
Thesis

The Chiral Anomaly of Quantum
Chromodynamics at High

Temperatures
Lattice Investigation of the Overlap Dirac Spectrum

Viktor Dick

April 2016

Dissertation
Fakultät für Physik
Universität Bielefeld





Contents

Introduction and Motivation 11

1 Continuum and Lattice Quantum Chromodynamics 15
1.1 The Path Integral at Finite Temperature . . . . . . . . . . 15

1.1.1 Bosonic Path Integral . . . . . . . . . . . . . . . . . 18
1.1.2 Fermionic Path Integral . . . . . . . . . . . . . . . . 22

1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . 26
1.3 Chiral Symmetry and the Axial Anomaly . . . . . . . . . . 30
1.4 QCD Topology . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5 Lattice Discretization of Gauge Invariance . . . . . . . . . . 40
1.6 Discretizing Fermions . . . . . . . . . . . . . . . . . . . . . 42

1.6.1 Numerical Computation of the Fermionic Path In-
tegral . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.6.2 The Doubling Problem . . . . . . . . . . . . . . . . . 44

2 Chiral Fermions on the Lattice 49
2.1 The Staggered Fermion Action . . . . . . . . . . . . . . . . 49
2.2 Exact Chiral Symmetry on the Lattice from Blocked Con-

tinuum Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 The Ginsparg-Wilson Equation and its Consequences . . . . 57

2.3.1 Spectrum of the Ginsparg-Wilson Dirac Operator . . 57
2.3.2 Chiral Projections . . . . . . . . . . . . . . . . . . . 63
2.3.3 Massive Ginsparg-Wilson Fermions . . . . . . . . . . 64
2.3.4 The Overlap Solution . . . . . . . . . . . . . . . . . 69

3 Algorithmical and Numerical Details 73
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Kalkreuter-Simma Algorithm . . . . . . . . . . . . . . . . . 77
3.3 Representations of the Spectrum . . . . . . . . . . . . . . . 80

3.3.1 Direct Computation with the Squared Operator . . . 81

3



Contents

3.3.2 Improvement of the Ritz Starting Candidates . . . . 85
3.3.3 Inclusion of Partner Modes . . . . . . . . . . . . . . 90
3.3.4 Chirally Projected Operator . . . . . . . . . . . . . . 93

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . 103

4 The Microscopic Picture of Axial Symmetry Breaking 107
4.1 The Overlap Spectrum and the Axial Anomaly . . . . . . . 107

4.1.1 Topological Charge Distribution . . . . . . . . . . . 107
4.1.2 Near-Zero and Bulk Spectrum . . . . . . . . . . . . 113
4.1.3 Quantifying the Spectral Density . . . . . . . . . . . 114

4.2 Quark Mass Dependence of the Axial Anomaly . . . . . . . 124
4.3 The Space-Time Structure of Infrared Dirac Modes . . . . . 131

4.3.1 Localization . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.2 Density Profiles of Zero and Near-Zero Modes . . . . 135
4.3.3 Size and Distribution of Localized Structures . . . . 138

5 Conclusion 145

Bibliography 147

Acknowledgments 153

4



List of Figures

3.1 Convergence of the 50 lowest eigenvalues of a HYP-smeared
configuration at 1.5Tc that turned out to have neither zero
nor near-zero modes. The first plot shows the original
Kalkreuter-Simma algorithm with A = D†D and the sec-
ond shows the version with improved starting vectors as
described in section 3.3.2. On the x-axis, the number of ap-
plications of the overlap operator in the Ritz part of the al-
gorithm is denoted and the lines mark the evolution of each
eigenvalue estimate. Additionally, the arithmetic mean of
the error estimates as well as the geometric mean of the rel-
ative errors are plotted. It should be noted that the x-axis
has a different range for the two cases. . . . . . . . . . . . 87

3.2 Convergence of the 50 lowest eigenvalues of a smeared con-
figuration at 1.5Tc that turned out to have no zero modes
but one near-zero mode pair. See fig. 3.1 for details. . . . . 88

3.3 Convergence of the 50 lowest eigenvalues of a smeared con-
figuration at 1.5Tc that turned out to have two zero modes
and one near-zero mode pair. See fig. 3.1 for details. . . . . 89

3.4 Convergence of the modified algorithm described in sec-
tion 3.3.3 for the configuration with neither zero nor near-
zero modes (compare fig. 3.1). . . . . . . . . . . . . . . . . 93

3.5 Convergence of the modified algorithm described in sec-
tion 3.3.3 for the configuration with near-zero but no zero
modes (compare fig. 3.2). . . . . . . . . . . . . . . . . . . . 94

3.6 Convergence of the modified algorithm described in sec-
tion 3.3.3 for the configuration with zero and near-zero
modes (compare fig. 3.3). . . . . . . . . . . . . . . . . . . . 95

5



List of Figures

3.7 Convergence of 30 eigenmodes for the configuration with
neither zero nor near-zero modes (cf. fig. 3.1), obtained from
first calculating the eigenmodes of P−DP− (top) and then
those of P+DP+ (bottom figure) starting from righthanded
modes created from the first results. . . . . . . . . . . . . . 97

3.8 Convergence of 30 eigenmodes for the configuration with
near-zero modes (compare fig. 3.2), obtained from first cal-
culating the eigenmodes of P−DP− (top) and then those of
P+DP+ (bottom) starting from righthanded modes created
from the first results. . . . . . . . . . . . . . . . . . . . . . 98

3.9 Convergence of 30 eigenmodes for the configuration with
righthanded zero modes (compare fig. 3.3), obtained from
first calculating the eigenmodes of P−DP− (top) and then
those of P+DP+ (bottom) starting from righthanded modes
created from the first results. . . . . . . . . . . . . . . . . . 99

3.10 Convergence of 30 eigenmodes for the configuration with
righthanded zero modes (compare fig. 3.3), obtained from
first calculating the eigenmodes of P+DP+ (top) and then
those of P−DP− (bottom) starting from righthanded modes
created from the first results. . . . . . . . . . . . . . . . . . 100

4.1 Time history of topological charge as measured by the num-
ber and chirality of zero modes according to the index the-
orem. Configurations belonging to the same independent
stream are connected by lines. . . . . . . . . . . . . . . . . 110

4.2 Topological charge distribution before and after ten steps
of HYP smearing. . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Correlation between topological charge before and after ten
steps of HYP smearing on a given configuration. The area
of each point is proportional to the number of configurations
with the given values. . . . . . . . . . . . . . . . . . . . . . 111

4.4 Spectrum of the overlap operator on HISQ configurations
at different temperatures, lattice spacings and light quark
masses. The dashed line indicates min(λmax), the lowest of
the values if from each configuration the highest computed
eigenvalue is taken. The purple box shows the contribution
of exact zero modes to the first bin. . . . . . . . . . . . . . 112

6



List of Figures

4.5 Examples of the Bayesian best guess of the spectrum para-
metrization near Tc and at 1.2Tc. . . . . . . . . . . . . . . 118

4.6 Tuning of the bare overlap strange quark mass at Tc (left)
and 1.2Tc (right) for different lattice spacings. The horizon-
tal lines indicate the corresponding HISQ results where the
valence quark mass is equal to the HISQ sea quark mass.
The full results from incomplete deflation are marked by
filled symbols, results computed from just the eigenvalues
by empty ones. . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.7 Renormalized measure of UA(1) breaking for different va-
lence light quark masses. The strange quark mass is taken
from the tuning done before (cf. fig. 4.6). The empty points
are results after subtraction of the zero mode contribution. 129

4.8 Tuning of the strange quark mass and computation of the
UA(1) breaking for different light quark masses at 1.5Tc.
Compare figs. 4.6 and 4.7. . . . . . . . . . . . . . . . . . . 131

4.9 Participation ratio of non-zero eigenmodes of the overlap
operator for the ensembles at lattice size 323 · 8 at different
temperatures. The black line shows the result of a fit to the
function PR = aλb + c. . . . . . . . . . . . . . . . . . . . . 133

4.10 Inverse participation ratios of zero modes (using (4.6)) and
near-zero modes (λ < 0.4T ) at 1.5Tc. . . . . . . . . . . . . 135

4.11 Density profile of the zero mode of a configuration with
|Q| = 1 at 1.5Tc. The internal degrees of freedom and the
other coordinates are integrated out. . . . . . . . . . . . . 136

4.12 Density profiles of the zero modes of a configuration with
|Q| = 2 at 1.5Tc. The internal degrees of freedom and the
other coordinates are integrated out. . . . . . . . . . . . . 137

4.13 Density and chirality profile of a near-zero mode at 1.5Tc.
The internal degrees of freedom and the other coordinates
are integrated out. . . . . . . . . . . . . . . . . . . . . . . . 137

4.14 Chirality profile of a zero mode and the lowest near-zero
mode of a configuration with |Q| = 1 at Tc. . . . . . . . . . 138

4.15 Density profile of a zero mode along the temporal and one
spatial direction. Taken from a configuration with |Q| = 1
at 1.5Tc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7



List of Figures

4.16 Spatial and temporal instanton size from fit to (4.7) of |Q| =
1 zero modes at 1.5Tc. . . . . . . . . . . . . . . . . . . . . 140

4.17 Distribution of distances between the two peaks in the chi-
rality profile of a near-zero mode on 323 ·8 lattices at 1.5Tc.
The green points show the distance between the origin and
a random lattice point for comparison. . . . . . . . . . . . 141

4.18 Correlation between the sizes of the peaks that form a near-
zero mode pair at 1.5Tc. ρ− is the size of the peak that
contributes negative values to the chirality of the mode and
ρ+ the one that contributes positive values. . . . . . . . . . 143

4.19 Relative number of zero and near-zero modes per configu-
ration and Poisson fit to the data. . . . . . . . . . . . . . . 144

8



List of Tables

1.1 Approximate masses of the different known quark flavors in
MS renormalization at µ ≈ 2 GeV [1]. . . . . . . . . . . . . 31

3.1 Lattice size, inverse coupling β, quark mass ratio, temper-
ature, number of configurations and number of computed
non-zero eigenmode pairs per configuration for each ensem-
ble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Example output of Kalkreuter-Simma algorithm at last it-
eration for configuration no. 129 of the 323× 8 ensemble at
1.5Tc. The ten lowest eigenvalues with their error estimates
and chiralities are shown. . . . . . . . . . . . . . . . . . . . 82

4.1 Fit results for the ansatz (4.2). The ensemble index is the
same as in table 3.1, so #1–3 are at ∼ Tc, #4 and #5 at
1.2Tc and #6 at 1.5Tc. . . . . . . . . . . . . . . . . . . . . 116

4.2 Fit results for the ansatz (4.2) with an additional offset c
for the ensembles near Tc. . . . . . . . . . . . . . . . . . . 116

4.3 Average and standard deviation of the parameters in (4.2)
from Bayes’ formula at 1.2Tc and 1.5Tc. . . . . . . . . . . 118

9





Introduction and Motivation

Symmetries of QCD

One of the most influential concepts for the development of our under-
standing of the physical world, in particular during the 20th and 21st cen-
turies, has been, and still is, that of symmetries. For Newtonian physics
and special relativity, for example, the requirement that the physical laws
should be independent of the choice of inertial frame is a very impor-
tant ingredient. Most of general relativity has been derived by elevating
this principle even further, requiring all quantities about which a physical
theory can make any statement to have a well-defined behavior under a
general coordinate transformation. With the advent of quantum field the-
ory, it was realized that electromagnetism can be understood as a local
gauge theory, where the existence of photons as transmitters of the inter-
action as well as many of its properties follow from the assumption that
the theory is symmetric under a local gauge group. The same principle
was later found to be useful to describe the unified electroweak interaction
and was also crucial in identifying Quantum Chromodynamics, QCD, as
the local gauge theory that is able to explain the strong interaction.
QCD is a theory of quarks and gluons, but these are not directly ob-

servable in experiments in the same way an electron is. Instead, they
form so-called color-neutral combinations, most of which can be classified
into mesons and baryons. In the 1960s, Murray Gell-Mann developed the
idea that mesons and baryons are in fact composite and not elementary,
led by symmetry arguments to explain their observed properties and de-
generacies in their masses [2]. He suggested the existence of three quark
flavors which were subject to an approximate flavor symmetry, such that
the physical laws are invariant if the three quark flavors are replaced by
linear combinations of themselves—at least as far as the strong interaction
is concerned. An additional gauge symmetry, which is exact and mixes an
internal degree of freedom called color, explains why only specific combi-
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Introduction and Motivation

nations are found in nature.
In contrast to quantum electrodynamics, the gauge group of QCD is

non-Abelian, giving rise to self-interactions of the mediating gluons. At
low energies, this induces confinement, which means that separating the
quark constituents of a color-neutral combination requires an amount of
energy that is sufficient to create new particles, binding to the constituents
and again forming color-neutral states. At high energies, on the other
hand, the interaction decreases and confinement breaks up, allowing free
quarks; this phenomenon is called asymptotic freedom. Due to the large
interaction at low energies and consequently also at low temperatures,
the mass of a typical baryon is mostly determined by the binding energy
and only a small fraction of it comes from the masses of the constituent
quarks. In addition to the three quarks first proposed by Gell-Mann,
three additional heavier quarks have been found, but the origin of the
flavor symmetry lies in the fact that the three lightest quarks have masses
that are much smaller than the hadronic energy scale of QCD provided
by the baryon masses.
There are several ways in which the flavor symmetry—which is also

called chiral symmetry—is restricted depending on external parameters
like the temperature, giving rise to a rich phase structure of QCD. First,
it is broken explicitly by the fact that the quark masses are not really van-
ishing, which for example is responsible for the masses of pions. Second,
it is broken spontaneously at low enough temperatures such that the rele-
vant states the system can occupy do not respect all of the symmetry even
though the action does. Finally, a specific part of the symmetry is broken
by the axial anomaly, which is linked to topological properties of the QCD
medium. The spontaneously broken chiral symmetry as well as the axial
anomaly are expected to be restored at high enough temperatures, the
first because states with higher energies enter the thermal averages and
the second because Debye screening suppresses the necessary color-electric
fields.

The question whether the axial anomaly is already effectively restored at
the chiral phase transition, where the spontaneously broken chiral symme-
try becomes unbroken, is of great importance to understand this transition
and the high temperature phase of QCD. Depending on the answer to this
question, the relevant symmetries below and above the critical point and
therefore the symmetry breaking pattern change. An understanding of
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the symmetries that govern the phase transition of QCD is important to
correctly interpret high energy collision experiments, which are relevant
to understand, among other things, the state of the universe shortly after
the Big Bang.

Numerical Calculations on the Lattice

Since QCD is characterized by a strong coupling constant and is confining
at low temperatures, perturbative approaches where the theory is regarded
as essentially describing free constituents and the interaction is included as
a perturbation are inadequate except under special circumstances. While
such methods are very successful for quantum electrodynamics, first prin-
ciple calculations for QCD are more involved. One possibility that is
not restricted to small couplings is lattice QCD, which was proposed by
K. G. Wilson in 1974 [3]. By distributing the quantum fields of the theory
on a discrete lattice, an ultraviolet cut-off is introduced. While the initial
analytic computations done by Wilson were done in the limit where the
coupling constant is infinite, it opened the door to numerical calculations
at arbitrary coupling using computers. In numerical lattice QCD calcula-
tions, it is also straightforward to implement QCD at finite temperature,
which is an active field of research and has produced many insights [4].
It is, however, not as easy to include quarks with the same chiral sym-

metry as in the continuum in lattice QCD calculations. Due to the dou-
bling problem, a naive implementation of quarks results in too many par-
ticles, and the most direct way to circumvent this breaks chiral symmetry.
Some compromises exist, which preserve chiral symmetry partly and also
soften the doubling problem. The staggered fermion formulation is such
a compromise and it has been successfully used to investigate the chiral
transition. In the continuum limit, full chiral symmetry is restored, but
at finite lattice spacings only a subgroup of the chiral symmetry group
is fully present. In particular, the subgroup that is broken by the axial
anomaly is not represented faithfully with staggered fermions. There is
another lattice fermion formulation, so-called overlap fermions, that has
no doublers and the same chiral symmetry as in the continuum, including
the anomalous axial symmetry, which is broken by an analogous mecha-
nism as in the continuum. The only problem with overlap fermions is that
they are numerically very expensive, which makes simulations especially
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at realistic parameters difficult.
In this work, a mixed approach has been used to investigate the role of

the axial anomaly at the chiral transition temperature and beyond it. It
is customary to split the computation of thermal observables into a step
where gauge configurations are created that sample the thermal average
according to the Boltzmann weight and a step where the observables in
question are evaluated on these configurations. For this work, no new
gauge configurations have been created but existing configurations using
dynamical highly improved staggered fermions (HISQ) have been used.
On these, the spectrum of the costly overlap Dirac operator has been
computed, which encodes, among other things, the anomalous breaking of
axial symmetry and possibly its restoration.
Many results of this work have been published in [5] and some of it has

already been presented at the 31st International Symposium on Lattice
Field Theory 2013 [6]. Preliminary results that are based on this work but
are not included in this thesis were also presented at the 33rd International
Symposium on Lattice Field Theory 2015 [7] and on the Quark Matter
2015 [8].

Outline of this Work

This work is structured as follows. The first chapter gives a general in-
troduction to the theoretical framework and the necessary concepts that
are relevant for this work. Then, a chapter is dedicated to lattice formula-
tions that preserve chiral symmetry partly or fully. Staggered fermions are
described relatively briefly, while overlap fermions are discussed in more
detail. After that, a chapter about some details regarding the implementa-
tion and the more technical aspects follows. This also includes a discussion
where different strategies to obtain the spectrum are compared. Finally,
the results and their implications for the axial anomaly are presented. The
conclusion summarizes the most important results and discusses further
research opportunities regarding the topic of the axial anomaly in QCD.
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1 Continuum and Lattice Quantum
Chromodynamics

1.1 The Path Integral at Finite Temperature
A long-standing goal of the natural sciences in general and theoretical
physics in particular has been to determine the lowest level of organiza-
tion that the universe operates on, i.e., the fundamental entities of nature
and the laws that govern them. One particular achievement in this regard
has been the standard model of particle physics. It describes much of what
we understand about nature through the unified framework of quantum
field theory (QFT) and is, within its scope, the most fundamental the-
ory available that has been firmly established by evidence. The goal of
this section is to give an introduction to some aspects of QFT that are
relevant for the work at hand but without yet going into Quantum Chro-
modynamics, which is the specific quantum field theory that describes
strongly interacting matter. Most of it can also be found in various text-
books (cf. [9, 10, 11]), but some details like the effect of finite temperature
or subtleties about gauge theories are often omitted.
In general, a quantum theory is given by a Hilbert space of possible

states and a Hamilton operator that determines the time evolution of
which state the system occupies. If, however, a thermodynamical ensemble
of systems in equilibrium is examined, each of the systems is in an energy
eigenstate whose time evolution is given by a trivial phase. For example, a
microcanonical ensemble is characterized by assigning the same probability
or weight within the ensemble to each state that gives the correct total
energy, which is adequate to describe an isolated system. The canonical
ensemble is obtained by taking a small subsystem of such an isolated
system, in a manner where it is sensible to split the total energy into
the energy of the subsystem and that of the rest. If only the subsystem is
examined, the probability of a state with energy E is proportional to e−βE ,
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1 Continuum and Lattice Quantum Chromodynamics

where β = 1/T is the inverse temperature and depends on the energy of
the total system as well as the distribution of degrees of freedom between
the subsystem and the total system.
If a quantum system is in a specific quantum state |ψ〉 and some ob-

servable A is measured, the expectation value has to be obtained by an
averaging over the eigenstates of A that contribute to |ψ〉,

〈A〉ψ = 〈ψ|A|ψ〉 =
∑
a

|〈ψ|a〉|2 a.

If an ensemble is considered, the results have to be additionally averaged
over which state the system might actually be in, giving in the case of the
canonical ensemble

〈A〉 = 1
Z

∑
n

e−βEn 〈n|A|n〉 = 1
Z

tr
[
e−βHA

]
(1.1)

with the partition function Z = tr
[
e−βH

]
fixed by 〈1〉 = 1. Some opera-

tors that will turn out to be of interest are of the form

A =
n−1∏
i=1

(eτiHAie−τiH) (1.2)

with β = τn > τn−1 > · · · > τ0 = 0 and the product defined in descending
order, i.e.

k+1∏
i=0

xi = xk+1

k∏
i=0

xi.

These are equivalent to time ordered products of Heisenberg picture op-
erators after a Wick rotation of the time variable onto the imaginary axis,
but here they are defined without actually making use of the concept of
time, which after all is not relevant in a system at thermal equilibrium.
The trace becomes

tr
[
e−βHA

]
= tr

[
e−(β−τn−1)HAne−(τn−1−τn−2)HAn−1 . . . A1e−τ1H

]
,

i.e., it consists of several energy transporters e−τH which are interspersed
by operators Ai and whose shifts sum up to β.
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1.1 The Path Integral at Finite Temperature

For example, taking two operators with τ1 = 0 and τ2 = τ results in

〈A〉 = 1
Z

tr
[
e−(β−τ)HA2e−τHA1

]
= 1
Z

∑
m,n

〈
m
∣∣∣e−(β−τ)HA2

∣∣∣n〉〈n∣∣∣e−τHA1
∣∣∣m〉

=
∑
m,n e−(β−τ)Em 〈m|A2|n〉 e−τEn 〈n|A1|m〉∑

m e−βEm

=
∑
m,n e−β(Em−E0)−τ(En−Em) 〈m|A2|n〉 〈n|A1|m〉∑

m e−β(Em−E0) .

Here, the trace is evaluated using the energy eigenstates |n〉 with energy
En. Assuming that the ground state1 is given by a single state with
E0 < Ei ∀i 6= 0, in the zero temperature limit (β →∞) the only relevant
terms both in the nominator and in the denominator are those withm = 0,
so

lim
β→∞

〈A〉 =
∑
n

e−τ(En−E0) 〈0|A2|n〉 〈n|A1|0〉 .

For the choice A2 = A†1, the leading exponential decay for large τ is given
by the lowest energy that has non-vanishing 〈n|A1|0〉. If the spectrum of
the considered theory contains particle excitations and A1 |0〉 is a super-
position of several states with different particle numbers and momenta,
the particle combination with the lowest mass will yield the lowest energy,
which can be extracted in this way.
In order to compute the trace in (1.1), each transporter e−∆τH is split

into a large number of infinitesimal shifts of length ε with β = Nε and it
is assumed that each of these shifts—not only those at τi—is accompanied
by operators Ak and Bk on both sides, most of which are simply 1. This
gives

e−βHA =
N−1∏
k=0

Tk =
N−1∏
k=0

(
Ake−εHBk

)
(1.3)

1 The ground state is the state with the lowest energy, while the vacuum is the state
with particle number 0, i.e., the state that is annihilated by all particle annihilation
operators (see below). These are often conflated, but in an interacting theory they
are not strictly equivalent.
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1 Continuum and Lattice Quantum Chromodynamics

The observable Bk could be combined with Ak−1 of the next element,
but this general form will allow for an easy split into coordinate- and
momentum-dependent observables.
On each side of such an infinitesimal term, some sort of unit matrix in

the form of an integral over all possible states of the system is inserted.
In general, there will be bosonic as well as fermionic degrees of freedom,
and the details of the integration differ between these.

1.1.1 Bosonic Path Integral
Starting with a Hamilton operator H(Q,P ) with n generalized coordinate
operators Qi and momentum operators P i that obey the commutation
relations [Qi, P j ] = iδij and [Qi, Qj ] = [P i, P j ] = 0, there are two obvious
choices for a basis of the Hilbert space, consisting of either the product
vectors |q〉 =

∣∣q1q2 . . .
〉
or, similarly, |p〉. The notation here is such that

upper indices denote different degrees of freedom, while lower indices will
later be introduced to have different collections of these variables such
that qi is a vector consisting of n entries qji . A unit matrix can be written
as

1 =
∫

dq |q〉 〈q| =
∫

dp |p〉 〈p|

(with each q or p actually being a collection of n variables), a trace is given
by

tr [A] =
∫

dq 〈q|A|q〉 =
∫

dp 〈p|A|p〉 ,

and the Fourier relation reads

〈p|q〉 = (2π)−n/2eipq,

which gives another form of the unit matrix as

1 =
∫

dq
∫

dp |q〉 〈q|p〉 〈p| =
∫

dq
∫

dp(2π)−n/2e−ipq |q〉 〈p|

≡
∫

d[q, p]e−ipq |q〉 〈p|
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1.1 The Path Integral at Finite Temperature

This gives

tr
[
e−βHA

]
=
∫

dq0

〈
q0

∣∣∣∣∣
N−1∏
k=0

Tk

∣∣∣∣∣q0

〉

=
∫

dq0

〈
q0

∣∣∣∣∣
N−1∏
k=0

(∫
d[qk+1, pk]e−ipkqk+1 |qk+1〉 〈pk|Tk

)∣∣∣∣∣q0

〉

=
N−1∏
k=0

(∫
d[qk, pk]e−ipkqk+1 〈pk|Tk|qk〉

)∣∣∣∣∣
qN=q0

.

For the remaining scalar product it will be assumed that the observable
Ak in (1.3) is a function of P only and Bk of Q only. Also, the Hamilton
operator H is a sum of terms that are sorted such that in each term all
P s are to the left of all Qs. Then,

〈pk|Tk|qk〉 = ak
〈
pk
∣∣∣(1− εH(Q,P ) +O(ε2))

∣∣∣qk〉 bk
= akbke−εH(qk,pk)(2π)−n/2eipkqk +O(ε2),

which, with

∫
D[q, p] . . . =

N−1∏
k=0

(∫ dqkdpk
(2π)n

)
. . .

∣∣∣∣∣
q0=qN

and q̇k = qk−qk−1
ε , gives the result

tr
[
e−βHA

]
=
∫
D[q, p]

∏
k

(
akbke−εH(qk,pk)−ipk(qk+1−qk)

)
=
∫
D[q, p]

∏
k

(akbk)e−ε
∑

k
(H(pk,qk)−ipk q̇k) (1.4)

=
∫
D[q, p]A(p, q)e−

∫ β
0 dτ(H(p,q)−ipq̇).

In the last step, the observable

A(p, q) =
∏
i

Ai(p(τi), q(τi))
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1 Continuum and Lattice Quantum Chromodynamics

has been reinserted and the sum over energy shifts has been written as an
integral with p and q understood as functions of τ . This is the Euclidean
path integral in phase space, where each “history” of the system (i.e., set of
functions p(τ) and q(τ) defined on [0, β] with q(τ) being periodic) makes
a contribution to the trace.
In all cases that will be relevant, the Hamilton operator is quadratic

in the momenta and, assuming that the observable does not depend on
the momenta, these integrals can be evaluated to give a path integral in
coordinate space. Starting with a quadratic function

G(p) = −Aijpipj + 2bipi

with a real positive definite matrix A, it is possible to diagonalize A =
R†DR with an orthogonal matrix R and, using η = Rb, the integral be-
comes ∫

dnpeG(p) =
∫

dnpe−Dij(Rp)i(Rp)j+2ηi(Rp)i

=
∏
i

(∫
dxe−Diix2+2ηix

)
=
∏
i

(√
π

Dii
eη2
iD
−1
ii

)
= π

n/2|det[A]|−1/2e(D−1)ijηiηj

= π
n/2|det[A]|−1/2e(A−1)ijbibj

= π
n/2|det[A]|−1/2eG(A−1b).

Except for the prefactor, this is exactly the result of evaluating the inte-
grand eG(p) at the point where d

dpG(p) = 0, which also holds if a constant
is added to G(p).

For H = P tαP + βtP + γ, the momentum integral at one specific τ
therefore becomes∫

dnpe−ε(H(p,q)−iq̇p) = π
n/2 det[εα]−1/2e−ε(H(p̄,q)−iq̇p̄),

where p̄ is defined by iq̇ = d
dpH(p, q)|p=p̄, i.e. p̄ = 1/2α(iq̇ − β). This,

however, is just
π
n/2 det[εα]−1/2e−εLE(q,q̇)
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1.1 The Path Integral at Finite Temperature

with the Euclidean Lagrange function LE(q, q̇) = −L(q, iq̇).
In conclusion, the path integral in Lagrange form is

tr
[
e−βHA

]
=

N−1∏
k=0

(∫ dqk
(2πε)n/2

)
det[α]−1/2A(q)e−ε

∑
k
LE(q,q̇)

∣∣∣∣∣
qN=q0

≡
∫
DqA(q)e−

∫ β
0 dτLE(q,q̇) (1.5)

There are a few complicating cases that will not be covered here in detail
(but see [9]). For example, the matrix α that couples the time derivatives
to each other could depend on the coordinates q. In this case the deter-
minant can not be pulled out of the integral, inducing instead a change in
the Lagrange function entering the path integral with respect to that of
the classical theory by use of det[α] = etr[lnα]. Another possibility is that
some of the fields only enter the Lagrange function directly and not also
through their time derivatives. In this case, only a subset of the coordi-
nates can be canonically quantized and the other ones provide constraints
instead. Even though the path integral will not be performed over the
other coordinates, it is sometimes possible to insert such an integral in ad-
dition to the others and thereby regain the original form of the Lagrange
function. This is the case, for example, for a massive vector field.
A similar complication that is more interesting is that of a gauge field.

Details of how the gauge field of quantum chromodynamics is defined will
be given in the next chapter, but here it will be already mentioned that
in the process of canonical quantization it has the difficulty that the time
derivative of the time component does not enter the Lagrange function (as
in the case of the massive vector field) and additionally that different gauge
fields represent the same physical situation. Conceptually, one possible
way to see the problem is that the time component of the gauge field lives,
in a sense, between two adjacent points in time, which is problematic in
the Hamilton formulation that is not build in terms of histories of the
system but in terms of values at a specific time. On the level of the
classical theory, this is articulated by the fact that it is not possible to get
the gauge field at all times from its values and derivatives at one time.
The solution can be found in [12] and is only sketched here. The gauge
has to be partially fixed by demanding the gauge field in time direction
to vanish. This restores determinism on the level of the gauge field, but
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1 Continuum and Lattice Quantum Chromodynamics

since there is still a spatial gauge freedom, the integrals over all states that
are needed in the path integral derivation have to be performed only over
physically different states. This can be done by inserting corresponding
projections, which themselves can be written as integrals over an auxiliary
field. This auxiliary field takes the place of the original time component
of the gauge field, so the path integral is again over the original Lagrange
function (with time derivatives as well as the time component of the gauge
field multiplied by i) and with the integral performed over all gauge fields,
even if some of them yield the same physical history. It is afterwards also
possible to fix the gauge by separating the integral into one over different
physical orbits and one over different gauge fields within one orbit, but it
is not required except for perturbation theory.

1.1.2 Fermionic Path Integral
As in the case of bosons, exchanging two fermions of the same species
does not yield a new state, but in this case the sign of the state changes.
This results in creation and annihilation operators anticommuting with
each other, which also carries over to the field operators. Taking again
generalized coordinates Qi and momenta P i, this means {Qi, P j} = iδij
and {Qi, Qj} = {P i, P j} = 0. It is not possible to define eigenstates
of these operators in the usual sense since they are nilpotent and the
eigenvalues would also need to give zero when squared. While this is
not possible for real numbers unless they are zero, the solution is to use
Grassmann numbers, which are just elements of an algebra of numbers
qi, pi which anticommute with each other as well as with the operators Qi
and P i.

While in some theories P i is related to the Hermitian conjugate of Qi,
sometimes they are independent and treating them as such will allow to
cover both cases. The eigenstates are then defined as

|q〉 = exp
(
−i
∑
i

P iqi
)
|0〉 〈p| = 〈0| exp

(
−i
∑
i

piQi
)

where |0〉 and 〈0| are states that fulfill Qa |0〉 = 0 and 〈0|P a = 0 for all a
and are normalized by 〈0|0〉 = 1. All states of the system can be obtained
by acting with some non-vanishing combination of P is on |0〉 or Qis on 〈0|.
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1.1 The Path Integral at Finite Temperature

When checking that these are indeed eigenstates, it is necessary to split the
exponential into the term containing P i and the rest, using exp(η) = 1+η
for η being a product of Grassmann variables and the fact that Qi can be
moved through the second term because it no longer contains P i, which
gives 0 because it then acts on |0〉:

Qi |q〉 = Qi(1− iP iqi) exp

−i∑
j 6=i

P jqj

 |0〉
= −i(i− P iQi)qi exp

∑
j 6=i

P jqj

 |0〉
= qi exp

∑
j 6=i

P jqj

 |0〉 = qi |q〉 .

In the last step, the missing term 1− iP iqi was again inserted, which does
not change the result because of qiqi = 0. In the same way it is possible
to prove 〈p|P a = 〈p| pa. The scalar product of these states is given by

〈p|q〉 =
〈

0

∣∣∣∣∣∣
∏
i

(1− ipiQi)
∏
j

(1− iP jqj)

∣∣∣∣∣∣0
〉

=
〈

0

∣∣∣∣∣∣
∏
ij

(
(1− iP jqj)(1− ipiQi) + iδijq

jpi
)∣∣∣∣∣∣0
〉

= e−ipq

Integration over Grassmann variables is defined in such a way that it
picks out coefficients of those terms that contain each variable over which
the integration takes place exactly once. This can be achieved by requir-
ing

∫
dηη = 1 and

∫
dη = 0 for any Grassmann variable. The relevant

differences to the bosonic case lie in the completeness relation (i.e., the
form of the unit operator) and the trace. For these, the particle states

|α〉 =
∏
i∈α

P i |0〉 〈α| = 〈0|
∏̃
i∈α
Qi

are defined, where α is some subset of {1 . . . n} with n being the number
of degrees of freedom, and the product with the tilde being understood in
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1 Continuum and Lattice Quantum Chromodynamics

the opposite order of that without it. The scalar product is given by

〈
α
∣∣α′〉 = δαα′

〈
0
∣∣∣∣∣∏
i∈α

(QiP i)
∣∣∣∣∣0
〉

= δαα′

〈
0
∣∣∣∣∣∏
i∈α

(i− P iQi)
∣∣∣∣∣0
〉

= i|α|δαα′ ,

giving the completeness relation

1 =
∑
α

i−|α| |α〉 〈α| .

Using the Grassmann integration measure
∫
D[q, p] =

∫∏
i(dqidpi), the

completeness relation in terms of the eigenstates |q〉 and 〈p| is then given
by

1 =
∑
α

i−|α| |α〉 〈α|

=
∫
D[q, p]

∏
i

(piqi)
∑
α

i−|α|
∏
j∈α

P j |0〉 〈0|
∏̃
k∈α

Qk

= i−n
∫
D[q, p]

∑
α

∏
i 6∈α

(ipiqi)
∏
j∈α

(−iP jqj) |0〉 〈0|
∏
k∈α

(−ipkQk)

= i−n
∫
D[q, p]

∏
i

(1 + ipiqi)
∏
j

(1− iP jqj) |0〉 〈0|
∏
k

(1− ipkQk)

= i−n
∫
D[q, p]eipq |q〉 〈p|

The equivalence of the third and fourth line of this derivation is due to the
fact that any term that survives the integration has to contain exactly one
of each pi and qi, so when the products in the fourth line are multiplied,
for each i either the linear term of the first product has to be paired with
the constant terms of the other products or the other way round.
Similarly, the trace of a bosonic operator can be written as

tr [A] =
∑
α

i−|α| 〈α|A|α〉

= i−n
∫
D[q, p]

∏
i 6∈α

(ipiqi)
∑
α

〈
0

∣∣∣∣∣∣
∏
j∈α

(ipjQj)A
∏
k∈α

(−iP kqk)

∣∣∣∣∣∣0
〉

= i−n
∫
D[q, p]eipq 〈−p|A|q〉 .

24



1.1 The Path Integral at Finite Temperature

The rest of the derivation proceeds similarly to the bosonic case, with

tr
[
e−βHA

]
=
∫
D[q0, p0]eip0q0

〈
−p0

∣∣∣∣∣
N−1∏
k=0

Tk

∣∣∣∣∣q0

〉

=
∫ N−1∏

k=0

(
D[qk, pk]eipkqk

)〈
−p0

∣∣∣∣∣
N−1∏
k=1

(Tk |qk〉 〈pk|)T0

∣∣∣∣∣q0

〉
.

The factors in are irrelevant and omitted because they cancel with corre-
sponding factors in 1/Z. Assuming that the Hamilton is sorted such that
any P is to the left of any Q, this gives elements like

eipkqk
〈
pk
∣∣∣e−εH(P,Q)

∣∣∣qk−1
〉

= eipk(qk−qk−1)−εH(pk,qk−1)

= e−ε(H(pk,qk−1)−ipk q̇k−1)

with possible extra terms from the observable. The leftmost element re-
quires special care,

eip0q0
〈
−p0

∣∣∣e−εH(P,Q)
∣∣∣qN−1

〉
= eip0q0−εH(−p0,qN−1)+ip0qN−1

= e−ε(H(pN ,qN−1)−ipN q̇N−1)
∣∣∣qN=−q0
pN=−p0

and the result is

tr
[
e−βHA

]
=
∫
D[q, p]A(p, q)e−SE [p,q] (1.6)

SE [p, q] = ε
N−1∑
k=0

(H(pk+1, qk)− ipk+1q̇k)
∣∣∣∣∣qN=−q0
pN=−p0

In contrast to the bosonic case, the momentum integrals are not solved
in order to arrive at the Lagrange form of the path integral. Instead, in
the cases of interest the Lagrange function is given by

L(q, q̄, q̇) = q̄Aq̇ − q̄Bq, (1.7)

where q is a complex vector and q̄ is proportional to the complex conjugate
of q. The degrees of freedom are given by the real and imaginary parts of
the entries in q = x+ iy, but by analytic continuation to complex x and y
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1 Continuum and Lattice Quantum Chromodynamics

it is possible to make a change of variables from x, y to q, q̄, which are then
again restricted to real values. Therefore, q and q̄ have to be regarded as
independent variables in such a construction. The advantage is that in
(1.7), of the 2n coordinates only an n-dimensional submanifold enters the
Lagrange function in the form of a time derivative and by this procedure
there is a clear separation into those coordinates with time derivative (q)
and those without (q̄).
In order to obtain the Hamilton function, a Legendre transformation

with respect to q̇ has to be performed, giving

H(q, q̄, p) = sup
q̇

(pq̇ − L(q, q̄, q̇)) = sup
q̇

((p− q̄A)q̇ + q̄Bq) .

this is only finite if p = q̄A, so it is only defined in this point and has
the value H = q̄Bq there.2 Variation of p in the classical theory and the
proper anticommutation relations in the canonically quantized theory can
be obtained indirectly through q̄, so the correct quantization prescription
would be to require {qi, (q̄A)j} = iδij . As long as A is constant, the
fermionic integrals over q and p can as well be performed over q and q̄,
giving

SE =
∫ β

0
dτLE(q, q̄, q̇)

LE(q, q̄, q̇) = H(q, q̄, p)− ipq̇|p=q̄A = q̄Bq − iq̄Aq̇ = −L(q, q̄, iq̇),

exactly as in the bosonic case.

1.2 Quantum Chromodynamics
The standard model of particle physics consists of the underlying frame-
work of quantum field theory on the one hand and a specific particle con-
2 The definition of the Legendre transformation given here is more general than the
prescription often found in lectures on classical mechanics which involves taking the
derivative of the function with respect to the variable in question. In particular,
applying the Legendre transformation to the Hamilton function should again return
the Lagrange function, but it is not possible to take a derivative with respect to a
variable if the function is only defined at one value of this variable. However,

sup
p∈{q̄A}

(pq̇ −H(q, q̄, p)) = q̄Aq̇ −H(q, q̄, q̄A) = L(q, q̄, q̇).
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1.2 Quantum Chromodynamics

tent on the other hand. The content of the theory is highly restricted by
the requirement of Poincaré symmetry, which requires the degrees of free-
dom to transform according to some representation of the Poincaré group.
By forming special combinations of the translation and boost generators of
this symmetry group (or, rather, of its subgroup that is simply connected
to the identity transformation), it is possible to specify each representation
by a pair of numbers (A,B) which are multiples of 1/2. Space inversion,
which is not part of this simply connected subgroup, takes a particle of
the representation (A,B) and transforms it into a particle of the represen-
tation (B,A). In order to describe a theory that is invariant under space
inversions, the particles therefore either have to be in a representation of
the form (A,A) or in the direct sum (A,B)⊕ (B,A).
The theory of interest for this work is Quantum Chromodynamics (or

QCD), which is a quantum field theory that very successfully describes the
strong nuclear interaction. As far as it is currently known, the strong inter-
action respects space inversion symmetry, and QCD is usually constructed
to reflect this. Its constituents are quarks of the type (1/2, 0)⊕(0, 1/2) (i.e.,
Dirac fermions) and gluons of the type (1/2, 1/2). Requiring the theory to
respect causality results in a formulation in terms of quantum fields that
are specific combinations of particle creation and annihilation operators.
In the case of quarks these are denoted by ψ(x) and its conjugate ψ̄(x),
which like all Dirac fermions have 4 internal degrees of freedom owing to
the dimensionality of the Dirac representation. In the case of QCD, the
number of degrees of freedom is additionally multiplied by 3 because they
come in three colors, which are just three distinct particle species that are
equal in all respects except this additional quantum number.
The starting point for deriving the QCD Lagrange density is that of free

Dirac particles,

LE(x) = ψ̄(x)γµ∂µψ(x) +mψ̄(x)ψ(x)

which is here given directly in the Euclidean formulation with the Eu-
clidean gamma matrices that fulfill {γµ, γν} = 2δµν . The theory is sym-
metric under the global transformation

ψ′(x) = Ωψ(x) ψ̄′(x) = ψ̄Ω† Ω ∈ SU(3)

that mixes the different color components using a unitary transformation
with determinant 1. The full gauge theory can be derived more or less
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completely by the requirement that this symmetry also holds for any local
gauge transformation, where Ω can be different on each point in spacetime.
For bilinears like ψ̄(x)ψ(x), this is trivially the case. The derivative term,
however, becomes

ψ̄′γµ∂µψ
′ = ψ̄γµΩ†∂µ(Ωψ)
= ψ̄γµ∂µψ + ψ̄γµ(Ω†∂µΩ)ψ. (1.8)

The problem is that ∂µψ(x) is a difference between fermion fields at in-
finitesimally different spacetime points and before they can be subtracted
and contracted with ψ̄(x) they have to be gauge transported onto the
same point. This situation is similar to that in general relativity, where in
a curved spacetime a vector that is parallel transported around a closed
path generally changes its direction. A fermion field ψ(x) and its gauge
transported version at y along a specific path C are related by an SU(3)
matrix UC . It is additive, in the sense that the gauge transporter along
the path C1 + C2 where C2 is appended to C1 is given by

UC1+C2 = UC2UC1 .

Additionally, it has to commute with a local gauge transformation, i.e., it
should not make a difference if a field at x is first transported to y and
then transformed with Ω(y) or first transformed with Ω(x) and then trans-
ported. This requires the gauge transporter itself to transform according
to

U ′C = Ω(y)UCΩ†(x) C : x→ y.

Writing an infinitesimal transporter that transports from x + εµ̂ to x,
where µ̂ is the unit vector in direction µ, as Uεµ = exp(iεAµ(x)), the
covariant derivative—which is like the derivative, but includes a gauge
transport before subtracting fields at different points—is given by

Dµ(x)ψ(x) = lim
ε→0

1
ε

(
eiεAµ(x)ψ(x+ εµ̂)− ψ(x)

)
= (∂µ + iAµ(x))ψ(x)

The field Aµ(x) is called gauge field and the particles described by it
are called gluons. In order for exp(iεAµ(x)) to be an element of SU(3), Aµ
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1.2 Quantum Chromodynamics

has to be an element of the Lie algebra su(3), i.e., it has to be a traceless
and Hermitian 3 × 3 matrix. The transformation property under gauge
transformations can be derived from that of Uεµ, giving

1 + iεA′µ = Ω(x)(1 + iεAµ)Ω†(x+ εµ̂)
= 1 + iεΩAµΩ† + εΩ∂µΩ† − ε∂µ(ΩΩ†)︸ ︷︷ ︸

=0

⇒ A′µ = ΩAµΩ† + i∂µΩΩ†. (1.9)

The covariant derivative transforms according to

D′µ . . . = ∂µ(ΩΩ† . . . ) + iΩAµΩ† · · · − ∂µΩΩ† . . .
= Ω∂µ(Ω† . . . ) + iΩAµΩ† . . .
= ΩDµ(Ω† . . . ),

giving

(Dµψ)′ = ΩDµψ

and therefore

L′E = LE with LE = ψ̄(γµDµ +m)ψ.

The contraction γµDµ is often denoted by �D in continuum formulations
where there is only this one form, but for consistency with the lattice
formulation given later this Dirac operator is just written as D.
In analogy to the curvature tensor in general relativity, which encap-

sulates information about parallel transportation along an infinitesimal
closed path, a field strength tensor can be defined by

Fµν = −i[Dµ, Dν ] = ∂µAν − ∂νAµ + i[Aµ, Aν ],

Since it inherits the transformation property from Dµ, a gauge invariant
object can be constructed by

tr [FµνFµν ] .
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A term proportional to this is compatible with the required (i.e., Poincaré
and gauge) symmetries and because it is also renormalizable3, it generally
has to be included. It contains the kinetic term of the gauge field as
well as self-interactions, which are automatically included into the theory.
The Lagrange density of continuum QCD for a single quark species now
compactly reads

L = ψ̄(D +m)ψ + 1
2g2 tr [FµνFµν ] ,

where g is the coupling constant. It is called like this because it is possible
to rescale the gauge fields such that the kinetic term is independent of g,
which then instead appears in front of the interaction term iψ̄γµAµψ.

Even if quarks are ignored and only the gauge part of the action is
investigated, it is the source for a variety of phenomena because of the self-
interaction encoded in the non-commutativity of the SU(3) gauge group.
This theory is usually called by the name of Yang-Mills theory or just pure
gauge theory.

1.3 Chiral Symmetry and the Axial Anomaly
In nature, until now six quark flavors have been found, which are usu-
ally categorized into three families by their weak interaction quantum
numbers. They come with widely different masses, which are listed in
table 1.1. However, quarks never have been observed as free particles but
only in color-neutral combinations, so it is problematic to unambiguously
define (or, for that matter, measure) their masses. The way they enter
the QCD action is as bare parameters, which can only be assigned some
physical value within some renormalization scheme. Possibilities to build
color-neutral combinations include mesons and baryons, which are states
that are approximately built out of either a quark-antiquark pair or three
quarks. The lightest mesons are the pions with masses of around 140 MeV
and the lightest baryons are the proton and the neutron, both with masses
of about 1 GeV. There is a hierarchical separation with the up and down

3 This is a requirement that eliminates terms with too high powers of the contained
fields, because these would require coupling constants of negative mass dimension,
which for example results in diverging cross-sections at high energies [13].
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1.3 Chiral Symmetry and the Axial Anomaly

flavor mass

up (u) 2.3(7) MeV
down (d) 4.8(5) MeV

strange (s) 95(5) MeV
charm (c) 1.275(25) GeV
beauty (b) 4.18(3) GeV
truth (t) 160(5) GeV

Table 1.1: Approximate masses of the different known quark flavors inMS renor-
malization at µ ≈ 2 GeV [1].

quarks being almost massless in comparison with the hadronic scale and
the strange quark being heavier but still comparable to hadrons, while
the charm and heavier quarks are so heavy that they can be neglected in
many applications since they will not be produced by thermal fluctuations
except at very high temperatures.
In the limit of one or multiple quark flavors with vanishing mass, the

QCD Lagrange density has additional internal symmetries consisting of
rotations among these flavors. They are usually combined under the name
of chiral symmetry and the limit where the masses of some of the quarks
are sent towards zero is called the chiral limit. The simplest form of this
symmetry is already present in the most general case; the quark field ψ of
each flavor can be multiplied by a phase, while ψ̄ is multiplied with the
opposite phase, which therefore cancel. This vector rotation is actually
the starting point of U(1) gauge theory, i.e. electrodynamics.
If N quark flavors have the same (not necessarily vanishing) mass, it is

possible to extend these vector rotations to also mix different flavors. If
the different flavors are combined into a vector with components ψf , the
vector rotation reads

ψ̄′ = ψ̄e−iT ψ′ = eiTψ (1.10)

with (Tψ)f = Tff ′ψf ′ and T being an element of the Lie algebra of U(N),
i.e. a combination of the unit matrix and a Hermitian traceless part.
The rotation group can accordingly be split into U(N) ∼= U(1) × SU(N).
It can easily be checked that this generalized vector rotation is indeed a
symmetry of the QCD Lagrangian since D + m is trivial (i.e., diagonal)
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with regard to the flavor index and therefore commutes with T , so the
factor eiT can be pulled past it and cancels with e−iT .
While the presence of this vector symmetry has been crucial for identi-

fying quarks as the constituents out of which all the mesons and baryons
are built, it can be argued that for current research the more interesting
case is that of axial symmetry, where not only the flavors but also the
Dirac components are mixed. Taking the general ansatz

ψ̄′ = ψ̄eiT̄ ψ′ = eiTψ

with a priori independent T and T̄ , the invariance of ψ̄Dψ is provided by

T̄D = −DT ⇒ eiT̄D = De−iT ,

while the invariance of ψ̄mψ requires T̄ = −T , which gives the vector rota-
tions discussed above. However, if the mass is zero this term vanishes and
there is an additional solution with T = T̄ for some T that anticommutes
with D. Requiring T to only act on internal degrees of freedom, it has to
anticommute with each γµ separately, which is satisfied if T ∝ γ5 =

∏
µ γµ.

Separating out γ5 from T , the axial rotation is given by

ψ̄′ = ψ̄eiγ5T ψ′ = eiTγ5ψ (1.11)

with T now again only acting in flavor space. Again, T is a linear com-
bination of the unit matrix and a traceless Hermitian part, so the axial
rotation group can also be split as U(N) ∼= U(1) × SU(N). The name
chiral symmetry often only refers to the special case of axial symmetry.
Even if the action of a theory is invariant under some symmetry trans-

formation, it turns out that the path integral measure
∫
D[ψ, ψ̄] can also

change, which results in expectation values not being invariant under the
symmetry in question. This is the case for the singlet axial symmetry
UA(1), i.e. ψ′ = eiαγ5ψ, ψ̄′ = ψ̄eiγ5α with α ∈ R. This results in the non-
conservation of the axial current, which is known as the axial anomaly.
In order to derive this, it is necessary to regularize the path integral, i.e.
somehow make the integral over infinitely many integration variables finite
with some parameter that can be sent towards some limit at the end of the
calculation such that the regulator is removed. In section 2.2, a derivation
that uses the lattice as a regulator will be given. Another derivation with
a different regulator can be found in [14].
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There is also another case where a symmetry of the action does not
translate to expectation values respecting this symmetry. This is pro-
vided by the important concept of spontaneous symmetry breaking, where
there is a family of states of the system that yield the same minimal en-
ergy, i.e. multiple degenerate vacua. Naively, the thermal expectation
value tr

[
e−βHA

]
would still respect the symmetry because it is given by

a sum over all states and each vacuum state enters with the same weight.
However, even a small disturbance will set one particular vacuum apart,
changing the expectation values drastically. In the case of chiral symme-
try, it has been observed that for N = 2, even the remaining SUA(2) that
is not affected by the anomaly is broken spontaneously, which can for ex-
ample be demonstrated by the fact that protons and neutrons have masses
of about 940 MeV [1] while their parity partner N∗ has a mass of about
1535 MeV—if chiral symmetry were respected by the ground state, these
masses would be degenerate [15]. While the masses of the lightest quarks
of about 5 MeV can not explain such a large breaking of chiral symme-
try directly, they can provide the small perturbation that picks a specific
vacuum for the spontaneously broken symmetry. For large temperatures,
any spontaneously broken symmetry will be restored because states with
higher energy (and therefore also the other vacua) enter the trace. For
chiral symmetry, this is the case beyond the transition temperature of
154(9) MeV [16].

The order of this chiral phase transition and the exact symmetry break-
ing pattern are of great interest for the understanding of the phase diagram
of strongly interacting matter and its properties at different extreme con-
ditions. In this context it is important to know how large the effects of
the axial anomaly at the chiral transition temperature are, since this af-
fects the effective symmetries that a strongly interacting system below and
above Tc has. If the symmetry breaking pattern is known, further details
like the order of the transition and critical exponents can be obtained by
analyzing different systems with the same symmetries, which are therefore
in the same universality class [17, 18, 19, 20].
With respect to chiral symmetry, Dirac fermions do not furnish an irre-

ducible representation. Instead, they can be decomposed into chiral (i.e.,

33



1 Continuum and Lattice Quantum Chromodynamics

left- and righthanded) parts by

ψ± = P±ψ = 1± γ5
2 ψ ψ̄± = ψ̄P∓.

Since {γ5, D} = 0 and therefore P±D = DP∓, the Lagrange density can
be written in terms of these fields as

ψ̄(D +m)ψ =
∑
±
ψ̄P 2
∓(D +m)ψ =

∑
±
ψ̄±P∓(D +m)ψ

=
∑
±
ψ̄±(DP± +mP∓)ψ

=
∑
±
ψ̄±Dψ± +m

∑
±
ψ̄±ψ∓.

Therefore, for vanishing quark mass the right- and lefthanded fields en-
ter the Lagrange density independently and the action is invariant under
independent axial (or vector) rotations of these chiral fields. A parity
transformation still transforms them into each other.
In order to decide whether chiral symmetry is spontaneously broken or

restored at a given temperature, an order parameter has to be measured
that is sensitive to this. One candidate is the chiral condensate

Σ = 1
Nf

T

V

〈
ψ̄ψ
〉

= 1
Nf

T

V

∑
±

〈
ψ̄±ψ∓

〉
,

where Nf is the number of flavors that are included in the spinors ψ̄
and ψ—usually 2 because the chiral symmetry of two light flavors is
considered—and the combination ψ̄ψ is understood to be summed over
all degrees of freedom, including an integral over spacetime. The prefac-
tor T/V with T being the temperature of the system and V the three-
dimensional volume normalizes Σ by the four-dimensional volume, mak-
ing it an intensive quantity.4 If the action is invariant under the axial
SUA(2) rotation (for example, (1.11) with T = α diag(1,−1) acting in fla-
vor space),

〈
ψ̄′ψ′

〉
must be equal to

〈
ψ̄ψ
〉
because one can be obtained

4 In the literature, this distinction is often obfuscated by the notation, such that
〈
ψ̄ψ
〉

is written when the intensive quantity is meant.
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from the other by a change of integration variables. On the other hand,〈
ψ̄′ψ′

〉
=
〈
ψ̄e2iγ5Tψ

〉
=
〈

cos(2α)ψ̄ψ + i sin(2α)(ūγ5u− d̄γ5d)
〉

= cos(2α)
〈
ψ̄ψ
〉
.

Therefore, if chiral symmetry is restored, the chiral condensate must van-
ish. If, on the other hand, chiral symmetry is spontaneously broken, even
a small mass will give significantly more weight to those configurations
where the chiral condensate takes a specific value because they are cou-
pled in the Lagrange density as e−mψ̄ψ. Even after averaging over all
gauge configurations, the chiral condensate will therefore take a nonvan-
ishing value.
In contrast to the non-anomalous chiral symmetry, which is a genuine

symmetry of the action for vanishing quark masses that is spontaneously
broken at low temperatures, it is not so easy to find an order parameter
for the anomalous axial symmetry UA(1). Since UA(1) is a symmetry of
the action, it induces a Noether current that would be conserved if the
measure were also invariant, namely the anomalous current

J5
µ = ψ̄γµγ5ψ.

It can be shown that ∂µJ5
µ is proportional to the topological charge den-

sity, which suggests that at high temperatures the axial anomaly has to be
suppressed because topological objects like instantons need non-vanishing
color-electric fields, which can not fluctuate at high temperatures due to
Debye screening [17]. The magnitude of ∂µJ5

µ could be used as a measure
for the restoration of UA(1), but it is not easy to translate this to a lat-
tice observable. Instead, it is possible to take two observables where one
can be obtained from the other by a UA(1) rotation and compute their
difference. While the vanishing of the difference can give an indication of
UA(1) restoration, the possibility that some other pair of observables still
gives a finite difference remains.
For example, the difference between the susceptibilities of the pion and

delta meson can be used. Both are mesons that are built from up and

35



1 Continuum and Lattice Quantum Chromodynamics

down quarks and they are described by the (local) operators

δi(x) = 1√
2
ψ̄(x)τ iψ(x)

πi(x) = i√
2
ψ̄(x)τ iγ5ψ(x),

where τ i is a Pauli matrix acting on the up and down flavor components
of ψ. For example, δ3(x) = (ū(x)u(x)−d̄(x)d(x))/√2. The pion is obtained
from the delta meson by a UA(1) rotation with α = π/4:

δi(x) = 1√
2
ψ̄(x)τ iψ(x)→ 1√

2
ψ̄(x)eiαγ5τ ieiαγ5ψ(x)

= 1
2
√

2
ψ̄(x)(1 + iγ5)τ i(1 + iγ5)ψ(x)

= i√
2
ψ̄(x)τ iγ5ψ(x) = πi(x).

The susceptibilities are defined by integration of the correlators, i.e.

χδ =
∫

d4x
〈
δi(x)δi(0)

〉
= T

V

∫
d4x

∫
d4y

〈
δi(x)δi(y)

〉
= 1

2
T

V

〈
ψ̄τ iψψ̄τ iψ

〉
(1.12)

and similarly for χπ. Here, no sum over i is intended and it can easily
be checked that any choice of i gives the same result. In the last term,
ψ̄τ iψ is as always to be understood as scalar product that sums over all
degrees of freedom including two flavors and an integral over spacetime. If
more flavors are included that are not part of the chiral symmetry under
consideration, they do not contribute since τ i is zero if acting on any other
flavor. If more than two flavors are to be considered as degenerate, an
analogous chiral symmetry will connect meson susceptibilities that can be
expressed by replacing the Pauli matrices with the appropriate generators
of SU(n).

With these definitions in place, a measure for UA(1) breaking is given
by

ω = χπ − χδ.
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1.4 QCD Topology
Any gauge configuration that gives a non-vanishing contribution to the
path integral must have a finite action, which requires that the Lagrange
density for large distances |x| to the origin falls faster than |x|−4. Usually,
this would require the gauge field Aµ to vanish faster than |x|−1, but
there are special solutions where it only vanishes as fast as |x|−1, as long
as the only term of that order is a pure gauge field, i.e., gauge-equivalent
to Aµ = 0. Using the transformation property (1.9), this simply means

0 = ΩAµΩ† + i∂µΩΩ† ⇒ Aµ = −iΩ†∂µΩ

with some element of the gauge group Ω at each point in spacetime.
By only looking at the asymptotic behavior for large distances, Ω can

be assumed to only depend on the direction and not on the distance. The
solutions can therefore be classified by some mapping from the unit sphere
to the gauge group. Actually, there is some freedom in changing Ω by a
fixed group element that leads to the same Aµ, which implies that the
set of relevant mappings can be reduced to only include those that map a
specific point of the unit sphere onto the unit group element. Now it turns
out that there are pairs of such mappings that can not be continuously
deformed into each other, similar to closed paths on a circle where a path
that effectively winds n times around the circle can not be continuously
deformed into a path that effectively winds n′ 6= n times around it. In
the language of topology, the homotopy group π3(SU(3)) is not trivial but
isomorphic to Z [14].
This means that there are topologically different gauge configurations

that can not be continuously deformed into each other without crossing
regions that have infinite action, so the set of all gauge configurations is
split into respective equivalence classes. They can be classified by the
topological charge

Q = 1
16π2

∫
d4x tr

[
FµνF̃µν

]
= 1

32π2 εµνρσ

∫
d4x tr [FµνFρσ] , (1.13)

which takes an integer value [21] for any gauge field. In order to find a
local minimum of the action within a topological sector, it is helpful to

37



1 Continuum and Lattice Quantum Chromodynamics

use the inequality

0 ≤ tr
[∫

d4x
(
Fµν ± F̃µν

)2
]

= tr
[∫

d4x
(
2FµνFµν ± 2FµνF̃µν

)]
⇒ S[F ] ≥ 1

2g2

∣∣∣∣∫ d4x tr
[
FµνF̃µν

]∣∣∣∣ ,
where F̃µνF̃µν = FµνFµν has been used. In order to reach the lower bound
of the action, the gauge field has to be self-dual or anti-self-dual, which
just means that the field strength tensor F is equal in magnitude and
equal or opposite in sign to its dual F̃ , such that the bracket in the first
inequality vanishes.
For Q = 1, such a solution has been found in [22], having the form

Aµ(x) = −i
(
|x|2

|x|2 + ρ2

)
Ω†∂µΩ, Ω = xµαµ

|x|

with α4 = 1 and αj = iσj ⊗ 1 for j = 1, 2, 3. Here, the Pauli matrices σj
are acting on the first two color components (i.e., on an SU(2) subgroup
of SU(3)) while 1 is acting on the third.
This solution is self-dual and localized at x = 0 with a size of ρ. Other

solutions can be obtained by translations or changes of ρ and they are
collectively called instantons. Gauge configurations that contain multiple
instantons can be constructed by superimposing instanton solutions that
are far enough apart that they do not interfere. These solutions have a
topological charge of n, where n ∈ N is the number of instantons. An
anti-instanton can be created by replacing Ω with Ω†, which changes the
sign of Aµ and gives a topological charge of −1. Instantons can also be
found in Euclidean formulations of other quantum mechanical systems like
a simple double-well potential [23], where it can be seen to be related to
a tunneling process that connects one minimum to another. Similarly, in
axially fixed gauge (A4 = 0) it is possible to compute a topological index
for a three dimensional gauge configuration, which classifies different vacua
of the system. A configuration that contains n instantons is then a path
that connects vacua with indices that differ by n [24, 25, 14].
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In QCD, which is a system that consists of fermions and gauge fields,
there is an intricate interaction between these. Since Grassmann variables
are rather unintuitive and it is not easy to imagine—or, for that matter,
numerically represent—a fermionic path, the phenomenological picture
usually introduces a separation. The gauge field is then regarded as a
background on which fermionic modes live. These are defined as the
eigenvectors of the (massive) Dirac operator, because this ensures that the
action splits into a sum of terms that each includes a single fermionic mode.
Given a fixed background, the fermionic modes do not interact and each
mode gives an independent contribution to specific observables, usually
as a function of its eigenvalue. Infrared modes, where the eigenvalues are
near zero, often contribute the most to these observables. However, the
background is not fixed since the presence of fermions influences the weight
of each gauge configuration as it enters the path integral. The interaction
between different fermion modes is therefore mediated by the gauge field.
In particular, it will be shown later that the effect of the fermion modes
on the gauge fields is given by the so-called fermion determinant, i.e., the
product of the eigenvalues of the massive Dirac operator. Therefore, even
though infrared modes have a large contribution to observables within a
configuration, their presence suppresses the configurations that produce
them. The computation of their effect therefore requires great care.
If the fermionic modes on the gauge configuration that is given by the

instanton solution above are calculated, it is found that there is a mode
that is localized around the instanton with an eigenvalue of the massless
Dirac operator of zero [23]. Their form is given by

ψ(x) =
√

2ρ
π

(
x2 + ρ2

)−3/2
γµx̂µφ+ (1.14)

with φ+ being a constant righthanded spinor which because of {γµ, γ5} = 0
makes ψ lefthanded and x̂µ being the unit vector pointing from the origin
to the space-time point x. At finite quark mass, the eigenvalue is shifted
by this mass such that the fermion determinant does not actually vanish.
In the chiral limit, however, these zero modes suppress the occurrence
of instantons and unless an observable diverges in the chiral limit on a
fixed background, configurations with non-trivial topological charge will
not contribute to it. However, it is possible to construct gauge fields that
contain instantons and anti-instantons at the same time which are not too
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far apart, such that the actual fermion modes are superpositions of the
would-be zero mode solutions. The interaction can shift the eigenvalues
away from zero such that these configurations are not suppressed and,
depending on the intricate interplay between gauge fields and fermions,
their contribution to certain observables might survive the chiral limit.

1.5 Lattice Discretization of Gauge Invariance
In this section, the lattice regularized version of the purely gluonic path
integral is to be given. This introduction is kept very brief, since most
of it has already been prepared in section 1.2 and no crucial point hinges
on any details that can not be obtained at least equally well from any
introductory text book on lattice field theory, like [15, 26, 27].
In order to give a mathematically well-defined meaning to the path in-

tegral of any quantum field theory, some sort of regularization has to be
introduced. The problem is that there is usually a finite number of in-
tegrals to be performed for a single point in spacetime, but since there
are infinitely many spacetime points and some of them are infinitely close
together, such integrals are ill-defined. The most straightforward regular-
ization is a lattice, which has already been hinted at in the derivation of
the path integral where the imaginary time interval has been split into
many infinitesimal steps and the step count has been sent to infinity at
the end.
Introducing a similar discretization for the space points and postponing

the continuum limit, a lattice field theory is defined on a four-dimensional
lattice with lattice points n = (n1, n2, n3, n4) with nµ ∈ N that correspond
to physical points x = an. a is the lattice spacing and the continuum
limit is performed by sending a to zero. For a Euclidean path integral
representation of an expectation value in a canonical ensemble at inverse
temperature β, the points in time direction (n4) are restricted to the
values 0, . . . , Nτ − 1 with aNτ = β. At least for numerical calculations
it is also necessary to restrict the spatial coordinates to only take values
within some box of volume V = L3 = (aNσ)3, i.e. ni ∈ {0, . . . , Nσ − 1}.
The number of integration variables for the path integral thereby becomes
finite and the action of a specific configuration becomes a sum over lattice
points of a lattice Lagrange density instead of a spacetime integral.
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The introduction of local gauge invariance on the lattice works exactly
as in the continuum, except that it stops with the gauge transporters Uµ
instead of going to their infinitesimal version Aµ because there are no fields
that need to be transported any distance that is not the difference between
two lattice points. Specifically, fermionic fields that transform according
to the fundamental representation of SU(3) have three color components
which are rotated by a local gauge transformation Ω(n) to give

ψ′(n) = Ω(n)ψ(n) ψ̄′(n) = ψ̄(n)Ω†(n).

Whenever fields at different points are to be coupled, they have to be
gauge transported to the same point, which makes the introduction of
a field of matrices Uµ(n) necessary. These live on the link between the
lattice points n and n+ µ̂5 and they are elements of the group SU(3), in
contrast to the algebra-valued Aµ. If ψ(n + µ̂) is defined on the lattice
site n+ µ̂, Uµ(n)ψ(n+ µ̂) is its gauge transported version at n. In order
to gauge transport a field from n to n+ µ̂, the inverse link variable has to
be used:

U−µ(n+ µ̂)ψ(n) ≡ Uµ(n)†ψ(n)

In this way, gauge symmetry is incorporated exactly in the lattice descrip-
tion, in contrast to Lorentz symmetry, which is approximated by a discrete
subgroup and only restored when taking the continuum limit.
As a convenient shorthand for using matrix and vector notation for all

(i.e., internal and spacetime) degrees of freedom, the operator Uµ is defined
by

(Uµψ)(n) = Uµ(n)ψ(n+ µ̂).

The non-interacting case is given by Uµ(n) = 1, such that Uµ is given by
a simple shift. Gauge invariant fermion bilinears can therefore be build in
the form of

ψ̄ΓUµψ,

5Since it is defined as connecting the points n and n+ µ̂, Uµ(n+ µ̂/2) would probably
be a clearer notation, but this is usually not used in the literature.
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with Γ acting on the Dirac degrees of freedom. Here,

ψ̄Aψ = a4 ∑
n,n′

ψ̄(n)A(n|n′)ψ(n′).

It is also possible to couple more distant fields with each other by inserting
an appropriate product of such one-link gauge transporters between them.
As was already seen in the description of the continuum gauge fields,

gauge transporters transform under gauge transformations as

U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)†.

Similarly, for any product of link variables along some path the transfor-
mation is given by the gauge rotations at the endpoints. Therefore, in
order to construct a gauge invariant quantity that only involves the gauge
field, it is necessary to multiply link variables along a closed path and take
the trace of the result. The simplest closed path is the plaquette

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)†,

which can be used to create the simplest form of the gauge action that
gives the correct naive continuum limit (a→ 0), namely the Wilson gauge
action

SG[U ] = 2
g2

∑
n

∑
µ<ν

Re tr [1− Uµν(n)] . (1.15)

It is possible to improve the discretization errors by adding further terms,
but the details will be omitted here.
For the full definition of the lattice path integral for gauge fields, the

only thing missing is the measure
∫
D[U ]. Here it will only be mentioned

that the Haar measure that is used is constructed such that the measure
is also invariant under gauge transformations.

1.6 Discretizing Fermions
The task of introducing fermions in a lattice formulation is significantly
more problematic. The obvious problem of the necessity of Grassmann
variables only affects numerical computations and can be solved relatively

42



1.6 Discretizing Fermions

straightforwardly. More subtle and more challenging is the so-called dou-
bling problem, which has its origin in the fact that the Dirac Lagrange
function only contains a first derivative of the quark fields and no second
derivatives.

1.6.1 Numerical Computation of the Fermionic Path Integral
Any lattice discretization of the fermionic part of the QCD action takes
the form

SF = ψ̄Dmψ

with some (massive) Dirac operator Dm that somehow discretizes the con-
tinuum Dirac operator γµDµ+m and respects gauge invariance in the sense
discussed in the last section.
Since Grassmann numbers can not be represented in any simple way on

a computer, the fermionic part of the path integral has to be transformed
analytically. This is possible because the fermionic part is a bilinear, which
can be solved similarly to a Gaussian integral, giving

Z =
∫
D[ψ, ψ̄, U ] exp

(
−ψ̄Dm[U ]ψ − SG[U ]

)
=
∫
D[U ] det(Dm[U ]) exp(−SG[U ]).

This formula can be easily obtained by diagonalizing Dm and writing
the exponential as a power sum which terminates after a finite number
of terms because the square of a Grassmann number is zero. If some
fermionic observables are inserted in the path integral, the integration
transforms them into specific components of D−1

m , which can be looked up
in detail in, for example, [15]. More interestingly, the fermion determinant
det[Dm] can be written as a path integral over bosonic variables φ and φ̄,
so-called pseudofermions, by use of

det[Dm] ∝
∫
D[φ, φ̄] exp(−φ̄D−1

m φ).

Any path integral can therefore be written purely in terms of bosonic
variables, which can be represented in a computer by simple numbers.
Numerically, it is quite demanding to compute the pseudofermion action
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because it contains the application of the inverse Dirac operator. For
many applications it is therefore assumed that the fermion determinant is
essentially constant and can be omitted from the calculation, giving the
quenched approximation. However, for investigations of the chiral limit
and topological properties this approximation should be avoided because,
for example, the effect of infrared fermionic modes suppressing certain
gauge configurations is mediated through the fermion determinant and is
lost if the determinant is ignored.

1.6.2 The Doubling Problem
There are two obvious possibilities to discretize a derivative, namely the
one-sided difference

f ′(x) = f(x+ ε)− f(x)
ε

+O(ε)

and the symmetric difference

f ′(x) = f(x+ ε)− f(x− ε)
2ε +O(ε2).

The gauge version of the symmetric difference is given by

∇µ = 1
2a(Uµ − U−µ),

which results in the naive Dirac operator

Dnaive
m =

∑
µ

γµ∇µ +m. (1.16)

Taking instead the one-sided difference has several problems, namely that
the resulting Dirac operator does not have any useful hermiticity prop-
erties and, more severely, that it creates non-covariant contributions to
the fermion self-energy and vertex function [28]. The massless part of
the given Dirac operator is antihermitian because U †µ = U−µ. But, more
importantly, the full naive Dirac operator is γ5-Hermitian, which means

γ5Dγ5 = D†.
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This ensures that the Dirac operator is normal, which is required for the
fermion modes to form an orthogonal basis. It also helps in the numerical
calculation since it ensures that the fermion determinant is real6,

det[D]∗ = det[D†] = det[γ5Dγ5] = det[D].

Using the abbreviations γ−µ = −γµ and

∑
±µ

=
4∑

µ=1
+
−1∑

µ=−4
,

the naive Dirac operator can also be written as

Dnaive
m = 1

2a
∑
±µ

γµUµ +m.

In the non-interacting case, its eigenmodes can easily be obtained by
the ansatz ψ(n) = ψ0eiapn. In the spatial dimensions, in order to have
translational symmetry the eigenmodes are usually required to be periodic,
ψ(n+Nσµ̂) = ψ(n) for µ ∈ {1, 2, 3}. In the temporal direction, according
to section 1.1.2 the integration variables have to be antiperiodic, i.e. ψ(n+
Nτ 4̂) = −ψ(n). This restricts pµ to values

pi = 2π
L
ki p4 = 2πT

(
k4 + 1

2

)
with integer-valued kµ. Since adding a multiple of Nµ to kµ gives the same
function, the values of kµ can be restricted to, for example, {0, . . . , Nµ−1}.
Using ∑

n′

δn′,n+µ̂eiapn′ = eiapµeiapn,

iDnaive
m becomes when acting on this spinor

λ = i

2a
∑
µ

γµ
(
eiapµ − e−iapµ

)
+ im

= im− a−1∑
µ

γµ sin(apµ). (1.17)

6 If a chemical potential is included, this is usually no longer the case, which presents
a great challenge and is an active field of research, see for example [29].
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However, the symmetric difference has its own problem, which becomes
especially visible in the chiral limit at fixed background gauge. If the
lattice is split into even and odd points such that all nearest neighbors of
an even point are odd and vice versa, the fermion and antifermion fields ψ
and ψ̄ can be split into fields defined on these sublattices, giving ψe/o and
ψ̄e/o. Now ψe is only coupled with ψ̄o and vice versa, splitting the degrees
of freedom into two subsets that do not influence each other. Another way
to phrase the problem is that the lattice is discretized with a lattice spacing
a while the discretization of the derivative involves the distance 2a. This
results in additional fermion modes, so-called doublers. For each fermion
species that was to be described by the naive action, there are 15 additional
copies, which in the non-interacting case described above correspond to
values where sin(apµ) becomes small even though apµ is not near 0 but
instead near π. To make things worse, these copies do not possess a
continuum limit, i.e., they give contributions to observables that oscillate
and do not converge when the continuum limit is performed. This can be
seen most directly by computing the fermion propagator D−1

0 in the non-
interacting case and with infinitesimal temperature, which for the doublers
gives solutions that change sign from one lattice point to the next [26].
There is no smooth continuum limit of such an oscillating function. It
only becomes well-defined if every second lattice point is discarded, which
again shows that the even and odd sublattices have independent solutions.
The naive action can therefore not even be used to describe 16 degenerate
fermion species.
One relatively simple solution is to somehow include terms of the form

1
a(1 − cos(apµ)) to the eigenvalue (1.17), which becomes 0 for the proper
pole at pµ ≈ 0, but gives a non-vanishing contribution that diverges in the
continuum limit for apµ ≈ π. Thus the doublers become heavy and do not
contribute as relevant degrees of freedom. Such an addition is achieved by
the so-called Wilson Dirac operator

DW
m = m+

∑
µ

γµ∇µ −
a

2
∑
µ

∆µ

=
(
m+ 4

a

)
− 1

2a
∑
±µ

(1− γµ)Uµ (1.18)
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with

∆µ = 1
a2 (U−µ − 2 + Uµ)

discretizing the second derivative f ′′(x). Like the naive Dirac operator,
the Wilson Dirac operator is also γ5-Hermitian such that the determinant
becomes real. For large enough mass m, it will also be positive.
Even though Wilson fermions have been very successful in lattice QCD

calculations, they are unable to adequately capture consequences of chiral
symmetry. The reason is that even in the massless case the essential
relation

{γ5, D} = 0

is broken by the Wilson term and only restored in the continuum limit.
At finite lattice spacing, there is no symmetry of the lattice action that
corresponds to the axial symmetry in the continuum.
There is a famous no-go theorem by Nielsen and Ninomiya [30] that

prohibits any simple doubler-free and chirally symmetric fermion lattice
discretization. In the next chapter, another solution that keeps chiral
symmetry at least partially is presented, followed by a discussion of overlap
fermions, which implement exact chiral symmetry at the cost of a certain
locality property.
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2.1 The Staggered Fermion Action
A solution to the doubling problem that preserves at least some subgroup
of chiral symmetry even at finite lattice spacing is given by staggered or
Kogut-Susskind fermions [31]. It attacks the problem of doublers from a
different angle, namely by changing the effective lattice spacing for the
fermion fields to b = 2a so it is possible to use a symmetric difference
approximation of the first derivative that also uses the same distance. This
couples even and odd lattice sites of the finer lattice with lattice spacing a
in such a way that no solutions of the fermion propagator involves factors
that flip sign from one lattice site to the next [26], ensuring a sensible
continuum limit of all degrees of freedom.
This is achieved by defining a fermionic theory on a coarse lattice Λ′

with lattice spacing b = 2a that is doubler-free and has a remainder of
chiral symmetry, and distributing the degrees of freedom of each point n′
on Λ′ over the hyper cube of the finer lattice Λ that consists of the points
n = 2n′ + ξ with ξµ ∈ {0, 1} and is therefore attached to n′. Since there
are 16 = 24 points in such a hyper cube and 4×3×Nf degrees of freedom
for one lattice site corresponding to Dirac, color and flavor components,
this redistribution does not affect the color but it is necessary to have at
least Nf = 4. Staggered fermions therefore by default describe 4 flavors
with degenerate masses, which in this context are called tastes.

Denoting the coarse fermion fields by q̄tα and qtα with taste t and Dirac
component α, the Dirac operator has the form

Dst,c
m = m+

∑
µ

γµ∇2µ −
b

2
∑
µ

Tµ∆2µ (2.1)

such that the action becomes
S = b4

∑
n′,m′∈Λ′

q̄(n′)Dst,c
m (n′|m′)q(m′).
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2 Chiral Fermions on the Lattice

This is similar to the Wilson operator except for the operator Tµ which
acts on Dirac and taste components and will determine how much of chiral
symmetry is still intact. The operators ∇2µ and ∆2µ are versions of the
discretized derivative operators on Λ′, so they involve the difference b
instead of a.
The derivation of the staggered formulation usually starts with a naive

Dirac operator and takes linear combinations of the Dirac components
within a hyper cube such that the Dirac operator becomes diagonal in
Dirac space. Then, all but one of the Dirac components are omitted,
giving the staggered operator

Dst
m(n|l) = mδnl +

∑
µ

ηµ(n)∇µ(n|l) (2.2)

with

ηµ(n) =
∏
ν<µ

(−1)nν

taking the role of γµ. Recombining these components to four tastes with
four Dirac components that live on the coarse lattice then gives (2.1), with

Tµ = γ5τ5τµ.

Here, τµ and τ5 are the complex conjugates of γµ and γ5, but acting on
the tastes instead of the Dirac components. The details of this derivation
are omitted here because it becomes quite technical and can be found in
any of the introductory text books that were cited in earlier chapters.
A continuum theory with four tastes or flavors would be invariant under

SUV (4)×SUA(4) rotations with the exception of the anomaly, but the taste
mixing term breaks most of the vector as well as axial symmetries. There
remains one vector symmetry generated by 1 and one axial symmetry
generated by γ5τ5 because of {Tµ, γ5τ5} = 0, so the staggered action is
invariant under UV (1)×UA(1). This axial symmetry is not to be confused
with the anomalous UA(1), which is generated by γ5. The staggered action
does not have an anomalous symmetry but instead a genuinely unbroken
remaining axial symmetry that allows some of the features of QCD in the
chiral limit to be studied with staggered fermions. In the continuum limit,
the taste breaking term vanishes and full chiral symmetry is restored.
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If the non-interacting staggered action is written in momentum space
by Fourier transforming the fermion fields, the result becomes [26]

Dst
m(p) = i

∑
µ

γµ sin (bpµ/2) +m,

which demonstrates that the staggered formulation has no doublers be-
cause for bpµ ∈ [−π, π] there is only one value where sin(bpµ/2) vanishes—in
contrast to naive fermions, where this factor is instead sin(apµ) and has
an additional zero at apµ = π. In this form, the action is in fact invariant
under the full vector and axial symmetries, but the derivation requires
a change of variables that is local in momentum space but in coordinate
space mixes fields that are far apart. It is therefore possible to write the
staggered action in a form where full chiral symmetry is preserved, but
the action is then no longer ultra-local (only involving a finite number of
points in the neighborhood of each point) and not even local (|D(n|m)|
falling exponentially with |n−m|).

Although the staggered formulation only allows the simulation of fermi-
ons that come in degenerate groups of four tastes, it is possible to cir-
cumvent this restriction with a trick that is not unquestionable. It builds
on the observation that it is easy to replace a specific particle that is
described by a Lagrange density by a multiplet of n independent clones.
For this it is only necessary to add an additional index that distinguishes
these clones and take the sum over the original contributions to the ac-
tion as new action. In the case of fermions, this has the effect of raising
the fermion determinant to the power n. The idea is now to take the
staggered fermion determinant to the power 1/4 (or, in order to describe
two degenerate quark flavors, 1/2). Since the determinant is not calculated
explicitly but translated into a path integral for pseudofermions, this has
the effect of changing the pseudofermion action by taking advantage of
det[Dm]x = det[Dx

m]. If the four tastes were completely independent, this
would have the effect of reducing this degeneracy and only describing one
quark species. Since at non-vanishing lattice spacing the tastes are mixed
by the Wilson-like term in (2.1), it is not clear if this rooting has the
desired effect. However, in practice it has been very successful.
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2 Chiral Fermions on the Lattice

2.2 Exact Chiral Symmetry on the Lattice from
Blocked Continuum Fields

In order to implement exact chiral symmetry in a lattice formulation of
QCD even relatively far from the continuum limit, a systematic way is
provided by the blocking procedure. It was first used in statistical me-
chanics systems and extended by K. G. Wilson [32] to systematically derive
effective lattice actions for gauge field theories from their continuum coun-
terparts. In 1982 [33], P. H. Ginsparg and K. G. Wilson used this approach
to derive the form that chiral symmetry should take on a lattice, which
resulted in the famous Ginsparg-Wilson (GW) equation. It is possible to
use the same approach with any internal symmetry of a quantum field
theory [15]. This presentation follows that of Gattringer and Lang with
some additional remarks.
Starting from continuum QCD with fermionic fields φ(x) and φ̄(x) and

generator-valued gauge fields Aµ(x), the goal of the blocking procedure
is to replace these by lattice degrees of freedom with an effective action
that gives the same partition function. As an intermediate step, blocked
variables φB(n), φ̄B(n) and UBµ (n) are defined as appropriate combinations
of the continuum fields. For each given configuration they provide an
appropriate averaging of the continuum degrees of freedom around a lattice
point. They are, however, not used directly for the effective action, which
instead takes the form

e−Seff[U,ψ,ψ̄] =
∫
D[A, φ, φ̄]K[U,ψ, ψ̄;UB, φB, φ̄B]e−S[A,φ,φ̄]. (2.3)

Here, S[A, φ, φ̄] is the continuum action andK[. . . ] is a kernel coupling the
lattice degrees of freedom to the blocked fields. The action can also include
terms that couple observables to source fields such that expectation values
can be obtained in the usual way, namely by derivatives of the logarithm
of the partition function with respect to the source fields. In order for the
partition function to describe the same system, the kernel has to become
constant when integrated over the lattice fields. For a simple identification
of the lattice and blocked variables, it takes the form of a delta function.
However, it is easier for the calculation if this relation is smoothed and the
variables are allowed to fluctuate around their blocked counterparts. In
the case of gauge links, this also opens some freedom in the construction of
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2.2 Exact Chiral Symmetry on the Lattice from Blocked Continuum Fields

the blocked variables because they do not need to be restricted to elements
of the gauge group. The coupling can then be chosen in such a way that
the lattice fields fluctuate smoothly around some projection of the blocked
fields onto the group manifold.
Specifically, a blocked link variable connecting the points n and n+ µ̂—

where µ̂ is the unit vector in direction µ and the lattice spacing is set to 1—
that maintains gauge invariance can be obtained by a linear combination
of gauge transporters connecting n and n+ µ̂ along every possible path,

UBµ (n) =
∫
Cn,n+µ̂

dpP exp
(
i

∫
p
dxA

)
.

Here, Cn,n+µ̂ is the set of all continuous paths connecting the endpoints
and the measure dp gives different weights for each path – a sensible choice
should assign the same weight for different paths that are related to each
other by symmetry transformations and will give most weight to the paths
in a vicinity around the most direct one. As a sum of gauge transporters,
the blocked gauge field transforms under local gauge transformations Ω(x)
as

UBµ (n)→ Ω(n)UBµ (n)Ω(n+ µ̂)†,

which is the desired transformation of a lattice link connecting these sites.
However, since a linear combination of special unitary matrices in general
does not retain this property, the gauge part of the kernel becomes more
involved. This is, however, not important for this discussion since the
goal is to describe a fermionic symmetry and the gauge field—continuum
or lattice—can be regarded as a fixed background for this.
For the fermion fields, a similar approach with a possibly different path

measure d′p gives the general form

φB(n) =
∫

dxωnxφ(x) =
∫

dx
∫
p∈C(x,n)

d′pP exp
(
i

∫
p
dyA

)
φ(x)

φ̄B(n) =
∫

dxφ̄(x)ω†xn

The fermionic part of the coupling kernel is simply given by

KF = e−ξ(ψ̄−φ̄B)(ψ−φB),
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2 Chiral Fermions on the Lattice

resulting in

e−ψ̄Dψ =
∫
D[φ, φ̄]e−ξ(ψ̄−φ̄B)(ψ−φB)−SF [φ,φ̄], (2.4)

which defines the lattice Dirac operator D. In general, instead of the
prefactor ξ it is also possible to insert a nontrivial matrix inside the scalar
product in the exponent, but in this case it is sufficient to only consider the
case where this matrix is proportional to 1. The magnitude of ξ controls
how far the lattice fields are allowed to deviate from the blocked fields.
The next step is to regard an internal global symmetry of the fermionic

fields that takes the form

φ′ = eiεTφ φ̄′ = φ̄eiεT̄ (2.5)

in the continuum and

ψ′ = eiεMψ ψ̄′ = ψ̄eiεM̄ (2.6)

on the lattice. The generators T and T̄ are independent and given and
the goal is to derive the corresponding lattice generators M and M̄ . In
order to achieve this, the generating function on the lattice,

W [J, J̄ ] =
∫
D[ψ, ψ̄]eψ̄J+J̄ψ−ψ̄Dψ = det [D] eJ̄D−1J (2.7)

is defined and its path integral is evaluated by a change of variables to use
ψ′ and ψ̄′ instead of ψ and ψ̄:

W [J, J̄ ] =
∫
D[ψ′, ψ̄′]e−ψ̄′Dψ′+ψ̄′J+J̄ψ′

=
∫
D[ψ, ψ̄] det

[
eiεM

]
det

[
eiεM̄

]
e−ψ̄Dψ+ψ̄eiεM̄J+J̄eiεMψ

=
(
1 + iε tr

[
M̄ +M

]
+O(ε2)

)
W
[
eiεM̄J, J̄eiεM

]
(2.8)

Here, it was used that the lattice action ψ̄Dψ is invariant under the sym-
metry (2.6) and the Jacobi determinants were expanded to first order in
ε.

The same calculation can be performed with a change of variables using
the continuum symmetry (2.5), but first the generating function has to
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2.2 Exact Chiral Symmetry on the Lattice from Blocked Continuum Fields

be expressed by a continuum path integral. This is done by inserting
(2.4) into (2.7) and performing the integral over ψ and ψ̄. Using the
abbreviations η = ξ−1J + φB and η̄ = ξ−1J̄ + φ̄B, the result is

W [J, J̄ ] =
∫
D[φ, φ̄]e−SF [φ,φ̄]−ξφ̄BφB

∫
D[ψ, ψ̄]e−ξ(ψ̄ψ−η̄ψ−ψ̄η)

=
∫
D[φ, φ̄]e−SF [φ,φ̄]−ξφ̄BφB

∫
D[ψ, ψ̄]e−ξ(ψ̄−η̄)(ψ−η)+ξη̄η

= Ceξ−1J̄J
∫
D[φ, φ̄]e−SF [φ,φ̄]+J̄φB+φ̄BJ ,

where C =
∫
D[ψ, ψ̄]e−ξψ̄ψ is an irrelevant constant. Since the blocked

fields φ̄B and φB are linear combinations of the continuum fields, their
transformation is the same, giving

W [J, J̄ ] = Ceξ−1J̄J
∫
D[φ′, φ̄′]e−SF+J̄φ′B+φ̄′BJ

=
(
1 + iεA+O(ε2)

)
eξ−1(J̄J−J̄eiεT eiεT̄ J)W

[
eiεT̄J, J̄eiεT

]
. (2.9)

The possible anomaly from the change of integration measure has been
written as A.
Equating (2.8) and (2.9) and using the explicit form of (2.7) for the

remaining occurrences of W , the result is(
1 + iε tr

[
M̄ +M

]
+O(ε2)

)
eJ̄eiεMD−1eiεM̄J

=
(
1 + iεA+O(ε2)

)
eξ−1(J̄J−J̄eiεT eiεT̄ J)+J̄eiεTD−1eiεT̄ J .

For J = J̄ = 0, this implies

A = tr
[
M̄ +M

]
.

Expanding the exponentials in ε, on the other hand, gives to first order

MD−1 +D−1M̄ = −ξ−1(T + T̄ ) + TD−1 +D−1T̄ . (2.10)

Multiplying this equation with D from the left as well as from the right
now yields the generalized Ginsparg-Wilson equation:

DT + T̄D = ξ−1D(T + T̄ )D (2.11)
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Here the relation DM + M̄D = 0 has been used, which follows from

ψ̄′Dψ′ = ψ̄eiεM̄DeiεMψ != ψ̄Dψ

by expansion to first order in ε.
The magnitude of the anomaly can also be obtained directly from (2.10),

namely by multiplying with D and taking the trace:

A = tr
[
(T + T̄ )(1− ξ−1D)

]
.

There are different solutions to (2.10) used in the literature, all having
the form

M = T − ξ−1GD M̄ = T̄ − ξ−1DḠ

with G+ Ḡ = T + T̄ , but with different choices of G and Ḡ.
In the specific case of chiral symmetry, the axial rotation is given by

T = T̄ = γ5F with F ∈ u(Nf ) mixing the different flavors, which (with
ξ = 2r and restricting to the case where D is diagonal in flavor space)
results in the Ginsparg-Wilson relation

{D, γ5} = 1
r
Dγ5D. (2.12)

The anomaly is given by A = −1
r tr[γ5D] for F = 1, while it vanishes if

F is a generator of SU(Nf ) because then tr [F ] = 0. Therefore, only the
singlet axial symmetry UA(1) is anomalously broken. The axial rotation
on the lattice is of the form

ψ′ = eiεγ5(1−ζ/rD)Fψ ψ̄′ = ψ̄eiεF (1−(1−ζ)/rD)γ5 (2.13)

with ζ usually chosen to be 0, 1/2 or 1. In order to restore ψ̄′ = ψ̄ and
ψ′ = ψ at ε = 2π, the operators in the exponent should give 1 when
squared because then

eiεA = cos(ε) + i sin(ε)A.

Assuming F 2 = 1, this is the case for ζ = 0 and ζ = 1 because then[
γ5

(
1− ζ

r
D

)]2
= 1− ζ

r
γ5{D, γ5}+ ζ2

r2 γ5Dγ5D = 1,

and similarly [(1− ζ/rD)γ5]2 = 1.
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2.3 The Ginsparg-Wilson Equation and its
Consequences

The purpose of this section is to give an overview over the consequences
of the exact implementation of chiral symmetry on the lattice provided by
a fermion action that implements the Ginsparg-Wilson (GW) equation

{D, γ5} = 1
r
Dγ5D.

Most of the results can also be found in textbooks, p.e. [15, 27], but
sometimes the derivations are omitted there.
The parameter r fixes the scale of the Dirac operator, i.e., if a solution

to the GW equation is multiplied by a factor α, the new Dirac operator
obeys a GW equation where r is replaced by αr. One possible choice
is to match the naive continuum limit of non-interacting fermions to the
corresponding continuum Dirac operator, which will be done later for the
overlap solution.

2.3.1 Spectrum of the Ginsparg-Wilson Dirac Operator
In addition to the GW equation, Dirac operators are usually constructed
such that they are γ5-Hermitian, i.e. D† = γ5Dγ5. This property is shared
by continuum fermions as well as Wilson and staggered fermions and the
later discussed overlap solution to the GW equation inherits it from the
Wilson Dirac operator. Multiplying the GW equation by γ5 from either
side then implies

D +D† = 1
r
D†D = 1

r
DD†. (2.14)

It follows that a γ5-Hermitian Dirac operator obeying the GW equation
is normal, i.e. [D,D†] = 0, which implies that it has an orthonormal set of
eigenvectors that form a basis for the vector space. Also, eigenvectors of
D with eigenvalue x+ iy can be diagonalized in such a way that they are
also eigenvectors of D†, with eigenvalue x− iy. Plugging this into (2.14),
this implies

2rx = x2 + y2

⇔ (x− r)2 + y2 = r2,
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i.e., the eigenvalues lie on a circle in the complex plane with radius r and
center r + 0i. They can therefore be parametrized as λ = r

(
1− e−iφ

)
with φ ∈ (−π, π]. The real valued rφ is often used instead of the complex
valued λ. The mapping between these representations is bijective and
eigenvalues near zero are mapped onto values of rφ near zero, with λ ≈ irφ.
The histograms and other visualizations will use this mapping, although
the eigenvalue is usually still denoted by λ. There should not be any
confusion about which representation is used in any given context—if an
axis is labeled by λ and the values on it are real, these are actually the
values of rφ, since the actual eigenvalues do not take real values except at
0 and 2r.

The spectrum can be further classified by introducing the operator H =
γ5D. It is Hermitian because of

H† = D†γ5 = γ5Dγ5γ5 = H

and the GW equation is equivalent to

{γ5, H} = 1
r
H2. (2.15)

Starting with an eigenvector x of H with eigenvalue ε, x and γ5x span
a subspace U that is one-dimensional if x is also an eigenvector of γ5
and two-dimensional otherwise. In the second case, it has to contain two
orthogonal eigenvectors of H since U is invariant under the application of
H:

Hx = εx ∈ U

Hγ5x =
(1
r
H2 − γ5H

)
x

= −εx + ε2

r
γ5x ∈ U

A vector orthogonal to x is constructed by the Gram-Schmidt procedure
as

ỹ = (1− xx†)γ5x = γ5x− (x†γ5x)x
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which results in

Hỹ =
(1
r
H2 − γ5H

)
x− εxx†γ5x

= ε

(
ε

r
x− γ5x− xx†γ5x

)
= −εỹ + ε

(
ε

r
− 2x†γ5x

)
x

Since ỹ has to be an eigenvector of H, this implies

χ ≡ x†γ5x = ε

2r ,

which yields the normalized eigenvector

y = ỹ
|ỹ| = γ5x− χx√

1− χ2

with eigenvalue −ε. The action of γ5 on these vectors can now be written
as

γ5x = ỹ + χx

γ5ỹ = x− χ (ỹ + χx) =
(
1− χ2

)
x− χỹ.

Since the eigenvalues of H in U are given by ε and −ε, H2 is constant on
U and commutes with γ5. Since they commute on all such two-dimensional
subspaces and also on the one-dimensional ones where γ5 and H have the
same eigenvectors, they commute on the whole vector space.
Being invariant under both γ5 and H, U also has to be invariant under

D = γ5H. U must therefore contain two eigenvectors of D and taking the
ansatz ψ = αx + βγ5x gives

Dψ = αεγ5x + βγ5

(1
r
H2 − γ5H

)
x

= ε [(α+ 2χβ) γ5x− βx]
!= λ (αx + βγ5x)

59



2 Chiral Fermions on the Lattice

Comparison of the coefficients in front of x and γ5x separately yields

(α+ 2χβ) ε = λβ −βε = λα

and, by elimination of λ,

0 = α2 + 2χαβ + β2

⇒ α = β

(
−χ± i

√
1− χ2

)
.

From this, the eigenvalues

λ± = εχ± iε
√

1− χ2

and eigenvectors

ψ± = β

((
−χ± i

√
1− χ2

)
x + γ5x

)
= β

√
1− χ2 (±ix + y)

= 1√
2

(y± ix) (2.16)

are obtained by appropriate choice of β.
One eigenvector of D in the subspace U can be obtained from the other

one by a simple application of γ5, although the phases are then different
than in (2.16). This can either be derived from (2.16) or directly from the
GW equation:

Dγ5ψ± =
(1
r
Dγ5D − γ5D

)
ψ±

= λ±
r
Dγ5ψ± − λ±γ5ψ±

⇒ Dγ5ψ± = rλ±
λ± − r

γ5ψ± = ελ±
2χλ± − ε

γ5ψ±

Therefore, γ5ψ± is an eigenvector of D with eigenvalue λ±
2χλ±−ε . Since the

subspace U is invariant under the application of γ5, this vector has to be
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the same as ψ∓ up to a phase and the eigenvalue has to be identical to
λ∓. The latter can be checked easily:

ελ±
2χλ± − ε

!= λ∓

⇔ ε(λ± + λ∓) = 2χλ∓λ±
⇔ 2χε2 = 2χε2

(
χ2 + 1− χ2

)
X

It also follows that the eigenvectors of D that come in such pairs have zero
chirality:

ψ†±γ5ψ± ∝ ψ†±ψ∓ = 0

If, on the other hand, the invariant subspace U is one-dimensional, the
corresponding eigenvector of H is also an eigenvector of γ5 and, therefore,
also of D. The eigenvalue of γ5 for this eigenvector is ±1, so

0 =
(
{γ5, D} −

1
r
Dγ5D

)
ψ = ±λ

(
2− λ

r

)
ψ.

This is only possible if λ = 0 or λ = 2r, i.e., for the real values of the
eigenvalue circle. Since tr[γ5] = 0, the number of righthanded (ψ†γ5ψ = 1)
and lefthanded (−1) eigenmodes of D has to be equal, but a priori they
can be distributed arbitrarily between zero modes and λ = 2r modes.
It turns out that no configuration with left- as well as righthanded zero
modes should be or has been observed, so if a configuration has n zero
modes, they all have the same chirality, which must be compensated by
the λ = 2r modes.
The reasoning is as follows. If a configuration had n+ righthanded and

n− lefthanded modes with n+ ≥ n−, it would not necessarily be distin-
guishable from a situation with n+ − n− righthanded and no lefthanded
modes, and n− pairs of accidental zero modes, i.e., pairs of modes char-
acterized by a two-dimensional invariant subspace U that just happens to
correspond to the eigenvalue ε = 0. Specifically, a pair of chiral modes
ψ+ and ψ− that have eigenvalue 0 can be replaced by the pair consisting
of 1√

2(ψ+ + ψ−) and 1√
2(ψ+ − ψ−), which have H-eigenvalues ±ε with

ε = 0, chirality 0 and can be obtained from each other by application of
γ5. However, such accidental zero modes can be continuously deformed

61



2 Chiral Fermions on the Lattice

into modes that have small but non-zero eigenvalues. Since a pair of near-
zero modes can take a continuum of values when disturbing the gauge
background infinitesimally, the probability of getting exactly zero is zero.
The same argument can not be made for the remaining zero modes

when there are no zero modes with opposite chirality left, since a shift to
a non-zero value would require a mode from λ = 2r to discontinuously
jump to a value near zero.
According to section 2.2, the chiral anomaly can be computed as

A = tr [2γ5(1− D/2r)]

= −1
r

tr [γ5D] .

The zero modes do not contribute to the trace and the contributions from
the modes in a non-zero pair cancel each other. The only contribution
comes from the λ = 2r modes and for n′+ righthanded and n′− lefthanded
modes it is given by

A = 2(n′− − n′+)

Since the total trace of γ5 is 0, the difference n′− − n′+ is equal to the
difference n+ − n− of right- and lefthanded zero modes, so the anomaly
can also be written as A = 2(n+ − n−). The topological charge of a
configuration is given by

Q = 1
2r tr [γ5D] = n− − n+

and the fact that it takes an integral value is another expression of the
fact that continuous deformations of the gauge fields can not change its
topological charge, i.e., they can not move a non-paired zero mode away
from zero. An exception is provided when the Dirac operator itself is non-
analytic, which is the case in special circumstances for the overlap solution
discussed in the next subsection.
To summarize, the eigenvalues of an operator that obeys the GW equa-

tion are given by

λ = 1
2r
(
ε2 + iε

√
4r2 − ε2

)
, (2.17)

where ε is the eigenvalue of H = γ5D. The zero modes can also be
included in this representation by ε = 0 and the ultraviolet modes at
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λ = 2r correspond to ε = ±2r, with the sign depending on their chirality.
Applying γ5 to a mode with nonzero imaginary part changes the sign of
ε, which turns λ into its complex conjugate.

2.3.2 Chiral Projections
As in the continuum, it is possible to split the fermion fields into left-
and righthanded fields that decouple in the massless limit. However, the
choice of projectors has to be adjusted and, specifically, it is necessary to
use different projections for fermion and antifermion fields.
In general, the split is done using pairs of projectors P± and P̄± with

P+ + P− = P̄+ + P̄− = 1, such that

ψ± = P±ψ ψ̄± = ψ̄P̄±

The requirement that the massless action splits into independent parts for
each chirality becomes

ψ̄Dψ = ψ̄+Dψ+ + ψ̄−Dψ−,

i.e., any mixing term ψ̄±Dψ∓ has to be zero, which is equivalent to

P̄±D = DP±. (2.18)

Introducing Γ = 2P+−1 and Γ̄ = 2P̄+−1, the projectors can be written
in the form P± = 1

2(1± Γ) and P̄± = 1
2(1± Γ̄) with

Γ2 = Γ̄2 = 1. (2.19)

(2.18) then becomes

(1± Γ̄)D = D(1± Γ)
⇔ DΓ− Γ̄D = 0.

Comparing with the Ginsparg-Wilson equation in the form

Dγ5 + γ5D −
1
r
Dγ5D = 0,
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a set of solutions is given by

Γ = γ5

(
1− η

r
D

)
Γ̄ =

(1− η
r

D − 1
)
γ5

Plugging these solutions into (2.19) in order to ensure that P± and P̄±
really are projectors, the result is

1 = Γ2 = γ2
5 −

η

r
γ5{γ5, D}+ η2

r2 γ5Dγ5D

= 1− η(1− η)
r2 γ5Dγ5D

and similarly for 1 = Γ̄2, allowing only η ∈ {0, 1}. Using, for example,
η = 0, the splitting into left- and righthanded fermions on the lattice is
therefore given by

ψ± = 1
2(1± γ5)ψ ψ̄± = 1

2 ψ̄(1∓ (1− D/r)γ5) (2.20)

2.3.3 Massive Ginsparg-Wilson Fermions
If chiral symmetry is to be incorporated on a fundamental level even
at nonvanishing lattice spacing, these left- and righthanded (i.e., chiral)
fermion fields are more fundamental than the Dirac fields. A symmetry
breaking mass term should therefore not be introduced as mψ̄ψ but rather
as mixing of left- and righthanded fields, i.e.

m
∑
±
ψ̄±ψ∓ = mψ̄

∑
±
P̄±P∓ψ

= m

4 ψ̄
(
(1 + Γ̄)(1− Γ) + (1− Γ̄)(1 + Γ)

)
ψ

= m

2 ψ̄
(
1− Γ̄Γ

)
ψ

= mψ̄ (1− D/2r)ψ.

The massive Dirac operator for one quark flavor with mass m is therefore
given by

Dm = D +m (1− D/2r) =
(

1− m

2r

)
D +m. (2.21)
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This has consequences for fermionic observables since the massive Dirac
operator enters the partition function

Z =
∫
D[U,ψ, ψ̄]e−SG[U ]−

∑
f
ψ̄fDmf ψf =

∫
D[U ]e−SG[U ]∏

f

det[Dmf ].

(2.22)

It has therefore a more involved mass dependence than in the continuum or
with Wilson or staggered actions. For example, since the chiral condensate
is used as a measure for chiral symmetry breaking, it should be defined
by the operator that couples to the mass, which after all is the term that
explicitly breaks chiral symmetry. Therefore,

Σ = 1
Nf

T

V

〈∑
±
ψ̄±ψ∓

〉
= 1
Nf

T

V

d
dm lnZ.

Since
d

dm det [A] = det [A] tr
[
A−1 d

dmA

]
for any invertible matrix A, such observables involve the shifted propagator

D̃−1 = D−1
m

d
dmDm

= D−1
m (1− D/2r) = D−1

m

(
1− Dm −m

2r −m

)
= 2r

2r −m

(
D−1
m −

1
2r

)
. (2.23)

Sometimes, the form

D̃−1 = 2r −D
2rDm

= 2r −D
(2r −m)D + 2rm

is more convenient. Interestingly, if acting on a zero mode of D, this gives
1/m as in the continuum, and if acting on a real mode at the other end
of the spectrum, i.e. λ = 2r, it vanishes. The second property would not
hold for (D +m)−1 or D−1

m . The inverse of the shifted propagator,

D̃ = 2rD −mD + 2rm
2r −D = 2rD

2r −D +m =: f(D) +m,
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2 Chiral Fermions on the Lattice

has a simplem-dependence, which simplifies the calculation of some traces.
Written in terms of the eigenvalues λ of D, where |λ|2 = ε2 and Re(λ) =

ε2/2r (cf. (2.17)), and which are either real with λ ∈ {0, 2r} or come in
complex conjugate pairs, the following relations hold:

f(0) = 0
f(2r) =∞

Ref(λ) = Re2rλ(2r − λ̄)
|2r − λ|2 ∝ 2rReλ− |λ|2 = 0

|f(λ)|2 = 4r2|λ|2

4r2 − 4rReλ+ |λ|2 = 4r2ε2

4r2 − ε2 .

For the chiral condensate, this results in

tr
[
D̃−1

]
=
∑
λ

1
f(λ) +m

= |Q|
m

+
∑

Imλ>0

f(λ̄) +m+ f(λ) +m

|f(λ) +m|2

= |Q|
m

+
∑

Imλ>0

2m
|f(λ) +m|2

=
∑
λ

m

|f(λ) +m|2

=
∑
ε

m
4r2

4r2−ε2 ε
2 +m2

and therefore

Σ = T

V

〈∑
ε

m

m2 + 4r2

4r2−ε2 ε
2

〉
. (2.24)

The continuum limit can be obtained by r →∞, which restores the anti-
commutation relation {γ5, D} = 0 from the Ginsparg-Wilson relation and
the familiar form

Σcont. =
∫

dλmρ(λ,m)
m2 + λ2 for ρ(λ,m) = T

V

〈∑
ε

δ(λ− ε)
〉
.
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The mass dependence of ρ(λ,m) is hidden in the fermion determinant that
is used to evaluate 〈· · · 〉. In the chiral limit, m

m2+λ2 → πδ(λ), which under
the assumption that the limit can be taken separately gives the famous
Banks-Casher relation

lim
m→0

Σcont. = πρ(0, 0). (2.25)

There is a complication in translating meson operators like δi(x) =
ψ̄(x)τ iψ(x) to a lattice with finite lattice spacing and exact chiral symme-
try because they are given by a scalar product but the spacetime position
is not summed over. Since the chiral projection for either ψ̄ or ψ is no
longer diagonal in the spacetime coordinates, δi(x) will, for example, in-
volve ψ̄ at all lattice points but ψ only at x. δi(x) thus becomes dependent
on the choices that are made for the parameters in the chiral rotation and
the projections to left- and righthanded fields (namely, if the relation for
ψ or that of ψ̄ is modified from its continuum form). This becomes even
worse if πi(x) is constructed such that it results from an axial rotation of
δi(x).
However, these complications vanish if the susceptibilities are consid-

ered, which can be written in terms of complete scalar products including
an integral over x (cf. (1.12)). The delta meson susceptibility is then
modified similarly to the chiral condensate, giving

χδ = 1
2
T

V

〈
ψ̄τ i(1− D/2r)ψψ̄τ i(1− D/2r)ψ

〉
= 1

2
T

V

〈(
tr
[
τ iD̃−1

])2
− tr

[(
τ iD̃−1

)2
]〉

= −T
V

〈
tr
[
D̃−2

]〉
.

Here, τ i is again a generator of SU(Nf ) where Nf is the number of flavors
that are considered to be approximately massless and can therefore be
mixed by an axial transformation. The spinor ψ can contain more flavors,
but τ i acting on these gives zero. τ iD is to be understood as direct product
between the flavor operator τ i and the one-flavor Dirac operator D.
In terms of the eigenvalues,

tr
[
D̃−2

]
=
∑
λ

1
(f(λ) +m)2 = − d

dm tr
[
D̃−1

]
.
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This could be written as a relation between χδ and Σ, but then some
care has to be taken that the derivative only affects the trace and not the
fermion determinant, which is also present in 〈. . . 〉.
Applying a chiral singlet rotation ((2.13) with ξ = 1 for simplicity) by

π/4 to ψ̄(1− D/2r)ψ results in

ψ̄′(1− D/2r)ψ′ = 1
2 ψ̄ (1 + iγ5) (1− D/2r) (1 + iγ5 (1−D/r))ψ

= 1
2 ψ̄(1 + iγ5)(1 + iγ5 − D/2r − iγ5D/2r)ψ

= 1
2 ψ̄(1 + iγ5)(1 + iγ5)(1− D/2r)ψ

= iψ̄γ5(1− D/2r)ψ.

The same result is obtained for the other possible choice, ξ = 0. The pion
susceptibility can therefore be written as

χπ = −1
2
T

V

〈
ψ̄τ iγ5(1− D/2r)ψψ̄τ iγ5(1− D/2r)ψ

〉
= −1

2
T

V

〈(
tr
[
τ iγ5D̃

−1
])2
− tr

[(
τ iγ5D̃

−1
)2
]〉

= T

V

〈
tr
[(
γ5D̃

−1
)2
]〉

= T

V

〈
tr
[(
D̃−1

)†
D̃−1

]〉
.

In the last step, it was used that the γ5-hermiticity of D propagates to
the shifted propagator D̃−1. In terms of the eigenvalues,

tr
[(
D̃−1

)†
D̃−1

]
=
∑
λ

1
|f(λ) +m|2

= 1
m

tr
[
D̃−1

]
,

implying

χπ = 1
m

Σ.

The measure for UA(1) restoration, ω = χπ−χδ, can therefore be written
as

ω =
〈( 1

m
− d

dm

)
tr
[
D̃−1

]〉
= −m

〈 d
dm

( 1
m

tr
[
D̃−1

])〉
= T

V

〈∑
ε

2m2(
m2 + 4r2

4r2−ε2 ε
2
)2

〉
. (2.26)
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In the continuum, this corresponds to

ωcont. =
∫

dλ 2m2ρm(λ)
(m2 + λ2)2 .

2.3.4 The Overlap Solution
Since a normal operator whose eigenvalues lie on a unit circle in the com-
plex plane has to be unitary, a Dirac operator obeying the Ginsparg-
Wilson equation can be written in the form

D = r(1 + V ) with V †V = 1.

The unitary operator V , on the other hand, can be written as the sign
function of some normal kernel W , i.e.

V = sgn(W ) = W√
W †W

.

Since such a construction is numerically very demanding (cf. section 3.1),
it is important to ensure that a GW Dirac operator actually is an im-
provement over simpler schemes.
One property that is easy to obtain is γ5-hermiticity. In order to ob-

tain a γ5-Hermitian Dirac operator, it is sufficient to choose W to be
γ5-Hermitian, which implies that K = γ5W is Hermitian and the Dirac
operator can be written as

D = r(1 + γ5σ) = r

(
1 + γ5

K√
K2

)
.

Since σ2 = 1 as well as γ2
5 = 1, this also ensures the Ginsparg-Wilson

equation:

{γ5, D} −
1
r
Dγ5D = r (2γ5 + σ + γ5σγ5 − (1 + γ5σ)γ5(1 + γ5σ)) = 0

D should also be local in the sense that |D(n|m)| falls exponentially
with |n−m|, which ensures a fixed interaction length in lattice units and
an infinitesimal interaction length in physical units when the continuum
limit is performed. Because of the square root in the denominator, it will
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not be ultra-local, i.e., only involving a few lattice points in the immediate
neighborhood. But since the sign function is defined by its polynomial
expansion, a good way to start would be to demand ultra-locality fromW .
The overlap solution to the GW equation consists of choosing W = DW

−M ,
i.e., the Wilson Dirac operator with negative mass (cf. section 1.6), and
its locality has been analyzed in detail in [34].
Additionally, the Dirac operator should be free of doublers and repro-

duce continuum physics in the continuum limit, which at least in the
non-interacting case can be easily demonstrated for the overlap solution.
In momentum space, the free Wilson Dirac operator is given by

W ∝
∑
µ

(1− cµ + iγµsµ)− aM

with cµ = cos(apµ) and sµ = sin(apµ). If the momentum is in the vicinity
of one of the poles of the naive Dirac propagator, i.e. apµ = πnµ+εµ with
nµ ∈ {0, 1} and n =

∑
µ nµ, an expansion in εµ gives

cµ = 1− 2δ1nµ +O(ε2)
sµ = (1− 2δ1nµ)εµ +O(ε3)

For the check that there are no doublers, only the constant terms are of
interest. In this case the overlap operator becomes

D = r

(
1 + 2n− aM
|2n− aM |

)
=
{

0 2n < aM
2r 2n > aM

In order for the Dirac operator to vanish at the proper pole (n = 0) but
not at the doublers (n ≥ 1), the value of aM has to be between 0 and 2.
Additionally, r should be of order 1/a in order for the doublers to decouple
in the continuum limit.
For the comparison with the continuum Dirac operator, the linear terms

have to be kept but it is possible to restrict the calculation to the proper
pole. Omitting the summation sign, this gives

W ∝ −M + iγµpµ +O(p2)
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and, therefore,

D = r

(
1 + −M + iγµpµ√

M2

)
+O(p2)

= r

M
iγµpµ +O(p2).

The correct continuum limit iγµpµ is therefore obtained with r = M .
Since the mass of the doublers is given by 2r, the best result is obtained
by choosing aM close to 2, but since interactions can disturb the exact
border where the doublers become massless again, it must not be too close.
Usually, aM = 1.8 was used.

As discussed before, a continuous deformation of the gauge field can not
change the topological charge unless the Dirac operator is non-analytic.
This will be the case if M is chosen in such a way that K2 has zero
modes, in which case the sign function becomes ill-defined. Specifically,
if M is changed continuously and the lowest eigenvalue of K2 touches
zero and rises again to some non-zero value, the topological charge will in
general have changed. Numerically, an eigenvalue of K2 that is close to
zero makes the approximation of the sign function difficult and results in
a badly satisfied Ginsparg-Wilson equation unless the eigenmodes of K2

are computed to a very high precision. As will be discussed in section 3.1,
the lowest eigenvalues of K2 were computed before the spectrum of the
overlap operator, so if the lowest eigenvalue turned out to be exceptionally
small, aM was changed to a value of, for example, 1.7, and the Wilson
spectrum was recomputed.
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3 Algorithmical and Numerical
Details

3.1 Setup
The gauge configurations used in this work were created with dynamical
staggered fermions with two light quark flavors and one heavier strange
quark flavor, using an improved action called Highly Improved Staggered
Quarks (HISQ) [35]. This action is constructed such that the effects of
the taste mixing term in the standard staggered action are suppressed,
which eliminates many O(a2) lattice artifacts. The gauge action has also
been improved by further closed gauge loops in addition to the simple
plaquettes in (1.15) in order to reduce discretization errors. While the
HISQ discretization scheme has been very successful for finite temperature
studies and even allows relatively small quark masses, at finite lattice
spacing there is no clear connection between its infrared modes and its
topological structure and unless the continuum limit is already taken, the
chiral symmetry is not the same as in the continuum and the chiral limit
can not be readily taken. That is why the topological content was instead
probed using the overlap operator, which has a clear index theorem and
a well-defined chiral symmetry corresponding to the continuum even at
finite lattice spacing.
An overview over the used gauge ensembles is given in table 3.1. Most of

the gauge configurations were created by the HotQCD collaboration [16].
They have lattice sizes of 323 ·8 or 243 ·6 with temperatures close to Tc, at
1.2Tc and at 1.5Tc, where Tc is the pseudo-critical temperature as deter-
mined in [16]. The strange quark masses in these configurations are tuned
to their physical values, while the light quark masses are at ms/20, which is
slightly larger than the average of the physical up and down quark masses
of about ms/27. This results in a pion mass of 160 MeV instead of the
physical value of about 135 MeV. In addition, one set of configurations
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# N3
σ ·Nτ β ml/ms T [MeV] Nconf Nλ

1 243 · 6 6.150 1/20 170 120 100
2 323 · 6 6.150 1/40 162 90 200
3 323 · 8 6.445 1/20 170 120 100

4 243 · 6 6.341 1/20 205 110 50
5 323 · 8 6.608 1/20 200 120 50

6 323 · 8 6.800 1/20 240 160 50

Table 3.1: Lattice size, inverse coupling β, quark mass ratio, temperature, num-
ber of configurations and number of computed non-zero eigenmode pairs per
configuration for each ensemble.

near Tc with a smaller light quark mass of ms/40 was used that has been
produced by the Bielefeld-BNL collaboration [36]. It has a larger vol-
ume than the other configurations because the smaller light quark masses
imply a smaller pion mass of about 110 MeV and therefore a larger pion
wavelength, so the volume has to be larger in order for the ratio of spatial
extent to pion wavelength to remain large enough. The configurations of
this ensemble turned out to be very rough, slowing convergence to the
point that the computation of the spectrum was not feasible. To remedy
this, the configurations were subjected to two steps of HYP smearing in
order to remove ultraviolet fluctuations. This improved convergence speed
greatly but hopefully did not change any infrared behavior since only two
steps were used.

The computation of the infrared spectrum of the overlap operator was
done using the Kalkreuter-Simma Ritz algorithm, which will be discussed
in section 3.2. There are different possibilities to obtain the overlap spec-
trum (cf. section 3.3). For each configuration, the 50 lowest eigenvectors of
D†D have been computed, followed by a computation of Nλ eigenvectors
of the chirally projected operator P±DP± on a chirality that does not have
zero modes, with each eigenmode of P±DP± corresponding to an eigen-
mode pair of D. Nλ was chosen differently for the different ensembles,
depending on the size of the eigenvalues. The code was based on a C++
framework that has been developed by the Bielefeld lattice QCD group
over the last few years, called ParallelLatticeCode [37]. In section 3.4,
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some details about how this code was extended to facilitate the necessary
computations will be explained.
As discussed in section 2.3.4, the overlap operator is given by

D = r(1 + γ5σ)

with σ = K/
√
K2, K = γ5W and W = DW

−M being the Wilson Dirac
operator ((1.18)) with negative mass −M . In order to match the normal-
ization of the continuum Dirac operator, r and M have to be equal, but
for the computation of the eigenvectors the choice of r is irrelevant and
the eigenvalues as computed by different choices of r are trivially related.
The numerical implementation therefore simply used r = 1. The overlap
operator and its Hermitian conjugate can be written as D = 1 +WI(K2)
and D† = 1 + I(K2)W †, with I(K2) = 1/

√
K2. In order to evaluate I(K2),

the lowest n = 20 eigenvectors of K2 are treated explicitly and the rest is
approximated by a rational function. Denoting the eigenvectors and eigen-
values of K2 as ki and κi and using a rational function of order [m−1,m],
this results in

I(K2) ≈
n∑
i=1

1
√
κi
kik
†
i +Q(K2)

(
1−

n∑
i=1

kik
†
i

)

with Q(t) =
∑m−1
i=1 ait

i∑m
i=1 bit

i
=

m∑
i=1

ci
di + t

.

Q(t) is a Zolotarev rational function [38, 39], which means that the co-
efficients are chosen such that the maximal deviation from 1/

√
t on some

positive interval is minimized. The interval is chosen such that all eigen-
values of K2 can be found inside of it, with the exception of the lowest n,
which are treated explicitly and do not need to be included. The order m
of the Zolotarev function is chosen such that the maximal deviation over
the given interval is below the threshold of, for example, 10−9. This order
is not found analytically, but in a loop between some minimal and some
maximal value of m the corresponding Zolotarev coefficients and from
those the maximal deviation are computed, stopping once the deviation
is small enough.
The application of Q(K2) on a spinor x involves the solution of the set

of linear equations
(K2 + di)yi = x,
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such that Q(K2)x =
∑m
i=1 ciyi. These equations require multiple inver-

sions, each with the same operator but different shifts. Since the operator
is Hermitian, a conjugate gradient (CG) solver can be used, and since the
Krylov space for the different shifted operators is the same, they can in
fact be solved simultaneously by a multi-shift CG [40]. The number of
times the operator has to be applied to a spinor is then equal to the case
if only the smallest of the shifts di had to be solved and the other solutions
can be obtained by additionally performing some linear algebra. Since this
multi-shift inversion is the most time-consuming part of the calculation,
a highly optimized routine from the QUDA library [41] has been used,
which performs it on an Nvidia graphics card. A CPU implementation
has also been implemented as a cross-check, but even though the results
are essentially the same the CPU solution is far too slow to be used for
the actual calculation.

The explicitly treated lowest eigenvectors of K2 are also computed us-
ing the Kalkreuter-Simma algorithm. While this requires some additional
computing time, it greatly improves the convergence speed of the remain-
ing inversion. The reason is that the convergence speed is determined by
the conditioning number, i.e., the ratio of largest and smallest eigenvalue
of the operator that is inverted, where eigenvectors that are orthogonal to
the right hand side can be ignored. Since the lowest eigenvalues of K2 of-
ten show a rapid increase, such that the 10th or 15th eigenvalue is several
orders of magnitude larger than the 1st, subtracting those contributions
gives a large improvement. The interval where the Zolotarev function has
to match 1/

√
t is also further away from zero, considerably increasing the

lowest shift and often also decreasing the number of terms needed for the
approximation. Since the overlap operator has to be applied many hun-
dreds of times for any given configuration, the overhead of first computing
some Wilson eigenvectors is well invested.
For a random normalized spinor x, the numbers

x†(γ5D +D†γ5 −D†γ5D)x and 1− ‖σx‖2

give the deviation from the Ginsparg-Wilson relation and how well the
sign function is approximated. At the beginning of the overlap spectrum
calculation, these are computed in order to see if the approximation is good
enough. Values of the order O(10−8) or smaller turned out to give good
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results, with a spectrum that is consistent with the analytical expectations
(cf. section 3.3). If the values were considerably larger, the reason was
usually that the Wilson eigenvectors had not been determined well enough
or that the smallest Wilson eigenvalue was close to zero. The convergence
criteria of the multi-shift CG were also adjusted such that these deviations
were sufficiently small.

3.2 Kalkreuter-Simma Algorithm
For this work, the spectrum of multiple operators had to be computed.
The algorithm that was used for this was the Kalkreuter-Simma Ritz Con-
jugate Gradient algorithm, or shortly KS algorithm. It was first described
by Kalkreuter and Simma in [42]. This section will only give an overview of
the main idea; some detailed derivations that were sometimes also omitted
from the original paper can be found in [43].
The KS algorithm is a modification of a nonlinear conjugate gradient

(CG) algorithm. The original linear CG is used to solve the equation
Ax = b with some Hermitian operator A and some vector b in a large
vector space, or, equivalently, to find the vector x that minimizes the
quadratic function x†Ax−x†b− b†x. It is described in great detail in [44].
Here, the function that is to be minimized is instead given by

µ(x) = x†Ax

x†x
, (3.1)

which is called the Ritz function. If x is decomposed into contributions
from the different eigenvectors of A, the Ritz function can easily be shown
to be equal to a weighted sum over the eigenvalues, with weights deter-
mined by the coefficients. This weighted sum is minimized if the low-
est eigenvalue gives the only nonvanishing contribution, i.e., if x is the
eigenvector of A with the lowest eigenvalue. Minimizing µ(x) is therefore
equivalent to finding the eigenvector of A that has the smallest eigenvalue.
The nonlinear CG is an iterative algorithm that at each step produces

a candidate vector xi and a search direction pi. The next candidate xi+1
is constructed as the linear combination of xi and pi which minimizes
(3.1). The next search direction pi+1 is constructed from pi, xi+1 and the
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gradient µ′(xi+1), with

µ′(x) = ∂

∂x†
µ(x) = Ax− µ(x)x

x†x
. (3.2)

Since the Ritz function is invariant under rescaling of x, x is usually nor-
malized after each step, which simplifies some formulae. The exact choice
of the coefficients in the construction of pi+1 is somewhat involved. It
is partly taken from the linear CG, where that particular choice ensures
that the search directions that are encountered during the algorithm are
all A-orthogonal to each other, i.e., p†iApj = 0. This has the effect that
the candidate vector at each step minimizes the quadratic function within
the corresponding Krylov space, which grows larger with each step. In the
nonlinear case, the search directions instead need to be orthogonal with
respect to the Hesse matrix

µ′′(x) = 1
x†x

(A− µ− µ′x† − xµ′†),

which is not constant, so the orthogonality can only be exact if i and j are
not too far apart. The term proportional to xi+1 can be added without
breaking this property, since µ′′(xi+1)xi+1 = 0 by construction. It can,
however, be used to ensure that the search directions and the candidates
in each step are orthogonal to each other in the ordinary sense, which also
simplifies the calculation.

If the lowest eigenvector of A has already been found, the next one can
be obtained by a similar procedure with the addition that the search space
is restricted to the space orthogonal to the lowest eigenvector. By making
the initial candidate as well as each computed gradient orthogonal to all
already found eigenvectors, it is similarly possible to compute the next
eigenvector. In practice, it is not necessary to do these orthogonalizations
in each step. The original random candidate and its gradient should be
made orthogonal to the lower modes, but afterwards it is only necessary
to refresh the orthogonalization in regular intervals of a few dozen steps.
In that case, all occurring vectors should be orthogonalized instead of just
the gradient.
The improvement of Kalkreuter and Simma to this Ritz CG algorithm

is to break the computation into several steps, such that a lower eigen-
vector does not need to be computed to very high precision before higher
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eigenvectors are considered. For each vector, the algorithm spends some
time minimizing the Ritz function on the subspace orthogonal to lower
vectors until either a maximal number of steps is reached or the norm of
the gradient has fallen by a fixed ratio. Then the algorithm proceeds with
the next vector, until the desired number of vectors has been processed.
At the end of this KS step, linear combinations of the found vectors are
constructed such that they span the same vector space and such that the
matrix Mij = x†iAxj becomes diagonal. This ensures that contributions
belonging to lower eigenvectors which have not been picked up by the
corresponding candidates but have later been picked up by candidates
for higher eigenvectors are accordingly redistributed. These intermediate
diagonalizations are done using the Jacobi algorithm, which creates the
matrix Mij with the original vectors and iteratively replaces it by

M → GnMG†n

with Gn being a simple unitary matrix chosen such that the largest non-
diagonal element of M becomes zero, increasing the contribution of the
diagonal of M to its Frobenius-norm. The total unitary matrix that is
required to transform M from its original form to an essentially diagonal
form then can be used to rotate the vectors such that M is diagonal if
computed with the new vectors.
After these intermediate diagonalizations, the next KS step again starts

with the lowest vector and continues as before. From the change of an
eigenvalue estimate during one KS step and the drop of the gradient norm,
Kalkreuter and Simma were also able to determine a realistic error esti-
mate for each eigenvalue at the end of the step.
Since higher eigenvector estimates can pick up contributions that belong

to lower eigenvectors, which are then redistributed during the intermedi-
ate diagonalizations, it is usually more efficient to compute a few more
eigenvectors than are actually needed. These dummies are included in
the algorithm like all the other vectors, but their error estimates are not
included in the convergence criteria and at the end of the algorithm an
additional diagonalization without the dummies is performed and only the
original spinors are stored as results. Essentially, this means that n + m
Krylov spaces are searched in order to find the n lowest eigenvectors.
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3.3 Representations of the Spectrum
As was shown in section 2.3, the spectrum of the massless overlap Dirac
operator can be split into three subsets. There are n+ + n− modes with
Dirac eigenvalue zero and chiralities +1 and −1. A configuration with
righthanded as well as lefthanded zero modes occurs with probability zero,
so either n+ or n− is zero. Further, there are non-zero modes with eigen-
values that lie on the circle with |λ−r| = r. These come in pairs such that
for each eigenvector ψ with eigenvalue λ the vector γ5ψ is also an eigenvec-
tor, with the complex conjugate eigenvalue λ̄. These modes have chirality
zero. Finally, there are further real modes with λ = 2r. These can again
be diagonalized to have chiralities ±1, and like with the zero modes any
pair of modes with opposite chiralities can be combined to look like a pair
of non-zero modes, which will be shifted away from the real axis by any
small perturbation. The number of remaining exact λ = 2r modes that
can not be disturbed away from the real axis is the same as the number
of exact zero modes and their chiralities are opposite to theirs, such that
the total trace of γ5 is zero.
Since the conjugate gradient algorithm as well as its improved version by

Kalkreuter and Simma is only able to compute eigenvectors of Hermitian
operators, it is unable to work directly with D = Dov. The simplest exten-
sion would be to use the Hermitian operator γ5D, but its smallest eigenval-
ues are not related to the infrared modes of D but to modes near λ = 2r.
In fact, the different eigenmodes of D can be mapped to eigenmodes of
γ5D: a zero mode with Dψ = 0 will trivially also yield γ5Dψ = 0, a non-
zero mode pair (ψ, γ5ψ) with Dψ = λψ and Dγ5ψ = λ̄γ5ψ can be rotated
to give two eigenmodes of γ5D with eigenvalues ±|λ| and on the subspace
with Dψ = 2rψ diagonalization of γ5 yields modes with γ5Dψ = ±2rψ.
Since the KS algorithm computes the eigenvectors with the smallest eigen-
values, if applied to γ5D it would give modes with γ5Dψ ≈ −2rψ.
There are still multiple possibilities to create a Hermitian operator A

from the overlap operator such that its infrared modes can be derived from
the lowest modes of A. This section will discuss several possibilities with
their advantages and disadvantages.
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3.3.1 Direct Computation with the Squared Operator
The most direct possibility is to choose A = D†D. Since the overlap
operator is normal, there is a complete set of eigenvectors of D that are
also eigenvectors of D†. If Dψ = λψ for such an eigenvector, the complex
conjugate of

ψ†Dψ = λ

implies D†ψ = λ̄ψ. Applying A to this vector therefore gives the eigen-
value |λ|2, which with the representation (2.17) gives

|λ|2 =
∣∣∣∣ 1
2r
(
ε2 + iε

√
4r2 − ε2

)∣∣∣∣2 = 1
4r2

(
ε4 + ε2(4r2 − ε2)

)
= ε2.

Zero modes of D are therefore mapped onto zero modes of A, which are
the smallest modes of this operator. A pair of non-zero modes ψ, γ5ψ with
complex conjugate eigenvalues λ and λ̄ is mapped onto a pair of modes
that have the same eigenvalue |λ|2. In fact, because of this degeneracy
any linear combination is also an eigenvector of A and the KS algorithm
can not be expected to give exactly the eigenvectors of D. Instead, it will
in general compute a pair

x = cψ + zsγ5ψ y = z′(cγ5ψ − z̄sψ)

with some real non-negative coefficients c and s that obey c2 + s2 = 1 and
some phases z, z′ with |z| = |z′| = 1. There is no phase in front of cψ
because it can be absorbed into ψ, which only needs to be determined up
to a phase. x and y are also eigenvectors of A with eigenvalues ε2.
While ψ and γ5ψ have chirality zero, this no longer holds for x and y.

Instead,

χx ≡ x†γ5x = 2scRez χy = −2scRez.

Therefore, the chiralities will be some arbitrary numbers between −1 and
1 with equal magnitude and opposite sign. This expectation can be used
in addition to the error estimates of the eigenvalues from the KS algo-
rithm to decide if the algorithm has converged. In particular, it allows
to clearly distinguish the zero modes from the non-zero modes. Table 3.2
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n λn ∆λn χn

0 1.16 · 10−13 1.2 · 10−11 +1.000000
1 7.55 · 10−13 3.0 · 10−11 +1.000000
2 9.01 · 10−13 4.5 · 10−11 +1.000000
3 5.72 · 10−12 1.5 · 10−10 +1.000000
4 1.55 · 10−6 1.2 · 10−11 +0.987787
5 1.55 · 10−6 2.9 · 10−12 −0.987787
6 2.56 · 10−3 2.1 · 10−11 −0.971247
7 2.56 · 10−3 1.3 · 10−11 +0.971247
8 2.84 · 10−3 1.2 · 10−10 −0.112028
9 2.84 · 10−3 9.0 · 10−11 +0.112028

Table 3.2: Example output of Kalkreuter-Simma algorithm at last iteration for
configuration no. 129 of the 323× 8 ensemble at 1.5Tc. The ten lowest eigen-
values with their error estimates and chiralities are shown.

shows an example output of the algorithm, with four zero modes that are
clearly separated not only by having eigenvalues that are several orders of
magnitude lower than the following modes but also by showing the pat-
tern that the first four modes have chiralities very close to +1, while the
following modes have arbitrary chiralities but come in pairs with the same
eigenvalue and opposite chiralities.

In this example, the lowest pair of non-zero modes is in fact still well
separated in magnitude from the following modes. This is a near-zero
mode pair, which is the result of two zero modes with opposite chiralities
being disturbed away from the real axis as discussed above. These will
turn out to play an important role in keeping the axial symmetry broken
at high temperatures.

While for many applications the eigenvalues and eigenvectors of A =
D†D are sufficient, sometimes those of D are needed. Once the results are
well enough converged such that the topological charge is clearly visible
and the higher modes all come in pairs which are clearly separated from
other pairs1, it is possible to compute the necessary coefficients to undo
1 The following procedure does not work if there are further degeneracies in the non-
zero modes. While this does not occur for realistic configurations, it is a problem
with, for example, a non-interacting test run where the gauge links are set to unity.
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this rotation via ψ = cx − z̄′sy. In addition to the chiralities χx and χy,
the combination

χxy ≡ x†γ5y = z′(zc2 − z̄s2)

can also be easily computed. Its magnitude is in fact related to χx because
x and y span a subspace that is invariant under the application of γ5, so

|χxy|2 = x†γ5yy
†γ5x = x†γ5(1− xx†)γ5x = 1− χ2

x.

Therefore, these numbers yield two independent measurements, namely
χx and the phase of χxy, which are not enough to determine both missing
phases as well as s and c. Even though z is not needed for the recon-
struction of ψ, it is not possible to obtain z′ from just χx and χxy. Any
solution (z, z′, s, c) that is compatible with specific values of χx and χxy
can be transformed into infinitely many different solutions by changing
s, c and z such that the phase of zc2 − z̄s2 changes while its norm (and
therefore also χx) does not2. This change of phase can be absorbed by an
appropriate change of z′ such that χxy also does not change.
Therefore, it is necessary to at least apply D to one of the obtained

vectors in order to gain more information. Using Dψ = λψ and Dγ5ψ =
λ̄γ5ψ, it can be assumed without loss of generality that Im(λ) > 0—if
necessary, this can be achieved by swapping ψ and γ5ψ. Applying D on
x, the result is

Dx = cλψ + szλ̄γ5ψ = Re(λ)x+ i Im(λ)(cψ − szγ5ψ)
x†Dx = Re(λ) + i Im(λ)(c2 − s2)
y†Dx = −2iscz̄′ Im(λ).

From these two scalar products, z′, s and c can be determined. Namely,

y†Dx

|y†Dx|
= −iz̄′

and the complex number

α = Im(x†Dx) + i|y†Dx| = Im(λ)(c2 − s2 + 2isc)
2 The fact that this is possible can be checked by regarding partial derivatives of the
norm and phase with respect to the independent variables c and ϕ in z = eiϕ.
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gives √
α

|α|
=
√
c2 − s2 + 2isc = ±(c+ is).

This procedure is numerically stable unless the eigenmode pair is actu-
ally a pair of accidental zero modes, i.e. λ = 0. In practice, the near-zero
modes were far enough away from zero to give stable results. This was
checked by computing |r − ψ†Dψ|2 − r and |Dψ − ψψ†Dψ|2. These mea-
sure how well the obtained complex eigenvalue lies on the eigenvalue circle
and if ψ is indeed a good approximation to an eigenvector of D. If the
rotation was not performed correctly, these measures take much larger val-
ues than with the correct rotation, and the near-zero modes did not give
significantly worse results than higher modes. In fact, the above formulae
are chosen such that they are only sensitive to the imaginary part of the
eigenvalues and not to the real part. Since the real part is of order ε2

while the imaginary part is of order ε, it would be much more sensitive to
fluctuations because of the closeness to zero.
In order to save disk space, the rotated vectors were not archived to-

gether with the eigenvector results. However, the recomputation of the
phases takes quite some time because it requires the application of D.
As a compromise, only the complex values x†Dx and y†Dx were stored
and a separate program could be called whenever the rotated vectors were
needed which read these values and the eigenvectors of D†D from disk
and stored the eigenvectors of D without needing to apply the overlap
operator.
One disadvantage of using A = D†D is that each application of it re-

quires two applications of the overlap operator, which is the most time
critical part of the program. Using the Ginsparg-Wilson equation, it is
possible to rewrite

D†D = r(D +D†),

which still requires two applications but it is in principle possible to speed
this up if the multishift inverter that is part of the overlap Dirac operator
(cf. section 3.4) can be used on two right hand sides at the same time. This
will not save any arithmetic operations but might have better memory
reusage because the gauge field only needs to be loaded into cache once.
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However, the QUDA implementation that was used in this work did not
offer this possibility, which would anyhow be difficult to achieve on a
graphics card because it would require about twice as much memory on
the device. Since two spinors per shift are required for a multishift inverter,
a large portion of the device memory was already occupied.
Another problem of using D†D as the operator in the KS Ritz algorithm

is that it will find higher eigenvectors by essentially searching from scratch
with the only restriction that the search space is orthogonal to the lower
eigenvector candidates that have already been found. It does not take
advantage of the fact that some eigenvectors are related to each other,
namely that one non-zero mode can be constructed from its partner. It
is not straightforward to remedy this because it is not a priori clear how
many zero modes a given configuration has and thus which modes are
paired. Several attempts were made in this direction, two of which will
be discussed now. For the various comparisons, three configurations were
chosen from the 323 ·8 ensemble at 1.5Tc which were subjected to ten steps
of HYP smearing. These HYP smeared configurations will later be used
in an analysis of the effects of smearing on topological properties, but here
they are simply chosen because they are smoother and the application of
the overlap operator is therefore faster. The first configuration was chosen
such that it had neither zero nor near-zero modes, with only bulk modes
starting at µ = ε2

r2 = O(10−3). The second one had no zero modes, but
one near-zero mode pair at O(10−8). Finally, the third configuration had
two righthanded zero modes and two near-zero mode pairs at O(10−6) and
O(10−4). The stopping criteria in the several cases were usually chosen
such that each relative error for µ must be below 10−6 unless the absolute
error is already below 10−10.

3.3.2 Improvement of the Ritz Starting Candidates
Instead of trying to only compute a reduced set of vectors, i.e., only one of
each eigenvector pair, a simpler modification is achieved if all modes are
still computed but the would-be partners of already computed modes are
used to improve candidates for further modes. Specifically, at the start of
the Ritz minimization of the mode xn+1, a vector p is constructed from
xn, which is used to improve xn+1 by replacing it with x′n+1 = αxn+1 +βp
with α and β chosen such that x′n+1 is normalized and the eigenvalue
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estimate |Dx′n+1|2 takes the smallest possible value. As long as p is in
the subspace where the minimization of the eigenvalue estimate of xn+1 is
allowed, i.e., orthogonal to xm for any m ≤ n, this should not give worse
results than the original algorithm—if the additional information can not
be used to lower the eigenvalue estimate, xn+1 will stay unchanged.
The vector p is constructed by computing γ5xn and making the result

orthogonal to xm for all m ≤ n + 1. Since the subspace that is spanned
by a non-zero mode pair is invariant under the application of γ5, this will
give the partner of xn if xn is already well converged but its partner is
not yet found. If the norm of p is below some threshold, this means that
γ5xn does not contain any helpful contribution outside of the subspace
that is spanned by the vectors up to xn+1. This can happen in several
cases, most of which just mean that the vectors are already converged well
enough. First, xn might be a zero mode, which is also an eigenvector of γ5.
Second, the partner of xn might be xn−1 and both are already determined
very well. Third, xn+1 might indeed be the partner of xn, but since
they are already determined very well, they already span the correct two-
dimensional eigenspace of D†D. Finally, there is also the possibility that
xn is an accidental chiral mode with x†nγ5xn ≈ ±1. This can happen if it is
already mostly converged since the two-dimensional non-zero eigenspace of
D†D also contains a left- and a righthanded mode, but it can also happen
before that. The worst case should be that no improvement takes place
and the algorithm converges as fast as the unimproved version.
In figs. 3.1 to 3.3, the original algorithm is compared with this improved

version in terms of how many applications of the overlap operator are re-
quired to get 50 eigenvalues to converge. The runs included two additional
dummy modes which were not included in the error estimates. Each mode
is plotted as one line, with horizontal sections indicating that the algorithm
was working on a different mode at that time or that the values did not
change visibly any more. In order to visualize the convergence, at the end
of each Kalkreuter-Simma step the average of the error estimates over the
50 modes is shown. The relative errors are also included, but since they
do not become small for the zero modes, the arithmetic mean would be
dominated by these modes in a simple average. Instead, the geometric
mean is shown.
It can be seen that including information from the current estimate of

the next lowest mode at the beginning of each Ritz part indeed improves
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Figure 3.1: Convergence of the 50 lowest eigenvalues of a HYP-smeared config-
uration at 1.5Tc that turned out to have neither zero nor near-zero modes.
The first plot shows the original Kalkreuter-Simma algorithm with A = D†D
and the second shows the version with improved starting vectors as described
in section 3.3.2. On the x-axis, the number of applications of the overlap
operator in the Ritz part of the algorithm is denoted and the lines mark the
evolution of each eigenvalue estimate. Additionally, the arithmetic mean of
the error estimates as well as the geometric mean of the relative errors are
plotted. It should be noted that the x-axis has a different range for the two
cases. 87
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Figure 3.2: Convergence of the 50 lowest eigenvalues of a smeared configuration
at 1.5Tc that turned out to have no zero modes but one near-zero mode pair.
See fig. 3.1 for details.
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Figure 3.3: Convergence of the 50 lowest eigenvalues of a smeared configuration
at 1.5Tc that turned out to have two zero modes and one near-zero mode
pair. See fig. 3.1 for details.
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the algorithm such that it takes about 30-50% less applications of the
overlap operator. All but the very first mode start the first iteration at
values of about 10−2 instead of about 1, which gives them a significant
head start. The first KS iteration then takes as much time as the first
few iterations in the original algorithm together, but the resulting Ritz
estimates still drop faster towards their final values. After a few iterations,
the algorithms are identical because no further improvement is possible
from the previous mode. If this point is reached for multiple modes at the
same time, it can happen that the error estimates increase in one iteration
instead of decreasing, as can be seen in fig. 3.2.

3.3.3 Inclusion of Partner Modes
Another approach to reduce the number of operations by taking advantage
of the pairing of overlap eigenmodes turned out to in fact take longer than
the original algorithm more often than not. For the sake of completeness,
it will still be described here in the hope that future attempts can take
advantage of the experiences.
The idea is to change the algorithm such that only one mode of each pair

has to be computed. In order to keep higher modes from picking up con-
tributions that belong to the partners of already computed lower modes,
at the end of each Ritz part the best guess for the partner of the current
proper mode is computed and included in all further orthogonalizations.

The number of partner modes does not have to be equal to the number
of proper modes because of zero modes, which only span a one-dimensional
eigenspace of A. If at the end of the Ritz part for the proper mode xn the
number of partner modes that have already been computed is m− 1, the
next partner mode pm is computed by normalizing

p̃m = γ5xn −
n∑
i=1

xix
†
iγ5xn −

m−1∑
i=1

pip
†
iγ5xn.

The norm of p̃m can be used to distinguish if xn is a zero mode, since
these are also eigenmodes of γ5 and therefore p̃m will be almost vanishing.
If this turns out to be the case, the mode is discarded, which is realized
by not incrementing the counter for the number of partner modes.

One problem that arises is that higher, non-zero, modes might also
accidentally be chiral because it is possible to span the eigenspace of a
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non-zero mode pair by two eigenmodes of γ5 with eigenvalues +1 and −1.
While this does not usually happen in the original algorithm, where the
chiralities of the non-zero modes take arbitrary values between −1 and +1,
the modification depicted here has the property that in any configuration
that has zero modes of a given chirality the proper non-zero modes are
driven to the same chirality. The reason seems to be that the partner
modes are included in the orthogonalizations for the further modes but
not in the intermediate diagonalizations at the end of each KS iteration.
While the sum of all chiralities is conserved by such a diagonalization,
during the Ritz part the chiralities of the zero mode candidates are driven
toward the value ±1 determined by the topological charge and this seems
to be partly distributed onto the non-zero modes in the diagonalization.
If this problem is not fixed, the algorithm fluctuates because once the

modes become chiral, their partners will be discarded and higher modes
suddenly need to decrease further in order to fill the formed gap. This
leads to both modes of each pair being present in the directly computed
modes (in contrast to the partner modes), which will again introduce
modes with mixed chiralities. If this has the effect that non-zero modes
are again driven away from extreme chiralities, the algorithm will show
large fluctuations because whether a non-zero mode pair is represented by
two separate modes or by a mode and a partner mode is not stable.
One possibility is to include the partners in the diagonalization, but this

raises the question of how the resulting modes are again to be separated
into proper and partner modes after the diagonalization. Instead, it is
possible to give the construction of the partner a second chance if the first
candidate yields a vanishing result. The partner mode is then constructed
in a similar way as above, but from Dxn instead of γ5xn. While this
is certainly more time consuming than a simple application of γ5, it al-
lows to distinguish accidentally chiral non-zero eigenvectors of D†D from
necessarily chiral zero modes. The reason is that while the eigenspace
of a non-zero mode pair can either be spanned by eigenvectors of γ5 or
by eigenvectors of D, these bases are not the same and if xn is a chiral
non-zero mode it can not at the same time be an eigenmode of D.
Starting with an almost chiral mode x, the question becomes how to

decide if Dx represents the same (zero) mode or if it can be used to
construct the partner in a non-zero mode pair. Since the magnitude of
Dx is small in the cases of interest regardless of whether it is a zero
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mode or not, its norm after orthogonalization with respect to x (and lower
modes) is not as helpful as in the case of γ5x, which is automatically
normalized. A more stable criterion can be derived from the observation
that y = Dx − xx†Dx is chiral (with chirality opposite to that of x) if x
is an accidentally chiral non-zero mode, while no certain prediction can
be given if x is a zero mode—since for a zero mode x and Dx are not in
any relevant way linearly independent, its components will essentially be
determined by numerical fluctuations. The number

z = |y|2

|y†γ5y|
− 1

will therefore become small for chiral non-zero modes and large for zero
modes. It has been observed to be O(10−2) or larger for zero modes, while
it is O(10−5) or lower for non-zero modes. The algorithm as it was finally
implemented checks if it is lower that 10−3 and correspondingly decides
if the partner mode counter should be increased or not. If the mode is
accepted, it is then also orthogonalized with respect to all lower modes
and their partners and then normalized.
For this modification, memory for another set of spinors has to be allo-

cated, so ifN modes have to be computed, the algorithm needs memory for
slightly more than 2N spinors. While the algorithm usually anyhow profits
from such a second spinor array during the intermediate diagonalizations,
the original algorithm can be made to do without it by intelligently swap-
ping spinors to disk during the diagonalization. While this is not the case
with the improvement discussed here, this is usually not a problem because
it needs to compute less modes in the first place. If the original algorithm
is used to compute N modes, n of which are zero modes, an equivalent
result can be achieved with an algorithm that computes only one mode of
each pair with only N+n

2 modes. Since the number of zero modes is not
known a priori, the results will usually not be directly comparable. While
the computations shown in figs. 3.1 to 3.3 were done with 50 modes and
2 dummies, the corresponding runs with the modification discussed here
has been done with 30 modes and 5 dummies.

The results can be seen in figs. 3.4 to 3.6. In one case the algorithm took
about the same number of operations as the unaltered version, in another
about twice as much and in the third case the errors started to increase
and the algorithm stopped because the values were fluctuating. It seems
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that this modification is unstable with respect to which modes represent
a two-dimensional eigenspace and which only a one-dimensional. While
the criteria are chosen such that they become stable once the algorithm is
converged well enough, the instabilities at the beginning have an over all
negative effect on convergence speed.
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Figure 3.4: Convergence of the modified algorithm described in section 3.3.3 for
the configuration with neither zero nor near-zero modes (compare fig. 3.1).

3.3.4 Chirally Projected Operator
The goal of the modifications described in the last section was to somehow
compute only one mode of each non-zero mode pair. While the method
used there turned out to be quite inefficient, this goal can actually be
achieved by a different approach, namely by restricting the search space
for eigenmodes to a specific chirality, i.e., to either only lefthanded or
only righthanded modes. Since each non-zero mode pair can be rotated
to give a lefthanded and a righthanded mode, which are also eigenmodes
of A = D†D with the same eigenvalue ε2, this will reproduce one of these
modes while omitting the other. Since the chiralities of zero modes (if
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Figure 3.5: Convergence of the modified algorithm described in section 3.3.3 for
the configuration with near-zero but no zero modes (compare fig. 3.2).

present) are not known a priori, a clear problem of this approach is that
the zero modes might be missed if the wrong chirality is chosen. However,
this can be remedied by first calculating all the low modes of a given
chirality and then, if there are no zero modes, additionally computing the
modes of the opposite chirality. The modes computed in the first run can
even be used to create quite good starting candidates for the second run
by applying D to them and projecting to the opposite chirality. If Dx does
not have any significant contributions from the opposite chirality, this is
indicative of a zero mode, which can then be skipped.
The computation of eigenmodes of a chirally projected operator is re-

alized by using a simplified spinor structure for the KS algorithm, which
only stores either the first two or the last two Dirac components—this as-
sumes a gamma matrix basis where γ5 = diag(1, 1,−1,−1). The spinors
therefore only take half as much memory, which also makes linear algebra
routines quicker. For the application of the chirally projected operator, a
chiral spinor is first copied to a full spinor and after the application the
correct half of the components is copied to a chiral spinor again.
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Figure 3.6: Convergence of the modified algorithm described in section 3.3.3 for
the configuration with zero and near-zero modes (compare fig. 3.3).

The algorithm can be further accelerated because the chirally projected
operator does no longer need to be squared in order to be Hermitian. In
fact, if P± is the projection to right- or lefthanded modes, the operator
P±DP± is Hermitian because of

(P±DP±)† = P±D
†P± = P±γ5Dγ5P± = (±P±)D(±P±) = P±DP±.

If this operator is regarded as acting on the whole space, the whole sub-
space of spinors with opposite chirality is mapped to zero, which makes
them eigenvectors with eigenvalue zero. However, since all vectors in the
KS algorithm are restricted to the chirality in question, this is not a prob-
lem. If

ψ± = P±ψ = 1
2(ψ ± γ5ψ)

is the (not normalized) corresponding representative of a non-zero mode
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pair (ψ, γ5ψ) with eigenvalues λ and λ̄,

P±DP±ψ± = P±
1
2(λψ ± λ̄γ5ψ)

= 1
2P±( Re(λ)(ψ ± γ5ψ) + i Im(λ)(ψ ∓ γ5ψ))

= Re(λ)ψ±.

Using the representation (2.17), the eigenvalue of this operator is therefore
ε2

2r , in contrast to the eigenvalue ε2 of P±D†DP±.
In figs. 3.7 to 3.10, the convergence behavior of these runs is plotted in

a similar way as before. The eigenvalues are scaled so they can be directly
compared to the earlier runs. The number of eigenvalues has been set
to 30 plus 5 dummies, but since both chiralities are eventually computed
and one of the chiralities does not have zero modes, this corresponds to
the computation of 60 non-zero modes in addition to the zero modes.
Two important things can be observed here: First, the total number of
overlap operator applications that is needed to get more or less correct
values is considerably lower than in the original algorithm—even though
the number of computed modes is effectively higher—, ranging from about
30% if there are no zero modes to about 50% for the configuration with
zero modes. Second, the zero and near-zero modes fluctuate more than
before and the zero modes do not reach similarly low values. This also
has an effect on the errors, which do not fall much beyond 10−8. If the
rescaled values are compared in detail with those obtained from A = D†D,
it can be seen that there is a mismatch for a few of the lowest modes, while
modes beyond the 10th one or so match very well. Sometimes the lowest
modes even took negative values, at which point the algorithm was stopped
and resumed with A = P±D

†DP±. While this was not the case here, it
happend especially for configuations at lower temperatures.
The reason for these instabilities seems to be related to the numerical ap-

proximation of the sign function needed in the overlap operator influencing
the hermiticity of P±DP±. As a check, at the beginning of each Ritz part
when Ax is calculated, the complex number x†Ax is printed out. The algo-
rithm only uses the real part of this number and the imaginary part should
anyhow vanish if A is indeed Hermitian. For A = D†D, this number takes
values like O(1) + O(10−10)i if an essentially random vector is plugged
in (i.e., in the first KS iteration) and values like O(10−14) + O(10−17)i
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Figure 3.7: Convergence of 30 eigenmodes for the configuration with neither zero
nor near-zero modes (cf. fig. 3.1), obtained from first calculating the eigen-
modes of P−DP− (top) and then those of P+DP+ (bottom figure) starting
from righthanded modes created from the first results.
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Figure 3.8: Convergence of 30 eigenmodes for the configuration with near-zero
modes (compare fig. 3.2), obtained from first calculating the eigenmodes of
P−DP− (top) and then those of P+DP+ (bottom) starting from righthanded
modes created from the first results.
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Figure 3.9: Convergence of 30 eigenmodes for the configuration with righthanded
zero modes (compare fig. 3.3), obtained from first calculating the eigenmodes
of P−DP− (top) and then those of P+DP+ (bottom) starting from right-
handed modes created from the first results.
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Figure 3.10: Convergence of 30 eigenmodes for the configuration with right-
handed zero modes (compare fig. 3.3), obtained from first calculating the
eigenmodes of P+DP+ (top) and then those of P−DP− (bottom) starting
from righthanded modes created from the first results.
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for the zero modes in later iterations. The imaginary part is always sev-
eral orders of magnitude smaller than the real part. For P±DP±, on the
other hand, the original value is similar but the imaginary part stays at
O(10−10) regardless of the real part.
While it seems that the eigenvalues of small modes do not very well obey

the exact analytical relations, the eigenvectors seem to be essentially the
same. In the case of the configuration with two righthanded zero modes,
if the resulting eigenvectors of P+DP+ were used as starting vectors for
P+D

†DP+, the KS algorithm was completed very quickly, unable to im-
prove the eigenvectors further. The eigenvalues were then again the same
as for D†D.

As mentioned earlier, if the eigenmodes of D on a specific chirality are
computed and it turns out that there are no zero modes among them,
the results can be used to create starting spinors for a computation of the
eigenmodes of the opposite chirality by application of D. However, if there
are zero modes of the opposite chirality, a problem arises, namely that the
KS algorithm starts with relatively well determined eigenvectors which
are not the lowest modes of the spectrum. This can result in fluctuations
of the values in the first iterations, which have to be ignored in order for
the algorithm to continue and find the missing contributions of the zero
modes. This effect can be seen in fig. 3.10, where the errors are already
low after the first iteration but rise again after the second. After that, they
decline and once they are small again the zero modes have been found.
To summarize, it seems that the quickest results are obtained if first the

lowest modes of P±DP± for one of the chiralities are computed, followed
by a similar computation on the opposite chirality. If the first run already
yields zero modes, the second run may be skipped, depending on whether
a fixed number of non-zero modes is wanted. The results of the run with
zero modes should be supplemented with an additional iteration with the
chirally projected squared operator P±D†DP± in order to increase the
accuracy. It might also be possible to start with the simple operator and
switch to the squared one only for the low modes once they are below
some threshold, but this would have necessitated a change in much of
the algorithm such that different operators are used depending on the
magnitude of the eigenvalue; therefore it has not been tested.
Since the idea of using a chirally projected operator only occured after

much of the computation was already finished, for compatibility the 50
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lowest eigenmodes of D†D have always been computed using the naive
and direct approach. However, in each case the number of eigenmodes
has afterwards been increased by computing eigenmodes of P±DP± on
the chirality without zero modes. In most of these cases, the computation
of an equivalent number of modes using the original algorithm would also
have been problematic in terms of memory, in addition to the obvious
computing time advantages. For the different analyses, the lowest eigen-
values were then taken from the D†D runs and the higher ones from the
P±DP± runs. It was confirmed that there is an overlapping region where
both give the same results.
As in the case of A = D†D, it is possible to obtain eigenvectors of D

from those of P±DP± or P±D†DP±. Taking as before the eigenvector of
D that has an eigenvalue with positive imaginary part as ψ and its partner
with negative imaginary part as γ5ψ, the eigenvector of P±DP± is given
by

ψ± = 1√
2

(ψ ± γ5ψ).

There might be an additional phase in front of this, but it can be absorbed
into ψ. This no longer works if ψ+ is taken from one run with P+DP+
and ψ− from a different run with P−DP−, because then they might have
different phases. Assuming that only one of the spinors ψ± has been
computed, the other one can instead be obtained by an application of D,
giving

Dψ± = 1√
2

(λψ ± λ̄γ5ψ) = Re(λ)ψ± + i Im(λ)ψ∓

⇒ P∓Dψ± = i Im(λ)ψ∓

⇒ ψ = 1√
2

(
ψ± − i

P∓Dψ±
|P∓Dψ±|

)
.

In this case, it is not sufficient to store a few scalars in order to later
quickly create ψ from ψ±. Instead, the whole chiral spinor ψ∓ is needed
to be stored additionally. Of course, this still needs less disk space than in
the case of A = D†D, where two full spinors are stored for each eigenmode
pair.
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3.4 Implementation Details
The calculation of the overlap spectrum was split into multiple steps.
First, the largest eigenvalue of K2 = DW †

−MD
W
−M , with DW

−M being the
Wilson Dirac operator, is estimated by ten steps of the Kalkreuter-Simma
(KS) algorithm. This is only done to estimate the upper bound of the
interval on which the Zolotarev rational function has to be a good approx-
imation, so the eigenvector is not needed and a relatively low precision is
sufficient. This value anyhow did not fluctuate much between configura-
tions and since the Wilson eigenvalue density is much larger at its largest
eigenvalue than at its lowest, the value can be found quickly. Since the
KS algorithm usually computes the lowest rather than the highest eigen-
value, the operator −K2 is used, which is implemented not by actually
multiplying the result of K2 with −1 but by accordingly changing scalar
products and linear combinations in the algorithm.
Then, the lowest 20 eigenvectors of K2 are computed and stored on the

disk, together with their eigenvalues. These two steps are done by one
program called wilsonmodes, which can be compiled to either run scalar
on one CPU core, parallelized on multiple CPU cores using MPI [45] or on
one CPU core with the aid of one GPU, which performs the computation
of K2. Recently, this mixed version was replaced by a version that keeps
the spinors on the GPU memory the whole time and uses QUDA routines
for the operatorK2 as well as for all the linear algebra routines in between.
This is considerably faster, in particular because the spinor does not have
to be transferred between host and device memory for each operator ap-
plication and also because for the simple K2 operator a relevant portion
of computing time is spent on linear algebra, namely during the Gram-
Schmidt orthogonalizations needed for higher eigenvectors in order to only
search the subspace orthogonal to already found lower eigenvectors.
The results of this program were then read in for any program that needs

to apply the overlap operator, foremost by overlap, which computes its
spectrum. The borders of the interval for the Zolotarev approximation are
given by the largest eigenvalue in the subspace which is treated explicitly
by means of the eigenmodes (so, for example, the 20th lowest eigenvalue)
and the largest of the total spectrum of K2, multiplied by 0.9 and 1.1, re-
spectively. Therefore, all eigenvalues of K2 that are not explicitly treated
should be inside this interval. The computation of the Zolotarev coef-
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ficients is done during the initialization of the overlap operator and not
stored on the disk, because it does not take any significant amount of time.
Since the KS algorithm is used with different operators, an abstraction

layer was introduced that allows to use the same code for different opera-
tors. The code is written in C++, so this is achieved in an object-oriented
way by using virtual classes. An abstract base class for all different kinds
of operators is called LinearOperator and essentially consists of one virtual
method called apply. The LinearOperator takes as a template argument the
spinor class that it acts on since it is used with, for example, full spinors,
spinors that only store a left- or righthanded part, and spinors that are
kept in GPU memory. LinearOperator::apply takes references to two spinors
and a boolean which controls if the operator itself or its Hermitian conju-
gate is to be applied to the first spinor, storing the result in the second.
The base class does not have a default implementation for this operator,
making it abstract. Classes that derive from this, like OverlapDirac and
DslashOp (which applies the Wilson Dirac operator), have to implement
the apply method before it is possible to create instances of these classes.
Building on this, the class HermiteanOperator is defined, which imple-

ments everything that the KS algorithm needs to see of an operator.
The method KSRitz::compute_eigenvalues therefore takes a reference to a
HermiteanOperator and just uses this interface, without knowledge of the
details about which Hermitian operator is actually used. In addition
to an apply method similar to that of a LinearOperator, but without the
third argument, a Hermitian operator has a method called products, which
takes an array of spinors {xi} and returns the matrix with components
Aij = x†iAxj , where A is the Hermitian operator represented by the class.
If the operator can be written as A = B†B with some other linear operator
B which takes less time to apply, it is possible to compute yi = Bxi and
create the matrix from the scalar products Aij = y†i yj . A HermiteanOperator

also offers an interface to query whether such a representation is possible
for this specific Hermitian operator and to apply the operator B instead
of A.
There are several possibilities to create a HermiteanOperator from a Linear

Operator. The simplest one is to square it, which is implemented by the
class SquaredLinearOperator. Another possibility is to act on spinors of a
specific chirality with an operator and project the result back to that chi-
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rality, which at least in the case of the overlap operator gives a Hermitian
operator. ChiralLinOp therefore takes the reference to a LinearOperator that
acts on full spinors and implements a HermiteanOperator that acts on chi-
ral spinors. The code to call the KS algorithm with the correct operator
depending on parameters therefore can be written similar to

1 OverlapDirac ov (...); // create overlap operator
2 // create squared overlap operator
3 SquaredLinearOperator <SpinorT , OverlapDirac > ov2(lat ,ov);
4 if ( param. chirality .isSet ()) {
5 // Pointer to either ov or ov2
6 LinearOperator <SpinorT > *op = &ov;
7 if (param. squared ())
8 op = &ov2;
9 // Create projected operator

10 ChiralLinOp <SpinorT , HalfSpinorT >
11 chiop (*op ,param. chirality ());
12 // chiral spinors and projected operator
13 KSRitz < HalfSpinorT > ks (...);
14 ks. compute_eigenvalues (chiop);
15 } else {
16 // full spinors and squared overlap operator
17 KSRitz <SpinorT > ks (...);
18 ks. compute_eigenvalues (ov2);
19 }

Here, SpinorT is an alias for a spinor class that represents a full spinor—
which differed depending on if the code was compiled for CPU or GPU—
and HalfSpinorT an alias for a spinor class representing only the left- or
righthanded part of a spinor.
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4 The Microscopic Picture of Axial
Symmetry Breaking

4.1 The Overlap Spectrum and the Axial Anomaly
4.1.1 Topological Charge Distribution
The discussion of different topological sectors for SU(3) gauge fields that
was given in section 1.4 can not easily be translated to a lattice discretized
version of SU(3) gauge theory that is restricted to a finite volume. In fact,
any lattice gauge configuration on a finite volume can be continuously
deformed into any other (with the same number of lattice points) by ac-
cordingly deforming the finite number of link variables. Since the gauge
action is finite for any choice of the gauge field, the set of all lattice gauge
configurations is simply connected. It still has multiple local minima of
the action, which are separated by finite barriers that only become infinite
in the thermodynamic (i.e., infinite volume) limit, which reproduces the
topological sectors of the continuum theory. To put it differently, in an
infinite volume the action of a gauge configuration is determined by its
topological content, which determines the topological sector the config-
uration is found in, and quantum fluctuations, which disturb the gauge
configuration away from the minimum of the action but can not change
the topological sector it is in [46]. In a finite volume, the sectors are not as
clearly separated and quantum fluctuations can mix them, giving gauge
configurations with ambiguous topological content.
The continuum definition of the topological charge (see (1.13)) is a con-

tinuous function of the gauge fields and can therefore not be expected to
have a lattice counterpart that also gives integer values. Different tech-
niques have been used to create a lattice observable that in the continuum
and thermodynamic limits reproduces the topological charge. The obvious
solution is to cool the configuration, such that it is successively replaced by
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similar configurations that have a lower action, resulting in a configuration
at a local minimum [47]. If a gauge configuration is a local minimum, it
should not be influenced significantly by the finiteness of the barriers and
a discretized version of the topological charge operator F̃F on the cooled
configuration can give a good estimate of the topological charge.
Another possibility that has been used extensively is to smear the con-

figuration. A smearing step consists of replacing each link by another
one using information from links in the neighborhood, with the goal of
removing ultraviolet fluctuations. For example, HYP smearing [48] re-
places each link using information from links on hyper-cubes around that
link. It is assumed that the critical behavior and therefore the universal-
ity class of the theory is not affected by this substitution since only links
in a finite neighborhood are included, which is certainly the case for an
infinite volume. The argument is somewhat weakened on a finite lattice
since repeated application of smearing will eventually induce an influence
over the whole lattice. It has however been successfully used to reduce
taste symmetry breaking in staggered fermion formulations and improve
chiral symmetry of Wilson fermions. Most notably in this context, if a
configuration is sufficiently smeared the non-topological fluctuations are
removed and the topological charge can be measured even on a finite and
discrete lattice.
However, both procedures are ambiguous if multiple minima are close

and structures that increase the gauge action but might anyhow have an
influence on the infrared fermionic modes might be lost. For example, it
will turn out that a gauge configuration that consists of a superposition
of an instanton and anti-instanton, which are separated by some distance,
gives rise to near-zero modes, but along a path of steepest descend of the
action these structures come closer and annihilate [23].
Since the spectrum of the overlap operator has been computed for this

work, it opens a different possibility to measure the topological charge,
which does not suffer from such ambiguities and even works comparatively
far from the continuum. As discussed in section 3.3, the overlap operator
allows to clearly distinguish zero modes from non-zero modes by their
chirality as well as by their eigenvalues, so by simply counting the number
of zero modes of each chirality the topological charge can be obtained
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using the overlap index theorem

Qtop = n− − n+.

At first it has to be checked that the configurations are sufficiently
uncorrelated. Since they are the result of a Markov chain, it is possible that
successive configurations show an autocorrelation with an autocorrelation
time that depends on the observable that is measured on them. The
topological charge has a particularly large autocorrelation time since the
update algorithm can in principle become trapped in a specific topological
sector, giving only configurations of this sector for a long time. When the
configurations that were available for this work had been created, only
every tenth of them was stored to disk, so they are separated by ten
Rational Hybrid Monte Carlo steps. While this is a sufficient separation
for many observables, that might not be the case for topological properties.
However, since it is very expensive to calculate overlap eigenmodes, not
every configuration of a given stream has been used. Instead, only O(100)
configurations have been used from each ensemble (cf. table 3.1), which
were chosen such that the distance between them was as large as possible.
As can be seen in fig. 4.1, this seems to have been enough to ensure that
there is no noticeable autocorrelation of the topological charge.
Having the expensive but less ambiguous tool of the overlap index the-

orem at one’s disposal, it is possible to compare to the results of the
smearing technique. For the ensemble at 1.5Tc, it was found that after
a few steps of HYP smearing the topological charge as measured by the
gluonic F̃F operator on the lattice gave an integer result that did not
change with further steps. A subset of 50 configurations was subjected
to ten steps of HYP smearing and the spectrum of the overlap operator
was recomputed on them. It was found that the topological charge of
these smeared configurations is identical whether it is computed using the
overlap index or the gluonic operator F̃F . It is, however, not always the
same as before smearing (fig. 4.2). Smeared configurations tend to have
fewer zero modes, although there are also configurations that have more
zero modes after smearing (fig. 4.3). The topological charges before and
after smearing are correlated with a correlation coefficient of 0.60(11).
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Figure 4.1: Time history of topological charge as measured by the number and
chirality of zero modes according to the index theorem. Configurations be-
longing to the same independent stream are connected by lines.
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Figure 4.3: Correlation between topological charge before and after ten steps of
HYP smearing on a given configuration. The area of each point is proportional
to the number of configurations with the given values.
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Figure 4.4: Spectrum of the overlap operator on HISQ configurations at differ-
ent temperatures, lattice spacings and light quark masses. The dashed line
indicates min(λmax), the lowest of the values if from each configuration the
highest computed eigenvalue is taken. The purple box shows the contribution
of exact zero modes to the first bin.
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4.1.2 Near-Zero and Bulk Spectrum
In fig. 4.4, the eigenvalue density

ρ(λ) =
〈
T

V

∑
i

δ(λ− rφi)
〉

(4.1)

is plotted, with the real φi being related to a complex eigenvalue λi of the
massless overlap Dirac operator by λi = r(1− e−iφi), as mentioned in sec-
tion 2.3.1. For eigenvalues near zero, rφi ≈ Im(λi) and ρ(λ) is essentially
the density of the imaginary parts of the eigenvalues. The eigenvalues as
well as the densities are rescaled by powers of the temperature T in order
to obtain dimensionless quantities and the δ-function is plotted using a
histogram such that the area in each box corresponds to the integral of
(4.1) over the corresponding range of λ values. Since only the range of
positive λ is shown, only one mode of each non-zero mode pair is included
in the histograms. The contribution of zero modes is accordingly divided
by 2, so if the spectrum were to be extended to negative values, the same
amount of zero modes would be found in the bin that has 0 as its upper
bound. Since only a fraction of the total number of eigenvalues has been
computed for each configuration, the eigenvalue density is only valid up
to a certain point which is denoted by a dashed line. It is determined by
taking the highest computed eigenvalue of each configuration and taking
the minimum of these values over the set of configurations.
In addition to the zero modes, which can be distinguished clearly be-

cause of their chiralities, the spectrum shows two very articulated features,
namely a near-zero mode peak and a bulk part. While these overlap for
the lower temperatures, with increasing temperature they get more sepa-
rated. It is important to quantify these features and, in particular, gain
some understanding how they change in the thermodynamic, chiral and
continuum limits. In general, it is expected that an increase in the volume
does not significantly change the spectral density as long as the volume is
already large enough to suppress finite volume effects. Instead, additional
eigenvalues are sampled according to the same distribution, which does
not change the spectrum since it is normalized by the volume. Roughly,
this can be understood by considering the simple case of doubling the
volume. Gauge configurations of the total system can approximately be
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4 The Microscopic Picture of Axial Symmetry Breaking

constructed by choosing gauge configurations for each half independently
and according to the action of the smaller system. Any fermionic mode of
the smaller system then gives rise to two modes of the larger system, each
localized on a different half. The effect of an increased volume is therefore
similar to that of increased statistics in the computation of the average
over gauge configurations. The density ρ(λ) that is obtained by such an
average can therefore—if appropriately binned—be used as an estimate of
the density in the thermodynamic limit.

The zero mode peak forms an exception to this in that it is expected to
vanish in the thermodynamic limit. This can be seen by assuming that the
number of instantons and that of anti-instantons are independent and have
an expectation value that is proportional to the volume. This results in
a corresponding number of left- and righthanded zero modes, but if there
are n∓ of these modes, they will form min(n−, n+) pairs and |n− − n+|
remaining zero modes. The pairs will then be shifted away from zero
by any small perturbation, resulting in near-zero modes. Drawing n− and
n+ from, for example, a Poisson distribution with expectation value κ, the
value |n− − n+| turns out to have an expectation value roughly propor-
tional to

√
κ. The number of remaining zero modes of a single chirality

therefore only scales with the square root of the volume, such that the
zero mode part of the first bin will vanish as 1/

√
V in the thermodynamic

limit. However, this does not influence the total first bin, since the total
amount of near-zero and zero modes is equal to n+ + n−, which has an
expectation value proportional to the volume. According to this model,
at higher volumes an increasing portion of zero modes becomes paired up
to form near-zero modes.

4.1.3 Quantifying the Spectral Density
In order to capture the features of the spectra for different ensembles, the
ansatz

ρ(λ) = ασ

π(σ2 + λ2) + a|λ|b (4.2)

presents a reasonable choice. The first term describes a Breit-Wigner peak
with width σ and area α, while the rest is the leading part of the power
series expansion of the bulk spectrum. The impact of such a spectrum on

114



4.1 The Overlap Spectrum and the Axial Anomaly

the axial anomaly for different values of the parameters and its dependence
on how these parameters change in the appropriate limits will be discussed
below. Before that, several possibilities to obtain values for the parameters
will be discussed and compared.
The most obvious way to match the ansatz (4.2) to the obtained eigen-

values is to fit the function to the histogram. However, this method has
some problems. For example, the result may differ depending on the bin
width that is used in creating the histogram. Also, most bin widths that
give a relatively smooth histogram will only give two or three bins for the
near-zero mode peak, at least for the highest temperature. This means
that the parameters that describe the near-zero mode peak can not be very
well determined from this. There is also the question of how to get error
estimates for each bin, which are necessary for a meaningful fit. One pos-
sibility is to just take the square root of the number of eigenvalues found
in a bin, which results from the assumption that this number will follow
a Poisson distribution, where the average is equal to the variance. This
however is especially problematic for the gap at 1.5Tc, where some bins
have zero eigenvalues in them, giving an error of zero which breaks the
fit. Another possibility with the same problem is to use some resampling
method based on the gauge configurations. Again, a bin with zero eigen-
values will not give any variation if the set of contributing configurations
is varied, so the error estimate will again be zero.
One method that works somewhat better is to take some equidistant λ

values like in the formation of a histogram and then estimate the density
at these points by varying the width of an interval with λ at the center
and dividing the number of eigenvalues contained in this interval by its
width. The interval widths are drawn from an exponential distribution
with expectation value equal to the distance between two adjacent values
of λ. The average and variance over the different intervals then provide
a good guess including an error estimate that can be used for a fit and
it was checked that these results are relatively stable with respect to a
change in the number of λ values. The results are compiled in table 4.1.
For the configurations close to Tc, the chiral condensate will not neces-

sarily vanish in the chiral limit. It is not a priori clear if a non-vanishing
chiral condensate should be the result of the near-zero mode peak or of an
additional constant offset c that is added to the ansatz (4.2)—or a combi-
nation of both. Therefore, a cross-check was performed for the ensembles

115



4 The Microscopic Picture of Axial Symmetry Breaking

# N3
σ ·Nτ ml/ms α/T 4 σ/T a/T 3 b

1 243 · 6 1/20 0.75(5) 0.25(3) 0.685(14) 0.77(5)
2 323 · 6 1/40 0.65(3) 0.188(11) 0.717(9) 0.91(4)
3 323 · 8 1/20 0.61(3) 0.150(10) 1.108(11) 0.85(4)

4 243 · 6 1/20 0.275(10) 0.103(7) 0.368(6) 1.95(6)
5 323 · 8 1/20 0.213(10) 0.059(5) 0.746(11) 1.87(5)

6 323 · 8 1/20 0.1(5) 0.003(16) 0.250(10) 3.55(10)

Table 4.1: Fit results for the ansatz (4.2). The ensemble index is the same as in
table 3.1, so #1–3 are at ∼ Tc, #4 and #5 at 1.2Tc and #6 at 1.5Tc.

# α/T 4 σ/T a/T 3 b c/T 3

1 0.39(10) 0.19(4) 0.28(9) 1.5(4) 0.43(9)
2 0.32(3) 0.111(11) 0.31(4) 1.88(18) 0.41(3)
3 0.45(9) 0.132(16) 0.82(15) 1.2(3) 0.29(15)

Table 4.2: Fit results for the ansatz (4.2) with an additional offset c for the en-
sembles near Tc.

at Tc with a fit that includes such an offset. The results are compiled in
table 4.2.
Before the results and their implications for the axial anomaly are dis-

cussed, a complementary method that seems to work especially well at
high temperatures shall be introduced. The motivation for that is that
the near-zero mode peak at least at the highest temperature can not be
well determined by a fit because it needs some binning and the peak is
usually only represented by a few bins. Therefore, a method that does not
rely on binning is desirable, even if it only serves as a cross-check. Since
many or most statistical analysis tools can be derived in some way from
Bayes’ theorem, going back to using it more directly should remove any
additional assumptions and ambiguities of specific methods.
Bayes’ theorem connects the probability that a specific hypothesis is

true given some data, P (p|x), to the a priori probability of that hypoth-
esis, P (p), and the probabilities of obtaining the data under the given
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4.1 The Overlap Spectrum and the Axial Anomaly

hypothesis, P (x|p), as well as under all competing hypotheses. As such,
it is well suited for this problem. After all, working under the assumption
that the spectrum follows a given functional form like (4.2), it is easy to
compute the probability of getting a specific set of eigenvalues if the pa-
rameters α, σ, a and b are given, and the goal is to obtain the probability
that these parameters take specific values given the eigenvalues that were
actually obtained. In the notation above, the parameters are collectively
denoted as p and the measured data as x and Bayes’ theorem says

P (p|x) = P (x|p) · P (p)∑
p′ P (x|p′)P (p′) . (4.3)

If N values are drawn independently according to some probability dis-
tribution fp(x), the probability that the lowest n of them take the values
x1, . . . , xn is given by

P (x|p) = N !
(N − n)!

n∏
i=1

fp(xi) ·
(∫ ∞

xn
dxfp(x)

)N−n
. (4.4)

This is a multinomial probability distribution with n of the samples taking
specific values and the rest taking values that are larger than xn. Since it
is not feasible to compute the denominator in Bayes’ formula, a Metropolis
algorithm was used to obtain a sample of parameter sets pi that are dis-
tributed according to (4.3), which only needs the ratio P (p1|x)/P (p2|x). The
a priori distribution is chosen such that each of the parameters is simply
equally distributed in some reasonable range, so P (p1)/P (p2) cancels. fp(x)
is assumed to take the form (4.2) in the range where eigenvalues were
computed and some arbitrary form beyond that—the integral in (4.4) can
be determined by the normalization of fp(x).

In table 4.3, the results are shown for the ensembles at 1.2Tc and 1.5Tc.
The error estimates given there are obtained from the variance of (4.3),
without the factor 1/N often found in error estimates from Monte Carlo
samples. As such, it describes the width of the a posteriori distribution of
parameter values and not the confidence that the given average is indeed
the average of the distribution. In particular, the error will not decrease
with increasing Metropolis samples.
For the ensembles that were close to the critical temperature, this

method did not give satisfactory results. With the original ansatz as
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# α/T 4 σ/T a/T 3 b

4 0.304(8) 0.055(3) 0.401(6) 1.69(4)
5 0.243(6) 0.029(2) 0.751(7) 1.63(4)

6 0.066(3) 0.0029(3) 0.306(6) 2.91(5)

Table 4.3: Average and standard deviation of the parameters in (4.2) from Bayes’
formula at 1.2Tc and 1.5Tc.
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Figure 4.5: Examples of the Bayesian best guess of the spectrum parametrization
near Tc and at 1.2Tc.

well as with an offset, the resulting graph did not match the histogram
nearly as well as at higher temperatures (cf. fig. 4.5). In both cases the
estimate for the width of the near-zero mode peak was too low, which was
compensated by either a small exponent or a large offset. One possible
source for this was investigated, namely insufficient floating point precision
in the evaluation of P (x|p1)/P (x|p2). This term can be difficult to evaluate
numerically since it contains products with as many terms as the number
of eigenvalues that were computed for all configurations. Also, the prob-
ability of an eigenvalue falling in the range [xn,∞] is taken to the power
N − n, which is quite large. In the Metropolis implementation, the terms
were always first divided by the corresponding terms in the denominator
before they were multiplied or raised to the power N − n. This way, no
floating point overflow should occur, but the transition probability is given
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4.1 The Overlap Spectrum and the Axial Anomaly

by a product of many numbers which are each close to 1. However, even
using 4096 bit floating point numbers did not change the result. It might
be necessary to change the assumption that the eigenvalues of a given
configuration are simply drawn independently from each other according
to the distribution ρ(λ) to get reasonable results even close to Tc.

Bulk Contribution to the Axial Anomaly

Taking first a look at the behavior of the bulk spectrum as seen in table 4.1,
there is a clear tendency of the exponent to grow with the temperature,
from a value slightly below 1 at the chiral transition temperature Tc to
a value close to 2 at 1.2Tc and finally a value above 3 at 1.5Tc. If an
offset is allowed for the low temperature fits, the exponent rises to values
above 1 and in the Bayesian analysis the exponents are all slightly lower
than from the fits, with the exponent at 1.5Tc being close to but still
below 3. A cubic behavior of the bulk spectrum is somewhat expected
at high temperatures since such an exponent is the result of calculating
the spectrum of the free continuum Dirac operator and QCD is expected
to become asymptotically free at high temperatures. However, strictly
speaking the cubic result only holds for a free fermionic theory at zero
temperature and is replaced by

ρ(λ) ∝
∑
n∈N

λ
√
λ2 − ω2

nθ(λ− ωn) with ωn = (2n+ 1)πT

at finite temperatures. This has a gap on [0, πT ], which originates from the
fact that fermionic modes have to be antiperiodic in the fourth coordinate.
The bulk spectrum at 1.5Tc indeed seems to develop a gap, but its width
is at most somewhere around 0.4T .
The question whether UA(1) is effectively restored is determined by the

spectrum in the chiral limit. If the bulk spectrum in this limit takes the
form aλb, the UA(1) breaking ω (cf. (2.26)) is given by

ω ∝
∫ λc

0
dλ m2λb

(λ2 +m2)2 =
λ=mx

mb−1
∫ λc/m

0
dx xb

(1 + x2)2 ,

where the continuum formula has been used for simplicity and the integral
is cut off at some point where the rest of the integral can be neglected
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4 The Microscopic Picture of Axial Symmetry Breaking

because the denominator becomes too large—which should happen even
for large exponents b because corrections to the simple leading exponent
behavior come into play, suppressing the spectrum at high eigenvalues.
For b > 1, the remaining integral can be split into a constant part that
vanishes after multiplication with mb−1 and a part where the constant in
the denominator can be neglected, giving

ω ∝ mb−1
[∫ λc/m

dxxb−4 + const
]

= O(m2) +O(mb−1).

Any exponent larger than 1 will therefore not contribute to ω in the chiral
limit.
Having determined the spectrum at two different light quark masses,

namely at ms/20 for ensemble #1 and ms/40 for ensemble #2, some hints
about the change of the different features of the spectrum in the chiral
limit can be obtained. A priori, it is expected that higher eigenvalues
are not as sensitive to a change in the light quark mass because they are
determined by the dynamics of the strange quark, which has a mass that
was kept fixed. The bulk exponent still shows some increase when the
quark mass is reduced, which can happen especially for low exponents
since they imply many small eigenvalues belonging to the bulk spectrum,
which can still be sensitive to the light quark mass. The question whether
the exponent will rise above the critical value of 1 when approaching the
chiral limit can not be answered from just these two data points. In the
fits that include an offset c, the exponent takes a value larger than one,
so the bulk does not contribute to ω. Instead, there is a strong indication
that the offset gives a contribution, since it is practically unchanged under
a change of the light quark mass. It can not necessarily be concluded that
this contribution takes the form of a bulk exponent smaller than one in the
original ansatz, since the near-zero mode peak also changes if the offset
is included and it might be that switching on the offset in the fit simply
redistributes the near-zero mode contribution between the near-zero mode
peak and the offset. It is, however, plausible that some of it also comes
from the bulk exponent.
From the gathered data it is also possible to obtain an impression of how

the different parts of the spectra change in the continuum limit, since the
pairs (#1,#3) and (#4,#5) contain ensembles of the same meson masses
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at the same temperature and the same physical volume, but with different
lattice spacings. For most parameters, it is first necessary to renormalize
the eigenvalues, since they are bare quantities comparable to the bare
quark masses and not physical. The exponent b, however, is dimensionless
and not affected by this—at least at leading order, where the eigenvalues
and their density simply have to be multiplied by some renormalization
factors. In both cases, the exponents at the different lattice spacings are
compatible with each other within error bounds and while the exponent
near Tc shows a slight rise when going to smaller lattice spacings, at 1.2Tc
the trend is in the other direction. It can therefore be assumed that the
bulk spectrum does not contain any relevant lattice artifacts.

The near-zero mode peak

Taking now a look at the near-zero mode peak, it seems that a decrease
of the light quark mass by a factor of 2 (#1 to #2) slightly sharpens the
near-zero mode peak (i.e., it decreases the peak width σ) and also slightly
decreases the area under the peak (i.e., α). For two light flavors, a zero
mode of the massless Dirac operator is an eigenmode with eigenvalue m
of the massive Dirac operator and will therefore give a contributing factor
of m2 to the fermion determinant. The typical magnitude of the zero and
near-zero eigenvalues seems to decrease in the chiral limit, as seen by the
behavior of the peak width. If their magnitude turned out to be negligible
in comparison to the light quark mass, remaining so even in the chiral
limit, their contribution to the fermion determinant would also essentially
be quadratic in m. Under this assumption, the zero and near-zero modes
are therefore expected to have a contribution to the spectrum proportional
to m2δ(λ), with δ(λ) being smeared at finite m and becoming sharper in
the chiral limit. Such a near-zero mode peak is particularly interesting
because its contribution to the chiral condensate is vanishing,

Σ ∝ lim
m→0

∫
dλ m

3δ(λ)
m2 + λ2 = lim

m→0
m = 0,

while the UA(1) symmetry is still effectively broken,

ω ∝ lim
m→0

∫
dλ 2m4δ(λ)

(m2 + λ2)2 = const.
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While the behavior of the peak supports this general picture, the pre-
factor α does not seem to be proportional to m2. The reason is probably
that the width of the peak is not negligible with respect to the light quark
mass. If the prefactor is assumed to be proportional tomγ instead, γ turns
out to be even smaller than one. This implies that the chiral condensate
will not vanish in the chiral limit, but since these configurations represent
a system at a finite volume near Tc, this is not to be expected anyway
since the chiral transition is only sharp in the thermodynamic limit. An
exponent of 2 might be visible in a comparison of different light quark
masses for systems at higher temperatures, but this was not part of the
investigation done for this work. In any case it seems that near Tc the
axial anomaly is not effectively restored and a large contribution to its
breaking is due to the near-zero mode peak, which becomes sharper in the
chiral limit. This ensures that its contribution does not vanish once the
light quark mass drops below the typical magnitude of the eigenvalues in
this peak. The total area of the peak also decreases, but even a decrease
quadratic in the light quark mass would still give a contribution to the
breaking of UA(1), and the observed decrease is much slower.

In order to establish that the near-zero mode peak is not a lattice arti-
fact, a comparison at different lattice spacings is necessary. However, this
is more involved since a change in the lattice spacing changes the renor-
malization point of the simulation. It is in general necessary to change the
values of bare quantities, which do not correspond to any directly observ-
able physical quantity and are to be regarded as input parameters of the
theory, in order to regain the same values of actually observable quantities.
In particular, the values of bare quantities can not be simply taken over
from one discretization scheme to another. Among the bare quantities of
QCD are the coupling, the quark masses and the eigenvalues, so if the
renormalization point is changed, the eigenvalue spectrum can no longer
be directly compared. In the next section, an attempt to renormalize the
eigenvalues by tuning the quark masses will be described. It can however
be argued that the prefactor α in fact can be compared directly, since to
leading order it remains unchanged under renormalization.
While the quark mass is not directly observable, close to the chiral limit

the product of the chiral condensate and the light quark mass can be
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expressed as [49]

2mΣ = −f2
πM

2
π+

where Mπ+ is the mass of the π+ pion and fπ is the pion decay constant.
Since these are physical quantities that can be measured, renormalization
factors of m and Σ have to cancel each other.

The simplest way to accomplish this is to scale the eigenvalues by the
same renormalization factor as the quark masses. If a quark mass changes
from m to m̃ = Zm and each eigenvalue with |λ|2 = ε2 from ε to ε̃ = Zε,
this has the effect

m̃Σ̃ =
〈
T

V

∑
i

Z2m2

Z2m2 + Z2ε2
i

〉
= mΣ,

where the continuum equation has been used instead of the proper equa-
tion (2.24) because otherwise the necessary adjustment of the eigenvalues
becomes quite involved. For eigenvalues that are much smaller than the
radius r of the eigenvalue circle, the difference is negligible. The eigenvalue
density at λ̃ = Zλ becomes

ρ̃(λ̃) =
〈
T

V

∑
i

δ(λ̃− ε̃i)
〉

= Z−1
〈
T

V

∑
i

δ(λ− εi)
〉

= Z−1ρ(λ).

From this, a density that absorbs these renormalization factors to leading
order and is roughly invariant under renormalization can be constructed,
namely

f(x) =
〈
T

V

∑
i

δ (x− εi/m)
〉

= mρ(mx).

If the eigenvalue density is given by the near-zero mode peak

ρ(λ) = ασ

π(σ2 + λ2) ,

this results in

f(x) = mασ

π(σ2 +m2x2) = m2α σ/m

πm2((σ/m)2 + x2) = α σ/m

π((σ/m)2 + x2) ,

123



4 The Microscopic Picture of Axial Symmetry Breaking

which is a peak that is characterized by a width that scales with the quark
mass and an area that is independent of the mass. The prefactor α can
therefore be compared even if the bare quark masses at the different lattice
spacings are not known.
A comparison between different lattice spacings can be done at Tc as

well as at 1.2Tc. In the first case, fit results with and without an offset are
available, while in the second, there are results from the fit as well as from
the Bayesian best guess. Of these, all but the fit with offset at Tc show a
decrease of the infrared peak area α with decreasing lattice spacing. It is
possible that the total infrared contribution consisting of the infrared peak
and the offset in fact decreases also in this case, but the offset can not be
compared without first renormalizing the quark masses and even then a
comparison will be difficult. Unless ω is to diverge in the continuum limit,
the renormalized offset has to become zero in the chiral limit and whether
it has a finite contribution to ω will depend on how fast it vanishes. The
offset is also one of the features of the spectrum that might be sensitive
to finite volume effects since these systems are close to Tc.
It is not clear from these results how much of the infrared peak will

survive the continuum limit. While there is a tendency for the area under
the infrared peak to decrease with decreasing lattice spacing, a simple
linear extrapolation, which is hardly justified with two data points each,
still gives a non-vanishing value at zero lattice spacing. If it turns out
that part of the infrared peak is a finite lattice spacing effect, it probably
originates in the underlying HISQ discretization since the staggered Dirac
operator only exhibits full chiral symmetry in the continuum limit.

4.2 Quark Mass Dependence of the Axial Anomaly
In order to calculate the potential restoration of the axial anomaly, the
observable ω defined in section 1.3 and for overlap fermions in section 2.3.3
technically has to be evaluated at the quark mass that was also used for
the generation of the gauge configurations. However, the quark mass is a
bare quantity that can differ between different regularizations. The con-
figurations used for this work were created with the HISQ discretization
scheme at some specific values of the light and the strange quark mass,
but in order to compute observables with overlap eigenvalues, the cor-
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responding overlap mass first has to be tuned. Conceptually, the quark
mass plays two roles, namely that of the sea quark mass that is used in
the generation of gauge configurations and that of the valence quark mass
that is used in the computation of observables. More specifically, if the
expectation value of an observable is expressed by a path integral and the
fermionic part of the integral is carried out, this takes the general form∫
D[U ]

∫
D[ψ, ψ̄]A(ψ, ψ̄, U)e−SG[U ]−ψ̄Dmψ

=
∫
D[U ] det [Dm] Ã(Dm, U)e−SG[U ]

with Ã depending on the form of the observable A and usually containing
traces of operators built from Dm. The quark mass enters this expression
in the fermion determinant det [Dm] as well as in the observable Ã, and
conceptually it is possible to use different quark masses for these terms,
which are then called the sea and valence quark mass. Of course, if these
take different values it is in general no longer possible to again write the
expectation value as a path integral with a local action. The quenched
approximation is equivalent to setting the sea quark mass to infinity, which
makes the determinant constant and therefore irrelevant. More generally,
a computation is called partially quenched if the Dirac operator in the
determinant and that in the observable differ, be it only in the value of
the mass or by using a completely different discretization scheme.
As long as two discretization schemes are equivalent in their continuum

limits and therefore belong to the same universality class, the values of
measured quantities should be the same if extrapolated to the continuum.
It should therefore be possible to find values for the bare quark masses
in a simulation using overlap fermions such that the simulation describes
the same physics as the HISQ scheme at given quark masses, at least if
these are extrapolated to the continuum. The trick is to use an observable
that can reasonably well be determined in the HISQ scheme and is not
expected to be very sensitive to effects from not being close enough to the
continuum, and match the overlap quark mass such that the observable
gives the same values if computed with the overlap operator. These pa-
rameters can then be used to compute something where the continuum
extrapolation is easier for overlap fermions than for HISQ fermions. In
particular, for HISQ fermions, full chiral symmetry is only restored in the
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continuum, while overlap fermions implement full chiral symmetry even at
finite lattice spacing. For observables that are sensitive to the light quark
mass, the HISQ scheme will therefore not be as reliable as the overlap
formulation. This unfortunately also means that it is difficult to tune the
light quark mass since no observable that is sensitive to it can reliably be
compared between the two schemes.
These problems are not as pronounced if the strange quark mass is

tuned. Once a value is obtained for it, a range of light quark masses
can be sampled such that the ratio between the light and strange quark
mass is of the same order of magnitude as in the HISQ formulation. The
tuning of the strange quark mass is done using an observable similar to
the UA(1) breaking term ω, with the difference that ml is replaced by ms,
i.e. (cf. (2.26))

ωs = T

V

〈 1
ms

tr
[
D̃−1
s

]
+ tr

[
D̃−2
s

]〉
= T

V

〈∑
ε

2m2
s(

m2
s + 4r2

4r2−ε2 ε
2
)2

〉
.

For HISQ fermions, where the massive Dirac operator is simply given
by Dm = D + m with an antihermitian massless Dirac operator D, this
simplifies to

ωs = T

V

〈 1
ms

tr
[
D−1
ms

]
+ tr

[
D−2
ms

]〉
= T

V

〈∑
λ

2m2
s

(m2
s + |λ|2)2

〉
.

In order to compute the expectation value of the trace of some inverse
operator, the usually used strategy consists of taking random vectors,
inverting the operator on them and taking the scalar product of the result
with the original random vector, i.e.〈

tr
[
A−1

]〉
≈ N

n

n∑
i=1

x†iA
−1xi

with n being the number of normalized random vectors xi and N being
the dimensionality of these vectors. Taking a single random vector and
writing it as linear combination of the eigenvectors vi of A with eigenvalues
λi, x =

∑
i ξivi, results in

x†A−1x =
∑
i

|ξi|2λ−1
i .
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Each |ξi|2 is randomly distributed with expectation value 1/N and variance
∼ 2/N2 since for large dimensionality it can be approximated as a quotient
between independent random variables distributed with χ2(1) and χ2(N)
distributions. The standard deviation is therefore of the same order of
magnitude as the value which usually means that a lot of random vectors
are needed to get a reliable result. However, if a lot of eigenvalues of A−1

lie close together, the fluctuations of their contributions tend to cancel each
other. Another source of error lies in the fact that the evaluation of A−1x
can usually only be done approximately and stops once the candidate y
for A−1x gives a small residual r = x − Ay. If the candidate y and the
correct solution ỹ differ along the direction of an eigenvector of A with
a particularly small eigenvalue, this does not affect the residual as much
as with larger eigenvalues. However, the small eigenvalues of A have the
largest contributions to the trace of A−1.

Fortunately, since the lowest eigenvectors and eigenvalues of the overlap
operator have anyhow been computed for this work and the eigenvectors of
D and D̃−1 are the same, they can be used to deflate the inversion needed
for the computation of D̃−1x. In this case, an incomplete deflation has
been implemented (cf. [50]) which does not require that the vectors used
in the deflation are exact eigenvectors. The disadvantage with respect to
a complete deflation is that it requires some linear algebra in each step of
the inversion and not only at the beginning and the end, but since each
step consists of a time-consuming application of the overlap operator, this
does not matter much. For the inversion, a simple conjugate gradient
was used to solve the normal equation D†mDmy = D†mx. In principle, it
should be possible to use a direct solver like BiCGstab [51], but this often
gave non-converging results so the stabler CG algorithm was used. The
operator D†mDm can be written in the form α(D†D+f(m)), but since the
right-hand side of the equation also differs for the different masses, it was
not possible to use a multi-shift inverter. Also, while it may be possible
to adjust the incomplete deflation for a multi-shift solver, it is not obvious
how this could be achieved.
The deflation also has the advantage that the condition number of the

remaining operator is much smaller, so fluctuations in the contributions of
specific eigenvalues will tend to cancel each other and less random vectors
are needed. In fact, it turned out that only one random vector per con-
figuration and mass was sufficient and computing more of them did not
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Figure 4.6: Tuning of the bare overlap strange quark mass at Tc (left) and 1.2Tc

(right) for different lattice spacings. The horizontal lines indicate the corre-
sponding HISQ results where the valence quark mass is equal to the HISQ sea
quark mass. The full results from incomplete deflation are marked by filled
symbols, results computed from just the eigenvalues by empty ones.

change the result noticeably.
In fig. 4.6, the observable ms

T 4 ωs at different strange quark masses and
their intercept with the HISQ value are visualized. Although the observ-
able had to be computed for several more masses in order to pinpoint the
location of the intercept, only a few points around each result are shown.
When comparing these results to the ones reported in [5], it should be
noted that here and later in fig. 4.7 the zero mode contribution is in-
cluded unless mentioned otherwise. While the relative number of zero
modes should vanish in the thermodynamic limit, arguments laid out in
section 4.1.2 suggest that the corresponding contributions will instead be
given by near-zero modes, so they should not simply be ignored.
It stands out that especially near Tc the bare quark masses at different

lattice spacings are very different, with ms at Nτ = 6 coming out to be 1.4
times as large as at Nτ = 8. The corresponding bare HISQ quark masses
only have a ratio of 1.08, which is more expected since the renormalization
constants should be similar. A possible reason could be that while taking
the same renormalization constant for the eigenvalues and for the quark
masses is sufficient to provide the correct renormalization for the chiral
condensate Σ, especially for the larger eigenvalues, which do not contribute
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Figure 4.7: Renormalized measure of UA(1) breaking for different valence light
quark masses. The strange quark mass is taken from the tuning done before
(cf. fig. 4.6). The empty points are results after subtraction of the zero mode
contribution.

to Σ in the chiral limit, it is not necessary. The obtained quark masses
should therefore only be taken as a rough guide for the correct values.
Any observable that might be used to similarly tune the light quark

mass will at the same time be sensitive to the fact that for HISQ fermions
the chiral symmetry group is reduced, so at finite lattice spacing it might
be argued that the light quark mass plays a different role than for over-
lap fermions. For example, the staggered formulation gives rise to more
would-be Goldstone bosons than there are physical pions because even if
during the generation of the gauge configurations a rooting procedure is
used, the observable sees four staggered tastes. These bosons are not ex-
actly degenerate, so there is some ambiguity about whether this actually
describes a system with two dynamical light quarks that have the mass
that was used in the staggered formulation. Even if there are no con-
ceptual problems, the observable as computed with HISQ fermions might
have large discretization errors. In any case it would defeat the purpose of
being able to compute ω with a discretization scheme that, in contrast to
HISQ fermions, has full chiral symmetry if the same quantity were to be
used to tune the light quark mass, which would make the obtained values
equal by construction.
It is however possible to compute the UA(1) breaking measure ω for
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4 The Microscopic Picture of Axial Symmetry Breaking

different light quark masses and look at its lattice spacing dependence
and also at the partial chiral limit, where only the valence light quark
mass is sent to zero. Since for small quark masses ω is dominated by
the contributions from small modes and in fig. 4.6 it is visible that even
for masses that are only slightly lower than the strange quark mass the
contributions from higher modes that are provided by the inversion already
can be neglected, fig. 4.7 has been computed only from the eigenvalues.
Here, the combination (cf. (2.26))

mlms

T 4 ω

has been plotted, which is dimensionless and renormalization invariant
under the assumption that the eigenvalues and the light and strange quark
masses need the same renormalization constants. For a spectrum that is
given by a Breit-Wigner peak with area α and width σ, it results in

mlms

T 4 ω ∝ α σ + 2ml

(σ +ml)2 .

This has the advantage that the partial chiral limit ml → 0 at fixed
eigenvalue distribution gives a finite value, so it is not that important
to insert the correct light quark mass since it is not very sensitive to it.
In fig. 4.7, it can be seen that this combination gives very similar values
independent of the lattice spacing. Moreover, the considered combination
seems to diverge if the valence quark mass is reduced, with an increasing
contribution from the zero modes. The remaining contribution essentially
comes only from the near-zero modes, which can be seen if only modes
below some threshold are included in the sum. However, since the near-
zero mode peak and the bulk spectrum overlap at Tc and 1.2Tc, such a
threshold is somewhat ambiguous.

While this might no longer be the case in a full chiral limit, this result
gives a strong indication that UA(1) is not effectively restored at the same
temperature as chiral symmetry and that its breaking is caused by zero
as well as near-zero modes. Even at 1.5Tc, fig. 4.8 suggests that the axial
anomaly is still in effect.
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Figure 4.8: Tuning of the strange quark mass and computation of the UA(1)
breaking for different light quark masses at 1.5Tc. Compare figs. 4.6 and 4.7.

4.3 The Space-Time Structure of Infrared Dirac
Modes

Having determined the infrared spectrum of the overlap Dirac operator on
HISQ gauge configurations, it is not only possible to gather information
from the eigenvalues but also from the eigenvectors. In the last sections,
some indications have been gathered that the axial anomaly is not effec-
tively restored at the chiral transition temperature. The zero modes of
the Dirac operator as well as the near-zero mode peak were identified as
mainly contributing to its breaking and even at temperatures as high as
1.5Tc such an infrared peak is still present.
In this section, a closer look at these infrared modes and in particular

their lattice coordinate (i.e., space-“time”) profiles will be taken. These
profiles in essence embody a change of basis for the vector space spanned
by the fermionic degrees of freedom, between the basis given by the eigen-
vectors of the Dirac operator and the basis given by the lattice coordi-
nates. Since both representations can be linked to different aspects of the
dynamics of QCD, their interplay is of great interest.
For these analyses, it is important to use the proper eigenvectors of the

Dirac operator and not simply the eigenvectors of D†D. In section 3.3,
it was discussed how these can be obtained from a non-zero mode pair of
D†D by an appropriate rotation or from a non-zero chiral eigenvector of
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4 The Microscopic Picture of Axial Symmetry Breaking

P±DP± by combination with its partner with opposite chirality. There is
unfortunately no similarly distinguished basis of the subspace spanned by
the zero modes if a configuration has multiple of them, which will also be
visible in the profiles.

4.3.1 Localization
A simple measurement for the localization of a normalized continuum
vector ψ(x), where the space-time coordinate x is written out explicitly
and vector notation is used for internal degrees of freedom, is given by the
participation ratio

PR(ψ) = 1
V4

[∫
d4x|ψ(x)|4

]−1
with |ψ(x)|2 = ψ†(x)ψ(x)

or similarly for a spinor ψ(x) on a lattice with discrete x,

PR(ψ) = 1
N3
σNτ

[∑
x

|ψ(x)|4
]−1

. (4.5)

Here, V4 = V/T is the volume of the space-“time” that determines the
number of path integration variables. If a (continuum) spinor is localized
on some four-volume V ′4 such that |ψ(x)|2 is constant inside this volume
with a value of 1/V ′4 due to normalization and |ψ(x)|2 = 0 outside of it, the
participation ratio takes the value

PR(ψ) = 1
V4

[∫
V ′4

d4x
1
V ′4

2

]−1

= V ′4
V4
,

which explains the name.
In fig. 4.9, the participation ratios of the lowest eigenmodes of each

configuration are plotted against their eigenvalues. While there is much
fluctuation, there is also a clear tendency for low modes to be much more
localized than higher modes. Moreover, at Tc many low modes have a
nonvanishing participation ratio and the average relationship between the
PR value and the eigenvalue is given by a concave function, while at higher
temperatures it is convex and low modes are highly localized. At 1.5Tc,
the near-zero modes and bulk modes show a clear separation such that
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Figure 4.9: Participation ratio of non-zero eigenmodes of the overlap operator for
the ensembles at lattice size 323 · 8 at different temperatures. The black line
shows the result of a fit to the function PR = aλb + c.

the fit to the function PR = aλb + c gives an intercept at λ ∼ 0.42T ,
indicating that the bulk modes are shifted away from λ = 0.

In section 1.4, it has been discussed that a gauge configuration that
contains an instanton gives rise to a similarly localized zero mode of the
Dirac operator, which matches the trend seen here that low modes are
more localized that high modes. If a configuration contains several in-
stantons which are far enough apart such that they do not influence each
other much, they will accordingly give rise to multiple zero modes, each
localized at one of the instantons. However, it is not guaranteed that the
zero modes that are computed as, for example, eigenvectors of D†D are
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4 The Microscopic Picture of Axial Symmetry Breaking

exactly these localized modes instead of some linear combinations of them.
Since the eigenvalue is degenerate, a computation of the eigenvectors will
give some relatively arbitrary orthonormal set of vectors that spans the
appropriate eigenspace, with any splittings coming from numerical fluc-
tuations that will in general not be aligned to the localized structures.
The participation ratio as defined in (4.5) is not invariant under a unitary
transformation, so if two highly localized modes are rotated to form, for
example, the combinations 1√

2(ψ1 + ψ2) and 1√
2(ψ1 − ψ2), these will have

a much larger participation ratio—in this case, about twice as large. A
more appropriate definition of the participation ratio that can be applied
to a set of n orthonormal vectors is therefore given by

PR(ψ1, . . . , ψn) = n

V4

∫ dx
(

n∑
i=1
|ψi(x)|2

)2
−1

. (4.6)

It is invariant under a change of basis within the subspace spanned by
the vectors. If n modes are each localized on some four-volume and these
four-volumes have no overlap with each other, this results in an inverse
participation ratio IPR = 1/PR that is the average of the individual IPRs.

If a configuration contains instantons as well as anti-instantons, the
two-dimensional subspace spanned by the corresponding righthanded and
lefthanded zero modes can also be spanned by some other basis. A specific
basis is distinguished from other possibilities in that it is equivalent to
a non-zero mode pair—where one mode is obtained from the other by
application of γ5 and both have zero chirality—except that the eigenvalue
happens to be zero. It can therefore be disturbed away from zero by
fluctuations in the gauge field (cf. section 2.3.1). If this is the origin of
the near-zero modes, which can most clearly be separated from the bulk
modes at 1.5Tc, the participation ratio of a near-zero mode should be
about twice as large as the participation ratio of a zero mode. In fig. 4.10,
the inverse of the participation ratios (IPR) of zero as well as near-zero
modes at 1.5Tc are shown. The magnitude of the zero mode eigenvalues is
mostly due to the fact that the algorithm was stopped once the separation
between zero and near-zero modes was clear enough, so by computing a
few extra iterations it is possible to reduce the numerical eigenvalues of
the zero modes. While there are some outliers, the average values have
a ratio of 2.18(9) between the IPR of zero modes and that of near-zero
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Figure 4.10: Inverse participation ratios of zero modes (using (4.6)) and near-zero
modes (λ < 0.4T ) at 1.5Tc.

modes, which supports the picture that many near-zero modes are formed
by a superposition of zero modes localized on an instanton and an anti-
instanton, which is then disturbed away from zero.

4.3.2 Density Profiles of Zero and Near-Zero Modes
In the last section, several explanations for the obtained trends in the par-
ticipation ratios were given that can be checked by looking at the profiles
of specific eigenvectors. These can not replace a collective picture since
only a few of them can be looked at at the same time, which carries the
danger of a selection bias. But they can be useful for a graphic visualiza-
tion. All profiles shown in this section are taken from the ensembles with
323 · 8 lattices.

In fig. 4.11, the zero mode of a configuration that only has one of them
is shown. It is clearly visible how the mode is practically vanishing every-
where except in some small region where there is a peak of density. This
corroborates the analytic result that zero modes are induced by instantons
and localized at the same position.
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Figure 4.11: Density profile of the zero mode of a configuration with |Q| = 1
at 1.5Tc. The internal degrees of freedom and the other coordinates are
integrated out.

If a configuration has multiple zero modes of the same chirality due
to multiple instantons, the zero modes are not necessarily each localized
at one position each. In fig. 4.12 it can be seen how the zero modes as
computed by the algorithm are linear combinations of the localized modes.
Each mode shows two peaks, both of which are at the same position for
the two modes. In this case, one peak is dominant for one mode while
the other is dominant for the other, which simply means that the rotation
matrix that transforms the computed modes to modes that are localized
on one peak each can be chosen such that the diagonal elements will be
larger than the off-diagonal ones.
As discussed before, near-zero modes can arise if a configuration has

instantons as well as anti-instantons, such that the actual overlap eigen-
vectors are linear combinations of the would-be zero modes. The profile
in fig. 4.13 fully supports this picture, since a near-zero mode seems to
consist of two peaks that have the same height. In the chirality profile
ψ†(x)γ5ψ(x), it is even visible that one of the peaks gives a positive contri-
bution to the chirality while the other gives a negative one. The near-zero
mode therefore is given by a linear combination of a righthanded and a
lefthanded mode that are each highly localized. The prefactors in the lin-
ear combination also have the same norm, which is required for a vanishing
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Figure 4.12: Density profiles of the zero modes of a configuration with |Q| = 2
at 1.5Tc. The internal degrees of freedom and the other coordinates are
integrated out.

|ψ|2/fm−2

0 1 2 3x/fm 0
1

2
3

z/fm

0
2
4
6

ψ†γ5ψ/fm
−2

0 1 2 3x/fm 0
1

2
3

z/fm

-4
-2
0
2
4

Figure 4.13: Density and chirality profile of a near-zero mode at 1.5Tc. The
internal degrees of freedom and the other coordinates are integrated out.

chirality and results in the two peaks having the same height. As a side
remark, the two modes of the near-zero mode pair have indistinguishable
profiles.
The profiles shown so far have all been extracted from configurations

at the highest temperature, since the correspondence between instantons
and infrared modes seems to be the clearest there. At lower temperatures
and especially close to Tc, there is often much fluctuation in the profiles
with some peaks still visible for low modes. An example that is relatively
clean is shown in fig. 4.14. Even though the configuration only has one
zero mode, the chirality profile of the zero mode has two peaks and some
further fluctuations. Taking a look at the lowest near-zero mode of the
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Figure 4.14: Chirality profile of a zero mode and the lowest near-zero mode of a
configuration with |Q| = 1 at Tc.

same configuration for comparison, it seems that one of the peaks is also
present in the near-zero mode. In fact, even the other peak is slightly
visible in the near-zero mode. In addition, it has a peak of opposite
chirality. So it seems that there are multiple localized structures in the
underlying gauge field, but the lowest modes are not aligned completely
along these structures. Instead, the overlap eigenvectors seem to be linear
combinations of several localized modes.

4.3.3 Size and Distribution of Localized Structures
The analytic result for the zero mode associated with the instanton solu-
tion has the density ([23], see also section 1.4)

|ψ(x)|2 = 2ρ2

π2 (x2 + ρ2)3 .

The derivation of this result assumes an infinite volume in all directions
including the time direction, i.e., a system at temperature zero. The zero
mode is normalized such that

∫
d4x|ψ(x)|2 = 1. In fig. 4.15, it can be

seen that sometimes the extent of the localized structures is not negligible
compared to the inverse temperature of the system. Gauge field solutions
with minimal action similar to instantons but on the compactified manifold
R3 × S1 are called calorons and known in the literature [52, 53]. In the
simplest case these are simply periodically repeated instantons, but there
are also solutions with non-trivial holonomy, i.e., where the gauge field
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Figure 4.15: Density profile of a zero mode along the temporal and one spatial
direction. Taken from a configuration with |Q| = 1 at 1.5Tc.

is not repeated exactly. Since the field strength tensor must be periodic,
the gauge field at x + βx̂τ with β = 1/T is still gauge-equivalent to the
gauge field at x. For this analysis however, the analytic expression for the
density is simply replaced by

|ψ(~x, τ)|2 =
∑
n∈Z

f (~x, τ + nβ) (4.7)

with f(~x, τ) = α(
1 + (~x/ρσ)2 + (τ/ρτ)2

)3

In order to accommodate the possibility that the spatial and temporal
extents are different, the instanton size ρ was split into ρσ and ρτ . The
normalization α can be obtained by observing that∫ β

0
dτ
∑
n∈Z

g(τ + nβ) =
∑
n∈Z

∫ (n+1)β

nβ
dτg(τ) =

∫ ∞
−∞

dτg(τ),

giving

1 =
∫

d3x

∫ β

0
dτ |ψ(~x, τ)|2 =

∫
d4xf(x) = απ2

2 ρ3
σρτ
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Figure 4.16: Spatial and temporal instanton size from fit to (4.7) of |Q| = 1 zero
modes at 1.5Tc.

and therefore

f(~x, τ) = 2

π2ρ3
σρτ

(
1 + (~x/ρσ)2 + (τ/ρτ)2

)3 .

Equation (4.7) can be fitted to the numerical data obtained from inte-
grating out the internal degrees of freedom of zero modes of configurations
with |Q| = 1 at 1.5Tc. It is necessary to truncate the sum over the periodic
copies, so it was only running from −2 to 2, which is enough such that
the omitted copies would have fallen off sufficiently anyway. In the spatial
directions, the peaks always fall off fast enough such that the periodic
boundary conditions can be ignored and no periodic copies are needed. It
is however necessary to shift the coordinates of the spinor such that the
peak is positioned somewhat centered on the lattice. The exact position
of the peak was also determined by the fit and the lattice point that has
the highest density was used as the initial guess. The results can be seen
in fig. 4.16 and give an average of ρσ = 0.236(7) fm and ρτ = 0.243(8) fm.
The sizes in spatial and temporal directions are compatible within error
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Figure 4.17: Distribution of distances between the two peaks in the chirality pro-
file of a near-zero mode on 323 · 8 lattices at 1.5Tc. The green points show
the distance between the origin and a random lattice point for comparison.

bars, with the temporal extent being slightly larger. The temporal extent
of the lattice is roughly 0.83 fm, so for a typical instanton localized at the
center of the lattice the density at the border will be about 3.3 % of its
maximal value. There are some modes where the extent is larger with
values of 0.3–0.4 fm and for these modes the finite size of the lattice in the
temporal direction is important. It can further be seen that the spatial
and temporal extent of a given instanton are highly correlated, with a
correlation coefficient of 0.75(6).
If a near-zero mode is created by a linear combination of a right- and

a lefthanded zero mode which are localized at different positions, their
sizes and the distance between them can similarly be obtained from such
a fit. Instead of fitting a function with two peaks and therefore twice as
many parameters, it is easier to first rotate the near-zero mode pair by
diagonalizing γ5 on the subspace spanned by it. This creates two modes
that each have only one peak, so the same fit as with zero modes can be
used. Again, the coordinates can be shifted such that the peaks are not
at the spatial borders of the lattice, but the different shifts for the two
modes of one pair have to be compensated when calculating the distance
between the instanton and the anti-instanton. For simplicity, only one
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extent ρ = ρσ = ρτ was used since for the zero modes it was seen that the
spatial and temporal extents are highly correlated anyway.

In fig. 4.17, the distribution of the distances d = |x+−x−| with x+ and
x− being the position of the peaks with positive and negative chirality,
respectively, is shown and compared to the distribution of the distance
from a fixed point to some random point on the lattice. It seems that the
instanton-anti-instanton (I-AI) pair is almost randomly distributed with a
slight correction towards being closer together, corroborating the picture
of a gas of weakly interacting topological structures that sometimes form
weakly bound molecules consisting of an I-AI pair. The action of an I-AI
pair in pure gauge theory decreases with the distance between them [23],
so unless the presence of dynamical fermions changes this behavior, there
is a weak attracting force between instantons and anti-instantons such
that configurations with a close I-AI pair will be sampled more often than
ones where the pair is far apart. Also, it seems plausible that if there
are multiple instantons and anti-instantons, the pairings will be chosen in
such a way that the distances between partners is somehow minimized.
While the positions of the instanton and anti-instanton that are paired

to create near-zero modes are somewhat anticorrelated, it seems that there
is no significant correlation between their sizes. This can be seen in
fig. 4.18, where the sizes of the two peaks are compared for each near-
zero mode pair. The lack of correlation is also reflected in the correlation
coefficient, which has a value of 0.09(8).
At least at 1.5Tc, it seems that most zero modes correspond to one

instanton or anti-instanton and most near-zero mode pairs correspond to
an I-AI pair. Under the assumption that the occurrence of each of these
localized structures is independent from the others, the total number n of
zero and near-zero modes should follow a Poisson distribution,

P (n) = e−κκ
n

n! .

In fig. 4.19, it has been counted how many configurations have a specific
total number of zero and near-zero modes at 1.5Tc. A mode has been
regarded as near-zero mode if its eigenvalue was below some threshold,
in this case 0.44T . Several thresholds in the range [0.1T, 0.5T ], which
covers the gap in the spectrum at 1.5Tc, have been tried and for this
value a Poisson fit to the data gave the χ2 per degree of freedom that
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Figure 4.18: Correlation between the sizes of the peaks that form a near-zero
mode pair at 1.5Tc. ρ− is the size of the peak that contributes negative
values to the chirality of the mode and ρ+ the one that contributes positive
values.

was closest to 1, namely 0.99. The fit gives a value of κ = 4.50(13),
which for a Poisson distribution is equal to the mean value as well as
the variance. The measured average is 〈n〉 = 4.53(17) and the measured
variance σ2 = 4.1(4), so the assumption of independent occurence seems
to be justified. Setting κ = 4.50(13) in relation to the total four-volume
of the lattice, QCD at this temperature shows the behavior of a weakly
interacting dilute gas of instantons and anti-instantons that have sizes of
0.239(4) fm, with 0.154(5) topological objects per fm4.
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4 The Microscopic Picture of Axial Symmetry Breaking
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Figure 4.19: Relative number of zero and near-zero modes per configuration and
Poisson fit to the data.
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5 Conclusion

In this work, the spectrum of the overlap Dirac operator has been com-
puted and analyzed on configurations that had been created using highly
improved staggered quarks. Although the overlap operator is expensive to
compute, it has the advantage that it fully implements chiral symmetry in
the same way as the continuum QCD Dirac operator even at finite lattice
spacings. This opened the possibility to investigate chiral aspects of QCD
and, in particular, the question if the axial anomaly is suppressed at the
chiral transition temperature Tc.
The obtained results indicate that the axial anomaly is still present at

Tc and even at 1.5Tc as evidenced by a splitting in the integrated pion and
delta susceptibilites. The spectrum shows a peak in the near-zero region
consisting of zero modes and pairs of near-zero modes. The breaking of the
axial symmetry was identified as being caused by these infrared modes.
It was discussed how this infrared contribution might change in the ther-
modynamic, continuum, and chiral limits. The obtained data supports
the expectation that the peak becomes narrower with decreasing quark
masses, resulting in a Dirac-delta peak in the chiral limit. The area under
the peak was found to decrease with decreasing lattice spacing, so in order
to resolve how much of it survives the continuum limit further investiga-
tions are needed, in particular ones where already for the generation of
gauge configurations chiral fermions are used.
The infrared modes were investigated and found to be highly localized,

supporting the picture of QCD at high temperatures as a dilute instanton
gas. The instantons were found to have an average size of 0.239(4) fm and
a density of 0.154(5) fm−4 at 1.5Tc. Near-zero modes were found to be
induced by instanton-anti-instanton molecules, which are weakly bound.
At temperatures closer to Tc, this picture becomes more complicated but
these features sometimes still can be recognized.
In conclusion, in QCD at temperatures above but close to Tc the chiral

anomaly does not seem to be effectively suppressed yet. Topological ob-
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5 Conclusion

jects like instantons and anti-instantons induce an accumulation of highly
localized infrared Dirac modes and thereby cause the anomalous chiral
symmetry to be broken.
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