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Chapter 1

Introduction

This doctoral thesis in economic theory studies the interaction between socio-economic

agents. On the one hand, it focuses on the fundamentals of strategic interaction, on

the other it analyzes the induced socio-economic structures, in particular the forma-

tion of networks.

When it comes to strategic interaction in economic settings, several questions arise

immediately. Why and how do agents interact? Which strategies will they pursue? To

what extent do agents want to acquire additional information if there is uncertainty?

How does the behavior of counterparts influence rational agents’ (re)actions? Is it

possible that no one has incentives to deviate from a given behavior? And if so, what

are the characteristics of such a situation that is either called stable or an equilibrium?

Beyond these questions concerning strategic interaction, we can also ask what these

interactions imply. Which kinds of networks of agents typically emerge in certain

settings? Which properties do they have? What effects does the formation of these

networks have on socio-economic outcomes? To what extent do theoretic results fit

real-world data?

These are major questions which this doctoral thesis considers in detail within

the framework of three different models being developed and analyzed. Thus, it

contributes to a variety of research fields in economics but also in sociology and

mathematics.

1.1 Scientific Context

Thinking about strategic interaction, one is at the very heart of game theory. “The

study of mathematical models of conflict and cooperation between intelligent rational

1



2 • 1 Introduction

decision-makers”, as Myerson (1991, p. 1) describes it, is central to economic sciences

nowadays. The important concepts of game theory find application wherever a cer-

tain outcome does not only depend on one’s own decision but also on the behavior

of others. Common economic examples are decisions about prices or quantities by

competing firms, the choice of technological standards or the behavior of competitors

in auctions, to mention only a few.

First recorded steps towards the development of this field trace back to a discus-

sion about the card game “Le Her” initiated by Charles Waldegrave in a letter he

wrote to Pierre Rémond de Montmort in the early 18th century (see e.g. de Montmort,

1713; Bellhouse, 2007). However, it took until the 20th century for the mathematical

theory of games to get established as a unique field by von Neumann (1928) (see also

von Neumann and Morgenstern, 1944). A natural way to think about these situa-

tions of conflict or cooperation is to seek for a status quo where each agent’s strategy

is individually optimal such that no one wants to deviate from it. This leads to

the solution concept of “Nash equilibria” which was invented by Nash (1950b, 1951)

and refined by Selten (1965) through his work on “subgame perfect equilibria” in a

dynamic context.1

Until then, in the game-theoretic literature, it was assumed that agents involved

in a situation of strategic interaction are always perfectly informed about the state

of the world. In sequential games, this means that each agent always knows all

developments and decisions made at previous stages. In many real-world examples,

however, this is very rarely the case. It was Harsanyi (1967, 1968a,b) who developed

the concepts of incomplete information and Bayesian games giving rise to the solution

concept of “Bayesian Nash equilibrium”.2 Hereby, Harsanyi also provided a theoretical

foundation for the economics of information.

During that time, the concepts of game theory also found their way into other

disciplines such as biology. Since then and initiated by the paper of Maynard Smith

and Price (1973), much research has been devoted to evolutionary game theory used

as a tool to analyze Darwinian competition. Some of the results derived in this

context are now used by the more recent literature on the evolution of preferences in

more concrete economic settings. Güth and Yaari (1992) and Güth (1995) were the

1From 1972 until 1984, Reinhard Selten worked at the Center for Mathematical Economics at
Bielefeld University.

2For their contributions to economic game theory, John Nash, John Harsanyi and Reinhard Selten
were awarded the Nobel Memorial Prize in Economic Sciences in 1994. With Robert Aumann and
Thomas Schelling, two further game theorists received the prize in 2005. Two years later, Leonid
Hurwicz, Eric Maskin and Roger Myerson received the prize for having laid the foundations of
mechanism design theory, which is closely related to game theory.
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first to work on this.

In general, both the literature on Bayesian games and on the evolution of pref-

erences posit an exogenously given structure of information. However, in settings

of strategic behavior where an agent’s information typically has an impact on her

payoffs, it seems appropriate and enlightening to consider individual information ac-

quisition as an endogenous decision variable. Yet, not much work has been done in

this direction. Chapter 2 of this doctoral thesis takes up this idea and contributes

to a better understanding of endogenized acquisition of information or, as we call it,

“cognitive empathy” in conflict situations.

Beyond that, another important application of game theory in general is the one

to bargaining problems. In such problems, typically two or more agents try to find

an agreement regarding how to distribute an object or a monetary amount. For ex-

ample, this is the case when the personnel director of a company negotiates wages

with workers’ unions, firms bargain with other firms over prices or collaborations, or

politicians over environmental or trade agreements. In such situations, each agent

usually seeks for an outcome which is as favorable as possible for herself, however,

without threatening an agreement. A first notable idea to tackle this problem in

economics was the axiomatic, cooperative approach by Nash (1950a) (see also Nash,

1953, for a non-cooperative approach). Given agents’ disagreement points, feasible

utility values and bargaining power, this provides what we today call the “(gener-

alized) Nash bargaining solution”. In reality, however, agents might use elaborate

bargaining tactics and, moreover, there is no certainty that an agreement will be

reached. While the above approaches abstract away from this, these open points

were already addressed to some extent by the work of Schelling (1956). From today’s

perspective, however, the strategic approach introduced by Rubinstein (1982) (see

also Rubinstein and Wolinsky, 1985) was probably the most important contribution

in this regard. It proposes a reasonable dynamic specification of the bargaining game

and provides a unique, subgame perfect equilibrium as a solution. While most other

approaches are even completely silent on the origin of agents’ bargaining power, here,

it is simply determined by her level of patience.

In general, however, bargaining power can be influenced by many different fac-

tors. In a context where bilateral agreements can be reached with different bargaining

partners, one’s bargaining power should heavily depend on the number and kinds of

alternatives among which one can choose. Such a structure of bilateral links between

agents can be interpreted as a network. As an example for this, one could con-

sider a setting of project collaborations between companies. Given such a bargaining
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network, a link between two agents would then represent a potential collaboration

between the two. Capturing this idea, Manea (2011) sets up and analyzes a model

which can be regarded as a microfoundation of the above seminal papers. As a main

result, he establishes that all subgame perfect equilibria of the network bargaining

game are payoff equivalent. Here, networks are assumed to be exogenously given.3 In

a setting of strategic interaction where agents’ expected payoffs are determined by the

structure of their network, however, it seems reasonable to assume that each agent

would strive to maximize her anticipated profit by optimizing her network position.

This is where Chapter 3 on strategic formation of homogeneous bargaining networks

comes into play so as to examine such network structures with regard to stability and

efficiency.

Network theory and, in particular, strategic network formation is a relatively

young research field in economics which is, however, not restricted to bargaining

frameworks by far. To name just a few, modeling trade and exchange of goods in

non-centralized markets (see e.g. Goyal and Joshi, 2006), firms involved in R&D

networks (see e.g. Goyal and Joshi, 2003) or personal contacts in the context of

job search (see e.g. Calvó-Armengol, 2004) are further insightful applications. Early

works of Boorman (1975), Aumann and Myerson (1988) and Myerson (1991) mark

the beginning of the economic literature on strategic network formation. However,

only after Jackson and Wolinsky (1996) introduced the seminal equilibrium concept

of “pairwise stability”, this field became a most active research area.4 In models of

this literature, networks are assumed to induce explicit benefits and costs for each

contained agent. Usually, this then gives rise to individual incentives to add or delete

links unless the network is stable.5 Furthermore, considering the collective of all

agents in the network provides a measure of (utilitarian) welfare. Based on this,

analyzing the tension between stable networks and “(strongly) efficient” ones, that is

networks being optimal from a society’s perspective, often yields further interesting

insights (see again Jackson and Wolinsky, 1996).6

Prior to this, social networks have already been an object of research in other

fields and disciplines such as labor economics and sociology. However, research ques-

3At least, this applies for the actual paper. For details concerning Manea (2011, Online Appendix)
see Chapter 3.

4Jackson (2005), Jackson (2008b, Chapter 6) and Goyal (2012, Chapter 7) provide a nice overview
of the literature and basic concepts.

5Apart from pairwise stability, several variations, refinements and alternative notions of stabil-
ity such as, for example, “Nash stability”, “pairwise Nash stability” and “pairwise stability with
transfers” have been developed. For an overview see Bloch and Jackson (2006).

6Note that an efficient network always exists whereas this is not guaranteed for pairwise stable
ones.
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tions differ substantially from the strategic approach considered above. Here, the

focus is rather on features of given networks and socio-economic implications thereof.

Moreover, in a large part of this literature, it is either not feasible or considered

unnecessary to take explicit representations of whole networks in a graph-theoretic

sense as a basis (see above and below). Abstracting from this notion, sociological

studies have shown, for example, that social contacts and interactions play an im-

portant role in finding jobs and filling vacancies (see e.g. Rees, 1966; Granovetter,

1973, 1995). Starting with Montgomery (1991), labor economic models then try to

explain why this is the case and what consequences it has for earnings, abilities of

employees, firms’ profits, unemployment, etc. Beyond that, certain stylized facts

about real-world networks are well-established: They typically exhibit “homophily”,

that is the tendency of individuals to connect to similar others, “clustering” and the

“small-world phenomenon” (see e.g. Lazarsfeld and Merton, 1954; Milgram, 1967;

McPherson et al., 2001).7 These properties have also been incorporated into some

economic papers (see e.g. Currarini et al., 2009). However, in these models, ho-

mophily is usually captured by a binary or discrete measure, thus rather in terms of

equality than similarity. Further simplifications are often due to the abstract notion

of networks mentioned above. One should be very careful about such simplifications

as it is probably not very rare that “the structure of the social network then turns

out to be a key determinant” (p. 12 Jackson, 2005).

Another discipline in which networks play an important role is the mathematical

field of graph theory. Considering this literature leads us back to an explicit notion

of graphs (synonymously for networks) consisting of vertices and edges. There also

exists a strand of literature here which investigates network formation. However, in

contrast to the strategic approach mentioned above, it considers networks which form

at random. This means that the formation of links does not result from individual

incentives and strategic interaction but is assumed to follow some probabilistic rule.8

On the one hand, such random network models serve as an approximating tool to

examine and handle real-world networks which are usually quite large and remain

unknown for an analysis. On the other hand, random networks can be used, for

example, to understand and predict diffusion processes in societies. This might be

7More precisely, a network is called homophilous if for any two individuals the likelihood to be
linked is the higher the more similar they are in terms of one or several characteristics. A network is
said to exhibit clustering if two individuals with a common neighbor have an increased probability
of being linked. Finally, the small-world phenomenon describes the observation that even in large
networks on average there exist relatively short paths between two individuals.

8For a general introduction into graph theory see Bollobás (1998) and West (2001). Moreover,
see Bollobás (2001) and Jackson (2008b, Chapter 4) as well as Jackson (2006, Section 3.1) to get an
overview of random graphs respectively networks.
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of importance if one wants to estimate how information or a disease will spread.

To provide meaningful results, such a model should be designed as realistically as

possible, that is in a way to ensure it complies with the stylized facts known from

sociology (see above).9 One that is frequently considered until today and which was

already examined in the seminal paper of Erdős and Rényi (1959) is the “Bernoulli

Random Graph model” in which links are formed uniformly at random. This popular

model exhibits the small-world phenomenon but fails on homophily and clustering

(see e.g. Bollobás, 2001). Chapter 4 of this doctoral thesis addresses this issue and

proposes a tractable random network model which can be seen as a generalization

of the Bernoulli Random Graph model exhibiting all of the stylized facts mentioned

above.

1.2 Contributions

In Chapter 2, we build a simple model of strategic interaction with two players hav-

ing the option to acquire information about their respective opponent’s preferences

which are ex ante uncertain. We show that, for sufficiently small positive costs of in-

formation acquisition, in any Bayesian Nash equilibrium of the resulting conflict game

of incomplete information the probability of getting informed about the opponent’s

preferences is bounded away from zero and one. For the evolutionary population

interpretation of the game this result implies that we would expect that there are

people who are “cognitively empathic”, i.e. who know their opponents’ preferences,

and that there are others who are not. Even if the cost of empathy acquisition is

zero, besides a full empathy equilibrium, the game still has such an equilibrium with

mixing between acquiring empathy and not acquiring it. Moreover, we show that for

small costs there is always an equilibrium in which the lower bound on the probabil-

ity of empathy acquisition is achieved for both players. Finally, we establish that in

certain cases the partial empathy equilibrium is the only equilibrium.

In the model, each of the two players can be one of a finite number of different

preference types. The distribution over all preference types is commonly known (to

avoid that our results confound with higher-order belief effects). Both players, before

learning their own types (this is for convenience), simultaneously decide whether or

not to pay a small amount of cost in order to acquire empathy, that is to learn the

opponent’s type. Anyway, players do not observe their opponent’s choice of empathy

9For formal definitions of these stylized facts in a random network setting see Jackson (2010,
Section 3.3).
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acquisition. After learning their own and, if appropriate, their opponent’s type,

players then choose their (possibly mixed) action as a function of what they know.

For the main results, we investigate “two-action Bayesian conflict games”. Here, both

players have two actions available and, if we assume players’ types to be common

knowledge, then any such complete information “realized type game” must have a

unique Nash equilibrium and that Nash equilibrium must be in completely mixed

strategies.

There are at least two different interpretations we can give for our model. One is

that players are highly rational but have some small costs of reasoning about their

respective opponent’s preferences. Our model could then be about two individuals

engaged in the penalty kick, two firms engaged in conflict or military generals engaged

in war. In this context we talk about players “acquiring information” about their

opponents. On the contrary, in its evolutionary interpretation, there is mother nature

(or evolution) who works on everyone of her subjects independently and has their

material interests at her heart. Nature knows that her subjects will be involved in all

sorts of conflict situations throughout their life. She individually decides whether or

not she should spend some small amount of fitness cost to endow her subjects with

cognitive empathy, which would then allow the respective subject to always learn

(in fact, to always know) the opponent’s preferences. In this context we talk about

“acquiring (cognitive) empathy”.

This chapter is joint work with Christoph Kuzmics. He initially contributed the

general research idea and at the end contributed to the actual writing of the main

parts of the paper. We worked together on finding and concretizing the actual final

choice of model and on identifying which results we want to pursue. I provided the

proofs for essentially all results and worked through all examples (thus, identifying

possible results we can pursue). In the final stages of the project, I concentrated

on the content and technical proofs and Christoph Kuzmics concentrated on the

marketing of our paper. However, all this has been carried out in close consultation

and double-checking each other’s work.

In Chapter 3 (of which I am the sole author), we analyze a model of strate-

gic network formation prior to a Manea (2011) bargaining game. Assuming patient

players, we provide a complete characterization of non-singularly pairwise stable net-

works. More precisely, we show that specific unions of separated pairs, odd circles

and isolated players constitute this class. As a byproduct, this implies that a pairwise

stable network always exists, that is at each level of linking costs. We also show that

many generic structures are not even singularly pairwise stable. As an important
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implication, this reveals that the diversity of possible bargaining outcomes is sub-

stantially narrowed down provided pairwise stability. Moreover, we establish that for

sufficiently high linking costs, the networks being efficient in terms of the utilitarian

welfare criterion coincide with the pairwise stable ones. However, this does not hold

if costs are low or at an intermediate level. As a robustness check, we finally study

the case of time-discounting players as well.

Our model consists of two stages. First, players are assumed to form undirected

bilateral links among each other which results in a network. These players are as-

sumed to be ex ante homogeneous, meaning that they are equal apart from their

potentially differing network positions. Further, we consider explicit linking costs

which players have to bear for each link they form. In this context, one shall think

of one-time initiation or communication costs. Benefits from linking are induced by

the network in the second stage. Here, given the network that has formed in the

first stage, players are supposed to play an infinite horizon network bargaining game

à la Manea (2011). Thus, they sequentially bargain with neighbors for the division

of a mutually generated unit surplus. According to Manea (2011) all subgame per-

fect equilibria of this bargaining game are payoff equivalent. Players anticipate these

outcomes during the preceding stage of network formation and choose their actions

accordingly. To state our results, we introduce a novel classification of pairwise stable

networks. A network is said to be singularly (non-singularly) pairwise stable if it has

this property at exactly (more than) one cost level. As only non-singularly pairwise

stable networks can be robust with respect to slight changes of costs, we focus on

this class throughout our analysis.

As a possible application of our model, we outline a setting of project collabo-

ration. Here, players represent similar firms which can mutually generate an (ad-

ditional) surplus within bilateral projects by exploiting synergy potentials. For in-

stance, this possibility might be based on capacity constraints or cost-saving oppor-

tunities. In this context, one-time costs might arise to prepare each two firms for

mutual projects (adjustment of IT, joint training for workers, etc.).

In Chapter 4, we propose and examine a random network model incorporating

heterogeneity of agents and a continuous notion of homophily. As a main result, we

show that for any positive level of homophily, our “Homophilous Random Network

model” exhibits clustering. Moreover, simulations indicate that the small-world phe-

nomenon is preserved even at high levels of homophily. Finally, we provide a possible

application within a stylized labor market setting. We consider a firm which has to

choose whether to hire a new employee via the social network or via the formal job
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market and obtain a simple decision rule.

Our model is a two-stage random process. First, agents are assigned character-

istics independently drawn from a continuous interval. Second, a random network

realizes where linking probabilities are contingent on a homophily parameter and the

pairwise distance between agents’ characteristics. More precisely, the probability of

linkage between two agents continuously decreases in the distance of their character-

istics and the homophily parameter directly determines the strength of this effect. In

the limit case of no homophily, we reproduce the Bernoulli Random Graph model.

Insofar, our setting can be regarded as a generalization of this seminal model.

Our approach enables us to account for homophily in terms of similarity rather

than equality of agents, capturing the original sociological definition instead of the

stylized version that has been commonly used in the economic literature up to now.

In this regard, observe that in reality people are in many respects neither completely

“equal” nor completely “different”. We therefore believe that a notion that provides

an ordering of the “degree of similarity” with respect to which an agent orders his

preference for connections can capture real-world effects more accurately. Besides,

a major distinction of our approach compared to the literature is the sequential

combination of two random processes, where agents’ characteristics are considered

as random variables that influence the random network formation. We thus account

for the fact that in many applications in which the network remains unobserved, it

seems unnatural to assume that individual characteristics, which in fact may depict

attitudes, beliefs or abilities, are perfectly known.

This chapter is joint work with Jakob Landwehr. I contributed the original re-

search idea which was closely related to the application of our model we provide for

the labor market. However, we started discussing this idea at an early stage, changed

the focus and jointly developed the model. During our six-month research stay at the

University Paris 1 Panthéon-Sorbonne, we worked together on identifying the results

we want to pursue, proved them and finally wrote the paper. Here, Jakob Landwehr’s

expertise in using MATLAB (2014) was of great benefit. As essentially all the work

was carried out jointly, both authors contributed equally to this project.
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Chapter 2

Cognitive Empathy in Conflict

Situations

“If you know the enemy and know yourself, you need not fear the

result of a hundred battles. If you know yourself but not the enemy,

for every victory gained you will also suffer a defeat. If you know

neither the enemy nor yourself, you will succumb in every battle.”

— Sun Tzu, The Art of War, approximately 500BC

2.1 Introduction

It is probably rare in a conflict situation that we know the exact cardinal preferences

of our opponent.10 Consider, for instance, a penalty kick in soccer. This is as close

as one can imagine to a pure conflict (i.e. zero-sum) situation. The kicker wants

to score, the goalkeeper wants to prevent that. Now imagine that the goalkeeper

incurred, earlier in the game, a slight injury, a bruising on her left side, which might

induce her to have a slight additional preference of jumping to the right.

If we now assume that there is a distribution of such preferences, commonly known

to both players, perhaps “centered” around the original zero-sum preference, then we

get as a Nash equilibrium of the game (the unique one if we think of the original

10In the quote from Sun Tzu stated above, it is difficult to know what he meant with “knowing
yourself” and “knowing your enemy”. The last sentence of the quote seems to suggest that it is in
fact impossible that both warring generals know neither themselves nor their enemy, as presumably
we cannot have that both “succumb” in the battle between them.

11
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zero-sum game as the classic game of matching pennies) a “purified” version of the

original Nash equilibrium (see Harsanyi, 1973).11,12

We are here interested, however, in the possibility of the players, here especially

the kicker, to possibly acquire, at some small cost, information about the opponent’s

true preferences, here about the goalkeeper’s small injury. Alternatively, one can

think of there being a small cost for the players to think about the opponent’s pref-

erences. The latter interpretation leads us to the term “cognitive empathy” in our

title, as defined in psychology as the process of understanding another person’s per-

spective (see e.g. Davis, 1983), which can be traced back to at least Köhler (1929),

Piaget (1932), and Mead (1934).13 Building this possibility of empathy acquisition

(or, respectively, information acquisition) into such a conflict game with incomplete

information, we are then interested in the following questions. To which extent do

players acquire empathy in equilibrium? In the context of the penalty kick, sup-

pose the kicker is aware of the goalkeeper’s small injury. Does she reason through

what consequences this fact has for the goalkeeper’s preferences and strategy? How

does the possibility of empathy acquisition affect players’ action choices in the game?

Finally, how do the answers to these questions depend on the value of the cost of

empathy acquisition?

To answer these questions we build a simple model. There are two players and

(for the main result) two actions for each player. Each player can be one of a finite

number of different preference types. The distribution over all preference types is

commonly known (to avoid confounding our results with higher-order belief effects).

Both players, before learning their own types (this is for convenience), simultaneously

decide whether or not to pay a small amount of cost c ≥ 0 (simply subtracted

from their payoffs) in order to learn the opponent’s type. Players do not observe

their opponent’s choice of empathy acquisition. After learning their own and, if

appropriate, their opponent’s type, players then choose, as a function of what they

11In a “purified” equilibrium (almost) all types of players use a pure strategy, albeit different
types use different pure strategies. Nevertheless all players face a mixed strategy because they do
not know their opponent’s type.

12In other contexts, that of coordination games, uncertainty over the opponents’ preferences,
provided it is severe enough (to include dominant strategy types), has lead to the “global games”
literature on bank runs, etc. (see e.g. Carlsson and Van Damme, 1993; Morris and Shin, 1998),
and technically, to a refinement of even pure Nash equilibria of the original full information game.
See also Weinstein and Yildiz (2007) on the possibility of getting almost any possible refinement
depending on how the model is closed in terms of its higher-order belief assumptions.

13This is in contrast to “affective empathy” which is defined as a person’s emotional response to the
emotional state of others (see again Davis, 1983) and the two are not necessarily related. Shamay-
Tsoory et al. (2009) find that different areas of the human brain are responsible for “cognitive” and
“affective” empathy. Rogers et al. (2007) find that people with Asperger syndrom lack “cognitive”
but not “affective” empathy.
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know, one of the two actions (or a mixed action). We investigate Bayesian Nash

equilibria of this game.

We first provide, as a point of reference, an example of a non-conflict game, in

which in equilibrium all players always acquire empathy as long as the corresponding

costs are not too large. In this game, each player has three preference types, two

dominant strategy preference types (one for each action) and one coordination pref-

erence type. It is easy to see that the coordination preference type clearly benefits

from learning her opponent’s type.

We then investigate two-player two-action Bayesian conflict games. These are

such that if the types of players were common knowledge, then any such complete

information “realized type game” must have a unique Nash equilibrium and that

Nash equilibrium must be in completely mixed strategies. For such games we show

that, for sufficiently low positive costs of empathy acquisition, the probability of em-

pathy acquisition is strictly bounded away from zero and one in any Bayesian Nash

equilibrium of this game (Theorem 2.1).14 These bounds do not depend on the cost

of empathy acquisition beyond the requirement that this cost is sufficiently small.

In other words, in any equilibrium of this game, players randomize strictly between

acquiring empathy and not acquiring it. It turns out that even if the cost is zero, the

game, besides a “full empathy equilibrium” (Proposition 2.1), still has such an equi-

librium with mixing between acquiring empathy and not acquiring it. Beyond that,

we show that there is, for small costs, always an equilibrium in which the lower bound

on the probability of empathy acquisition is achieved for both players (Proposition

2.2). This equilibrium is referred to as the “partial empathy equilibrium”. Finally, we

establish that for two-action Bayesian conflict games with either two types for both

players or a single type for one player this partial empathy equilibrium is the only

equilibrium if costs are sufficiently small but positive (Proposition 2.3).

There are at least two different interpretations we can give for our model. One,

along the lines as suggested above, is such that players are highly rational but have

some small costs of reasoning about their respective opponent’s preferences. This

model could then be about the two individuals engaged in the penalty kick, but

could also be about firms engaging in conflict or indeed, as in the quote by Sun

Tzu above, military generals engaged in war. In this context we talk about players

“acquiring information” about their opponents.

We prefer to think of this model, however, in its evolutionary interpretation.

That is there is mother nature (or evolution) who works on everyone of her subjects

14In fact, for a player’s equilibrium probability of empathy acquisition to be strictly greater than
zero, her opponent must have (at least two) distinct payoff types.
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independently and has their material interests at her heart. Nature knows that her

subjects will be involved in all sorts of conflict situations throughout their life. She

individually decides whether or not she should spend some small amount of fitness

cost to endow her subjects with cognitive empathy, which would allow the respective

subject to always learn (in fact, to always know) the opponent’s preferences. In this

context we talk about “acquiring (cognitive) empathy”. For convenience and to avoid

confusion, this is the phrasing which we mainly use throughout the chapter.

Under the latter interpretation, our results imply that, in general, nature (who

is assumed to guide play to a Bayesian Nash equilibrium) endows some but not all

of her subjects with cognitive empathy even if the costs of doing so are essentially zero.

Various strands of literature have motivated us to write down and study the model

we analyze in this chapter.

One strand is the literature on the evolution of preferences for strategic interaction,

initiated by the now sometimes called “indirect evolutionary approach” of Güth and

Yaari (1992) and Güth (1995). Individuals who are randomly matched to engage in

some form of strategic interaction (some game) are first given a preference (or utility

function) by mother nature. Mother nature works on every player separately and does

this with the view in mind to maximize this player’s material preferences (number of

offspring or fitness). Players then evaluate outcomes of play given these preferences

given to them by mother nature. There are two kinds of results in this literature.

Assuming that individuals (automatically) observe their opponents’ preferences, in

many settings non-material preferences arise as mother nature’s optimal choice (see

e.g. Koçkesen et al., 2000a,b; Heifetz et al., 2007a,b; Dekel et al., 2007; Herold and

Kuzmics, 2009). On the other hand, assuming that individuals cannot observe their

opponents’ preferences essentially only allows material preferences as mother nature’s

optimal choice (see e.g. Ely and Yilankaya, 2001; Ok and Vega-Redondo, 2001). This

induced Robson and Samuelson (2010) to wish that the potential observability of

preferences is also subject to evolutionary forces.15 Some work in that direction has

recently been begun by Heller and Mohlin (2015a,b).16 Our model can be seen as to

tackle the question of the evolution of observability of preferences without evolution.

15Similarly, Samuelson (2001, p. 228) states “Together, these papers highlight the dependence
of indirect evolutionary models on observable preferences, posing a challenge to the indirect evolu-
tionary approach that can be met only by allowing the question of preference observability to be
endogenously determined within the model.”

16The former is a model in which, while individual preferences evolve, so do individuals’ abilities to
deceive their opponents. The latter asks the question whether cooperation can be a stable outcome
of the evolution of preferences in the prisoners’ dilemma when players can observe and condition
their play on some of their opponent’s past actions (in encounters with other people).
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One such model is given in Robalino and Robson (2012, 2015). In their model,

individuals are interacting in ever changing environments. An individual with “the-

ory of mind” (synonymous to cognitive empathy) is able to use past experiences of

opponent play to predict more quickly how her opponent will play. Thus, even if it is

somewhat costly, in such a setting there is a strict benefit from having a “theory of

mind”. One could argue that the incomplete information (about opponents’ prefer-

ences) in our model is somewhat akin to the ever changing environment in Robalino

and Robson (2015). Our model has no explicit learning. One could perhaps argue it is

implicit in our use of Bayesian Nash equilibrium. Our example of a non-conflict game

provides a similar result as that in Robalino and Robson (2015) in that any Bayesian

Nash equilibrium must exhibit “full” cognitive empathy, i.e. with probability one. In

contrast, when we focus on conflict games alone, we find a starkly contrasting result

in that any Bayesian Nash equilibrium must exhibit “partial” cognitive empathy, i.e.

the probability of acquiring empathy is bounded from below as well as from above,

even when costs of acquiring empathy tend to zero.

Another strand of literature started with Aumann and Maschler (1972), who pro-

vide an example of a complete information bimatrix game, due to John Harsanyi, that

can be used to discuss the relative normative appeal of maxmin and Nash equilibrium

strategies. The game is a two-player two-action game and not quite zero sum with a

unique Nash equilibrium which is in completely mixed strategies. In this game, Nash

equilibrium strategies and maxmin strategies differ for both players. Yet the expected

payoff to a given player in the Nash equilibrium is the same as the expected payoff

that this player can guarantee herself by playing her maxmin strategy. Pruzhansky

(2011) provides a large class of complete information bimatrix games that has this

feature. If this is the case, would one not, for this class, recommend players to use

their maxmin strategies? In our model, in which players have uncertainty about their

opponent’s preferences, and therefore in some sense greater uncertainty about their

opponent’s strategy, one might think that the appeal of maxmin strategies is even

greater. Yet, in our model there may be a strict benefit from deviating from maxmin

strategies.

The literature on level-k thinking typically finds that individuals engaged in game

theory experiments do not all reason in the same way as they have different “theories

of mind”. See e.g. Stahl and Wilson (1994, 1995); Nagel (1995); Ho et al. (1998);

Costa-Gomes et al. (2001); Crawford (2003); Costa-Gomes and Crawford (2006);

Crawford and Iriberri (2007). In that sense, our work can be loosely interpreted as

a model to understand why there may be individuals of different levels of strategic
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thinking.

There is a purely decision theoretic literature on “rational inattention” (e.g. Sims,

2003, 2006; Matêjka and McKay, 2012, 2015). In these models, individuals can obtain

costly information, where costs are proportional to some measure of informativeness

of the possible information to be acquired, before making their ultimate decisions.

Our work can be interpreted as an attempt to introduce these considerations into

a model of strategic interaction. The individuals in our model can, however, only

choose between having perfect information or none.

Moreover, there is a literature on information acquisition in oligopoly models as in

e.g. Li et al. (1987), Hwang (1993), Hauk and Hurkens (2001), Dimitrova and Schlee

(2003), and Jansen (2008), where firms can acquire information about the uncertain

market demand before engaging in oligopoly competition. Market demand enters all

agents’ profit functions, whereas in our model the information a player might acquire

is exclusively about the opponent’s preferences. More general models in which players

acquire information about an uncertain parameter affecting all players’ preferences

are given in Hellwig and Veldkamp (2009), Myatt and Wallace (2012), and Amir

and Lazzati (2014), as well as in Persico (2000) and Bergemann et al. (2009) in a

mechanism design context.

Solan and Yariv (2004) consider a sequential model of two-player two-action in-

teraction in which one player chooses a (possibly mixed) action first, then a second

player can buy, at some cost, information about the first player’s (realized) action

before finally then also choosing an action herself. The second player can also choose

the precision of the information purchased. The structure of the game is common

knowledge. In particular the first player is fully aware that she might be spied upon.

Thus “spying” in their model is about the opponent’s already determined action with

complete information regarding payoffs, whereas in our model “spying” (or cognitive

empathy as we call it) is about the opponent’s preferences.

Closest is perhaps Mengel (2012), who studies a model in which individuals play

many games and ex ante do not know which game they are playing. Individuals can

partition the set of games in any way they like, with the understanding that any two

games in the same partition element cannot be distinguished. The individual can

condition her action only on the partition element. Adopting a partition comes at

some cost, called reasoning costs, and finer partitions are more costly than coarser

ones. One difference between Mengel (2012) and what we do here is, therefore, that

in our model players always learn their own payoff type, while in Mengel (2012) indi-

viduals do not necessarily even learn their own payoff type. Another difference is in
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the choice of solution concept, we study Bayesian Nash equilibria while Mengel (2012)

studies asymptotically stable strategy profiles under some evolutionary process. Both

these differences are probably only superficial. The real difference between the two

papers is the class of games they study within their respective models. Our main

results deal with the case of conflict games. Mengel (2012) does not explicitly study

this class. Therefore, the nature of our results is also different.17

The rest of the chapter is organized as follows. Section 2.2 states the model.

Section 2.3 provides an example of a non-conflict game. Section 2.4 then defines and

focuses Bayesian conflict games and provides the main result. In this section we also

characterize equilibrium strategy profiles further and provide a uniqueness result.

Finally, Section 2.5 concludes with a discussion of further properties of equilibria in

Bayesian conflict games as well as a discussion of possible variations of the model.

The more complex proofs of results in this chapter are delegated to the appendix,

while sketches of these proofs are provided as part of the main text.

2.2 The Model

There are two players p ∈ {B, R}. One might think for example of a blue and a red

player. Each player p can have one of a finite number np of possible (payoff) types

θp ∈ Θp. There are commonly known full support probability distributions over types

given by µp : Θp → (0, 1] for both players p ∈ {B, R}. Abusing notation slightly we

sometimes write µθp

instead of µp(θp). The types of the two players are drawn from

the respective distribution statistically independently from each other. Every type

of every player has the same finite set of possible actions at her disposal, given by

A = {a1, ..., am}.18 Payoffs to player p ∈ {B, R} are given by the utility function

17The main results in Mengel (2012) are that strict Nash equilibria, while (evolutionarily) stable
if the game is commonly known, can be made unstable under learning across games; that weakly
dominated strategies, while unstable if the game is commonly known, can be stable under learning
across games; and that, if all games have distinct Nash equilibrium supports, learning across games
under small reasoning costs leads to individuals holding the finest partition with probability one.
Our paper is silent on all these results as our conflict games do not have strict Nash equilibria, do not
have weakly dominated strategies, and are such that all (what we call realized type) games are such
that their Nash equilibria all have full support. All our results, thus, add to the results in Mengel
(2012). One could probably translate our main result into the language of Mengel (2012) as follows.
If having the finest partition in the model of Mengel (2012) is essentially the same as acquiring
cognitive empathy in our model, then our result, that in conflict games we expect proper mixing
between acquiring empathy and not acquiring it, suggests that, in conflict games, learning across
games as in Mengel (2012) would lead to individuals properly mixing between different partitions,
including the finest as well as the coarsest.

18In principle, one could consider action sets of different cardinality for both players. However, in
this chapter we focus on what we call “conflict games” later on and Remark 2.2 (see Appendix 2.C)
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uθp

: A × A → R, where the first argument depicts the action taken by player p

and the second the one taken by her opponent −p. Note that different types have

different utility functions and that utility functions only depend on the chosen action

pair and not directly on the opponent’s type.

Before players learn their own type, i.e. at the complete ex-ante stage, each of them

can independently and secretly invest a cost of c ≥ 0 in order to acquire cognitive

empathy. This cost, which we refer to as the cost of empathy acquisition, is simply

subtracted from the player’s payoff. A player who acquires empathy then, at the

interim stage, learns not only her own type but also the type of her opponent. These

player types are then called informed. Note, however, that an informed type is not

able to observe her opponent’s choice of empathy acquisition. We further assume that

there is only no empathy or full empathy. When we speak of a player having “partial

empathy” we mean that this player randomizes between no and full empathy.19 A

player who does not acquire empathy learns, at the interim stage, only her own type.

The corresponding player types are then called uninformed.

A strategy of player p ∈ {B, R} is then given by a pair
(

ρp, (σθp

)θp∈Θp

)

where

ρp ∈ [0, 1] is the information strategy, which we usually refer to as the probability of

empathy acquisition, and σθp

: Θ−p ∪ {∅} → ∆(A), the action strategy, is the (mixed)

action to be played by player p of type θp ∈ Θp against any opponent of known type

θ−p ∈ Θ−p, when informed, and of unknown type (which is indicated by the player

receiving the uninformative “signal” ∅), when uninformed.

Our solution concept is Bayesian Nash equilibrium. Our favorite interpretation

of equilibrium is that it is the outcome of a long and slow evolutionary process. It

is by now well-known that if any strategy profile is the outcome of a reasonable

evolutionary process, it must be an equilibrium.20 As our main result holds for all

equilibria of the game, it is therefore true for all candidates of an evolutionary stable

outcome. 21

shows that for this class of games it is inevitable that players’ action sets have the same cardinality.
19Throughout this chapter, “partial empathy” usually comprises the case that the corresponding

player acquires empathy with probability zero while always excluding empathy acquisition with
probability one.

20See e.g. Weibull (1995) for a textbook treatment for this and all other statements in this para-
graph.

21It is also well-known that not all games have evolutionary stable outcomes. There can, for
instance, be cycles in behavior. Such cycles tend to cycle around equilibria (see e.g. Hofbauer and
Sigmund, 1998, Chapter 7.6).
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2.3 A Non-Conflict Example

In this section we provide, as a point of contrast to our main results, a non-conflict

example.

Example 2.1. Consider a symmetric setup in which both players p ∈ {B, R} can

have one of three types ΘB = ΘR = {θ1, θ2, θ3} chosen uniformly (i.e. µθ = 1
3

for all

θ ∈ Θp) for the two players. Both players can choose between two actions H and T .

Type θ1 finds action H strictly dominant, type θ3 finds action T strictly dominant,

and type θ2 has pure coordination preferences. These payoffs can be written in matrix

form as given in Figure 2.1.

H T

uθ1 :
H 1 1
T 0 0

H T

uθ2 :
H 1 0
T 0 1

H T

uθ3 :
H 0 0
T 1 1

Figure 2.1: Payoffs of the non-conflict game in Example 2.1

It is straightforward to see that for costs of empathy acquisition sufficiently low (in

fact for c < 1
9
) the Bayesian game has no Bayesian Nash equilibrium in which a player

acquires empathy with probability less than one. Suppose a player (say blue) does

not acquire empathy and fix her opponent’s (red) strategy. Then blue does not learn

red’s preferences. Red, however, makes her choice of action dependent on her own

type. Obviously, dominant action types play their dominant actions. Now consider

the coordination type of blue. The best she can do in terms of payoffs is to play a

best response to the given (mixed) action of the coordination type of red. W.l.o.g.

let this best response action be H. The coordination type of blue then receives a

payoff of zero against the red type having dominant action T . For blue switching to

acquiring empathy and playing T against the T dominant action type of red is then

beneficial if c < 1
9
. Thus, for c < 1

9
any Bayesian Nash equilibrium of this game has

both players acquiring empathy with probability one.22

22 Suppose we reverse the timing of learning one’s type and acquiring empathy in this example.
That is individuals choose whether or not to acquire empathy after they learn their own type. Of
course the two dominant action types do not acquire empathy now but for the coordination type the
result is much the same as before: For c < 1

3 coordination types acquire empathy with probability
one in any Bayesian Nash equilibrium of that game.
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2.4 Equilibrium Empathy Acquisition

For any pair of types θB ∈ ΘB and θR ∈ ΘR we define the realized type game as the

complete information game that would result if it were common knowledge among

the two players that they are of exactly these two types.

We call the Bayesian game described in Section 2.2 a Bayesian conflict game if

every possible realized type game has a unique Nash equilibrium and if this Nash

equilibrium is in completely mixed strategies.23 We first show that for positive costs

of empathy acquisition there cannot be an equilibrium of a conflict game in which

both players choose to acquire empathy with probability one.

Proposition 2.1. Consider a Bayesian conflict game. If costs of empathy acquisition

are positive, then no strategy profile with full empathy, i.e. with (ρB, ρR) = (1, 1), can

be a Bayesian Nash equilibrium. On the contrary, if costs are zero, there is such a

full empathy equilibrium.

Proof of Proposition 2.1. Suppose a conflict game has an equilibrium with (ρB, ρR) =

(1, 1). Then whenever two types θB ∈ ΘB and θR ∈ ΘR meet, it is common knowl-

edge that this is the case and, as this happens with positive probability, they must

play a Nash equilibrium of the corresponding realized type game. Any realized type

game by definition has a unique Nash equilibrium and this Nash equilibrium is in

completely mixed strategies. Thus, every type of every player in every situation is

always indifferent between all her pure actions. Hence, when costs are positive, any

player would be better off not acquiring empathy, thus saving c > 0, and playing any

(mixed) action. Arriving at a contradiction, we therefore have the proof for c > 0.

Observe however that this saving opportunity disappears for c = 0, meaning that

in this case the above strategy profile is indeed an equilibrium of the conflict game.

Throughout the chapter we refer to this as the full empathy equilibrium.

Note that Proposition 2.1 leaves open the possibility that one (and only one)

player acquires empathy with probability one. Turning to a population interpretation

of (mixed) equilibrium (as in evolutionary game theory), Proposition 2.1 can be read

to say that we expect at least a fraction of the population for at least one player

position to not acquire empathy in equilibrium. For instance, if these games are

23In our main theorem and propositions we write “Bayesian conflict game”, to ensure that a
reader who only browses the chapter understands that the conflict games studied in this work have
incomplete information. Everywhere else in the chapter we simply write “conflict game” with the
understanding that we are nevertheless dealing with a Bayesian conflict game. Analogously, we refer
to Bayesian Nash equilibria of Bayesian conflict games simply as equilibria of conflict games.
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always played between one man and one woman (both randomly drawn from their

respective population), then for at least one of these two populations we expect that,

if costs of empathy acquisition are positive, some individuals do not have cognitive

empathy.

Suppose we consider symmetric conflict games, such as a Bayesian version of

the well-known rock-scissors-paper game. Suppose we are interested in the single

population evolutionary model. That is, there is one population of individuals from

which repeatedly two are randomly drawn to play the game. Then the appropriate

solution concept is symmetric Bayesian Nash equilibrium and Proposition 2.1 implies

that this population has a fraction of individuals without cognitive empathy.

In what follows we focus on two-action Bayesian conflict games, that is on conflict

games in which each player has two actions available. In two-action conflict games

we must have that one player always wants to coordinate actions while the other

wants to mis-coordinate actions. Throughout the chapter, the former is player B (or

blue) and the latter is player R (or red) for convenience. The Bayesian uncertainty

is then only about the intensity of these preferences. One could thus alternatively

describe a two-action conflict game as a non-zero-sum version of matching pennies

with incomplete information. One such game is given in the following example.

Example 2.2. Consider the two-action Bayesian conflict game with action set A =

{H, T}, type sets ΘB = {θB
1 , θB

2 } and ΘR = {θR
1 , θR

2 }, probability distributions over

types µB = µR =
(

1
2
, 1

2

)

, and the payoffs as given in Figure 2.2 (where player B

chooses rows and R chooses columns).

H T

uθB
1 :

H 1 −1
T −1 1

H T

uθR
1 :

H −1 1
T 1 −1

H T

uθB
2 :

H 3 −1
T −1 1

H T

uθR
2 :

H −2 1
T 1 −1

Figure 2.2: Payoffs of the conflict game in Example 2.2

Note that the blue player has coordination preferences for all her types, while

the red player has mis-coordination preferences. Any realized type game, thus, has

only one Nash equilibrium, and that is in completely mixed strategies. The game

considered in the example is, therefore, a two-action conflict game. We are interested

in the Bayesian Nash equilibria of this game as a function of the cost of empathy
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acquisition. We know from Proposition 2.1 that, for positive costs, in equilibrium at

least one player does not acquire empathy with probability one. We are particularly

interested in how the probability of empathy acquisition in equilibrium changes when

we change the corresponding costs. Again from Proposition 2.1, we know that for

zero costs the conflict game has an equilibrium in which both players acquire empathy

with probability one. Therefore, one would expect that as costs tend to zero, the

probability of empathy acquisition of both players in all equilibria of the conflict

game tends to one. Surprisingly, this is not the case. This can be seen in the example

by computing the (unique) equilibrium of the conflict game for various cost levels.24

These are given in the following table.25

c ρB ρR σ
θB

1
H (∅) σ

θB
2

H (∅) σ
θR

1
H (∅) σ

θR
2

H (∅)

10 0 0 0 1 2
3

0

1 0 0 0 1 2
3

0

9
10

0 1
6

2
45

43
45

4
5

0

4
5

1
10

1
6

4
81

68
81

98
125

2
125

1
2

1
10

1
6

16
81

56
81

16
25

4
25

1
10

1
10

1
6

32
81

40
81

56
125

44
125

0 1
10

1
6

4
9

4
9

2
5

2
5

Table 2.1: Equilibria of the conflict game in Example 2.2 for different cost levels
c ≥ 0. We here provide only the equilibrium (mixed) action strategies players use
when they do not acquire empathy. For c ≤ 4

5
both players acquire empathy with

positive probability and the corresponding types, when informed, always play pure
actions.

For high costs, empathy acquisition is strictly dominated and players therefore

do not acquire empathy in equilibrium. Moreover, for every player p ∈ {B, R}
there seems to be a positive cost level Cp below which this player in equilibrium

acquires empathy with positive probability. This equilibrium probability of empathy

acquisition ρp seems to be strictly greater than zero and strictly less than one and

to remain constant for all cost levels lower than Cp. Even in the limit as costs tend

to zero the equilibrium still has the same probability of empathy acquisition. Also

there seems to be a unique equilibrium for all positive cost levels. In the remainder of

24Uniqueness follows from Proposition 2.3.
25These equilibria were computed using the game theory software Gambit by McKelvey et al.

(2014).
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this chapter we aim to see which of these statements are generally true in two-action

conflict games.

An informed and concerned reader might wonder how it is possible that for all

positive cost levels all equilibria of this conflict game have a probability of empathy

acquisition that is bounded away from one, given that we know that for zero costs

there is an equilibrium with probability one of empathy acquisition and given that

we know that the Nash equilibrium correspondence is upper hemi continuous in the

space of games (see e.g. Ritzberger, 2002, p. 292). The answer must be that indeed

even in the conflict game with zero costs there is a Bayesian Nash equilibrium in

which players acquire empathy with a probability that is less than one (see Table

2.1).

While, at this point, it is not at all clear why there would be a unique equilib-

rium in this game (as long as costs are positive and sufficiently small), one can at

least understand the nature of this equilibrium. The key is to understand how the

indifference principle, i.e. the fact that in any mixed equilibrium a player must be

indifferent between all actions in its support, applies here. By randomizing between

acquiring empathy and not doing so, a player does not make her opponent indifferent

between acquiring empathy or not. If that were the case, the equilibrium probability

of acquiring empathy ρp would have to depend on the cost c (the opponent’s cost in

fact). But this is apparently not the case. In this equilibrium a player mixes between

acquiring empathy and not doing so apparently in order to make the uninformed

opponent types indifferent between the two actions (see Lemma 2.1). On the other

hand, player types, when uninformed, randomize between the two actions in order

to make the opponent indifferent between acquiring empathy and refraining from

doing so. This is apparent if we consider the mixed actions of the uninformed player

types. These mixed actions very much depend on the cost of empathy acquisition.

The higher the cost the more diverse are the mixed actions of the uninformed types.

This is done in such a way as to keep the player just indifferent between acquiring

empathy at costs c and not doing so (see again Table 2.1).

The following theorem is the main result of this chapter. It establishes that in any

equilibrium of a two-action conflict game for any of the two players the probability of

empathy acquisition is bounded away from zero (if the considered player’s opponent

has at least two distinct types) and, even more importantly, bounded away from one

for all sufficiently small positive costs. In order to state this theorem we require one

additional piece of notation. In a two-action conflict game, for any player p ∈ {B, R}
of any type θp ∈ Θp denote by x(θp) the probability of action H that, if played by the
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opponent, makes θp indifferent between the two actions.26 One could call x(θp) the

indifference probability of type θp. Note that by assumption we have x(θp) ∈ (0, 1) for

all θp ∈ Θp and p ∈ {B, R}. Further, denote by θp
max (θp

min) the type which maximizes

(minimizes) the indifference probability x(θp).27

Theorem 2.1 (Bounds on Empathy). Consider a two-action Bayesian conflict game.

There exists C > 0 such that for all p ∈ {B, R} we have in any Bayesian Nash

equilibrium that

(i) ρp ≥ x(θ−p
max) − x(θ−p

min) if c ∈ [0, C) and

(ii) ρp < max
{

x(θ−p
max), 1 − x(θ−p

min)
}

if c ∈ (0, C).

The proof of this theorem is somewhat lengthy and, like all other more complex

proofs, provided in the appendix. The proof rests on two lemmas that are of some

independent interest. We shall now state these lemmas, one after the other, give their

respective proof (or a sketch thereof with the full proof in the appendix), and then

sketch how they combine with some additional work to establish that equilibrium

empathy acquisition probabilities are bounded away from zero and one.

We first show that in equilibrium any uninformed player type must be indifferent

between both actions. Just as we do this for the indifference probabilities, we omit

the subscript H for ease of notation when considering action strategies in two-action

conflict games from here on.

Lemma 2.1. Consider a two-action Bayesian conflict game. Then there exists C > 0

such that for all c ∈ [0, C), p ∈ {B, R} and θp ∈ Θp it is

∑

θ−p∈Θ−p

µθ−p
(

ρ−pσθ−p

(θp) + (1 − ρ−p)σθ−p

(∅)
)

= x(θp) (2.1)

in any Bayesian Nash equilibrium.

Sketch of Proof of Lemma 2.1. Suppose there is a player, w.l.o.g. blue, of some type

that is uninformed and not indifferent between her two actions. Suppose, w.l.o.g. that

she prefers action H. As she is uninformed, she is facing a (mixed) action that is a

convex combination of all (mixed) actions of all opponent (red player) types. As she

prefers H against this mixture, and as blue is the coordination type, this mixture must

place a relatively high probability on H. But as this mixture is a convex combination

of mixed actions of all red types there must be one red type who also plays H with

26For a player p ∈ {B, R} we call two types θ
p
1 , θ

p
2 ∈ Θp

distinct if it is x(θp
1) 6= x(θp

2).
27If any of these extreme types is not unique, simply choose one maximizer (minimizer) arbitrarily.
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higher probability. Thus, the same blue player type, when informed and facing that

red type, also plays H. But then the red player, the mis-coordination player, of this

type, when informed and playing against the considered blue type, must play T as

she is facing the pure action H. This finally can be used to argue that this implies on

the one hand that the red player is not acquiring empathy with high probability and

on the other hand that she is not playing close to T when of the considered type and

uninformed. But then, as costs are small, she should deviate to acquiring empathy

with probability one and playing T when meeting this given blue type.

The second intermediate result we need is that in equilibrium for each of the two

players there must be at least one type who, when informed and playing against

certain opponent types, cannot be indifferent between both actions as long as costs

are positive.

Lemma 2.2. Consider a two-action Bayesian conflict game.28 If c > 0, then for any

Bayesian Nash equilibrium and p ∈ {B, R} with ρp > 0 there must exist θ̄p ∈ Θp and

θ̂−p, θ̃−p ∈ Θ−p such that

ρ−pσθ̂−p

(θ̄p) + (1 − ρ−p)σθ̂−p

(∅) > x(θ̄p), (2.2a)

ρ−pσθ̃−p

(θ̄p) + (1 − ρ−p)σθ̃−p

(∅) < x(θ̄p). (2.2b)

For p = B
(

p = R
)

this induces σθ̄B

(θ̂R) = 1 and σθ̄B

(θ̃R) = 0
(

σθ̄R

(θ̂B) = 0 and

σθ̄R

(θ̃B) = 1
)

.

Proof of Lemma 2.2. This proof is similar to that of Proposition 2.1. Suppose a

player p ∈ {B, R} acquires empathy with some positive probability ρp > 0 in equilib-

rium while costs are positive, i.e. c > 0. Now assume that every type θp of player p,

when informed, is indifferent between the two actions H and T against any opponent

type θ−p. Then player p could benefit strictly from deviating to acquiring empathy

with probability zero (thus, saving costs c > 0 with probability ρp > 0) and playing

any (mixed) action (not losing anything because of the complete indifference). Ar-

riving at a contradiction, we therefore have that there must be at least one player

type θ̄p strictly preferring H or T against some opponent type here. Together with

Lemma 2.1 this concludes the proof.

28The reader may feel that we use an overabundance of different types in the statement of this
lemma. This is, unfortunately, necessary. There are three different types for each player, denoted
θ̄p, θ̂p, and θ̃p. It is important to realize that generally it may well be that all three types on each
side are different from each other. In the case where there are only two types for one player, some
of these three types naturally must coincide. This additional structure allows us to prove more in
such cases. See Proposition 2.3.
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Note that, for the special case that the opponent −p only has one possible type,

Lemma 2.2 implies that for any positive cost of empathy acquisition player p does

not acquire empathy, i.e. ρp = 0, in any equilibrium. This must be true as in this

case player p already knows her opponent’s only possible type (this is implicit in the

assumption of common knowledge of the conflict game).

Consider first Part (i) of Theorem 2.1, which states that there is a specific lower

bound on the equilibrium probabilities of empathy acquisition.

Sketch of Proof of Theorem 2.1(i). The key to this part is Lemma 2.1. It states that

every type of any player, when uninformed, must be indifferent between both actions

as long as costs are sufficiently small. Consider, w.l.o.g., the red player and assume

that x(θR
max) > x(θR

min) (otherwise the lower bound is trivially satisfied). Now both

player types θR
max and θR

min must be indifferent between both actions when uninformed.

These two red types, however, face the same distribution over actions if the blue

player’s probability of empathy acquisition is zero. Why? If the blue player did not

acquire empathy, she cannot recognize the red player’s type and cannot condition

her action strategy on that information. On the other hand, the two (extreme)

red types cannot be both indifferent between the two actions if they are facing the

same distribution. Thus, arriving at a contradiction, it must be that the blue player

acquires empathy with positive probability. In fact the exact lower bound can be

obtained by taking the difference between equation(s) (2.1) for the extreme types

θR
max and θR

min.

The key statement in Part (ii) of the theorem is that it establishes an upper bound,

strictly below one, for each player’s equilibrium probability of empathy acquisition.

What this upper bound is, is less important. In the appendix we, in fact, prove two

results that imply the existence of an upper bound strictly below one. One is as

stated in Theorem 2.1(ii), the other is stated in the appendix as Theorem 2.1(ii)’.

The respective statements are similar but neither implies the other. The former is

more elegant in its expression, the latter is more intuitive in its proof. Therefore, we

choose to present the sketch of proof for the more intuitively explainable Theorem

2.1(ii)’ here.

Sketch of Proof of Theorem 2.1(ii)’. Let us, w.l.o.g., focus on the blue player (the

coordination preference player). Assume that the blue player acquires empathy with

a probability greater than the stated bound, say close to one. By Lemma 2.2 we

know that, in equilibrium, there must be a type of blue player who, when informed,

has the strict preference to play H against some type of red player. This type of red
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player, when informed herself and meeting the given type of blue player, then faces

with high likelihood an informed blue player who plays H. Her best response then

(being the mis-coordination player) is to play T against this blue type. But as the

informed blue type’s equilibrium action against this red type is H, two things must

be true about the red player. First, she cannot be too informed, i.e. her probability

of acquiring empathy must be low, and second, when she is of the considered type

and uninformed, she must play H with a high probability. But this means, as the

cost of empathy acquisition is small, that the red player could strictly benefit from

deviating to acquiring empathy and then, when she is of this red type, play T against

this blue type. Arriving at a contradiction, in any equilibrium the assumption of a

highly empathic blue player cannot hold. A similar argument can be made for the

red player.

While generally we do not know whether there can be equilibria in two-action

conflict games in which a player’s probability of empathy acquisition is close to the

upper bound(s) stated in Theorem 2.1, we can establish that there is, for small costs,

always an equilibrium in which the lower bound is achieved.

Proposition 2.2. For every two-action Bayesian conflict game there exists C > 0

such that for all c ∈ [0, C) it has a Bayesian Nash equilibrium with

ρp = x(θ−p
max) − x(θ−p

min)

for both p ∈ {B, R}.

The proof of this proposition is constructive and given in the appendix. The

key to reaching the lower bound for the probability of empathy acquisition is to let

all informed types of player p ∈ {B, R} play H against opponent type θ−p
max and T

against type θ−p
min. Taking into account Lemma 2.1, this immediately pins down the

equilibrium probability of empathy acquisition of player p and it is exactly the lower

bound. The equilibrium is then further constructed by letting uninformed types mix

in a way that makes the opponent −p indifferent between acquiring empathy and not

doing so. This is similar as in the discussion of the equilibria in Example 2.2.

With more than two types for one player and at least two for the other, this kind

of equilibrium can be constructed in different ways. In general, this gives rise to a

continuum of equilibria that differ in terms of players’ action strategies but not in

terms of their information strategies. See Corollary 2.3 in Appendix 2.B (and the

proof of Proposition 2.2 which additionally captures the case in which a player does

not have distinct types) for a characterization of this class of equilibria. In what
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follows, any representative of this class is called a partial empathy equilibrium. Note,

however, that a player acquires empathy with probability zero in such an equilibrium

if her opponent does not have distinct types.

We do not know whether general two-action conflict games with positive costs of

empathy acquisition can actually have equilibria in which a player’s probability of

empathy acquisition is strictly greater than this lower bound. For any such game

with either two types for both players or a single type for one player we can show,

however, that the partial empathy equilibrium considered in the proof of Proposition

2.2 is indeed the only equilibrium.29

Proposition 2.3. For every two-action Bayesian conflict game with only one type

for one player and more than one type for the other player or with exactly two types

for both players there exists C > 0 such that for all c ∈ (0, C) and p ∈ {B, R} the

probability of empathy acquisition is ρp = x(θ−p
max) − x(θ−p

min) in any Bayesian Nash

equilibrium. In these cases the Bayesian Nash equilibrium is uniquely determined

by the strategy profile considered in the proof of Proposition 2.2 if there is a unique

maximal type θp
max and a unique minimal type θp

min for both players p ∈ {B, R}. 30

The proof is again given in the appendix. The key for this proposition is to realize

that with a limited number of types for at least one player we can pin down behavior

of all types of this player fairly quickly with the help of Theorem 2.1. Things turn

out to be much more complex if both players have many types, as then all we know

is, for instance, that there is one type of player red who plays H against some type of

player blue, but we do not know which types these are. If there are only two types on

both sides, for instance, then by starting with one type who does something specific

against one opponent type all other types’ behavior follows.

Finally, note that applying Proposition 2.3 to the game considered in Example

2.2 implies that the partial empathy equilibrium we listed in Table 2.1 for c = 1
10

, 1
2
, 4

5

is unique for c > 0 sufficiently small.

29While, generally, Corollary 2.3 characterizes a continuum of equilibria, it is easy to see that, in
the case with two (distinct) types per player, this condenses to the equilibrium considered in the
proof of Proposition 2.2.

30In the case in which one player p ∈ {B, R} has a single type the equilibrium is in fact unique

up to variations of the action strategies σθ−p

(θp) of the informed opponent types which are played
with probability ρ−p = 0.
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2.5 Discussion and Conclusion

In this work, we study two-player conflict situations with ex-ante uncertainty over

(the exact) opponent preferences for both players. We allow players, before learning

their own payoff type, to acquire cognitive empathy at some (small) cost. Cognitive

empathy enables a player to learn the preferences of her opponent in all situations.

There are at least two ways we can interpret this model. The first interpretation

is that there are indeed two strategic opponents (the two soccer players from the

introduction, two firms, two military generals, etc.) who are involved in a conflict

situation and who can acquire information about their opponent’s ex ante unknown

preferences. Given this interpretation, we find that in equilibrium these strategic

players do not fully acquire information about their opponent’s preferences, even if

the cost of doing so is vanishingly small. A second interpretation is that there are

many individuals who are often and somewhat randomly engaged in pairwise conflict

situations and mother nature can endow these individuals (each individual separately)

with cognitive empathy, i.e. with the ability to understand opponents’ preferences,

at some positive cost (e.g. by providing an additional brain function). Under the

assumption that nature guides play to an evolutionary stable state, which must be a

Bayesian Nash equilibrium of this game, our results can be read to imply that nature

endows some but not all of her subjects with cognitive empathy, even if the costs of

doing so are essentially zero.

Our model is simple and sparse and many alterations and additions are conceiv-

able. In what follows we discuss additional consequences of our results as well as

some possible modifications of our model and what we know or believe about how

these change our main results.

2.5.1 Empathy Acquisition at Zero Costs

In this subsection we provide a corollary to (the proof of) Proposition 2.2 for the

special case of zero costs of empathy acquisition that allows us to provide additional

intuition for our main result.

Corollary 2.1. Any two-action Bayesian conflict game with c = 0 has a Bayesian

Nash equilibrium with partial empathy, i.e. ρp ∈ [0, 1), and

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅) = x(θ−p)

for all p ∈ {B, R}, θp ∈ Θp, θ−p ∈ Θ−p.
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Why is this of interest? This corollary implies that an outside observer who

can observe the two players’ types would observe, for any pair of types, a frequency

of actions exactly as given by the Nash equilibrium of the realized type game (in

which that game is common knowledge). In other words, even though when the

two types meet, players are far from having common knowledge that the two are of

these particular types, they nevertheless manage to play “as if” they had common

knowledge of this fact.31 Expressed differently, the two equilibria we identify for two-

action conflict games with zero costs are, in this sense, observationally equivalent.

That is to say an outside observer who observes all types would see the same frequency

of actions (as a function of type pairs) in both equilibria.

In another sense, the two equilibria are observationally distinct. Consider the evo-

lutionary interpretation of this game. Then individuals would either have empathy or

not and both kinds would exist in the partial empathy equilibrium but not in the full

empathy equilibrium. In the partial empathy equilibrium, an outside observer, who

observes all types and could follow individuals’ behavior in many conflict situations,

could quickly identify which of the individuals are empathic (always uses the same

pure action against certain opponent types) and which are not (these always mix

between pure actions against the same type of opponent). In the full empathy equi-

librium the observer would note that all types always mix (in a certain way). Thus,

the observer could tell whether one or the other equilibrium is played (provided the

observer can observe many interactions of the same individuals).

2.5.2 Equilibrium Payoffs

In this subsection we turn to a discussion of equilibrium payoffs in two-action conflict

games with the (costly) possibility of empathy acquisition. Note that, when we talk

about the payoff to an (informed) type, we mean the payoff without taking into ac-

count the costs of empathy acquisition that players have to bear. In contrast, these

costs are included when considering players’ ex-ante expected payoffs. In what fol-

lows, the full empathy equilibrium under zero costs, which we know from Proposition

2.1, is referred to as the benchmark case. Consider first the case of costs being small.

Corollary 2.2. Consider a two-action Bayesian conflict game. There exists C > 0

such that for all c ∈ (0, C) we have that in any Bayesian Nash equilibrium

(i) every player obtains an ex-ante expected payoff equal to her ex-ante expected

payoff in the benchmark case,

31This insight could be useful if one were to attempt to generalize our result to more than two
actions.
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(ii) every uninformed type for each player obtains the same expected payoff as she

does in the benchmark case, and

(iii) for each player acquiring empathy with positive probability there is at least one

type who, when informed, obtains a strictly higher expected payoff than she

obtains in the benchmark case.

This set of statements is a corollary to Lemma 2.1, Theorem 2.1, and Proposition

2.1. In particular, Part (i) follows from the fact that all types, when uninformed,

are indifferent between both actions in any equilibrium by Lemma 2.1 and all players

acquiring empathy with positive probability are ex ante indifferent between acquiring

empathy and not doing so by Theorem 2.1(ii). Part (ii) follows from Lemma 2.1 alone.

Part (iii) follows from Part (i) and the fact that players have to bear a cost of c > 0

for acquiring empathy.

This corollary, thus, states that there is a sense in which in two-action conflict

games for all cost levels, provided they are small enough, all equilibria are ex ante

payoff equivalent (if we consider payoffs net of costs). As costs are positive, this

implies that some types of players must, when informed, expect higher payoffs than

they expect when they are uninformed. However, unlike in the proof of Proposition

2.2, this must not be the case for all types. According to Corollary 2.3 there are

in general even equilibria in which only one type of a player obtains a payoff being

strictly greater than in the benchmark case.

Before we turn to the case of large costs, it is fruitful to partition the class of

conflict games into two subclasses. These are inspired by Pruzhansky (2011). For

every type θp ∈ Θp of a player p ∈ {B, R} define the type-induced zero-sum game as

the complete information game in which player p has preferences given by her type,

i.e. given by uθp

, and her opponent has preferences −uθp

. We call a type immuniz-

able if the type-induced zero-sum game has no strictly dominated (mixed) strategy

for both players. Moreover, we call a type robustly immunizable if the type-induced

zero-sum game has no weakly dominated (mixed) strategy for both players.32 Let

us further call a conflict game immunizable if every type of every player is immu-

nizable. On the contrary, if in a conflict game there is at least one type being not

immunizable, then this game is called non-immunizable. Example 2.2 is an example

of an immunizable (two-action) conflict game. There are, however, conflict games

that are non-immunizable. Consider again Example 2.2 and modify the preferences

32Note that in a conflict game no type has a dominated action strategy. A type in a conflict game
is therefore (robustly) immunizable if her fictitious zero-sum opponent in the type-induced zero-sum
game has no strictly (weakly) dominated strategy.
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of the second type of player B as given in Figure 2.3.

H T
H 3 -1
T 2 1

Figure 2.3: Modified payoffs to player θB
2 in the conflict game provided in Example

2.2.

The game, so modified, is still a conflict game (i.e. every realized type game has

a unique Nash equilibrium and that is in mixed strategies). However, the game is

non-immunizable as the modified second type of player B is not immunizable: the

type-induced zero-sum game for this modified second type of player B is such that,

for the fictitious zero-sum opponent, action T strictly dominates action H.

We choose the label “immunizable” because of a result due to Pruzhansky (2011,

p. 355). He shows that in any complete information game with two immunizable

players (in the above sense) both players have “equalizer” strategies. If a player

adopts an “equalizer” strategy, she gets the same expected payoff regardless of the

action taken by the opponent. He then shows in his Lemma 1, that in any complete

information game with immunizable players on both sides every equalizer strategy

is a maxmin strategy. Moreover, he shows in his Lemma 2 that equalizer strategies

guarantee the player the Nash equilibrium payoff in such games. This generalizes the

insight found by Aumann and Maschler (1972) in their example.

With this partition of conflict games in hand we can now turn to the discussion

of payoffs in equilibria for large costs of empathy acquisition.

Remark 2.1. Consider a two-action Bayesian conflict game with costs of empathy

acquisition so high that any strategy including empathy acquisition is dominated by

one without empathy acquisition. If this game is immunizable, then in any Bayesian

Nash equilibrium we have that

(i) for every player every (necessarily uninformed) type obtains an expected payoff

that is at least as large as in the benchmark case, and

(ii) every player p ∈ {B, R} having at least two robustly immunizable types θp
1, θp

2 ∈
Θp with x(θp

1) 6= x(θp
2) obtains an ex-ante expected payoff strictly larger than

her ex-ante expected payoff in the benchmark case.

Further, if this game is non-immunizable, then in any Bayesian Nash equilibrium we

have that
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(iii) for every player every (necessarily uninformed) type being not immunizable ob-

tains an expected payoff that is strictly larger than her maxmin payoff.

However, in a Bayesian Nash equilibrium of such a non-immunizable game there can

be

(iv) (necessarily uninformed) types of a player who obtain an expected payoff that is

strictly larger, respectively strictly lower, than her expected payoff in the bench-

mark case, and even

(v) players who have an ex-ante expected payoff that is strictly larger, respectively

strictly lower, than her ex-ante expected payoff in the benchmark case.

To see Part (i) of the remark one can use the result of Pruzhansky (2011) (see

above) that in such games any type of any player’s maxmin payoff is equal to her

Nash equilibrium payoff in any realized type game. The latter payoff is the payoff this

type of player obtains in the benchmark case. As she can always guarantee herself

this payoff by playing her maxmin action strategy, she can certainly never receive

less in any equilibrium for any cost level. Moreover, as players are uninformed here,

each type faces the same average opponent action strategy. Under the additional

assumption of Part (ii) this means that in any equilibrium at least one of the two

robustly immunizable types must have incentives to play a pure action strategy which

makes her strictly better off than in the benchmark case. This, together with Part

(i), proves Part (ii).

Part (iii) of the remark follows from the observation that in a two-action conflict

game, to prevent a player type that is not immunizable from obtaining more than

the maxmin payoff (which she can of course guarantee herself), the opponent needs

to play a pure action. However, one can show that in any equilibrium of such a game

the opponent, on average, does not use a pure action strategy. Therefore every such

player type must receive a payoff being strictly larger than her maxmin payoff.

Finally, to see Parts (iv) and (v) of the remark, we consider the following example.

Example 2.3. Consider the two-action Bayesian conflict game with action set A =

{H, T}, type sets ΘB = {θB
1 , θB

2 } and ΘR = {θR
1 , θR

2 }, probability distributions over

types µB = µR =
(

1
2
, 1

2

)

, and the payoffs as given in Figure 2.4 with a, b ∈ R (where

player B chooses rows and R chooses columns).

In this example, if we set a = −1 and b = 1 we obtain Example 2.2. Now consider

a = 2 and b = −3
2
. Note first that this is still a conflict game but that it is non-

immunizable as, given these parameter values, types θB
2 and θR

2 are not immunizable.
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H T

uθB
1 :

H 1 −1
T −1 1

H T

uθR
1 :

H −1 1
T 1 −1

H T

uθB
2 :

H 3 −1
T a 1

H T

uθR
2 :

H −2 b
T 1 −1

Figure 2.4: Payoffs of the conflict game in Example 2.3.

Further, note that the indifference probabilities are given by x(θB
1 ) = 1

2
, x(θB

2 ) = 2
3
,

x(θR
1 ) = 1

2
, and x(θR

2 ) = 4
5
.

One can verify that the following is an equilibrium of this game under large costs.

Obviously, we need to have ρB = ρR = 0, i.e. no empathy is acquired. Furthermore,

let σθB
1 (∅) = σθR

2 (∅) = 1 and σθB
2 (∅) = σθR

1 (∅) = 0.

One can then verify that type θB
2 receives an equilibrium payoff of 3

2
while in

any realized type game her payoff in the unique Nash equilibrium would be 5
3
. Her

payoff in the considered equilibrium of the conflict game under large costs is thus

strictly lower than her payoff in the benchmark case. On the other hand, type θR
2

receives an equilibrium payoff of −1
2

which is strictly larger than her payoff of −7
5

which she obtains in any realized type game and, thus, in the benchmark case. As in

the considered equilibrium all other types expect the same payoff (of zero) as in the

benchmark case, player B receives a lower ex-ante expected payoff here than in the

benchmark case, while for player R the opposite is true.

2.5.3 The Timing of Decisions

Given the evolutionary interpretation of our model and the idea that nature’s subjects

play many conflict games with often different preferences throughout their life, it

seems appropriate that nature makes the decision about empathy acquisition at the

very beginning. Also in the other interpretation, in which players are consciously

strategic about their choice of information acquisition, it can make sense to have

the information acquisition decision before knowing the exact nature of the conflict

situation. A soccer team may study the opposing goalkeeper for the eventuality of a

penalty kick before knowing whether the goalkeeper will incur an injury or which of

their own players will actually take the penalty kick. A military general might want

to spy on her opponent’s preferences before knowing the future strength of the own

troop or on which terrain, in which place, at which state of the war etc. the actual

battle will take place. A firm might decide on research activities on another firm’s
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motives before they know whether they are facing a merger or a hostile takeover.

There are certainly cases, however, in which the reverse timing is just as plausible.

That is we could envision a version of our model in which players consider acquiring

the information about their opponent’s preferences only after they know their own

preferences.

In Footnote 22 we have already thought about this issue and found that, for

the given non-conflict example (see Example 2.1), the main insight does not change.

We have also looked at the reverse-timing model for the conflict example given as

Example 2.2. We shall not go through this here but it suffices to say that, while small

details change, the main result, that for small positive costs of empathy acquisition

any equilibrium has partial cognitive empathy, seems to remain unchanged.33 In

fact, all types acquire partial empathy in this example: the probability of empathy

acquisition is, as in our main result, bounded from below and above. It is, however,

unlike in our model with two actions and two types, not constant for all small costs

of empathy acquisition. Still, we expect our main theorem to hold in principal also

in the model in which the timing of empathy acquisition and of learning one’s type

is reversed.

2.5.4 Degrees of Cognitive Empathy

Another issue, especially for the evolutionary interpretation of our model, is this. If

nature has to make her decision on cognitive empathy at the beginning once and

for all possible situations, then these “all possible situations” should probably cover

more than just conflict games. And, if these situations include, for instance, the

three possible types (for both players) as given in our non-conflict example, then for

small costs nature would always endow her subjects with full empathy. One could

now state that it is therefore a question of which is smaller, the cost of empathy

acquisition or the probability of these three types, but this is not where we want to

go in this discussion. Instead, we think that a better model in such cases would be

one in which nature can give her subjects degrees of empathy. For instance, nature

could give us enough cognitive empathy to always check whether or not our opponent

has a dominant action strategy, but if our opponent does not, nature may not give

us more cognitive empathy to differentiate our opponent’s preferences further. The

result would then be as in our model.

A similar response could be made to the ultimate implication of the following

33To be precise, we used Gambit by McKelvey et al. (2014) and found exactly one equilibrium.
We have not attempted to prove that this equilibrium is unique but we conjecture that it is.



36 • 2 Cognitive Empathy in Conflict Situations

consideration. Consider, for convenience, our result for two-action conflict games

with two types per player. For these games Proposition 2.3 implies that a player’s

probability of empathy acquisition is exactly given by the difference of the two indif-

ference probabilities of her two opponent types. This means that the more similar

her two opponent types are, the more similar are their indifference probabilities and

the less empathy is acquired by her. This is also true for the lower bound established

for the probability of empathy acquisition in our main theorem. In particular, this

also implies that the more different kinds of situations a person faces, i.e. the bigger

the possible difference between the possible opponent types, the more empathy is

acquired. If this goes as far as to include even dominant strategy types, she has to

acquire full empathy. To tackle this issue one could build a model of empathy acqui-

sition more like that of “rational (in)attention” as in the decision theoretic models of

Sims (2003, 2006); Matêjka and McKay (2012, 2015). Adapting these models to our

strategic interaction setting could be done by allowing players to buy signals about

their opponent’s preferences of any precision but where the costs of these signals are

increasing in the information content of these signals, as measure, for instance, by

their entropy. Another model would be to allow individuals to acquire multiple sig-

nals of whatever precision, one after the other, about their opponent’s preferences,

before making their final action decision. While we do not think that the main in-

sight of our work would change in such a model, it might nevertheless add substantial

additional insights, the pursuit of which we leave to future research.

Appendix 2.A Proofs

Throughout this section we again abuse notation of action strategies in two-action

conflict games slightly by denoting by σθp

(·) ∈ [0, 1] the probability of H chosen

by player p of type θp. For ease of notation, when it comes to the arguments of

utility functions uθp

, we also only mention the probabilities of action H. And finally,

let Uθp

Info denote the (interim) expected payoff of a type θp ∈ Θp of player p if she

acquired empathy and before she learns her opponent’s type. Similarly, Uθp

N denotes

the expected payoff of a type θp of player p who did not acquire empathy.

2.A.1 Proof of Lemma 2.1

For p ∈ {B, R}, θp ∈ Θp we define

CBH (θB, θR) := uθR

(0, 1) − uθR

(x(θB), 1),
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CBT (θB, θR) := uθR

(1, 0) − uθR

(x(θB), 0),

CRH (θB, θR) := uθB

(1, 1) − uθB

(x(θR), 1), and

CRT (θB, θR) := uθB

(0, 0) − uθB

(x(θR), 0).

Notice that CB·(θB, θR) > 0
(

CR·(θB, θR) > 0
)

for all θB ∈ ΘB, θR ∈ ΘR as player R

wants to mis-coordinate (as player B wants to coordinate). Based on this let

C := min
a∈{BH ,BT ,RH ,RT }

min
θB ,θR

µθB

µθR

Ca(θB, θR).

W.l.o.g. we consider player p = B and assume that we have

∑

θR

µθR
(

ρRσθR

(θ̄B) + (1 − ρR)σθR

(∅)
)

> x(θ̄B)

for some θ̄B ∈ ΘB.34 Since player B wants to coordinate actions, this implies σθ̄B

(∅) =

1 (if ρB < 1). Furthermore, if a probability weighted sum of terms exceeds x(θ̄B),

then at least one term must exceed x(θ̄B) as well. Thus, there must exist a type θ̄R

such that

ρRσθ̄R

(θ̄B) + (1 − ρR)σθ̄R

(∅) > x(θ̄B). (2.3)

In turn, this implies σθ̄B

(θ̄R) = 1 (if ρB > 0), meaning that

ρBσθ̄B

(θ̄R) + (1 − ρB)σθ̄B

(∅) = 1 > x(θ̄R).

Moreover, it is obvious that this equality and inequality also hold for ρB = 0 and

ρB = 1. As player R wants to mis-coordinate, this implies σθ̄R

(θ̄B) = 0 (if ρR > 0).

Inserting the latter into inequality (2.3) gives

(1 − ρR)σθ̄R

(∅) > x(θ̄B).

Again, it is obvious that this inequality is satisfied for ρR = 0 as well. It follows

from this that 1 − ρR > x(θ̄B) and σθ̄R

(∅) > x(θ̄B). Hence, for c ∈ [0, C) player

R can improve her payoff by deviating to a strategy with ρ̂R = 1 and obtaining an

34Observe that the subsequent line of argument is almost identical for the reversed inequality as
well as for p = R. Thus, we can omit these cases.
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additional payoff of at least

(1 − ρR)
(

µθ̄R

µθ̄B
(

uθ̄R

(0, 1) − uθ̄R

(σθ̄R

(∅), 1)
)

− c
)

> x(θ̄B)
(

µθ̄R

µθ̄B
(

uθ̄R

(0, 1) − uθ̄R

(x(θ̄B), 1)
)

− c
)

> 0.

We thus arrive at a contradiction.

2.A.2 Proof of Theorem 2.1

We need one additional, purely technical lemma, in order to prove Theorem 2.1.

Lemma 2.3. Consider α, β′, β′′, γ ∈ R where β′ − β′′ ≤ α. Then (at least) one of

the following three conditions must be satisfied:

α + (1 − α)γ = β′ and (1 − α)γ = β′′, (2.4a)

α + (1 − α)γ > β′ or (2.4b)

(1 − α)γ < β′′. (2.4c)

Proof of Lemma 2.3. Suppose none of the three conditions is satisfied. Then we

obtain

α + (1 − α)γ < (≤)β′ and

(1 − α)γ ≥ (>)β′′.

In either case, subtracting the second from the first inequality yields

α < β′ − β′′ ≤ α,

a contradiction.

Having established this lemma, we can now turn to the proof of the theorem.

Proof of Theorem 2.1. In the following we distinguish between the two parts.

Part (i): Lower Bound

From Lemma 2.1 and equation (2.1) it follows immediately that for all p ∈ {B, R},
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θp ∈ Θp

ρp
(
∑

θp

µθp

σθp

(θ−p
max)

︸ ︷︷ ︸

≤1

−
∑

θp

µθp

σθp

(θ−p
min)

︸ ︷︷ ︸

≥0

)

= x(θ−p
max) − x(θ−p

min).

Hence, we have that ρp ≥ x(θ−p
max) − x(θ−p

min).

Part (ii): Upper Bound

We here prove the upper bound for player p. The statement is trivially satisfied if

ρp = 0. Thus, suppose that ρp > 0. We need to distinguish two different cases.

Case 1: ρ−p = 0

Given the lower bound we proved in Part (i), we then must have that x(θp
max) =

x(θp
min). Lemma 2.2 then implies that there are two opponent types θ̂−p and θ̃−p such

that

σθ̂−p

(∅) > x(θp),

σθ̃−p

(∅) < x(θp)

for all θp. For p = B
(

p = R
)

this induces σθp

(θ̂−p) = 1 and σθp

(θ̃−p) = 0
(

σθp

(θ̂−p) =

0 and σθp

(θ̃−p) = 1
)

for all θp ∈ Θp. Applying Lemma 2.1 yields

ρp
(
∑

θp

µθp

σθp

(θ̂−p)

︸ ︷︷ ︸

=1 (=0)

−
∑

θp

µθp

σθp

(θ̃−p)

︸ ︷︷ ︸

=0 (=1)

)

= x(θ̂−p) − x(θ̃−p).

Taking into account Part (i) this gives

ρp = x(θ−p
max) − x(θ−p

min) < min
{

x(θ−p
max), 1 − x(θ−p

min)
}

(2.5)

≤ max
{

x(θ−p
max), 1 − x(θ−p

min)
}

.

Case 2: ρ−p > 0

The reasoning is very similar for both players and w.l.o.g. we consider the case p = B.

Again, Lemma 2.2 implies that there is a type θ̄B and that there are two opponent

types θ̂R and θ̃R such that

α + (1 − α)γ = ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅),

(1 − α)γ = ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅)
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with α = ρB and γ = σθ̄B

(∅). As we have already seen that x(θR
max) − x(θR

min) is a

lower bound for ρB, according to Lemma 2.3 one of the following three subcases must

apply:

Subcase 2(a): ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) = x(θ̂R) and

ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) = x(θ̃R)

This subcase is straightforward. We simply have

ρB = x(θ̂R) − x(θ̃R) ≤ x(θR
max) − x(θR

min) < max
{

x(θR
max), 1 − x(θR

min)
}

.

Subcase 2(b): ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) > x(θ̂R)

This subcase implies that σθ̂R

(θ̄B) = 0. Moreover, by Lemma 2.1 there must exist

θ̆B 6= θ̄B such that

ρBσθ̆B

(θ̂R) + (1 − ρB)σθ̆B

(∅) < x(θ̂R). (2.6)

This induces σθ̂R

(θ̆B) = 1. Furthermore, according to inequality (2.2a) we have

x(θ̄B) < ρR σθ̂R

(θ̄B)
︸ ︷︷ ︸

=0

+(1 − ρR)σθ̂R

(∅) = (1 − ρR)σθ̂R

(∅).

Applying Lemma 2.3 again – here with α = ρR, β′ = x(θ̆B), β′′ = x(θ̄B), and

γ = σθ̂R

(∅) – then gives

x(θ̆B) < ρR + (1 − ρR)σθ̂R

(∅) = ρRσθ̂R

(θ̆B) + (1 − ρR)σθ̂R

(∅). (2.7)

In turn, this induces σθ̆B

(θ̂R) = 1. By inserting the latter into inequality (2.6) we get

ρB + (1 − ρB)σθ̆B

(∅) < x(θ̂R),

which implies

ρB < x(θ̂R) ≤ max
{

x(θR
max), 1 − x(θR

min)
}

.

Subcase 2(c): ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) < x(θ̃R)

This subcase is in large parts quite similar to the previous one. It implies that

σθ̃R

(θ̄B) = 1. Moreover, again by Lemma 2.1 there must exist θ̆B 6= θ̄B such that

ρBσθ̆B

(θ̃R) + (1 − ρB)σθ̆B

(∅) > x(θ̃R). (2.8)
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This induces σθ̃R

(θ̆B) = 0. According to inequality (2.2b) it is

x(θ̄B) > ρR σθ̃R

(θ̄B)
︸ ︷︷ ︸

=1

+(1 − ρR)σθ̃R

(∅) = ρR + (1 − ρR)σθ̃R

(∅).

Applying again Lemma 2.3 – here with α = ρR, β′ = x(θ̄B), β′′ = x(θ̆B), and

γ = σθ̃R

(∅) – then gives

x(θ̆B) > (1 − ρR)σθ̃R

(∅) = ρRσθ̃R

(θ̆B) + (1 − ρR)σθ̃R

(∅). (2.9)

In turn, this induces σθ̆B

(θ̃R) = 0. By inserting the latter into inequality (2.8) we get

(1 − ρB)σθ̆B

(∅) > x(θ̃R)

⇔ σθ̆B

(∅) − x(θ̃R) > ρBσθ̆B

(∅)

⇒ ρB < 1 − x(θ̃R) ≤ max
{

x(θR
max), 1 − x(θR

min)
}

.

2.A.3 An Alternative to Theorem 2.1

Theorem 2.1(ii)’. Consider a two-action Bayesian conflict game. For all ǫ > 0

there exists C > 0 such that for all p ∈ {B, R} and c ∈ (0, C) we have

ρp < min
{

x(θ−p
max), 1 − x(θ−p

min)
}

+ ǫ

in any Bayesian Nash equilibrium.

Proof of Theorem 2.1(ii)’. From inequality (2.5) in Case 1 of the proof of Part (ii) of

Theorem 2.1 we already know for p ∈ {B, R} that

ρp < min
{

x(θ−p
max), 1 − x(θ−p

min)
}

in any equilibrium with ρ−p = 0. Therefore, we only need to consider the case

ρ−p > 0.

For p ∈ {B, R}, θp ∈ Θp we define

CBH (ǫ, θB, θR) := uθR

(0, x(θR) + ǫ) − uθR

(x(θB), x(θR) + ǫ),

CBT (ǫ, θB, θR) := uθR

(1, x(θR) − ǫ) − uθR

(x(θB), x(θR) − ǫ),

CRH (ǫ, θB, θR) := uθB

(1, x(θB) + ǫ) − uθB

(x(θR), x(θB) + ǫ), and
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CRT (ǫ, θB, θR) := uθB

(0, x(θB) − ǫ) − uθB

(x(θR), x(θB) − ǫ).

Notice that, as in the proof of Lemma 2.1, we have CB·(ǫ, θB, θR) > 0
(

CR·(ǫ, θB, θR) >

0
)

for all θB ∈ ΘB, θR ∈ ΘR as player R wants to mis-coordinate (as player B wants

to coordinate). Based on this let

C(ǫ) := min
a∈{BH ,BT ,RH ,RT }

min
θB ,θR

µθB

µθR

Ca(ǫ, θB, θR).

Now assume that the statement of the theorem does not hold. Then there must exist

c ∈ (0, C(ǫ)) such that

(a) ρp ≥ x(θ−p
max) + ǫ or

(b) ρp ≥ 1 − x(θ−p
min) + ǫ

for some p ∈ {B, R} in an equilibrium. Again, the reasoning is almost identical for

both players and w.l.o.g. we consider p = B.

Case (a): ρB ≥ x(θR
max) + ǫ

As we are in the situation of Lemma 2.2, we know that there exist types θ̄B ∈
ΘB, θ̂R ∈ ΘR such that σθ̄B

(θ̂R) = 1. We then have

ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) ≥ x(θ̂R) + ǫ > x(θ̂R). (2.10)

This implies that σθ̂R

(θ̄B) = 0 as player R wants to mis-coordinate and as ρR > 0.

Inserting this into inequality (2.2a) gives

(1 − ρR)σθ̂R

(∅) > x(θ̄B).

From this we deduce that 1 − ρR > x(θ̄B) and σθ̂R

(∅) > x(θ̄B). Now consider an

alternative strategy for player R with ρ̆R = 1 and σθR

(θB) a best response for all

θB ∈ ΘB, θR ∈ ΘR. Taking into account inequality (2.10) we find that by deviating

to this strategy player R would obtain an additional payoff of at least

(1 − ρR)
(

µθ̄B

µθ̂R
(

uθ̂R

(0, ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅))

− uθ̂R

(σθ̂R

(∅), ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅))
)

− c
)

≥ (1 − ρR)
(

µθ̄B

µθ̂R
(

uθ̂R

(0, x(θ̂R) + ǫ) − uθ̂R

(σθ̂R

(∅), x(θ̂R) + ǫ)
)

− c
)

> x(θ̄B)
(

µθ̄B

µθ̂R
(

uθ̂R

(0, x(θ̂R) + ǫ) − uθ̂R

(x(θ̄B), x(θ̂R) + ǫ)
)

− c
)

> 0
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as we have c ∈ (0, C(ǫ)). We, thus, arrive at a contradiction.

Case (b): ρB ≥ 1 − x(θR
min) + ǫ

Notice first that this inequality is equivalent to 1 − ρB ≤ x(θR
min) − ǫ. The approach

here is similar to Case (a). Here, we have from Lemma 2.2 that there exist types

θ̄B ∈ ΘB, θ̃R ∈ ΘR with σθ̄B

(θ̃R) = 0. This implies

ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) ≤ x(θ̃R) − ǫ < x(θ̃R). (2.11)

Hence, we have σθ̂R

(θ̄B) = 1. Inserting this into inequality (2.2b) gives

ρR + (1 − ρR)σθ̃R

(∅) < x(θ̄B).

From this we deduce that ρR < x(θ̄B) and σθ̃R

(∅) < x(θ̄B). The former is equivalent

to 1 − ρR > 1 − x(θ̄B). Again, we find that player R could improve by deviating to

a strategy with probability of empathy acquisition one and obtaining an additional

payoff of at least

(1 − ρR)
(

µθ̄B

µθ̃R
(

uθ̃R

(1, ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅))

− uθ̃R

(σθ̃R

(∅), ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅))
)

− c
)

≥ (1 − ρR)
(

µθ̄B

µθ̃R
(

uθ̃R

(1, x(θ̃R) − ǫ) − uθ̃R

(σθ̃R

(∅), x(θ̃R) − ǫ)
)

− c
)

> (1 − x(θ̄B))
(

µθ̄B

µθ̃R
(

uθ̃R

(1, x(θ̃R) − ǫ) − uθ̃R

(x(θ̄B), x(θ̃R) − ǫ)
)

− c
)

> 0

as we have c ∈ (0, C(ǫ)). This is again a contradiction.

2.A.4 Proof of Proposition 2.2

The proof is by construction. We identify a particular strategy profile
(

ρp, (σθp

)θp∈Θp

)

p∈{B,R}
with the desired property and show that it is an equilibrium.

Let

ρp = x(θ−p
max) − x(θ−p

min), (2.12a)

σθp

(∅) =
1

1 − ρp
x(θ−p

min) ∀θp ∈ Θp\{θp
max, θp

min} (2.12b)

σθp

(θ−p) =







1
ρp

(

x(θ−p) − x(θ−p
min)

)

if ρp > 0

0 if ρp = 0
∀θp ∈ Θp, θ−p ∈ Θ−p. (2.12c)
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Note that σθp

(θ−p
max) = 1 and σθp

(θ−p
min) = 0 for all p ∈ {B, R} and θp ∈ Θp if

x(θ−p
max) > x(θ−p

min).35 The strategy profile is, thus, almost fully specified. It only

remains to be chosen how extreme types play when they are uninformed. In case

that x(θp
max) > x(θp

min) let σθp
max(∅) and σθp

min(∅) be chosen to satisfy

∑

θ−p

µθ−p
(

uθ−p

(1, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅))

− uθ−p

(0, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅))
)

=
c

µθp
max

(2.13)

and

µθp
max

µθp
max + µθp

min

σθp
max(∅) +

µθp
min

µθp
max + µθp

min

σθp
min(∅) =

1

1 − ρp
x(θ−p

min). (2.14)

For x(θp
max) = x(θp

min) however let

σθp
max(∅) = σθp

min(∅) =
1

1 − ρp
x(θ−p

min). (2.15)

For the remainder of the proof we distinguish these two cases.

Case 1: x(θp
max) > x(θp

min)

Before we move on to prove that the considered strategy profile is indeed an equi-

librium in this case, we need to make sure that it is well-defined. For this we need

to show that equation (2.13) has a feasible solution for c = 0 and c > 0 sufficiently

small. Consider

σθp
max(∅) =

1

1 − ρp

(

x(θ−p
min) + ǫp

)

=
x(θ−p

min) + ǫp

1 − x(θ−p
max) + x(θ−p

min)
,

where ǫp ∈ R. For c = 0 let ǫp = 0. We then have σθp
max(∅) ∈ (0, 1) and

LHS of (2.13) =
∑

θ−p

µθ−p
(

uθ−p

(1, x(θ−p)) − uθ−p

(0, x(θ−p))
)

= 0 = RHS of (2.13)

since player −p of type θ−p is indifferent between both actions if the opponent plays

x(θ−p). Equation (2.14) then implies σθp
min(∅) = σθp

max(∅).

Now consider c > 0. Notice first that the left-hand side of (2.13) is a linear

function in ǫp which is strictly decreasing (increasing) for p = B (p = R). To see

this, consider temporarily and w.l.o.g. −p = B and some type θB whose payoffs are

35This means that in case that they are informed, both players of any type play pure action
strategies against extreme type opponents.
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represented by the matrix

H T

H uH,H uH,T

T uT,H uT,T

where uH,H , uH,T , uT,H , uT,T ∈ R. As player B wants to coordinate actions, we must

have uH,H > uT,H and uT,T > uH,T . Further, we calculate x(θB) =
uT,T −uH,T

uH,H−uT,H+uT,T −uH,T
.

Our claim follows immediately as this gives

uθB

(1, x(θB) + ǫR) − uθB

(0, x(θB) + ǫR)

= uH,H(x(θB) + ǫR) + uH,T (1 − x(θB) − ǫR) − uT,H(x(θB) + ǫR)

− uT,T (1 − x(θB) − ǫR)

= (uH,H − uT,H + uT,T − uH,T )(x(θB) + ǫR) − (uT,T − uH,T )

= (uH,H − uT,H + uT,T − uH,T
︸ ︷︷ ︸

>0

)ǫR.

So, generally speaking, we have that for every c > 0 sufficiently small there exists a

unique ǫB < 0 (ǫR > 0) such that both equations (2.13) and (2.14) are fulfilled and

σθp
max(∅), σθp

min(∅) ∈ [0, 1].

After this is done we turn towards proving that the proposed strategy profile is

indeed an equilibrium. Suppose that in the conflict game both players B and R are

playing a strategy as considered above. Then player −p ∈ {B, R} cannot improve by

deviating if the following conditions are satisfied:

• σθ−p

(θp) is a best response to ρpσθp

(θ−p) + (1 − ρp)σθp

(∅) for all θp ∈ Θp, θ−p ∈
Θ−p,

• σθ−p

(∅) is a best response to
∑

θp µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

for all θ−p ∈
Θ−p,

• ∑

θ−p µθ−pUθ−p

Info =
∑

θ−p µθ−pUθ−p

N + c.

In the following let c = 0 or c > 0 sufficiently small as mentioned above. Further let

p = B (p = R). Consider first the action strategies that types of player −p face when

they are informed. We calculate for θ−p ∈ Θ−p, θp ∈ Θp\{θp
max, θp

min}:

ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅) = x(θ−p) + ǫp ≤ (≥)x(θ−p),

ρpσθp
min(θ−p) + (1 − ρp)σθp

min(∅) = x(θ−p) − µθ
p
max

µ
θ

p
min

ǫp ≥ (≤)x(θ−p),

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅) = x(θ−p).

(2.16)
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Hence, σθ−p

(θp
max) = 1 and σθ−p

(θp
min) = 0 are indeed best responses in each case

p ∈ {B, R}, θ−p ∈ Θ−p. Against all other types θp ∈ Θp\{θp
max, θp

min}, any informed

type θ−p ∈ Θ−p is indifferent between both actions.

Beyond that, any uninformed player type θ−p ∈ Θ−p faces

∑

θp

µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

= µθp
max

(

x(θ−p) + ǫp
)

+ µθp
min

(

x(θ−p) − µθp
max

µθp
min

ǫp
)

+
∑

θp /∈{θp
max,θp

min
}

µθp

x(θ−p)

= x(θ−p)

and is therefore indifferent between both actions.

Finally, we have to examine the expected payoffs. For an uninformed player type

θ−p ∈ Θ−p we have

Uθ−p

N = uθ−p

(

σθ−p

(∅),
∑

θp

µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
))

= uθ−p
(

σθ−p

(∅), x(θ−p)
)

.

If θ−p is informed, then her expected payoff (ex costs) is given by

Uθ−p

Info

=
∑

θp

µθp

uθ−p
(

σθ−p

(θp), ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

= µθp
maxuθ−p

(

1, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
)

+ µθp
minuθ−p

(

0,
1

µθp
min

(

x(θ−p) −
∑

θp 6=θp
min

µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
))
)

+
∑

θp /∈{θp
max,θp

min
}

µθp

uθ−p
(

σθ−p

(θp), x(θ−p)
)

= µθp
max

(

uθ−p
(

1, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
)

− uθ−p
(

0, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
))

+ uθ−p
(

0, x(θ−p)
)

Notice that according to (2.16) we have Uθ−p

Info ≥ uθ−p
(

0, x(θ−p)
)

= Uθ−p

N for all

θ−p ∈ Θ−p. Taken together we get

(2.13) ⇔
∑

θ−p

µθ−p

(

µθp
max

(

uθ−p
(

1, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
)
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− uθ−p
(

0, ρpσθp
max(θ−p) + (1 − ρp)σθp

max(∅)
))

+ uθ−p
(

0, x(θ−p)
)
)

=
∑

θ−p

µθ−p

uθ−p
(

σθ−p

(∅), x(θ−p)
)

+ c

⇔
∑

θ−p

µθ−pUθ−p

Info =
∑

θ−p

µθ−pUθ−p

N + c.

This means that player −p is indeed indifferent between acquiring empathy and

not acquiring it. Thus, we established for the conflict game that player −p has no

incentives to deviate from the considered strategy in this case.

Case 2: x(θp
max) = x(θp

min)

Suppose again that both players B and R are playing a strategy as considered above.

As according to equation (2.12a) we have ρ−p = 0 in this case, player −p cannot

improve by deviating if the following conditions are satisfied:

• σθ−p

(∅) is a best response to
∑

θp µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

for all θ−p ∈
Θ−p,

• ∑

θ−p,θp µθ−p

µθp

uθ−p
(

sθ−p

(θp), ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

≤ ∑

θ−p µθ−pUθ−p

N + c

for all
(

sθ−p

(θp)
)

θ−p,θp
∈ ∆(A)n−p×np

.

Taking into account equations (2.12) and (2.15), concerning the first condition we

simply have

∑

θp

µθp
(

ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

=
∑

θp

µθp

x(θ−p) = x(θ−p).

Hence, this condition is obviously fulfilled as any uninformed type θ−p is indifferent

between both actions.

The second condition states that the ex ante expected payoff of player −p from

not acquiring empathy must be greater than or equal to the maximal payoff (minus

costs) she could get instead from acquiring empathy and playing freely choosable

action strategies which can be conditioned on the opponent’s type. For all θ−p,
(

sθ−p

(θp)
)

θp
we have

∑

θp

µθp

uθ−p
(

sθ−p

(θp), ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
︸ ︷︷ ︸

=x(θ−p)

)

= uθ−p
(

·, x(θ−p)
)

.

On the contrary, type θ−p receives

Uθ−p

N = uθ−p
(

σθ−p

(∅), x(θ−p)
)
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if she is uninformed. Thus, we have

∑

θ−p,θp

µθ−p

µθp

uθ−p
(

sθ−p

(θp), ρpσθp

(θ−p) + (1 − ρp)σθp

(∅)
)

=
∑

θ−p

µθ−pUθ−p

N

for all
(

sθ−p

(θp)
)

θ−p,θp
∈ ∆(A)n−p×np

. This concludes Case 2 and the proof as a whole.

2.A.5 Proof of Proposition 2.3

Recall the proof of Theorem 2.1. In Case 1 of Part (ii) we already established that

we must have

ρp = x(θ−p
max) − x(θ−p

min) (2.17)

if ρ−p = 0 for p ∈ {B, R}. Notice that ρp > 0 then implies x(θ−p
max) > x(θ−p

min). Taking

into account Theorem 2.1(i) in this situation we also have that

0 = ρ−p ≥ x(θp
max) − x(θp

min) ≥ 0,

and thus ρ−p = x(θp
max) − x(θp

min). In what follows we distinguish the two cases

considered in the proposition.

Part 1: nB = 1 and nR > 1 (nB > 1 and nR = 1, respectively)

W.l.o.g. consider the case nB = 1 (such that ΘB = {θB}) and nR > 1 and let

c ∈ (0, C) sufficiently small. Assume that ρR > 0 in an equilibrium. Then according

to Lemma 2.2 there must exist θ̄R and θ̂B, θ̃B fulfilling inequalities (2.2). This however

implies θ̂B 6= θ̃B which is a contradiction as we have nB = 1. Thus, we must have

ρR = 0 which (together with the above considerations) establishes uniqueness of the

empathy levels for this part of the proof.

By assumption we have that x(θR
max) > x(θR) > x(θR

min) for all θR ∈
ΘR\{θR

max, θR
min}. We now show that the equilibrium considered in the proof of Propo-

sition 2.2 is unique up to variations of the action strategies σθR

(θB) which are played

with probability ρR = 0. Notice first that according to Lemma 2.1 we must have

ρBσθB

(θR) + (1 − ρB)σθB

(∅) = x(θR) (2.18)
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for all θR ∈ ΘR. Taking into account equation (2.17) this gives

(x(θR
max) − x(θR

min))(σθB

(θR
max) − σθB

(θR
min)) = ρB(σθB

(θR
max) − σθB

(θR
min))

= x(θR
max) − x(θR

min).

Hence, we must have σθB

(θR
max) = 1 and σθB

(θR
min) = 0. Again according to Lemma

2.1 this implies that

σθB

(θR) = σθB

(θR) − σθB

(θR
min) =

1

ρB
(x(θR) − x(θR

min)) ⇔ (2.12c)

for all θR ∈ ΘR. Moreover, by equation (2.18) this induces

σθB

(∅) =
1

1 − ρB
x(θR

min) ⇔ (2.12b).

As x(θR
max) > x(θR) > x(θR

min) we have σθB

(θR) ∈ (0, 1) for all θR ∈ ΘR\{θR
max, θR

min}.

This means that θB must be indifferent against any opponent type θR ∈
ΘR\{θR

max, θR
min} if she is informed. Thus, we must have

σθR

(∅) = x(θB)

for all θR ∈ ΘR\{θR
max, θR

min}. Equation (2.1) of Lemma 2.1 then transforms to

∑

θR

µθR

σθR

(∅) = x(θB)

⇔ µθR
max

µθR
max + µθR

min

σθR
max(∅) +

µθR
min

µθR
max + µθR

min

σθR
min(∅) = x(θB) ⇔ (2.14).

Together with equation (2.13) (for p = R) this then uniquely determines σθR
max(∅)

and σθR
min(∅).

Obviously, the reasoning is the same for nB > 1, nR = 1.

Part 2: nB = nR = 2

In this case we have Θp = {θp
max, θp

min} for p = B, R. We already know that uniqueness

of the empathy levels follows immediately if we have ρp = 0 for some p ∈ {B, R}. So

in this regard we only need to consider the case that ρB, ρR > 0. Again, we recall the

proof of Theorem 2.1 and take Case 2 with p = B as a starting point. Consider its

three subcases.
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Subcase (a): ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) = x(θ̂R) and

ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) = x(θ̃R)

This subcase is again straightforward as we simply have ρB = x(θ̂R) − x(θ̃R) and

know already that it is ρB ≥ x(θR
max) − x(θR

min). Therefore it must be θ̂R = θR
max and

θ̃R = θR
min.

Subcase (b): ρBσθ̄B

(θ̂R) + (1 − ρB)σθ̄B

(∅) > x(θ̂R)

Recall inequality (2.7). Lemma 2.1 then implies that

ρRσθ̃R

(θ̆B) + (1 − ρR)σθ̃R

(∅) < x(θ̆B)

as here it is {θR ∈ ΘR | θR 6= θ̂R} = {θ̃R}. In turn, this induces σθ̆B

(θ̃R) = 0.

Moreover, recall that it is σθ̄B

(θ̃R) = 0, σθ̄B

(θ̂R) = 1 and σθ̆B

(θ̂R) = 1. Further, we

know again by Lemma 2.1 that it must be

ρB
(
∑

θB

µθB

σθB

(θR
max) −

∑

θB

µθB

σθB

(θR
min)

)

= x(θR
max) − x(θR

min).

If it were θ̂R = θR
min, θ̃R = θR

max, then this would imply ρB = x(θR
min) − x(θR

max) ≤ 0.

So it must be θ̂R = θR
max, θ̃R = θR

min which implies ρB = x(θR
max) − x(θR

min).

Subcase (c): ρBσθ̄B

(θ̃R) + (1 − ρB)σθ̄B

(∅) < x(θ̃R)

The procedure is very similar to Subcase (b). By recalling (2.9) and applying Lemma

2.1 we can show that here it is σθ̆B

(θ̂R) = 1. Together with σθ̄B

(θ̂R) = 1, σθ̄B

(θ̃R) = 0

and σθ̆B

(θ̃R) = 0 this leads to the same result as in Subcase (b).

Obviously, by choosing p = R one can show in a very similar way that ρR =

x(θB
max) − x(θB

min) is satisfied as well in each case. Also, we get that σθR

(θB
max) = 1

and σθR

(θB
min) = 0 for all θR ∈ ΘR.

It remains to show that the equilibrium considered in the proof of Proposition

2.2 is indeed unique as long as x(θ−p
max) > x(θ−p

min) for both p ∈ {B, R}. Notice

that we therefore only need to consider the case ρB, ρR > 0. So far, we found that

the equations (2.12) must necessarily be satisfied here. If we insert σθ−p

(θp
min) = 0,

θ−p ∈ Θ−p, into the indifference condition (2.1) with θp = θp
min which we established

in Lemma 2.1, we end up with equation (2.14). Finally, both players p ∈ {B, R} must

be indifferent between acquiring empathy and not acquiring it as we have ρB, ρR > 0.
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Therefore, we must also have

∑

θp

µθpUθp

Info =
∑

θp

µθpUθp

N + c ⇔(2.13)

as in Case 1 of the proof of Proposition 2.2. Again, these conditions then uniquely

determine σθB
max(∅), σθB

min(∅), σθR
max(∅), and σθR

min(∅). This concludes this part of the

proof.

Appendix 2.B A Continuum of Bayesian Nash

Equilibria

In the proof of Proposition 2.2 we construct a certain equilibrium for general two-

action conflict games with small costs. Here, we show, however, that such a partial

empathy equilibrium can in general be constructed in many different ways. In fact,

this gives rise to a continuum of equilibria which have in common that they achieve

the lower bound of empathy acquisition established in Theorem 2.1. Thus, they do

not differ in terms of players’ information strategies but in their action strategies.

In a partial empathy equilibrium in which we have ρp > 0 for some player p ∈
{B, R}, i.e. p is mixing properly between acquiring empathy and not acquiring it,

this player must be indifferent between these two possibilities. As she has to bear

the cost for acquiring empathy, the (weighted) sum of the expected payoffs of her

types being informed must be larger than in the case when they are uninformed.

In the proof of Proposition 2.2 this is achieved by letting extreme type opponents,

when uninformed, play in such a way that the considered player is indeed indifferent

between acquiring empathy and not acquiring it. In this equilibrium, moreover, all

types of the opponent −p, when informed and facing an extreme type θp
max or θp

min,

play pure action strategies. In general, i.e. if player p has more than two types, this

leaves open the possibility to redesign strategies in such a way that the extreme type

opponents, now however the ones being informed and playing against a non-extreme

type of the player, are (still) indifferent between both actions and then choose their

(mixed) actions such that the player is again indifferent between acquiring empathy

and not acquiring it. In doing so, it is however important to retain that all player

types, when uninformed, are indifferent between both actions (see Lemma 2.1). With

this idea in mind (and given that costs are positive and at least one player has

more than two types) we are now able to construct a continuum of partial empathy

equilibria.
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To ease notation in the following, at least to some extent, we define

λp :=
µθp

max

µθp
max + µθp

min

for p ∈ {B, R}. In principle, the following statement is then a corollary to the proof

of Proposition 2.2.

Corollary 2.3. Consider a two-action Bayesian conflict game. There exists C > 0

such that all strategy profiles satisfying the following conditions for all p ∈ {B, R}
constitute a Bayesian Nash equilibrium of the game if c ∈ [0, C).36

• ρp = x(θ−p
max) − x(θ−p

min),

• σθp

(θ−p
max) = 1 and σθp

(θ−p
min) = 0 for all θp ∈ Θp,

• σθp

(θ−p) = 1
ρp

(

x(θ−p) − x(θ−p
min)

)

for all θp ∈ Θp\{θp
max, θp

min}, θ−p ∈
Θ−p\{θ−p

max, θ−p
min},

• σθp

(∅) = 1
1−ρp x(θ−p

min) for all θp ∈ Θp\{θp
max, θp

min}.

Further, σθp
max and σθp

min are determined such that on the one hand

• λpσθp
max(θ−p) + (1 − λp)σθp

min(θ−p) = 1
ρp

(

x(θ−p) − x(θ−p
min)

)

for all θ−p ∈
Θ−p\{θ−p

max, θ−p
min},

• λpσθp
max(∅) + (1 − λp)σθp

min(∅) = 1
1−ρp x(θ−p

min),

where σθp
max(θ−p) ≤ (≥) 1

ρp

(

x(θ−p) − x(θ−p
min)

)

≤ (≥)σθp
min(θ−p) and σθp

max(∅) ≤ (≥
) 1

1−ρp x(θ−p
min) ≤ (≥)σθp

min(∅) for p = B (p = R), and on the other hand

• ∑

θ−p µθ−pUθ−p

Info =
∑

θ−p µθ−pUθ−p

N + c.

Note that, in general, there exist (infinitely many) different strategy profiles ful-

filling these requirements. However, for c = 0 this continuum collapses to a sin-

gle strategy profile, namely the one where we have σθp
max(θ−p) = σθp

min(θ−p) and

σθp
max(∅) = σθp

min(∅) for all p ∈ {B, R} and all θ−p ∈ Θ−p.

36For ease of notation we assume here that it is |{arg maxθp x(θp)}| = |{arg minθp x(θp)}| = 1 and
np > 1 for all p ∈ {B, R}.
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Appendix 2.C On the Uniqueness of Completely

Mixed Nash Equilibria

In this chapter, we consider a certain class of games with incomplete information.

Within this class we focus on what we call conflict games. By definition these games

are such that any realized type game, which is in each case simply a complete infor-

mation normal form game with two players, has a unique Nash equilibrium and that

Nash equilibrium must be in completely mixed strategies. Throughout the chapter,

we consider all types of both players having the same finite action set A available.

One could therefore wish for a generalization of our model and results that allows

two opposing types to possibly choose their (mixed) actions from action sets with dif-

ferent cardinalities. The following remark, however, establishes that in any realized

type game of a conflict game the action sets of the opposing types necessarily have to

have the same cardinality. Given this finding, it is of course w.l.o.g. to assume that,

in a conflict game, types of both players have the same action set to choose from.

Remark 2.2. Consider a complete information normal form game

Γ =
(

{B, R}, ∆(AB) × ∆(AR), (uB, uR)
)

such that for the finite action sets it is

|AB| 6= |AR|. If this game has a completely mixed Nash equilibrium, then this Nash

equilibrium is not unique. In fact, this game then even has a continuum of Nash

equilibria.

Proof of Remark 2.2. First, we introduce some notation. Let AB := {aB
1 , ..., aB

mB }
and AR := {aR

1 , ..., aR
mR} and assume w.l.o.g. that mB < mR. Let

UB := (bj
i )i=1,...,mB ;j=1,...,mR with bj

i := uB(aB
i , aR

j ) denote the payoff matrix of player

B and let bj := (bj
1, ..., bj

mB ). Using this notation, it is rank UB ≤ mB < mR,

meaning that the columns of UB are not linearly independent, that is there exists

(λ1, ..., λmR) ∈ R
mR\{0} such that

mR
∑

j=1

λjb
j = 0. (2.19)

By assumption the game Γ has a completely mixed Nash equilibrium (αB, αR) ∈
∆(AB) × ∆(AR). Then we can distinguish two cases: Either (λ1, ..., λmR) can be

scaled such that λj ≤ αR
j for all j ∈ {1, ..., mR} and λk = αR

k , λl < αR
l for some

k, l ∈ {1, ..., mR} or otherwise it must be (λ1, ..., λmR) = γ̄αR for some γ̄ ∈ R\{0}.

Consider the first of the two cases and let (λ1, ..., λmR) be scaled as mentioned.

Since the Nash equilibrium is assumed to be completely mixed, player B must be
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indifferent between all of her actions, meaning that there exists γ ∈ R such that
∑mR

j=1 αR
j bj = γ(1, ..., 1). Taking into account (2.19), we also have

mR
∑

j=1

αR
j bj =

mR
∑

j=1

(αR
j − λj)b

j.

We define γ̃ :=
∑mR

j=1(α
R
j − λj). Then it is γ̃ > 0 and

mR
∑

j=1

αR
j − λj

γ̃
bj =

γ

γ̃
(1, ..., 1).

Notice that we have
αR

j
−λj

γ̃
≥ 0 and

∑mR

j=1

αR
j

−λj

γ̃
= 1. Moreover, it is easy to see that

(
αR

1 − λ1

γ̃
, ...,

αR
mR − λmR

γ̃

)

6= (αR
1 , ..., αR

mR)

as we have
αR

k
−λk

γ̃
= 0 6= αR

k . Thus, we found another strategy for player R against

which player B is indifferent between all of her actions. Hence, the completely mixed

Nash equilibrium is not unique in this case.

Now we consider the second of the two cases. This case implies that for all

(λ1, ..., λmR) ∈ R
mR\{0} fulfilling equation (2.19) we need to have λj 6= 0 for all

j ∈ {1, ..., mR} since otherwise we would be back in the first case. However, this

means that b1, ..., bmR−1 are linearly independent. As we have mR − 1 ≥ mB, this

implies span
(

(bj)j=1,...,mR−1

)

= R
mB

and it even must be mR − 1 = mB. So there

exists (λ′
1, ..., λ′

mB ) ∈ R
mB \{0} with λ′

j ≤ αR
j for all j ∈ {1, ..., mB} and a scalar

γ′ 6= 0 such that
mB
∑

j=1

λ′
jb

j = γ′(1, ..., 1).

Further, define λ′
mR := 0 and γ̃′ :=

∑mR

j=1(α
R
j − λ′

j). Notice that γ̃′ ≥ αR
mR − λ′

mR =

αR
mR > 0. Hence, taking into account equation (2.19) and recalling the scalar γ̄ ∈

R\{0}, we have

mR
∑

j=1

αR
j − λ′

j

γ̃′
bj =

1

γ̃′

mR
∑

j=1

(λj

γ̄
− λ′

j

)

bj =
1

γ̃′

(

1

γ̄

mR
∑

j=1

λjb
j

︸ ︷︷ ︸

=0

−
mR
∑

j=1

λ′
jb

j

)

= −γ′

γ̃′
(1, ..., 1).

Notice that, similarly to the first case, we have
αR

j
−λ′

j

γ̃′ ≥ 0 and
∑mR

j=1

αR
j

−λ′
j

γ̃′ = 1. Also,



2.C On the Uniqueness of Completely Mixed Nash Equilibria • 55

realize that
(

αR
1 − λ′

1

γ̃′
, ...,

αR
mR − λ′

mR

γ̃′

)

6= (αR
1 , ..., αR

mR).

This is because we either have γ̃′ 6= 1 implying
αR

mR
−λ′

mR

γ̃′ =
αR

mR

γ̃′ 6= αR
mR or γ̃′ = 1 which

means that
αR

j
−λ′

j

γ̃′ = αR
j −λ′

j 6= αR
j for some j ∈ {1, ..., mB} since it is (λ′

1, ..., λ′
mB ) 6= 0.

Consequently, we found again another strategy for player R against which player B

is indifferent between all of her actions.

Finally, notice that in both cases, any convex combination of the alternative

strategy and αR is again a strategy against which player B is indifferent between all

of her actions. Thus, we even proved existence of a continuum of Nash equilibria.
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Chapter 3

Strategic Formation of

Homogeneous Bargaining

Networks

3.1 Introduction

People often engage in bi- and multilateral bargaining: firms bargain with workers’

unions over contracts, firms with other firms over prices or collaborations, politicians

over environmental or trade agreements, or even friends and family members over

household duties or other arrangements. However, in most of the situations that

come to mind not everyone will be able or willing to bargain with anyone else. This

idea can be expressed by means of a network. One’s bargaining power in negotiations

then commonly depends on the number and types of alternative partners as they

present outside options. Agents typically intend to maximize their expected profit

from bargaining, which suggests that beforehand they might want to influence and

optimize their network of potential bargaining partners. This motivates that the

underlying network should not be regarded as being exogenously given but as the

outcome of strategic interaction among agents. However, establishing a connection

to someone else usually costs some time and effort, which should be taken into account

as well. This gives rise to an interesting trade-off between the costs of forming links

and potential benefits from it. This consideration is the topic of this chapter.

We set up and analyze a sequential model of strategic network formation prior to a

Manea (2011) infinite horizon network bargaining game. We consider ex ante homoge-

neous players who in the first stage strategically form undirected, costly links. In this

57
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context, one might think of one-time initiation or communication costs that players

have to bear. In the second stage, we take the resulting network as given and players

sequentially bargain with a neighbor for the division of a mutually generated unit

surplus. According to Manea (2011) all subgame perfect equilibria of the bargaining

game are payoff equivalent. Players are supposed to anticipate these outcomes during

the preceding network formation game and to choose their actions accordingly. We

examine players’ strategic behavior regarding network formation, characterize stable

and efficient network structures, and determine induced bargaining outcomes.

After giving a description of the model including a summary of the underly-

ing Manea (2011) bargaining game and his decisive results, we consider the seminal

concept of pairwise stability established by Jackson and Wolinsky (1996). In the bar-

gaining game, we assume players to be infinitely patient. For all levels of linking costs

we state and prove sufficient conditions for a network to be pairwise stable (Theorem

3.1). While costs are relatively high, the only structures we find to be pairwise stable

are specific unions of separated pairs and isolated players. When costs decrease, odd

circles of increasing size can additionally emerge. At a transition point also lines of

length three can be contained in a pairwise stable network. This result also estab-

lishes existence of pairwise stable networks at each level of linking costs. For each

combination of the above subnetworks we establish precisely for which cost range it

is pairwise stable and for which it is not (Corollary 3.1). Furthermore, we provide

a complete characterization of pairwise stable equitable networks, i.e. of structures

inducing homogeneous payoffs among players, by showing that in such a network

any non-isolated player has to be contained in a separated pair or in an odd circle

(Theorem 3.2). Then we focus on the remaining networks which must induce hetero-

geneous payoffs within a component and establish that any of these can at most be

singularly pairwise stable, that is at most at a single cost level (Theorem 3.3). This

concludes the complete characterization of non-singularly pairwise stable networks,

which is a principal achievement of this chapter (Corollary 3.3). All non-singularly

pairwise stable networks even prove to be pairwise Nash stable (Corollary 3.5).

As a second main result, we deduce that pairwise stability narrows down the diver-

sity of induced bargaining outcomes among players substantially. However, though

players are ex ante homogeneous, they do not have to be completely equal in this

respect (Corollary 3.6). Beyond that, we find that singularly pairwise stable networks

other than the few ones we identify might only occur at linking costs below a certain

threshold (Corollary 3.4). Also, we reveal that networks containing a tree (with more

than three players) or a certain kind of “cut-player” cannot even be singularly pair-
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wise stable (Propositions 3.2 and 3.3). Moreover, we establish that, for sufficiently

high linking costs, the networks being efficient in terms of a utilitarian welfare crite-

rion coincide with the pairwise stable ones. As long as costs are low, however, the

former networks constitute a proper subset of the latter while there also exists an

intermediate cost range which does not even yield such a subset relation (Theorem

3.4 and Corollary 3.7). As a robustness check, we finally relax the assumption that

players are infinitely patient and show that pairwise stability in this framework does

not necessarily imply pairwise stability for the original case and vice versa (Examples

3.1 and 3.2).

For a concrete economic application which is captured by our model and which

might contribute to a better understanding of the framework one can have the fol-

lowing in mind. Consider a number of similar firms beginning operation at the same

time. They can mutually generate an (additional) surplus within bilateral projects

by exploiting synergy potentials. For instance, this possibility might be based on ca-

pacity constraints or cost-saving opportunities. However, the underlying cooperation

network is not existent yet and will therefore be the outcome of strategic interaction

between firms. In charge of that are project managers who receive bonus payments

proportional to their employer’s profit from the project. Here, one-time costs might

arise to prepare each two firms for mutual projects (adjustment of IT, joint training

for workers etc.). We assume that each project manager keeps her job until she fi-

nalizes a joint project successfully by finding an agreement with the corresponding

counterpart and leaves or is promoted afterwards and then gets replaced by a succes-

sor. Thus, the network remains unchanged after it has initially been established by

the first project managers.

To take the suitable framework and convenient results established by Manea

(2011) as a starting point in this context is fairly obvious.37 To my best knowledge,

it is the only work which purely focuses on the impact of explicit network structures

on players’ bargaining power and outcomes in a setting of decentralized bilateral bar-

gaining without ex ante imposing any restrictions to the class of networks considered.

Therefore, there are no distorting effects present in this setting as they might arise

37Thus, the fact that O’Donnell (2011) chooses the same approach and pursues objectives similar
to ours is not very surprising. Note, however, that the work at hand has been set up autonomously
and independently from this (not publicly available) “honours thesis”. Moreover, the two works
differ mainly in three respects. First, the ways we choose to derive a complete characterization of
(non-singularly) pairwise stable networks are distinct in large parts. Second, there are substantial
shortcomings in O’Donnell’s (2011) line of argumentation as we point out in Appendix 3.C. This
goes as far as, based on O’Donnell (2011), our main results can only be considered as conjectures.
And third, our analysis is in some parts more advanced as, for instance, we additionally consider
the case of less than infinitely patient players (see Section 3.5).
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from ex-ante heterogeneity among players and it is more general than buyer-seller sce-

narios which impose bipartite network structures. Moreover, Manea’s (2011) network

bargaining game remains analytically tractable and has some important properties.

For any level of time discount there may exist several subgame perfect equilibria but

he shows that all of these are payoff equivalent. Further, he develops an equally

convenient and sophisticated algorithm determining the limit equilibrium payoffs for

a given network of infinitely patient players. We make extensive use of this algorithm

and contribute to a profound understanding of its features throughout this chapter.

The analysis of bargaining problems has a long tradition in the economic literature

and dates back to the work of Nash (1950a, 1953). A Nash bargaining solution is based

on factors like players’ bargaining power and outside options, whereas their origin is

not part of the theory. This also applies for Rubinstein (1982), who analyzes perfect

equilibrium partitions in a two-player framework of sequential bargaining in discrete

time with an infinite horizon, as well as for Rubinstein and Wolinsky (1985) who set up

a model of bargaining in stationary markets with two populations. The work of Manea

(2011), to which we add a preceding stage of strategic interaction, can be regarded as

an extension or microfoundation of these seminal papers. Here, bargaining power is

endogenized in a natural and well-defined manner as an outcome of the given network

structure and the respective player’s position herein. Further important contributions

to the literature on decentralized bilateral bargaining in exogenously given networks

have been made by Abreu and Manea (2012) and Corominas-Bosch (2004) where the

latter considers the special case of buyer-seller networks.

Second, this chapter contributes to the more recently emerging literature on

strategic network formation which was mainly aroused by the seminal paper of Jack-

son and Wolinsky (1996). Further prominent works which have been carried out since

then, however not in a bargaining framework, are the ones by Bala and Goyal (2000);

Calvó-Armengol (2004); Galeotti et al. (2006); Goyal and Joshi (2003, 2006); Watts

(2001), just to name a few. Besides, some effort has been dedicated to gaining rather

general insights regarding the existence, uniqueness and structure of stable networks.

Hellmann (2013) and Hellmann and Landwehr (2014) are examples for this.38

So far there exist only few papers combining these two fields of research. Calvó-

Armengol (2003) studies a bargaining framework à la Rubinstein (1982) embedded in

a network context and considers stability and efficiency issues. However, the mecha-

38In Appendix 3.B we demonstrate that crucial conditions are not met in our model which implies
that the results of Hellmann (2013) and Hellmann and Landwehr (2014) are in general not applicable
to our framework.
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nism determining bargaining partners is different from Manea (2011) and the network

bargaining game ends after the first agreement has been found. As a consequence,

in Calvó-Armengol’s (2003) model a player’s network position does not affect her

bargaining power as such but only the probability that she is selected as proposer

or responder. This leads to a characterization of pairwise stable networks in which

the players’ neighborhood size is the only relevant feature of the network structure.

Thus, it differs substantially from our results though both works have in common

the assumption that links are costly. In contrast, Manea (2011, Online Appendix)

abstracts from explicit linking costs when approaching the issue of network formation

as an extension of his model. He shows that for zero linking costs a network is pair-

wise stable if and only if it is equitable. Though results differ and get more complex

for positive linking costs, we will see that the work at hand is in line with this find-

ing such that both works complement one another.39 Our additional considerations

regarding efficiency and time discount further contribute to this. Most other papers

studying strategic network formation in a bargaining context focus on buyer-seller

networks, which is as well complementary to our more general approach. Kranton

and Minehart (2001) and Polanski and Vega-Redondo (2013) are examples for this.

Again, the latter does not involve explicit linking costs.

The rest of the chapter is organized as follows. In Section 3.2 we introduce

the model including the decisive results of Manea (2011). The main results are

developed in Section 3.3 which focuses on the structure of stable networks and induced

bargaining outcomes in the case that players are infinitely patient. In Section 3.4 we

examine networks with regard to efficiency. In Section 3.5 we state commonalities and

differences regarding stability if players discount time to some degree. Finally, Section

3.6 concludes. Rather complex and lengthy proofs as well as closer considerations of

certain related papers are presented in the appendix.

3.2 The Model

Let time be discrete and denoted by t = 0, 1, 2, .... For the initial period t = 0

consider a finite set of players N = {1, 2, ..., n}. A connection or (undirected) link

between two players i, j ∈ N , i 6= j, is denoted by {i, j} which we abbreviate for

39In fact, we show that only “skeletons” of equitable networks, that is certain unions of separated
pairs and odd circles survive if costs are positive. However, non-equitable networks such as, for
instance, unions of odd circles and an isolated player can additionally be pairwise stable in our
setting.
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simplicity by ij = ji := {i, j}. A collection of such links is an undirected graph or

network g ⊆ gN := {ij | i, j ∈ N, i 6= j} where gN is called the complete network.

Let Ni(g) := {j ∈ N | ij ∈ g} denote the set of player i’s neighbors in g and let

ηi(g) := |Ni(g)| be its cardinality which is also referred to as the degree of player i.

Furthermore, for a network g, a set C ⊆ N is said to be a component if there

exists a path between any two players in C and it is Nj(g) ∩ C = ∅ for all j /∈ C.40,41

The set of all components of g then gives a partition of the player set N . Moreover,

a subnetwork g′ ⊆ g is said to be component-induced if there exists a component C

of g such that g′ = g|C . In general, for any set K ⊆ N , we denote g|K := {ij ∈
g | i, j ∈ K} and we commonly consider such a subnetwork as being defined on the

player set K instead of N (thus, disregarding isolated players in K∁). Besides, for

two networks g, g′ ⊆ gN let g − g′ := g\g′ (g + g′ := g ∪ g′, respectively) denote the

network obtained by deleting the set of links g′ ∩ g from (adding the set of links g′\g

to) the network g.

In our model, ex ante, i.e. apart from their potentially differing network positions,

players are assumed to be identical.42 These players are then assumed to strategically

form links in period t = 0. The outcome of this network formation game is a network

g. The interpretation of a link ij ∈ g is that players i, j ∈ N are able to mutually

generate a unit surplus. On the contrary, each link causes constant costs of link

formation c > 0 for both players involved. Thus, player i has to bear total costs of

ηi(g)c in t = 0.

We take this as a starting point for an infinite horizon bargaining game à la Manea

(2011). In each period t = 0, 1, 2, ... nature randomly chooses one link ij ∈ g which

means that i and j are matched to bargain for a mutually generated unit surplus.

One of the two players is randomly assigned the role of the proposer while the other

one is selected as responder. Then the proposer makes an offer how to distribute

the unit surplus and the responder has the choice: If she rejects, then both receive a

payoff of zero and stay in the game whereas if she accepts, then both leave with the

shares agreed on. In the latter case both players get replaced one-to-one in the next

40We say that there exists a path between two players i′, i′′ ∈ N in g if there exist players
i1, i2, ..., im̄ ∈ N , m̄ ∈ N, such that i1 = i′, im̄ = i′′ and imim+1 ∈ g for m = 1, 2, ..., m̄ − 1.

41One can alternatively define the component Ci(g) ⊆ N of player i ∈ N in g as the minimal set
of players such that both i ∈ Ci(g) and Ni′(g) ⊆ Ci(g) for all i′ ∈ Ci(g).

42In the literature, this is sometimes referred to as a “homogeneous society” (see e.g. Hellmann
and Landwehr, 2014).
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period such that the initially formed network remains unchanged.43,44 This implies

that each of the (initial) players 1, 2, ..., n will bargain successfully one time at most.

A player’s strategy in this setting pins down the offer she makes as proposer and the

answer she gives as responder after each possible history of the game. Based on this,

a player’s payoff is then specified as her discounted expected agreement gains. A

strategy profile is said to be a “subgame perfect equilibrium” of the bargaining game

if it induces Nash equilibria in subgames following every history (see Manea, 2011).

Players are assumed to discount time by a uniform discount factor δ ∈ (0, 1).45

The key result from Manea is that all subgame perfect equilibria are payoff equiv-

alent and that each player’s equilibrium payoff exclusively depends on her network

position and the discount factor δ (see Manea, 2011, Theorem 1). Moreover, the equi-

librium payoff vector which we denote as v∗δ(g) = (v∗δ
i (g))i∈N is the unique solution

to the equation system

vi =



1 −
∑

j∈Ni(g)

1

2d#(g)



 δvi +
∑

j∈Ni(g)

1

2d#(g)
max{1 − δvj, δvi}, i ∈ N, (3.1)

where d#(g) denotes the total number of links in the network g. If we have δ
(

v∗δ
i (g)+

v∗δ
j (g)

)

< 1 for ij ∈ g, then this means that player i and j find an agreement when

their mutual link is selected whereas δ
(

v∗δ
i (g) + v∗δ

j (g)
)

> 1 means that each of them

prefers to wait for a potentially better deal with a weaker partner.46 This gives

rise to the definition of the so called equilibrium agreement network g∗δ :=
{

ij ∈
g | δ

(

v∗δ
i (g) + v∗δ

j (g)
)

≤ 1
}

.

We assume that players 1, 2, ..., n know the whole structure of the network g.

They are therefore able to anticipate equilibrium payoffs and are assumed to play

a subgame perfect equilibrium strategy profile. Given a network g and a discount

factor δ, we for simplicity refer to v∗δ
i (g) as player i’s payoff. Throughout this chapter

it is important to distinguish this precisely from a player’s profit which is given by

43This replacement is primarily due to technical reasons. The implication that the network struc-
ture does not change over time makes the model analytically tractable. However, recalling the
motivating example on bilateral project cooperation from Section 3.1 gives a hint that there are
indeed situations in reality which are roughly captured by that.

44This is why Manea carefully distinguishes between network positions and (potentially) different
players being in one and the same position in different periods. However, as we examine solely the
stage of network formation at time t = 0 here, we can neglect this distinction.

45One might argue that players should be allowed to form (or delete) links in periods t = 1, 2, ...

as well. However, as the game has an infinite horizon, in any period any player faces just the same
situation as (the player who was in her network position) in the previous period. Therefore, there
do not arise additional or altered incentives regarding link formation over time.

46In the case δ
(
v∗δ

i (g) + v∗δ
j (g)

)
= 1 both players are indifferent.
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her payoff minus linking costs. Thus, given g and δ the profit of player i ∈ N is

u∗δ
i (g) := v∗δ

i (g) − ηi(g)c.

Note that a non-isolated player’s profit is therefore always strictly smaller than her

payoff as we assume linking costs to be positive.

For our main results we focus on the limit case of δ → 1 which means that players

are infinitely patient. For this case Manea (2011, Theorem 2) finds that for all δ

being greater than some bound the corresponding equilibrium agreement networks

are equal. This network g∗ is then defined as the limit equilibrium agreement network.

Moreover, we again take from Manea (2011, Theorem 2) that the so called limit

equilibrium payoff vector v∗(g) = limδ→1 v∗δ(g) is well-defined, i.e. it always exists.

Beyond that, Manea (2011, Proposition 2) shows that the sum of the payoffs of

two players being linked cannot be smaller than one, i.e. v∗
i (g) + v∗

j (g) ≥ 1 for all

ij ∈ g, and they must sum up to one if the link is contained in the limit equilibrium

agreement network, i.e. we have v∗
i (g) + v∗

j (g) = 1 if ij ∈ g∗. We utilize this during

our analysis as well.

Manea develops a smart algorithm to determine the limit equilibrium payoff vector

v∗(g) and we make heavily use of this computation method. To prepare for the

implementation of the algorithm we need to introduce some additional notation. For

any set of players M ⊆ N and any network g let Lg(M) := {j ∈ N | ij ∈ g, i ∈ M}
be the corresponding partner set in g, that is the set of players having a link in

g to a player in M .47 Further, a set M ⊆ N is called g-independent if we have

g|M := {ij ∈ g | i, j ∈ M} = ∅, i.e. if no two players contained in M are linked in g.

Moreover, let I(g) ⊆ P(N) denote the set of all non-empty g-independent subsets of

N . Then the algorithm determining the payoff vector v∗(g) is the following.

Definition 3.1 (Manea (2011)). For a given network g on the player set N , the

algorithm A(g) provides a sequence (rs, xs, Ms, Ls, Ns, gs)s=1,...,s̄ which is defined re-

cursively as follows. Let N1 := N and g1 := g. For s ≥ 1, if Ns = ∅ then stop and

set s̄ = s. Otherwise, let

rs = min
M⊆Ns,M∈I(g)

|Lgs(M)|
|M | . (3.2)

If rs ≥ 1 then stop and set s̄ = s. Otherwise, set xs = rs

1+rs
. Let Ms be the union of

all minimizers M in (3.2). Denote Ls := Lgs(Ms). Let Ns+1 := Ns\(Ms ∪ Ls) and

47Although it does not make a big difference, do not confuse with the notation of Manea who
refers to Lg∗

(M) instead.
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gs+1 := g|Ns+1.

Given such a sequence (rs, xs, Ms, Ls, Ns, gs)s=1,...,s̄ being the outcome of the de-

scribed algorithm A(g), the limit equilibrium payoff vector for this network can be

determined by applying a simple rule. Note that this rather sophisticated result of

Manea (2011, Theorem 4) is absolutely fundamental for our work.

Payoff Computation (Manea (2011)). Let (rs, xs, Ms, Ls, Ns, gs)s=1,...,s̄ be the out-

come of A(g) for a given network g. Then the limit equilibrium payoffs are given

by

v∗
i (g) = xs for all i ∈ Ms, s < s̄,

v∗
j (g) = 1 − xs for all j ∈ Ls, s < s̄,

v∗
k(g) = 1

2
for all k ∈ Ns̄.

(3.3)

Let us figure out what the algorithm A(g) in combination with the payoff calcu-

lation rule actually does. Starting with the network g and player set N , at each step

s it identifies the so called minimal shortage ratio rs among the remaining players Ns

in the network gs = g|Ns
. There is a largest g-independent set Ms which minimizes

this shortage ratio such that

rs =
|Ls|
|Ms|

,

where Ls is the partner set of Ms. The limit equilibrium payoff of the players in

Ms is then given by xs = rs

1+rs
= |Ls|

|Ms|+|Ls|
< 1

2
while their partners in Ls receive

1 − xs = |Ms|
|Ms|+|Ls|

> 1
2
. These players and their links are then deleted from the

network and the algorithm moves forward to the next step. It stops when there are

either no more players left or if the minimal shortage ratio is greater than or equal

to one. In the latter case the limit equilibrium payoff of all remaining players is 1
2
.

Manea (2011, Proposition 3) shows that the sequence of minimal shortage ratios (rs)s

and therefore also (xs)s are strictly increasing.

In the framework with δ → 1 the described algorithm A(g) together with the

previous considerations then determines the profit u∗
i (g) = v∗

i (g) − ηi(g)c of each

player i ∈ N . Broadly speaking, the algorithm quantifies the main forces that,

in terms of payoffs, each player benefits from being linked to other players while

preferring neighbors who are sparsely connected or rather who are only connected to

other players who are in stronger positions than oneself. It is important to note that

the profile of payoffs and therefore also the profile of profits u∗ = (u∗
i )i∈N is component-

decomposable, that is u∗
i (g) = u∗

i (g|Ci(g)) for all players i ∈ N and networks g where

Ci(g) ⊆ N is the component of player i in g. Thus, a player’s profit is not affected by



66 • 3 Strategic Formation of Homogeneous Bargaining Networks

the existence or structure of subnetworks induced by components she is not contained

in.

Beyond that, note that Manea develops the algorithm A(g) under the assumption

that there are no isolated players in the underlying network g. However, it is easy to

see that equations (3.3) are still fulfilled if one relaxes this restriction. It is clear that

isolated players have a limit equilibrium payoff of zero since they have no bargaining

partner they could generate a unit surplus with. At the same time the algorithm

A(g) provides r1 = 0 such that x1 = 0. In this case, M1 is the set of all isolated

players in the network and we have L1 = ∅. Then according to (3.3) and as required,

all players in M1 are assigned a limit equilibrium payoff of x1 = 0.

Throughout the next section we assume that each player can influence the network

structure by altering own links in t = 0, i.e. before the bargaining game starts. This

means that the network is no longer exogenously given as in the work of Manea but

the outcome of strategic interaction between players. This gives rise to questions

regarding the stability of networks and leads to the main results of this chapter. Our

analysis is mainly based on the seminal concept of pairwise stability which has been

introduced by Jackson and Wolinsky (1996).

Definition 3.2 (Pairwise Stability, Jackson and Wolinsky (1996)). Consider the

player set N and a profile of network utility or profit functions (ui)i∈N . Then a

network g is said to be pairwise stable if both

(i) for all ij ∈ g: ui(g) ≥ ui(g − ij) and

(ii) for all ij /∈ g: if ui(g + ij) > ui(g), then uj(g + ij) < uj(g).

So, according to this definition, a network is pairwise stable if no player can

improve by deleting a single link and also no two players can both individually benefit

from adding a mutual link. The analysis of our model demands to distinguish between

networks being pairwise stable only at a single cost level and those fulfilling the

conditions for two or more values of linking costs. For this purpose we introduce the

following terminology.

Definition 3.3 (Singular and Non-Singular Pairwise Stability). In the considered

framework with network profit function u = u∗ and linking costs c > 0, a network g

is called

• singularly pairwise stable if g is pairwise stable at cost level c > 0 but nowhere

else,
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• non-singularly pairwise stable if there exists another cost level c′ > 0, c′ 6= c,

such that g is pairwise stable at c and c′.

For a singularly pairwise stable network it is obviously very rare (even a singu-

larity) to encounter precisely the parametrization where it is pairwise stable. For

instance, this notion is therefore not robust with respect to any slight change of the

cost level. Thus, we are predominantly interested in networks being non-singularly

pairwise stable. In what follows, we therefore focus on this latter subclass of pair-

wise stable networks. Note that, in general, networks being pairwise stable for a

continuum of cost levels constitute a subset of this subclass.48 As an outcome of our

analysis, however, it turns out that, in our model, all non-singularly pairwise stable

networks are even pairwise stable on a cost interval of positive length.

Observe that the notions of stability considered so far focus exclusively on one

link deviations. One might argue that in many contexts at least severing links does

not cost any effort as it does not require coordination between players. Thus, one

should allow for the possibility of multiple link deletion. This gives rise to the concept

of pairwise Nash stability where in Definition 3.2 condition (i) is simply replaced by

(i)’ for all i ∈ N , li ⊆ {ij ∈ g | j ∈ N}: ui(g) ≥ ui(g − li)

(see e.g. Bloch and Jackson, 2006). As opposed to stability issues, in Section 3.4 we

focus on networks being efficient, that is on structures which yield maximal utilitarian

welfare.

Definition 3.4 (Utilitarian Welfare and Efficiency, Jackson and Wolinsky (1996)).

Consider the player set N and a profile of network utility or profit functions (ui)i∈N .

• The utilitarian welfare yielded by a network g is defined as

U(g) :=
∑

i∈N

ui(g).

• A network g is said to be efficient if for all g′ ⊆ gN we have

U(g) ≥ U(g′).

So we say that a network is efficient if the unweighted sum of individual profits

48One might consider to call a network “generically pairwise stable” if it is pairwise stable for a
continuum of cost levels. See e.g. Baetz (2015) who refers to a “generic equilibrium”.
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cannot be further increased by altering links in any way.49 Based on these fundamen-

tal concepts and considerations we are now able to establish our main results in the

following Section 3.3 as well as, subsequently, further interesting findings.

3.3 Characterization of Stable Networks

In the main part of this section we derive a complete characterization of non-singularly

pairwise stable networks for the case that players are infinitely patient. Further,

we examine the implications for possible bargaining outcomes resulting thereof (see

Subsection 3.3.1) as well as the possibility of networks to be singularly pairwise stable

(see Subsection 3.3.2).

We consider period t = 0 and suppose that players, who anticipate the infinite

horizon network bargaining game they will be involved in, individually intend to

maximize their expected profits. Given the framework with δ → 1, we aim for a

characterization of stable network structures in the sense that no player has incentives

to add or delete links. As a first step, we identify pairwise stable structures for

all levels of linking costs c > 0. Afterwards, we gradually rule out the possibility

to be pairwise stable for a broad range of networks until we arrive at a complete

characterization of non-singularly pairwise stable networks. It turns out that these

structures are even pairwise Nash stable.

Note first that there exist some general results about existence, uniqueness and

the structure of pairwise stable networks in the literature which we should take into

account. One might suppose that the works of Hellmann (2013) and Hellmann and

Landwehr (2014), which are perhaps closest within this strand of literature, could

simplify the analysis of our model. In Appendix 3.B, however, we demonstrate that

crucial conditions are not satisfied here which implies that their results are in general

not applicable.

As already mentioned, we first focus on one link deviations which is captured by

the notion of pairwise stability (see Definition 3.2). To get a first impression of the

problem let us have a look at the situation for three players, i.e. for N = {1, 2, 3}.

It turns out that this case already covers many important aspects of the network

formation game. Figure 3.1 illustrates the four types of networks which might ap-

pear including the induced profits u∗
i for each player i ∈ N . To comprehend these

profits, consider the algorithm introduced in Definition 3.1 and the subsequent payoff

49This definition also goes back to Jackson and Wolinsky (1996) who call such a network “strongly
efficient”. However, in the literature this property is usually simply referred to as efficiency (see e.g.
Jackson, 2008b, p. 157).



3.3 Characterization of Stable Networks • 69

computation rule. Besides, note that all other possible networks can be derived by

permuting players which would not provide additional insights as players are assumed

to be ex ante homogeneous.

0

0

00 1
2

− c

1
2

− c

1
2

− 2c 1
2

− 2c

1
2

− 2c

1
3

− c

1
3

− c

2
3

− 2c

gI gII gIII gIV

Figure 3.1: A sketch of the four network structures which can arise in the case n = 3
with induced profits

Let us consider these networks in detail. We see immediately that the network

gI is pairwise stable if and only if the linking costs c are greater than or equal to
1
2
. Otherwise any two players could increase their profit from zero to 1

2
− c > 0 by

creating a mutual link. However, for c = 1
2

also no player wants to delete this link and

indeed, the cost range c ∈ (1
6
, 1

2
] is the one for which gII is pairwise stable. Here, link

deletion is obviously not beneficial and if one of the two connected players creates a

link to the third player, then she would end up with a profit of 2
3

−2c which is strictly

smaller than 1
2

− c for this cost range. These latter two terms are equal for c = 1
6

but

the third player would improve from zero to 1
6

in this case. Therefore, at this or an

even smaller cost level, gII cannot be pairwise stable. But so is gIII for c = 1
6
. This

is because here no player has incentives to delete a link and the two players who are

not connected are indifferent between creating a mutual link and not creating it as

for this cost level we have 1
3

− c = 1
6

= 1
2

− 2c. However, if linking costs are even

smaller, then both would profit from this link. Thus, gIII is pairwise stable if and

only if c = 1
6
. Finally, the network gIV is pairwise stable for c ∈ (0, 1

6
] but obviously

not at higher cost levels.

It turns out that the observed mechanisms being crucial in the three-player case

hold similarly also in general. Our first theorem reveals sufficient conditions for

networks to be pairwise stable. More precisely, it identifies, for all cost levels, concrete

network structures being pairwise stable.

Theorem 3.1 (Sufficient Conditions for Networks to Be Pairwise Stable). In the

framework as introduced in Section 3.2 with δ → 1 and player set N the following

holds:
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(i) The empty network is pairwise stable if c ≥ 1
2
.

(ii) A network which is a union of separated pairs and at most one isolated player

is pairwise stable if c ∈ (1
6
, 1

2
].50 Additionally, if c = 1

2
, then several isolated

players can coexist in a pairwise stable network.

(iii) A network which is a union of odd circles with at most 1
2c

players and either

separated pairs or at most one isolated player is pairwise stable if c ∈ (0, 1
6
].51

Additionally, if c = 1
6

and given that there is no isolated player, then there can

also exist lines of length three in a pairwise stable network.52

The formal proof of this theorem is, like all other more complex or lengthy proofs,

provided in Appendix 3.A. It is important to note that, when considering the above

mentioned unions of subnetworks, we do not mean that the respective network neces-

sarily has to be composed of all of the stated subnetworks to be pairwise stable. For

instance, if we consider costs c ∈ (0, 1
6
], then a network consisting only of separated

pairs or only of (some of the permissible) odd circles is pairwise stable as well. Fur-

thermore, note that all of these subnetworks are component-induced which implies

that unions are disjoint with respect to contained links and players.

A byproduct of Theorem 3.1 is that it guarantees existence of a pairwise stable

network at each level of linking costs. Furthermore, we have given a characterization

of at least some pairwise stable networks for each level of costs. However, it is not

clear at all that the types of networks mentioned in the theorem are in each case

the only pairwise stable ones. Anyway, we can already state some consequences from

our observations in the three-player case considered in Figure 3.1 and the proof of

Theorem 3.1. This is done in the following corollary.

Corollary 3.1. In the model with δ → 1 a network cannot be pairwise stable if it

contains

(i) more than one isolated player while c < 1
2
,

(ii) a separated pair while c > 1
2
,

(iii) a line of length three while c 6= 1
6
,

50A separated pair denotes a subnetwork induced by a two-player component.
51A circle denotes a component-induced subnetwork which is regular of degree two. A circle with

m players or a m-player circle is induced by a component with cardinality m ≥ 3 and it is called
odd if this cardinality is an odd number.

52A line of length m ≥ 3 denotes a subnetwork induced by a m-player component which can be
transformed to a m-player circle by adding one link.
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(iv) an odd circle with more than 1
2c

members,53

(v) an isolated player combined with a separated pair or a line of length three while

c ≤ 1
6
.

Statements (i)–(iv) as well as the first part of Statement (v) of Corollary 3.1 follow

immediately from what we learned in the three-player case and the proof of Theorem

3.1. To see that an isolated player and a line of length three cannot coexist in a

network being pairwise stable for some c ≤ 1
6

is, however, also quite obvious. An

isolated player’s profit is always zero while each of the two players in a line of length

three having one link receives 1
3

− c as we know from the three-player case. If one

of these players links to an isolated player, then the algorithm A(·) yields that all

players in the new component receive a payoff of 1
2
. Thus, it is beneficial for both

players to build this mutual link as for c ≤ 1
6

we have 1
2
−2c ≥ 1

3
−c and 1

2
−c > 0. One

should perhaps mention that according to (iii) it is clear anyway that we cannot have

a line of length three in a pairwise stable network if c < 1
6
. So the above additional

consideration is actually only relevant for c = 1
6
.

The results we establish in the further course of this section together with the

above corollary reveal that the conditions stated in Theorem 3.1 are not only sufficient

but also necessary for a network to be non-singularly pairwise stable. Note however

that a network which is composed of several isolated players and at least one separated

pair is only singularly pairwise stable (at c = 1
2
, see Theorem 3.1(ii)). Similarly,

networks containing a line of length three can at most be singularly pairwise stable

(at c = 1
6
, see Theorem 3.1(iii)).

In general, it is clear that a network can only be pairwise stable if any link is

profitable for both players involved or linking costs c > 0 are at least covered by

the additional payoff. Therefore, the intuition says that pairwise stable networks

cannot have so called disagreement links, that is links which are not contained in the

corresponding limit equilibrium agreement network. One might argue that such a link

leads to higher costs for both players connected through it whereas it seems to be

irrelevant regarding payoffs. If it is selected by nature at some point in time, the two

players will not find an agreement in the network bargaining game. So why should

they connect? From another perspective, however, things seem to be a bit more

complicated. With regard to the mechanism of the algorithm A(g) which determines

the payoff of each player in a given network, a disagreement link could have a rather

global effect. It might be conceivable that deleting such a link can change the whole

53In particular, this means that there can be no odd circles at all in pairwise stable networks as
long as c > 1

6 .
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payoff structure induced by the network, which then might also affect the two edge

players. For instance, the presence of a link, though giving rise to a disagreement,

might prevent one of the players it connects and who receives a payoff of at least 1
2

from being deleted during the algorithm as part of a g-independent set, which would

induce a lower payoff for this player. However, the following proposition establishes

that our first intuition is indeed correct.

Proposition 3.1 (Disagreement Links). Consider the framework with δ → 1. If a

network g is pairwise stable for some cost level c > 0, then we must have that the

network itself and the corresponding limit equilibrium agreement network coincide,

i.e. g = g∗, meaning that g does not contain disagreement links. In particular, this

implies that we have v∗
i (g) + v∗

j (g) = 1 for all ij ∈ g.

This is a valuable insight which we repeatedly make use of in what follows. The

proof of the proposition can be found in the appendix. Basically, we adapt the proof

of Manea (2011, Theorem 4) in such a way as to show that for any pairwise stable

network g and any disagreement link ij ∈ g it would have to be v∗
k(g) = v∗

k(g − ij)

for all k ∈ N . Thus, players i and j would obviously want to delete their mutual link

which contradicts pairwise stability.

We now first consider networks inducing a homogeneous payoff structure. In line

with Manea (2011) we call a network equitable if every player receives a payoff of
1
2
. For a given network g with player set N we define the subset Ñ(g) := {i ∈

N | v∗
i (g) = 1

2
}. We utilize this notation in the following theorem. In combination

with Proposition 3.1, it reveals that a network can only be pairwise stable if any

player receiving a payoff of 1
2

is contained in a component which either induces a

separated pair or an odd circle.

Theorem 3.2 (Equitability and Pairwise Stability). Consider the model with δ → 1.

If a network g is pairwise stable for some cost level c > 0, then g|Ñ(g) must be a union

of separated pairs and odd circles.54

The proof, which is again given in Appendix 3.A, is by contradiction. The idea is

to assume that g is pairwise stable but g|Ñ(g) is not a union of separated pairs and odd

circles. Note that by Proposition 3.1 a link from a player in Ñ(g) to a player outside

this set cannot exist which implies that we have v∗
i (g) = v∗

i (g|Ñ(g)) for all i ∈ Ñ(g)

as payoffs are component-decomposable. Further, we make use of both directions of

Manea (2011, Theorem 5) who establishes that a network is equitable if and only if

54As usual, g|Ñ(g) here is considered as being defined on the player set Ñ(g) instead of N .
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it has a so called “edge cover” g′ composed of separated pairs and odd circles. A

network g′ is said to be an edge cover of g|Ñ(g) if it fulfills g′ ⊆ g|Ñ(g) and no player

in Ñ(g) is isolated in g′. This implies that any player in Ñ(g) has an incentive to

delete each of her links not contained in g′.

Though statements differ, notice that Theorem 3.2 is in line with Manea (2011,

Theorem 1(ii) of the Online Appendix). The latter establishes that for zero linking

costs a network is pairwise stable if and only if it is equitable. Of course, in this

case no player can gain anything from deleting redundant links from an equitable

network. This then gives rise to a larger class of pairwise stable (equitable) networks.

For instance, any even circle or line of even length is equitable and therefore pair-

wise stable as long as there are no linking costs whereas Theorem 3.2 rules out this

possibility for c > 0. On the contrary, as we have seen in Figure 3.1 and Theorem

3.1, for positive linking costs there additionally exist non-equitable structures such

as networks composed of an isolated player combined with separated pairs or odd

circles which can be pairwise stable. Another example for this is the line of length

three though such a component-induced subnetwork can only occur in a singularly

pairwise stable network. In what follows, this kind of singularity is central to our

investigation.

Summing up our results so far, for all levels of positive linking costs, we achieved

a complete characterization of networks which are pairwise stable and induce homo-

geneous payoffs within each of its components. In these networks, all payoffs must be

equal to either 1
2

or zero by Proposition 3.1. According to Theorem 3.1, Corollary 3.1

and Theorem 3.2 certain unions of separated pairs, odd circles and isolated players

constitute this class of networks.

Thus, it remains to consider structures which induce heterogeneous payoffs within

a component. Most of the rest of the section is devoted to the examination of such

networks and the question whether and in which cases they can potentially be pairwise

stable. To begin with, let us make sure to be aware of the following property of

pairwise stable non-equitable networks. Taking into account the payoff computation

rule it is an immediate consequence of Proposition 3.1.

Corollary 3.2. Consider the framework with δ → 1. Let g 6= ∅ be a non-equitable

network having only one component and assume that it is pairwise stable for some

cost level c > 0. Then there exists a unique partition M ∪̇ L = N with |M | > |L| and
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g|M = g|L = ∅, meaning that g is bipartite.55 Payoffs are then given by

v∗
i (g) = x for all i ∈ M and

v∗
j (g) = 1 − x for all j ∈ L,

where x = |L|
|M |+|L|

.

Note here that according to Manea (2011, Proposition 3) the sequence of minimal

shortage ratios provided by the algorithm in Definition 3.1 is strictly increasing for

any network. Thus, Corollary 3.2 implies that for any non-equitable pairwise stable

network g consisting of only one component the algorithm A(g) has to stop after

removing all players during the first step. This then leads to the heterogeneous

payoff distribution with two different payoffs, one below and one above 1
2
.

Based on Corollary 3.2 the following theorem concludes the complete characteri-

zation of non-singularly pairwise stable networks. It establishes that any network in

which players belonging to one component receive different payoffs can at most be

singularly pairwise stable.

Theorem 3.3 (Payoff Heterogeneity and Pairwise Stability). Consider the framework

with δ → 1. If a network is pairwise stable for some cost level c > 0 and there is a

component in which players receive heterogeneous payoffs, then in any such component

there must occur exactly two different payoffs x ∈ (0, 1
2
) and 1 − x ∈ (1

2
, 1) with

x + c =
1

2
. (3.4)

The proof rests on two lemmas which are of some independent interest. We shall

now state these lemmas, one after the other, and then show how they combine to

establish the theorem.

We first show that if any two players, whose payoffs in a pairwise stable network

are strictly smaller than 1
2
, link to each other, then both receive a payoff of 1

2
in the

resulting network.

Lemma 3.1. In the framework with δ → 1 consider a pairwise stable network g

for which the algorithm A(g) provides (r1, x1, M1, L1, N1, g1), i.e. s̄ = 1, such that

r1 ∈ (0, 1). Then for all i, j ∈ M1 it is

v∗
i (g + ij) = v∗

j (g + ij) =
1

2
.

55If we write M ∪̇ L, this simply denotes the union of two sets M and L being disjoint. We use
this notation whenever disjointness is of importance.
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Further, if the player set N = {1, ..., n} is extended by a player n+1 while the network

g remains unchanged, it similarly is v∗
i (g + i(n + 1)) = v∗

n+1(g + i(n + 1)) = 1
2
.

The second lemma, in contrast, considers link deletion and players who receive a

payoff being strictly greater than 1
2

in a pairwise stable network. It establishes that

one link deletion cannot effect these players’ payoffs to fall below 1
2
.

Lemma 3.2. In the framework with δ → 1 consider a pairwise stable network g

for which the algorithm A(g) provides (r1, x1, M1, L1, N1, g1), i.e. s̄ = 1, such that

r1 ∈ (0, 1). Then for all j ∈ L1, i ∈ M1 and kl ∈ g it is

v∗
j (g − kl) ≥ 1

2
≥ v∗

i (g − kl).

The proofs of these lemmas are somewhat lengthy and as usual provided in the

appendix. In both cases we show that if the respective statement were not true,

then this would imply that the player set is infinite. To arrive at this contradiction

we make use of an additional, rather technical lemma which we also provide in the

appendix (see Lemma 3.3). Based on these lemmas, the proof of the theorem is

straightforward.

Proof of Theorem 3.3. Let g be a pairwise stable network inducing heterogeneous

payoffs within a component C ⊆ N . Let g′ := g|C . According to Corollary 3.2, the

algorithm A(g′) (with N1 = C) has to stop after the first step, i.e. s̄′ = 1.56 Let

(r′
1, x, M ′

1, L′
1, N ′

1, g′
1) be the outcome of A(g′) and i ∈ M ′

1, j ∈ L′
1. Then any player

in C must either receive a payoff of x =
|L′

1|

|M ′
1|+|L′

1|
∈ (0, 1

2
) or 1 − x =

|M ′
1|

|M ′
1|+|L′

1|
∈ (1

2
, 1).

Then Lemma 3.1 provides the stability condition

x − ηi(g
′)c ≥ 1

2
− (ηi(g

′) + 1)c ⇔ x + c ≥ 1

2
.

Similarly, according to Lemma 3.2 we must have

(1 − x) − ηj(g
′)c ≥ 1

2
− (ηj(g

′) − 1)c ⇔ x + c ≤ 1

2
.

So payoffs must be x = 1
2

− c and 1 − x = 1
2

+ c. Obviously, this has to hold for all

components of g in which players receive heterogeneous payoffs.

Notice by considering the limit case c → 0 that Theorem 3.3 is in line with Manea’s

(2011, Online Appendix) result that for zero linking costs any pairwise stable network

56Disregarding isolated players here by considering the restricted player set is w.l.o.g. as the profile
of payoffs respectively profits is component-decomposable.
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must be equitable. As an immediate consequence of Theorem 3.3 and the previous

findings we arrive at the main result of this chapter which we write down as a corollary.

Corollary 3.3 (Complete Characterization). In the framework with δ → 1 the class

of non-singularly pairwise stable networks is completely characterized by Theorem

3.1 for each level of linking costs c > 0.57 Thus, specific unions of isolated players,

separated pairs and odd circles constitute this class.

To see this, recall first that according to Theorem 3.2 any network g not mentioned

in Theorem 3.1 can only be pairwise stable if it induces heterogeneous payoffs within

at least one component. Each player contained in such a component must either

receive a payoff of x = 1
2

− c or 1 − x = 1
2

+ c by Theorem 3.3.58 Be aware that these

equations do not represent calculation rules determining payoffs in g but necessary

conditions for a network to (possibly) be pairwise stable. Recall that x is in fact

determined by the algorithm A(g), meaning that it solely depends on the structure

of g and that c > 0 is an independent parameter of the model. Therefore, such a

network g can only be pairwise stable at the single cost level c = 1
2

− x. Together

with Corollary 3.1 this establishes Corollary 3.3.

Besides, given this cost level, it is of course not at all clear that a network in which

each player either receives a payoff of x ∈ (0, 1
2
) or 1 − x is actually pairwise stable.

However, even if this is the case, i.e. if such a network is singularly pairwise stable,

then any two players with a payoff of x are indifferent between leaving the network

unchanged and adding a mutual link (see Lemma 3.1). Also, any player receiving

a payoff of 1 − x must be indifferent between keeping all of her links and deleting

any of them (see Lemma 3.2). In this sense, the case that a network which induces

heterogeneous payoffs within a component is pairwise stable and does indeed form

is really special and insofar a singularity. We are able, however, to specify one such

network (and variations respectively generalizations of it as a component-induced

subnetwork), namely the line of length three with payoffs x = 1
3

and 1 − x = 2
3

which

is pairwise stable if and only if c = 1
6
.59 As opposed to this, we even rule out the

possibility to be singularly pairwise stable for a broad range of network structures in

the further course of this section (see Subsection 3.3.2).

A first step in this direction can be stated as a further corollary to our results so

far, in particular to Theorem 3.3.

57Of course, singularly pairwise stable networks mentioned in Theorem 3.1 are to be ignored here.
58By the way, recalling Corollary 3.2, the induced subnetwork must be bipartite.
59In Section 3.5, we additionally reveal that the stability of this particular network is not robust

in another respect either.
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Corollary 3.4. In the framework with δ → 1 a network cannot be pairwise stable

(i) at any cost level c > 1
4

if it is not mentioned in Theorem 3.1,

(ii) at any cost level c > 0 if it has a component which induces a bipartite subnetwork

with m ∈ N players on one side and less than m
3

on the other.

Let us comprehend this. According to Corollary 3.3 any network not mentioned

in Theorem 3.1 can at most be singularly pairwise stable. Moreover, there must be a

player i ∈ N who receives a payoff of x = 1
2

− c. This player can save costs of c when

deleting a link while falling back to a payoff of zero in the worst case. This leads to

the stability condition

x − ηi(g)c ≥ 0 − (ηi(g) − 1)c ⇔ x ≥ c ⇔ 1

2
− c ≥ c ⇔ c ≤ 1

4
.

Beyond that, note that a component-induced subnetwork g as mentioned in Part (ii)

can only be contained in a pairwise stable network if the algorithm A(g) stops after

the first step.60 Let (r1, x, M1, L1, N1, g1) denote its outcome. By assumption we

obviously have |M1| = m and |L1| < m
3

but on the contrary we get

1

4
≥ c =

1

2
− x =

1

2
− |L1|

|M1| + |L1|
=

1

2

|M1| − |L1|
|M1| + |L1|

⇔ 3|L1| ≥ |M1|.

Arriving at a contradiction this gives Part (ii). Recall that, with regard to networks

inducing heterogeneous payoffs within a component, the assumption of bipartiteness

is not an additional restriction here according to Corollary 3.2. However, the main

insight we gain from Corollary 3.4 is that Theorem 3.1 does not solely give a com-

plete characterization of non-singularly pairwise stable networks for all c > 0 (recall

Corollary 3.3) but also a complete characterization of pairwise stable networks for all

c > 1
4
.

So far we considered pure one link deviations and the concept of pairwise stability.

To conclude the main part of this section, we now relax this assumption to some

extent and allow for multiple link deletion as it is captured by the notion of pairwise

Nash stability (see Section 3.2). It is clear that every pairwise Nash stable network

is also pairwise stable whereas the reverse is in general not true. This gives rise to

the question whether in our model there exist pairwise stable networks which are not

pairwise Nash stable. However, it is quite obvious that, at least for networks being

non-singularly pairwise stable, this is not the case.

60See again Footnote 56.
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Corollary 3.5 (Pairwise Nash Stability). In the framework with δ → 1 consider a

non-singularly pairwise stable network g. Then g is pairwise Nash stable at each cost

level for which it is pairwise stable.

Note that, according to our previous results, in a non-singularly pairwise stable

network, a player can only have more than one link if she is contained in an odd

circle. Obviously, the definitions of pairwise Nash stability and pairwise stability

differ only for such players. Recall that odd circles can only occur in networks being

pairwise stable at linking costs c ≤ 1
6

and that each player contained in such a circle

component receives a payoff of 1
2
. Hence, any such player must receive a profit of at

least 1
6
. On the contrary, multiple link deletion would lead to a profit of zero since

the player would be isolated afterwards.

Combining Corollaries 3.4 and 3.5 then gives that we even have a general equiv-

alence between pairwise stability and pairwise Nash stability for linking costs c > 1
4
.

Finally, observe that the line of length three is also even pairwise Nash stable at

c = 1
6
. This is because the central player who receives a profit of 1

3
would get isolated

when deleting both of her links. This then would again induce a lower profit of zero.

3.3.1 Stability and Bargaining Outcomes

After characterizing (non-singularly) pairwise stable networks we now turn to see

what our findings imply for outcomes of the infinite horizon network bargaining game.

As a second main result we show that payoffs and profits induced by (non-singularly)

pairwise stable networks are in general highly but not completely homogeneous. How-

ever, given our previous results of this section this can be stated as a corollary.

Corollary 3.6 (Limited Outcome Diversity). In the framework with δ → 1 consider

a network g which is pairwise stable at a given level of linking costs c > 0. Then

players’ payoffs must be such that either v∗
i (g) ∈ {1

2
− c, 1

2
, 1

2
+ c} with c ∈ (0, 1

4
] or

v∗
i (g) ∈ {0, 1

2
} for all i ∈ N . Moreover, if g is non-singularly pairwise stable, then only

the latter of these two cases can occur and there exists a set P (g) ⊂ {0, 1
2

− 2c, 1
2

− c}
with |P (g)| ≤ 2 such that for players’ profits it holds that u∗

i (g) ∈ P (g) for all i ∈ N .

This result is basically an immediate consequence of Theorems 3.2 and 3.3, Corol-

laries 3.1 and 3.4, and Lemma 3.1. To see this, recall that in pairwise stable networks,

in terms of payoffs, there can only occur four kinds of players. Namely, these are iso-

lated players receiving zero, players belonging to a separated pair or an odd circle

with a payoff of 1
2

and, for c ∈ (0, 1
4
], players contained in a component with hetero-

geneous payoffs who receive 1
2

+ c or 1
2

− c. However, the second part of Lemma 3.1
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implies that the former and the latter player type cannot coexist in a pairwise stable

network. Further, as every non-singularly pairwise stable network is a union of iso-

lated players, odd circles and separated pairs, the only possible profits are zero, 1
2
−2c

and 1
2

− c in this case. However, for any cost level c > 0, only two of these three

kinds of component-induced subnetworks can coexist in a pairwise stable network

according to Corollary 3.1(iv) and (v).

Taken together, we have that the diversity of possible bargaining outcomes gets

narrowed down substantially compared to the work of Manea (2011) if one considers a

preceding stage of strategic network formation. To this end observe that in Manea’s

(2011) basic framework with δ → 1 one can obtain any rational number from the

interval [0, 1) as a payoff induced by an appropriate network on a sufficiently large

player set.61

3.3.2 Singular Pairwise Stability

As already announced, we conclude this section by ruling out the possibility to be

pairwise stable at all for certain network structures not considered yet. According

to our previous results any remaining network can at most be singularly pairwise

stable and there must be a component in which players receive heterogeneous payoffs

(recall Theorem 3.3). In the following propositions, similarly as in Corollary 3.4, we

consider specific classes of networks of that kind. The main idea of the proofs, which

are rather lengthy and therefore again given in the appendix, is to identify generic

network positions in which the respective player receives a payoff strictly greater than
1
2

and still does so after deleting a certain link. Applying the notation of Theorem 3.3

we then must have x + c < 1
2

for the corresponding stability condition to be fulfilled.

Thus, arriving at a contradiction, such a network cannot be pairwise stable. Another

approach we use focuses on players who are in a weak bargaining position but whose

loss in payoff from dropping a certain own link is too small to be compatible with

the condition x + c = 1
2
.

We show first that all networks not considered in Theorem 3.1 which contain a

tree cannot even be singularly pairwise stable.62

Proposition 3.2 (Trees). Consider the framework with δ → 1. If a network g is

pairwise stable, then it cannot have a component of more than three players which

61For the rational number n′

n′′
∈ [0, 1) with n′, n′′ ∈ N, consider the player set N with n = n′′ and

the complete bipartite network with n′ players on one side and n′′ − n′ players on the other side.
Then the algorithm A(·) yields payoffs n′′

−n′

n′′
and n′

n′′
.

62A tree denotes a component-induced subnetwork which is minimally connected.
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induces a tree.

Proposition 3.2 further reduces the class of potentially pairwise stable networks.

It implies that any component of a pairwise stable network either contains at most

three players or induces a subnetwork which has a cycle.63 The former case has been

analyzed exhaustively in Theorem 3.1 and Corollary 3.1. Thus, the only structures

which are not captured by our analysis yet are networks which have a cycle and in

which players receive heterogeneous payoffs. A subclass of such networks is considered

in the following proposition. To state it we require an additional piece of notation. For

a given network g, a player k ∈ N is called cut-player if g|N\{k} has more components

than g.64

Proposition 3.3 (Cycles and Cut-Players). Consider the framework with δ → 1. If

a network g is pairwise stable, then there cannot be a cut-player who is part of a cycle

and receives a payoff strictly greater than 1
2
.

This statement might seem somewhat artificial but it rules out the possibility to

be pairwise stable for several generic kinds of networks. For instance, many networks

containing a component-induced subnetwork which has a cycle and a loose-end player,

i.e. there is a player who has one link, are excluded. See Figure 3.2 for an illustration

of exemplary subnetworks which cannot even be contained in singularly pairwise

stable networks according to Proposition 3.3.

gV gVI

Figure 3.2: A sketch of networks which cannot be pairwise stable according to Propo-
sition 3.3

However, there exist other networks not captured by our (explicitly stated) results

which could potentially still be singularly pairwise stable at some cost level c ∈ (0, 1
4
].

Two examples for this are given in Figure 3.3.

63A network g is said to have a cycle if there exist distinct players i1, i2, ..., im̄ ∈ N , m̄ ≥ 3, such
that i1im̄ ∈ g and imim+1 ∈ g for m = 1, 2, ..., m̄ − 1. For instance, this implies that any network
containing a circle has a cycle.

64This notation comes from graph theory where vertices of that kind are typically called “cut-
vertices” (see e.g. West, 2001). For instance, each player contained in a component which induces a
tree and having more than one link is a cut-player.
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gVII gVIII

Figure 3.3: A sketch of networks which, based on our general results in Section 3.3,
might still be singularly pairwise stable

Though a further generalization is not reached here, it is easy to check that the

concrete networks illustrated in the figure cannot be pairwise stable. In gVII one can

obviously delete any link without changing payoffs and, for instance as an immediate

consequence of Manea (2011, Theorem 6), a network like gVIII is not pairwise stable

at any cost level either. It remains as a conjecture that, in our framework with δ → 1,

the only singularly pairwise stable networks inducing heterogeneous payoffs within a

component are the ones containing a line of length three at cost level c = 1
6
.

3.4 Efficiency

Beside the issue of stability, it is of interest to analyze our model of network forma-

tion with regard to efficiency. From the perspective of a social planner it is important

to understand the connection between pairwise stable network structures on the one

hand and efficient ones on the other. In this light, Polanski and Vega-Redondo (2013)

argue that the discrepancy between pairwise stability and efficiency in their model is

due to the ex-ante heterogeneity between players. Throughout this section we estab-

lish that, in general, the two classes of pairwise stable and efficient networks do not

coincide either in our model though players are assumed to be ex ante homogeneous.

Our analysis is based on the concept of utilitarian welfare which postulates that a so-

ciety’s (or player set’s) welfare is simply given by the sum of players’ individual profits

(recall Definition 3.4).65 The following theorem gives a complete characterization of

efficient networks for all levels of positive linking costs.

Theorem 3.4 (Efficiency). Consider the framework with δ → 1 and player set N .

For linking costs c > 1
2
, the empty network is the only efficient one. For c = 1

2
, a

65Note that we solely consider profits of the initial players here. One might argue that this is
somewhat short-sighted but it is these players who are present today, i.e. at time t = 0 which we
focus on throughout this work. Also, these are the players who are in charge of forming the network
and who are therefore in a crucial position. Moreover, recall that it is in general uncertain whether
or when players will get replaced during the subsequent network bargaining game. For these reasons,
a social planner might also restrict attention to the initial period.
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network is efficient if and only if it is a union of isolated players and separated pairs.

And for c ∈ (0, 1
2
), a network is efficient if and only if it is a union of separated pairs,

in case that n is odd supplemented by

• an isolated player if c ∈ [1
6
, 1

2
),

• a line of length three if c ∈ [ 1
12

, 1
6
], or

• a three-player circle if c ∈ (0, 1
12

].

The key insight of this theorem is that the empty network is the only efficient

one while costs are high whereas for low costs any efficient network is (essentially)

composed of separated pairs. In what follows, we therefore direct attention to the

situation in which we have an even number of players in the player set. Nevertheless,

a proof for the case n odd is as usual provided in the appendix. For both cases

we require an additional piece of notation. Given a network g, we define the set

N̄(g) := {i ∈ N | ηi(g) ≥ 1}, that is the set of players who are not isolated in g.

Moreover, for a set of players N ′ ⊆ N with |N ′| even, let gSP
N ′ denote a network

composed of |N ′|
2

separated pairs and |N | − |N ′| isolated players.66

Proof of Theorem 3.4 (for n even). Consider a network g and furthermore let

(rs, xs, Ms, Ls, Ns, gs)s=1,...,s̄ be the outcome of the algorithm A(g) with N1 = N̄(g).

This means that we consider N̄(g) instead of N as player set here (thus, again disre-

garding isolated players which is w.l.o.g. as their profit is zero anyway).67 Moreover,

note that for any y, z ∈ R we have y · z ≤ 1
4
(y + z)2 and that this holds strictly as

long as y 6= z. Using this we calculate

U∗(g) =
∑

i∈N̄(g)

(v∗
i (g) − ηi(g)c) =

∑

i∈N̄(g)

v∗
i (g) − 2d#(g)c

=
s̄−1∑

s=1

(xs|Ms| + (1 − xs)|Ls|) +
1

2
|Ns̄| − 2d#(g)c

= 2
s̄−1∑

s=1

|Ms||Ls|
|Ms| + |Ls|

+
1

2
|Ns̄| − 2d#(g)c

≤ 1

2

s̄−1∑

s=1

(|Ms| + |Ls|) +
1

2
|Ns̄| − 2d#(g)c

=
1

2
|N̄(g)| − 2d#(g)c. (3.5)

66Strictly speaking, there exist of course many networks of this kind. However, since any two of
these can be converted into each other by permuting the ex ante homogeneous players, they are all
payoff respectively welfare equivalent.

67Alternatively, one might think of this as considering the network g|N̄(g) with the usual restriction
on the player set.
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Since it is ηi(g) ≥ 1 for all i ∈ N̄(g), we have that d#(g) ≥ 1
2
|N̄(g)|. Moreover, if

d#(g) = 1
2
|N̄(g)|, then this obviously implies that |N̄(g)| is even and we must have

g = gSP
N̄(g)

. Hence, according to (3.5), for a network g 6= gSP
N̄(g)

it holds that

U∗(g) <
1

2
|N̄(g)| − |N̄(g)|c = |N̄(g)|

(1

2
− c

)

≤






0 = U∗(gSP
∅ ) = U∗(∅) if c ≥ 1

2

n(1
2

− c) = U∗(gSP
N ) if c ≤ 1

2

.

This means that only networks which are unions of separated pairs and isolated

players can be efficient. Among these candidates, it remains to identify the networks

which induce maximal utilitarian welfare. Obviously, for c > 1
2

this is solely the

network g with minimal |N̄(g)|, namely the empty network, whereas for c ∈ (0, 1
2
) we

have to choose the one with maximal |N̄(g)|, namely gSP
N . For c = 1

2
all candidates

yield the same welfare of zero.

A comparison of Theorem 3.4 with the results established in Section 3.3 reveals

some interesting insights concerning the relationship between efficient and pairwise

stable networks. We summarize these in the following corollary.

Corollary 3.7 (Efficiency vs. Pairwise Stability). In the model with δ → 1 it applies

(i) for c > 1
4

that a network is efficient if and only if it is pairwise stable,

(ii) for c ∈ (1
6
, 1

4
] that a network is efficient if and only if it is non-singularly pairwise

stable,

(iii) for c ∈ [ 1
12

, 1
6
] that there exists both efficient networks being not pairwise stable

and pairwise stable networks being not efficient and

(iv) for c ∈ (0, 1
12

) that every efficient network is also pairwise stable but there exist

pairwise stable networks being not efficient.

We can constitute that as long as linking costs are high enough, efficient and

pairwise stable networks coincide. However, there is an intermediate cost level for

which a statement is not possible at all whereas for low costs the efficient networks

constitute a proper subset of the pairwise stable ones. This confirms the intuition

that, as long as linking costs are relatively low, there might be incentives for players to

implement individually beneficial but non-efficient outside options. For an illustration

consider the exemplary networks sketched in Figure 3.4 which are efficient for certain

cost ranges but not pairwise stable or vice versa.

Observe that for c = 1
6

the network gIX is efficient according to Theorem 3.4 but

not pairwise stable (see Corollary 3.1(v) or Figure 3.1). The same is true for gX and
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gIX gX gXI gXII

Figure 3.4: A sketch of networks revealing that efficiency and pairwise stability are
in general not equivalent

the cost range c ∈ [ 1
12

, 1
6
). On the other hand, gXI is pairwise stable but not efficient

for c ∈ ( 1
12

, 1
6
]. And finally, for c ∈ (0, 1

12
] the network gXII is pairwise stable but

circles containing more than three players are never efficient.

In summary, we find that efficiency does not in general coincide with pairwise

stability although we deal with a setting of ex ante homogeneous players. Note,

however, that the efficient networks are a subset of the pairwise stable ones at each

level of linking costs c > 0 if we restrict our attention to player sets with an even

number of players.

3.5 Effects of Time Discount

Our analysis in Sections 3.3 and 3.4 focuses on the limit case δ → 1 where players are

assumed to be infinitely patient. However, in many situations it might be reasonable

to consider players who are less than infinitely patient, meaning that in the network

bargaining game they discount time at least to some degree. In the underlying model

this is captured by a parametrization with δ ∈ (0, 1). In this section we take the

limit case as a benchmark and reveal some important commonalities and differences

between both cases with regard to strategic network formation and stability.

In Proposition 3.1 we establish that there are no disagreement links in pairwise

stable networks if we have δ → 1. For two reasons it should be intuitively clear that

this must still hold if we consider δ ∈ (0, 1) instead. On the one hand, if ik ∈ g is a

disagreement link, then we have δv∗δ
i (g) > 1 − δv∗δ

k (g) by definition. Therefore, the

ith equation of the system (3.1) determining the equilibrium payoffs is equivalent to

vi =



1 −
∑

j∈Ni(g−ik)

1

2d#(g)



 δvi +
∑

j∈Ni(g−ik)

1

2d#(g)
max{1 − δvj, δvi}.

This means that from player i’s perspective it does not make a difference whether
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she can get selected to bargain with player k or not since they will either way not

find an agreement. This is of course similarly true from player k’s and also any other

player’s point of view. On the other hand, an additional amplifying effect comes into

play when players are less than infinitely patient. In this case, players care about

the time they have to wait until a certain outcome of a bargain is achieved as they

discount these payments by δ when calculating their expected payoffs. The existence

of a disagreement link prolongs the expected time until any other link gets selected

in the bargaining game and, therefore, must have a negative impact on any player’s

payoff.

Next, we demonstrate that there exist networks which are pairwise stable for a

certain level of linking costs if players are infinitely patient while this possibility can

be ruled out if there is time discount. The converse turns out to be true as well.

Example 3.1. Consider a player set with three players. Then a line of length three

is pairwise stable if we have δ → 1 and c = 1
6
. In the framework with δ ∈ (0, 1),

however, it is not pairwise stable for any c > 0.

The first part of Example 3.1 is established by Theorem 3.1(iii). So let us examine

why a line of length three cannot be pairwise stable if players are impatient to some

degree. So let N = {1, 2, 3} and let g be a line of length three. By applying the

equation system (3.1) to g we find that the payoff of player 1, who is assumed to be

the player having two links, is v∗δ
1 (g) = 2

4−δ
. Further, the two loose-end players 2 and

3 receive v∗δ
2 (g) = v∗δ

3 (g) = 1
4−δ

. Similarly, for the networks g − 12 and g + 23 we

calculate v∗δ
1 (g −12) = 1

2
, v∗δ

2 (g −12) = 0 and v∗δ
2 (g +23) = v∗δ

3 (g +23) = 1
3−δ

. Hence,

for g to be pairwise stable, the following three conditions would have to be satisfied

simultaneously.

u∗δ
2 (g) ≥ u∗δ

2 (g − 12) ⇔ v∗δ
2 (g) ≥ c ⇔ 1

4 − δ
≥ c, (3.6a)

u∗δ
1 (g) ≥ u∗δ

1 (g − 12) ⇔ v∗δ
1 (g) − v∗δ

1 (g − 12) ≥ c ⇔ δ

2(4 − δ)
≥ c, (3.6b)

u∗δ
2 (g) ≥ u∗δ

2 (g + 23) ⇔ v∗δ
2 (g + 23) − v∗δ

2 (g) ≤ c ⇔ 1

(3 − δ)(4 − δ)
≤ c. (3.6c)

However, one can show by simple transformations that conditions (3.6b) and (3.6c)

cannot be fulfilled at the same time. Figure 3.5 illustrates this. According to condition

(3.6b) the level of costs must be below the blue line and (3.6c) requires that c is above

the red line, which is obviously not possible simultaneously for δ < 1.

Thus, either linking costs are so low that players 2 and 3 want to add a mutual

link or they are so high that player 1 has incentives to delete one of her links. To
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0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1.0

δ

c
1

4−δ

1
(3−δ)(4−δ)

δ
2(4−δ)

Figure 3.5: An illustration of the stability conditions (3.6) which arise in Example
3.1

sum up, we find that, in the framework with players being infinitely patient, the

existence of lines of length three in pairwise stable networks is not robust in two

respects. We already know that networks containing these subnetworks can at most

be singularly pairwise stable. Additionally, we now have that a marginal decrease of

δ, meaning however that players can still be almost infinitely patient, already causes

general instability for this kind of networks.

On the contrary, there exist networks which, given any δ ∈ (0, 1), are pairwise

stable at some level of linking costs whereas such a c > 0 does not exist if players are

infinitely patient, that is if we consider δ → 1 instead.

Example 3.2. Consider a player set with at least four players. Then for all δ ∈ (0, 1)

there exists c̄ > 0 such that the complete network is pairwise stable for all c ∈ (0, c̄]. In

the framework with δ → 1, however, complete networks with more than three players

are not pairwise stable for any c > 0.

As usual, the proof is provided in the appendix. However, the second part should

be clear, for instance by Theorem 3.2. To establish the first part we basically solve

the equation system (3.1) for gN and gN − ij and show that for sufficiently small

costs it is profitable for any two players i, j ∈ N to keep their mutual link.

In this context, note that the cost range for which the complete network of less

than infinitely patient players is pairwise stable gets arbitrarily small and close to

zero as δ approaches one. In this sense, the limit case δ → 1 does not constitute a

discontinuity regarding our previous results as it might seem at first sight in the light

of Example 3.2. Also, note that, in the framework of Manea (2011, Online Appendix)
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with infinitely patient players and zero linking costs, complete networks are always

pairwise stable as they are equitable.

3.6 Conclusion

In this chapter we develop a well-founded and analytically tractable model of strategic

network formation in the context of decentralized bilateral bargaining involving ex

ante homogeneous players and explicit linking costs. One reasonable application of

our model is constituted by the stylized example of project collaboration between

firms which we introduce at the beginning.

In the case that players are infinitely patient, we derive a complete character-

ization of non-singularly pairwise (Nash) stable networks. Depending on the level

of linking costs, specific unions of separated pairs, odd circles and isolated players

constitute this class. For a sufficiently high cost level our result even yields a com-

plete characterization of pairwise (Nash) stable networks. The induced bargaining

outcomes are mostly homogeneous but a certain level of diversity regarding players’

payoffs and profits can still occur. Besides, we study the remaining networks which

could possibly be singularly pairwise stable and succeed in ruling out this possibility

for a broad range of structures. These results are complementary to Manea (2011,

Online Appendix). Furthermore, we provide a complete characterization of networks

being efficient in terms of a utilitarian welfare criterion and reveal that these coincide

only partially, that is only at some cost levels, with the (non-singularly) pairwise

stable ones. As a robustness check we also relax the assumption that players are

infinitely patient and gain insights regarding commonalities and differences between

the two cases.

Altogether, our work contributes to a better understanding of the behavior of

players in a non-cooperative setting of decentralized bilateral bargaining when the

underlying network is not exogenously given but the outcome of preceding strategic

interaction. We gain insights concerning the structure of resulting networks, induced

bargaining outcomes and regarding the effects which influence players when aiming

for an optimization of their bargaining position in the network.

Regarding future research, it would be a reasonable next step, in our framework

with infinitely patient players, to approach a complete characterization of pairwise

stable networks in general, that is beyond the case of non-singular pairwise stability

and for all levels of linking costs. This would call for a further discussion of net-

works which, according to our results, might be singularly pairwise stable for small
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costs. For this purpose, it might be a promising approach to strive for a generaliza-

tion of Manea’s (2011) Theorem 6 to the case where the “buyer-seller ratio” is not

(necessarily) an integer. If such an extension or generalization of our results is not

possible, one could alternatively work towards a generalization of Example 3.1 as an

additional robustness check. Anyway, it could be enriching to thoroughly analyze the

class of stable and efficient networks when allowing players to discount time to some

degree. A consideration of alternative stability concepts such as pairwise stability

with transfers, which seems quite natural in a bargaining context, could generate

further important insights. Beyond that, it would surely be interesting to set up

an analytically tractable model of network formation in a bargaining framework in

which players do not get replaced one-to-one after dropping out. Due to the resulting

stochastic change of the network structure over time, this would certainly constitute

a challenging research topic.

Appendix 3.A Proofs

3.A.1 Proof of Theorem 3.1

Consider a component C ⊆ N of some network g which induces a circle or a separated

pair. Then in both cases it is impossible to find a g-independent subset M ⊆ C such

that for the corresponding partner set we have |Lg(M)| < |M |. Hence, the algorithm

A(g) yields a payoff of 1
2

for each player contained in C in both cases (recall Definition

3.1 and the subsequent payoff computation rule). Now consider two players i, j ∈ N

with ij /∈ g where

(a) both are contained in the same component inducing an odd circle,

(b) they are contained in different components each inducing an odd circle,

(c) they are contained in different components each inducing a separated pair,

(d) one is contained in a component inducing an odd circle and the other one is

contained in a component inducing a separated pair, or

(e) one is contained in a component inducing an odd circle and the other one is an

isolated player.

Then in each of these cases the algorithm A(g + ij) again yields a payoff of 1
2

for all

players contained in the new component Ci(g + ij) = Cj(g + ij). The best way to see
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this is again to consider Definition 3.1 and the subsequent payoff computation rule.68

Therefore, at least one of the two players i and j (in Cases (a)–(d) even both) will

receive an unchanged payoff after having established this link. Regarding profits this

means, however, that this player is worse off as she has to bear additional linking

costs of c > 0. Thus, the respective link will never be formed.

Next, recall the three-player case. From this it is straightforward to see that Part

(i) of the theorem is indeed true. Also, we can deduce that a pairwise stable network

can contain both an isolated player and a separated pair if we have linking costs

c ∈ (1
6
, 1

2
]. Together with the above Case (c) this establishes Part (ii) of the theorem.

Consider again a network g and now two players i′, j′ ∈ N with i′j′ ∈ g. Moreover,

assume that these players are contained in a component C which induces an odd circle

with m ≥ 3 players. We already know that g induces a payoff of 1
2

for both players.

Now consider the network g′ := g − i′j′ which is obviously a line of length m. Let

(r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the outcome of A(g′) (with N1 = C).69 As m is an

odd number, we have that s̄′ = 1 and i′, j′ ∈ M ′
1. Further, it is |M ′

1| = m+1
2

and

|L′
1| = m−1

2
which implies that v∗

i′(g′) = v∗
j′(g′) = x′

1 = m−1
2m

. As a stability condition

this gives

u∗
i′(g) − u∗

i′(g′) =
1

2
− 2c −

(m − 1

2m
− c

)

≥ 0 ⇔ 1

2m
≥ c ⇔ m ≤ 1

2c
.

Of course, the same holds for player j′. Together with the above Cases (a) and (b)

this means that a network which is composed of odd circles is pairwise stable if and

only if each circle has at most 1
2c

members. Note that a pairwise stable network can

therefore contain odd circles only if we have c ≤ 1
6

since a circle must have at least

three members by definition.

Furthermore, observe that for the cost range c ∈ (0, 1
6
] we have 1

2
− c > 0 which

means that no player contained in a component inducing a separated pair has in-

centives to delete her link. This together with the above Cases (c)–(e) gives that,

potentially besides one or several odd circles with a permissible number of players, a

network being pairwise stable at c ∈ (0, 1
6
] can contain separated pairs or one isolated

player. As we know from the three-player case, however, an isolated player and a

separated pair cannot coexist in a pairwise stable network at these levels of linking

costs. This proves the first statement in Part (iii).

68However, a shortcut would be to consider Manea (2011, Theorem 5) which we make use of when
proving our Theorem 3.2.

69Disregarding players in C∁ is w.l.o.g. as the profile of payoffs respectively profits is component-
decomposable.
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Finally, consider the transition point c = 1
6
. In what follows, let the network g be

composed of two lines of length three, an odd circle, and a separated pair as sketched

in Figure 3.6.

1

2 3

4 5

6

Figure 3.6: A sketch of a network g containing lines of length three

W.l.o.g. we focus on the labeled players 1, 2, ..., 6. At c = 1
6

the algorithm A(g)

yields the following profits:

u∗
1(g) =

2

3
− 2c =

1

3
, u∗

2(g) = u∗
3(g) =

1

3
− c =

1

6
, u∗

6(g) =
1

2
− 2c =

1

6

Based on this, we are able to establish that link addition either leads to a worsening

for at least one of the two players or both are indifferent. Specifically, applying the

respective algorithm gives

u∗
2(g + 23) = u∗

3(g + 23) =
1

2
− 2c =

1

6
= u∗

2(g) = u∗
3(g),

u∗
1(g + 13) = u∗

1(g + 14) = u∗
1(g + 15) = u∗

1(g + 16) =
2

3
− 3c =

1

6
<

1

3
= u∗

1(g),

u∗
2(g + 25) =

2

5
− 2c =

1

15
<

1

6
= u∗

2(g),

u∗
6(g + 26) =

1

2
− 3c = 0 <

1

6
= u∗

6(g).

Since we know from the three-player case that within the component of a line of

length three there are no incentives to add or delete a link at this cost level, this

concludes the proof of Part (iii) and of the whole theorem.

3.A.2 Proof of Proposition 3.1

For ease of notation consider a network g′ and assume that it is pairwise stable.

Moreover, assume that there is a disagreement link in the network, that is g′\g′∗ 6= ∅.

Let w.l.o.g. 12 ∈ g′\g′∗ be such a link and define g := g′ − 12. This implies g′∗ ⊆ g.

Furthermore, assume w.l.o.g. that every player has at least one link in g′ (otherwise

disregard isolated players which is permissible since the profile of payoffs respectively

profits is component-decomposable). According to Manea (2011, Lemma 1) every

player has at least one link in g′∗ and therefore also in g.
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Take the network g as a basis and let (rs, xs, Ms, Ls, Ns, gs)s=1,2,...,s̄ be the outcome

of A(g) (recall again Definition 3.1). Then by equations (3.3) the limit equilibrium

payoff vector v∗(g) is given by

v∗
i (g) = xs ∀ i ∈ Ms ∀ s < s̄,

v∗
j (g) = 1 − xs ∀ j ∈ Ls ∀ s < s̄,

v∗
k(g) = 1

2
∀ k ∈ Ns̄.

Now consider g′∗. The following findings being equivalent to Manea (2011, Proposi-

tion 2, Theorem 3) are important:

• From Manea (2011, Proposition 2) we have that if ij ∈ g, then v∗
i (g′)+v∗

j (g′) ≥ 1

and if ij ∈ g′∗, then v∗
i (g′) + v∗

j (g′) = 1.

• By Manea (2011, Theorem 3) for all M ∈ I(g′∗) the following bounds on limit

equilibrium payoffs hold:

min
i∈M

v∗
i (g′) ≤ |Lg′∗

(M)|
|M | + |Lg′∗(M)|

max
j∈Lg′∗

(M)
v∗

j (g′) ≥ |M |
|M | + |Lg′∗(M)|

If in Manea’s (2011, Theorem 4) proof of the payoff computation rule (3.3) one

replaces g∗ by g′∗, v∗
i by v∗

i (g′), v∗
j by v∗

j (g′), v∗
k by v∗

k(g′), and Proposition 2, Lemma

1 and Theorem 3 (Manea, 2011) by the corresponding statements from above, then

this leads to the result that also

v∗
i (g′) = xs ∀ i ∈ Ms ∀ s < s̄,

v∗
j (g′) = 1 − xs ∀ j ∈ Ls ∀ s < s̄,

v∗
k(g′) = 1

2
∀ k ∈ Ns̄.

Thus, it is v∗(g′) = v∗(g) and hence

u∗
1(g

′) = v∗
1(g′) − η1(g

′)c = v∗
1(g) − (η1(g) + 1)c < v∗

1(g) − η1(g)c = u∗
1(g

′ − 12).

Arriving at a contradiction this proves that a pairwise stable network cannot contain

a disagreement link.

Finally, notice that for any network g we have from Manea (2011, Proposition

2) that v∗
i (g) + v∗

j (g) = 1 for all ij ∈ g∗. Thus, the above result implies that

v∗
i (g) + v∗

j (g) = 1 for all ij ∈ g if g is pairwise stable.
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3.A.3 Proof of Theorem 3.2

Consider a pairwise stable network g and assume that g|Ñ(g) is not a union of sep-

arated pairs and odd circles. Notice that due to Proposition 3.1 for any component

C ⊆ N of g it must either be C ⊆ Ñ(g) or C ⊆ Ñ(g)∁. Furthermore, recall that the

profile of payoffs is component-decomposable, meaning that v∗
i (g) = v∗

i (g|Ñ(g)) for all

i ∈ Ñ(g). Thus, the network g|Ñ(g) is equitable such that by Manea (2011, Theorem

5) respectively by Berge (1981) it has a so called edge cover composed of separated

pairs and odd circles. This means that there exists a union of separated pairs and

odd circles g′ ⊆ g|Ñ(g) such that no player i ∈ Ñ(g) is isolated in g′. By assumption

there must exist a link ij ∈ g|Ñ(g)\g′. Obviously, the network g′ is also an edge cover

of the network g|Ñ(g) − ij. Again from Manea (2011, Theorem 5) respectively from

Berge (1981) it then follows that g|Ñ(g) − ij is still equitable. Hence, recalling the

implication of Proposition 3.1 mentioned above, this gives

u∗
i (g) = v∗

i (g|Ñ(g)) − ηi(g|Ñ(g))c =
1

2
− ηi(g|Ñ(g))c <

1

2
−
(

ηi(g|Ñ(g)) − 1
)

c

= v∗
i

(

g|Ñ(g) − ij
)

− ηi

(

g|Ñ(g) − ij
)

c

= u∗
i (g − ij).

Thus, arriving at a contradiction, this concludes the proof.

3.A.4 Proof of Lemma 3.1 and Lemma 3.2

As announced in Section 3.3, the proofs of both lemmas rest on another rather tech-

nical lemma which be provide and prove first.

Lemma 3.3. Let g̃ be a network with A(g̃) providing (r̃s, x̃s, M̃s, L̃s, Ñs, g̃s)s. For

any step s < s̄ and any set I ⊆ N the following implications must apply:

(i) 1 ≤ |M̃s ∩ I| ≤ |L̃s ∩ I| ⇒ |Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁| ≥ 1,

(ii) 1 ≤ |M̃s ∩ I| < |L̃s ∩ I| ⇒ |Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁| ≥ 2.

Proof of Lemma 3.3. We prove the two parts of the lemma one after the other.

Part (i):

Assume that we have 1 ≤ |M̃s ∩ I| ≤ |L̃s ∩ I| and Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁ = ∅ for some
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step s < s̄ and some set I ⊆ N . Recalling Definition 3.1, this obviously implies

|L̃s|
|M̃s|

= r̃s < 1 ≤ |L̃s ∩ I|
|M̃s ∩ I| .

Additionally, we have that M̃s = (M̃s ∩ I) ∪̇ (M̃s\I) and L̃s = (L̃s ∩ I) ∪̇ (L̃s\I). This

induces that M̃s\I 6= ∅ since it is |M̃s ∩I| ≤ |L̃s ∩I| ≤ |L̃s| but |M̃s| > |L̃s|. It follows

that
|L̃s\I|
|M̃s\I| <

|L̃s|
|M̃s|

.

Moreover, it is Lg̃s(M̃s\I) ⊆ L̃s\I since by assumption Lg̃s(L̃s ∩ I) ∩ M̃s ⊆ I. Taken

together, this then gives

|Lg̃s(M̃s\I)|
|M̃s\I| ≤ |L̃s\I|

|M̃s\I| <
|L̃s|
|M̃s|

= r̃s,

which contradicts the minimality of r̃s.

Part (ii):

It remains to show that having 1 ≤ |M̃s ∩ I| < |L̃s ∩ I| and |Lg̃s(L̃s ∩ I)∩M̃s ∩ I∁| = 1

in some step s < s̄ and for some set I ⊆ N leads to a contradiction as well. In such

a situation, slightly different from Part (i), we have

|L̃s|
|M̃s|

= r̃s < 1 ≤ |L̃s ∩ I|
|M̃s ∩ I| + 1

.

Again, it holds that M̃s = (M̃s ∩ I) ∪̇ (M̃s\I) and L̃s = (L̃s ∩ I) ∪̇ (L̃s\I), which in

this case even guarantees that |M̃s\I| ≥ 2 since it is |M̃s ∩ I| < |L̃s ∩ I| ≤ |L̃s|, but

|M̃s| > |L̃s|. This gives
|L̃s\I|

|M̃s\I| − 1
<

|L̃s|
|M̃s|

.

Moreover, we have that there exists exactly one player ĩ ∈ Lg̃s(L̃s ∩ I) ∩ M̃s ∩ I∁.

Similarly to Part (i) this implies that it is Lg̃s(M̃s\(I ∪̇ {̃i})) ⊆ L̃s\I, which combined

with the above leads to

|Lg̃s(M̃s\(I ∪̇ {̃i}))|
|M̃s\(I ∪̇ {̃i})| ≤ |L̃s\I|

|M̃s\I| − 1
<

|L̃s|
|M̃s|

= r̃s,

which again contradicts the minimality of r̃s.

Now, we can turn to the proof of the first of the two lemmas which are stated in
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Section 3.3.

Proof of Lemma 3.1. For i, j ∈ M1 consider the network g′ := g + ij. Let

(r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the outcome of A(g′). Assume for contradiction that

there exists a step ŝ ∈ {1, ..., s̄′ − 1} such that L1 ∩ M ′
s = M1 ∩ L′

s = ∅ for all

s ∈ {1, ..., ŝ − 1} but M1 ∩ L′
ŝ 6= ∅. Note that L1 ∩ M ′

ŝ 6= ∅ would also entail

M1 ∩ L′
ŝ 6= ∅. This is because any player contained in L1 ∩ M ′

ŝ must have a neighbor

k ∈ M1 in g due to the minimality of r1 < 1 and it can obviously neither be k ∈ L′
s

nor k ∈ M ′
s for any s ∈ {1, ..., ŝ − 1}. In what follows, we construct a sequence

of players (i0, i1, i2, ...) and show by induction that the underlying procedure which

sequentially adds players to it can never break up so that we get a contradiction to

the finiteness of the player set N . For m ∈ N let Im := {i0, i1, ..., im} ⊆ N denote the

players of the sequence up to the mth one. We need to distinguish two cases.

Case 1: i ∈ L′
ŝ

Set i0 = i. It then must be |Ni0(g′
ŝ) ∩ M ′

ŝ| ≥ 2 since otherwise one could reduce r′
ŝ

by not including i0 and possibly her one contact belonging to M ′
ŝ. This guarantees

that there exists i1 ∈ Ni0(g′
ŝ) ∩ M ′

ŝ\{j}. So it is i0 ∈ M1 ∩ L′
ŝ and i1 ∈ L1 ∩ M ′

ŝ. Let

I1 = {i0, i1}. Now consider some odd number m ∈ N. Assume that L1∩Im = M ′
ŝ∩Im,

M1 ∩ Im = L′
ŝ ∩ Im and that the cardinalities of these two sets are equal. We then

have:

• It is 1 ≤ |M1 ∩ Im| = |L1 ∩ Im| and therefore by Lemma 3.3(i) there exists

a player im+1 ∈ Lg(L1 ∩ Im) ∩ M1 ∩ I∁
m. For this player it must hold that

im+1 ∈ M1 ∩L′
ŝ\Im since L1 ∩Im ⊆ M ′

ŝ and M1 ∩L′
s = ∅ for all s ∈ {1, ..., ŝ−1}.

• It then is 1 ≤ |M ′
ŝ ∩ Im+1| < |L′

ŝ ∩ Im+1| and therefore by Lemma 3.3(ii) there

exists a player im+2 ∈ Lg′
ŝ(L′

ŝ ∩ Im+1) ∩ M ′
ŝ ∩ I∁

m+1\{j}. For this player it must

hold that im+2 ∈ L1 ∩ M ′
ŝ\Im+1 since L′

ŝ ∩ Im+1 ⊆ M1 and im+2 6= j.

Thus, it is L1 ∩ Im+2 = M ′
ŝ ∩ Im+2, M1 ∩ Im+2 = L′

ŝ ∩ Im+2 and also the cardinalities

of these two sets are equal. Moreover, it is |Im+2| = |Im| + 2. By induction it follows

that the player set N must be infinitely large. Thus, we arrive at a contradiction.

Case 2: i /∈ L′
ŝ

In this case we must have j /∈ M ′
ŝ since by assumption M1 ∩ L′

s = ∅ for all s ∈
{1, ..., ŝ − 1}. For the same reason, i ∈ M ′

ŝ would imply j ∈ L′
ŝ which is equivalent to

Case 1. This is also true for i /∈ M ′
ŝ and j ∈ L′

ŝ. So it remains to consider the case

that i, j /∈ (M ′
ŝ∪L′

ŝ). However, by assumption there must be a player i0 ∈ M1∩L′
ŝ. As
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in the previous case, existence of another player i1 ∈ Ni0(g′
ŝ) ∩ M ′

ŝ is then guaranteed

and it must be i1 /∈ {i, j} since i, j /∈ M ′
ŝ. Therefore it is i1 ∈ L1 ∩ M ′

ŝ. Let

again I1 = {i0, i1} and assume for some odd number m ∈ N that L1 ∩ Im = M ′
ŝ ∩ Im,

M1 ∩Im = L′
ŝ ∩Im and that the cardinalities of these two sets are equal. Furthermore,

assume that i, j /∈ Im. Similarly to the first case we have:

• There exists im+1 ∈ M1 ∩ L′
ŝ\Im for the stated reasons.

• By Lemma 3.3(ii) there then exists a player im+2 ∈ Lg′
ŝ(L′

ŝ ∩ Im+1) ∩ M ′
ŝ ∩ I∁

m+1.

For this player it must hold that im+2 ∈ L1 ∩ M ′
ŝ\Im+1 since L′

ŝ ∩ Im+1 ⊆
M1\{i, j}.

Thus, it is again L1 ∩ Im+2 = M ′
ŝ ∩ Im+2, M1 ∩ Im+2 = L′

ŝ ∩ Im+2 and also the

cardinalities of these two sets are equal. Beyond that, we have i, j /∈ Im+2. By

induction this leads again to a contradiction to the finiteness of the player set N .

Summing up, we have that L1 ∩ M ′
s = M1 ∩ L′

s = ∅ for all s < s̄′. Therefore, it

must be v∗
i (g′), v∗

j (g′) ≤ 1
2
. On the contrary, we know by Manea (2011, Proposition

2) that v∗
i (g′) + v∗

j (g′) ≥ 1. Taken together, this implies v∗
i (g′) = v∗

j (g′) = 1
2
.

With regard to the second part of the lemma consider the network g′ := g+i(n+1)

and let (r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the outcome of A(g′). It is clear that n+1 /∈ L′
s

for all s < s̄′ since otherwise one could simply reduce r′
s by deleting n + 1 from L′

s

and possibly her one neighbor i from M ′
s. The possibility that i ∈ L′

s for some s < s̄′

can be ruled out by a line of argumentation which is equivalent to the proof of the

first part if one substitutes n + 1 for j, M2 for M1 and L2 for L1 (while taking into

account that A(g) provides M1 = {n + 1} and L1 = ∅ in this case).

And finally we establish the second of the two lemmas.

Proof of Lemma 3.2. W.l.o.g. assume that g has only one component.70 Beside g

consider the network g′ := g − kl and let (r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the outcome

of A(g′). Similarly to the proof of Lemma 3.1 assume for contradiction that there

exists a step ŝ ∈ {1, ..., s̄′ −1} such that L1 ∩M ′
s = M1 ∩L′

s = ∅ for all s ∈ {1, ..., ŝ−1}
but L1 ∩ M ′

ŝ 6= ∅. Observe that M1 ∩ L′
ŝ 6= ∅ would also entail L1 ∩ M ′

ŝ 6= ∅ since due

to the minimality of r′
ŝ any player in M1 ∩ L′

ŝ needs to have a g′-neighbor in M ′
ˆ̂s

who

then must have been a neighbor in g as well. We again construct a sequence of players

(i0, i1, i2, ...) and show by induction that the underlying procedure which sequentially

adds players to it can never break up, meaning that we get a contradiction to the

70Again, this is w.l.o.g. as the profile of payoffs respectively profits is component-decomposable.



96 • 3 Strategic Formation of Homogeneous Bargaining Networks

finiteness of the player set N . For m ∈ N let Im := {i0, i1, ..., im} ⊆ N denote the

players of the sequence up to the mth one.

Initially, select some player i0 ∈ L1 ∩ M ′
ŝ. i0 cannot be isolated or a loose-end

player, i.e. she must have more than one link in g, since otherwise one could reduce

r1 by not including i0 in L1 and possibly her one contact in M1. This guarantees that

there exists i1 ∈ Ni0(g′). It must be i1 ∈ M1 ∩ L′
ŝ since by assumption M1 ∩ L′

s = ∅
for all s ∈ {1, ..., ŝ − 1}. Let I1 = {i0, i1}. Now consider some odd number m ∈ N.

Assume that L1 ∩ Im = M ′
ŝ ∩ Im, M1 ∩ Im = L′

ŝ ∩ Im and that the cardinalities of

these two sets are equal. We then have:

• It is 1 ≤ |M ′
ŝ ∩ Im| = |L′

ŝ ∩ Im| and therefore by Lemma 3.3(i) there exists

a player im+1 ∈ Lg′
ŝ(L′

ŝ ∩ Im) ∩ M ′
ŝ ∩ I∁

m. For this player it must hold that

im+1 ∈ L1 ∩ M ′
ŝ\Im since it is L′

ŝ ∩ Im ⊆ M1.

• Then it is 1 ≤ |M1 ∩ Im+1| < |L1 ∩ Im+1| and therefore by Lemma 3.3(ii) there

exists a player im+2 ∈ Lg(L1 ∩ Im+1) ∩ M1 ∩ I∁
m+1 ∩ Lg′

ŝ(L1 ∩ Im+1) since g′

arose from g by a single link deletion and, additionally, M1 ∩ L′
s = ∅ for all

s ∈ {1, ..., ŝ − 1} and L1 ∩ Im+1 ⊆ M ′
ŝ. This reasoning then also implies that

im+2 ∈ M1 ∩ L′
ŝ\Im+1.

Thus it is L1 ∩ Im+2 = M ′
ŝ ∩ Im+2, M1 ∩ Im+2 = L′

ŝ ∩ Im+2 and also the cardinalities of

these two sets are equal. Moreover, it is |Im+2| = |Im| + 2. Again, by induction this

leads to a contradiction to the finiteness of the player set N . Consequently, it must

be L1 ∩ M ′
s = M1 ∩ L′

s = ∅ for all s < s̄′.

3.A.5 Proof of Proposition 3.2

Consider a network g which is a tree with n > 3 players and assume that it is

pairwise stable.71 By Theorem 3.2 it cannot be the case that all players receive a

payoff of 1
2

in g. According to Proposition 3.1 and Corollary 3.2, the algorithm A(g)

therefore has to stop after the first step providing an outcome (r1, x1, M1, L1, N1, g1)

with M1 ∪̇ L1 = N , |M1| > |L1| and g|M1 = g|L1 = ∅. So we have r1 ∈ (0, 1) and

v∗
i (g) = 1 − v∗

j (g) = x1 ∈ (0, 1
2
) for all i ∈ M1, j ∈ L1. Theorem 3.3 then implies that

x1 + c =
1

2
. (3.7)

71Again, it is w.l.o.g. to assume that g consists of only one component as the profile of payoffs
respectively profits is component-decomposable.
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The class of tree networks we consider here can be divided into the following

subclasses:

(a) No player has more than two links in g, meaning that g is a line network.

(b) There is a player who has more than two links in g such that at least two of

her neighbors are loose-end players.72

(c) There is a player who has more than two links in g but no player has more than

one loose-end contact.

In the following, we distinguish between these three subclasses and show separately

that there arises a contradiction to pairwise stability.

Subclass (a):

W.l.o.g. let g := {12, 23, ..., (n − 1)n}. Here n must be odd since otherwise it would

obviously be |Lg(M)|
|M |

≥ 1 for all g-independent sets M ⊆ N inducing a payoff of 1
2

for every player. So by assumption it must be n ≥ 5. Considering the algorithm

A(g), we find that the shortage ratio is minimized by the g-independent set which

contains the players 1, 3, ..., n − 2, n. Therefore, it is r1 = n−1
n+1

and x = n−1
2n

. Hence,

here equation (3.7) is equivalent to

c =
1

2n
. (3.8)

Now, if player 3 deletes her link to player 2, then she becomes a loose-end player.

Moreover, in the network g −23 she is contained in a component with an odd number

of players which induces a line of length n − 2. Hence, it is v∗
3(g − 23) = n−3

2(n−2)
.

Taking into account equation (3.8), the corresponding stability condition yields

u∗
3(g) − u∗

3(g − 23) ≥ 0 ⇔ v∗
3(g) − v∗

3(g − 23) − c ≥ 0

⇔ n − 1

2n
− n − 3

2(n − 2)
− 1

2n
≥ 0

⇔ 4 − n

2n(n − 2)
≥ 0.

Obviously, this is never fulfilled for n ≥ 5, meaning that a line network cannot be

pairwise stable.

72Recall that some i ∈ N is said to be a loose-end player if it is ηi(g) = 1, that is if she has exactly
one link in g.
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Subclass (b):

Let k ∈ N be a player with at least three neighbors including two or more loose-end

players. Then Manea (2011, Theorem 3) implies that it is v∗
k(g) ≥ 2

3
. So it must be

k ∈ L1. Select a player i ∈ Nk(g) such that ηi(g) ≥ ηi′(g) for all i′ ∈ Nk(g). Note that

in the network g−ki, player k still has at least two loose-end contacts such that again

according to Manea (2011, Theorem 3) we have v∗
k(g − ki) ≥ 2

3
. The corresponding

stability condition then gives

u∗
k(g) ≥ u∗

k(g − ki) ⇔ v∗
k(g) − c ≥ v∗

k(g − ki) ⇒ 1 − x1 − c ≥ 2

3
⇔ x1 + c ≤ 1

3
.

This obviously contradicts equation (3.7). Thus, a network g belonging to Subclass

(b) cannot be pairwise stable.

Subclass (c):

First deliberate the following: For any tree network g̃ and any player k ∈ N there ex-

ists a unique partition
(

Brk
ν

)

ν∈Nk(g̃)
of N\{k} such that for all ν ∈ Nk(g̃) it is ν ∈ Brk

ν

and g̃|Brk
ν

is connected, i.e. g̃|Brk
ν

has only one component (if one restricts the player

set to Brk
ν). Based on this observation, we define the subnetworks

(

g̃|Brk
ν

)

ν∈Nk(g)
to

be the branches of player k in g̃ and ν ∈ Nk(g̃) is said to be the fork player of g̃|Brk
ν
.

Note that if g belongs to Subclass (c), then there exists a player k ∈ N who has

more than two links such that for at least all but one of her branches, all players

contained in these have at most two links in g. If this would not be the case, the

following procedure would never stop, meaning that there would have to be infinitely

many players in N : Initially, select a player k0 having more than two links and one

of her branches containing another player k1 with more than two links. Then by

assumption player k1 must have a branch in g which does not contain player k0 but

a player k2 who also has more than two links. For this player k2 there must again be

a branch in g not containing k0 and k1 but a player k3 having more than two links.

Continuing this way, for any m ∈ N there is a player km+1 ∈ N\{k0, ..., km}, which

then gives a contradiction by induction. Thus, a player k as mentioned above must

indeed exist.

In the following we distinguish two cases.

Case (c).1: k ∈ L1

If there are other players having more than two links, then let i ∈ N be the fork

player of player k’s branch which contains all of them. Otherwise, arbitrarily pick

some i ∈ Nk(g). In both cases consider the network g−ki and the component C ⊂ N

which player k is contained in. In the network g|C , there is only player k who might
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have more than two links. Furthermore, every branch of player k in g|C must be a

line of odd length as Manea (2011, Theorem 3) implies that any loose-end player in

g is contained in M1. In turn, this implies that for any g|C-independent set M with
|Lg|C (M)|

|M |
< 1 it is k ∈ Lg|C (M). One example for such a set is M1 ∩ C with partner

set L1 ∩ C. Hence, it must be v∗
k(g − ki) > 1

2
. The corresponding stability condition

then gives

u∗
k(g) ≥ u∗

k(g − ki) ⇔ v∗
k(g) − c ≥ v∗

k(g − ki) ⇒ 1 − x1 − c >
1

2
⇔ x1 + c <

1

2
.

This obviously again contradicts equation (3.7). Consequently, a network g belonging

to Subclass (c) with k ∈ L1 cannot be pairwise stable.

Case (c).2:

We need to introduce some additional notation here. Identify a branch of player k

which is a line network with minimal length among all of these line branches. We

denote the set of players in this branch by B1 ⊂ N . Note that any branch of player k

which is a line must be of even length. Let M̂1 := M1 ∩ B1 and L̂1 := L1 ∩ B1. Then

it is |M̂1| = |L̂1|. Let j denote the fork player of this branch. In addition, let B2 ⊂ N

denote the set of all players contained in the other line branch(es) of player k. Let

similarly M̂2 := M1 ∩ B2 and L̂2 := L1 ∩ B2. Then we have |M̂2| = |L̂2| ≥ |M̂1|.
Finally, let B3 := N\(B1 ∪̇ B2 ∪̇ {k}) and M̂3 := M1 ∩ B3, L̂3 := L1 ∩ B3. Then it

must be |M̂3| ≥ |L̂3| as we have |M1| > |L1|.
Note that we must have r1 = |L1|

|M1|
≤ |L̂3|

|M̂3|
since r1 is the minimal shortage ratio

for g and obviously Lg(M̂3) = L̂3. Thus, applying the above notation gives

x1 =
|L1|

|M1| + |L1|
=

|M̂1| + |M̂2| + |L̂3|
2|M̂1| + 2|M̂2| + |M̂3| + |L̂3| + 1

. (3.9)

Now consider the network g′ := g − kj and let (r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the

outcome of the algorithm A(g′). Notice first that the set M̂2 ∪̇ M̂3 ∪̇ {k} ⊂ M1 is

g′-independent and L̂2 ∪̇ L̂3 is the corresponding partner set in g′. Furthermore, we

have
|L̂2| + |L̂3|

|M̂2| + |M̂3| + 1
=

|M̂2| + |L̂3|
|M̂2| + |M̂3| + 1

< 1.

Assume for contradiction that there is another g′-independent set M ′ ⊆ N with

partner set L′ = Lg′
(M ′) ⊆ N which is shortage ratio minimizing in step s = 1 of

A(g′). Since the set B1 is a component of g′ and it induces a line network of even

length where every player receives a payoff of 1
2
, we must have (M ′ ∪ L′) ∩ B1 = ∅
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and s̄′ ≥ 2. Moreover, Lemma 3.2 yields that M1 ∩ L′
s = L1 ∩ M ′

s = ∅ for all s < s̄′.

Hence, we must have M ′ ⊂ M̂2 ∪̇ M̂3 ∪̇ {k} and L′ ⊂ L̂2 ∪̇ L̂3 such that

|L′|
|M ′| <

|M̂2| + |L̂3|
|M̂2| + |M̂3| + 1

< 1.

On the contrary, M ′ ∪̇M̂1 ⊂ M1 is g-independent and we have Lg(M ′ ∪̇M̂1) = L′ ∪̇L̂1.

The minimality of r1 = |L1|
|M1|

in A(g) then implies

r1 =
|M̂2| + |L̂3| + |M̂1|

|M̂2| + |M̂3| + 1 + |M̂1|
≤ |L′| + |M̂1|

|M ′| + |M̂1|
< 1 ⇒ |M̂2| + |L̂3|

|M̂2| + |M̂3| + 1
≤ |L′|

|M ′| .

Thus, arriving at a contradiction, this implies that

v∗
k(g′) =

|M̂2| + |L̂3|
2|M̂2| + |M̂3| + |L̂3| + 1

. (3.10)

Taking into account equation (3.8), the corresponding stability condition demands

u∗
k(g) ≥ u∗

k(g − kj) ⇔ v∗
k(g) − ηk(g)c ≥ v∗

k(g′) − ηk(g′)c

⇔ x1 ≥ v∗
k(g′) +

1

2
− x1

⇔ 2x1 − v∗
k(g′) ≥ 1

2
(3.11)

However, we now establish that it must be 2x1 − v∗
k(g′) < 1

2
. Recalling equations

(3.9) and (3.10), some calculation yields

2x1 − v∗
k(g′) =

2|M̂1| + 2(|M̂2| + |L̂3|)
2|M̂1| + (2|M̂2| + |M̂3| + |L̂3| + 1)

− (|M̂2| + |L̂3|)
(2|M̂2| + |M̂3| + |L̂3| + 1)

=
2|M̂1|(|M̂2| + |M̂3| + 1) + (|M̂2| + |L̂3|)(2|M̂2| + |M̂3| + |L̂3| + 1)

2|M̂1|(2|M̂2| + |M̂3| + |L̂3| + 1) + (2|M̂2| + |M̂3| + |L̂3| + 1)2

=
D − R

2D
,

where

D = 2|M̂1|(2|M̂2| + |M̂3| + |L̂3| + 1) + (2|M̂2| + |M̂3| + |L̂3| + 1)2 > 0
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and

R = − 2|M̂1||M̂3| + 2|M̂1||L̂3| − 2|M̂1| + 2|M̂2||M̂3| − 2|M̂2||L̂3| + 2|M̂2| + |M̂3|2

+ 2|M̂3| − |L̂3|2 + 1

= 2(|M̂2| − |M̂1|
︸ ︷︷ ︸

≥0

) + 2(|M̂3| − |L̂3|
︸ ︷︷ ︸

≥0

)(|M̂2| − |M̂1|
︸ ︷︷ ︸

≥0

) + (|M̂3|2 − |L̂3|2
︸ ︷︷ ︸

≥0

) + 2|M̂3| + 1

≥ 2|M̂3| + 1

> 0.

Hence, we indeed have

2x1 − v∗
k(g − kj) =

D − R

2D
<

1

2
.

This concludes the proof for Subclass (c) and of the whole proposition.

3.A.6 Proof of Proposition 3.3

Consider a pairwise stable network g and assume that there is a cut-player k ∈ N

who is part of a cycle and receives a payoff v∗
k(g) > 1

2
. Assume w.l.o.g. that g has

only one component. According to Proposition 3.1 and Corollary 3.2, the algorithm

A(g) must stop after the first step providing an outcome (r1, x1, M1, L1, N1, g1) with

M1 ∪̇ L1 = N , |M1| > |L1| and g|M1 = g|L1 = ∅. So we have r1 = |L1|
|M1|

∈ (0, 1), k ∈ L1

and v∗
k(g) = 1 − x1. Further, by Theorem 3.3 it is x1 + c = 1

2
.

In what follows, we prove that player k can delete a certain link such that in the

resulting network she still receives a payoff greater than 1
2
. To start with, note that

by assumption there must be a set K ⊂ N with k ∈ K such that

• Lg(K\{k}) ⊆ K,

• k is contained in a cycle in g|K∁∪{k} and

• g|K∁ has only one component (as usual, considering K∁ as player set).

As g has only one component, it must be k ∈ Lg(K\{k}), meaning that Nk(g)∩K 6= ∅.

Moreover, there exists i′ ∈ Nk(g)\K such that k and i′ belong to the same cycle in

g. Now consider the network g′ := g − ki′ and let (r′
s, x′

s, M ′
s, L′

s, N ′
s, g′

s)s=1,...,s̄′ be the

outcome of A(g′). Lemma 3.2 yields that v∗
k(g′) ≥ 1

2
. Assume for contradiction that

we have v∗
k(g′) = 1

2
, meaning that k ∈ N ′

s̄′ .
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Consider the set C ′
k := Ck(g′

s̄′ |K) = Ck(g|N ′
s̄′ ∩K), that is the component of player

k in the network g restricted to the set N ′
s̄′ ∩ K. As a first step, we establish that it

is

|L1 ∩ C ′
k|

|M1 ∩ C ′
k| = 1. (3.12)

Note first that we have Nk(g′|K) 6= ∅. Furthermore, it must be Nk(g′) ⊆ M1 ∩ N ′
s̄′

as Lemma 3.2 yields M1 ∩ L′
s = ∅ for all s < s̄′. This guarantees that M1 ∩ C ′

k 6= ∅.

Based on this, we can immediately rule out the possibility that the left-hand side

of (3.12) is strictly smaller than one since M1 ∩ C ′
k is g′-independent and clearly

Lg′
s̄′ (M1 ∩ C ′

k) ⊆ L1 ∩ C ′
k. So assume that the left-hand side of (3.12) is strictly

greater than one. We make use of the following implication which we verify at the

end of the proof:

|L̂| = |M̂ | ≥ 1 for L̂ ⊆ L1 ∩ C ′
k\{k}, Nk(g) ∩ K ⊆ M̂ ⊆ M1 ∩ C ′

k

⇒ Lg′
s̄′ (L̂)\M̂ 6= ∅ (3.13)

We know that it is ∅ 6= Nk(g) ∩ K ⊆ Nk(g′) ⊆ N ′
s̄′ . Let M̂0 := Nk(g) ∩ K such that

M̂0 ⊆ M1 ∩ C ′
k. Hence, it must be |L1 ∩ C ′

k\{k}| ≥ |M̂0| since otherwise we would

get
|L1 ∩ C ′

k|
|M1 ∩ C ′

k| ≤ |L1 ∩ C ′
k|

|M̂0|
≤ 1,

that is a contradiction to our assumption. So select a set of players L̂0 ⊆ L1 ∩C ′
k\{k}

with |L̂0| = |M̂0|. Note that M̂0 and L̂0 satisfy the conditions of implication (3.13).

Based on this, we can construct a sequence of players (j1, j2, j3, ...) in a certain

way such that according to the previous considerations, the underlying procedure

which sequentially adds players to the sequence can never break up. As in the proofs

of Lemma 3.1 and 3.2, this leads to a contradiction to the finiteness of the player

set N . Given such a sequence, let M̂m := {jl | 1 ≤ l ≤ m, l odd} ∪ M̂0 and

L̂m := {jl | 1 ≤ l ≤ m, l even} ∪ L̂0 for m ∈ N. Now consider some even number

m ∈ N ∪ {0}. Assume that L̂m ⊆ L1 ∩ C ′
k\{k}, Nk(g) ∩ K ⊆ M̂m ⊆ M1 ∩ C ′

k and

|L̂m| = |M̂m| ≥ 1. We then have:

• By implication (3.13) there exists jm+1 ∈ Lg′
s̄′ (L̂m)\M̂m. For this player it must

hold that jm+1 ∈ M1 ∩ C ′
k\M̂m since L̂m ⊆ L1 ∩ C ′

k\{k}.

• Then there must exist jm+2 ∈ L1 ∩ C ′
k\(L̂m+1 ∪̇ {k}) since otherwise we would
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have

1 <
|L1 ∩ C ′

k|
|M1 ∩ C ′

k| ≤ |L̂m+1 ∪̇ {k}|
|M̂m+1|

= 1.

Thus it is L̂m+2 ⊆ L1 ∩ C ′
k\{k}, Nk(g) ∩ K ⊆ M̂m+2 ⊆ M1 ∩ C ′

k and |L̂m+2| =

|M̂m+2| = |L̂m| + 1 ≥ 1. By induction this leads to a contradiction to the finiteness

of the player set N . This establishes equation (3.12), however, under the assumption

of having v∗
k(g′) = 1

2
.

During the second step we now use this to construct a concluding contradiction

of similar kind arising from the assumption that v∗
k(g′) = 1

2
. Here, we make use of

the following implication:

|L̃| = |M̃ | ≥ 1 for L̃ ⊆ L1 ∩ N ′
s̄′\K, M̃ ⊆ M1 ∩ N ′

s̄′\K ⇒ Lg′
s̄′ (L̃)\(M̃ ∪̇ K) 6= ∅

(3.14)

Its verification is postponed to the end of this proof as well. Note that by definition

it is |Lg
s̄′ (M̄)|
|M̄ |

≥ 1 for all g′-independent sets M̄ ⊆ N ′
s̄′ . Based on this, we can again

construct a sequence of players (i1, i2, i3, ...) such that, according to the previous

considerations, the sequential adding of new players can never break up. Thus, we

again get a contradiction to the finiteness of the player set N . For this purpose, we

define the sets M̃m := {il | 1 ≤ l ≤ m, l odd} and L̃m := {il | 1 ≤ l ≤ m, l even} for

m ∈ N.

Initially, select a player i1 ∈ M1 ∩N ′
s̄′\K. Such a player must exist as k ∈ L1 ∩N ′

s̄′

is part of a cycle in g|N\K∪{k} and, according to Lemma 3.2, we have M1 ∩ L′
s = ∅ for

all s < s̄′. Now consider some odd number m ∈ N. Assume that M̃m ⊆ M1 ∩ N ′
s̄′\K,

L̃m ⊆ L1 ∩ N ′
s̄′\K and that |M̃m| = m+1

2
> m−1

2
= |L̃m|. We then have:

• M̃m ∪̇ (M1 ∩ C ′
k) ⊆ N ′

s̄′ is g′-independent and

|L̃m ∪̇ (L1 ∩ C ′
k)|

|M̃m ∪̇ (M1 ∩ C ′
k)| < 1

since it is |L1 ∩ C ′
k| = |M1 ∩ C ′

k| as we know from equation (3.12). As we

have k ∈ Lg′
s̄′ (M1 ∩ C ′

k) ⊆ L1 ∩ C ′
k, this implies that there must exist a player

im+1 ∈ Lg′
s̄′ (M̃m)\(L̃m ∪̇ K). It is im+1 ∈ L1 ∩ N ′

s̄′\(L̃m ∪̇ K) since M̃m ⊆ M1.

• We then have |L̃m+1| = |M̃m+1| = m+1
2

≥ 1 and L̃m+1 ⊆ L1 ∩ N ′
s̄′\K, M̃m+1 ⊆

M1 ∩ N ′
s̄′\K. Hence, by implication (3.14) there exists im+2 ∈

Lg′
s̄′ (L̃m+1)\(M̃m+1 ∪̇ K). It is im+2 ∈ M1 ∩ N ′

s̄′\(M̃m+1 ∪̇ K) since L̃m+1 ⊆ L1.
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Thus, we have M̃m+2 ⊆ M1 ∩ N ′
s̄′\K, L̃m+2 ⊆ L1 ∩ N ′

s̄′\K and |M̃m+2| = (m+2)+1
2

>
(m+2)−1

2
= |L̃m+2|. Again, by induction this leads to a contradiction to the finiteness

of the player set N . This proves that player k’s payoff must indeed be strictly greater

than 1
2
. The corresponding stability condition then yields

u∗
k(g) ≥ u∗

k(g − ki′) ⇔ v∗
k(g) − c ≥ v∗

k(g′) ⇒ 1 − x1 − c >
1

2
⇔ x1 + c <

1

2
,

which is a contradiction to Theorem 3.3. Hence, such a network g cannot be pairwise

stable.

It remains to prove implications (3.13) and (3.14). We start with the first one.

Given the two sets L̂ ⊆ L1 ∩ C ′
k\{k} and M̂ ⊆ M1 ∩ C ′

k with Nk(g) ∩ K ⊆ M̂

and |L̂| = |M̂ | ≥ 1 assume for contradiction that Lg′
s̄′ (L̂) ⊆ M̂ . Note that we

have Nj(g
′
s̄′) = Nj(g) for all j ∈ L̂ since it is L̂ ⊆ L1 ∩ N ′

s̄′\{k} and, according to

Lemma 3.2, M1 ∩ L′
s = ∅ for all s < s̄′. Together with the assumption this implies

that Lg(M1 ∩ K\M̂) ⊆ L1 ∩ K\L̂. Moreover, since Nk(g) ∩ K ⊆ M̂ , it even is

Lg(M1 ∩ K\M̂) ⊆ L1 ∩ K\(L̂ ∪̇ {k}).

Additionally, we need the following inequalities:

|L1 ∩ K| − 1

|M1 ∩ K| ≤ r1 ≤ |L1 ∩ K|
|M1 ∩ K| ≤ 1 (3.15)

To see that these are correct, note first that it is Lg(M1 ∩ K) ⊆ L1 ∩ K and similarly

Lg(M1\K) ⊆ L1\K ∪̇{k}. So we must have r1 ≤ |L1∩K|
|M1∩K|

and r1 ≤ |L1\K|+1
|M1\K|

as r1 is the

minimal shortage ratio. Moreover, it is r1 = |L1|
|M1|

< 1, M1 = (M1 ∩ K) ∪̇ (M1\K) and

L1 = (L1 ∩K)∪̇(L1\K). Together this implies that |L1∩K|−1
|M1∩K|

= |L1|−(|L1\K|+1)
|M1|−|M1\K|

≤ r1. In

particular, this means that |L1 ∩K|−1 < |M1 ∩K| which in turn implies |L1∩K|
|M1∩K|

≤ 1.

According to the third inequality in (3.15) we must have M1 ∩ K\M̂ 6= ∅ since

otherwise it would be |L1 ∩ K| ≤ |M1 ∩ K| = |M̂ | = |L̂| < |L̂ ∪̇ {k}| ≤ |L1 ∩ K|.
Taken together, this leads to the following contradiction:

r1 ≤ |Lg(M1 ∩ K\M̂)|
|M1 ∩ K\M̂ |

≤ |L1 ∩ K\(L̂ ∪̇ {k})|
|M1 ∩ K\M̂ |

=
|L1 ∩ K| − |L̂| − 1

|M1 ∩ K| − |M̂ |

=
|L1 ∩ K| − 1 − |L̂|

|M1 ∩ K| − |L̂|
<

|L1 ∩ K| − 1

|M1 ∩ K| ≤ r1,

where the last two inequalities are due to (3.15) and the fact that r1 < 1.
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Similarly, to prove implication (3.14), we consider the two sets L̃ ⊆ L1 ∩ N ′
s̄′\K

and M̃ ⊆ M1 ∩ N ′
s̄′\K with |L̃| = |M̃ | ≥ 1 and assume for contradiction that we

have Lg′
s̄′ (L̃) ⊆ M̃ . Again according to Lemma 3.2, it must be Nj(g

′
s̄′) = Nj(g) for

all j ∈ L̃. Hence, we have that Lg(M1\M̃) ⊆ L1\L̃. Also, it is clear that M1\M̃ 6= ∅
since otherwise we would have |L1| < |M1| = |M̃ | = |L̃| ≤ |L1|. Summing up, this

implies

r1 ≤ |Lg(M1\M̃)|
|M1\M̃ | ≤ |L1\L̃|

|M1\M̃ | =
|L1| − |L̃|

|M1| − |M̃ | =
|L1| − |L̃|
|M1| − |L̃| <

|L1|
|M1|

= r1,

which is obviously again a contradiction. So we have that Lg′
s̄′ (L̃)\(M̃ ∪̇K) 6= ∅ since

it is Lg′
s̄′ (L̃) ⊆ K∁. This concludes the proof.

3.A.7 Proof of Theorem 3.4 (for n odd)

Consider a network g and let n = |N | be odd (as only this case is remaining).

Considering again N̄(g) instead of N as player set, let gSP L
N̄(g)

denote a representative

of the networks consisting of |N̄(g)|−3
2

separated pairs and one line of length three.

Similarly, let gSP C
N̄(g)

be a network consisting of |N̄(g)|−3
2

separated pairs and one three-

player circle. Since we did not utilize that n was even to derive inequality (3.5), we

again have

U∗(g) ≤ 1

2
|N̄(g)| − 2d#(g)c.

Again, since ηi(g) ≥ 1 for all i ∈ N̄(g), we must have d#(g) ≥ 1
2
|N̄(g)|. We now

distinguish two cases.

Case 1: |N̄(g)| even

If we have d#(g) = 1
2
|N̄(g)| here, then this implies again that g = gSP

N̄(g)
. So conversely,

for a network g 6= gSP
N̄(g)

this means that we have d#(g) > 1
2
|N̄(g)| and therefore,

according to (3.5),

U∗(g) <
1

2
|N̄(g)| − |N̄(g)|c =

∑

i∈N̄(g)

(1

2
− c

)

= U∗(gSP
N̄(g)).

Case 2: |N̄(g)| odd

Note first that it must be d#(g) ≥ 1
2
(|N̄(g)|+1) as the interval

[
1
2
|N̄(g)|, 1

2
(|N̄(g)|+1)

)

does not contain an integer here. Consider the following subcases.
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Subcase 2(a): d#(g) = 1
2
(|N̄(g)| + 1)

This subcase implies that g = gSP L
N̄(g)

. This is because otherwise we would either have

ηj(g) ≥ 3 for at least one player j ∈ N̄(g) or ηk(g), ηl(g) ≥ 2 for k, l ∈ N̄(g), k 6= l,

which both would give d#(g) ≥ 1
2
(4 + (|N̄(g)| − 2)) = 1

2
(|N̄(g)| + 2) > 1

2
(|N̄(g)| + 1).

Subcase 2(b): d#(g) = 1
2
(|N̄(g)| + 3)

Here, g must either be

(i) a network with three players having two links each and |N̄(g)| − 3 players with

one link,

(ii) a network consisting of one player with three links, one player with two links

and |N̄(g)| − 2 players with one link or

(iii) a network with one player having four links and |N̄(g)| − 1 players with one

link.

Note that the network gSP C
N̄(g)

is included here in Class (i). On closer examination, one

finds that, for any other g 6= gSP C
N̄(g)

belonging to Class (i), (ii) or (iii), the algorithm

A(g) (with N1 = N̄(g)) yields |M1| > |L1|. This implies a strict inequality in (3.5).

Hence, for g 6= gSP C
N̄(g)

with d#(g) = 1
2
(|N̄(g)| + 3) it is

U∗(g) <
1

2
|N̄(g)|−2d#(g)c =

1

2
|N̄(g)|−(|N̄(g)|+3)c = |N̄(g)|

(1

2
−c
)

−3c = U∗(gSP C
N̄(g)).

Subcase 2(c): d#(g) > 1
2
(|N̄(g)| + 3)

In this subcase, again according to (3.5), we have

U∗(g) ≤ 1

2
|N̄(g)|−2d#(g)c <

1

2
|N̄(g)|−(|N̄(g)|+3)c = |N̄(g)|

(1

2
−c
)

−3c = U∗(gSP C
N̄(g)).

Summarizing this, we have shown that a network g /∈
{

gSP
N̄(g)

, gSP L
N̄(g)

, gSP C
N̄(g)

}

cannot

be efficient. To conclude the proof, we have to examine which of the remaining

candidates is efficient depending on the level of linking costs. Note that for the set

N̄(g) it must hold that 0 ≤ |N̄(g)| ≤ n and |N̄(g)| 6= 1. Moreover, recall that gSP
N̄(g)

is only well-defined for |N̄(g)| even while gSP L
N̄(g)

and gSP C
N̄(g)

only are so for |N̄(g)| odd.

Thus, we have

max
N̄(g) feasible

U∗(gSP
N̄(g)) = max

N̄(g) feasible
|N̄(g)|

(1

2
− c

)

=







0, for c ≥ 1
2

(n − 1)
(

1
2

− c
)

, for c ∈
(

0, 1
2

) ,
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max
N̄(g) feasible

U∗(gSP L
N̄(g)) = max

N̄(g) feasible
|N̄(g)|

(1

2
− c

)

−
(

c +
1

6

)

=







4
3

− 4c, for c ≥ 1
2

n
(

1
2

− c
)

−
(

c + 1
6

)

, for c ∈
(

0, 1
2

) ,

max
N̄(g) feasible

U∗(gSP C
N̄(g)) = max

N̄(g) feasible
|N̄(g)|

(1

2
− c

)

− 3c

=







3
2

− 6c, for c ≥ 1
2

n
(

1
2

− c
)

− 3c, for c ∈
(

0, 1
2

) .

Hence, for c ≥ 1
2

it is

max
N̄(g) feasible

U∗(gSP L
N̄(g)), max

N̄(g) feasible
U∗(gSP C

N̄(g)) < 0 = max
N̄(g) feasible

U∗(gSP
N̄(g)).

So in this case, a network g ∈
{

gSP L
N̄(g)

, gSP C
N̄(g)

}

cannot be efficient. For c > 1
2
, g with

N̄(g) = ∅ is the unique maximizer of U∗(gSP
N̄(g)

), meaning that the empty network

is uniquely efficient. On the contrary, for c = 1
2
, any network g = gSP

N̄(g)
maximizes

U∗(gSP
N̄(g)

), meaning that a network is efficient if and only if it is a union of separated

pairs and isolated players.

Concerning linking costs c ∈ (0, 1
2
) we calculate

max
{

−
(1

2
− c

)

, −
(

c +
1

6

)

, −3c
}

=







−
(

1
2

− c
)

, for c ≥ 1
6

−
(

c + 1
6

)

, for c ∈
[

1
12

, 1
6

]

−3c, for c ≤ 1
12

.

This means that a network is efficient for linking costs

• c ∈ [1
6
, 1

2
] if and only if it is a union of n−1

2
separated pairs and one isolated

player,

• c ∈ [ 1
12

, 1
6
] if and only if it is a union of n−3

2
separated pairs and a line of length

three,

• c ∈ (0, 1
12

] if and only if it is a union of n−3
2

separated pairs and a three-player

circle.

This concludes the proof.
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3.A.8 Proof of Example 3.2

The second part of the example is an immediate consequence of Theorem 3.2. So

consider the case δ ∈ (0, 1). To start with, we solve the equation

v1 =
(

1 − n − 1

n(n − 1)

)

δv1 +
n − 1

n(n − 1)
(1 − δv1)

which gives v1 = 1
(1−δ)n+2δ

. Obviously, it is v1 ∈ (0, 1
2
) which implies 1 − δv1 > δv1.

Moreover, we have d#(gN) = n(n−1)
2

and all players are in symmetric positions. This

shortcut avoiding extensive calculations establishes that the n-tuple (v1, v1, ..., v1)

solves the equation system (3.1) for the network gN . Therefore, we have

v∗δ
i (gN) =

1

(1 − δ)n + 2δ
(3.16)

for all i ∈ N . Next, consider the network gN − ij for some i, j ∈ N . For this purpose,

let ṽ = (ṽ1, ṽ2, ..., ṽn) be given by

ṽi = ṽj =
(1 − δ)n2 + (2δ − 1)n − (δ + 2)

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)
,

ṽk =
(1 − δ)n2 + δn − (2δ + 1)

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)
,

(3.17)

where k ∈ N\{i, j}. By showing that the denominator of the terms in (3.17) is in

both cases greater than the numerator and that both numerators are greater than

zero, we establish first that ṽ ∈ (0, 1)n. For δ ∈ (0, 1) and n ≥ 4 we have

(

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)
)

−
(

(1 − δ)n2 + (2δ − 1)n − (δ + 2)
)

= (1 − δ)2n3 + (1 − δ)(3δ − 1)n2 + (2δ2 + δ − 2)n − δ(2δ + 1)

= (1 − δ)n
[

(1 − δ)n2 + (3δ − 1)n − (2δ + 3)
]

+ n − δ(2δ + 1)

> (1 − δ)n[2n − (2δ + 3)] + n − δ(2δ + 1)

> (1 − δ)n[2n − 5] + (n − 3)

> 0
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and

(

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)
)

−
(

(1 − δ)n2 + δn − (2δ + 1)
)

= (1 − δ)2n3 + (1 − δ)(3δ − 1)n2 + (2δ2 + 2δ − 3)n − (2δ2 + 1)

= (1 − δ)n
[

(1 − δ)n2 + (3δ − 1)n − (2δ + 4)
]

+ n − (2δ2 + 1)

> (1 − δ)n[2n − (2δ + 4)] + n − (2δ2 + 1)

> (1 − δ)n[2n − 6] + (n − 3)

> 0,

and, moreover,

(1 − δ)n2 + (2δ − 1)n − (δ + 2) > n − (δ + 2) > n − 3 > 0,

(1 − δ)n2 + δn − (2δ + 1) > n − (2δ + 1) > n − 3 > 0.

Next, we show that it is 1 − δṽi − δṽk > 0 and 1 − 2δṽk > 0, which implies that

max{1 − δṽi, δṽk} = 1 − δṽi, max{1 − δṽk, δṽi} = 1 − δṽk and max{1 − δṽk, δṽk} =

1 − δṽk. We calculate

1 − δṽi − δṽk =
(δ2 − 2δ + 1)n3 + (−δ2 + δ)n2 + (−δ2 + 4δ − 3)n + (δ2 + δ − 2)

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

=
(1 − δ)

[

(1 − δ)n3 + δn2 + (δ − 3)n − (δ + 2)
]

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

>
(1 − δ)[n2 + (δ − 3)n − (δ + 2)]

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

>
(1 − δ)[

>0
︷ ︸︸ ︷

n2 − 3n − 3]

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

> 0

and

1 − 2δṽk =
(δ2 − 2δ + 1)n3 + (−δ2 + δ)n2 + (3δ − 3)n + (2δ2 − 2)

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

=
(1 − δ)

[

(1 − δ)n3 + δn2 − 3n − 2(δ + 1)
]

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

>
(1 − δ)[n2 − 3n − 2(δ + 1)]

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)
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>
(1 − δ)[

≥0
︷ ︸︸ ︷

n2 − 3n − 4]

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

≥ 0.

Furthermore, note that d#(gN − ij) = n(n−1)−2
2

and, hence, for the network gN − ij

equation system (3.1) is equivalent to

vl =
(

1 − n − 2

n(n − 1) − 2

)

δvl +
n − 2

n(n − 1) − 2
max{1 − δvk, δvl},

vk =
(

1 − n − 1

n(n − 1) − 2

)

δvk +
2

n(n − 1) − 2
max{1 − δvl, δvk} (3.18)

+
n − 3

n(n − 1) − 2
max{1 − δvk, δvk},

for all l ∈ {i, j}, k ∈ N\{i, j}. Using our preparatory work, one can show by

straightforward calculations that ṽ as given in (3.17) is a solution to the system

(3.18). Hence, as we know from Manea (2011, Theorem 1) that this solution is

unique, the equilibrium payoff vector is v∗δ(gN − ij) = ṽ.

After deriving the payoffs in both networks gN and gN − ij, it remains to show

that for all δ ∈ (0, 1) and n ≥ 4 there exists c̄ > 0 such that for all c ∈ (0, c̄] and

i, j ∈ N it is

v∗δ
i (gN) − v∗δ

i (gN − ij) ≥ c. (3.19)

For this purpose let

c̄ :=
2(1 − δ)(n − 1)

(
(1 − δ)n + 2δ

)(
(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

) .

Note that the denominator is positive as it is the product of the denominators of the

terms in (3.16) and (3.17). Hence, we have c̄ > 0 and calculate

v∗δ
i (gN ) − v∗δ

i (gN − ij)

=
1

(1 − δ)n + 2δ
− (1 − δ)n2 + (2δ − 1)n − (δ + 2)

(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

=
(δ2 − 2δ + 1)n2 + (−3δ2 + 4δ − 1)n + (2δ − 2)

(
(1 − δ)n + 2δ

)(
(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

)

=
(1 − δ)

[
(1 − δ)n2 + (3δ − 1)n − 2

]

(
(1 − δ)n + 2δ

)(
(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

)
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>
(1 − δ)[2n − 2]

(
(1 − δ)n + 2δ

)(
(δ2 − 2δ + 1)n3 + (−3δ2 + 3δ)n2 + (2δ2 + 3δ − 3)n − (2δ2 + 2δ + 2)

)

= c̄.

This concludes the proof of the example and Appendix 3.A.

Appendix 3.B Relation to the Works of

Hellmann (2013) and Hellmann

and Landwehr (2014)

As mentioned in Sections 3.1 and 3.3, there is a strand of literature which provides

some general results about existence, uniqueness and the structure of (pairwise) sta-

ble networks. Prima facie, at least some findings of Hellmann (2013) and Hellmann

and Landwehr (2014) are most likely in line for an application to our framework. Ac-

cording to Hellmann (2013) the existence of a pairwise stable network is, for instance,

guaranteed if the profile of utility or profit functions is ordinal convex in own links

and satisfies ordinal strategic complements. Other findings of Hellmann (2013) and

Hellmann and Landwehr (2014) concerning these issues are further and among other

properties based on concavity, anonymous convexity, the strategic substitutes prop-

erty or strong preference for centrality. In this appendix, we first provide explanations

and definitions of these concepts. Second, we provide appropriate counterexamples

which demonstrate that, among these properties, the profit function considered in

our model with δ → 1 does not satisfy some crucial ones at least for a broad range

of cost levels. In this light, this confirms that our analysis is not a special case of

questions which have already been answered before but of some independent interest.

The findings of Hellmann (2013) and Hellmann and Landwehr (2014) are mainly

based on marginal effects of link creation. To be able to summarize certain properties

in this context and to make use of the subsequent counterexamples we require some

additional notation. For a given network g and ij /∈ g let ∆ui(g+ij, ij) := ui(g+ij)−
ui(g) denote the marginal utility of the link ij for player i ∈ N . Further, let the set of

all own links of a player i ∈ N in a network g be denoted by Li(g) := {ij ∈ g | j ∈ N}
whereas L−i(g) := g − Li(g) denotes all other links.

At least one of the following properties is part of the conditions of each relevant

theorem, proposition or corollary of Hellmann (2013) and Hellmann and Landwehr

(2014).
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Definition 3.5 (Marginal Effects). A profile of utility functions (ui)i∈N

• is concave in own links if for all g ⊆ gN , i ∈ N, li ⊆ Li(g
N − g), ij /∈ g + li

we have

∆ui(g + ij, ij) ≥ ∆ui(g + li + ij, ij),

• is ordinal convex in own links if for all g ⊆ gN , i ∈ N, li ⊆ Li(g
N − g), ij /∈

g + li we have

(i) ∆ui(g + ij, ij) ≥ 0 ⇒ ∆ui(g + li + ij, ij) ≥ 0 and

(ii) ∆ui(g + ij, ij) > 0 ⇒ ∆ui(g + li + ij, ij) > 0,

• satisfies anonymous convexity if for all g ⊆ gN , i, j, k ∈ N with ηi(g) ≤ ηj(g),

ik ∈ g and jk /∈ g we have

∆ui(g, ik) ≥ 0 ⇒ ∆uj(g + jk, jk) ≥ 0,

• satisfies strong preference for centrality if for all g ⊆ gN , i, j, k ∈ N with

ηj(g) ≤ ηk(g), ij ∈ g and ik /∈ g we have

∆ui(g, ij) ≥ 0 ⇒ ∆ui(g + ik, ik) > 0,

• satisfies ordinal strategic complements (substitutes) if for all g ⊆ gN , i ∈
N, l−i ⊆ L−i(g

N − g), ij /∈ g we have

(i) ∆ui(g + ij, ij) ≥ 0 ⇒ (⇐) ∆ui(g + l−i + ij, ij) ≥ 0 and

(ii) ∆ui(g + ij, ij) > 0 ⇒ (⇐) ∆ui(g + l−i + ij, ij) > 0, and

• satisfies positive (negative) externalities if for all g ⊆ gN , jk /∈ g, i ∈ N\{j, k}
we have

ui(g + jk) ≥ (≤)ui(g).

We now provide counterexamples which establish that, at least for some cost

levels, the profile of profit functions (u∗
i )i∈N is neither concave or ordinal convex nor

does it satisfy anonymous convexity, strong preference for centrality, ordinal strategic

complements/substitutes or positive/negative externalities.

Counterexample 3.1 (Concavity). Consider the player set N with n = 7 and the

network g := {14, 45, 56, 67}. Further let l1 := {13}.
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Note first that it is l1 ⊆ L1(g
N − g) as required. Applying the algorithm A(·) to

the different networks gives

∆u∗
1(g + 12, 12) = u∗

1(g + 12) − u∗
1(g) =

1

2
− 2c −

(2

5
− c

)

=
1

10
− c, and

∆u∗
1(g + l1 + 12, 12) = u∗

1(g + l1 + 12) − u∗
1(g + l1) =

2

3
− 3c −

(1

2
− 2c

)

=
1

6
− c.

This yields ∆u∗
1(g + l1 + 12, 12) > ∆u∗

1(g + 12, 12) for all c > 0 which means that our

profit function is not concave.

Counterexample 3.2 (Ordinal Convexity). Consider the player set N with n = 4

and the network g := {24}. Further let l1 := {13, 14}.

Note again first that we have l1 ⊆ L1(g
N − g) in this counterexample as well. For

c ∈
(

0, 1
3

]

we calculate by using the algorithm A(·) that

∆u∗
1(g + 12, 12) = u∗

1(g + 12) − u∗
1(g) =

1

3
− c − 0 ≥ 0, but

∆u∗
1(g + l1 + 12, 12) = u∗

1(g + l1 + 12) − u∗
1(g + l1) =

1

2
− 3c −

(1

2
− 2c

)

= −c < 0.

Thus, our profit function is in general not convex either, even not in ordinal notion.

Counterexample 3.3 (Anonymous Convexity and Strong Preference for Central-

ity). Consider the player set N with n = 4 and the network g := {13, 24}.

Note that it is ηi(g) = 1 for all i ∈ N . For c ∈
(

0, 1
2

]

we have according to the

outcome of A(·) that

∆u∗
1(g, 13) = u∗

1(g) − u∗
1(g − 13) =

1

2
− c − 0 ≥ 0, but both

∆u∗
2(g + 23, 23) = u∗

2(g + 23) − u∗
2(g) =

1

2
− 2c −

(1

2
− c

)

= −c < 0 and

∆u∗
1(g + 12, 12) = u∗

1(g + 12) − u∗
1(g) =

1

2
− 2c −

(1

2
− c

)

= −c < 0.

Thus, our profit function does neither in general satisfy anonymous convexity nor

strong preference for centrality.

Counterexample 3.4 (Ordinal Strategic Substitutes). Consider the player set N

with n = 5 and the network g := {14, 23}. Further let l−1 := {45}.

Note that, as required, we have l−1 ⊆ L−1(g
N − g) in this case. For c ∈

(

0, 1
15

]

we
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get again from A(·) that

∆u∗
1(g + l−1 + 12, 12) = u∗

1(g + l−1 + 12) − u∗
1(g + l−1) =

2

5
− 2c −

(1

3
− c

)

=
1

15
− c ≥ 0, but

∆u∗
1(g + 12, 12) = u∗

1(g + 12) − u∗
1(g) =

1

2
− 2c −

(1

2
− c

)

= −c < 0.

Hence, our profit function does not in general satisfy ordinal strategic substitutes.

Counterexample 3.5 (Ordinal Strategic Complements). Consider the player set N

with n = 4 and the network g := {14}. Further let l−1 := {23}.

Note first, that it is again l−1 ⊆ L−1(g
N − g). Calculating payoffs in the usual

way gives for c ∈
(

0, 1
6

]

that

∆u∗
1(g + 12, 12) = u∗

1(g + 12) − u∗
1(g) =

2

3
− 2c −

(1

2
− c

)

=
1

6
− c ≥ 0, but

∆u∗
1(g + l−1 + 12, 12) = u∗

1(g + l−1 + 12) − u∗
1(g + l−1) =

1

2
− 2c −

(1

2
− c

)

< 0.

Hence, our profit function does not in general satisfy ordinal strategic complements

either.

Counterexample 3.6 (Positive/Negative Externalities). Consider the player set N

with n = 4 and the network g := {12, 23}.

For this counterexample we calculate

u∗
1(g + 34) =

1

2
− c >

1

3
− c = u∗

1(g) and

u∗
2(g + 34) =

1

2
− 2c <

2

3
− 2c = u∗

2(g).

Consequently, our profit function does neither satisfy positive nor negative external-

ities for all c > 0.

Thus, the question of existence and structure of stable networks cannot be an-

swered by applying the results of Hellmann (2013) and Hellmann and Landwehr

(2014). In this sense, our problem seems to be independent and indeed requires a

detailed analysis as conducted in Section 3.3.
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Appendix 3.C Relation to the Work of

O’Donnell (2011)

In this appendix we discuss the closely related “honours thesis” of O’Donnell (2011).

First, we give a brief overview of his work which reveals major commonalities and

differences to our setting. In doing so, we point out some rather general issues con-

cerning his approach. Second, we go more into detail and focus on the proofs of

crucial results presented and applied in O’Donnell (2011, Chapter 4). Mainly by

providing straightforward counterexamples we argue that there are several shortcom-

ings in his line of argument. This unveils that his key result must be considered as

being unproven which means that, contrary to what is suggested, O’Donnell does not

provide a complete characterization of pairwise stable networks by far.73

Though entitled “Preliminary Results” (O’Donnell, 2011, p. 41), Chapter 4 is

rather fundamental for his work. The findings in this chapter are supposed to rule

out the possibility to be pairwise stable for a broad range of networks. Though the

line of argument is very different, regarding the underlying idea and significance for

his work the chapter’s results are comparable to Theorem 3.2 and Theorem 3.3 in

our work. O’Donnell states several lemmas whose proofs shall build on one another

and which shall finally combine to the following main result.

“Theorem 4.1: When c > 0, any link stable network G must be of degree two or less,

meaning it is made up of circle segments, line segments, and disconnected agents.”

(O’Donnell, 2011, p. 44)

As we establish in Section 3.3, this is true for non-singularly pairwise stable net-

works. Though we do not prove this, our further results suggest that this is indeed

even true for pairwise stable networks. However, there are various shortcomings

within O’Donnell’s proofs of the lemmas as we point out in the second part of this

appendix. Thus, the theorem might be true, however, based on the work of O’Donnell,

it can at most be considered as a conjecture.

This is followed by a rather descriptive chapter characterizing pairwise stable

networks (see O’Donnell, 2011, pp. 59–67). However, some questions remain open.

For instance, it is not clarified why line networks of length greater than three are never

pairwise stable. Also, the examination of odd circles is rather short and seems to be

incomplete as only the special cases of three and five player circles are considered

explicitly. Regarding its content and purpose, this chapter is comparable to our

73O’Donnell uses the expression “link stable” synonymously for “pairwise stable”.
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Theorem 3.1 and Corollary 3.1 where we establish sufficient conditions for networks

to be pairwise stable.74 There are no contradictions between both works here.

Next, O’Donnell (2011, pp. 69–78) focuses on “Nash stability” and “Pareto opti-

mality”, however, while redefining these notions. Usually, a network is called Nash

stable if it is supported by a Nash equilibrium in the non-cooperative network for-

mation game à la Myerson (1991, p. 448).75 This seems to be equivalent to what he

calls “strong Nash stability” while his notion of Nash stability does not seem to be

well-founded. Furthermore, in economics the notion of Pareto optimality or Pareto

efficiency is commonly associated with a status quo where no player can improve

without another one being worse off (see e.g. Pareto, 1964; Jackson, 2008b, p. 157).

However, O’Donnell uses it as follows: “[...] examining the set of networks that is

Pareto optimal, that is the set of networks that maximise the sum of the payoffs” (p.

69). This is rather a description of efficiency based on a utilitarian welfare notion that

we consider in Section 3.4. However, different from O’Donnell we give a complete

characterization of this class of networks.76 Moreover, we consider the concept of

pairwise Nash stability (see Corollary 3.5) which, different than one might suppose,

does not coincide with any of his alternative notions of stability. Finally, note that,

while examining the model for δ → 1, O’Donnell does not provide results for the case

δ ∈ (0, 1) which we consider in Section 3.5.

In the following second part of this appendix, we state most of O’Donnell’s lemmas

which are supposed to combine to establish the key result in his Theorem 4.1. How-

ever, as already announced, we reveal substantial shortcomings in the corresponding

proofs by providing appropriate counterexamples.

3.C.1 Lemma 4.1 of O’Donnell (2011)

“Lemma 4.1: Let r′
s and r′′

s be the minimum shortage ratios in the networks G′ and

G′′ respectively where G′ ⊂ G′′. It must be that r′
s ≤ r′′

s .” (O’Donnell, 2011, p. 45)

Note that O’Donnell uses capital letters when referring to networks. In what

follows we adopt this notation. The following two counterexamples demonstrate that

this statement is in general not true.

74 Note that, among other parts of the work at hand, I accomplished this (as well as the elaboration
of the model) before I became aware of O’Donnell’s thesis on March 06, 2014 and he kindly send it
to me by e-mail on April 08, 2014 (as it is not publicly available).

75Here, a Nash equilibrium denotes a strategy profile (s1, s2, ..., sn) where no player i ∈ N wants
to deviate from her strategy si ∈ {0, 1}n−1 which, together with the other players’ strategies,
determines a network g with jk ∈ g if and only if s

j
k = sk

j = 1 (see also Bloch and Jackson, 2006).
76See Footnote 74.
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Counterexample 3.7. Consider the player set N with n = 3 and the networks

G′ := {12} and G′′ := {12, 13}.

Note that, as required, we have G′ ⊂ G′′. However, the algorithms A(G′) and

A(G′′) yield r′
1 = 0 < 1

2
= r′′

1 but r′
2 = 1 while r′′

2 does not exist.

In the second counterexample, both algorithms stop after the same step but

Lemma 4.1 is still violated.

Counterexample 3.8. Consider the player set N with n = 8 and the networks

G′ := {12, 23, 34, 45, 56, 67} and G′′ := G′+68 = {12, 23, 34, 45, 56, 67, 68} as sketched

in Figure 3.7.

Figure 3.7: A sketch of the network G′ considered in Counterexample 3.8

Again, we obviously have G′ ⊂ G′′. Now, the algorithms A(G′) and A(G′′) yield

r′
1 = 0 < 1

2
= r′′

1 but r′
2 = 3

4
> 2

3
= r′′

2 .

However, following O’Donnell’s reasoning one can show that at least it holds that

r′
1 ≤ r′′

1 for G′ ⊂ G′′.

3.C.2 Lemma 4.2 of O’Donnell (2011)

Next, we consider Lemma 4.2. First, one notices that the statements in the preceding

explanation and in the lemma itself differ.

“Lemma 4.2: Let G be a network such that ij ∈ G and jk /∈ G. Then let G′ =

{ij|ij ∈ G} ∪ {ik}. Then vi(G) ≥ vi(G
′).” (O’Donnell, 2011, p. 46)

Here, vi(·) is equal to v∗
i (·) if one applies our notation. To avoid confusion, how-

ever, we again adopt O’Donnell’s notation in what follows. The statement is in

general not true as the next counterexample shows.

Counterexample 3.9. Consider the player set N with n = 3 and the network G :=

{12}.

Observe that for i = 1, j = 2 and k = 3 the network considered in the coun-

terexample satisfies the conditions of Lemma 4.2. We then have G′ = {12, 13} and

vi(G) = 1
2

< 2
3

= vi(G
′) which contradicts the above statement.
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If on the contrary we follow the explanation given as an introduction to the lemma,

it should read as follows.

Lemma 4.2’: Let G be a network such that ij ∈ G and jk /∈ G. Then let G′ =

{ij|ij ∈ G} ∪ {jk}. Then vi(G) ≥ vi(G
′).

This statement might be correct but there is a mistake in the proof. The author

argues that in the first case, where it is vi(G) < 1
2
, “player i’s payoff does not change”

(O’Donnell, 2011, p. 47) if G′ = G + jk is considered instead. This is not true as the

following counterexample reveals.

Counterexample 3.10. Consider the player set N with n = 4 and the network

G := {12, 24}.

Note that for i = 1, j = 2 and k = 3 the algorithm A(G) gives vi(G) = 1
3

< 1
2
.

Further we have G′ = G + jk = {12, 23, 24} and in this network the payoff of player

i is changed to vi(G
′) = 1

4
.

3.C.3 Lemma 4.3 of O’Donnell (2011)

To prepare for the following considerations, the set Li(G) ⊂ N “of players to whom

player i is connected to in G plus himself” (O’Donnell, 2011, p. 45) is defined. Thus,

we have Li(G) = Ni(G) ∪̇ {i} here, which implies |Li(G)| = ηi(G) + 1.

“Lemma 4.3: In any link stable network there exists a maximum number of links any

single player can have depending on c. This number is determined by the following

inequality. It is possible for a player to have Li links in a link stable network only if

1

(Li + 1)Li

− c ≥ 0.”

(O’Donnell, 2011, p. 48)

Possibly, he refers to a (link stable) network G and a player i here and has |Li(G)|
in mind when writing Li. The corresponding proof, however, is not convincing. The

author argues that Lemma 4.2 proves that it is sufficient to confine oneself to star

networks “in which the potential partners of i under consideration have no other

connections in the network” (O’Donnell, 2011, p. 48). Even if one assumes that this

is justified and neglects the fact that Lemma 4.2 or Lemma 4.2’ have to be considered

as unproven (see Appendix 3.C.2), a reasonable explanation is still missing here.
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3.C.4 Lemmas 4.5 and 4.6 of O’Donnell (2011)

“Lemma 4.5: It is not possible to have a link stable network where 0 < rs < 1
2
,

regardless of c > 0.” (O’Donnell, 2011, p. 51)

“Lemma 4.6: It is not possible to have a link stable network where 1
2

< rs < 1,

regardless of c > 0.” (O’Donnell, 2011, p. 53)

At first notice that it is not clear, which step s of the algorithm is considered here.

As we know from Corollary 3.2, the algorithm A(G) has to break off after the first

step s = 1 if G is pairwise stable and consisting of only one component. Therefore,

let us assume that O’Donnell refers to r1 in both lemmas. Under this assumption

the statements in both lemmas might indeed be true. However, they are again not

proven properly. Given partner set L, G-independent set M and players j, k ∈ M ,

the author argues within the proof of Lemma 4.5 that “if j and k were to link, then

j would receive:
L+1
M−1

1 + L+1
M−1

− Ljc ”

(O’Donnell, 2011, p. 51). Assuming that he means |L|, |M | and |Lj(G)| here, the

following counterexample shows that this is not true.

Counterexample 3.11. Consider the player set N with n = 5 and the star network

G := {12, 13, 14, 15}.

Note that for j = 2 and k = 3 it is j, k ∈ M here. Now consider G′ := G + jk.

Then the algorithm A(G′) gives

vj(G + jk) =
1

2
>

2

5
=

|L|+1
|M |−1

1 + |L|+1
|M |−1

which contradicts the above statement. Moreover, we know from Lemma 3.1 that for

a pairwise stable network G with r1 < 1 and j, k ∈ M we always have vj(G+jk) = 1
2
.

O’Donnell uses this in the proof of Lemma 4.6, however, without a proof, when stating

that “if j and k were to link, then j would receive: 1
2

− Ljc” (p. 54). Beyond that,

in the proof of Lemma 4.5 he infers that “0 < rs < 1
2

implies L+1
M−1

< 1” (p. 51). As

it can again easily be seen from the following counterexample this is not true.

Counterexample 3.12. Consider the player set N with n = 4 and the star network

G := {12, 13, 14}.

For this network the algorithm A(G) yields r1 = 1
3

< 1
2

but we have |L1|+1
|M1|−1

= 1.
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3.C.5 Lemma 4.7 of O’Donnell (2011)

“Lemma 4.7: If G is a link stable network where rs = 1
2
, then c = 1

6
.” (O’Donnell,

2011, p. 55)

If we assume as before that the author refers to step s = 1 here, then according

to our Theorem 3.3 this statement is true. However, even if we assume that all

statements in the previous lemmas were true (and proven properly), the proof of

Lemma 4.7 is again not exhaustive. To be more precise, the reasoning that “1
2

= rs

implies one or more disjoint line segments of three players” (O’Donnell, 2011, p.

55) is not correct. For instance, this becomes clear from examining the following

counterexample.

Counterexample 3.13. Consider the player set N with n = 6 and the network

G := {12, 13, 24, 34, 45, 46} as sketched in Figure 3.8.

Figure 3.8: A sketch of the network G considered in Counterexample 3.13

For the considered network the algorithm A(G) yields r1 = 1
2

though it does not

contain a (disjoint) line of length three.

3.C.6 Lemma 4.9 of O’Donnell (2011)

In his Lemma 4.9, O’Donnell (2011, p. 57) considers components of pairwise stable

networks which are neither isolated players nor lines. For such a component G′

O’Donnell states the following.

“Lemma 4.9: The network G′ is of degree two.”77 (O’Donnell, 2011, p. 57)

Though we suppose that this is indeed true, the following crucial inference in the

proof of Lemma 4.9 is not correct. O’Donnell argues that “a player i in the smallest

circle segment, [...] having more than two links” (pp. 57–58) and receiving, just as

every other player, a payoff of 1
2

is “strictly worse off than if she were just to have the

77A network is said to be of degree two if every player in this network has exactly two links.
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two links that keep him in the circle” (p. 58).78 This does not need to be the case as

the following counterexample reveals.

Counterexample 3.14. Consider the player set N with n = 9 and the network

G′ := {12, 17, 19, 23, 34, 45, 47, 56, 67, 78, 89} as sketched in Figure 3.9. Further let

c ∈ (0, 1
18

].

1

2

Figure 3.9: A sketch of the network G′ considered in Counterexample 3.14

Note that player 1 has more than two links and is contained in the smallest circle

segment, that is in one of the two smallest subnetworks of G′ which are a circle.

Evaluating the algorithm A(G′) gives that, as required, every player receives a payoff

of 1
2

in G′. Further, if player 1 deletes her link to player 2, she would still be contained

in the smallest circle (segment). However, if we consider the network G′ − 12 and

apply the algorithm A(G′ − 12), we get

v1(G
′ − 12) − 2c =

4

9
− 2c ≤ 1

2
− 3c = v1(G

′) − 3c.

Thus, player 1 is not worse off in G′ compared to G′ − 12.

In summary, one can state that, concerning the characterization of pairwise stable

networks, O’Donnell’s work is roughly comparable with the findings we derive in

Theorem 3.1 and Corollary 3.1 if one only considers the results he established properly

and correctly. In this context, notice again Footnote 74.

78A “circle (segment)” here is meant to be a (not necessarily component-induced) subnetwork
which is a circle.
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Chapter 4

Continuous Homophily and

Clustering in Random Networks

4.1 Introduction

Suppose you own a firm and want to fill an open vacancy through the social contacts

of one of your current employees. Whom would you ask to recommend someone?

Most probably you would address the worker who would himself perform best in the

position in question. While this seems to be intuitively reasonable, why do we expect

it to be optimal? One important reason is that people tend to connect to similar

others. This phenomenon is known as homophily (Lazarsfeld and Merton, 1954).

In this chapter, we introduce a continuous notion of homophily based on incor-

porating heterogeneity of agents into the Bernoulli Random Graph (BRG) model as

examined by Erdős and Rényi (1959). To this end, we propose a two-stage random

process which we call Homophilous Random Network model. First, agents are as-

signed characteristics independently drawn from a continuous interval and second a

network realizes, linking probabilities being contingent on a homophily parameter

and the pairwise distance between agents’ characteristics. This enables us to account

for homophily in terms of similarity rather than equality of agents, capturing the

original sociological definition instead of the stylized version up to now commonly

used in the economic literature.

As a first result, we determine the expected linking probabilities between agents

(Proposition 4.1) as well as the expected number of links (Corollary 4.2). We then

calculate the expected probability that an agent has a certain number of links (Propo-

sition 4.2), showing that the according binomial distribution of the original BRG

123
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model is preserved to some degree. Further, we establish a threshold theorem for any

given agent to be connected (Proposition 4.3). For all these (and further) results we

demonstrate that the BRG model is comprised as the limit case of no homophily and

we thus provide a generalization thereof. As a main result, we show that in our model

homophily induces clustering (Theorem 4.1), two stylized facts frequently observed

in real-world networks which are not captured by the BRG model.79 Furthermore,

clustering proves to be strictly increasing in homophily. As a second important fea-

ture of our model, two simulations indicate that even at high homophily levels the

well-known small-world phenomenon is preserved.80 We finally provide an application

of the Homophilous Random Network model within a stylized labor market setting

to answer the introductory questions.

In the literature the presence of homophily has been established in a wide range of

sociological and economic settings. Empirical studies on social networks discovered

strong evidence for the similarity of connected individuals with respect to age (see

e.g. Verbrugge, 1977; Marsden, 1988; Burt, 1991), education (see e.g. Marsden, 1987;

Kalmijn, 2006), income (see e.g. Laumann, 1966, 1973), ethnicity (see e.g. Baerveldt

et al., 2004; Ibarra, 1995) or geographical distance (see e.g. Campbell, 1990; Well-

man, 1996). For an extensive survey see McPherson et al. (2001). In recent years,

economists have developed an understanding of the relevance of network effects in

a range of economic contexts. Thus, bearing in mind the presence of homophily in

real-world networks can be of great importance for creating meaningful economic

models.

There already exists a strand of economic literature examining homophily effects

in different settings (see e.g. Currarini et al., 2009). Most of the models assume a

finite type space and binary homophily in the sense that an agent prefers to connect

to others that are of the same type while not distinguishing between other types.81

Thus, these models rather capture the idea of equality than of similarity. However,

in reality people are in many respects neither “equal” nor “different”. We therefore

believe that a notion that provides an ordering of the “degree of similarity” with

respect to which an agent orders his preference for connections can capture real-

world effects more accurately. This gives rise to a continuous notion of homophily in

networks.

79A network exhibits clustering if two individuals with a common neighbor have an increased
probability of being connected.

80The small-world phenomenon describes the observation that even in large networks on average
there exist relatively short paths between two individuals.

81For several homophily measures of this kind see Currarini et al. (2009).
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This approach is followed by Gilles and Johnson (2000) and Iijima and Kamada

(2014) who examine strategic, deterministic models of network formation. In both

models individual utility is shaped directly by homophily such that individuals con-

nect if (and only if) they are sufficiently similar. Iijima and Kamada (2014) consider

the extreme case of purely homophilous utility functions, entailing that a high level

of homophily is directly identified with efficiency. As opposed to this, in our random

graph model, a novel continuous homophily measure is incorporated as a parameter

that may be freely chosen to reflect a broad range of possible situations. In their

multi-dimensional framework, Iijima and Kamada (2014) examine clustering and the

average path length as functions of the number of characteristics agents take into

account when evaluating their social distance to others. In contrast, we investigate

the direct relation between homophily and these network statistics. The differences

in methodology especially lead to opposing results concerning the small-world phe-

nomenon. While in Iijima and Kamada (2014) small worlds only arise if agents

disregard a subset of characteristics, we show that this phenomenon is well present

in our one-dimensional setting.

Besides the presence of homophily, stylized facts such as the small-world phe-

nomenon and high levels of clustering have indeed been empirically identified in real-

world networks (see e.g. Milgram, 1967; Watts and Strogatz, 1998). As in many cases

these networks are very large and remain unknown for an analysis, typically random

networks are used as an approximation. This constitutes a challenge to design the

random network formation process in a way to ensure it complies with the observed

stylized facts.

Since the seminal work of Erdős and Rényi (1959), who developed and analyzed

a random graph model where a fixed number out of all possible bilateral connections

is randomly chosen, a lot of different models have been proposed (see e.g. Wasserman

and Pattison, 1996; Watts and Strogatz, 1998; Barabási and Albert, 1999). The most

commonly used until today is the BRG model where connections between any two

agents are established with the same constant probability. It has been shown that for

large networks this model is almost equal to the original model of Erdős and Rényi

(1959) (for details see Jackson, 2006; Bollobás, 2001).82 It is well understood that

this model reproduces the small-world phenomenon but does not exhibit clustering.

Also, a notion of homophily is not present as the described random process does

not rely on individual characteristics. The latter is also true for the small-world

model proposed by Watts and Strogatz (1998). Starting from a network built on a

82In fact, the BRG model rather than their original one is nowadays also known as the Erdős-Rényi
model.
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low-dimensional regular lattice, they reallocate randomly chosen links and obtain a

random network showing a small-world phenomenon. According to their notion this

encompasses an increased level of clustering. However, the socio-economic causality

of this occurrence remains uncertain. In this regard our model can to some extend

serve as a socio-economic foundation of the work of Watts and Strogatz (1998). An

approach to generate random graphs more similar to ours is proposed by the recently

emerging graph-theoretic literature on random intersection graphs (see e.g. Karonski

et al., 1999). Here, each node is randomly assigned a set of features. Connections are

then established between any two nodes sharing a given number of features. It has

been shown that the resulting graphs also exhibit clustering (Bloznelis, 2013).

In general, not much work has yet been dedicated to the incorporation of ho-

mophily into random networks. However, some papers exist that include similar ideas.

Jackson (2008a) analyzes the impact of increasing homophily on network statistics

such as clustering and the average distance of nodes. A finite number of types as

well as linking probabilities between them are exogenously given. Though linking

probabilities may vary among types, which allows for cases where similar types are

preferred, his notion of homophily remains binary. Golub and Jackson (2012) also

assume a finite number of types as well as the linking probabilities between them

to be exogenously given. Based on this they analyze the implications of homophily

in the framework of dynamic belief formation on networks. Bramoullé et al. (2012)

combine random link formation and local search in a sequentially growing society

of heterogeneous agents and establish a version of binary homophily along with a

degree distribution. Besides the continuous notion of homophily, a major distinc-

tion of our approach is the sequential combination of two random processes where

agents’ characteristics are considered as random variables that influence the random

network formation. We thus account for the fact that in many applications, in which

the network remains unobserved, it seems unnatural to assume that individual char-

acteristics, which in fact may depict attitudes, beliefs or abilities, are perfectly known.

We conclude this chapter by providing an application of our model for the labor

market, proposing an analysis of the introductory question: When is it optimal for

a firm to search for a new employee via the contacts of a current employee? We

assume the characteristic of each worker to be her individual ability to fill the open

vacancy and use our Homophilous Random Network model as an approximation of

the workers’ network. Given an agent and her characteristic, we determine the ex-

pected characteristic of a random contact (Proposition 4.4). This gives rise to a
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simple decision rule stating in which constellations firms should hire via the social

network. In particular, given sufficiently high levels of homophily and the current

employee’s ability, it proves to be optimal to always hire via the social network.

Within the job search literature, Horváth (2013) and Zaharieva (2013) incorpo-

rate homophily among contacts into job search models. However, these models are

again based on a binary concept of homophily and do not include an explicit notion

of networks. This research strand traces back to the work of Montgomery (1991) who

was the first to address this issue. Finally, our application to some extent captures

an idea proposed by Ioannides and Loury (2004) to combine this class of models with

a random network setting à la Erdős-Rényi.83

The rest of the chapter is organized as follows. In Section 4.2 we set up the model.

Section 4.3 reveals basic properties of homophilous random networks while results on

clustering can be found in Section 4.4. In Section 4.5 we simulate the model focusing

on the small-world phenomenon. Section 4.6 contains the labor market application

and Section 4.7 concludes. Proofs of most results are provided in the appendix.

4.2 The Model

We set up a model of random network formation where first each agent is randomly

assigned a continuous characteristic which then influences the respective linking prob-

abilities. We refer to this as the Homophilous Random Network model. Consider a

set of agents N = {1, 2, ..., n}. A connection or (undirected) link between two agents

i, j ∈ N is denoted by ij = ji := {i, j}. By gN := {ij | i, j ∈ N} we denote the

complete network, that is the network where any two agents are connected. Then,

we let G := {g | g ⊆ gN} be the set of all possible non-directed graphs or networks.

Further, we define Ni(g) := {j ∈ N | ij ∈ g} to be the set of neighbors of agent i in

network g, and let ηi(g) := |Ni(g)| denote the number of her neighbors. This is some-

times also referred to as the degree of agent i. Each agent is assigned a characteristic

pi where the vector p = (p1, p2, ..., pn) denotes a certain realization of the random

variable P = (P1, P2, ..., Pn). The underlying distribution of each Pi is assumed to be

standard uniform. Hence, all Pi are identically and independently distributed.

83Ioannides and Loury (2004, p. 1068) state “It would be interesting to generalize the model of
social structure employed by Montgomery, by assuming groups of different sizes. For example, one
may invoke a random graphs setting (Paul Erdős and Alfred Rényi 1960; Ioannides 1997), where a
fraction of the entire economy may be in groups whose sizes are denumerable but possibly large.”
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Subsequent to the assignment of characteristics a random network forms. Here,

based on the Bernoulli Random Graph (BRG) model as introduced by Erdős and

Rényi (1959), we assume the following variation. The linking probability of two agents

i, j ∈ N is given by

q(pi, pj) := λa|pi−pj |, (4.1)

where the scaling parameter λ ∈ [0, 1] and the homophily parameter a ∈ [0, 1] are

exogenously given and independent of agents i and j. Note that, in situations where

the vector of characteristics is unknown, q(Pi, Pj) is a random variable such that the

linking probability q(pi, pj) is in fact a conditional probability. Figure 4.1 depicts the

linking probabilities q(pi, pj) for different homophily parameters a, first as a function

of the distance of characteristics and second as a function of pj for given pi = 0.25.

As in our model λ simply serves as a scaling parameter corresponding to the linking

probability in the BRG model, in Figure 4.1 it is fixed to one for simplicity.
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Figure 4.1: (a) Linking probability for all distances of characteristics for several
homophily parameters a; (b) Linking probabilities for an agent with characteristic
pi = 0.25 for several homophily parameters a

Let us shortly elaborate on the role of the homophily parameter a. Observe

that the linking probability q is decreasing in |pi − pj| as a takes values only in

[0, 1]. In particular, for a = 1 the model is equal to the BRG model as all linking

probabilities are equal to λ and hence independent of the agents’ characteristics.

On the contrary, if we have a = 0, then solely agents with identical characteristics

pi = pj get connected with probability λ while all other linking probabilities are zero.

Insofar, the parameter a serves as a measure of homophily in the model. Here, lower
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parameter values correspond to a higher homophily level in the network. The notion

at hand measures homophily in a continuous instead of a binary manner since the

distance function | · | is continuous. Note, however, that an increase in homophily

which leads to a decreased linking probability then also implies a decreased expected

degree of agents. Whenever suitable, one may therefore choose the scaling parameter

λ dependent on a such that the expected degree is kept constant for any level of

homophily.84 We make use of this possibility in Section 4.5 (see Simulation 4.1).

4.3 Basic Properties of Homophilous Random

Networks

This section constitutes a foundation for the upcoming main results. To this end,

we first need to collect several important properties of the Homophilous Random

Network model, such as the expected linking probabilities and the number of links

of agents. Moreover, we discuss a threshold theorem for an agent to be isolated.

This is of particular importance for the labor market application provided in Section

4.6. Throughout this section we explore, on the one hand, situations in which the

realization of one considered agent i ∈ N is known while all others are not and, on

the other hand, situations in which the whole vector of characteristics is unknown.

In any case we demonstrate that the BRG model is recuperated as the limit case of

no homophily and we thus provide a generalization thereof.

We start by determining the expected linking probabilities for two given agents

i, j ∈ N in the following proposition.

Proposition 4.1. Given agent i’s realized characteristic Pi = pi while all other

characteristics p−i are unknown, the expected probability that a certain link ij forms

is

E
P
[

P
G (ij ∈ G | P )

∣
∣
∣ Pi = pi

]

=
λ

ln(a)

(

api + a1−pi − 2
)

=: ϕ(λ, a, pi). (4.2)

If the vector p is unknown, the expected probability that the link ij forms is

E
P
[

P
G (ij ∈ G | P )

]

=
2λ

ln(a)2

(

a − 1 − ln(a)
)

=: Φ(λ, a). (4.3)

84According to Corollary 4.2, choosing λ = ηexp ln(a)2

2(n−1)(a−1−ln(a)) yields a fixed expected degree of ηexp

(if compatible).
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The proof of Proposition 4.1 as well as all subsequent proofs can be found in

the appendix. It is straightforward to understand that the function ϕ indeed has to

depend on characteristic pi as it makes a difference whether pi tends to the center

or to the boundaries of the interval [0, 1]. The closer pi is to 0.5 the smaller is the

expected distance to other agents’ characteristics, hence, the higher is the expected

linking probability ϕ. In particular, it is arg maxpi
ϕ = 0.5 and arg minpi

ϕ = {0, 1}
for all a ∈ (0, 1). To this respect, it is obvious that ϕ(λ, a, 0) ≤ Φ(λ, a) ≤ ϕ(λ, a, 0.5)

for all λ, a ∈ [0, 1]. Also, it is important to note that the expected linking probability

is decreasing in homophily, that is for all a ∈ (0, 1] we have

∂

∂a
Φ(λ, a) =

∂

∂a

[

2λ
a − 1 − ln(a)

ln(a)2

]

= 2λ
2(1 − a) + ln(a)(1 + a)

a ln(a)3
> 0.85

To verify intuition that our model reproduces the BRG model as a limit case and to

gain insights on the behavior in boundary cases, the following corollary is concerned

with the limits of the expected linking probabilities with respect to the homophily

parameter a.

Corollary 4.1. For maximal homophily, i.e. for a → 0, the expected linking proba-

bility is

lim
a→0

ϕ(λ, a, pi) = lim
a→0

Φ(λ, a) = 0. (4.4)

In case of no homophily, i.e. for a → 1, the expected linking probability is

lim
a→1

ϕ(λ, a, pi) = lim
a→1

Φ(λ, a) = λ. (4.5)

As usual, a proof is provided in the appendix. Maximal homophily in this model

means that only agents with identical characteristics would have a strictly positive

linking probability. However, since the standard uniform distribution has no mass

point, such two agents do not exist with positive probability. Therefore, both accord-

ing expected linking probabilities ϕ and Φ tend to zero. In case of no homophily, as

mentioned before, the model indeed reproduces the BRG model such that all linking

probabilities are alike, independent of individual characteristics p.

Based on Proposition 4.1, we also immediately get the expected number of links

of an agent.

85We indeed can include the value a = 1 here as it happens to be a removable discontinuity of the
derivative. On the contrary, at a = 0 the right-handed derivative is infinity as the expected number
of links is zero with probability one.
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Corollary 4.2. The expected number of links of an agent i with given characteristic

Pi = pi is

E
P
[

E
G [ηi(G) | P ]

∣
∣
∣ Pi = pi

]

= (n − 1)ϕ(λ, a, pi). (4.6)

Similarly, if p is unknown, we have

E
P
[

E
G [ηi(G) | P ]

]

= (n − 1)Φ(λ, a). (4.7)

A proof of this corollary is omitted as it is clear that all expected linking prob-

abilities are independent and, hence, the result follows directly from the proof of

Proposition 4.1. Observe that from this result, we can also calculate the expected

number of links in a network to be

n(n − 1)

2
Φ(λ, a).

Together with Corollary 4.1 this gives that the expected number of links is zero for

maximal homophily while in case of no homophily, again as in the BRG model, one

gets λn(n − 1)/2 links in expectation.

In what follows, we calculate the expected probability for an agent with given

characteristic to have a certain number of links. This entails that the model inherits

a version of the binomial distribution known from the BRG model.

Proposition 4.2. The expected probability that an agent i with given characteristic

Pi = pi has k ∈ {0, 1, ..., n − 1} links is given by

E
P
[

P
G (ηi(G) = k | P )

∣
∣
∣Pi = pi

]

=

(

n − 1

k

)

· ϕ(λ, a, pi)
k · (1 − ϕ(λ, a, pi))

n−k−1.

(4.8)

Observe that this form can be interpreted as a binomial distribution with param-

eters ϕ(λ, a, pi) and n − 1. Further, it is worth noting that the extreme cases meet

the expected outcome as we have

lim
a→0

E
P
[

P
G (ηi(G) = k | P )

∣
∣
∣Pi = pi

] (4.4)
=

(

n − 1

k

)

· 0k · 1n−k−1 =







1, if k = 0

0, else
,

lim
a→1

E
P
[

P
G (ηi(G) = k | P )

∣
∣
∣Pi = pi

] (4.5)
=

(

n − 1

k

)

· λk · (1 − λ)n−k−1 ,
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where the latter term, unsurprisingly, is equal to the probability for any agent to have

k links in the BRG model with independent linking probability λ. Unfortunately, the

calculation in case that the whole vector of characteristics p is unknown is analytically

not tractable.

One major reason why random network models are used frequently is to match

qualitative characteristics of real world networks. The Law of Large Numbers in

this case yields that large networks indeed meet these characteristics with a high

probability (see e.g. Jackson, 2008b, Chapter 4). A seminal contribution of Erdős

and Rényi (1959) was to provide so called threshold theorems for the case of the

BRG model. These results state that, if the network size n goes to infinity while

the linking probability λ(n) goes to zero slower than some threshold t(n), then the

limit network has a certain property with probability one. On the contrary, if λ(n)

goes to zero faster than t(n), then the limit network has the same property only

with probability zero.86 It is clear that this kind of results can only be found for

monotone properties, that is for those which yield that, if any network g has the

property, then also any network g′ ⊇ g has it. One example is the property that

a given agent has at least one link which we establish in the next proposition. For

instance, regarding our application of the labor market (Section 4.6) this feature is of

great importance. In that context, we assume this as a prerequisite as determining

the expected characteristic of a given agent’s contact is meaningful only if this agent

is not isolated.

Proposition 4.3. Assume a minimal level of homophily to be guaranteed as the

network size becomes large. Then the function t(n) = 1/(n − 1) is a threshold for a

given agent to be non-isolated in the following sense:

E
P
[

P
G (ηi(G) ≥ 1 | P )

∣
∣
∣Pi = pi

]

→ 1 ∀ pi ∈ [0, 1] if
−λ(n)/ ln(a(n))

t(n)
→ ∞,

E
P
[

P
G (ηi(G) ≥ 1 | P )

∣
∣
∣Pi = pi

]

→ 0 ∀ pi ∈ [0, 1] if
−λ(n)/ ln(a(n))

t(n)
→ 0.

First, note that in Proposition 4.3 the right-hand side conditions are equivalent

to ϕ(λ(n), a(n), p̂)/t(n) converging to infinity or zero, respectively, for any arbitrary

p̂ ∈ [0, 1]. For details refer to the proof in the appendix. What is surprising about

this (as well as about other threshold theorems), is the sharp distinction made by the

threshold t(n), in the sense that if the growth of probability ϕ passes the threshold

t(n), then the probability of any agent to be isolated changes “directly” from zero to

86For a more elaborate characterization of thresholds as well as several results see Bollobás (1998).
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one. What is more, notice that the threshold t(n) = 1/(n−1) is actually the same as

in the BRG model. However, it has to hold for ϕ rather than just for λ since in this

model both λ and a may vary with respect to the size of the network. Indeed, it does

not seem farfetched to assume that homophily increases with the network size as the

assortment of similar agents gets larger. Having understood this, one can directly

deduce the cases where only one of the two parameters varies with n.

Corollary 4.3. If a ≡ a(n) depends on n but λ does not, one gets that if a(n) goes

toward zero faster than exp(−n), then any given agent is isolated with probability one

in the limit while if a(n) does not go toward zero or at least slower than exp(−n),

then any given agent has at least one link with probability one in the limit.

If λ ≡ λ(n) depends on n but a does not, the condition collapses to the threshold of

t(n) for λ(n) as in the BRG model where any given agent has at least one link if

λ(n) grows faster than t(n) while if λ(n) grows slower than t(n), any given agent is

isolated with probability one.

Both parts of the corollary follow directly from Proposition 4.3 such that a proof

can be omitted.

4.4 Clustering

As mentioned in the introduction, a main criticism of the Bernoulli Random Graph

(BRG) model is that the resulting networks do not exhibit clustering while most

examples of real-world networks do so (see e.g. Watts and Strogatz, 1998; Newman,

2003, 2006). In this section, we show that our Homophilous Random Network model

indeed exhibits clustering and one can use the homophily parameter a to calibrate it

to a broad range of degrees of clustering.

The notion of clustering in general captures the extent to which connections in

networks are transitive, that is the frequency with which two agents are linked to

each other given that they have a common neighbor. Watts and Strogatz (1998), who

introduced this concept, measure the transitivity of a network by a global clustering

coefficient which denotes the average probability that two neighbors of a given agent

are directly linked as well. A random graph model is said to exhibit clustering if the

coefficient is larger than the general, unconditional linking probability of two agents

(see Newman, 2006). Considering the set of networks that contain some link ij ∈ gN ,

that is Gij := {g ⊆ gN | ij ∈ g} ⊂ G, this can be transferred to our model in the

following way:
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Definition 4.1 (Clustering). For the Homophilous Random Network model with λ ∈
[0, 1] and a ∈ (0, 1) the clustering coefficient is defined as

C(λ, a) := E
P
[

P
G (G ∈ Gjk | P )

∣
∣
∣ G ∈ Gij ∩ Gik

]

where i, j, k ∈ N . The model is said to exhibit clustering if we have C(λ, a) > Φ(λ, a).

The choice of the agents i, j and k obviously cannot have an influence in this

context since ex ante, i.e. before characteristics realize, all agents are assumed to be

equal. Further, recall that Φ gives the probability of two agents to be connected,

characteristics being unknown. The function C captures this probability as well,

however, conditional on the existence of a common neighbor. It should be clear that

the original BRG model does not exhibit clustering since every link is formed with

the same independent probability. As a main result of this chapter, we discover next

that, apart from the limit case of no homophily, our Homophilous Random Network

model has this feature and is insofar more realistic.

Theorem 4.1 (Clustering in Homophilous Random Networks). In the Homophilous

Random Network model the clustering coefficient is given by

C(λ, a) = λ
3
(

ln(a)a2 + ln(a) − a2 + 1
)

2
(

2 ln(a)a + 4 ln(a) + a2 − 8a + 7
) .

Given a non-extreme homophily parameter, the model exhibits clustering, that is we

have

C(λ, a) > Φ(λ, a)

for all λ ∈ (0, 1], a ∈ (0, 1).

The intuition for the proof of this theorem (which is again presented in the ap-

pendix) is the following: If there is homophily to some degree and two agents have a

common neighbor, then this fact contains additional information. The expected dis-

tance between these two agents is smaller than if there is no assumption about a com-

mon neighbor. Again due to homophily, it is therefore more likely that a link between

these two agents forms. Also, Figure 4.2 might contribute to a better understanding

of the situation. Note here that C(λ, a)/λ ≡ C(1, a) and Φ(λ, a)/λ ≡ Φ(1, a). One

can additionally perceive that the difference C(λ, a) − Φ(λ, a) is strictly decreasing

in a ∈ (0, 1) for all λ ∈ (0, 1], that is clustering is strictly increasing in the degree of

homophily.
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Figure 4.2: Clustering coefficient C(1, a) and unconditional linking probability Φ(1, a)
for all homophily parameters a ∈ (0, 1)

Again, it is of interest to consider the limit cases of maximal and no homophily

which we do in the following corollary.

Corollary 4.4. For maximal homophily, i.e. for a → 0, we have

lim
a→0

C(λ, a) = lim
a→0

[C(λ, a) − Φ(λ, a)] =
3

8
λ.

In case of no homophily, i.e. for a → 1, we get

lim
a→1

C(λ, a) = lim
a→1

Φ(λ, a) = λ.

If there is no homophily, we are again back in the BRG model which we already

know not to exhibit clustering. Insofar, the second part of the corollary is consis-

tent. However, the more interesting case is the one of maximal homophily. Though

in the limit no link forms with positive probability, one can deduce properties re-

garding the case of homophily being high, yet not maximal, due to continuity of the

functional forms. Let us clarify the intuition why the clustering coefficient takes a

value strictly between zero and λ if homophily is maximal. Recall first that we have

lima→0 Φ(λ, a) = 0 since for maximal homophily only agents with identical character-

istics are linked with positive probability and such two agents exist with probability
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zero. However, the clustering coefficient is a probability conditioned on the existence

of links to a common neighbor. This additional information implies that either char-

acteristics are equal or links have formed despite differing characteristics. Though

both events occur only with probability zero, this does not preclude them per se.

Having understood this, it should be clear that in the former case the probability of

the third link would indeed be λ while in the latter case it would still be zero. Taken

together, this yields lima→0 C(λ, a) ∈ (0, λ). It remains surprising, however, that the

clustering coefficient takes the specific value 3
8
λ.

4.5 The Small-World Phenomenon

Besides the presence of homophily and clustering, another stylized fact is frequently

observed in real-world networks which is widely known as the small-world phe-

nomenon. It captures the finding that, even in large networks, there typically exist

remarkably short paths between two individuals. The original BRG model is known

to reproduce this characteristic (see e.g. Bollobás, 2001; Chung and Lu, 2002).

Thus, in this section, we aim to establish the small-world phenomenon to be pre-

served in our Homophilous Random Network (HRN) model even in case of homophily

being high. For this purpose, we present and analyze simulations of homophilous ran-

dom networks as this issue seems to be no longer analytically tractable. Our simula-

tions provide a strong indication that also in cases of high homophily the small-world

phenomenon remains present. Additionally, we apply two alternative statistical no-

tions of clustering. It turns out that their values are not significantly different from

the analytical measure given in Definition 4.1. In the following, Figure 4.3 may al-

ready provide a first intuition regarding the differences between cases of high and low

homophily. In particular, while the total number of links is almost the same in both

simulated 100-agent networks, one observes clustering merely in the first case.

The notion of the small-world phenomenon usually grounds on the average short-

est path length between all pairs of agents belonging to a network and having a

connecting path. With regard to real-world networks the small-world phenomenon is

a rather vague concept since it is typically based on subjective assessments of path

lengths rather than on verifiable, definite criteria. However, most people will agree

that the values for several real-world networks as for instance compiled by Watts and

Strogatz (1998) and Newman (2003) are surprisingly low. Insofar, it could be said

that most of these networks exhibit the small-world phenomenon. A formal defini-

tion of the small-world phenomenon applicable to most random network models is
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Figure 4.3: (a) HRN with λ = 0.5, a = 10−8; #links = 484
(b) BRG with linking probability Φ(0.5, 10−8) = 0.0513; #links = 496
(created with MATLAB, 2014)

formulated by Newman (2003) and reads as follows:

Definition 4.2 (Small-World Phenomenon). A random network is said to exhibit the

small-world phenomenon if the average shortest path length d̄ between pairs of agents

having a connecting path scales logarithmically or slower with network size n while

keeping agents’ expected degree constant, that is if d̄/ ln(n) is non-increasing in n.

As already mentioned, it has been established that the original BRG model ex-

hibits the small-world phenomenon according to Definition 4.2 (see e.g. Bollobás,

2001; Chung and Lu, 2002). It is not clear, however, whether this still holds for our

generalization, given a considerably high level of homophily, but the results of the

following simulations provide some indication.

Prior to this, let us additionally introduce two statistical notions of clustering

which are frequently used in the literature and closely related to the one given in

Definition 4.1. The simulations allow to compare these for our model. Here, clustering

is associated with an increased number of triangles in the network. More precisely,
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both alternative clustering measures are defined based on the ratio of the number

of triangles and the number of connected triples. A triangle is a subnetwork of

three agents all of whom being connected to each other while a connected triple is a

subnetwork of three agents such that at least one of them is linked to the other two.

Formally, this amounts to the following definition.

Definition 4.3 (Statistical Clustering). For a given network with set of agents N =

{1, ..., n}, the (statistical) clustering coefficients C(1) and C(2) are determined by

C(1) :=
3 × number of triangles in the network

number of connected triples in the network
and

C(2) :=
1

n

∑

i∈N

number of triangles containing agent i

number of connected triples centered on agent i
.

The coefficient C(1) counts the overall number of triangles and relates it to the

overall number of connected triples in the network. The factor of three accounts for

the fact that each triangle contributes to three connected triples. The second one,

C(2), which goes back to Watts and Strogatz (1998), first calculates an individual

clustering coefficient for each agent and then averages these. Compared to the first

one, C(2) gives more weight to low-degree agents.87 Additionally, note that C(2) is

only well-defined if there are no isolated or loose-end agents in the network.

To capture both the heuristic and the formal approach to the small-world phe-

nomenon, we present the outcomes of two different simulations. In the first one, we

fix the number of agents n = 500 and the ex-ante expected degree of any agent i,

here denoted by ηexp, to ηexp := E[ηi] = 15. Furthermore, we select several homophily

levels ranging from no homophily, i.e. the limit case of the BRG model, to very high

homophily, represented by a = 10−8. For each parameter value of a, we then simu-

late a homophilous random network R = 1000 times and assess the averaged network

statistics. The parameters and network statistics of the simulation are stated in Table

4.1. We fix the expected degree by choosing λ = 15 ln(a)2

2(n−1)(a−1−ln(a))
(recall Corollary 4.2)

which enables us to compare the results for different homophily levels as this leads to

identical values for Φ(λ, a) in all cases. Recall that Φ captures the expected probabil-

ity of two agents to be connected, characteristics being unknown (recall Proposition

4.1).

Regarding the results of the simulation, we find that the average path length

increases in homophily. This is in line with intuition since agents with distant char-

87Referring to C(2), Newman (2003, p. 184) states “This definition effectively reverses the order
of the operations of taking the ratio of triangles to triples and of averaging over vertices – one here
calculates the mean of the ratio, rather than the ratio of the means.”
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Parameter / Statistics a = 1 a = 10−2 a = 10−4 a = 10−6 a = 10−8

n 500
R 1000
Exp. Degree ηexp 15
Exp. Linking Prob. Φ 0.0301

λ 0.0301 0.0882 0.1553 0.2239 0.2928

Avg. Degree η̄ 14.9990 15.0074 15.0098 14.9899 15.0037
(0.2475) (0.3064) (0.2986) (0.2925) (0.2839)

Avg. Shortest Path d̄ 2.5944 2.6288 2.8086 3.0806 3.3939
(0.0113) (0.0164) (0.0277) (0.0429) (0.0611)

d̄/ ln(n) 0.4175 0.4230 0.4519 0.4957 0.5461
(0.0018) (0.0026) (0.0045) (0.0069) (0.0098)

Clustering Coeff. C 0.0301 0.0411 0.0641 0.0892 0.1147

Clustering Coeff. C(1) 0.0301 0.0411 0.0642 0.0891 0.1147
(0.0013) (0.0016) (0.0023) (0.0029) (0.0035)

Clustering Coeff. C(2) 0.0301 0.0411 0.0642 0.0892 0.1148
(0.0015) (0.0019) (0.0026) (0.0032) (0.0039)

Table 4.1: Results of Simulation 4.1 comparing network statistics for different ho-
mophily levels ranging from no homophily (BRG) to extreme homophily; Standard
errors stated in parentheses (carried out with MATLAB, 2014)

acteristics are increasingly likely to be distant in the network. However, it increases

by less than one link from no to highest homophily. Also, an average distance of less

than 3.4 between two agents can still be considered relatively small in a network of

500 agents with about 15 links on average. Thus, regarding the heuristic approach,

it seems reasonable to accept the small-world phenomenon to be exhibited for all

homophily levels.88

Furthermore, we observe an increasing level of clustering for the simulated ho-

mophilous random networks. This is in line with the findings in Section 4.4. If

homophily is highest, the probability that two agents are linked, given they have a

common neighbor, is about four times as high as in the case of the Bernoulli Random

Graphs where this probability coincides with the unconditional linking probability

Φ(λ, a). Another expectable, yet important observation is that there are no signifi-

cant differences between the expected clustering coefficient C (recall Definition 4.1)

and the values we determined for the statistical coefficients C(1) and C(2) (recall Def-

inition 4.3).89 To sum up, Simulation 4.1 indicates that the Homophilous Random

88To calculate average shortest paths, one commonly restricts to agents having a connecting path
if the network has more than one component. However, such a network realized extremely rarely in
this simulation, namely only in 0.06% of all cases.

89Note that isolated and loose-end agents never appeared in the simulation guaranteeing that C(2)
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Network model exhibits the small-world phenomenon and clustering at the same time

for all a ∈ (0, 1). In what follows, we consider the most interesting case of highest

homophily captured by a = 10−8 in more detail.

The second simulation focuses on the formal Definition 4.2 of the small-world

phenomenon. For this purpose, we simulate a collection of R = 100 networks for each

size n = 150, 200, 250, ..., 1000 and compute the respective averages of the relevant

network statistics. To this end, we consider the parameter of highest homophily that

is regarded in Simulation 4.1. The precise data is stated in Table 4.2. Note that the

simulation for each network size is structurally the same as in the first simulation,

merely a smaller number of iterations is chosen due to computational restrictions.

However, as can be seen in Table 4.1, all standard errors and especially the one of

the ratio d̄/ ln(n) are very low. Thus, 100 iterations should be sufficient to generate

a precise estimate.

In Figure 4.4, we plot the ratio of the average shortest path length and the log-

arithm of the network size d̄/ ln(n) for the different network sizes n. This ratio is

decreasing in n as the illustration reveals. From this, we deduce that the average

path length d̄ increases slower in n than ln(n) does. Thus, the homophilous random

networks exhibit the small-world phenomenon according to Definition 4.2.
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Figure 4.4: Small World of HRN with n from 150 to 1000 and constant expected
degree 15 (created with MATLAB, 2014)

was steadily well-defined.
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Parameter / Statistics n = 150 200 250 300 350 400
R 100
a 10−8

Expected Degree ηexp 15
Average Degree η̄ 14, 99 15, 02 14, 98 15, 02 14, 97 15, 00

Average Shortest Path d̄ 3, 05 3, 14 3, 19 3, 25 3, 29 3, 33

d̄/ ln(n) 0, 609 0, 593 0, 577 0, 569 0, 562 0, 556

Parameter / Statistics n = 450 500 550 600 650 700
R 100
a 10−8

Expected Degree ηexp 15
Average Degree η̄ 15, 01 15, 03 15, 02 15, 01 15, 00 15, 01

Average Shortest Path d̄ 3, 35 3, 39 3, 42 3, 44 3, 47 3, 50

d̄/ ln(n) 0, 549 0, 545 0, 543 0, 538 0, 536 0, 534

Parameter / Statistics n = 750 800 850 900 950 1000
R 100
a 10−8

Expected Degree ηexp 15
Average Degree η̄ 14, 99 14, 98 15, 03 15, 04 14, 97 15, 01

Average Shortest Path d̄ 3, 52 3, 54 3, 55 3, 57 3, 59 3, 61

d̄/ ln(n) 0, 532 0, 529 0, 526 0, 524 0, 524 0, 522

Table 4.2: Results of Simulation 4.2 computing average degrees, shortest paths and
small world ratios of the HRN model for a growing network size (carried out with
MATLAB, 2014)

4.6 An Example of the Labor Market

While in the previous sections, a theoretical analysis of the suggested Homophilous

Random Network model is presented, we now provide one possible economic appli-

cation. In recent years, more and more research in the field of labor economics has

been dedicated to understanding the mechanisms of different hiring channels. One

of these channels which is commonly used in reality relies on the contacts of current

employees. Starting with the seminal contribution of Montgomery (1991), a lot of

researchers decided to model connections between workers as a social network (see

e.g. Calvó-Armengol, 2004; Calvó-Armengol and Jackson, 2007; Dawid and Gemkow,
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2014).90 As known from the extensive sociological literature (see Section 4.1), in these

social networks, one should expect to observe homophily with respect to skills or com-

petence, performance, education, level of income, and geographical distance. While

there are lots of empirical studies confirming the existence of homophily in workers’

social contacts and analyzing the implications thereof (see e.g. Mayer and Puller,

2008; Rees, 1966), only few work has yet been dedicated to developing theoretical

models capturing this effect.91

In our application, we consider a risk-neutral firm that plans to fill an open va-

cancy. Two possible hiring channels are available. On the one hand, there is the

formal job market and, on the other hand, the possibility to hire a contact of its cur-

rent employee. Based on the model introduced in Section 4.2, we consider n workers

and a vector of characteristics p capturing the ability of each worker to do the vacant

job. W.l.o.g. we assume that agent 1 is the current employee of the firm while all

other agents 2, ..., n are supposed to be available on the job market. While we fix p1 as

a parameter of the model, meaning that the firm knows the ability of its current em-

ployee, p−1 = (p2, .., pn) is again considered as a realization of the (n−1)-dimensional

random variable P−1. Given this situation and based on individual linking probabili-

ties (4.1) for parameters λ, a ∈ (0, 1), we assume that a homophilous random network

forms.

Knowing the distribution function of the random variable P−1 and the conditional

linking probabilities but not the realization, the firm has to decide on one hiring

channel. For this purpose, the expected characteristic of a contact of agent 1 is the

crucial statistic. It can be calculated as follows.92

Proposition 4.4. Given some homophily parameter a ∈ (0, 1), the expected char-

acteristic of a neighbor j ∈ {2, ..., n} of agent 1 with given characteristic p1 ∈ [0, 1]

is

E
P [Pj | G ∈ G1j] =

1

2
+

(ap1 − a1−p1)(1
2

− 1
ln(a)

) + 2p1 − 1

2 − ap1 − a1−p1
. (4.9)

A plot of function (4.9) is given in Figure 4.5. However, investigating the expected

characteristic analytically, reveals some intuitive properties, at least for some special

90For an extensive survey including both empirical and theoretic literature from sociology and
economics see Ioannides and Loury (2004).

91Exceptions are Horváth (2013), van der Leij and Buhai (2008) and Zaharieva (2013), however,
all using binary notions of homophily.

92Note that this probability is meaningful only if agent 1 has at least one link. For large networks,
however, this is guaranteed whenever the corresponding condition of the threshold theorem (recall
Proposition 4.3) is fulfilled.
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cases. These might contribute to a better understanding of the rather complicated

functional form and its appearance. We collect these properties in the following

corollary. Note that all of them can be detected in Figure 4.5.

a p1

E
P

[P
j

|G
∈
G

1
j
]

Figure 4.5: Expected characteristic of a contact of agent 1 (carried out and created
with MATLAB, 2014)

Corollary 4.5. Function (4.9) in Proposition 4.4 yields:

(i) E
P [Pj | G ∈ G1j]

∣
∣
∣
p1= 1

2

= 1
2

∀a ∈ (0, 1),

(ii) lima→0 E
P [Pj | G ∈ G1j] = p1 ∀p1 ∈ [0, 1], and

(iii) lima→1 E
P [Pj | G ∈ G1j] = 1

2
∀p1 ∈ [0, 1].

Finally assume, for simplicity, that the expected characteristic or rather ability of

a worker hired via the formal job market is some value p̄ ∈ (0, 1) which is independent

of the homophily parameter a and the ability of the current employee p1. Given this

situation, the firm faces a simple decision rule when to hire via the social network.

We have that, for sufficiently high p1 and low a, respectively, the expected ability of

the current employee’s contact exceeds any ability level p̄. More precisely, for any

parameter value a ∈ (0, 1), solving the equation E
P [Pj | G ∈ G1j] = p̄ yields a min-

imum ability level p1 (if existing at this homophily level) that has to be reached for

the expected ability of the current employee’s contact to exceed p̄. Similarly, given
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p1 ∈ [0, 1], we obtain a maximum level of a, that is a minimum level of homophily.

Thus, the decision rule is that the firm should hire a randomly chosen contact in-

stead of recruiting via the formal job market if and only if the respective calculated

minimum level is exceeded (or at least reached).

4.7 Conclusion

In this chapter, we set up a novel Homophilous Random Network model incorporating

heterogeneity of agents. In a two-stage random process, first each agent (or vertex)

is assigned a one-dimensional characteristic. Second, based on these realized charac-

teristics, the links of a random network form whilst taking into account a continuous

notion of homophily. This captures the frequently observed propensity of individuals

to connect with similar others. Exploiting this continuous formalization of homophily,

our approach allows for a broad range of homophily levels ranging from the extreme

case of maximal homophily where only equal agents get linked with positive proba-

bility up to the case where there is no homophily at all. The latter case corresponds

to the Bernoulli Random Graph (BRG) model, often referred to as the Erdős-Rényi

model. Insofar, our model can also be regarded as a generalization thereof. Most

importantly, unlike the vast majority of related economic models, we indeed capture

homophily as it is defined and used in the sociological literature, namely in terms of

similarity rather than equality.

In our work, we first reveal some basic properties and network statistics of the

Homophilous Random Network model and establish a threshold theorem. The com-

parison with the BRG model provides additional insight. To derive one of our main

results, we focus on another stylized fact of real-world networks, namely the occur-

rence of clustering. Although homophily and clustering are frequently observed in

reality, both phenomena are not captured by the original BRG model. While re-

vealing by simulations that the small-world phenomenon is apparently preserved, we

are able to show analytically that homophily induces clustering in our model. This

gives rise to the conjecture that also in reality there might be a considerable causality

between the two. It might be worthwhile for future research to pursue this question.

Finally, we provide an easily accessible application of our model for labor economics.

Assuming homophily with respect to abilities to do a certain job, we consider workers

being connected through a homophilous random network. We determine the expected

ability of a given worker’s random contact depending on the level of homophily and

the given worker’s own ability. This yields a simple decision rule for a firm which
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intends to fill an open vacancy and needs to decide whether to hire through a current

employee’s contacts or the formal job market.

Furthermore, our Homophilous Random Network model is now available as a tool

which can be used to understand and predict diffusion processes in social networks.

As it complies with those important stylized facts which we frequently observe in

social networks, it might yield meaningful results, for instance, regarding the spread

of information or a disease. Beyond that, there are certainly several further ques-

tions which remain open for future research. Although our simulation results yield a

strong indication in this direction, one task would be to show analytically that the

small-world phenomenon is generally preserved in our model. As a second point, it

could be of interest to expand our considerations about threshold theorems and to

establish those for different properties such as connectedness in our model. Further,

it would be a natural, yet analytically challenging extension to check the qualitative

robustness of the findings for different distributions of characteristics. For many ap-

plications, a distribution that puts more weight on intermediate characteristics might

capture reality more accurately. Also, an extension of the model to multi-dimensional

characteristics would be valuable, in particular if one would succeed to combine char-

acteristics of both continuous and binary nature. Finally, a calibration of the model

to real-world data is yet to be done. Performing this in a meaningful way is most

certainly a challenge, especially as the level of homophily in a given network is not

clearly observable. However, one way to deal with this could be to calibrate the model

to the observable degree of clustering which we showed to be directly connected to

homophily in our model.

Appendix 4.A Proofs

4.A.1 Proof of Proposition 4.1

We calculate the expected probability:

E
P
[

P
G (ij ∈ G | P ) | Pi = pi

]

= E
P
[

λa|Pi−Pj | | Pi = pi

]

= λ
( ∫ 1

0
fPj

(pj)
︸ ︷︷ ︸

1

a|pi−pj |dpj

)

= λ
(∫ pi

0
api−pj dpj +

∫ 1

pi

apj−pidpj

)

= λ
(

api

∫ pi

0
a−pj dpj + a−pi

∫ 1

pi

apj dpj

)
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= λ
(

api
1 − a−pi

ln(a)
+ a−pi

a − api

ln(a)

)

=
λ

ln(a)

(

api + a1−pi − 2
)

. (4.10)

Moreover, by integrating equation (4.10) with respect to pi, we get the expected

probability if p is unknown:

E
P
[

P
G [ij ∈ G | P ]

]

= E
P
[

λa|Pi−Pj |
]

= λ

(
∫

[0,1]2
fPi,Pj

(pi, pj)
︸ ︷︷ ︸

=fPi
(pi)fPj

(pj)=1

a|pi−pj |d(pi, pj)

)

(4.10)
= λ

( ∫ 1

0

(api + a1−pi − 2)

ln(a)
dpi

)

=
λ

ln(a)

[

api − a1−pi − 2pi ln(a)

ln(a)

] ∣
∣
∣
∣
∣

pi=1

pi=0

=
λ

ln(a)2
[a − 1 − 2 ln(a) − 1 + a]

=
2λ

ln(a)2
[a − 1 − ln(a)] .

4.A.2 Proof of Corollary 4.1

Using l’Hôpital’s rule, we calculate the limit of ϕ as

lim
a→0

ϕ(λ, a, pi) = lim
a→0

λ(api + a1−pi − 2)

ln(a)
= lim

a→0

λ(pia
pi−1 + (1 − pi)a

−pi)

1/a

= lim
a→0

λ(pia
pi + (1 − pi)a

1−pi) = 0.

Similarly, we get

lim
a→1

ϕ(λ, a, pi) = lim
a→1

λ(api + a1−pi − 2)

ln(a)
= lim

a→1

λ(pia
pi−1 + (1 − pi)a

−pi)

1/a

= lim
a→1

λ(pia
pi + (1 − pi)a

1−pi) = λ.



4.A Proofs • 147

For the case of Φ, by now using l’Hôpital’s rule twice, we get

lim
a→0

Φ(λ, a) = lim
a→0

2λ
a − 1 − ln(a)

ln(a)2
= lim

a→0
2λ

1 − 1/a

2 ln(a)/a
= lim

a→0
λ

a − 1

ln(a)
= 0,

as well as

lim
a→1

Φ(λ, a) = lim
a→1

2λ
a − 1 − ln(a)

ln(a)2
= lim

a→1
2λ

a − 1

2 ln(a)
= lim

a→1
λ

1

1/a
= λ.

4.A.3 Proof of Proposition 4.2

Taking into account equation (4.2), we calculate

E
P
[

P
G (ηi(G) = k | P ) | Pi = pi

]

= E
P




∑

K⊆N\{i}:|K|=k




∏

j∈K

(q(Pi, Pj)) ·
∏

l∈N\K\{i}

(1 − q(Pi, Pl))



 | Pi = pi





=
∑

K⊆N\{i}:|K|=k



E
P




∏

j∈K

(q(Pi, Pj)) ·
∏

l∈N\K\{i}

(1 − q(Pi, Pl)) | Pi = pi









=
∑

K⊆N\{i}:|K|=k






∫

[0,1]n−1

(

fP−i
(p−i)

︸ ︷︷ ︸

=1

·
∏

j∈K

(q(pi, pj)) ·
∏

l∈N\K\{i}

(1 − q(pi, pl))

)

dp−i






=
∑

K⊆N\{i}:|K|=k




∏

j∈K

(∫ 1

0
(q(pi, pj)) dpj

)

·
∏

l∈N\K\{i}

(∫ 1

0
(1 − q(pi, pl)) dpl

)




(4.2)
=

∑

K⊆N\{i}:|K|=k





(

λ

ln(a)

(

api + a1−pi − 2
)
)k

·
(

1 − λ

ln(a)

(

api + a1−pi − 2
)
)n−k−1





(4.2)
=

(

n − 1

k

)

· (ϕ(λ, a, pi))
k · (1 − ϕ(λ, a, pi))

n−k−1 .

4.A.4 Proof of Proposition 4.3

The probability that an agent i with given characteristic pi is isolated is

E
P
[

P
G (ηi(G) = 0 | P ) | Pi = pi

] (4.8)
= (1 − ϕ(λ(n), a(n), pi))

n−1.
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If we assume that there is at least some homophily as the size of the network becomes

large, that is formally

∃ ǫ̃ > 0, n̄ ∈ N : a(n) ≤ 1 − ǫ̃ ∀ n ≥ n̄,

then we have that

∃ ǫ > 0 : 2 − a(n)p̂ − a(n)1−p̂ ∈ [ǫ, 2] ∀ n ≥ n̄.

Now it holds that if limn→∞[−λ(n)/(ln(a(n))t(n))] = ∞, then we have

lim
n→∞

(1 − ϕ(λ(n), a(n), pi))
n−1

= lim
n→∞

(

1 − ϕ(λ(n), a(n), pi)/t(n)

n − 1

)n−1

(4.2)
= lim

n→∞



1 −
λ(n)(n−1)

ln(a(n))
(a(n)pi + a(n)1−pi − 2)

n − 1





n−1

= lim
n→∞

exp

(

−λ(n)(n − 1)

ln(a(n))
︸ ︷︷ ︸

→∞

(a(n)pi + a(n)1−pi − 2)
︸ ︷︷ ︸

∈[−2,−ǫ]

)

= 0,

On the contrary, if limn→∞[−λ(n)/(ln(a(n))t(n))] = 0, then we get

lim
n→∞

(1 − ϕ(λ(n), a(n), pi))
n−1

= lim
n→∞

exp

(

−λ(n)(n − 1)

ln(a(n))
︸ ︷︷ ︸

→0

(a(n)pi + a(n)1−pi − 2)
︸ ︷︷ ︸

∈[−2,−ǫ]

)

= 1.

4.A.5 Proof of Theorem 4.1

We calculate the clustering coefficient

C(λ, a)

= E
P
[

λa|Pj−Pk|
∣
∣
∣ G ∈ Gij ∩ Gik

]

= λ
∫

[0,1]n
a|pj−pk|fP (p | G ∈ Gij ∩ Gik)dp
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= λ
∫

[0,1]n
a|pj−pk| fP,G(p,Gij ∩ Gik)

fG(Gij ∩ Gik)
dp

=
λ

fG(Gij ∩ Gik)

∫

[0,1]n
a|pj−pk|fP,G(p,Gij ∩ Gik)dp

=
λ

fG(Gij ∩ Gik)

∫

[0,1]n
a|pj−pk|fG(Gij ∩ Gik | P = p)

=1
︷ ︸︸ ︷

fP (p) dp

=
λ

∫

[0,1]n fP (x)
︸ ︷︷ ︸

=1

fG(Gij ∩ Gik | P = x)dx

∫

[0,1]n
a|pj−pk|fG(Gij ∩ Gik | P = p)dp

=
λ

∫

[0,1]n P
G(G ∈ Gij ∩ Gik | P = x)dx

∫

[0,1]n
a|pj−pk|

P
G(G ∈ Gij ∩ Gik | P = p)dp

=
λ

∫

[0,1]n λa|xi−xj |λa|xi−xk|dx

∫

[0,1]n
a|pj−pk|λa|pi−pj |λa|pi−pk|dp

= λ

∫

[0,1]n a|pj−pk|+|pi−pj |+|pi−pk|dp
∫

[0,1]n a|xi−xj |+|xi−xk|dx
= λ

∫

[0,1]3 a|pj−pk|+|pi−pj |+|pi−pk|d(pi, pj, pk)
∫

[0,1]3 a|xi−xj |+|xi−xk|d(xi, xj, xk)
.

(4.11)

Let us solve the integral in the denominator first. For the sake of readability denote

x = (xi, xj, xk). We have

∫

[0,1]3
a|xi−xj |+|xi−xk|dx =

∫

x∈[0,1]3:
xj ,xk≤xi

a2xi−xj−xkdx +
∫

x∈[0,1]3:
xi≤xj ,xk

axj+xk−2xidx

+
∫

x∈[0,1]3:
xj≤xi≤xk

axk−xj dx +
∫

x∈[0,1]3:
xk≤xi≤xj

axj−xkdx

=
2 ln(a) − 4a + a2 + 3

2(ln(a))3
+

2 ln(a) − 4a + a2 + 3

2(ln(a))3

+
2 ln(a) − 4a + 2a ln(a) + 4

2(ln(a))3
+

2 ln(a) − 4a + 2a ln(a) + 4

2(ln(a))3

=
1

2(ln(a))3

[

8 ln(a) − 16a + 2a2 + 4 ln(a)a + 14
]

.

Next, we solve the integral in the numerator of (4.11), substituting x for p in order

to use the same notation as above. This yields

∫

[0,1]3
a|xj−xk|+|xi−xj |+|xi−xk|dx

=
∫

x∈[0,1]3:
xi≤xj≤xk

a2xk−2xidx +
∫

x∈[0,1]3:
xi≤xk≤xj

a2xj−2xidx +
∫

x∈[0,1]3:
xj≤xi≤xk

a2xk−2xj dx

+
∫

x∈[0,1]3:
xj≤xk≤xi

a2xi−2xj dx +
∫

x∈[0,1]3:
xk≤xi≤xj

a2xj−2xkdx +
∫

x∈[0,1]3:
xk≤xj≤xi

a2xi−2xkdx
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= 6
ln(a) − a2 + a2 ln(a) + 1

4(ln(a))3
=

1

2(ln(a))3

[

3 ln(a) − 3a2 + 3a2 ln(a) + 3
]

.

Taken together, this gives

C(λ, a) = λ
3 ln(a) − 3a2 + 3a2 ln(a) + 3

8 ln(a) − 16a + 2a2 + 4 ln(a)a + 14
.

By using this, we can now start with the actual proof. We have

C(λ, a) − Φ(λ, a)

= λ




3
(

ln(a)a2 + ln(a) − a2 + 1
)

2
(

2 ln(a)a + 4 ln(a) + a2 − 8a + 7
) +

2
(

ln(a) − a + 1
)

ln(a)2





= λ3 ln(a)3(a2+1)+ln(a)2(−3a2+8a+19)+ln(a)(−4a2−40a+44)+(−4a3+36a2−60a+28)
2 ln(a)2(2 ln(a)a+4 ln(a)+a2−8a+7)

(4.12)

In what follows, we use that for a ∈ (0, 1) we have

ln(a) = −
∞∑

m=0

(1 − a)m+1

m + 1

which implies that ln(a) < −∑M
m=0

(1−a)m+1

m+1
< 0 for all M ∈ N. The first and easier

part is to show that the denominator of the term on the right-hand side of equation

(4.12) is negative for all a ∈ (0, 1). We calculate

2 ln(a)a + 4 ln(a) + a2 − 8a + 7

= 2(a + 2) ln(a) + a2 − 8a + 7

< − 2(a + 2)
(

1 − a +
1

2
(1 − a)2 +

1

3
(1 − a)3

)

+ a2 − 8a + 7

=
1

3
(a + 2)

(

2a3 − 9a2 + 18a − 11
)

+ a2 − 8a + 7

=
1

3

(

2a4 − 5a3 + 3a2 + a − 1
)

= −1

3
(1 − a)3(2a + 1) < 0

Further, we define

g(a) := 3 ln(a)3(a2 + 1) + ln(a)2(−3a2 + 8a + 19) + ln(a)(−4a2 − 40a + 44)

+ (−4a3 + 36a2 − 60a + 28).
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Then λg(a) is the numerator of the term on the right-hand side of equation (4.12).

We calculate the derivatives

dg
da(a) = 1

a

[
6 ln(a)3a2 + ln(a)2(3a2 + 8a + 9) + 2 ln(a)(−7a2 − 12a + 19)

+4(−3a3 + 17a2 − 25a + 11)
]
,

d2g
da2 (a)= 1

a2

[
6 ln(a)3a2 + 3 ln(a)2(7a2 − 3) + 4 ln(a)(−2a2 + 4a − 5)

+6(−4a3 + 9a2 − 4a − 1)
]
,

d3g
da3 (a)= 1

a3

[
18 ln(a)2(a2 + 1) + 2 ln(a)(21a2 − 8a + 11) + 8(−3a3 − a2 + 5a − 1)

]
,

d4g
da4 (a)= 1

a4

[
18 ln(a)2(−a2 − 3) + 2 ln(a)(−3a2 + 16a − 15) + 2(25a2 − 48a + 23)

]
,

d5g
da5 (a)= 1

a5

[
36 ln(a)2(a2 + 6) + 12 ln(a)(−2a2 − 8a + 1) + 2(−53a2 + 160a − 107)

]
,

d6g
da6 (a)= 1

a6

[
108 ln(a)2(−a2 − 10) + 12 ln(a)(12a2 + 32a + 31) + 2(147a2 − 688a + 541)

]
.

Notice here that

g(1) =
dg

da
(1) =

d2g

da2
(1) =

d3g

da3
(1) =

d4g

da4
(1) =

d5g

da5
(1) = 0.

Moreover, we have

d6g

da6
(a) =

1

a6

[

108 ln(a)2 (−a2 − 10)
︸ ︷︷ ︸

<0

+12 ln(a) (12a2 + 32a + 31)
︸ ︷︷ ︸

>0

+ 2(147a2 − 688a + 541)
]

<
1

a6

[

108(1 − a)2(−a2 − 10) − 12(1 − a)(12a2 + 32a + 31)

+ 2(147a2 − 688a + 541)
]

=
2

a6

[

− 54a4 + 180a3 − 327a2 + 386a − 185
]

=
2

a6
(1 − a)

[

54(a − 7
9
)3 + 103(a − 7

9
) − 2146

27

]

<
2

a6
(1 − a)

[

54 · (2
9
)3 + 103 · 2

9
− 2146

27

]

= −112

a6
(1 − a) < 0.

Combining this, it follows for all a ∈ (0, 1) that

d5g

da5
(a) > 0 ⇒ d4g

da4
(a) < 0 ⇒ d3g

da3
(a) > 0 ⇒ d2g

da2
(a) < 0 ⇒ dg

da
(a) > 0

⇒ g(a) < 0.

Taken together, we have indeed that

C(λ, a) − Φ(λ, a) = λ
g(a)

2 ln(a)2
(

2 ln(a)a + 4 ln(a) + a2 − 8a + 7
) > 0



152 • 4 Continuous Homophily and Clustering in Random Networks

which concludes the proof of the theorem.

4.A.6 Proof of Corollary 4.4

By applying l’Hôpital’s rule three times, we calculate

lim
a→0

C(λ, a) = λ lim
a→0

3 ln(a) − 3a2 + 3a2 ln(a) + 3

8 ln(a) − 16a + 2a2 + 4 ln(a)a + 14

= λ lim
a→0

3/a − 6a + 6a ln(a) + 3a

8/a − 16 + 4a + 4 ln(a) + 4

=
3λ

4
lim
a→0

1 − a2 + 2a2 ln(a)

2 − 3a + a2 + a ln(a)

=
3λ

4

lima→0[1 − a2 + 2a2 ln(a)]

lima→0[2 − 3a + a2 + a ln(a)]

=
3λ

4

lima→0[1] − lima→0[a
2] + lima→0[2a2 ln(a)]

lima→0[2] − lima→0[3a] + lima→0[a2] + lima→0[a ln(a)]

=
3λ

4

1 − 0 + limx→∞[2 ln(1/x)/x2]

2 − 0 + 0 + limx→∞[ln(1/x)/x]

=
3λ

4

1 + limx→∞[−2x(1/x2)/2x]

2 + limx→∞[−x(1/x2)/1]
=

3λ

4

1 + limx→∞[−1/x2]

2 + limx→∞[−1/x]
=

3λ

8
.

The stated result follows immediately since we established in Corollary 4.1 that

lima→0 Φ(λ, a) = 0. On the contrary, by again using l’Hôpital’s rule three times,

we get

lim
a→1

C(λ, a) = λ lim
a→1

3 ln(a) − 3a2 + 3a2 ln(a) + 3

8 ln(a) − 16a + 2a2 + 4 ln(a)a + 14

= λ lim
a→1

3/a − 6a + 6a ln(a) + 3a

8/a − 16 + 4a + 4 ln(a) + 4

= λ lim
a→1

3 − 3a2 + 6a2 ln(a)

8 − 12a + 4a2 + 4a ln(a)

= λ lim
a→1

−6a + 12a ln(a) + 6a

−12 + 8a + 4 ln(a) + 4
= λ lim

a→1

12 ln(a) + 12

8 + 4/a
= λ.

According to Corollary 4.1, we have lima→1 Φ(λ, a) = λ which concludes the proof.
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4.A.7 Proof of Proposition 4.4

We calculate

E
P [Pj | G ∈ G1j] =

∫ 1

0
pjfPj |G(pj,G1j)dpj =

∫ 1

0
pjfPj

(pj | G ∈ G1j)dpj

=
∫ 1

0
pj

fPj ,G(pj,G1j)

fG(G1j)
dpj

=
∫ 1

0
pj

fG(G1j | Pj = pj)

1
︷ ︸︸ ︷

fPj
(pj)

fG(G1j)
dpj

=
∫ 1

0
pj

fG(G1j | Pj = pj)
∫ 1

0 fPj
(x)

︸ ︷︷ ︸

1

fG(G1j | Pj = x)
︸ ︷︷ ︸

P(G∈G1j | Pj=x)

dx
dpj

=
∫ 1

0
pj

λa|p1−pj |

︷ ︸︸ ︷

fG(G1j | Pj = pj)
∫ 1

0 λa|p1−x|dx
︸ ︷︷ ︸

λ
ln(a)

(ap1 +a1−p1 −2)

dpj

=
ln(a)

ap1 + a1−p1 − 2

∫ 1

0
pja

|p1−pj |dpj.

Focusing on the integral first gives

∫ 1

0
pja

|p1−pj |dpj =
∫ p1

0
pja

(p1−pj)dpj +
∫ 1

p1

pja
(pj−p1)dpj

=
ap1 − p1 ln(a) − 1

ln(a)2
+

a1−p1(ln(a) − 1) − p1 ln(a) + 1

ln(a)2
.

It follows that

E
P (Pj | G ∈ G1j) =

ap1 + a1−p1(ln(a) − 1) − 2p1 ln(a)

ln(a)(ap1 + a1−p1 − 2)
(4.13a)

=
1

2
+

(ap1 − a1−p1)(1
2

− 1
ln(a)

) + 2p1 − 1

2 − ap1 − a1−p1
.. (4.13b)

4.A.8 Proof of Corollary 4.5

Considering the functional form (4.9), we prove the properties in question one after

the other. Regarding Part (i), by using equation (4.13b) we calculate for a ∈ (0, 1)
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that

E
P [Pj | G ∈ G1j]

∣
∣
∣
p1= 1

2

=
1

2
+

(
√

a − √
a)(1

2
− 1

ln(a)
) + 1 − 1

2 − √
a − √

a
=

1

2
.

Next, we consider Part (ii). Again applying equation (4.13b), we get for p1 ∈ (0, 1)

that

lim
a→0

E
P [Pj | G ∈ G1j] =

1

2
+

(0 − 0)(1
2

+ 0) + 2p1 − 1

2 − 0 − 0
= p1

and for the marginals we have

lim
a→0

E
P [Pj | G ∈ G1j]

∣
∣
∣
p1=0

=
1

2
+

(1 − 0)(1
2

+ 0) + 0 − 1

2 − 1 − 0
= 0,

lim
a→0

E
P [Pj | G ∈ G1j]

∣
∣
∣
p1=1

=
1

2
+

(0 − 1)(1
2

+ 0) + 2 − 1

2 − 0 − 1
= 1.

To establish Part (iii), we have to apply l’Hôpital’s rule. For p1 ∈ [0, 1] we get

lim
a→1

E
P [Pj | G ∈ G1j]

(4.13a)
= lim

a→1

ap1 + a1−p1(ln(a) − 1) − 2p1 ln(a)

ln(a)(ap1 + a1−p1 − 2)

= lim
a→1

p1a
p1−1 + (1 − p1)a

−p1(ln(a) − 1) + a−p1 − 2p1

a
1
a
(ap1 + a1−p1 − 2) + ln(a)(p1ap1−1 + (1 − p1)a−p1)

(4.14)

while using l’Hôpital’s rule once. However, we obviously need to apply it second time.

For this purpose, we calculate the derivatives of the numerator and denominator of

the term on the right-hand side in equation (4.14). We get

∂

∂a

[

p1a
p1−1 + (1 − p1)a

−p1(ln(a) − 1) + a−p1 − 2p1

a

]

=p1(p1 − 1)ap1−2 + p1(p1 − 1)a−p1−1(ln(a) − 1) + (1 − p1)a
−p1−1 − p1a

−p1−1 +
2p1

a2

and

∂

∂a

[
1

a
(ap1 + a1−p1 − 2) + ln(a)(p1a

p1−1 + (1 − p1)a
−p1)

]

= − 1

a2
(ap1 + a1−p1 − 2) +

2

a
(p1a

p1−1 + (1 − p1)a
−p1)

+ ln(a)(p1(p1 − 1)ap1−2 + p1(p1 − 1)a−p1−1).
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By recalling equation (4.14) and using l’Hôpital’s rule the second time, this gives

lim
a→1

E
P [Pj | G ∈ G1j] =

p1(p1 − 1) + p1(p1 − 1)(0 − 1) + (1 − p1) − p1 + 2p1

−(1 + 1 − 2) + 2(p1 + (1 − p1)) + 0
=

1

2

which concludes the proof.



156 • 4 Continuous Homophily and Clustering in Random Networks



References

Abreu, D. and Manea, M. (2012). Bargaining and efficiency in networks. Journal of

Economic Theory, 147(1):43–70.

Amir, R. and Lazzati, N. (2014). Endogenous information acquisition in Bayesian

games with strategic complementarities. Working Paper.

Aumann, R. J. and Maschler, M. (1972). Some thoughts on the minimax principle.

Management Science, 18(5):54–63.

Aumann, R. J. and Myerson, R. B. (1988). Endogenous formation of links between

players and of coalitions: An application of the Shapley value. In Roth, A. E.,

editor, The Shapley Value: Essays in Honor of Lloyd S. Shapley, pages 175–194.

Cambridge University Press, Cambridge.

Baerveldt, C., Van Duijn, M. A., Vermeij, L., and Van Hemert, D. A. (2004). Ethnic

boundaries and personal choice. Assessing the influence of individual inclinations to

choose intra-ethnic relationships on pupils’ networks. Social Networks, 26(1):55–74.

Baetz, O. (2015). Social activity and network formation. Theoretical Economics,

10(2):315–340.

Bala, V. and Goyal, S. (2000). A noncooperative model of network formation. Econo-

metrica, 68(5):1181–1229.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks.

Science, 286(5439):509–512.

Bellhouse, D. (2007). The problem of Waldegrave. Electronic Journal for History of

Probability and Statistics, 3(2):1–12.

Berge, C. (1981). Some common properties for regularizable graphs, edge-critical

graphs and b-graphs. In Saito, N. and Nishizeki, T., editors, Graph Theory and

Algorithms, pages 108–123. Springer, Berlin Heidelberg.

157



158 • 4 References

Bergemann, D., Shi, X., and Välimäki, J. (2009). Information acquisition in interde-

pendent value auctions. Journal of the European Economic Association, 7(1):61–89.

Bloch, F. and Jackson, M. O. (2006). Definitions of equilibrium in network formation

games. International Journal of Game Theory, 34(3):305–318.

Bloznelis, M. (2013). Degree and clustering coefficient in sparse random intersection

graphs. The Annals of Applied Probability, 23(3):1254–1289.

Bollobás, B. (1998). Modern Graph Theory. Springer, New York, NY.

Bollobás, B. (2001). Random Graphs. Cambridge University Press, Cambridge, sec-

ond edition.

Boorman, S. A. (1975). A combinatorial optimization model for transmission of job

information through contact networks. Bell Journal of Economics, 6(1):216–249.

Bramoullé, Y., Currarini, S., Jackson, M. O. ., Pin, P., and Rogers, B. W. (2012). Ho-

mophily and long-run integration in social networks. Journal of Economic Theory,

147(5):1754–1786.

Burt, R. S. (1991). Measuring age as a structural concept. Social Networks, 13(1):1–

34.

Calvó-Armengol, A. (2003). Stable and efficient bargaining networks. Review of

Economic Design, 7(4):411–428.

Calvó-Armengol, A. (2004). Job contact networks. Journal of Economic Theory,

115(1):191–206.

Calvó-Armengol, A. and Jackson, M. O. (2007). Networks in labor markets: Wage

and employment dynamics and inequality. Journal of Economic Theory, 132(1):27–

46.

Campbell, K. E. (1990). Networks past: A 1939 Bloomington neighborhood. Social

Forces, 69(1):139–155.

Carlsson, H. and Van Damme, E. (1993). Global games and equilibrium selection.

Econometrica, 61(5):989–1018.

Chung, F. and Lu, L. (2002). The average distances in random graphs with given

expected degrees. Proceedings of the National Academy of Sciences, 99(25):15879–

15882.



• 159

Corominas-Bosch, M. (2004). Bargaining in a network of buyers and sellers. Journal

of Economic Theory, 115(1):35–77.

Costa-Gomes, M., Crawford, V. P., and Broseta, B. (2001). Cognition and behavior

in normal-form games: An experimental study. Econometrica, 69(5):1193–1235.

Costa-Gomes, M. A. and Crawford, V. P. (2006). Cognition and behavior in two-

person guessing games: An experimental study. American Economic Review,

96(5):1737–1768.

Crawford, V. P. (2003). Lying for strategic advantage: Rational and boundedly

rational misrepresentation of intentions. American Economic Review, 93(1):133–

149.

Crawford, V. P. and Iriberri, N. (2007). Level-k auctions: Can a nonequilibrium

model of strategic thinking explain the winner’s curse and overbidding in private-

value auctions? Econometrica, 75(6):1721–1770.

Currarini, S., Jackson, M. O., and Pin, P. (2009). An economic model of friendship:

Homophily, minorities, and segregation. Econometrica, 77(4):1003–1045.

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a mul-

tidimensional approach. Journal of Personality and Social Psychology, 44(1):113.

Dawid, H. and Gemkow, S. (2014). How do social networks contribute to wage in-

equality? Insights from an agent-based analysis. Industrial and Corporate Change,

23(5):1171–1200.

de Montmort, P. R. (1713). Essai d’analyse sur les jeux de hazard. Quillau, Paris,

seconde edition.

Dekel, E., Ely, J. C., and Yilankaya, O. (2007). Evolution of preferences. Review of

Economic Studies, 74(3):685–704.

Dimitrova, M. and Schlee, E. E. (2003). Monopoly, competition and information

acquisition. International Journal of Industrial Organization, 21(10):1623–1642.

Ely, J. C. and Yilankaya, O. (2001). Nash equilibrium and evolution of preferences.

Journal of Economic Theory, 97(2):255–272.

Erdős, P. and Rényi, A. (1959). On random graphs I. Publicationes Mathematicae

Debrecen, 6(1):290–297.



160 • 4 References

Galeotti, A., Goyal, S., and Kamphorst, J. (2006). Network formation with hetero-

geneous players. Games and Economic Behavior, 54(2):353–372.

Gilles, R. P. and Johnson, C. (2000). Spatial social networks. Review of Economic

Design, 5(3):273–299.

Golub, B. and Jackson, M. O. (2012). How homophily affects the speed of learning

and best-response dynamics. The Quarterly Journal of Economics, 127(3):1287–

1338.

Goyal, S. (2012). Connections: An Introduction to the Economics of Networks.

Princeton University Press, Princeton, NJ.

Goyal, S. and Joshi, S. (2003). Networks of collaboration in oligopoly. Games and

Economic Behavior, 43(1):57–85.

Goyal, S. and Joshi, S. (2006). Bilateralism and free trade. International Economic

Review, 47(3):749–778.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology,

78(6):1360–1380.

Granovetter, M. S. (1995). Getting a Job: A Study of Contacts and Careers. Univer-

sity of Chicago Press, Chicago, IL, second edition.

Güth, W. (1995). An evolutionary approach to explaining cooperative behavior by

reciprocal incentives. International Journal of Game Theory, 24(4):323–344.

Güth, W. and Yaari, M. E. (1992). Explaining reciprocal behavior in simple strate-

gic games: An evolutionary approach. In Witt, U., editor, Explaining Process

and Change: Approaches to Evolutionary Economics, pages 23–34. University of

Michigan Press, Ann Arbor, MI.

Harsanyi, J. C. (1967). Games with incomplete information played by “Bayesian”

players, part I. The basic model. Management Science, 14(3):159–182.

Harsanyi, J. C. (1968a). Games with incomplete information played by “Bayesian”

players, part II. Bayesian equilibrium points. Management Science, 14(5):320–334.

Harsanyi, J. C. (1968b). Games with incomplete information played by “Bayesian”

players, part III. The basic probability distribution of the game. Management

Science, 14(7):486–502.



• 161

Harsanyi, J. C. (1973). Games with randomly disturbed payoffs: A new rationale for

mixed-strategy equilibrium points. International Journal of Game Theory, 2(1):1–

23.

Hauk, E. and Hurkens, S. (2001). Secret information acquisition in cournot markets.

Economic Theory, 18(3):661–681.

Heifetz, A., Shannon, C., and Spiegel, Y. (2007a). The dynamic evolution of prefer-

ences. Economic Theory, 32(2):251–286.

Heifetz, A., Shannon, C., and Spiegel, Y. (2007b). What to maximize if you must.

Journal of Economic Theory, 133(1):31–57.

Heller, Y. and Mohlin, E. (2015a). Coevolution of deception and preferences: Darwin

and Nash meet Machiavelli. Working Paper, Available at SSRN 2490370.

Heller, Y. and Mohlin, E. (2015b). Observations on cooperation. Working Paper,

Available at SSRN 2558570.

Hellmann, T. (2013). On the existence and uniqueness of pairwise stable networks.

International Journal of Game Theory, 42(1):211–237.

Hellmann, T. and Landwehr, J. (2014). Stable networks in homogeneous societies.

Working Paper, Available at SSRN 2477452.

Hellwig, C. and Veldkamp, L. (2009). Knowing what others know: Coordination

motives in information acquisition. Review of Economic Studies, 76(1):223–251.

Herold, F. and Kuzmics, C. (2009). Evolutionary stability of discrimination under

observability. Games and Economic Behavior, 67(2):542–551.

Ho, T.-H., Camerer, C., and Weigelt, K. (1998). Iterated dominance and iterated

best response in experimental “p-beauty contests”. American Economic Review,

88(4):947–969.

Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics.

Cambridge University Press, Cambridge.

Horváth, G. (2013). Occupational mismatch and social networks. Working Paper,

Available at SSRN 1794082.

Hwang, H.-S. (1993). Optimal information acquisition for heterogenous duopoly firms.

Journal of Economic Theory, 59(2):385–402.



162 • 4 References

Ibarra, H. (1995). Race, opportunity, and diversity of social circles in managerial

networks. Academy of Management Journal, 38(3):673–703.

Iijima, R. and Kamada, Y. (2014). Social distance and network structures. Working

Paper.

Ioannides, Y. M. (1997). Evolution of trading structures. In Arthur, W. B., Durlauf,

S. N., and Lane, D. A., editors, The Economy as an Evolving Complex System II,

pages 129–167. Addison-Wesley, Boston, MA.

Ioannides, Y. M. and Loury, L. D. (2004). Job information networks, neighborhood

effects, and inequality. Journal of Economic Literature, 42(4):1056–1093.

Jackson, M. O. (2005). A survey of network formation models: Stability and effi-

ciency. In Demange, G. and Wooders, M., editors, Group Formation in Economics:

Networks, Clubs, and Coalitions, pages 11–57. Cambridge University Press, Cam-

bridge.

Jackson, M. O. (2006). The economics of social networks. In Blundell, R., Newey,

W. K., and Persson, T., editors, Advances in Economics and Econometrics: The-

ory and Applications, Ninth World Congress, Volume I, pages 1–56. Cambridge

University Press, Cambridge.

Jackson, M. O. (2008a). Average distance, diameter, and clustering in social networks

with homophily. In Papadimitriou, C. and Zhang, S., editors, Internet and Network

Economics, pages 4–11. Springer, Berlin Heidelberg.

Jackson, M. O. (2008b). Social and Economic Networks. Princeton University Press,

Princeton, NJ.

Jackson, M. O. (2010). An overview of social networks and economic applications. In

Benhabib, J., Bisin, A., and Jackson, M. O., editors, Handbook of Social Economics,

Volume 1A, pages 511–585. North-Holland, Amsterdam.

Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic

networks. Journal of Economic Theory, 71(1):44–74.

Jansen, J. (2008). Information acquisition and strategic disclosure in oligopoly. Jour-

nal of Economics & Management Strategy, 17(1):113–148.

Kalmijn, M. (2006). Educational inequality and family relationships: Influences on

contact and proximity. European Sociological Review, 22(1):1–16.



• 163

Karonski, M., Scheinerman, E. R., and Singer-Cohen, K. B. (1999). On random inter-

section graphs: The subgraph problem. Combinatorics, Probability and Computing,

8(1):131–159.

Koçkesen, L., Ok, E. A., and Sethi, R. (2000a). Evolution of interdependent prefer-

ences in aggregative games. Games and Economic Behavior, 31(2):303–310.

Koçkesen, L., Ok, E. A., and Sethi, R. (2000b). The strategic advantage of negatively

interdependent preferences. Journal of Economic Theory, 92(2):274–299.

Köhler, W. (1929). Gestalt Psychology. Liveright, New York, NY.

Kranton, R. and Minehart, D. F. (2001). A theory of buyer-seller networks. American

Economic Review, 91(3):485–508.

Laumann, E. O. (1966). Prestige and Association in an Urban Community: An

Analysis of an Urban Stratification System. Bobbs-Merrill, Indianapolis, IN.

Laumann, E. O. (1973). Bonds of Pluralism: The Form and Substance of Urban

Social Networks. John Wiley & Sons, New York, NY.

Lazarsfeld, P. F. and Merton, R. K. (1954). Friendship as a social process: A sub-

stantive and methodological analysis. In Berger, M., editor, Freedom and Control

in Modern Society, pages 18–66. Van Nostrand, New York, NY.

Li, L., McKelvey, R. D., and Page, T. (1987). Optimal research for cournot

oligopolists. Journal of Economic Theory, 42(1):140–166.

Manea, M. (2011). Bargaining in stationary networks. American Economic Review,

101(5):2042–2080.

Marsden, P. V. (1987). Core discussion networks of Americans. American Sociological

Review, 52(1):122–131.

Marsden, P. V. (1988). Homogeneity in confiding relations. Social Networks, 10(1):57–

76.

Matêjka, F. and McKay, A. (2012). Simple market equilibria with rationally inat-

tentive consumers. American Economic Review: Papers and Proceedings 2012,

102(3):24–29.



164 • 4 References

Matêjka, F. and McKay, A. (2015). Rational inattention to discrete choices: A

new foundation for the multinomial logit model. American Economic Review,

105(1):272–298.

MATLAB (2014). Version 8.3 (R2014a). The MathWorks Inc., Natick, MA.

Mayer, A. and Puller, S. L. (2008). The old boy (and girl) network: Social network

formation on university campuses. Journal of Public Economics, 92(1):329–347.

Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature,

246(5427):15–18.

McKelvey, R. D., McLennan, A. M., and Turocy, T. L. (2014). Gambit: Software

tools for game theory, version 15.0.0. http://www.gambit-project.org.

McPherson, M., Smith-Lovin, L., and Cook, J. M. (2001). Birds of a feather: Ho-

mophily in social networks. Annual Review of Sociology, 27(1):415–444.

Mead, G. H. (1934). Mind, Self, and Society: From the Standpoint of a Social Be-

haviorist. University of Chicago Press, Chicago, IL.

Mengel, F. (2012). Learning across games. Games and Economic Behavior, 74(2):601–

619.

Milgram, S. (1967). The small world problem. Psychology Today, 2(1):60–67.

Montgomery, J. D. (1991). Social networks and labor-market outcomes: Toward an

economic analysis. American Economic Review, 81(5):1408–1418.

Morris, S. and Shin, H. S. (1998). Unique equilibrium in a model of self-fulfilling

currency attacks. American Economic Review, 88(3):587–597.

Myatt, D. P. and Wallace, C. (2012). Endogenous information acquisition in coordi-

nation games. Review of Economic Studies, 79(1):340–374.

Myerson, R. B. (1991). Game Theory: Analysis of Conflict. Harvard University

Press, Cambridge, MA.

Nagel, R. (1995). Unraveling in guessing games: An experimental study. American

Economic Review, 85(5):1313–1326.

Nash, J. F. (1950a). The bargaining problem. Econometrica, 18(2):155–162.



• 165

Nash, J. F. (1950b). Equilibrium points in n-person games. Proceedings of the

National Academy of Sciences, 36(1):48–49.

Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics, 54(2):286–295.

Nash, J. F. (1953). Two-person cooperative games. Econometrica, 21(1):128–140.

Newman, M. E. (2003). The structure and function of complex networks. SIAM

Review, 45(2):167–256.

Newman, M. E. (2006). Random graphs as models of networks. In Bornholdt, S. and

Schuster, H. G., editors, Handbook of Graphs and Networks: From the Genome to

the Internet, pages 35–68. Wiley-VCH, Weinheim.

O’Donnell, J. F. (2011). Characterisation of stable Manea bargaining networks. Hon-

ours thesis, School of Economics, The University of Queensland.

Ok, E. A. and Vega-Redondo, F. (2001). On the evolution of individualistic pref-

erences: An incomplete information scenario. Journal of Economic Theory,

97(2):231–254.

Pareto, V. (1964). Cours d’économie politique. Librairie Droz, Geneva.

Persico, N. (2000). Information acquisition in auctions. Econometrica, 68(1):135–148.

Piaget, J. (1932). Le jugement moral chez l’enfant. Presses Universitaires de France,

Paris.

Polanski, A. and Vega-Redondo, F. (2013). Markets, bargaining, and networks with

heterogeneous agents. Working Paper, Available at SSRN 2218605.

Pruzhansky, V. (2011). Some interesting properties of maximin strategies. Interna-

tional Journal of Game Theory, 40(2):351–365.

Rees, A. (1966). Information networks in labor markets. American Economic Review,

56(1):559–566.

Ritzberger, K. (2002). Foundations of Non-Cooperative Game Theory. Oxford Uni-

versity Press, Oxford.

Robalino, N. and Robson, A. J. (2012). The economic approach to ‘theory of

mind’. Philosophical Transactions of the Royal Society B: Biological Sciences,

367(1599):2224–2233.



166 • 4 References

Robalino, N. and Robson, A. J. (2015). The evolution of strategic sophistication.

American Economic Review, forthcoming.

Robson, A. J. and Samuelson, L. (2010). The evolutionary foundations of prefer-

ences. In Benhabib, J., Bisin, A., and Jackson, M. O., editors, Handbook of Social

Economics, Volume 1A, pages 221–310. North-Holland, Amsterdam.

Rogers, K., Dziobek, I., Hassenstab, J., Wolf, O. T., and Convit, A. (2007). Who

cares? Revisiting empathy in Asperger syndrome. Journal of Autism and Devel-

opmental Disorders, 37(4):709–715.

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica,

50(1):97–109.

Rubinstein, A. and Wolinsky, A. (1985). Equilibrium in a market with sequential

bargaining. Econometrica, 53(5):1133–1150.

Samuelson, L. (2001). Introduction to the evolution of preferences. Journal of Eco-

nomic Theory, 97(2):225–230.

Schelling, T. C. (1956). An essay on bargaining. American Economic Review,

46(3):281–306.

Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodells mit Nach-

frageträgheit - Teil I: Bestimmung des dynamischen Preisgleichgewichts. Zeitschrift

für die gesamte Staatswissenschaft, 121(2):301–324.

Shamay-Tsoory, S. G., Aharon-Peretz, J., and Perry, D. (2009). Two systems for em-

pathy: A double dissociation between emotional and cognitive empathy in inferior

frontal gyrus versus ventromedial prefrontal lesions. Brain, 132(3):617–627.

Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Eco-

nomics, 50(3):665–690.

Sims, C. A. (2006). Rational inattention: Beyond the linear-quadratic case. American

Economic Review, 96(2):158–163.

Solan, E. and Yariv, L. (2004). Games with espionage. Games and Economic Behav-

ior, 47(1):172–199.

Stahl, D. O. and Wilson, P. W. (1994). Experimental evidence on players’ models of

other players. Journal of Economic Behavior & Organization, 25(3):309–327.



• 167

Stahl, D. O. and Wilson, P. W. (1995). On players’ models of other players: Theory

and experimental evidence. Games and Economic Behavior, 10(1):218–254.

van der Leij, M. and Buhai, S. (2008). A social network analysis of occupational

segregation. Working Paper, Available at SSRN 1117949.

Verbrugge, L. M. (1977). The structure of adult friendship choices. Social Forces,

56(2):576–597.

von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische An-

nalen, 100(1):295–320.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic

Behavior. Princeton University Press, Princeton, NJ.

Wasserman, S. and Pattison, P. (1996). Logit models and logistic regressions for

social networks: I. An introduction to Markov graphs and p∗. Psychometrika,

61(3):401–425.

Watts, A. (2001). A dynamic model of network formation. Games and Economic

Behavior, 34(2):331–341.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ net-

works. Nature, 393(6684):440–442.

Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press, Cambridge, MA.

Weinstein, J. and Yildiz, M. (2007). A structure theorem for rationalizability with

application to robust predictions of refinements. Econometrica, 75(2):365–400.

Wellman, B. (1996). Are personal communities local? A Dumptarian reconsideration.

Social Networks, 18(4):347–354.

West, D. B. (2001). Introduction to Graph Theory, volume 2. Prentice-Hall, Engle-

wood Cliffs, NJ.

Zaharieva, A. (2013). Social welfare and wage inequality in search equilibrium with

personal contacts. Labour Economics, 23(1):107–121.



168 • 4 References



Short Curriculum Vitae of Florian Gauer

Academic Education

since 10/2012 Doctoral Student at the International Research Training

Group Economic Behavior and Interaction Models (EBIM)

at Bielefeld University in collaboration with the University

Paris 1 Panthéon-Sorbonne

Member of the Bielefeld Graduate School of Economics and

Management (BiGSEM) and the Center for Mathematical

Economics (IMW) at Bielefeld University

04/2010–04/2012 Master of Science Wirtschaftsmathematik (Mathematical

Economics) at Bielefeld University

10/2006–02/2010 Bachelor of Science Wirtschaftsmathematik (Mathematical

Economics) at Bielefeld University

Exchange student at the University of Edinburgh for one

semester

Working Papers

• Gauer, F. and Kuzmics, C. (2016). Cognitive Empathy in Conflict Situations.

Center for Mathematical Economics Working Papers, No. 551.

• Gauer, F. (2015). Strategic Formation of Homogeneous Bargaining Networks.

Center for Mathematical Economics Working Papers, No. 529.

• Gauer, F. and Landwehr, J. (2015). Continuous Homophily and Clustering in

Random Networks. Center for Mathematical Economics Working Papers, No.

515.

Conference and Seminar Presentations

• University of Graz, 11/10/2015: Presentation on “Cognitive Empathy in Con-

flict Situations” in the Economics Research Seminar

• University of Münster, 09/08/2015: Presentation on “Strategic Formation of

Homogeneous Bargaining Networks” at the Verein für Socialpolitik Annual Con-

ference 2015

• University of Cambridge, 07/31/2015: Presentation on “Strategic Formation of

Homogeneous Bargaining Networks” at the 15th SAET Conference on Current

Trends in Economics

• University Paris 1 Panthéon-Sorbonne, 02/25/2014: Presentation on “Strate-

gic Formation of Homogeneous Bargaining Networks” in the Network Research

Seminar


	Introduction
	Scientific Context
	Contributions

	Cognitive Empathy in Conflict Situations
	Introduction
	The Model
	A Non-Conflict Example
	Equilibrium Empathy Acquisition
	Discussion and Conclusion
	Empathy Acquisition at Zero Costs
	Equilibrium Payoffs
	The Timing of Decisions
	Degrees of Cognitive Empathy

	Appendix Proofs
	Proof of Lemma 2.1
	Proof of Theorem 2.1
	An Alternative to Theorem 2.1
	Proof of Proposition 2.2
	Proof of Proposition 2.3

	Appendix A Continuum of Bayesian Nash Equilibria
	Appendix On the Uniqueness of Completely Mixed Nash Equilibria

	Strategic Formation of Homogeneous Bargaining Networks
	Introduction
	The Model
	Characterization of Stable Networks
	Stability and Bargaining Outcomes
	Singular Pairwise Stability

	Efficiency
	Effects of Time Discount
	Conclusion
	Appendix Proofs
	Proof of Theorem 3.1
	Proof of Proposition 3.1
	Proof of Theorem 3.2
	Proof of Lemma 3.1 and Lemma 3.2
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Theorem 3.4 (for n odd)
	Proof of Example 3.2

	Appendix Relation to the Works of Hellmann (2013) and Hellmann and Landwehr (2014)
	Appendix Relation to the Work of O'Donnell (2011)
	Lemma 4.1 of O'Donnell (2011)
	Lemma 4.2 of O'Donnell (2011)
	Lemma 4.3 of O'Donnell (2011)
	Lemmas 4.5 and 4.6 of O'Donnell (2011)
	Lemma 4.7 of O'Donnell (2011)
	Lemma 4.9 of O'Donnell (2011)


	Continuous Homophily and Clustering in Random Networks
	Introduction
	The Model
	Basic Properties of Homophilous Random Networks
	Clustering
	The Small-World Phenomenon
	An Example of the Labor Market
	Conclusion
	Appendix Proofs
	Proof of Proposition 4.1
	Proof of Corollary 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3
	Proof of Theorem 4.1
	Proof of Corollary 4.4
	Proof of Proposition 4.4
	Proof of Corollary 4.5


	References

