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Abstract. We present a deep convolutional neural network which is
capable to distinguish between different contact states in robotic ma-
nipulation tasks. By integrating spatial and temporal tactile sensor data
from a piezo-resistive sensor array through deep learning techniques, the
network is not only able to classify the contact state into stable ver-
sus slipping, but also to distinguish between rotational and translation
slippage. We evaluated different network layouts and reached a final clas-
sification rate of more than 97%. Using consumer class GPUs, slippage
and rotation events can be detected within 10 ms, which is still feasible
for adaptive grasp control.

1 Introduction

In autonomous robotic manipulation tasks, for example grasping and placing
objects, estimating the stability of the object in hand plays a major role. Objects
may slip out of the manipulator. This can lead to a state in the desired action
sequence from which the system cannot recover easily. Due to occlusions, vision-
based systems can hardly keep track of the state of objects hold in manipulators
and are therefore of limited usefulness when it comes to detecting loss of grasp
stability. For that reason, the loss of an object can only be detected after such
events already occurred. Humans perceive the onset of slippage by sensing high-
frequency micro-vibrations through specialized nerves (Pacinian corpuscle) in
the skin [4].

One possibility for early detection of slippage events in robotic systems is the
integration of tactile sensing capabilities directly into robotic manipulators. By
having human like sensing skills, the system should be able to directly evaluate
the contact state during interactions. Compared to imaging technologies where
standards are established for data acquisition and representation, current tactile
sensors posses a large variety of data acquisition techniques, which can be either
based on electric [12], optic [15] or acoustic [6] effects. For example the authors
in [2] discuss eight different technologies which are based on these three effects
and are used in current state of the art tactile sensors. For a detailed technical
overview the interested reader is referred to [2].

The work presented in [13] used support vector machines and random forests
to detect object slippage with a BioTac [6] sensor. The BioTac sensor offers mul-
tiple modalities such as 19 electrodes to measure local contacts with a sampling



rate of 100 Hz, thermal sensors and two pressure transducers, one for low (up
to 100 Hz) and one for high (up to 2.2 kHz) frequencies, respectively. The fea-
tures comprised all raw sensor values, where the high frequency component is
supplied as a time series of the last 22 sensor readings which makes up for half
of the feature vector. With these features used as input for a random forest, a
Fscore > 0.75 has been achieved in the evaluation. To predict slippage of held
objects, the authors of [14] took an approach where they first learned friction
properties based on data acquired from a force/torque sensor with Gaussian
process regression. In [11], also a BioTac sensor is used to classify slip with a
multilayer perceptron (MLP), but in contrast to [13], the authors used a se-
quence of 100 samples of the electrodes without utilizing the high frequency
sensor. With this time series as input for a MLP, a classification rate of 80% was
achieved. The same type of tactile sensor utilized in this work was already used
in [8] for a binary stable- vs. slip-classification. Here, the authors used a Fourier
transformation over the whole sensor array with varying window sizes to predict
slip velocity. They were able to achieve low mean squared errors of 0.04. These
approaches have in common, that they rely on the classification of time series
to detect slip events.

In areas outside of the scope of tactile sensing, convolutional neural networks
(CNNs) have been successfully applied to time series classification tasks, for ex-
ample in speech recognition. In [7], the authors evaluated the performance of
convolutional networks compared to deep neural networks (DNNs), Gaussian
mixture model (GMM) and Hidden markov model (HMM) approaches for large
speech recognition tasks. The data was preprocessed by extracting mel-frequency
cepstrum coefficients (MFCC) [3], a filter technique that resemble human audi-
tory perception by using a logarithmic scale for pitch and loudness of the signal.
With these frequency features as input for CNNs, the deep networks outper-
formed GMM and HMM approaches on different datasets. The authors in [1]
evaluated the efficiency of a deep neural networks with and without convolu-
tional layers in a similar speech recognition task and reported an increase of
6 to 10% in the relative classification rate for CNNs compared to DNNs. By
using CNNs in conjunction with short time Fourier transforms of brain waves
recorded with an EEG, the authors in [10] could distinguish different types of
musical rhythms perceived by their subjects.

The approach to employ time series data in slip detection tasks and the per-
formance of convolutional architectures suggests, that CNNs are an appropriate
choice to achieve a more fine grained classification of slippage events, in our case
to not only distinguish between stick and slip condition, but also to approach the
task of dividing the slip events further into translational and rotational events. In
the following section, we will first outline the sensing technology used in our ap-
proach. Afterwards the employed convolutional architectures will be described,
evaluated and discussed.



Fig. 1: Objects used for the evaluation and experimental setup for data recording.
Two KuKa LWR robots with attached tactile sensors (light orange) holding a
glass. The fingertip shaped sensor touching the glass from above is used to detect
the onset of slippage for data labeling purposes.

2 Sensor Properties and Data Acquisition

We recorded data by holding three different objects, a cardboard cylinder, a
remote and a drinking glass, between two piezo-resistive tactile sensor arrays1[9],
where each sensor array was attached to a 7 degree of freedom KuKa LWR
robotic arm. An image showing the objects used for training and evaluation and
the robot arms holding a drinking glass is shown in Fig. 1. The Myrmex sensor
consists of a printed circuit board (PCB) with 16×16 taxels, each with a spatial
dimension of 5×5 mm. Each taxel measures the change of resistance between
two electrodes that is induced by a piezo-resistive foam covering the PCB layer.
The change in resistance is digitized via a 12 bit analog-digital converter. The
data of all taxels is sampled at a rate of up to 1.9 kHz and transmitted to the
host PC via standard USB video protocol. An example of a single frame of the
sensor data while holding a cylindrical cardboard box and the change over time
of a single cell is shown in Fig. 2.

2.1 Data Recording

With three different objects, a total of 64 trials have been recorded for the three
classification classes, namely a stable state, translational and rotational slip.
We used two Myrmex sensors to hold the objects, each attached to the robot
arm’s end-effector as a “large” fingertip. The sensors were sampled with a rate

1 called Myrmex hereafter
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(b) Response of a single cell close to the center of
the sensor for a whole trial.

Fig. 2: An image representation of the raw sensor data for a single frame is shown
on the left. The right panel shows the raw value of a single cell over a whole
trial.

of 1 kHz. The overall duration of these trials was 662.8 s, leading to a total of
≈ 1.3M recorded sensor frames. To generate the slip events, we placed the objects
between the sensors and let the robots exert varying forces (between 1 and 20 N)
onto the objects, then moving the robotic arms slowly apart from each other. By
manually placing the object during grasping we could induce either translational
or rotational slip events: Translational slip events were generated by placing the
center of mass directly above the center of contact. For the rotational slip events,
the center of mass was placed horizontally shifted with respect to the center of
contact.

2.2 Data Labeling

Acquiring ground-truth labels for the onset of slippage is a demanding task.
For example, the authors in [13] hand labeled data based on video recordings
of the trials while in [11] an inertial measurement unit was attached to the
sliding object to provide a reference of the onset of slip events. The results from
[11] actually suggest, that incipient slippage can be detected even before such
traditional sensors as IMUs detect a motion of the object.

In our experiments we automated the labeling task of the data by placing
a third tactile sensor, using the same piezo-resistive principle, in contact with
the object, touching it from above. For technical reasons, this sensor could only
be sampled with a rate of 500 Hz, but the signals were synchronized with the
grasping Myrmex sensors. The onset of slippage was detected by evaluating the
contact forces measured with the third sensor. We set the onset of slippage to
the time when the sum of contacts on the third sensor started to decrease. The
end of the trial was determined by the point in time when no more contacts
were detected on the sensors holding the object. The sequence was labeled as



# network architecture

1 conv 3×3 → pool 2×2 → fc 512

2 conv 3×3 → pool 2×2 → conv 3×3 → pool 2×2 → fc 512

3 conv 3×3 → pool 2×2 → conv 3×3 → pool 2×2 → fc 1024

Table 1: Network architectures used in the evaluation. Here conv 3×3 is a con-
volution layer with a kernel size of 3×3. pool 2×2 is a max pooling layer and fc
512 is a fully connected layer with 512 neurons.

rotational or translational slip, respectively, depending on the initial manual
placement of the object.

3 Convolutional Tactile Networks

The properties of our sensor, the spatial arrangement of tactile cells combined
with a high sampling frequency, suggest to use an approach similar to other
time series classification techniques. By calculating a short-time Fourier trans-
formation over a certain window size for each tactile sensor cell, we obtain a
spatially arranged stack of Fourier coefficients which resembles the structure of
RGB color images, but with an increased amount of channels – one per Fourier
coefficient. On each of the channels we apply convolution and pooling layers to
learn filters for each of the frequency bins. The output of these filters is fed into
a fully connected layer, which is finally connected to a softmax layer for the clas-
sification. A convolution filter of width w and height h calculates the activation
a at position i, j by multiplying the input activations xi+k,j+l from a previous
layer with weights Wk,l and is defined by Eq. 1 as

ai,j = σ(

w−1∑
k=0

h−1∑
l=0

Wk,lxi+k,j+l) (1)

where σ() is a activation function, for example tanh(). A max pooling layer
simply applies a max(0, x) function to a given input area of size w × h.

The spatial arrangement of the frequency bins has an additional benefit for
the classification task. For example in cases of translational slip, all active tactile
sensor cells should have a similar amplitude whereas in cases of rotational slip,
the amplitudes should differ because of increasing accelerations with respect
to the distance of the center of rotation. After initial tests with different filter
sizes in the convolution and pooling layers, we decided to investigate the three
architectures described in table 1 in detail since larger filter sizes turned out to
decreased the classification performance slightly.

4 Evaluation

To evaluate the proposed network architectures, we preprocessed the raw data
by computing short time Fourier transformations for each of the tactile cells. We
chose a window size of 64 ms for the STFTs, with a small shift of 8 ms. That



# accuracy w/o filter acc. with high pass time fwd pass

1 91.01% 92.65% 0.29ms

2 96.12% 96.5% 0.44ms

3 97.45% 97.89% 0.43ms

Table 2: Test accuracy for the networks from table 1 with and without high pass
filter. The last column shows the average time for a single forward pass.

is, receiving tactile data at 1 kHz, the net generates classification results at a
rate of 125 Hz. Additionally, the raw images were cropped to in include only
the innermost 12×12 tactile cells of the sensor. This was necessary due to false-
positives occurring at the borders, caused by the mechanical mounting of the
foam. The raw data we recorded has another drawback with respect to practical
applications. The sensor orientation was fixed throughout the recordings and
gravity was the only acting force to create slippage events. Thus the slippage
and rotation only occurred in one direction. We therefore augmented the dataset
by rotating the raw data with 12 different angles, reaching from zero to 330◦

in steps of 30◦, before calculating the short time Fourier transformation, which
improves the generalization to other end-effector poses. Because stable states are
overrepresented in the dataset, we sub-sampled the raw data to obtain an equal
number of raw samples for the three classes. After the rotation and sub sampling
process, we have a total of ≈ 2.1M data samples of dimension (12 × 12 × 32)
containing Fourier amplitudes. Fourier phases were not considered.

Before training, we split the dataset and kept 20% of the available data sam-
ples as a test set for evaluating the proposed networks architectures. The data
samples in the dataset were stored in an alternating fashion with respect to the
labels to assure an even distribution of the three classes in the training and
test set. We tested two conditions for the networks described in table 1, one
considering all frequency components and one applying a 60Hz high pass filter,
to explicitly remove low frequency vibrations from the robot arms before train-
ing. Already the smallest network with only one convolution and pooling layer
achieves an accuracy of more than 91%. Here the high pass filter increases the
accuracy by 1.6%. Adding a second Convolution and pooling block increases the
classification accuracy further to nearly 98%, when a high pass filter is included.
For the case with the high pass filtered input data, we carried out an additional
ten-fold cross-validation to confirm the results more thoroughly. Therefore, we
split the dataset in ten chunks of equal size, created a training set from nine of
the ten chunks and used the remaining chunk for testing. This was done with
each of the ten chunks as test data. Table 3 shows a confusion matrix of the test
accuracy for each network. The cells contain the average percentage over the ten
runs and confirm the previous results from table 2.

An example of the training behavior of network 3 with respect to test accu-
racy and loss is shown in Fig. 3. The network converges towards the final test
accuracy after around 700000 iterations, where an iteration in this case is the
batch processing of 64 samples of Fourier transformed data.
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s 95.73% 2.54% 1.73%

t 1.26% 96.37% 2.37%
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(b) Network 2.
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s 97.57% 1.41% 1.02%

t 0.68% 97.73% 1.58%

r 0.51% 0.93% 98.56%

(c) Network 3.

Table 3: Confusion matrices for the cross-validation of all networks with high pass
filtered data. The letters s, t and r indicate the classes for stable, translational
and rotational slip, respectively.
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Fig. 3: Test accuracy and loss during training of network 3 from table 3. One
iteration in this figure is the batch processing of 64 samples.

5 Discussion

We presented an approach to detect translational and rotational slippage events
in robot manipulation tasks. To our knowledge, using neural networks to discrim-
inate between rotational and translational slip in addition to stable states has
not been done before, since recent state of the art techniques only used a binary
slip/non slip detection. We achieved state of the art classification results of more
than 97% by utilizing a convolutional neural network approach in conjunction
with short time series of the sensor data. Using a consumer grade GPU for par-
allelization, the classification and preprocessing is fast enough to be integrated
in real world robot controllers, for example for online grasp force adaptation. An
interesting next step will be to transfer the work presented in this paper to the
fingertip sensor [5], shown in Fig. 1, which we used for automatic labeling.
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