelining. Verification of the energy prediction in
Equation (3.12) requires access to the ground truth data collected by
the neuromorphic platforms, which is not yet available. It would be
interesting to see whether the use of neuron populations improves
the performance of the networks as anticipated. Implementation of
the input data pipelining scheme presented in Section 3.1.1 would
allow to operate the network at its limits and further improve the
discriminatory properties of the network as a benchmark.

6 .2 .3 Extensions of the BiNAM network

The Willshaw associative memory model was implemented in this
thesis in its most fundamental form. Multiple extensions of the model
exist, which will be interesting to explore once the basic memory has

120

6 .2 future work

been verified to work as intended on all hardware platforms. A first ex-
tension is the implementation of an adaptive threshold (Section 2.5.6),
which would allow practical applications inside larger networks, such
as the pattern completion example in Section 2.5. Another possible
extension is online training of synaptic weights using Spike-timing
dependent plasticity (STDP), a learning mechanism implemented on
the HBP neuromorphic hardware systems [SG10]. Finally, the use of
inhibitory synapses and more advanced models such as the spike-
counter model could be studied [Kno03; Kno+14; Mül15].

6 .2 .4 Neuron evaluation and parameter optimisation

The SGSO and SGMO single neuron evaluation measures do not
perfectly cohere with the ground truth provided by the “spike train”
measure. As elaborated in Section 4.7.2, this is most likely an effect of
the multiplication of the individual terms p1, p0, preset, which overlap
in a suboptimal way. As a solution, parameter tuning (slope of the
sigmoid and bell-shaped distributions) or more intelligent combination
of terms may be explored.

A GPU implementation of the two-dimensional visualisation of the Both, an implementation
of an adaptive step size
integrator and the SGMO
measure could be more
challenging on a GPU due
to incoherent branching.

single neuron evaluation measures in AdExpSim is another possible
goal. The problem is intrinsically parallelisable, since each grid point
in the visualisation corresponds to an independent single neuron
evaluation. At least for the spike train and SGSO measure, negligible
memory usage and coherent branching are perfect prospects for a GPU
implementation.

Regarding parameter optimisation, less naive methods than the
Downhill Simplex with potentially faster convergence should be tested.
Another extension to the optimisation process is closed-loop opera-
tion in conjunction with the neuromorphic hardware, which would
eliminate any possible discrepancy between idealised single neuron
simulation and the actual behaviour of the target platform.

6 .2 .5 Fractional spike count measure

The fractional spike count measure is a promising tool for general pur-
pose neuron parameter optimisation, a problem commonly considered
hard to solve. At least for applications in which neuron parameters are
optimised with respect to a certain output spike count for a constant
input, this method could complement current approaches [Pri07]. It
would be interesting to see whether anomalies and computational com-
plexity of the fractional spike count measure can be further reduced,
for example by incorporating information about the neuron dynamics.
Since the method is largely neuron model agnostic, it should be tested
with more complex models, such as the Hodgkin-Huxley (HH) model
[HH52].

121

conclusion and outlook

6 .3 conclusion

The thesis has reached its primary goals to describe the design space of
a spiking neural network implementation of the Willshaw associative
memory, to provide the tools necessary for design space exploration
and to successfully execute the memory on neuromorphic hardware.

In order to benefit from the comprehensive theoretical framework
encompassing the memory, the initial decision has been made to im-
plement the network as close to the Willshaw model as possible, which
in return necessitates careful tuning of the neuron parameters. Neuron
parameter selection has been discussed at great length, starting with
the neuron models themselves and their efficient numerical simula-
tion, and finally culminating in three distinct evaluation measures.
These have been shown to predict the behaviour of the full network.
Equipped with the theoretical foundation of the Willshaw associative
memory and optimised neuron parameters, the properties of the mem-
ory as a hardware benchmark have been examined and found to be
highly promising. The presented work is a starting point for further
research into associative memories in the context of the Humain Brain
Project, and a yet so small step towards the development of artificial
cognitive systems.

122

AC O D E E X A M P L E S

a .1 single neuron integrator interface

As discussed in Section 4.6.3, the single neuron simulator must be
highly flexible and at the same time as fast as possible. However, some
of the demanded features are intrinsically slow, as they either require
access to large chunks of memory (recording) or introduce additional
branch instructions (early abortion), while the neuron integrator itself
consists of few branches and solely accesses the neuron state vector
~v, which fits into a single vector register. The best solution to this
features-versus-performance dilemma is to reduce each individual
simulator instance to the actually required code. This is achieved by
using the C++ template mechanism. The simulator function in the core
library is declared as follows:

template <uint8_t Flags = 0, typename Recorder,
typename Integrator, typename Controller>

static void simulate(const SpikeVec &input, Recorder &recorder,
Controller &controller, Integrator &integrator,
const Parameters &p, Time tDelta, Time tEnd = MAX_TIME,
const State &v0 = State())

The Flags template parameter is a bit-mask used to deactivate parts
of the neuron model (degrading it to LIF, deactivating spike handling),
or to enable special features, such as support for perturbations. Since
template parameters are evaluated at compile time, the compiler strips
superfluous code paths from the individual simulator instances. The
recorder, controller and integrator arguments are duck-typed, al-
lowing references to objects of any type to be passed as long as the
instantiation of simulate can be compiled [Str13]. This allows to im-
plement any kind of recording, cancellation (through the controller)
and integration behaviour, without imposing overhead on other in-
stances of the simulator. The AdExpSim library comes with a variety of
predefined recorders, controllers and integrators. The following code
snippet demonstrates their usage:

const Parameters params; // < Use default parameters
DefaultController controller; // < Wait for neuron to settle
DormandPrinceIntegrator integrator; // < Adaptive integrator
/* Record the neuron parameter traces and print them */
CsvRecorder<> recorder(params, 0.1e-3_s, std::cout);
/* Single LIF neuron with deactivated spiking and input spikes

at 5 and 10 ms */
Model::simulate<Model::IF_COND_EXP | Model::DISABLE_SPIKING>(

{{5_ms}, {10_ms}}, recorder, controller,
integrator, params, Time(-1));

123

code examples

a .2 pynnless code example

The following code example demonstrates the usage of the PyNNLess
library. It creates a single LIF neuron, a spike source, connects both,
and records a membrane potential trace.

import pynnless as pynl
params = {

"cm": 0.2, "v_reset": -70,
"e_rev_E": -40, "v_thresh": -47,
"e_rev_I": -60, "tau_m": 409.0,
"v_rest": -50, "tau_refrac": 20.0

}
sim = pynl.PyNNLess("spikey") # Open the "spikey" device
res = sim.run(pynl.Network() # Construct the network and run it

.add_source(spike_times=[0, 1000, 2000])

.add_population(
pynl.IfCondExpPopulation(params=params)

.record_spikes()

.record_v()
)
.add_connection((0, 0), (1, 0), weight=0.024))

for i in xrange(len(res[1]["v_t"])): # Print the trace
print(str(res[1]["v_t"][i]) + ";" + res[1]["v"][0][i]))

a .3 pynam experiment descriptor

This excerpt shows an example of the PyNAM experiment descriptor,
which performs a two dimensional sweep over gL and τe.

{"data": {
"n_bits_in": 16, /* m */ "n_bits_out": 16, /* n */
"n_ones_in": 3, /* c */ "n_ones_out": 3, /* d */ },

"topology": {
"params": { /* Neuron parameters */ },
"neuron_type": "IF_cond_exp",
"w": 0.03, "multiplicity": 1 /* K */ },

"input": {
"burst_size": 1, /* sIn */ , "time_window": 200.0, /* T */
"isi": 2.0, /* Delta T */ , "sigma_t": 5.0,
"sigma_t_offs": 0.0, "p0": 0.0, "p1": 0.0},

"output": { "burst_size": 1 }, // sOut
"experiments": [

{
"name": "Sweep gL, tauE",
"sweeps": {

"topology.params.g_leak": {
"min": 0.001, "max": 0.2, "count": 64},

"topology.params.tau_syn_E": {
"min": 1.0, "max": 20.0, "count": 64}},

"repeat": 1
}]}

124

BTA B L E S

This appendix contains a wide selection of tables which would have
taken too much space in the main part.

b .1 runge-kutta coefficients

The following two tables contain the Runge-Kutta coefficients for three
basic, non adaptive differential equation integrators, and the more
advanced adaptive Dormand-Prince integrator.

Table B.1: Constant step size integrator Runge-Kutta coefficients for the first-
order Euler method, the second-order midpoint method and the classical
fourth-order Runge-Kutta method.

(a) Euler

bj 1
1

`

aj` 1
j 1 /

(b) Midpoint

bj 1 2
0 1

`

aj` 1 2

j
1 / /
2 1/2 /

(c) Classical Runge-Kutta

bi 1 2 3 4
1/6 1/3 1/3 1/6

`

aj` 1 2 3 4

j

1 / / / /
2 1/2 / / /
3 0 1/2 / /
4 0 0 1 /

Table B.2: Runge-Kutta coefficients for the fifth-order Dormand-Prince inte-
grator, which can be used as adaptive step size integrator [DP80].

bi 1 2 3 4 5 6 7
35

384 0 500
1113

125
192 − 2187

6784
11
84 0

`

aj` 1 2 3 4 5 6 7

j

1 / / / / / / /

2 1
5 / / / / / /

3 3
40

9
40 / / / / /

4 44
45 − 56

15
32
9 / / / /

5 19372
6561 − 25360

2187
64448
6561 − 212

729 / / /

6 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656 / /

7 35
384 0 500

1113
125
192 − 2187

6784
11
84 /

125

tables

b .2 integrator runtime profiles

Tables B.3 and B.4 show the relative runtime of non-kernel functions
in the differential equation integrator benchmark program with and
without exponential function approximation. Functions with a rela-
tive runtime smaller than 1% were discarded. Measurements were
performed with the sampling profiler perf1 developed as part of the
Linux kernel project [Mel10]. The experiment was performed on an
Intel Core2Duo E7300 CPU clocked at 2.66GHz. The “◦”-module refers
to the AdExpIntegratorBenchmark main program. See the next section
for absolute times.

Table B.3: Single neuron simulator runtime profile with IEEE 754 exponential.

Time Module Function

26.47% libm-2.22 __ieee754_exp_sse2
15.24% ◦ BenchmarkResult::compare
13.97% ◦ Model::simulate<DormandPrinceIntegrator>
11.05% libc-2.22 __memmove_ssse3

6.56% ◦ RungeKuttaIntegrator::integrate
4.18% ◦ benchmarkSimple<MidpointIntegrator>
3.97% ◦ std::vector::emplace_back<double>
3.23% ◦ benchmarkSimple<EulerIntegrator>
2.51% ◦ Model::simulate<RungeKuttaIntegrator>

Table B.4: Single neuron simulator runtime profile with approximated expo-
nential.

Time Module Function

20.06% ◦ Model::simulate<DormandPrinceIntegrator>
17.18% ◦ BenchmarkResult::compare
14.05% libc-2.22 __memmove_ssse3

7.30% ◦ benchmarkSimple<MidpointIntegrator>
7.21% ◦ RungeKuttaIntegrator::integrate
5.26% ◦ benchmarkSimple<EulerIntegrator>
5.01% ◦ Model::aux
4.54% ◦ std::vector::emplace_back<double>
3.41% ◦ Model::simulate<RungeKuttaIntegrator>

b .3 integrator benchmark

Tables B.5 to B.7 show absolute time and error values for the AdEx
and LIF neuron model. The experiment is repeated for the AdEx
model with exponential function approximation. The experiments
were performed on an Intel Xeon CPU E5-2620 clocked at 2.00GHz.

1 More information about perf can be found at https://perf.wiki.kernel.org/.

126

https://perf.wiki.kernel.org/

b .3 integrator benchmark

Ta
bl

e
B.

5:
D

if
fe

re
nt

ia
l

eq
u

at
io

n
in

te
gr

at
or

p
er

fo
rm

an
ce

fo
r

th
e

A
d

E
xp

m
od

el
.

E
rr

or
s

ar
e

R
M

SE
va

lu
es

co
m

p
ar

ed
to

a
R

u
ng

e-
K

u
tt

a
in

te
gr

at
io

n
w

ith
10

0
ns

sa
m

pl
e

tim
e.

Pe
rc

en
ta

ge
s

re
pr

es
en

tR
M

SE
no

rm
al

is
ed

to
th

e
va

lu
e

ra
ng

e.
Si

m
ul

at
ed

tim
e

is
10

s
at

10
0

in
pu

t
sp

ik
e

gr
ou

ps
w

it
h

33
ou

tp
ut

sp
ik

es
.

In
te

gr
at

or
Ti

m
e

an
d

sa
m

pl
es

Er
ro

r
(R

M
SE

)

t[
m

s]
N

t N
[µ

s]
u
[m

V
]

(%
)

g e
[n

S]
(%

)
g i
[n

S]
(%

)
w
[n

A
]

(%
)

A
vg

.%

Eu
le

r

h
=

1
µs

24
76

.0
87

10
01

15
77

0.
24

7
0.

36
0

(0
.3

6)
0.

00
1

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
1

(0
.3

3)
0.

17
h
=

10
µs

20
9.

02
3

10
02

27
8

0.
20

9
0.

93
2

(0
.9

3)
0.

01
2

(0
.0

1)
0.

00
4

(0
.0

1)
0.

00
1

(0
.7

2)
0.

42
h
=

10
0

µs
18

.1
74

10
12

55
0.

17
9

3.
53

0
(3

.5
3)

0.
12

2
(0

.1
1)

0.
03

9
(0

.0
7)

0.
01

1
(6

.6
0)

2.
58

h
=

1
m

s
2.

03
4

11
19

0
0.

18
2

8.
35

8
(8

.3
6)

1.
22

5
(1

.0
7)

0.
38

2
(0

.6
4)

0.
01

7
(1

0.
66

)
5.

18

M
id

po
in

t

h
=

1
µs

36
09

.6
26

10
01

15
77

0.
36

1
0.

30
3

(0
.3

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.2

9)
0.

15
h
=

10
µs

32
9.

71
1

10
02

27
8

0.
32

9
0.

88
2

(0
.8

8)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
1

(0
.6

9)
0.

39
h
=

10
0

µs
29

.9
46

10
12

49
0.

29
6

3.
50

0
(3

.5
0)

0.
00

1
(0

.0
0)

0.
00

0
(0

.0
0)

0.
03

3
(2

0.
38

)
5.

97
h
=

1
m

s
3.

04
7

11
16

1
0.

27
3

42
.3

01
(4

2.
30

)
0.

08
8

(0
.0

8)
0.

02
7

(0
.0

5)
2.

42
8

(1
51

6.
89

)
38

9.
83

R
un

ge
-

K
ut

ta

h
=

1
µs

58
01

.1
78

10
01

15
77

0.
57

9
0.

29
6

(0
.3

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.2

9)
0.

15
h
=

10
µs

54
2.

76
2

10
02

27
8

0.
54

2
0.

86
8

(0
.8

7)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
1

(0
.7

2)
0.

40
h
=

10
0

µs
56

.2
56

10
12

50
0.

55
6

4.
05

2
(4

.0
5)

0.
00

0
(0

.0
0)

0.
00

0
(0

.0
0)

0.
04

3
(2

6.
95

)
7.

75
h
=

1
m

s
5.

41
0

11
14

9
0.

48
5

48
.2

60
(4

8.
26

)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
2.

75
4

(1
72

0.
35

)
44

2.
15

D
or

m
an

d-
Pr

in
ce

e
=

1
µ

32
44

.0
54

19
34

00
5

1.
67

7
0.

29
5

(0
.3

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.3

0)
0.

15
e
=

10
µ

77
4.

66
8

69
96

06
1.

10
7

0.
29

0
(0

.2
9)

0.
00

0
(0

.0
0)

0.
00

0
(0

.0
0)

0.
00

0
(0

.2
8)

0.
14

e
=

10
0

µ
80

.4
63

74
54

9
1.

07
9

0.
32

8
(0

.3
3)

0.
00

0
(0

.0
0)

0.
00

0
(0

.0
0)

0.
00

1
(0

.3
2)

0.
16

e
=

1
m

11
.9

03
10

78
3

1.
10

4
0.

57
3

(0
.5

7)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
1

(0
.6

3)
0.

30
e
=

10
m

5.
44

4
45

49
1.

19
7

1.
51

7
(1

.5
2)

0.
00

3
(0

.0
0)

0.
00

1
(0

.0
0)

0.
00

7
(4

.2
1)

1.
43

e
=

10
0

m
4.

79
1

39
34

1.
21

8
5.

76
7

(5
.7

7)
0.

02
9

(0
.0

3)
0.

00
8

(0
.0

1)
0.

02
9

(1
8.

18
)

6.
00

127

tables

Table
B.6:D

ifferentialequation
integrator

perform
ance

for
the

IfC
ond

E
xp

m
od

el.E
rrors

are
R

M
SE

values
com

pared
to

a
R

unge-K
utta

integration
w

ith
100

ns
sam

ple
tim

e.Percentages
representR

M
SE

norm
alised

to
the

value
range.Sim

ulated
tim

e
is

10
s

at
100

input
spike

groups
w

ith
33

output
spikes.

Integrator
Tim

e
and

sam
ples

Error
(R

M
SE)

t
[m

s]
N

tN
[µs]

u
[m

V
](%

)
g

e
[nS

](%
)

g
i [nS

](%
)

w
[nA

](%
)

A
vg.%

Euler

h
=

1
µs

2071.354
10011577

0.207
0.223

(0.22)
0.001

(0.00)
0.000

(0.00)
0.000

(0.00)
0.06

h
=

10
µs

130.804
1002322

0.131
0.739

(0.74)
0.012

(0.01)
0.004

(0.01)
0.000

(0.00)
0.19

h
=

100
µs

12.139
101298

0.120
2.508

(2.51)
0.122

(0.11)
0.039

(0.07)
0.000

(0.00)
0.67

h
=

1
m

s
1.198

11226
0.107

8.079
(8.08)

1.225
(1.07)

0.382
(0.64)

0.000
(0.00)

2.45

M
idpoint

h
=

1
µs

2412.932
10011577

0.241
0.033

(0.03)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
0.01

h
=

10
µs

165.374
1002322

0.165
0.948

(0.95)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
0.24

h
=

100
µs

13.282
101298

0.131
3.156

(3.16)
0.001

(0.00)
0.000

(0.00)
0.000

(0.00)
0.79

h
=

1
m

s
1.482

11226
0.132

9.820
(9.82)

0.088
(0.08)

0.027
(0.05)

0.000
(0.00)

2.49

R
unge-
K

utta

h
=

1
µs

3873.598
10011577

0.387
0.033

(0.03)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
0.01

h
=

10
µs

314.017
1002322

0.313
0.948

(0.95)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
0.24

h
=

100
µs

32.832
101298

0.324
3.155

(3.16)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
0.79

h
=

1
m

s
3.024

11226
0.269

9.817
(9.82)

0.000
(0.00)

0.000
(0.00)

0.000
(0.00)

2.45

D
orm

and-
Prince

e
=

1
µ

2286.730
1933179

1.183
0.033

(0.03)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
0.01

e
=

10
µ

572.327
699514

0.818
0.336

(0.34)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
0.08

e
=

100
µ

54.232
74227

0.731
1.330

(1.33)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
0.33

e
=

1
m

7.367
10398

0.708
4.200

(4.20)
0.000

(0.00)
0.000

(0.00)
0.000

(0.00)
1.05

e
=

10
m

2.621
4072

0.644
10.879

(10.88)
0.003

(0.00)
0.001

(0.00)
0.000

(0.00)
2.72

e
=

100
m

3.019
3741

0.807
13.645

(13.64)
0.028

(0.02)
0.007

(0.01)
0.000

(0.00)
3.42

128

b .3 integrator benchmark

Ta
bl

e
B.

7:
D

if
fe

re
nt

ia
le

qu
at

io
n

in
te

gr
at

or
pe

rf
or

m
an

ce
fo

r
th

e
A

d
E

xp
m

od
el

w
it

h
ap

pr
ox

im
at

io
n

of
th

e
ex

po
ne

nt
ia

lf
un

ct
io

n
us

ed
in

th
e

sp
ik

in
g

m
ec

ha
ni

sm
.E

rr
or

s
ar

e
R

M
SE

va
lu

es
co

m
p

ar
ed

to
a

R
u

ng
e-

K
u

tt
a

in
te

gr
at

io
n

w
it

h
10

0
ns

sa
m

p
le

ti
m

e
(a

nd
fu

ll
pr

ec
is

io
n

ex
po

ne
nt

ia
l)

.P
er

ce
nt

ag
es

re
pr

es
en

t
R

M
SE

no
rm

al
is

ed
to

th
e

va
lu

e
ra

ng
e.

Si
m

ul
at

ed
ti

m
e

is
10

s
at

10
0

in
pu

t
sp

ik
e

gr
ou

ps
w

it
h

33
ou

tp
ut

sp
ik

es
.

In
te

gr
at

or
Ti

m
e

an
d

sa
m

pl
es

Er
ro

r
(R

M
SE

)

t[
m

s]
N

t N
[µ

s]
u
[m

V
]

(%
)

g e
[n

S]
(%

)
g i
[n

S]
(%

)
w
[n

A
]

(%
)

A
vg

.%

Eu
le

r

h
=

1
µs

22
44

.0
48

10
01

15
77

0.
22

4
0.

36
1

(0
.3

6)
0.

00
1

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
1

(0
.3

3)
0.

17
h
=

10
µs

18
2.

80
3

10
02

27
8

0.
18

2
0.

93
0

(0
.9

3)
0.

01
2

(0
.0

1)
0.

00
4

(0
.0

1)
0.

00
1

(0
.7

2)
0.

42
h
=

10
0

µs
15

.4
16

10
12

55
0.

15
2

3.
53

0
(3

.5
3)

0.
12

2
(0

.1
1)

0.
03

9
(0

.0
7)

0.
01

1
(6

.6
0)

2.
58

h
=

1
m

s
1.

65
1

11
19

0
0.

14
8

8.
35

8
(8

.3
6)

1.
22

5
(1

.0
7)

0.
38

2
(0

.6
4)

0.
01

7
(1

0.
66

)
5.

18

M
id

po
in

t

h
=

1
µs

29
94

.2
06

10
01

15
77

0.
29

9
0.

30
6

(0
.3

1)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.3

0)
0.

15
h
=

10
µs

26
4.

26
1

10
02

27
8

0.
26

4
0.

88
7

(0
.8

9)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
1

(0
.7

0)
0.

40
h
=

10
0

µs
23

.7
06

10
12

49
0.

23
4

3.
55

4
(3

.5
5)

0.
00

1
(0

.0
0)

0.
00

0
(0

.0
0)

0.
03

8
(2

3.
67

)
6.

80
h
=

1
m

s
2.

57
9

11
16

1
0.

23
1

42
.2

30
(4

2.
23

)
0.

08
8

(0
.0

8)
0.

02
7

(0
.0

5)
2.

42
4

(1
51

4.
39

)
38

9.
19

R
un

ge
-

K
ut

ta

h
=

1
µs

50
45

.4
81

10
01

15
77

0.
50

4
0.

29
4

(0
.2

9)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.2

9)
0.

15
h
=

10
µs

46
0.

07
9

10
02

27
8

0.
45

9
0.

85
6

(0
.8

6)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
1

(0
.7

0)
0.

39
h
=

10
0

µs
47

.7
00

10
12

51
0.

47
1

3.
93

2
(3

.9
3)

0.
00

0
(0

.0
0)

0.
00

0
(0

.0
0)

0.
04

0
(2

4.
81

)
7.

19
h
=

1
m

s
4.

56
0

11
14

9
0.

40
9

48
.2

58
(4

8.
26

)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
2.

75
4

(1
72

0.
25

)
44

2.
13

D
or

m
an

d-
Pr

in
ce

e
=

1
µ

29
89

.1
63

19
33

99
1

1.
54

6
0.

29
4

(0
.2

9)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
0

(0
.3

0)
0.

15
e
=

10
µ

73
5.

50
3

69
96

04
1.

05
1

0.
28

5
(0

.2
9)

0.
00

0
(0

.0
0)

0.
00

0
(0

.0
0)

0.
00

0
(0

.2
7)

0.
14

e
=

10
0

µ
74

.4
78

74
52

2
0.

99
9

0.
32

3
(0

.3
2)

0.
00

0
(0

.0
0)

0.
00

0
(0

.0
0)

0.
00

1
(0

.3
2)

0.
16

e
=

1
m

10
.8

39
10

79
2

1.
00

4
0.

43
7

(0
.4

4)
0.

00
0

(0
.0

0)
0.

00
0

(0
.0

0)
0.

00
1

(0
.3

6)
0.

20
e
=

10
m

4.
73

9
45

04
1.

05
2

2.
16

4
(2

.1
6)

0.
00

3
(0

.0
0)

0.
00

1
(0

.0
0)

0.
00

6
(4

.0
4)

1.
55

e
=

10
0

m
4.

20
5

39
64

1.
06

1
3.

61
0

(3
.6

1)
0.

02
8

(0
.0

2)
0.

00
8

(0
.0

1)
0.

02
0

(1
2.

18
)

3.
96

129

CS I N G L E N E U R O N E VA L UAT I O N C O M PA R I S O N

0.1 0.2 0.3 0.4 0.5 0.6
Leak conductivity gL [µS]

20

40

60

80

100

Ex
ci

ta
to

ry
ti

m
e

co
ns

ta
nt

τ e
[m

s]

SGSO evaluation model (AdEx neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation result Psgso(Φ)

−60 −50 −40 −30 −20 −10 0
Threshold potential ETh [mV]

0.0

0.2

0.4

0.6

0.8

1.0

Sy
na

ps
e

w
ei

gh
tw

[µ
S]

SGSO evaluation model (AdEx neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation result Psgso(Φ)

131

single neuron evaluation comparison

0.1 0.2 0.3 0.4 0.5 0.6
Leak conductivity gL [µS]

20

40

60

80

100

Ex
ci

ta
to

ry
ti

m
e

co
ns

ta
nt

τ e
[m

s]

SGMO evaluation model (AdEx neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation result Psgmo(Φ)

−60 −50 −40 −30 −20 −10 0
Threshold potential ETh [mV]

0.0

0.2

0.4

0.6

0.8

1.0

Sy
na

ps
e

w
ei

gh
tw

[µ
S]

SGMO evaluation model (AdEx neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation result Psgmo(Φ)

132

0.1 0.2 0.3 0.4 0.5 0.6
Leak conductivity gL [µS]

20

40

60

80

100

Ex
ci

ta
to

ry
ti

m
e

co
ns

ta
nt

τ e
[m

s]

Spike Train evaluation model with ng = 100 (AdEx neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Evaluation result Pst(Φ)

−60 −50 −40 −30 −20 −10 0
Threshold potential ETh [mV]

0.0

0.2

0.4

0.6

0.8

1.0

Sy
na

ps
e

w
ei

gh
tw

[µ
S]

Spike Train evaluation model with ng = 100 (AdEx neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Evaluation result Pst(Φ)

133

single neuron evaluation comparison

0.1 0.2 0.3 0.4 0.5 0.6
Leak conductivity gL [µS]

20

40

60

80

100

Ex
ci

ta
to

ry
ti

m
e

co
ns

ta
nt

τ e
[m

s]

SGMO evaluation model (LIF neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation result Psgmo(Φ)

−60 −50 −40 −30 −20 −10 0
Threshold potential ETh [mV]

0.0

0.2

0.4

0.6

0.8

1.0

Sy
na

ps
e

w
ei

gh
tw

[µ
S]

SGMO evaluation model (LIF neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation result Psgmo(Φ)

134

0.1 0.2 0.3 0.4 0.5 0.6
Leak conductivity gL [µS]

20

40

60

80

100

Ex
ci

ta
to

ry
ti

m
e

co
ns

ta
nt

τ e
[m

s]

Spike Train evaluation model with ng = 100 (LIF neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Evaluation result Pst(Φ)

−60 −50 −40 −30 −20 −10 0
Threshold potential ETh [mV]

0.0

0.2

0.4

0.6

0.8

1.0

Sy
na

ps
e

w
ei

gh
tw

[µ
S]

Spike Train evaluation model with ng = 100 (LIF neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Evaluation result Pst(Φ)

135

single neuron evaluation comparison

0.1 0.2 0.3 0.4 0.5 0.6
Leak conductivity gL [µS]

20

40

60

80

100

Ex
ci

ta
to

ry
ti

m
e

co
ns

ta
nt

τ e
[m

s]

SGSO evaluation model (LIF neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation result Psgso(Φ)

−60 −50 −40 −30 −20 −10 0
Threshold potential ETh [mV]

0.0

0.2

0.4

0.6

0.8

1.0

Sy
na

ps
e

w
ei

gh
tw

[µ
S]

SGSO evaluation model (LIF neuron)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation result Psgso(Φ)

136

acronyms

A C R O N Y M S

AdEx Adaptive exponential integrate-and-fire neuron model. Neu-
ron model implemented on the NM-PM1 system. 21–23, 26, 38,
44, 50, 63, 64, 67–76, 80, 83, 90, 91, 93, 95, 96, 98, 126

AdExpSim Adaptive exponential neuron simulator framework. Collection
of libraries and applications for single neuron evaluation. 90,
92, 93, 99, 119, 121, 123

API Application programming interface. Specification of a software
interface (e. g. a collection of classes, data types and functions)
which allows programmers to incorporate third-party systems
into their applications. 27, 104

BiNAM Binary neural associative memory, also known as Willshaw
associative memory. 1, 4, 5, 28, 30–42, 44, 47–49, 52, 53, 56, 57,
61, 63–67, 77–79, 84, 94, 95, 101–103, 105, 107, 113, 117, 119, 120

BrainScaleS Brain-inspired multiscale computation in neuromorphic hy-
brid systems. European research project with the goal (amongst
others) to advance the wafer-scale HICANN system. A prede-
cessor of the HBP. 25

CLI Command line interface. 90, 92

CPU Central processing unit. 96, 105, 126

DoF Degree of freedom. 68, 69

EIF Exponential integrate-and-fire neuron model. 20, 21

ESS Executable system specification. A software emulator of the
NM-PM1 system. 26, 27, 104, 106, 114–117

FACETS Fast analogue computing with emergent transient states. Eu-
ropean research project in aimed at the development of the
Spikey and HICANN neuromorphic hardware systems. 25, 26

GPU Graphics processing unit. Massively parallel processor system
primarily designed for 3D graphics processing. In the recent
years also usable for general purpose computing. 121

GUI Graphical user interface. 90, 92

HBP Human brain project. A European research project working
towards an understanding of the human brain by constructing
brain atlases and performing large-scale simulations of brain-
like neural circuitry. 1–3, 7, 17, 19, 21, 24, 25, 27, 104, 106, 120,
121

137

acronyms

HDF5 Hierarchical data format version 5. Storage format for the
management of large and complex data collections. 104, 106

HH Hodgkin-Huxley neuron model. A detailed biophysical neuron
model which sufficiently describes a variety of behavioural
patterns of biological neurons. 11, 14, 16, 17, 21, 121

HICANN High input count analogue neural network. The actual ana-
logue neural network chip on the NM-PM1 wafer. 2, 25, 26,
106, 120

IfCondExp Integrate-and-fire with conductance based exponential decay
neuron model. Equivalent to the LIF model in conjunction
with conductance based synapses with exponential decay. 19

ISI Interspike interval, denoted as ∆t. 44

JSON JavaScript object notation, a text based format for the serialisa-
tion of data structures into a text based hierarchy of lists and
dictionaries. 90, 104, 105

LIF Linear integrate-and-fire neuron model. One of the most sim-
ple neuron models, supported on all hardware platforms. 19–
23, 25, 26, 38, 63, 64, 67, 68, 70, 72, 76, 80, 83, 88, 90, 91, 93, 95,
96, 98–101, 106, 107, 113, 114, 123, 124, 126

MAT Multi-timescale adaptive threshold neuron model. 21

MLP Multilayer perceptron. 10

NEST Neural simulation tool. Software simulator for spiking neural
network models. 27, 104, 107–117

NM-MC1 Neuromorphic many-core system (version one). A digital
spiking neural network simulator consisting of thousands of
low-powered microprocessors, developed at the University of
Manchester. 2, 24, 25, 27, 65, 68, 106–111, 113–117, 120

NM-PM1 Neuromorphic physical-model system (version one) developed
at the Kirchhoff Institute for Physics at Heidelberg University.
The NM-PM1 is a mixed-signal system which simulates the
individual neurons with an analogue model circuit and uses
digital routing infrastructure for inter-neuron spike propaga-
tion. 2, 21, 24–27, 65, 68, 92, 99, 104, 106, 114, 120

PyNAM Python neural associative memory framework. Tool for con-
ducting network-level parameter sweeps on neuromorphic
hardware. 103–107, 119, 120, 124

PyNN A Python package for simulator-independent specification of
neuronal network models. 23, 27, 103, 104

PyNNLess Yet another python software abstraction layer on top of PyNN,
developed for this thesis. Allows the execution of the same
network descriptors on all platforms. 103, 104, 106, 119, 124

138

acronyms

QIF Quadratic integrate-and-fire neuron model. 20

RMSE Root mean square error. The RMSE is defined as:

E =

√√√√ 1
N
·

N

∑
k=1
‖~tk −~xk‖2 ,

where N is the number of samples,~tk are the reference samples
and ~xk the measured values. 75

SGMO Single group, multiple output spikes evaluation measure. 84,
85, 94–96, 98–102, 108, 109, 111, 113, 119, 121

SGSO Single group, single output spike evaluation measure. 79, 80,
84, 85, 94–96, 98–101, 108, 121

SQNR Signal-to-quantisation-noise ratio. 50

ST100 Spike train evaluation measure with ng = 100 experiment
groups. 95–101, 108, 109, 111, 112

ST10 Spike train evaluation measure with ng = 10 experiment
groups. 95–97

STDP Spike-timing dependent plasticity. Scheme for Hebbian train-
ing of synapse weights in spiking neural networks. 121

139

symbols

S Y M B O L S

a Subthreshold adaptation conductance in the AdEx model in siemens.
21–23, 64, 67–69, 76, 95

α Dimensionality of the neuron state vector ~v ∈ Rα. 73

B Base set of Boolean algebra, defined as B = {0, 1}. 6, 9, 30–32, 54, 55,
59

B A binary matrix used as generalisation of X and Y in the data gener-
ation algorithms. The matrix contains either input or output vectors
~xk,~yk as rows. 54–56, 59

b Spike-triggered adaptation current in the AdEx model. 21–23, 64,
67–69, 95

c Number of ones in a memory input vector ~x, defined as c = ∑m
i (~x)i.

30–34, 36, 37, 46, 48, 52–54, 56, 64, 67, 78, 81, 99, 107

Cm Neuron membrane capacitance in farad. 12, 13, 17, 19–21, 23, 26, 64,
67–69, 72, 95, 98, 100, 106, 111, 114

D Test dataset. Consists of N input and output vectors D = {~xk,~yk}.
Input and output vectors are alternatively represented as the input
and output matrices X and Y. 30, 31, 36, 52, 103, 105, 107

d Number of ones in a memory output vector ~y, defined as d = ∑n
i (~y)i.

30–34, 36, 46, 52–54, 56, 64, 67, 107

δ Latency, time until the entire output for an input has been produced.
51, 65, 107, 110, 113

∆a Adaptation induced voltage change, substitute of the state variable
Ia(t). 69, 71, 73

∆b Spike induced adaptation, substitute of the parameter b. 69, 71

∆t Interspike interval (ISI), the equidistant delay between two spikes in
a single spike burst in seconds. 22, 44–48, 64, 78, 81, 99

∆Th Spike slope factor in the AdEx model. 21–23, 64, 67–69, 72, 83, 95

∆u Perturbation potential used in the fractional spike count measure. 89

e Target approximation error for an adaptive step size integrator. 71,
74–76

Ee Excitatory reversal potential. Reversal potential of the excitatory
conductance based synapses, usually chosen larger or equal to the
threshold potential ETh. 18, 19, 23, 64, 67–69, 95, 100, 106

Eeq Neuron membrane equilibrium potential: the potential the membrane
is pulled towards given the ionic channel conductances. 12, 13

Ei Inhibitory reversal potential. Reversal potential of the inhibitory
conductance based synapses, usually chosen smaller then the leak
potential EL. 18, 19, 23, 64, 67–69, 106

141

symbols

EL Resting or leak potential. The membrane potential a neuron converges
to over time. 11, 14, 19–21, 23, 51, 64, 67–69, 74, 83, 87, 95, 100, 106,
111

Ereset Reset potential. The membrane potential to neuron resets to following
an output spike. 14, 19, 23, 64, 67–69, 71, 72, 79, 95, 100, 106

Espike Spike potential, the maximum potential reached during a spike. 14,
19, 21, 22, 68

ETh Threshold potential. The membrane potential that has to be passed
for a spike to be generated. 14, 18–23, 64, 67–69, 71, 72, 80, 83, 91, 95,
96, 98, 100, 106, 109–112, 114

Eeff
Th Effective threshold potential. Minimum membrane potential in non-

linear integrate-and-fire models that has to be exceeded in order to
surely trigger an output spike, given that there is no sudden rise in
an external discharging/inhibitory current Isyn. 20, 79, 80, 82, 83, 87,
89, 98

Eexp
Th Exponential threshold potential. Potential at which the inner term in

the exponential of the AdEx model gets positive – at this point an
avalanche effect will increase the membrane potential and lead to the
production of a spike. 21, 23, 64, 67, 69, 72, 83, 95

fa Subthreshold adaptation, substitute of the parameter a. 69

fe Current excitatory channel frequency, substitute of the state variable
ge(t). 69, 71, 73

fi Current inhibitory channel frequency, substitute of the state variable
gi(t). 69, 71, 73

fL Membrane leak channel rate, substitute of the parameter gL. 69

fw Synaptic weight, substitute of the parameter w. 69

ge Excitatory synapse conductance in siemens. 19, 23, 66, 69, 127–129

gi Inhibitory synapse conductance in siemens. 19, 23, 69, 83, 127–129

gL Conductance of the membrane leak channel in siemens. 19–21, 23, 26,
64, 67–69, 72, 83, 88, 91, 95–97, 100, 101, 106, 108, 111, 124

H Heaviside function H(x), named after the mathematician and physi-
cist Oliver Heaviside. 9, 10, 31

h Differential equation integrator step size. 71–76, 113

I Information (or entropy) stored in a memory in bits. 32–34, 37, 107–
109, 111, 112, 114–117

I Place holder for an ion species with either positive or negative charge.
12, 13

i Total neuronal current which charges and discharges the cell mem-
brane. The total neuronal current is composed of the synaptic current
Isyn and the channel current Ichan. 17

Ia Adaptation current in the AdEx neuron model. 21, 23, 69, 72, 83, 90

Ichan Neuron model specific intrinsic component of the neuronal current i.
17, 18

142

symbols

Isyn Synaptic or external component of the neuronal current i. 16, 17,
19–21

Ik
syn Current induced by a single synapse k. 17, 18

ITh Exponential threshold current used in the AdEx model. 21, 22, 72, 80,
83

Imax
Th Maximum the exponential threshold current ITh is limited to for

numerical integration. 72

K Population size. Number of neurons in the network output layer
representing a single output component. 39, 46–48, 64, 78, 98, 99

kin List of sample indices. Assigns a sample number to each input spike
time in tin. 47, 103

λa Adaptation channel decay rate, substitute of the parameter τa. 69

λe Excitatory channel decay rate, substitute of the parameter τe. 69

λi Inhibitory channel decay rate, substitute of the parameter τi. 69

M Binary matrix of size m× n, storing the trained associations of the
network. 30–32, 34–37, 39, 40, 53–55, 103

m Input dimensionality of the BiNAM. 30–36, 42, 46, 47, 52–55, 64, 67,
107

µoffs
t Random offset chosen for an entire spike burst. This value is once

sampled for a spike burst from a Gaussian distribution with standard
deviation σoffs

t . 45

N Number of samples trained in the BiNAM. 30, 33, 34, 36, 46, 47, 51–61,
64, 107, 141

n Output dimensionality of the BiNAM. 30, 32–36, 42, 46, 52–54, 64, 66,
67, 107

n0 Maximum number of input spikes for which a neuron in the spiking
BiNAM implementation should produce no output spikes. 48, 79, 80,
95, 99

n1 Minimum number of input spikes for which a neuron in the spiking
BiNAM implementation should produce sout output spikes. 48, 79,
80, 95, 99

nE Number of excitatory input bursts in an experiment group descriptor
of the “spike train” evaluation measure. 77, 78

nI Number of inhibitory input bursts in an experiment group descriptor
of the “spike train” evaluation measure. 77, 78

nfn Total number of false negative bits across the entire test dataset. 107,
110, 116

nk
fn Number of false negative bits for the recall of the k-th sample. 33, 49

nfp Total number of false positive bits across the entire test dataset. 107,
110–112

nk
fp Number of false positive bits for the recall of the k-th sample. 33, 34,

49

143

symbols

ng Total number of experiment groups in the “spike train” evaluation
measure. 77–79, 94–96

nout Actual number of output spike bursts. 84–90

nout
i Actual number of receviced output spikes in the i-th experiment

group. 78, 79

ñout Expected number of output spike bursts in an experiment group
descriptor of the “spike train” evaluation measure. 77, 78, 84, 85, 87,
94, 99

ñout
i Expected number of output spikes in the i-th experiment group. 78,

79

o Fractional target spike count offset. Used to account for non-linear
fractional values connecting the upper corners of the underlying step
function. 84, 85

P Abstract optimality value returned by a single neuron optimisation
measure such as the spike train measure, the SGSO measure or the
SGMO measure.. 76, 96, 97, 100, 108, 109, 112

p0 Probability of an input entity (either a single bit or a spike) being
removed from the input data (false-negative). 36, 37, 44, 46, 47, 50, 64,
99

p1 Probability of a false-positive input (either a single bit or a spike)
being added to the input data. 36, 37, 44, 46, 47, 50, 64, 99

Φ Abstract spiking neuron parameter vector. 62–66, 76–79, 82, 84–86,
89, 94, 98, 103, 114

φ A single abstract spiking neuron parameter. 50, 86, 87

pout Fractional component of the fractional spike count measure, it holds
pout ∈ [0, 1) ⊂ R. 84, 86–90

Psgmo Result of the “single group, multiple output spikes” evaluation
method. 85, 94

Psgso Result of the “single group, single output spike” evaluation method.
79, 81, 82, 94

Pst Result of the “spike train” evaluation method. Pst is defined as the
ratio between the number of experiment groups for which the actual
number of output spikes equals the expected number of output spike
ands the total number of experiment groups. 77, 79, 101

P i
st Partial result of the Pst evaluation measure for the i-th experiment

group. 79

qout Fractional output spike count, it holds qout ∈ R+. 84–86, 88, 90

σφ Standard deviation of a single neuron parameter φ. 64

σt Jitter, standard deviation of the Gaussian distribution the spikes of a
single spike burst are selected from. 45–47, 50, 64, 66, 75, 78, 80, 81,
99, 114–117

σoffs
t Standard deviation of the random offset µoffs

t for an entire burst.
45–47, 50, 64, 78, 80, 81, 99

144

symbols

σw Standard deviation of the Gaussian noise added to the synaptic
weight w, special case of σφ. 78, 99, 114, 116

sin Input burst size, the number of spikes in an input burst used to
convey the information of a “one” being sent. 44–48, 64, 77, 98, 99

sout Output burst size, the number of spikes expected from the network
representing a “one”. 44, 46, 48, 49, 64, 78, 98, 99

T Time window size, a group of input and output spikes belonging
together has to fit within this time window. 43, 45–48, 51, 64, 75, 77,
78, 80, 82, 84, 85, 99, 105, 114, 116, 117

τa Adaptation current time constant, controls the exponential decay of
the adaptation current Ia (in seconds). 21, 23, 64, 67–69, 95

τe Excitatory synapse time constant, controls the exponential decay of
excitatory channel conductance ge. 18, 19, 23, 64, 67–69, 95–97, 100,
101, 106, 108, 111, 124

τi Inhibitory synapse time constant, controls the exponential decay of
inhibitory channel conductance gi. 18, 19, 23, 64, 67–69, 106

τm Membrane potential time constant, controls the exponential decay
of the membrane potential if no external input current is present. It
holds τm = Cm/gL. Measured in seconds. 23

τref Refractory period. Period of time for which a neuron produces no
further spikes. In the simple neuron models the membrane potential
is clamped to Ereset during the refractory period. 19, 23, 26, 64, 67–69,
71, 89, 91, 95, 100, 106

Θ Vectorial threshold function. Θθ(~z) returns a copy of ~z with all com-
ponents greater of equal to θ set to one and all other values set to
zero. 31, 34

θ Threshold value. Used in conjunction with McCulloch-Pitts neurons
to specify the minimum neuronal excitation which causes a “one” at
the output. 31, 32, 34–37

tin Single input spike train in the case of single neuron simulation, or a
list of input spike trains for each memory input component. 47, 66,
70, 71, 77, 78, 86, 103, 105

tin
i Input spike train for the i-th memory input component, or the i-th

spike in a single neuron evaluation output spike train. 42

tout Single output spike train in the case of single neuron simulation, or
list of output spike trains for each memory output component. 71,
78, 89, 103

tout
j Out spike train for the j-th memory input component, or the j-th

spike in a single neuron evaluation output spike train. 42, 78

u Neuron membrane potential. 11–14, 16–21, 23, 51, 65, 69, 71–75, 79,
80, 83, 87–89, 127–129

u̇ Time differential of the neuron membrane potential. 13, 17, 19–21, 71,
72, 87

ü Second order time differential of the neuron membrane potential. 87

umax Maximum neuron membrane potential encountered during an exper-
iment. 79, 80

145

symbols

~v Neuron state vector, ~v ∈ Rα. For the AdEx model with conductance
based excitatory and inhibitory synapses, the state vector is four
dimensional, consisting of the membrane potential, the adaptation
current and the excitatory and inhibitory channel conductances. 70,
71, 73, 74, 89, 123

~v0 Initial neuron state at the beginning of the simulation. 73, 82, 85

w Synapse weight. For conductance based synapses the weight is mea-
sured in siemens, for current based synapses in ampere. 17, 18, 64,
66–69, 78, 95, 96, 99, 100, 106, 108–112, 114

wE Weight factor to be applied to the excitatory synapse in the “spike
train” evaluation measure. 78

wI Weight factor to be applied to the inhibitory synapse in the “spike
train” evaluation measure. 78

win Synaptic weight annotations for each input spike in single neuron
simulation. 66, 70, 71, 77, 78

X Input data matrix, consists of N input vectors organised in rows. 52,
54, 55

~x m-dimensional binary input vector of the BiNAM. 28–37, 40–43, 45,
47, 48, 50, 52–54, 57, 62, 107, 141

Y Output data matrix, consists of N output vectors organised in rows.
52, 54, 55

~y n-dimensional binary output vector of the BiNAM. 29–36, 40–44, 46,
49, 50, 52, 53, 57, 62, 65, 107, 141

ŷk Actual output of the BiNAM for a previously trained sample ~xk. 49

ỹ Intermediate result of the matrix-vector multiplication M ·~x in the
BiNAM recall rule. 31, 32

146

bibliography

B I B L I O G R A P H Y

[Bel57] Richard Ernest Bellman. Dynamic Programming. 6. print. 1957.

[BF87] Jon Bentley and Robert Floyd. “Programming pearls: a sample
of brilliance”. In: Communications of the ACM 30.9 (1987), pp. 754–
757.

[BG05] Romain Brette and Wulfram Gerstner. “Adaptive exponential
integrate-and-fire model as an effective description of neuronal
activity”. In: Journal of Neurophysiology 94.5 (2005), pp. 3637–3642.

[BH97] Boris Barbour and Michael Hausser. “Intersynaptic diffusion of
neurotransmitter”. In: Trends in neurosciences 20.9 (1997), pp. 377–
384.

[Bra14] The JavaScript Object Notation (JSON) Data Interchange Format.
Proposed Standard RFC7159. Internet Engineering Task Force,
2014.

[Brü+11] Daniel Brüderle et al. “A comprehensive workflow for general-
purpose neural modeling with highly configurable neuromor-
phic hardware systems”. In: Biological cybernetics 104.4-5 (2011),
pp. 263–296.

[BS13] Valentino Braitenberg and Almut Schüz. Cortex: statistics and
geometry of neuronal connectivity. Springer Science & Business
Media, 2013.

[Caj04] Santiago Ramón Y. Cajal. Textura del Sistema Nervioso del Hombre
y de los Vertebrados. Vol. 2. Nicolas Moya, Madrid, 1904.

[CG90] Barry W. Connors and Michael J. Gutnick. “Intrinsic firing pat-
terns of diverse neocortical neurons”. In: Trends in neurosciences
13.3 (1990), pp. 99–104.

[Cor+96] Robert M. Corless et al. “On the Lambert W function”. In: Ad-
vances in Computational mathematics 5.1 (1996), pp. 329–359.

[CP96] B. Jack Copeland and Diane Proudfoot. “On Alan Turing’s an-
ticipation of connectionism”. English. In: Synthese 108.3 (1996),
pp. 361–377.

[Dav+08] Andrew P. Davison et al. “PyNN: a common interface for neu-
ronal network simulators”. In: Frontiers in neuroinformatics 2
(2008).

[DP80] John R. Dormand and Peter J. Prince. “A family of embedded
Runge-Kutta formulae”. In: Journal of computational and applied
mathematics 6.1 (1980), pp. 19–26.

[Eic15] Emanuel Eichhammer. Qt Plotting Widget QCustomPlot. 2015.
url: http://www.qcustomplot.com/.

[Fur+13] Steve B. Furber et al. “Overview of the SpiNNaker system ar-
chitecture”. In: Computers, IEEE Transactions on 62.12 (2013),
pp. 2454–2467.

[GB09] Wulfram Gerstner and Romain Brette. “Adaptive exponential
integrate-and-fire model”. In: Scholarpedia 4.6 (2009), p. 8427.

147

http://www.qcustomplot.com/

bibliography

[GD07] Marc-Oliver Gewaltig and Markus Diesmann. “NEST (NEural
Simulation Tool)”. In: Scholarpedia 2.4 (2007), p. 1430.

[GK02] Wulfram Gerstner and Werner M. Kistler. Spiking neuron models:
Single neurons, populations, plasticity. Cambridge university press,
2002.

[Gli06] Mitch Glickstein. “Golgi and Cajal: The neuron doctrine and the
100th anniversary of the 1906 Nobel Prize”. In: Current Biology
16.5 (2006), pp. 147–151.

[Hay11] S. O. Haykin. Neural Networks and Learning Machines. Pearson
Education, 2011.

[HDF15] HDF Group. Hierarchical Data Format, version 5. 1997-2015. url:
http://www.hdfgroup.org/HDF5/.

[Heb05] Donald Olding Hebb. The organization of behavior: A neuropsycho-
logical theory. Psychology Press, 2005.

[HH52] Alan L. Hodgkin and Andrew F. Huxley. “A quantitative de-
scription of membrane current and its application to conduction
and excitation in nerve”. In: The Journal of physiology 117.4 (1952),
pp. 500–544.

[HM13] Jennifer Hasler and Bo Marr. “Finding a roadmap to achieve
large neuromorphic hardware systems”. In: Frontiers in neuro-
science 7 (2013).

[HMW60] John C. Hay, F. C. Martin, and C. W. Wightman. “The Mark I
Perceptron – Design and performance”. In: Proceedings of the
institute of radio engineers. Vol. 48. 3. 1960, pp. 398–399.

[Hop07] John J. Hopfield. “Hopfield network”. In: Scholarpedia 2.5 (2007),
p. 1977.

[Hop82] John J. Hopfield. “Neural networks and physical systems with
emergent collective computational abilities”. In: Proceedings of
the national academy of sciences 79.8 (1982), pp. 2554–2558.

[HOT06] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A fast
learning algorithm for deep belief nets”. In: Neural computation
18.7 (2006), pp. 1527–1554.

[Hum15a] Human Brain Project. Mission – The Human Brain Project. 2015.
url: https://www.humanbrainproject.eu/discover/the-
project/strategic-objectives.

[Hum15b] Human Brain Project. Overview – The Human Brain Project. 2015.
url: https://www.humanbrainproject.eu/discover/the-
project/overview.

[Hum15c] Human Brain Project, SP9. Neuromorphic Platform Specification
– Public Version. 2015. url: https : / / flagship . kip . uni -
heidelberg.de/jss/FileExchange?fID=359&s=qqdXDg6HuX3&
uID=65.

[ISO14] ISO. Information technology – Programming languages – C++. Stan-
dard 14882:2014(E). Geneva, Switzerland: International Organi-
zation for Standardization, 2014.

[Izh04] Eugene M. Izhikevich. “Which model to use for cortical spiking
neurons?” In: IEEE transactions on neural networks 15.5 (2004),
pp. 1063–1070.

148

http://www.hdfgroup.org/HDF5/
https://www.humanbrainproject.eu/discover/the-project/strategic-objectives
https://www.humanbrainproject.eu/discover/the-project/strategic-objectives
https://www.humanbrainproject.eu/discover/the-project/overview
https://www.humanbrainproject.eu/discover/the-project/overview
https://flagship.kip.uni-heidelberg.de/jss/FileExchange?fID=359&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange?fID=359&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange?fID=359&s=qqdXDg6HuX3&uID=65

bibliography

[Izh07] Eugene M. Izhikevich. Dynamical systems in neuroscience. MIT
press, 2007.

[JL07] Christopher Johansson and Anders Lansner. “Towards cortex
sized artificial neural systems”. In: Neural Networks 20.1 (2007),
pp. 48–61.

[Kan+12] E. Kandel et al. Principles of Neural Science, Fifth Edition. McGraw-
Hill Education, 2012.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems.
Springer, 1972.

[Kno+14] Andreas Knoblauch et al. “Structural Synaptic Plasticity Has
High Memory Capacity and Can Explain Graded Amnesia,
Catastrophic Forgetting, and the Spacing Effect”. In: (2014).

[Kno03] Andreas Knoblauch. Synchronization and pattern separation in
spiking associative memories and visual cortical areas. Universität
Ulm, Fakultät für Informatik, 2003.

[Knu98] Donald Ervin Knuth. Sorting and searching. 2. ed., 1. print. 1998,
pp. 492–512.

[Koh12] Teuvo Kohonen. Content-addressable memories. Vol. 1. Springer
Science & Business Media, 2012.

[KTS09] Ryota Kobayashi, Yasuhiro Tsubo, and Shigeru Shinomoto.
“Made-to-order spiking neuron model equipped with a multi-
timescale adaptive threshold”. In: Frontiers in computational neu-
roscience 3 (2009).

[LD09] Bhagwandas L. Lathi and Zhi Ding. Modern Digital and Analog
Communication Systems. Oxford University Press, 2009.

[Lis97] John E. Lisman. “Bursts as a unit of neural information: making
unreliable synapses reliable”. In: Trends in neurosciences 20.1
(1997), pp. 38–43.

[Maa97] Wolfgang Maass. “Networks of spiking neurons: the third gener-
ation of neural network models”. In: Neural networks 10.9 (1997),
pp. 1659–1671.

[Mel10] Arnaldo Carvalho de Melo. “The new linux perf tools”. In:
Slides from Linux Kongress. 2010.

[Mie98] Kaisa Miettinen. Nonlinear multiobjective optimization. Vol. 12.
Springer Science & Business Media, 1998.

[Min12] Paul Mineiro. Approximate and vectorized versions of functions com-
monly used in machine learning. 2012. url: https://code.google.
com/p/fastapprox/.

[Mor+07] Abigail Morrison et al. “Exact subthreshold integration with
continuous spike times in discrete-time neural network simula-
tions”. In: Neural computation 19.1 (2007), pp. 47–79.

[MP43] Warren S. McCulloch and Walter Pitts. “A logical calculus of the
ideas immanent in nervous activity”. In: The bulletin of mathemat-
ical biophysics 5.4 (1943), pp. 115–133.

[MP87] Marvin L. Minsky and Seymour A. Papert. Perceptrons - Expanded
Edition: An Introduction to Computational Geometry. MIT press
Boston, MA: 1987.

149

https://code.google.com/p/fastapprox/
https://code.google.com/p/fastapprox/

bibliography

[MS95] Zachary F. Mainen and Terrence J. Sejnowski. “Reliability of
spike timing in neocortical neurons”. In: Science 268.5216 (1995),
pp. 1503–1506.

[MT11] Eve Marder and Adam L. Taylor. “Multiple models to capture
the variability in biological neurons and networks”. In: Nature
neuroscience 14.2 (2011), pp. 133–138.

[Mül15] Sylvia Müller. Programmierung neuronaler Assoziativspeicher auf Ba-
sis pulsender Neuronen. Bachelor Thesis. Cognitronics and Sensor
Systems Group, Bielefeld University, 2015.

[NM65] John A. Nelder and Roger Mead. “A simplex method for func-
tion minimization”. In: The computer journal 7.4 (1965), pp. 308–
313.

[Pai+13] Eustace Painkras et al. “SpiNNaker: A 1-W 18-core system-
on-chip for massively-parallel neural network simulation”. In:
Solid-State Circuits, IEEE Journal of 48.8 (2013), pp. 1943–1953.

[Pal13] Günther Palm. “Neural associative memories and sparse cod-
ing”. In: Neural Networks 37 (2013), pp. 165–171.

[Pal80] Günther Palm. “On associative memory”. In: Biological cybernetics
36.1 (1980), pp. 19–31.

[PBM04] Astrid A. Prinz, Dirk Bucher, and Eve Marder. “Similar network
activity from disparate circuit parameters”. In: Nature neuro-
science 7.12 (2004), pp. 1345–1352.

[Pea01] JMS Pearce. “Emil Heinrich Du Bois-Reymond (1818–96)”.
In: Journal of Neurology, Neurosurgery & Psychiatry 71.5 (2001),
pp. 620–620.

[Pet+14] Mihai A. Petrovici et al. “Characterization and compensation of
network-level anomalies in mixed-signal neuromorphic model-
ing platforms”. In: (2014).

[Pfe+13] Thomas Pfeil et al. “Six networks on a universal neuromorphic
computing substrate”. In: Frontiers in Neuroscience 7 (2013), p. 11.

[Pic97] Marco Piccolino. “Luigi Galvani and animal electricity: two
centuries after the foundation of electrophysiology”. In: Trends
in neurosciences 20.10 (1997), pp. 443–448.

[Pre+07a] William H. Press et al. Numerical recipes 3rd edition: The art of
scientific computing. Cambridge university press, 2007. Chap. 17.

[Pre+07b] William H. Press et al. Numerical recipes 3rd edition: The art of
scientific computing. Cambridge university press, 2007. Chap. 10.

[Pri07] A. A. Prinz. “Neuronal parameter optimization”. In: Scholarpedia
2.1 (2007), p. 1903.

[Qt 15] Qt Company. Qt project homepage. 2015. url: http://www.qt.
io/.

[Ras+10] Alexander D. Rast et al. “The leaky integrate-and-fire neuron:
A platform for synaptic model exploration on the SpiNNaker
chip”. In: Neural Networks (IJCNN), The 2010 International Joint
Conference on. IEEE. 2010, pp. 1–8.

[Red11] M. Reddy. API Design for C++. Elsevier Science, 2011.

150

http://www.qt.io/
http://www.qt.io/

bibliography

[RS91] Ulrich Rückert and Hartmut Surmann. “Tolerance of a binary
associative memory towards stuck-at-faults”. In: Artificial Neural
Networks 2 (1991).

[Sch+10] Johannes Schemmel et al. “A wafer-scale neuromorphic hard-
ware system for large-scale neural modeling”. In: Circuits and
Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on. IEEE. 2010, pp. 1947–1950.

[Sch15] Jürgen Schmidhuber. “Deep learning in neural networks: An
overview”. In: Neural Networks 61 (2015), pp. 85–117.

[Sch83] Stephen M. Schuetze. “The discovery of the action potential”. In:
Trends in Neurosciences 6 (1983), pp. 164–168.

[Sch99] Nicol N. Schraudolph. “A fast, compact approximation of the ex-
ponential function”. In: Neural Computation 11.4 (1999), pp. 853–
862.

[SG10] J. Sjöström and W. Gerstner. “Spike-timing dependent plasticity”.
In: Scholarpedia 5.2 (2010), p. 1362.

[Sha48] Claude Elwood Shannon. “A mathematical theory of communi-
cation”. In: The Bell System Technical Journal 27 (1948), pp. 379–
423.

[SK93] William R. Softky and Christof Koch. “The highly irregular
firing of cortical cells is inconsistent with temporal integration
of random EPSPs”. In: The Journal of Neuroscience 13.1 (1993),
pp. 334–350.

[SN94] Michael N. Shadlen and William T. Newsome. “Noise, neural
codes and cortical organization”. In: Current opinion in neurobiol-
ogy 4.4 (1994), pp. 569–579.

[Ste61] Karl Steinbuch. “Die Lernmatrix”. In: Biological Cybernetics 1.1
(1961), pp. 36–45.

[Sto+93] J. Stoer et al. Introduction to Numerical Analysis. Texts in Applied
Mathematics. Springer New York, 1993.

[Str13] Bjarne Stroustrup. The C++ Programming Language. 4th. Pearson
Education, 2013, p. 700.

[War16] Howard C. Warren. “Mental association from Plato to Hume”.
In: Psychological Review 23.3 (1916), p. 208.

[WBL69] David J. Willshaw, O. Peter Buneman, and Hugh Christopher
Longuet-Higgins. “Non-holographic associative memory.” In:
Nature (1969).

[WH60] Bernard Widrow and Marcian E. Hoff. “Adaptive switching
circuits”. In: WESCON Convention Record Part IV. 1960, pp. 96–
104.

151

erklärung

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit selbständig
verfasst und gelieferte Datensätze, Zeichnungen, Skizzen und graphi-
sche Darstellungen selbständig erstellt habe. Ich habe keine anderen
Quellen als die angegebenen benutzt und habe die Stellen der Arbeit,
die anderen Werken entnommen sind – einschließlich verwendeter
Tabellen und Abbildungen – in jedem einzelnen Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht.

Bielefeld, den 21. Dezember 2015
(Unterschrift)

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation and goals
	Neuromorphic hardware systems in the Human Brain Project
	Willshaw associative memory as a spiking neural network
	Associative memories as hardware benchmark
	Goals of this thesis

	Structure
	Notational conventions

	Background and Related Work
	History of artificial neural network models
	First generation: binary McCulloch-Pitts cells
	Second generation: firing-rate coded neural networks
	Third generation: spiking neural networks

	Biophysical neuron model
	Passive electrophysiological properties of the neuron membrane
	Action potentials
	Chemical synapses

	Simplified neuron and synapse models
	Neuron model base equation
	Synapse models
	Excitatory and inhibitory synapses
	Linear integrate-and-fire neuron model
	Non-linear integrate-and-fire models
	Two-dimensional Hodgkin-Huxley approximations: the AdEx model

	Neuromorphic hardware
	NM-MC1: The many-core system
	NM-PM1: The physical model
	Spikey
	Software stack

	The Willshaw associative memory model (BiNAM)
	Artificial associative memory models
	Formal description of the Willshaw model
	Choice of the threshold
	Storage capacity and sparsity
	Neural network implementation
	Impact of noise

	Summary and outlook

	Spiking Associative Memory Architecture and Testing
	Neural network topology and data encoding
	Input-/output spike sequences
	Data encoding and input noise parametrisation
	Neuron populations
	Required neuron behaviour

	Memory evaluation measures
	Storage capacity
	Robustness in case of noise
	Latency and throughput
	Energy

	Data generation
	Dataset parametrisation
	Expected behaviour in reaction to uncorrelated random data
	Random data generation algorithm
	Balanced data
	Balanced data generation algorithm

	Conclusion

	Neuron Parameter Evaluation and Optimisation
	Design space exploration
	On the terms "design space" and "exploration"
	Full network evaluation
	Single neuron evaluation
	Parameter constraints and intra-dependencies

	Single neuron simulation
	Neuron simulation loop
	Numerical integration of the AdEx model
	Differential equation integrators
	Integrator benchmark

	Approach 1: spike train
	Concept
	Descriptor and input spike train generation
	Evaluation

	Approach 2: single group, single output spike
	Concept
	Deterministic input spike train generation
	Evaluation measure
	Effective threshold potential

	Approach 3: single group, multiple output spikes
	General idea
	Fractional spike count
	Minimal apical voltage difference
	Minimal membrane potential perturbation

	Neuron evaluation software framework
	Architectural overview
	Frontend applications
	High performance single neuron simulator

	Evaluation method comparison
	Evaluation measure properties
	Empirical comparison
	Automated parameter optimisation

	Conclusion

	Full Network Simulation Experiments
	Methodology and software architecture
	PyNNLess
	PyNAM
	Limitations of the hardware platforms

	Neuron parameter evaluation
	Methodology
	Neuron parameter sweep on NM-MC1
	Neuron parameter sweep on Spikey
	Discussion

	System parameter sweeps
	Methodology
	Experimental results
	Discussion

	Conclusion

	Conclusion and Outlook
	Summary
	Future work
	Large scale simulations and benchmarking
	Neglected design space parameters
	Extensions of the BiNAM network
	Neuron evaluation and parameter optimisation
	Fractional spike count measure

	Conclusion

	Code Examples
	Single neuron integrator interface
	PyNNLess code example
	PyNAM experiment descriptor

	Tables
	Runge-Kutta coefficients
	Integrator runtime profiles
	Integrator benchmark

	Single Neuron Evaluation Comparison
	Acronyms
	Symbols
	Bibliography

