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Abstract: The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in
magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets.
In this contribution, we first focus on the links between effect characteristic and underlying
microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering
automotive, biosensors as well as nanoparticular sensors.
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1. Introduction

It has been almost 30 years since one of the most fascinating advances in solid state physics
occurred, the discovery of the giant magnetoresistance effect (GMR) by Grünberg and Fert in 1988 [1,2].
In thin metallic film systems, they observed that the magnetization of adjacent ferromagnetic films,
separated by a thin non-magnetic interlayer, spontaneously align parallel or antiparallel, depending
on the thickness of the interlayer. The orientation of the magnetization in the ferromagnetic layers
strongly influences the resistance of the system. A parallel orientation is characterized by an electrical
state of low resistance, while an antiparallel orientation is a state of high resistance. Due to the fact that
the spacer layer thickness determines the initial configuration, an initially antiparallel orientation can
be realized. The charm of this system lies in the fact that it enables a sensing of external magnetic field
strengths in electrical units in between the two electric states of resistance. This discovery triggered an
extensive research activity in this field in order to understand the underlying physical phenomenon as
well as to exploit its technological potential. A remarkably short period, only a decade, lies between
the discovery of the GMR effect and its first commercial realization in the form of magnetic field
sensors and hard-disk read-heads [3]. Nowadays the spectrum of successful applications of GMR
technology is impressively broad, ranging from applications in the air- and space or automotive
industry, non-destructive material testing, or the compass functionality in mobile phones to biomedical
techniques, like biometric measurements of eyes and biosensors, e.g., for the detection of viruses [3–5].
Thus, the potential of magnetoresistive technology seems to be far from being exhausted.

Nowadays the underlying physics of GMR and the interlayer exchange coupling are broadly
understood. Nevertheless, when it comes to detail, discrepancies between experimental observations
and theoretical models can arise: a realistic theoretical description of electron scattering at lattice
discontinuities, disorder or defects is still a crucial factor [6,7].
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In this review, we intend to provide an overview of different aspects of the GMR effect. The first
section will focus on some of the ideas used to describe GMR effects theoretically in multilayers and to
extend them into granular systems. Thereafter, we will have a look at different systems in which GMR
can occur, with emphasis on the application-relevant side.

2. Theory

2.1. Giant Magnetoresistance in Magnetic Multilayered Systems

The giant magnetoresistance effect is the change of electric conductivity in a system of metallic
layers when an external magnetic field changes the magnetization of the ferromagnetic layers relative
to each other. A parallel alignment, like it is depicted in Figure 1a, has usually a lower resistance than
an antiparallel alignment, Figure 1b. The effect size is defined as:

∆R
R
“

RÒÓ ´ RÒÒ
RÒÒ

(1)

where RÒÒ and RÒÓ are the resistivity’s for parallel and antiparallel alignment, respectively.
Alternatively the ratio is sometimes defined with RÒÓ as denominator. The effect originates from
spin-dependent transport of electrons in magnetic metals.
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Figure 1. GMR double layer in Current in Plane (CIP) configuration. (a) Layer magnetization parallel; 
(b) antiparallel in respect to each other. 

This section will introduce the Boltzmann equation approach for treating the GMR effect in 
multilayers in a classical picture. There are also a lot of publications presenting quantum mechanical 
treatments of the GMR, which will not be discussed here. The Kubo formalism [8] uses linear 
response theory to calculate the effect of small electric fields on currents. Examples for this ansatz are 
works by Camblong [9], Camblong, Levy and Zhang [10] and Levy, Zhang and Fert [11]. A detailed 
description and additional literature may be obtained in the extensive treatment of CPP GMR in 
multilayers by Gijs and Bauer [12]. 

The semi-classical Boltzmann equation is used to describe the transport of electrons in metals. 
The model builds on the work of Fuchs and Sondheimer who used it to calculate the dependence of 
film thickness on the conductivity of thin metal films [13,14]. The Boltzmann theory describes the 
distribution of carriers, here electrons, of wave vector k in vicinity of position r with the distribution 
function ݂(ܚ). The distribution function changes through processes of diffusion ቀడೖ(ܚ)డ௧ ቁௗ , the 
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Figure 1. GMR double layer in Current in Plane (CIP) configuration. (a) Layer magnetization parallel;
(b) antiparallel in respect to each other.

This section will introduce the Boltzmann equation approach for treating the GMR effect in
multilayers in a classical picture. There are also a lot of publications presenting quantum mechanical
treatments of the GMR, which will not be discussed here. The Kubo formalism [8] uses linear response
theory to calculate the effect of small electric fields on currents. Examples for this ansatz are works by
Camblong [9], Camblong, Levy and Zhang [10] and Levy, Zhang and Fert [11]. A detailed description
and additional literature may be obtained in the extensive treatment of CPP GMR in multilayers by
Gijs and Bauer [12].

The semi-classical Boltzmann equation is used to describe the transport of electrons in metals.
The model builds on the work of Fuchs and Sondheimer who used it to calculate the dependence of
film thickness on the conductivity of thin metal films [13,14]. The Boltzmann theory describes the
distribution of carriers, here electrons, of wave vector k in vicinity of position r with the distribution
function fk prq. The distribution function changes through processes of diffusion

´

B fkprq
Bt

¯

di f f
, the

influence of the external field
´

B fkprq
Bt

¯

f ield
and due to scattering

´

B fkprq
Bt

¯

scatt
. The total rate of change

vanishes in the steady state case which leads to:

ˆ

B fk prq
Bt

˙

di f f
`

ˆ

B fk prq
Bt

˙

f ield
“ ´

ˆ

B fk prq
Bt

˙

scatt
(2)
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or after inserting the suitable expressions:

vk ¨∇ fk prq ` e
ˆ

B fk prq
BEk

˙

vk ¨ E “ ´
ˆ

B fk prq
Bt

˙

scatt
(3)

with vk the velocity, Ek the energy, e the charge of the electrons and E the electric field. At this point the
description varies depending on the system at hand. In case of a Current In Plane (CIP) geometry, see
Figure 2b, where the current is applied parallel to the layers, the electric field E will be homogenous
throughout the layers, which simplifies the equation significantly. In case of a Current Perpendicular
to Plane (CPP) geometry, see Figure 2a, the electric field differs from layer to layer. This description
will be limited on the simpler CIP case, a treatment of the CPP geometry can be derived from [15].
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Figure 2. Simple double layer stacks in CPP (a) and CIP (b) configuration. CPP leads to a homogeneous
current density (arrows) while the electric field is inhomogeneous, where CIP exhibits a homogenous
electric field and an inhomogeneous current density.

Assuming that the electric field introduces just small perturbations into the electron distribution
one can separate fk into:

fk prq “ f 0
k ` gk prq (4)

where gk prq represents the deviation of the distribution from the equilibrium distribution f 0
k which is

given by the Fermi-Dirac distribution f 0
k “

”

1` exp
´

Ek´EF
kT

¯ı´1
. Furthermore, assuming negligible

temperatures, spin-flip scattering can be omitted which governs the scattering term:

ˆ

B fk prq
Bt

˙

scatt
“
ÿ

k1

rPkk1 p1´ fkq fk1 ´ Pk1k p1´ fk1q fks (5)

with fk being shorthand for fk prq, Pkk1 being the probability of a electron of momentum k being
scattered into k1 and vice versa. The principle of microscopic reversibility, meaning Pk1k “ Pkk1,
inserting Equation (4) and assuming elastic scattering only lead to:

ˆ

B fk prq
Bt

˙

scatt
“

ÿ

k1

Pkk1 pgk1 prq ´ gk prqq (6)

The scattering term may be simplified further by introducing the relaxation time τk “
ř

k1Pkk1,
which neglects the scattering-in processes. This relaxation time approximation decouples the
Boltzmann equations and a linearization by discarding the second order term Egk prq leads to the
linearized Boltzmann equation:

vk ¨∇gk prq ` eE ¨ vk

˜

B f 0
k prq
BEk

¸

“ ´
gk prq

τk
(7)
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Solving this equation for gk prq leads to the electric current density J prq:

J prq “ ´
e
Ω

ÿ

k

vkgk prq (8)

with Ω the systems volume. Assuming that gk prq is a distribution depending on the x direction, the
direction parallel to the current, and splitting gk prq into a term with the velocity z component being
positive g`k prq or negative g´k prq gk prq “ g`k prq ` g´k prq, the general solution of Equation (7) is:

g˘k pxq “ eτk E ¨ vk
B f 0

k prq
BEk

„

1` A˘k exp
ˆ

¯x
τk tvxu

˙

(9)

The coefficients A˘k are given by the boundary conditions set at the outer surfaces and the interior
interfaces. Derivations may also be found in [16].

An extensive treatment of this approach in the CIP geometry is given by Hood and Falicov [17].
They use specular and diffusive scattering at outer boundaries, tuned with the parameter 1 ą Pσ ą 0
where 1 equals complete specular scattering. The metal interfaces allow for transmission parameter Tσ

and reflection Rσ “ 1´ Tσ, which both might be specular or diffusive depending on the parameter
1 ą Sσ ą 0. Furthermore they examined cases where relaxation times where identical τk for all
layers and spins, the magnetic layers where equally thick dF and the electrons effective masses m. They
found the following:

(a) ∆R
R increases with increasing specular scattering at the outer boundaries as long as the scattering

at the interfaces is not completely specular for both spin channels.
(b) ∆R

R is in general small as long as the type of scattering at interfaces for both spin channels is equal
Sσ“Ò “ Sσ“Ó.

(c) ∆R
R dependence on the thickness dF of the magnetic layers is in general dependent on the scattering

parameters, but its asymptotic value as function of ds, the non-magnetic layer’s thickness is zero
∆R
R pds Ñ8q “ 0, as well as for ∆R

R pdF Ñ8q “ 0.
(d) ∆R

R increases with increasing relaxation time τ to a maximum and then stays constant, or slowly
decreases when the difference in specular scattering chances SÒ and SÓ are high.

For CPP geometry Valet and Fert found that spin-dependent scattering at the interfaces is the
main contribution to GMR as long as the layers are thin, i.e., for thicknesses of a couple of hundreds of
angstroms, the contribution from bulk scattering becomes predominant [15]. In contrast to previous
CIP treatments, the CPP geometry gives rise to an interface resistance. Furthermore the electrons of the
minority spin accumulate at the magnetic interfaces and increase the spin-flip chance of electrons into
the majority conduction band. Additionally this disparity is decreased by reversed spin-flip scattering,
which is accounted to by introducing a spin diffusion length ls f . For a spin-diffusion length ls f much
higher than the layer thickness, a simple resistor scheme was found to be an adequate description of
the process, which leads to a GMR effect of:

∆R
R
“

Rp ´ Rap

Rap
“

`

RÒ ´ RÓ
˘2

4RÒRÓ
(10)

with Rp and Rap the resistances of the layered system with parallel and antiparallel magnetizations
respectively and RÒ and RÓ the resistivity of the majority and minority electrons in a magnetic layer.

Lastly Ustinov and Kravtsov presented a unified theory of parallel and perpendicular GMR based
on the Boltzmann equation [18]. They found CPP GMR to be higher than CIP GMR in most cases,
but no definite relation between both. They found GMR even if the magnetic layers are not aligned
antiparallel in zero magnetic field, in case the angle between magnetizations is exceeding a critical
angle. The dependence of the GMR effect on the applied magnetic field was found to be different
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in CIP and CPP cases, while
´

∆R
R

¯

CIP
pHq “

´

Rp0q´RpHq
RpHq

¯

CIP
ă µ2, with µ “

MpHq
MS

being the relative
magnetization, no such limit exists in the CPP geometry.

2.2. Giant Magnetoresistance in Granular Solids

The giant magnetoresistance effect is not exclusively found in magnetic multilayers, but may
also be found in systems with multiple ferromagnetic moments, which align parallel in exterior
magnetic fields. An example of this are granular systems of a conducting non-magnetic matrix with
embedded magnetic, conducting particles. In general, these systems have, without the influence of an
external magnetic field, a random distribution of magnetic domains, caused by dipole interaction and
depending on the distances between particles, Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling.
By applying an external field, magnetic particles can be aligned in the corresponding direction,
resulting in a decrease of resistance of the overall granular systems (see Figure 3). It was found in
experiments, that the global relative magnetization µ pHq “ MpHq

MS
is a good variable to describe the

GMR in granular systems:
R0 pHq ´R pHq

R pHq
« A µ2 pHq (11)

where A determines the effect amplitude and is to be measured for each experimental setup
separately [19].
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Figure 3. Schematic illustration of the granular GMR (solid line) in dependence of the applied field and
sample magnetization (dotted line). The granular GMR exhibits the highest resistance at the coercive
field as the magnetic moments of the particles are randomly oriented there. The dashed lines are a
guide to the eye.

A couple of models exist, which try to evaluate the parameter A on a theoretical basis.
Kim et al. [20] proposed a model based on the Kubo formalism. They modeled the magnetic grains
as centers for potential barriers. They found their model to be in agreement with data by Xiao, Jiang
and Chien [19], but as µ approaches 1, the GMR deviated from ∆R

R 9µ2 pM pHq Ñ MSq. Additionally,
they examined the GMR dependence on grain size compared to experiments by Xiao et al. [21] and
Xiong et al. [22]. They found an optimal size for grains (compare Figure 14). The GMR effect rises
rapidly until it reaches a maximum at the optimal grain size and then slowly decreases. They assumed
this to be an effect of larger grains acting as conduction medium instead of only scattering centers.

Zang and Levy using a CPP like formalism they derived previously [23,24]. They found:

(a) Magnetoresistance increases with the mean free path of the electrons in the matrix material.
(b) Magnetoresistance increases with the ratio between spin-dependent and spin-independent

potentials, which they expect to be comparable to those found in multilayers.
(c) Magnetoresistance increases with spin-dependent scattering roughness of the interfaces.
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(d) Magnetoresistance increases with decreasing grain size as long as the external magnetic field is
strong enough to saturate all granules.

(e) Magnetoresistance increases with concentration of granules as long as the granules do not form
magnetic domains at high concentrations.

(f) Magnetoresistance depends on the size distribution of the grains and needs to be precisely known
to compare theory and experiment.

(g) Magnetoresistance differs from ∆R
R « A µ2 pHq when the grain size distribution is broad as µ

approaches 1.

Ferrari, da Silva and Knobel found that granular systems exhibits a behavior similar to the CPP
GMR in multilayers for the case of the granule conductivity being much larger than the conductivity
of the matrix [25,26].
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Figure 4. Micromagnetic simulation of nanoparticles (20 nm) combined with a molecular dynamics
simulation to model clustering of particles, see [27].

These models all use some kind of averaging the magnetic moments of the systems, which seems to
work fine as long as the concentration of grains is low enough. As soon as the distance between grains
becomes small their dipole interactions lead to the assembly of ferromagnetic or antiferromagnetic
domains, or more complex ordering. Teich et al. [27] used micromagnetic simulations to calculate
magnetic ground states for magnetic particle assemblies, an example may be seen in Figure 4. These
areas of magnetic ordering are likely to have influence on the electric conductivity of the system. To the
best of our knowledge, there are to this point no studies on the influence of this. Systematic addition
of differently shaped particles or the removal of particles could lead to increased GMR and tailoring of
a granular system to specific needs.

3. GMR Systems

3.1. Thin Film Systems

The first GMR multilayer stack was prepared in 1988 by Fert et al. [1]. They examined the
characteristics of a {Fe/Cr}N system to explore the origin of the GMR effect. Driven by possible
applications as sensors in automotive and read-head industry, numerous studies have been performed
to improve the GMR characteristic since then [6,7,28]. A main goal was the improvement of layer
materials and thicknesses in order to identify the optimum microstructural and magnetic features
which enhances the GMR effect amplitudes in the multilayer systems and therefore, achieve higher
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sensitivities for sensor applications. Interface roughness is one of these microstructural characteristics
that determines the GMR potential and has been intensively studied (for a review of numerous
interface studies performed on Fe/Cr and Co/Cu multilayers see [6]). Furthermore the grain size has
to be considered [29,30]. It has been found that neither the crystallite size nor the interface roughness
alone determine the GMR of a multilayer, but the combination of both aspects. A combination of
large grains with moderate interface roughness has been reported to be an ideal candidate for good
GMR [29,31,32]. The interface roughness can be influenced employing a suitable buffer layer, whereas
an appropriate buffer layer thickness has to be chosen depending on the materials used and the number
of double layers. In Figure 5 the influence of the number of Co1.1nm/Cu2.0nm double layers on the
GMR amplitude has been shown for two different Py buffer layer thicknesses. For small numbers of
bilayers an increasing thickness of the buffer layer is favorable to obtain a larger GMR amplitude due
to the enhancement of the antiferromagnetic coupling in the undermost bilayers.
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This concept fails when sputtering a large number of bilayers, because the shunting of the thicker
buffer or bilayer compensates or even destroys the effect of a larger antiferromagnetically coupled
layer fraction [33]. However, due to the high GMR magnitude and, therefore, sensitivity for small
changes of magnetic fields, GMR systems are very attractive for sensor applications in industry. In the
following section we will have a closer view on different GMR applications:

3.1.1. Information Technology

The first industrial application of GMR thin film systems after the discovery of the effect was in
the field of information technology: the realization of GMR based hard-disk read-heads in 1997 [3,28].
Here, the GMR sensor is used to detect the magnetization direction of the bits on the magnetic recording
medium, which are assigned to a logical 0 or 1, respectively. Due to the continual improvement of
storage density, and thus reduction of bit size, a good scalability and high sensitivity of the sensor
element are necessary requirements. Furthermore, a linear sensor characteristic for the reliable
detection of bits and long-term stability are crucial factors. To detect the transition between bits
GMR spin-valve sensors are commonly used, which have been first proposed by Dieny et al. [34]. As
schematically shown in Figure 6a, these spin-valves consist of three functional layers: a ferromagnetic
(FM) layer with a fixed direction of magnetization (reference system), a non-magnetic (NM) interlayer
and another ferromagnetic layer, which magnetization direction can freely align with external magnetic
fields (free layer). To achieve a maximum stability of the reference system against external fields, it
typically consists of an artificial antiferromagnet (AM) with a pinned layer and an antiferromagnetically
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coupled reference layer. That way, the magnetization of the reference layer can be fixed into a certain
direction, employing the exchange bias effect [35]. The exchange bias field is temperature dependent
and varies for different materials. In order to let the free layer follow changes in the external magnetic
field, the thickness of the non-magnetic interlayer has to be chosen to ensure a minimal magnetic
coupling of the magnetic layers.
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Figure 6. (a) Schematic setup of the stack configuration of a GMR spin-valve sensor; (b) Conceptual
operation of a GMR read head: when a spin-valve sensor moves across an interfaces between two bits
with magnetic moments oriented in opposite direction (marked by “1” and “0”), the magnetic moment
of the free layer is reoriented according to the orientation of the next bit.

Moving a spin-valve across the interface between two bits with opposite magnetization direction,
the orientation of the magnetization of the free layer changes according to the stray field of the bits,
resulting in a resistance change of the entire reading structure (compare Figure 6b). The resistance
change causes a variation of current flowing through electronic circuits connected to the reading
structures. This change of the current is detected and decoded to reveal the information stored on
the disk.

For sensing small magnetic fields the distance between the stray field source and the sensor
element is an important parameter, because the stray field strength drops strongly with increasing
distance [36]. In Figure 7 the magnetic stray field strength as a function of the distance z is shown,
illustrating the 1/z3 dependence. Therefore the reading head is required to maintain a constant distance
to the spinning hard disk surface, which has to be as small as possible.
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Recently, hard disk drives came onto market, which use He as filling gas between disks and read
heads to reduce turbulences, and thus allowed a reduction of the distance between the disks and their
read heads. Combined with e.g., the shingled magnetic recording technique for hard disks, where data
tracks overlap with the adjacent tracks like shingles, GMR technology allows one to realize hard disk
drives with storage capacities of up to 10 TByte [37].

3.1.2. Automotive Applications

The automotive industry offers a great field of applications for GMR sensors like sensing
rotational speed, angle and position [38–40]. Several technical requirements have to be fulfilled
to make the GMR technology compatible for automotive applications: linear and non-hysteretic GMR
characteristics, high sensitivity, small temperature drift and long-term stability under application
conditions. For application in rotational speed sensing for example, spin-valve sensors are commonly
used (see Section 3.1.1) to ensure the desired sensor characteristics and sensitivity for small magnetic
fields. For this purpose, the free layer of the spin-valve system needs to have an anisotropy axis, to
which the magnetization preferably orients, if no external magnetic field is applied. This axis can be
realized by using crystal anisotropy or by adjusting the geometry of the GMR structure and making
use of the shape anisotropy. To obtain a high anisotropy and therefore a strong alignment, a high
aspect ratio of the GMR structure has to be achieved. For example, for realization of linear transition
regions in the range of several mT, the width of the GMR device has to be structured down to sizes
of 1 µm and below [41,42]. A configuration which considers these aspects is the arrangement of
meander shaped GMR sensors in a Wheatstone bridge [43]. This configuration minimizes the effects
of temperature and disturbing magnetic fields. Furthermore, in this configuration hysteresis effects
can be minimized e.g., by a slight change of the pinning directions out of the primary 90˝ orientation.
In [43] a reduction of hysteresis by about 1/5 of the primary value has been reported. However, due
to this geometry the GMR sensitivity is decreased and finally, for the optimization of GMR sensors
always a compromise between sensitivity and magnetic reversal characteristic have to be found in
consideration of the application of the sensor.

Since a lot of automotive magnetic sensors are implemented into security-relevant functions, it is
of importance that the magnetic behavior of the GMR sensors be stable under the applied conditions.
Thermal stability is a main factor here due to the exposure to high temperatures in the range of
200–360 ˝C during manufacturing as well as temperatures up to 200 ˝C for extended periods during
up to 40,000 h of operation, which have to be tolerated by the sensor without loss of performance.
Many studies report an initial increase of the GMR magnitude, compared to the as prepared samples,
after an annealing for a short time at moderate temperatures between 250 ˝C and 380 ˝C [44–49]. This
increase of the GMR effect originates from an improvement of the quality of the interfaces between the
magnetic/non-magnetic layers as well as defect recovery by diffusion processes [45,48,50].
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Figure 8. 3D reconstruction of atom probe tomography of a Fe (red) Ni (yellow)/Cu (blue)/Co (green)
trilayer: (a) as prepared Co/Cu interface (upper image) as well as Cu/Py interface (lower image);
(b,c) show the element distribution after annealing at 350 ˝C for 30 min for the marked Co/Cu interface
region in (a) (adapted from [51]).

The optimum temperature depends on the choice of layer materials, thicknesses, the possibly
used buffer layer and substrate materials. Within the framework of this review the focus is on Co/Cu
based layer systems. For example, if the thickness of the individual layers has been optimized for
the first antiferromagnetic coupling (AFC) maximum an optimum temperature of about 150 ˝C has
been reported [52], while for systems optimized for the second AFC maximum a critical temperature
of about 375 ˝C has been observed [53]. For annealing processes above the critical temperature
a breakdown of the GMR amplitude is observed. Different reasons for this deterioration of GMR
in Co/Cu multilayers have been discussed in literature: Observations of Co bridges through Cu
layers have been reported by means of field ion microscopy and transmission electron microscopy
(TEM) [54,55]. These defects of the layered structure were observed in systems with high interface
roughnesses even in the as prepared state leading to a strong ferromagnetic coupling of the adjacent
Co layers. TEM studies of Co/Cu multilayer samples reported by Rätzke et al. show the transport of
Cu into the Co layers along grain boundaries [47]. An alternative method for the observation of the
mechanism of GMR deterioration is the atom probe tomography (APT) [51,56,57]. In Figure 8a a 3D
reconstruction of a Py25nm/Cu20nm/Co10nm trilayer obtained by APT is shown. After an annealing at
350 ˝C for 30 min. (Figure 8b,c) it can be clearly seen that Ni atoms from the Py buffer layer segregate
along grain boundaries into the Cu layer (red dots in Figure 8c). This segregation path forms the initial
stage of pinhole formation and causes ferromagnetic bridges through the non-magnetic coupling layer,
causing a decrease of GMR effect [51].

A concept how to avoid these effects and to improve the temperature stability of Cu/Co multilayer
systems has been reported by Heitmann et al. [58]: For a [Py3nm/Cu6nm/Co3nm/Cu6nm]20 multilayer
system it has been shown that an annealing at 500 ˝C for 24 h triggered a complete recrystallization of
the sample from a dominating polycrystalline [111] texture in the as prepared state to a [100] quasi
single crystalline state after annealing. The most striking aspect of the microstructural evolution is
the preservation of the layered structure (compare Figure 9a,b). This crystallographic reorientation
is triggered by the minimization of lattice mismatch elastic energy: Under equal strain the elastic
energy in a [111] oriented CoCu material is higher than the energy in a [100] structure due to the elastic
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properties of the materials. By recrystallization in a [100] structure a reduction of elastic energy in the
order of 0.8 eV per interface atom is achieved [33,59]. But it is important to note, that a prior annealing
of the sample at moderate temperatures which has led to a considerable reduction of dislocations in
the course of recovery, while the temperature was not high enough to activate recrystallization process,
a further temperature increase not necessarily initiate a recrystallization any more. This is caused
by the decrease of the driving force [60]. Therefore, recrystallization can only occur after heating up
the sample directly to sufficient temperatures. The GMR measurements, given in Figure 9d, for the
recrystallized Co/Cu multilayer show that the GMR effect remains stable at further heat treatment
below the initial annealing temperature for 64 h.
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Figure 9. Comparison of TEM images of a [Py3nm/Cu6nm/Co3nm/Cu6nm]20 multilayer in the as
prepared state (a) and after annealing at 450 ˝C for 24 h (b). The insets show the corresponding selected
area diffraction pattern. The micrographs prove that the layered structure of the sample is preserved
during annealing while the microstructure changes from polycrystalline to quasi single crystalline,
oriented in fcc [100] direction; (c) X-ray diffraction pattern of a Co/Cu multilayer system before and
after annealing showing the recrystallization effect; (d) GMR measurements at room temperature for
the recrystallized Co/Cu multilayer: the GMR effect remains stable at further heat treatment at 400 ˝C
for 64 h [33].

3.1.3. Biosensors

Due to the ability of GMR systems to sense even small magnetic fields, the potential of GMR
sensors for the detection of magnetic beads was realized and led to another growing technological
field, the development of magnetic biosensors for life science applications. Only ten years after the
discovery of GMR the first magnetic biosensor was presented by Baselt et al. [61].

In Figure 10 an illustration of the detection principle is shown. Specific proteins are immobilized
on the sensor surface. Superparamagnetic nanoparticles or beads, which are specifically attached to a
target antibody, are used for detection. In a washing step, unbound magnetic markers are removed
and beads bound to antigen molecules are measured.
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Figure 10. Schematic representation of a magnetic biosensor: (a) a superparamagnetic bead
functionalized with a receptor molecule hybridize to the target molecule attached onto the sensor
surface; (b) An external field align the magnetic moment of the bead and the magnetic stray field can
be detected by the GMR sensor (adapted from [62]).

The superparamagnetic nature of the beads allows to switch on their magnetic stray field by a
homogeneous external magnetic field oriented perpendicular to the sensor surface, see Figure 10b.
Hence, the stray field components of the magnetic markers within the sensitive sensor area can be
detected by a drop in the electrical resistance of the GMR sensor. For an optimum bead detection,
GMR sensors with isotropic signals and high sensitivities are needed. In [62,63] the use of a
Py1.6nm [Cu1.9nm/Py1.6nm]10/Ta3nm multilayer stack for the detection of magnetic beads was reported.
To prevent any influences of magnetic anisotropies of the used materials on the GMR characteristic
a spiral-shaped structure has been chosen. In Figure 11a the nearly isotropic GMR characteristic for
two perpendicular oriented in-plane magnetic fields are shown. For this type of sensor a sensitivity
of 0.6% per kA/m for in plane magnetic fields has been achieved, resulting in a detection limit
of a DNA concentration of only 16 pg/µL, which is superior to standard fluorescence detection
methods [63]. The dependence of the resistance change ∆R on the particle coverage of the sensor
surface is shown in Figure 11b. A nearly linear behavior of the output signal is observed for low
particle concentrations [62].
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On the way from a simple bead detection to a fully integrated, easy to use, hand held “lab on
a chip” device for applications in human or veterinary diagnostics, several challenges have to be
mastered: (1) The magnetic core of the magnetic markers has to be stabilized to preserve their magnetic
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properties. Usually, this is achieved by embedding superparamagnetic magnetite nanoparticles in
a polymer matrix. Chemically synthesized FeCo nanoparticles are good candidates even for single
molecule detection as well, due to their superior saturation magnetization and, therefore, larger stray
fields [64]; (2) the interface between chemistry and biology has to be fitted for each application, to allow
a specific functionalization of the marker and sensor surface, e.g., for the detection of biotin-labeled
DNA, streptavidin coated particles can be used [65,66]; (3) the GMR sensors have to be incorporated in
fluidic environments, which enable the magnetic markers to pass the sensor surfaces at close distances
to ensure a binding onto the surface within an acceptable time scale [67]. Due to the magnetic nature
of the markers, magnetic attraction forces, created e.g., by on-chip conducting lines or magnetically
structured thin films, can be employed to pull beads towards the sensors [68–75]. Another way to
concentrate beads on a sensing surface uses of ultrasonic standing waves inside a microfluidic channel
system [76,77] or the microfluidic system itself can be utilized to transport beads towards the sensor
surface, e.g., by designing a ramp like structure [67,78].

A new concept to transport the magnetic particles in a “lab on a chip” environment without the
need of external forces like microfluidic pumps, is a magnetic on-off ratchet [79,80]. Here, a combination
of asymmetric magnetic potential and Brownian motion of magnetic beads moves particles through
the device. The asymmetric magnetic potential is achieved by combining an external magnetic field
with a spatially periodic array of conducting lines. When the asymmetric field is applied, particles
move towards the minima of the potential. After switching off the diffusion process starts. Due to the
asymmetric shape of the potential the particles are transported to the next minima when the field is
reactivated and thus, a net transport process is achieved [79].

The realization of a lab-prototype of a “lab on a chip” device is shown in Figure 12. An array of
32 meander shaped GMR sensors combined with a suitable microfluidic design, which optimizes the
bead capture rate. The measurement of individual sensor coverage can be improved by application of
the guarding procedure. This procedure employs an additional amplifier which switches the voltage
on the adjacent sensor rows, enabling an equal potential of the rows (see Figure 12d,e). Provided that
the resistances of the matrix elements are of the same magnitude and much larger than the resistance
of the supply lines, the measurement current will not expand on other paths and every resistance in
the sensor matrix can be addressed individually.
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3.2. Granular Bulk Systems

Four years after the discovery of the GMR effect in multilayer structures it was shown by
Berkowitz et al. and Xiao et al. that GMR is not restricted to thin film systems, but occurs in
heterogeneous bulk alloys, too [19,81]. Both groups utilized magnetron sputtering or melt spinning to
create ferromagnetic Co precipitates in a non-magnetic Cu matrix, respectively. Underlying physical
mechanisms which can induce the formation of such granular bulk GMR structures in alloys are
summarized in the schematic phase diagram shown in Figure 13. Different decomposition types for
the formation of magnetic precipitates (metal A) in non-magnetic matrix materials (metal B) have been
observed: (1) decomposition by classical nucleation and growth, e.g., in Ag-Co systems [21,82,83];
(2) coherent or spinodal decomposition, e.g., in Cu-Co systems [84,85] and (3) eutectic decomposition,
e.g., in Au-Co alloys [86,87]. However, it is expected that Ag-Co and Cu-Co systems will behave as
decomposed due to a large content of Co [88].
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Figure 13. Schematic phase diagram of two metals A (magnetic) and B (non-magnetic) illustrating
different types of decomposition which can lead to GMR effects in heterogeneous bulk alloys:
(1) classical nucleation and growth of precipitates; (2) coherent or spinodal and (3) eutectic
decomposition, which forms a lamellar microstructure similar to multilayers.

By applying an external magnetic field during the decomposition process (see Figure 13, case 2),
elongated magnetic precipitates can be prepared. This has been demonstrated by Hütten et al. in
AlNiCo5 bulk alloys [89]. It has been shown that the probability of spin scattering is two times higher,
if the direction of the current is perpendicular to the direction of the particle elongation.

The GMR characteristics in these granular systems is closely correlated to the magnetic behavior
of the samples, as discussed in Section 2.2. Due to TEM investigations it is known that an annealing
of granular systems causes a coarsening of the magnetic precipitates and an increase of interparticle
distances as it has been reported for Cu-Co [19,88] and melt-spun Au-Co [87,90]. Furthermore, in [88] it
has been confirmed by Lorentz microscopy that single domain Co particles exist in as-quenched Au71.6

Co28.4 ribbons, and multidomain Co particles in annealed ribbons, respectively. The changes in grain
size and the formation of multidomain particles reflect in the magnetic measurements and, therefore,
in the GMR characteristics. While a constant decrease of the granular GMR with increasing particle
size was observed by some groups [81,91,92], it was found in refs. [19,93–95], that the granular GMR
first increases up to a maximum value at about the electron mean free path λ and then decreases (see
Figure 14). In both cases, the granular GMR decreases approximately with the inverse of particle size.
It was concluded that the decrease of the granular GMR arises from the decreasing spin-dependent
interfacial electron scattering as the surface to volume ratio decreases with increasing size [23,96].
Ge et al. concluded, that for low annealing temperatures, defects, disorder and mismatch stress are
reduced [94]. Thus, the overall film resistance reduces, which leads to an increased granular GMR.
At higher temperatures, particles grow fast enough compared to the curing of the film defects and the
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granular GMR degrades. Wang et al. noted on particle size dependence of the granular GMR, that it
depends on whether the particles are superparamagnetic, single domain ferromagnetic or multidomain
ferromagnetic. While their calculations show a constant decrease for superparamagnetic particles,
it exhibits a maximum for single domain ferromagnetic particles [93].

Sensors 2016, 16, 904 14 of 24 

 

it has been confirmed by Lorentz microscopy that single domain Co particles exist in as-quenched 
Au71.6 Co28.4 ribbons, and multidomain Co particles in annealed ribbons, respectively. The changes in 
grain size and the formation of multidomain particles reflect in the magnetic measurements and, 
therefore, in the GMR characteristics. While a constant decrease of the granular GMR with increasing 
particle size was observed by some groups [81,91,92], it was found in refs. [19,93–95], that the 
granular GMR first increases up to a maximum value at about the electron mean free path ߣ and 
then decreases (see Figure 14). In both cases, the granular GMR decreases approximately with the 
inverse of particle size. It was concluded that the decrease of the granular GMR arises from the 
decreasing spin-dependent interfacial electron scattering as the surface to volume ratio decreases 
with increasing size [23,96]. Ge et al. concluded, that for low annealing temperatures, defects, disorder 
and mismatch stress are reduced [94]. Thus, the overall film resistance reduces, which leads to an 
increased granular GMR. At higher temperatures, particles grow fast enough compared to the curing 
of the film defects and the granular GMR degrades. Wang et al. noted on particle size dependence of 
the granular GMR, that it depends on whether the particles are superparamagnetic, single domain 
ferromagnetic or multidomain ferromagnetic. While their calculations show a constant decrease for 
superparamagnetic particles, it exhibits a maximum for single domain ferromagnetic particles [93]. 

 
Figure 13. Schematic phase diagram of two metals A (magnetic) and B (non-magnetic) illustrating 
different types of decomposition which can lead to GMR effects in heterogeneous bulk alloys:  
(1) classical nucleation and growth of precipitates; (2) coherent or spinodal and (3) eutectic 
decomposition, which forms a lamellar microstructure similar to multilayers. 

 
Figure 14. Schematic illustration of the granular GMR effect in dependence of the particle size. 

The dependence of the granular GMR on the ferromagnetic volume fraction is comparable to the 
particle size dependency: At low ferromagnetic volume fractions, the particles are small and few in 
number, therefore only a small granular GMR is measurable. With increasing ferromagnetic volume 
fraction, the granular GMR increases until it reaches the optimum value at a ferromagnetic volume 
fraction between 15% and 30%, depending on the used material system. Thereafter, it decreases with 
an increasing ferromagnetic volume fraction as the particles become larger and more densely packed 

Figure 14. Schematic illustration of the granular GMR effect in dependence of the particle size.

The dependence of the granular GMR on the ferromagnetic volume fraction is comparable to the
particle size dependency: At low ferromagnetic volume fractions, the particles are small and few in
number, therefore only a small granular GMR is measurable. With increasing ferromagnetic volume
fraction, the granular GMR increases until it reaches the optimum value at a ferromagnetic volume
fraction between 15% and 30%, depending on the used material system. Thereafter, it decreases
with an increasing ferromagnetic volume fraction as the particles become larger and more densely
packed reducing the surface to volume ratio. Furthermore, multidomain particles can arise and dipole
interactions between neighboring ferromagnetic particles become more important. Finally, particles
form a large connecting network with ferromagnetic domains at the percolation threshold of 55% and
only an anisotropic magnetoresistance (AMR) is observable [93–95,97–104].

Summarizing the findings of many studies, it can be stated that the size, distribution and amount
of ferromagnetic particles as well as the interface roughness determines the resulting GMR effect in
granular alloys [87,88,90,105]. Therefore, it is essential to control these parameters to improve the GMR
effect in granular systems.

3.3. Hybrid Structures

GMR is not restricted to thin films or bulk systems only. It also occurs in pure particular systems
(see next section) and hybrid materials containing thin films as well as magnetic clusters. These hybrid
structures can be prepared e.g., by heating of films or by preparing multilayers with ultrathin and
therefore discontinuous magnetic layers [106–110]. Holody et al. showed that Co/Py hybrid systems
reveal advantages for sensor applications like a lateral decoupling in the cluster layer in combination
with a low coercive field [106]. Unfortunately, the above mentioned techniques for the preparation of
hybrid materials typically lead to large cluster size distributions, making the investigation of influences
like cluster size, distances and concentration on the resulting GMR characteristic hard to uncover.
In [110] the idea to employ a “bottom-up” method by replacing a ferromagnetic electrode of a thin
film trilayer by predefined magnetic nanoparticles has been presented. Here, a Co3nm/Ru0.8nm/Co4nm

thin film system has been prepared by sputtering as a reference, which shows a GMR amplitude of
0.36% at room temperature (see black curve in Figure 15). The thickness of Ru interlayer has been
chosen according to the best interlayer exchange coupling. For preparation of the hybrid system, Co
nanoparticles with a mean diameter of 12 nm have been prepared via a wet chemical synthesis [111,112].
A monolayer of these particles have been spin coated on top of the Ru interlayer, thus replacing the
4 nm thick Co film as magnetic electrode. The corresponding GMR characteristic (see red curve in
Figure 15) shows a similar behavior compared to the reference system with an effect amplitude of
0.28% at room temperature.
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Figure 15. Proof of concept of the idea that Co nanoparticles can be coupled to a Co layer via a Ru
spacer layer coupling. As references, the GMR characteristics of a Co3nm/Ru0.8nm/Co4nm layered
sample (black curve) and a Co3nm/Ru0.8nm system (blue curve) are given. The resulting GMR curve
(red) measured at room temperature of the Co3nm/Ru0.8nm/Co particles (diameter: 12 nm) hybrid
system clearly shows a spin-valve character (adapted from [110]).

This indicates that the magnetic Co nanoparticles can be coupled to a Co layer utilizing the
spacer layer coupling. The smaller saturation field of the hybrid structure indicates a smaller spacer
layer coupling compared to the layered system of the same spacer layer thickness, but due to the
larger magnetic moment of the 12 nm sized Co nanoparticles compared to the 4 nm thick Co film,
the contribution of the Zeeman energy is higher, too. Thus, in the case of the hybrid system is the
saturation field is smaller than for the layered structure for an assumed equal coupling strength.
Nevertheless, this method seems to allow a finer tuning of GMR characteristics of hybrid systems,
which is of great interest from an application point of view.

3.4. Nanoparticular GMR Systems

Typically, granular materials are prepared by top-down methods such as co-sputtering or
co-evaporation of matrix and precipitated materials as well as by metallurgic techniques [97,113–115].
Particle size, volume fraction and magnetic configuration of the particles have to be controlled due
to the GMR’s dependence on these parameters. These requirements can be fulfilled more easily by
employing bottom-up approaches for the preparation of the granular systems like the embedment
of prefabricated magnetic nanoparticles into non-magnetic matrix materials. This approach has
been applied at first by Dupuis et al., who used in the gas-phase prefabricated Co and Fe particles
simultaneously deposited with Ag as matrix material onto cold substrates [116]. This technique allows
the independent variation of particle size and volume ratios and therefore the study of the dependence
of GMR on these parameters. Furthermore, different material systems can be realized in a simple
manner [116–118]. In 2007 Tan et al. showed that chemically synthesized ligand stabilized magnetic
FeCo nanoparticles can be used for a preparation of magnetoresistive granular super-crystals [119]. In
this case, the electrically isolating ligand shell acts as a tunneling barrier. Tunnel magnetoresistance
effect amplitudes of up to 3000% at low temperatures have been reported for these nanoparticular
systems [120]. In [121] such ligand stabilized nanoparticles have been used to create two-dimensional
granular GMR structures. Therefore superparamagnetic Co nanoparticles with a mean diameter of 8 nm
have been arranged in a monolayer onto a SiO substrate via a self-assembly process. The insulating
ligand shells have been removed by an annealing process in a reducing gas atmosphere. Afterwards,
without breaking the vacuum, a thin Cu layer has been deposited on top of the nanoparticles in order
to establish an electrical contact between the particles. In Figure 16 a result of a GMR measurement at
room temperature is shown. The bell shaped GMR characteristic follows mostly the expected behavior
for non-interacting particles deduced from the magnetization reversal by Equation (11) (red curve,
Figure 16).
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Figure 16. GMR characteristic of a monolayer of 8 nm sized Co nanoparticles measured at
room temperature with an in-plane external magnetic field (sample current: 1 mA, R0: 1.6 kΩ).
The measurement is compared to the expected behavior of non-interacting particles (red curve).
Additionally, the corresponding magnetic measurement is shown (blue curve) (adapted from [121]).

Aside from the expected magnetoresistance characteristic, additional features appear
symmetrically for in- and decreasing external fields, which can be attributed to the inner magnetic
arrangement in the particle assembly. Caused by a dipolar coupling of adjacent particles, magnetic
domains can be formed with an antiparallel arrangement of magnetic moments which maintains a
higher stability against external influences compared to the non-interacting particles [121].

Vargas et al. established a model to simulate the dipole coupling between ferromagnetic particles
and its influence on the granular GMR [122]. They showed that the particles couple ferromagnetically
in the near field, while in the far field an antiferromagnetic coupling is present. Considering a model
system of two parallel particle chains with particle moments aligned in one direction within each
chain, but opposite to the orientation of the moments of the adjacent chain, a 20% higher GMR has
been expected compared to non-interacting nanoparticles. In order to realize such a nanoparticular
GMR model system Meyer et al. have incorporated carbon coated Co nanoparticles into conductive
agarose gels as a non-magnetic matrix [123]. These systems allow an alignment of ferromagnetic Co
particles along magnetic field lines of an applied external field. The agarose gel has been heated above
the melting point and the nanoparticles are spread in the liquid phase of the gel. During cooling of
the gel below the gelling temperature an external magnetic field can be applied. Thus, this technique
allows to trigger different particle arrangements in the conductive matrix, which are fixed after the
gel’s solidification. Thereby, a variation of the GMR characteristic with every measurement caused
by a change of particle positions during switching the external field, which can be observed in the
case of a liquid gel matrix like a glycerin-water mixture, can be prevented [123]. Optical microscope
images of a sample prepared without and with the influence of a homogenous magnetic field during
the cooling process are shown in Figure 17a,b, respectively. A comparison of the corresponding
GMR measurements performed at room temperature is given in Figure 17c. The impact of particle
arrangement on the nanoparticular GMR effect can be seen clearly. The higher GMR amplitude in the
case of the field cooled sample, compared to the sample with the randomly distributed particles, can
be attributed to the larger particle volume fraction along the current path, when the current is applied
parallel to the field [123].

However, the particle density inside these particle superstructures is different. Hence, the dipole
coupling inside these superstructures varies as shown by spin-dynamic simulations for a homogenous
and a rotating field sample [27]. As a higher particle density is present in the rotating field sample, the
interparticle distance is smaller and therefore, more and larger areas of ferromagnetic coupled particles
are present compared to the homogenous field sample. As suggested by Vargas et al., these different
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dipole couplings may have an additional influence on the granular GMR effect as well [122]. To further
improve the stability of the agarose gel based nanoparticular GMR characteristics, it is recommended
to use an alternating current (AC) instead of a direct current (DC) (compare Figure 18). In doing so, the
electrolysis of the ions in the gel and the buildup of electrical double layers are inhibited [123]. This
results in an enhancement of reproducibility of nanoparticular GMR effects and therefore, opens a way
to realize printable, high sensitivity sensors without the need of photo- or e-beam lithography [67].
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4. Conclusions

We have shown that the GMR effect occurs in magnetic materials ranging from heterogeneous bulk
systems over multilayered thin films to magnetic nanoparticles, synthesized by bottom-up methods.
The microstructural as well as magnetic features have found to be crucial to trigger full potential of
the GMR effect in all systems. For the future-oriented nanoparticular GMR systems, we have shown
that an extensive control of the particle arrangement and magnetic configuration will be the key to a
successful establishment of printable detection devices in industrial applications.
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Abbreviations

The following abbreviations are used in this manuscript:

GMR Giant magnetoresistance
CIP Current in plane
CPP Current perpendicular to plane
RKKY Ruderman-Kittel-Kasuya-Yoshida (interaction)
AMR Anisotropic magnetoresistance
DC Direct current
AC Alternating current
TEM transmission electron microscopy
AFC Antiferromagnetic coupling
APT Atom probe tomography
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