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Abstract. In this paper we are concerned with learning models of ac-
tions and compare a purely generative model based on Hidden Markov
Models to a discriminatively trained recurrent LSTM network in terms
of their properties and their suitability to learn and represent models
of actions. Specifically we compare the performance of the two models
regarding the overall classification accuracy, the amount of training se-
quences required and how early in the progression of a sequence they
are able to correctly classify the corresponding sequence. We show that,
despite the current trend towards (deep) neural networks, traditional
graphical model approaches are still beneficial under conditions where
only few data points or limited computing power is available.

Keywords: HMM, LSTM, incremental learning, recurrent network, ac-
tion classification

1 Introduction

Representing and incrementally learning actions is crucial for a number of sce-
narios and tasks in the field of intelligent systems where agents (both embodied
and unembodied) need to reason about their own and observed actions. Thus,
developing suitable representations of actions is an important research direction.
We are concerned with how to develop action models that allow intelligent sys-
tems to reason about observed actions in which some trajector is moved relative
to some reference object. Such actions correspond to manual actions of humans
that manipulate objects. We are concerned with finding models that support
tasks such as: classifying observed actions according to their types, forward pre-
diction and completion of actions. A particular focus lies on understanding how
to incrementally learn manipulation actions from only few examples and how to
enable models to classify actions which are still in progress. We compare two
broad classes of models: generative sequence models (HMMs in particular) and
discriminatively trained recurrent neural networks (LSTM recurrent networks
in particular). We analyze their properties on the task of classifying action se-
quences in terms of how much training examples are required to make useful
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predictions and how early in a sequence they are able to correctly classify the
respective sequence. Our models are trained on a dataset consisting of 1200 ex-
amples of action performances of human test subjects for four basic actions:
jumps over, jumps upon, circles around and pushes. Our results are encourag-
ing and show that action models can be successfully learned with both types
of models, whereby the main advantage of HMMs is that they can learn with
fewer examples and they show very favorable training times when compared to
LSTMs (10 seconds for HMMs vs. 4 hours for LSTMs) while displaying com-
parable performance of about 86% F-measure. Future work will involve scaling
these models to more complex action types and model actions described in terms
of richer features including sensor data.

2 Related Work

There has been a lot of work in the field of intelligent systems on developing
formalisms for learning and representing actions, ranging from task-space rep-
resentations [1] to high-level symbolic description of actions and their effects on
objects [2]. Many approaches work directly on raw video streams, which is a chal-
lenging problem due to high variance in the video emanating from e.g. different
lighting conditions and also due to high intra-class variance in the actions. These
problems are often tackled by first finding robustly recognizable interest points to
extract and classify features from their spatio-temporal neighborhood. Panzner
et. al. [3] detect points of interest using a Harris corner detector extended to 3D
spatio-temporal volumes. They extract HOG3D/HOF features from the spatio-
temporal neighborhood of these points which are then clustered using a variant
of growing neural gas (GNG) to yield an incremental vocabulary of visual words.
They represent action sequences as frequency histograms over these visual words
(bag of words) which are then classified by another GNG layer. Veeriah et. al.
[4] use densely sampled HOG3D features which are directly classified by an ex-
tended LSTM network which considers the spatio-temporal dynamics of salient
motions patterns. They use the Derivative of States ∂st

∂t , where st is the state
of memory cell s a time t, to gate the information flow in and out of the mem-
ory cell. In this paper we focus on mid-level representations to bridge the gap
between low-level representations and high-level symbolic descriptions in a way
that facilitates transfer of learned concepts between the representational levels.

3 Models

We compare two approaches to modeling sequences of positional relation be-
tween a trajector and a landmark. The first approach models the relation be-
tween the two objects as class-specific generative Hidden Markov Models[5]. The
second approach utilizes a discriminative two-layer neural network with a LSTM
(long-short term memory) recurrent network as the first layer followed by a fully
connected linear output layer with softmax normalization to interpret the net-
work output as class probabilities. We are particularly interested in how fast
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the models converge when there is only little training data and how early in
a sequence they are able to correctly classify the respective sequence. As rep-
resentation learning generally requires rather large training sets, we abstract
away from the raw positions and velocities by discretizing them into qualitative
basic relations between trajector and landmark following the QTC (qualitative
trajectory calculus) [6] framework. This abstraction is especially beneficial for
the HMM approach because the markov assumption is better satisfied when
we encode position and velocity in a joint representation. LSTM networks are
usually considered to work best when the input space is continuous but in this
case preliminary experiments showed that the QTC discretization is also favor-
able for LSTM in terms of classification performance and training time. When
the dataset is large enough it should also be possible to train both models on
raw features like coordinates relative to a trajectory-intrinsic reference point as
shown by Sugiura et. al. [1] for HMMs.

3.1 Qualitative trajectory representation

To describe the relative position and movement between landmark and trajector
we build on the qualitative trajectory calculus - double cross (QTCC1) [6] as a
formal foundation. In general, QTC describes the interaction between two mov-
ing point objects k and l with respect to the reference line RL that connects them
at a specific point t in time. The QTC framework defines 4 different subtypes
as a combination over different basic relations between the two objects. As we
only have one actively moved object in our experiments, we decided on QTCC1

to give the best trade off between generalization and specificity of the qualita-
tive relations. QTCC1 consists of a 4-element state descriptor (C1, C2, C3, C4)
where each Ci ∈ {−, 0,+} represents a so called constraint with the following
interpretation:

C1 Distance constraint: Movement of k with respect to l at time t1:
- k is moving towards l
0 k is not moving relative to l
+ k is moving away from l

C2 Distance constraint: Movement of l with respect to k at time t1: analogously
to C1

C3 Side constraint: Movement of k with respect to RL at time t1:
- k is moving to the left-hand side of RL
0 k is moving along RL or not moving at all
+ k is moving to the right-hand side of RL

C4 Side constraint: Movement of l with respect to RL at time t1: analogously
to C3

As the positions in our dataset were sampled at a fixed rate, we could have
missed some situations where one or more state descriptor elements transition
through 0. These discretization artifacts are compensated by inserting the miss-
ing intermediate relations one at a time from left to right. QTCC1 is a rather
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coarse discretization, leading to situations where the qualitative relation between
the two objects can hold for a longer portion of the trajectory and is, due to
the fixed rate sampling, repeated many times. Unlike many spatial reasoning
systems, where repeating states are simply omitted, we use a logarithmic com-
pression of repetitive subsequences:

|ŝ| = min(|s|, 10 ln(|s|+ 1)) (1)

where |s| is the original number of repeated symbols in the sequence and |ŝ| is
the new number of repeated symbols. By applying this compression scheme, we
preserve information about the acceleration along the trajectory, which increases
the overall performance especially for very similar actions like jumps over and
jumps upon, while still allowing to generalize over high variations in relative pace
of the action performances. The logarithmic compression of repetitive symbols
in a sequence is in line with findings from psychophysics known as the Weber-
Fechner law [7].

3.2 HMM

For the HMM parameter estimation, we apply an incremental learning scheme
utilizing the best first model merging framework [8,9]. Model merging is inspired
by the observation that, when faced with new situations, humans and animals
alike drive their learning process by first storing individual examples (memory
based learning) when few data points are available and gradually switching to a
parametric learning scheme to allow for better generalization as more and more
data becomes available [10]. Our approach mimics this behavior by starting with
simple models with just one underlying sequence, which evolve into more com-
plex models generalizing over a variety of different sequences as more data is
integrated. Learning a new sequence in this framework is realized by first con-
structing a maximum likelihood (ML) Markov Chain which exactly reproduces
the respective sequence, which is then integrated between the start and the end
state of the existing (possibly empty) model. When incorporating more and
more sequences, the resulting models would constantly grow and consist only of
ML chains connected to the start and end states of the model. To yield more
compact models, which are able to generalize to similar but unseen sequences,
we consecutively merge similar states and thus intertwine their corresponding
paths through the model. This way learning as generalization over the concrete
observed examples is driven by structure merging in the model in a way that
we trade model likelihood against a bias towards simpler models. This is known
as the Occam’s Razor principle, which among equally well predicting hypothesis
prefers the simplest explanation requiring the fewest assumptions. As graphi-
cal models, HMMs are particularly well suited for a model merging approach
because integrating a new sequence, merging similar states and evaluating the
model’s likelihood given the constituting dataset are straightforward to apply in
this framework and implemented as graph manipulation operations:
Data integration: When a new sequence is to be integrated into a given model
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we construct a unique path between the initial and the final state of the model
where each symbol in the sequence corresponds to a fresh state in the new path.
Each of these states emits its respective symbol in the underlying sequence and
simply transitions to the next state with probability 1, yielding a sub path in
the model which exactly reproduces the corresponding sequence.
State merging: The conversion of the memory based learning scheme with
unique sub paths for each sequence in the underlying dataset into a model which
is able to generalize to a variety of similar trajectories is achieved by merging
states which are similar according to their emission and transition densities.
Merging two states q1 and q2 means replacing these states with a new state q̂
whose transition and emission densities are a weighted mixture of the densities
of the two underlying states.
Model evaluation: We evaluate the models resulting in the merging process
using a mixture composed of a structural model prior P (M) and the data de-
pendent model likelihood P (X|M):

P (M |X) = λP (M) + (1− λ)P (X|M) (2)

The model prior P (M) acts as a data independent bias. Giving precedence to
simpler models with fewer states makes this prior the primary driving force in
the generalization process:

P (M) = e−|M |, (3)

where the model size |M | is the number of states in the model. It is also possible
to include the complexity of the transitions and emissions per state. For our
dataset we found that using only the number of states generates the best per-
forming models. While the structural prior favors simpler models, its antagonist,
the model likelihood, has its maximum at the initial model with the maximum
likelihood sub-paths. The exact likelihood of the dataset X given the model M
is computed as:

P (X|M) =
∏
x∈X

P (x|M) (4)

with

P (x|M) =
∑

q1...ql∈Ql

p(qI → q1)p(q1 ↑ x1) . . . p(ql ↑ xl)p(ql → qF ) (5)

where l is the length of the sample and qI , qF denote the initial and final states
of the model. The probability to transition from a state q1 to q2 is given as
p(q1 → q2) and p(q1 ↑ x1) denotes the probability to emit the symbol x1 while
being in state q1. As we do not want to store the underlying samples explic-
itly, we use an approximation, which considers only the terms with the highest
contribution, the Viterbi path:

P (X|M) ≈
∏
q∈Q

(∏
q′∈Q

p(q → q′)c(q→q′)
∏
σ∈Σ

p(q ↑ σ)c(q↑σ)

)
(6)
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Fig. 1. Sequence of models obtained by merging samples from an exemplary language
(ab)+ and subsequently merging the highlighted states. Transitions without special
annotations and all emissions have a probability of 1. The highlighted nodes are selected
by the similarity of their transition and emission characteristics and consecutively
merged to yield the subsequent model. Reproduced from [8].

where c(q → q′) and c(q ↑ σ) are the total counts of transitions and emissions
occurring along the Viterbi path associated with the samples in the underlying
dataset (see [8] for more details).

The simplest model in our approach is a model which simply produces a sin-
gle sequence. These models are called maximum likelihood models because they
produce their respective sequences with the highest possible probability. Starting
from maximum likelihood models over individual sequences we build more gen-
eral HMMs by merging simpler models and iteratively joining similar states to
intertwine sub-paths constructed from different sequences, allowing them to gen-
eralize across different instances of the same action class. The first model M0 of
the example in Figure 1 can be seen as a joint model of two maximum likelihood
sequences {ab, abab}. When generating from such a model, the actual sequence
which will be generated is determined early by taking one of the possible paths
emanating from the start state. Only the transitions from the start state display
stochastic behavior, the individual sub-paths are completely deterministic and
generate either ab or abab. Intertwining these paths is done trough state merg-
ing, where we first build a list of possible merge candidates using a measure of
similarity between state emissions and transition probability densities. In this
approach we use the symmetrized Kullback-Leibler (KL) divergence

DSKL(P,Q) = DKL(P,Q) +DKL(Q,P ). (7)

with

DKL(P,Q) =
∑
i

P (i) log
P (i)

Q(i)
(8)

Then we greedily merge the best pair of states and re-evaluate the model
likelihood. In the example above, the first two merges lead to model M3 where
we experienced a drop in log likelihood from −0.602 to −0.829. We continue
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the merging process until we reach a point where merging more states would
deteriorate the model likelihood to a point where it is no longer compensated
by the prior favoring simpler models (Equation 3). The final model M4 is now
able to generate the whole set of sequences from the exemplary language (ab)+

from which the two initial samples where generated from.

As neighboring QTC state IDs have no semantic similarity, we model emission
densities as frequency distributions. We train a separate HMM for each of the
four action classes. Sequences are classified according to the class specific HMM
having the highest probability to have produced the respective sequence. When
none of the HMMs assigns a probability higher than zero for a sequence, the
model is unable to classify this sequence and assigns no class label (reject option).
Training with 1100 sequences takes about 10 seconds on a 2 CPU – 20 core
machine. See [11] for a more detailed analysis of the properties of this model.

3.3 LSTM

The discriminative recurrent network consists of a long-short term memory
(LSTM) layer with 128 memory blocks followed by a fully connected linear layer
with softmax normalization and one output unit per target class. The softmax
normalization allows the network output to be interpreted as class probabilities.
Unlike the HMM approach where we train a separate HMM for each class, this
network learns a joint representation between the sequences of all 4 classes. Sev-
eral variants of the block architecture of LSTM memory cells have been proposed
[12,13]. Our implementation is based on the architecture proposed by Hochreiter
and Schmidhuber [14]. We optimize the cross entropy

H(p, q) = −
∑
x

p(x) log(q(x)) (9)

between the predicted p and target classes q using RMSprop [15] with learning
rate lr = 0.001 and decay factor ρ = 0.9 over batches of 50 sequences. We
randomly select 10 percent of the training data per class as validation set to
asses the performance of the model for each training epoch. The model with
the highest accuracy on the validation set is used to perform the experiments.
Other than the model selection we apply no other regularization technique such
as dropout, because the models showed no tendency to overfit. The network
layout was optimized in a separate experiment to give the best trade-off between
classification performance and training time. Training with 1100 sequences over
150 epochs takes about 4 hours on a single GTX-770 GPU.
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4 Dataset

Fig. 2. Left: Simple game with
two geometric objects which
can be freely moved on the
gamefield. In this screen test
subjects are tasked to circle
the blue rectangle around the
green triangle (instruction in
the lower part of the screen).

To acquire a dataset we implemented a simple
game (Figure 2) where the test subjects were
asked to perform an action with two objects ac-
cording to a given instruction. The game screen
was divided into two parts. The upper part was
the actual gamefield with the two freely movable
objects and below the gamefield was a textfield,
where the test subjects could see the instruction
describing the desired action performance. We had
a total of 12 test subjects (9 male, 3 female, mean
age = 29,4 years) yielding a dataset with 1200 tra-
jectory sequences balanced over the four action
classes jumps over, jumps upon, circles around
and pushes. The recorded trajectories are given
as tuples with the current timestamp and the po-
sitions of trajector and landmark. The raw posi-
tions are then converted to QTC state sequences
with an average length of 182 symbols. The com-
pression scheme (Equation 1) reduces the aver-
age length to 150 symbols which corresponds to a
compression rate of 21, 3%. See [16] for a complete
description and download [17] of the dataset.

5 Experiments

In this section we evaluate the overall performance of both models against each
other and specifically explore their performance regarding their ability to make
useful predictions when there is only little training data per class. We also explore
how early in the progression of a sequence the models are able to correctly classify
the respective sequence. Both models receive sequences of QTC state IDs. The
IDs are simply derived by interpreting the QTC descriptors as a number in a
ternary number system. For the LSTM network state IDs are normalized to 1 to
better fit the range of the activation functions. We also tried a 4 element vector
representation of the QTC state descriptors as input for the LSTM Network,
which slightly reduced the number of epochs the training needed to converge
but left the overall accuracy unchanged. Thus, for the sake of comparability we
decided to use the same input data representation for both approaches.

5.1 HMM vs LSTM Network

In this experiment we compare the performance of the HMM approach to the per-
formance of the LSTM network. The dataset was divided such, that we trained
on data collected from 11 test subjects and let the models classify sequences
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Fig. 3. Averaged class confusion matrix for the HMM (left) and the LSTM network
(right).

from a 12-th test subject as a novel performer. As can be seen in Table 1 both
approaches perform comparably well. The LSTM network had a considerably
higher standard deviation between the results of the 12 folds. We assume that
the LSTM network gives higher precedence to differences in relative pace of the
action performance, which is the most varying factor in our dataset. Only the
HMM approach benefits from compressing long repetitive subsequences, while
the LSTM approach is unaffected. Note that only the HMM approach had a re-
ject option, when none of the class specific HMMs assigned a probability higher
than zero to the respective sequence. As the LSTM approach learns a joint repre-
sentation across all 4 classes there is no implicit reject option, because the model
will always assign softmax normalized confidences to each class. Figure 3 shows
the class confusion matrices for both approaches. The HMM approach frequently
misclassifies jumps over sequences as sequences corresponding to circles around
actions, for which the first half of the movement is identical to jumps over. This
could be caused by the limitation of temporal context HMMs are able to take
into consideration due to the markov assumption.

Model
Compressed Not compressed

F1 P R σ F1 P R σ

HMM 0.86 0.82 0.90 0.12 0.82 0.75 0.91 0.10
LSTM 0.88 0.88 0.88 0.18 0.88 0.88 0.88 0.18

Table 1. Results of the 12-fold cross-validation for the HMM and the LSTM approach
with and without sequence compression (Equation 1). Results are given as F1 score,
precision, recall and standard deviation σ.
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Fig. 4. Early learning behavior, averaged over 10 random folds. HMMs outperform the
LSTM network where very little training data is available, while the latter performs
better with more than 28 training sequences. Note that the x-axis is scaled logarith-
mically.

5.2 Early learning behavior

In this experiment we evaluate the performance of the two models when they
are presented with only few training sequences per class. Both networks are not
trained from scratch when more training sequences are added to the training
set, instead both are incrementally re-trained on the extended training set. Fig-
ure 4 shows that with an F1 score of 0.44 the HMMs perform notably better
than the LSTM network which starts at chance level after being trained on a
single sequence per class. When trained with more than 23 sequences, the LSTM
outperforms the HMMs clearly.

5.3 Early Sequence Classification

Applications in the field of human robot interaction often require the robot to
produce action hypothesis when the respective action sequence is not yet com-
pleted. This experiment simulates this condition by letting the models classify
incomplete sequences. We evaluate the classification performance with sequences
truncated to 1 to 100 percent of their original length. The LSTM network has
been trained for only 100 epochs to keep it from striving too much towards
relying on late parts of the sequences. Apart from that both approaches were
not specifically trained for the classification of truncated sequences. Because we
trained one HMM per class they were quicker in capturing the essence of the
pushes action, which was the only action where both objects moved. LSTM per-
formed better on jumps upon, supporting the suspicion that LSTM assigns more
weight on the pace of action performances, which is also the case for the circles
around action. Because jumps over is the first part of an circles around action,
both models need about half of the trajectory to separate these actions.

6 Conclusion

Our results show that HMMs can be used competitively on action modeling tasks
compared to discriminatively trained neural networks in scenarios where train-
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Fig. 5. Early sequence classification behavior of the HMM and LSTM network for
each of the four action categories. The x-axis represents the percentage of the sequence
presented to the classifier and the y-axis the percentage of correctly classified sequences
for which their classification result will not change if more of the sequence was presented
(stable classification results).

ing data is limited. In particular, our experiments show that the classification
performance of HMMs is already useful when training with only a single exam-
ple per class, consuming only a few milliseconds of CPU time. This is especially
useful for example when a robot has to quickly adapt to a human interaction
partner. The LSTM network required about 23 examples to reach the classifica-
tion performance of a class dependent HMM and took a minimum of 50 seconds
training time to converge which is too long for fluent interaction. When classi-
fying incomplete actions, both models had their strength and weaknesses. The
HMMs were better in capturing strong discriminative features, as in the pushes
action where two objects are moving, while LSTM displayed a slightly better
overall performance and was able to make decisions earlier throughout all four
action categories. For our targeted field of application it could be beneficial to
use both models in parallel. HMM for early learning (short-term action mem-
ory) or when quick reaction towards new stimuli is required and LSTM when
enough data is available (long-term). In the future we would also like to explore
whether deep neural networks can learn interpretable qualitative relations that
are comparable to the QTC relations we used for this evaluation.

This research/work was supported by the Cluster of Excellence Cogni-
tive Interaction Technology ’CITEC’ (EXC 277) at Bielefeld University,
which is funded by the German Research Foundation (DFG).
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