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Abstract

For decades, researchers have attempted to provide patients with
an intuitive method to control upper limb prostheses, enabling them to
manipulate multiple degrees of freedom continuously and simultane-
ously using only simple myoelectric signals. However, such controlling
schemes are still highly vulnerable to disturbances in the myoelectric
signal, due to electrode shifts, posture changes, sweat, fatigue etc. Re-
cent research has demonstrated that such robustness problems can be
alleviated by rapid re-calibration of the prosthesis once a day, using
only very small amounts of training data (less than one minute of
training time). In this contribution, we propose such a re-calibration
scheme for a pattern recognition controller based on transfer learning.
In a pilot study with able-bodied subjects we demonstrate that high
controller accuracy can be re-obtained after strong electrode shift, even
for simultaneous movements in multiple degrees of freedom.
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1 INTRODUCTION
An intuitive and natural control of upper limb prostheses enables patients to
carry out everyday tasks faster and easier, significantly improving quality of
life [2]. Currently, the only viable option to achieve such a control is the de-
coding of surface myoelectric (EMG) signals via machine learning techniques,
such as pattern recognition or classification, to extract the user’s motion in-
tent and drive the artificial limb accordingly [2]. However, machine learning
algorithms require signals corresponding to the same intended motion to be
constant over time, while in practice the myoelectric signal is vulnerable to
disturbances, such as electrode shifts, posture changes, sweat, fatigue, etc.
[5, 12]. As of today, these problems with respect to robustness are too se-
vere to apply machine-learning algorithms as part of a commercial product
[2]. Several approaches have been suggested to improve the robustness, such
as implanted EMG electrodes instead of surface electrodes [4], high-density
EMG surface electrode-grids [6, 11], more sophisticated signal pre-processing
(feature extraction) [5], and post-hoc error detection in the decisions of the
machine learning algorithm [1]. However, a method that achieves robust con-
trol using only a moderate amount of surface EMG electrodes is still lacking
[2]. Therefore, recent research has suggested an alternative approach, namely
developing a re-calibration scheme that permits users to regain the high accu-
racy obtained under lab conditions, using only minimal training information
(less than 1 minute of recording time) [12]. While promising, the current
state-of-the-art is not yet able to fully regain the recognition accuracy ob-
tained under lab conditions and does not yet allow simultaneous movements.
In this contribution, we extend the re-calibration approach by applying a
novel transfer learning technique to infer the sensor disturbance caused by a
shift of the electrodes and adjust the incoming signal accordingly. We eval-
uate this approach in a pilot study with four able-bodied subjects executing
simultaneous motions in multiple degrees of freedom.

2 MATERIALS AND METHODS

2.1 Transfer Learning

Transfer learning is concerned with solving a given task by transferring
knowledge from a related task [8]. In this case, we attempt to control an
upper limb prosthesis under disturbance by using knowledge obtained in a
disturbance-free lab setting. Under the assumption that the disturbance can
be described by a linear transformation matrix I, our aim is to find the in-
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I I−1

Figure 1: A schematic view on the transfer learning approach. Left: A
machine learning model (diamonds) is fitted to data (circles). Middle: A dis-
turbance I causes a mismatch between model and data. Right: By learning
and applying the inverse disturbance I−1 the data can be cleaned again.

verse I−1, such that the disturbance can be removed from the data, and the
originally learned model can be applied again (see Fig. 1).

In this contribution, we exemplarily apply this approach to a Generalized
Matrix Learning Vector Quantization (GMLVQ) classifier, which describes
the data by representative prototypes (diamonds in Fig. 1) and infers the
intended motion of a patient by assigning the motion corresponding to the
closest prototype to the current myoelectric signal [10]. We infer the matrix
I−1 via gradient descent on the GMLVQ cost function [10]. GMLVQ itself as
well as the gradient descent for transfer learning are on-line algorithms with
linear-time comlexity, which makes them applicable in real time-settings.

2.2 Setup

Four able-bodied subjects were instructed to execute six movements in three
degrees of freedom (pronation and supination, flexion and extension, as well
as hand open and hand close) as well as the twelve pairwise combinations
of these movements and resting, resulting in 19 different movements overall.
Each movement was executed for five seconds, followed by two seconds of
rest. Muscle activity was recorded at 1000Hz sampling rate with an eight
channel Ottobock Healthcare electrode array (13E200) attached around the
forearm. To simulate doffing and donning of a prosthesis, the electrodes were
shifted transversally by 8mm, as in [12], and all movements were recorded
once more. Transversal shift was applied as it has been shown to be more
challenging than longitudinal shift [6]. As signal preprocessing, a 90Hz to
450Hz band pass filter was applied. On windows of 100ms with 50ms overlap
the 17 standard features offered by BioPatRec [7] were computed, in addition
to the log-variance as suggested by [3]. For each subject, four classifier models
were trained, one to distinguish the resting state from actual movement, and
one to recognize motion in each degree of freedom, permitting the recognition
of simultaneous movements. As part of the training, metric learning/feature
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degree of freedom original shift re-calibrated
pronation/supination 0.6% (0.3%) 36.2% (15.4%) 3.6% (2.5%)
flexion/extension 0.5% (0.5%) 10.9% (3.7%) 1.3% (0.9%)
open/close 0.7% (0.4%) 29.1% (6.4%) 3.8% (1.0%)

Table 1: The average recognition error (in percent) across subjects. The
standard deviation across subjects is given in brackets. Rows mark the degree
of freedom, columns the experimental conditions.

selection was applied, as suggested in [10]. Training was done in a 10-fold
cross-validation. In each fold, we used only five folds (50%) of the data
to learn the inverse disturbance matrix I−1 and evaluated the recognition
accuracy on the remaining single movements as well as the simultaneous
movements. This work was approved by the ethics commitee of the Medical
University of Vienna (#1301/2015).

3 RESULTS
The experimental results are shown in Table 1. For all subjects, the initial
accuracy of the classification model is high (below 1% error). After electrode
shift, the recognition accuracy degrades drastically, with 10% to 36% error on
average, depending on the motion performed. Transfer learning decreases the
classification error again, achieving accuracy of 95% and more. The difference
between the accuracy after electrode shift without transfer learning and with
transfer learning is highly significant for all subjects and motions (p < .01
using the Wilcoxon rank sum test and Bonferroni correction).

4 DISCUSSION
As expected, electrode shift leads to severe degradation in recognition per-
formance. Fortunately, our proposed transfer learning scheme significantly
improves the performance again to near-perfect accuracy, outperforming the
previously reported results by [12]. These results hold even for simultaneous
movements in multiple degrees of freedom.
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5 CONCLUSION
Our pilot-study indicates that transfer learning is a promising scheme to
rapidly re-calibrate a pattern recognition system after performance degrada-
tion due to signal disturbances (e.g. electrode shift). With only 30 seconds of
recorded data, recognition accuracy can be significantly increased, even for
simultaneous movements in multiple degrees of freedom. Directions for fur-
ther research include transfer learning for different machine learning models,
other sources of disturbance than than electrode shift, in particular posture
changes, and more extensive experimenal evaluations, including amputees as
test subjects. Such research might lead to prostheses, which are adaptive to
everday disturbances with only minimal effort required by the patient.
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