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June 10, 2016

Abstract

The value and the optimal exercise time of the perpetual American
straddle is characterized by the unique solution of a single non-linear
equation with one unknown variable.

1 Introduction

American options form an important class of derivatives; their perpetual ver-
sions can frequently be priced explicitly in the standard Black–Scholes model
[1]. This is the case with the American straddle - a portfolio consisting of a put
and call option on the same underlying with the same strike price. Pricing of
the American straddle has been studied using different approaches and tools:
in [4] by applying the theory of Laplace transforms, in [5] by transforming the
problem to a ”generalized parking problem”, in [6] by exploiting ”an analogy
with asymmetric rebates of double knock-out barrier options”, in [7] ”by means
of the Esscher transform and the optional sampling theorem”, and, more re-
cently, by using a combination of several optimization techniques [2], [3]. In
all of these papers the value function and the optimal excercise time1 of the
perpetual American straddle are characterized by the solution of a non-linear
system of equations consisting of (at least) two equations.

In this note, we show that the value function and the optimal excercise time
of the American straddle can be characterized via a unique solution of a single
one-variable equation; the solution lies in the interval (0, 1). We do so by using
one of the classical2 optimal stopping theory approaches: HJB equation and
smooth-fit principle in combination with a verification theorem. This leads to
a system of non-linear equations that can, by appropriate transformations, be
reduced to a single equation. To the best of our knowledge this is the first time
that such a one-equation characterization of the value and the optimal excercise
time of the perpetual American straddle is obtained.

∗Center for Mathematical Economics (IMW), Bielefeld University, Germany, and Fac-
ulty of Natural Sciences and Mathematics, University of Montenegro, Montenegro. Email:
lazaro@ac.me

1It is obviously optimal to excercise only one of the options that straddle consists of; this
is the reason why we speak of exercising the straddle.

2See [11], [8], [9].
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2 Result

Let the price process St be a a geometric Brownian motion, dSt = αStdt +
σStdBt, where α ∈ R and σ ∈ R are known constants. The American straddle
yields a payoff f(t, St) = e−rt|St − I| when exercised at time t, where I > 0 is
the strike price and r ≤ α is a given3 discount rate.

The value of the perpetual American straddle at time t is given by

Vt = ess sup
τ∈Tt

E[e−rτ |Sτ − I|], (1)

where Tt is a set of all stopping times τ ≥ t. Our goal is to find the explicit
representation of the value function v(t, x) such that v(t, St) = Vt and an optimal
stopping time τ∗ such that Vτ∗ = E[e−rτ

∗ |Sτ∗ − I|] holds.
Becuse of the form of the payoff function f we expect that there will be two

values, x1 and x2, x1 < I < x2, such that it is optimal to exercise the put (call)
option when the value of St goes beneath x1 (above x2). This means that the
optimal stopping time will be the first exit time from inteval [x1, x2]. Since the
function f = (e−rt)|x − I| is continuous, we expect the value function v to be
smooth. We also expect that it will satisfy the Hamilton-Jacobi-Bellman (HJB)
equation:

max
(t,x)∈[0,+∞]×R

{f(t, x)− v(t, x), vt(t, x) + Lv(t, x)} = 0, (2)

where L := α
∂

∂x
+
σ2

2

∂2

∂x2
is a differential operator.

We ”guess” that the the value function is of the form v(t, x) = e−rtϕ(x); this
is a well known approach when dealing with time-discounted optimal stopping
problems. Because of the HJB equation we expect that on the continuation
region the function satisfies vt(t, x) + Lv(t, x) = 0, which, after canceling e−rt,
gives:

rϕ− αxϕ′(x)− 1

2
σ2ϕ′′(x) = 0. (3)

The last equation is a well known Cauchy-Euler ODE and it’s solution is:

ϕ(x) = Axλ +Bxµ (4)

where A and B are two unkown constants and λ and µ solve the characteristic
equation r − αm − 1

2σ
2m(m − 1) = 0. It can be easily seen4 that λ > 1 and

µ < 0. We conclude that function v should be of the form:

v(t, x) =

 e−rt(I − x), 0 < x ≤ x1
e−rt(Axλ +Bxµ), x1 ≤ x ≤ x2
e−rt(x− I), x > x2

(5)

3Inequality r ≤ α is a standard assumption; see for example [12].
4since: λ = 1

2
− α
σ2 +

√
( 1
2
− α
σ2 )2 + 2r

σ2 and µ = 1
2
− α
σ2 −

√
( 1
2
− α
σ2 )2 + 2r

σ2
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where A, B, x1, x2 are unknown constants. Since we expect the value function
to be smooth we will try finding these constants by requiring continuity and
differentiability in points x1 and x2 (smooth pasting conditions). It is already
clear that, should we find such constants, the above function v(t, x) will indeed
be a value function. This can be seen by checking the function v via one of the
well known verification theorems for the optimal stopping of diffusions5.

Smooth pasting condtions, after cancelling out e−rt, yield the following sys-
tem:

I − x1 =Axλ1 +Bxµ1 (6)

−x1 =Aλxλ1 +Bµxµ1 (7)

x2 − I =Axλ2 +Bxµ2 (8)

x2 =Aλxλ2 +Bµxµ2 (9)

The above system is higly nonlinear. After several transformations and intro-
duction of a new variable the above system can be reduced to a one-dimensional
system which has a unique solution in the interval (0, 1). It turns out that this
solution completely characterizes the above problem. This is our main result
and we formulate it precisely in the following proposition:

Proposition 1. The value process of the perpetual American Straddle Vt defined
in (1) satisfies the equality Vt = v(t, St) for the function v as defined in (5) where

A =
1

µ− λ
((1− µ)x1−λ1 + µx−λ1 ); B =

1

λ− µ
((1− λ)x1−µ1 + λx−µ1 )

x1 = γx2; x2 =
µI

µ− 1

1 + γ−λ

1 + γ1−λ

and γ is the unique number in (0, 1) satisfying

µI

µ− 1

1 + γ−λ

1 + γ1−λ
− λI

λ− 1

1 + γ−µ

1 + γ1−µ
= 0. (10)

The optimal stopping time is the first exit time from the region [x1, x2]:

τ∗ = inf{t ≥ 0|St /∈ [x1, x2]}.

Proof. In order to prove the porposition it is, by construction of the value func-
tion v, sufficient to prove that unique solution of the system (6) – (9) is the one
given in the formulation of the proposition. The proof consists of reducing the

5The simplest form of such a theorem available to author appears (in a more general
version) in [10] and is derived from [11]. Another formulation is available in ch.4 of [8].
Due to the fact that this function coincides, piecewise, with discounted ’quasi polinomials’,
conditions of each of the standard verification theorems are easily satisfied.
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system to equation (10), and proving that the solution of the latter is unique
on the interval (0, 1).

First we comment on the uniqueness of the solution of the system of equa-
tions (6)-(9). Due to the uniqueness of the value function of the optimal
stopping problems the solution of the system above must be unique. Indeed,
two different solutions of the system (6) – (9) would lead to two functions v1
and v2 both of which would satisfy the verification theorem and the equation
v1(t, St) = v2(t, St) would holds almost surely, which is clearly impossible.

We now turn to proving the existence. We eliminate variables A and B by
treating equations (6) – (7) as a two dimensional linear system. Determinant of

that system is D = xλ+µ1 (µ−λ) which is always different from zero6, so variables
A and B are uniquely determined by:

A = Q(x1;µ, λ); B = Q(x1;λ, µ) (11)

where Q(x;µ, λ) :=
1

µ− λ
(1 − µ)x1−λ + µx−λ is a function introduced for no-

tational purposes. Similarly, equations (8 – 9) allow us to obtain expression for
variables A and B in terms of x2:

A = −Q(x2;µ, λ); B = −Q(x2;λ, µ) (12)

Equating the expressions for A and B we obtain the following nonlinear system
with two equations and two variables, x1 and x2:

Q(x1;µ, λ) +Q(x2;µ, λ) = 0 Q(x1;λ, µ) +Q(x2;λ, µ) = 0 (13)

Due to the nice form of the above system, we immediately see that if (x1, x2)
is it’s solution so is (x2, x1). This means that there is a unique solution pair
satisfying x1 < x2, and it will be the unique solution that we are looking for.
Because of this we introduce a variable γ such that x1 = x2γ. Since inequality
0 < x1 < x2 holds, we have γ ∈ (0, 1). The right hand side of the first equation
of the system (13) can now, after some simple calculations, be writen as:

Q(x2γ;µ, λ) +Q(x2;µ, λ) = (1− µ)x1−λ2 (1 + γ1−λ) + µx−λ2 (1 + γ−λ).

from which we obtain:

x2 =
µI

µ− 1

1 + γ−λ

1 + γ1−λ
(14)

Similarly, by changing x1 = x2γ in Q(x1;λ, µ) +Q(x2;λ, µ) = 0 after multi-
plication with x−µ1 we obtain:

x2 =
λI

λ− 1

1 + γ−µ

1 + γ1−µ
. (15)

6Because x1 > 0 and λ > µ.
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Equating the two obtained expressions for x2, after rearanging and cancelling
out parameter I, we obtain the one-dimensional equation (10), stated in the
formulation of the proposition.

It remains to prove that there exists a unique solution of equation (10) in
the interval (0, 1). Indeed, if we denote the left hand side of the equation with
h(γ) it is obvious that function h is continuous on (0, 1), and it is easy7 to check
that h(1) < 0, and limγ→0+ h(γ) = +∞. We can thus conclude that a solution
exists on the interval (0, 1), and it’s uniqueness is consequence of the argument
from the beginning of the proof.

References

[1] Black, Fischer; Myron Scholes (1973). ”The Pricing of Options and Corpo-
rate Liabilities” Journal of Political Economy 81 (3): 637654.

[2] Jukka Lempa, A note on optimal stopping of diffusions with a two-sided
optimal rule. Operations Research Letters, Volume 38, Issue 1, January 2010,
Pages 11-16,

[3] Damien Lamberton and Mihail Zervos, On the optimal stopping of a one-
dimensional diffusion, Electronic Journal of Probability, Volume 18, 2013

[4] G. Alobaidi and R. Mallier, Laplace transforms and the American straddle.
Journal of Applied Mathematics Volume 2 (2002), Issue 3, Pages 121-129

[5] Beibel, M. and Lerche, H.R., A new look at optimal stopping problems related
to mathematical finance. Statistica Sinica Volume 7 (1997), Pages 93–108

[6] Franck Moraux, On Perpetual American Strangles. The Journal of Deriva-
tives Summer 2009, Vol. 16, No. 4: pp. 82-97

[7] Gerber, H.U. and Shiu, E.S.W., Martingale approach to pricing perpetual
American options. Astin Bulletin Vol. 24 (1994), No. 2: pp. 195–220

[8] Oksendal, B., Stochastic Differential equations, 5th ed. Vorlag-Springer 2003.

[9] Pham, H., Continuous-time Stochastic Control and Optimization with Fi-
nancial Applications Springer 2009.

[10] Xue Cheng and Frank Riedel, Optimal Stopping under Ambiguity in Con-
tinuous Time. Mathematics and Financial Economics 7, No. 1, 2013, 29-68

[11] N. V. Krylov, Controlled Diffusion Processes Spriger Verlag 2008

[12] Shiryaev, Albert N. Essentials of stochastic finance: facts, models, theory.
Vol. 3. World Scientific Publishing Company Incorporated, 1999.

7Because λ > 1 and µ < 0.

5


	deckbl559
	A Note on the Perpetual American Straddle [Obradovic, 2016]-1

