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Abstract— Identifying the relevant functional degrees of free-
dom is a key prerequisite for the proper handling of everyday
objects. Recognizing and exploiting these degrees of freedom
in the context of non-rigid objects poses challenges that are
significantly different from the rigid case. As a major generic
subtask, we consider the identification and exploitation of
boundary components during clothes manipulation, combining
RGBD vision with uni- and bi-manual handling through a
robot. Specifically, we present a novel graph-based approach to
detecting boundary components by extracting closed contours
from depth images. Based on that, we suggest a planner
minimizing a heuristic energy function for an optimal grasp
pose of a robot hand around the boundary of a garment. We
demonstrate the effectiveness of the approach in interactive
perception and regrasping experiments with a dual arm and
two attached anthropomorphic hands. Furthermore, we show
how to make use of these capabilities to implement a basic skill
for a coat-check robot: hanging up a knit cap on a hat-stand.

I. INTRODUCTION

Future robots promise to take a lot of tedious work out of
humans’ hands. However, present-day robots still struggle
with tasks humans accomplish quite naturally. For example,
coat-check attendants are able to deal with hundreds of
different garments everyday. They grasp the items, identify
the important parts and hang them up without any problem.
Although robots are getting better and better at rigid object
grasping and manipulation, robotic handling of such complex
deformable objects still poses a major challenge.

We believe that this reflects the circumstance that current
robots excel at extracting and exploiting precise metric
information, but are still very limited when it comes to
recognizing and interacting with more qualitative structures
often aptly characterized at the level of topology instead
of metrics. For highly deformable objects, metric features
cease to be good invariants, and more abstract topological
features must be used to guide interaction reliably. This is
particularly evident in the case of clothes, whose handling
typically requires the identification of boundaries along with
their topological patterns in order to be able to recognize or
change the orientation of a garment, or to properly interact
with structures such as openings.

This outlines the motivation of the current paper which
is to develop methods that allow ”affordances” (i.e., the
perceivable action possibilities [1]) to be grounded in every-
day situations centered around the handling of clothes. Our
focus of interest is in shaping perception and manual actions
for basic interaction primitives such as folding, unfolding,
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Fig. 1. A robot with two dexterous hands manipulating a piece of clothing.
(a) Regrasping a knit cap around its boundary. (b) Exploiting the boundary
grasp for hanging up the cap.

reaching into, hanging up, or pulling over (a destination
object or a human body part) for clothes or similar objects.
From a basic research perspective, we view this as an
entry point to more general topology-based representations
and to elucidating the connection between affordances and
topology. We aim to endow a robot with some higher level
cognition about interaction patterns with deformable objects
for which metric geometry is burdened with way too much
detail and lacks the necessary invariance.

Within the scope of the present paper, we propose algo-
rithms which can provide robots with some basic skills of a
coat-check attendant. We focus on the openings of garments
which can be described topologically by their boundary
components. The boundary components appear as closed
contours and can be used to define a suitable grasp pose (Fig.
1(a)). As can be seen in Fig. 1(b), our robot is able to exploit
the boundary grasp for such a complex task as hanging up
a piece of clothing on a hat-stand. Although we restrict
ourselves to a garment with just one boundary component,
we suppose that the general approach is applicable to various
types of clothing.

The key contribution of our current work is a method for
explicitly extracting topological structures, namely bound-
ary components, from depth images. This is opposed to
the widely used approach of detecting fragmentary metric
features. Another contribution is that we show how the
algorithm can be implemented efficiently, and applied to an
interactive clothes perception and regrasping task in a single-
view setup in the presence of outliers and noise.



II. RELATED WORK

Katz and Brock [2] have suggested that complex manip-
ulation tasks can be accomplished by factorization of high-
dimensional state spaces into lower-dimensional subspaces.
They make use of this approach in the context of articulated
objects. Pokorny et al. [3] share with us the idea that finding
holes or openings is an important topological factor for
grasping. However, deformable objects usually have a much
higher-dimensional configuration space. Therefore, Lui and
Saxena [4] have presented a learning approach to perceiving
the knot structure of a rope for untangling it.

A couple of research projects have aimed to enable robots
to handle clothes. As an example, the reader is referred to
the CloPeMa (Clothes Perception and Manipulation) project
which has resulted in methods for solving complex manipu-
lation tasks such as heuristic-based flattening [5], data-driven
folding [6], and unfolding of clothes using a polygonal model
[7].

Researchers from UC Berkeley intended to have an entire
laundry cycle done by a robot. For this purpose, they studied
gravity-based cloth folding [8], recognizing the configuration
of a garment using parametrized shape models [9] as well as
grasp point selection based on geometric cues like borders
and corners [10]. Finding optimal grasp points has also been
addressed by Ramisa et al. [11] who proposed a measure
of wrinkledness computed from the distribution of normal
directions in a point cloud, and by Yamazaki [12] who
presented an approach to learning graspable hem elements.

Another common approach is to create a mesh model of
the garment. Besides depth data, fiducial markers [13] as
well as prior knowledge and cues from strategic observation
[14] can be helpful. Furthermore, physics-based simulation
allows the dynamic properties of deformable objects like a
piece of paper [15] or clothing [16] to be modeled.

Willimon et al. characterize their work on robotic laundry
handling as an application of the interactive perception
paradigm [17]. They made use of this idea for unfolding
[18] and classification [19] of clothing. Moreover, they
proposed an energy minimization approach to markerless
pose estimation of deformable surfaces [20]. A hierarchical
method for classifying and estimating the pose of deformable
objects has been presented by Li et al. [21].

Tamei et al. [22] have intended to develop a clothing as-
sistance robot. Contrary to most of the works on clothes han-
dling mentioned so far, their approach is explicitly topology-
based. A reinforcement learning algorithm permits the robot
to put a mannequin’s head into a T-shirt. The reward function
is defined using so-called topology coordinates. However,
no robot vision is involved. Instead, the T-shirt’s neck is
equipped with markers and tracked using a motion capturing
system.

III. CONCEPTS

A. Topological characterization of clothes

Euclidean geometry is about distances between points,
angles between lines as well as the shape, size and position
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Fig. 2. (a) A T-shirt consisting of three sleeve components. (b) Top view on
a flattened T-shirt considered as a surface with four boundary components
depicted in black.

of objects. All these parameters change continuously when
clothes are deformed in a typical way. Topology, in contrast,
is concerned with object properties that remain invariant
under continuous deformation. It is, therefore, well-suited
for describing the spatial properties of clothes in a simple
but correct way.

Consider the T-shirt depicted in Fig. 2(a). It topologically
consists of a sleeve (green) with two smaller sleeves (red
and blue) attached to it. The entire T-shirt comprising both
the inside and the outside can be regarded as one locally
euclidean surface (2-manifold) without boundary. Consider-
ing the sleeves as stretched 1-handles or tori, the number of
sleeves is a topological invariant referred to as genus.

An alternative way to think about a (flattened) T-shirt
is as a genus zero manifold with three interior boundary
components, each corresponding to one of the sleeves, and
one exterior boundary component (Fig. 2(b)). Most everyday
articles of clothing can be topologically described by their
openings in this manner. Note, however, that exceptions exist.
A breast pocket, considered as a surface sewed on another
surface, is not a manifold because it has edges with more
than two neighboring surfaces and, hence, is not locally
euclidean. Apart from that, assuming an orientable genus
zero 2-manifold, the boundary components completely define
the topology of a piece of clothing.

B. Interactive perception

One major reason why many robot vision researchers have
preferred methods based on sparse metric features over topo-
logical representations is the assumption that image process-
ing is always done before manipulation. In fact, identifying
topological structures can be difficult in static environments.
Detecting the boundary components of a wrinkled item of
clothing lying on top of a table is almost impossible because
of misleading wrinkles and occlusion by other parts of the
garment.

The interactive perception paradigm [17] [18] [19] sug-
gests that the weaknesses of traditional sense-plan-act ar-
chitectures should be overcome by closely coupling ma-
nipulation and perception. Changing the configuration of
an object may reveal important information which would
be inaccessible otherwise. In section V-B.2, we propose a
heuristic-based approach to picking up a knit cap from the
tabletop in such a way that the robot can easily observe the
cap.
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Fig. 3. Intermediate results of the boundary detection algorithm. (a) Color
image of a knit cap held by a human hand. (b) Depth image. (c) Edge
image. (d) Skeletonized edge image. (e) Contour graph and selected cycle
(depicted in red).

C. The boundary grasp

We believe that the topology of a garment is closely related
to its affordances. The openings provide a link between the
appearance of a piece of clothing and the meaningful manual
actions. One affordance of most garments is grasping around
the boundary of an opening. Humans perform boundary
grasps during many daily tasks such as dressing, making
the bed or doing the laundry. We argue that an optimal grasp
pose is chosen taking into account the shape of the boundary
contour, perceptual reliability and stability, as well as grasp
comfort. A heuristic energy minimization approach to finding
a suitable boundary grasp pose is presented in section IV-D.

IV. ALGORITHMS

A. Building a graph representation from a depth image

In section III-A, boundary components have been identi-
fied as the most important topological features of clothes.
Therefore, we propose a graph-based approach to finding
those closed contours which represent the boundary com-
ponents. We start with the depth image of a garment (Fig.
3(b)), one opening being visible to the sensor. The color
image is not very helpful since clothing with sparse texture
may appear as a homogeneous single-colored area providing
no additional information (Fig. 3(a)). We convert the depth
image to a graph representation in three steps as follows:

1) Normal-based edge detection
2) Thinning/Skeletonization
3) Contour graph creation
For normal-based edge detection, we use the highly op-

timized implementation from Ückermann et al. [23]. The
basic objective of the method is to separate edges from
smoothly curved areas. We begin by temporally and spatially
smoothing the depth image. This noise reduction step is
crucial for the topological analysis, which we will conduct
later on, to be stable. Then, for each pixel, a surface normal
is estimated from the plane spanned by three neighboring
points. Finally, the scalar products with the normals in an
8-neighborhood are averaged before binarizing the obtained
angle image employing a threshold. The edge detection result
is depicted in Fig. 3(c).

Topology-preserving thinning of shapes in a binary image
is often referred to as skeletonization. Our skeletonization
procedure is based on Zhang and Suen’s parallel algorithm
described in [24] which we reimplemented using OpenCL
for parallelization. The idea of the algorithm is to iteratively
remove boundary points preserving the end points and pixel
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Fig. 4. Basic idea of the path graph reduction algorithm from [25]. (a)
Removing node v and adding a new edge concatenating the paths p1 and
p2 of two adjacent edges. (b) A simple cycle has been found if there is a
loop in the path.

connectivity. To this end, two subiterations are conducted.
Southeast points are deleted in a first pass before deleting
northwest points in a second pass. The result is an 8-
connected ”skeleton”(Fig. 3(d)).

Converting the thinned edge image to a contour graph is
done in a two-step process. First, we find nodes, i.e., points
with at least three neighbors in the image, and insert them
into the graph. Points with exactly one neighbor are free
ends of a contour and, hence, cannot be part of a simple cycle
(see section IV-B). Also, we completely miss closed contours
without any junction. But in reality, boundary components of
clothes never occur in this isolated form. In a second step, we
find the contour edges linking the nodes. For this purpose,
we create an edge for each neighbor of a node. Then, we
follow the contour line until another node is found. If no edge
representing the same contour exists, we insert the edge into
the graph. Strictly speaking, the resulting representation (Fig.
3(e)) is not a graph but a multigraph, i.e., two nodes may be
linked by multiple edges which is forbidden in conventional
graphs.

B. Finding simple cycles in the graph

The visible boundary components are represented as cy-
cles in the contour graph, but not every cycle is a bound-
ary component. Some definitions are needed for a graph-
theoretic specification of the following algorithm: A cycle is
a walk through the graph starting and ending at the same
node. Simple cycles are defined as those closed walks which
do not contain any repetitions of edges or nodes, except the
starting and ending node being the same. Cycle chords are
edges which are not part of the cycle but connect nodes
which are part of the cycle. Cycles without any chords are
called chordless cycles.

There are efficient methods for detecting all chordless
simple cycles. Unfortunately, the requested cycles are not
necessarily chordless. For example, the red cycle in Fig.
3(e) has a chord resulting from a wrinkle in the inner part
of the cap. The bottom line is that all simple cycles in the
graph must be detected because they are possible boundary
component candidates.

The maximum number of simple cycles in a graph grows
exponentially with the number of edges. However, many of
the simple cycles do not reflect any boundary component
but result from background edges or wrinkles. We describe
how we deal with these false positives in section IV-C.
Nevertheless, all simple cycles can be found by applying
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Fig. 5. Intuition of the convexity criterion: Contour points stick out
compared to points to the left and to the right of the boundary contour.

a path graph reduction method. We adapted Hanser et al.’s
algorithm [25] which returns the simple cycles as a side
product of iteratively reducing the graph. The procedure is
as follows: While there are nodes in the graph, the node
v of minimum degree is selected. For each pair of edges
x− p1 − v and v − p2 − y with disjoint paths p1 and p2, a
new edge x−p1−v−p2−y is created (Fig. 4(a)). If an edge’s
starting node is the same as its ending node (v− p− v), we
have found a simple cycle (Fig. 4(b)). Then, node v and all
its edges are removed from the graph and the next node is
selected. The algorithm terminates when there are no nodes
left in the graph. We give up if v has too many edges, i.e.,
more than a threshold Θ = 250. In practice, having reduced
the search space beforehand (see section IV-C), this only
occurs when the garment is quickly moved which may lead
to artificial edges caused by temporal smoothing.

C. From simple cycles to boundary components

The graph-theoretic approach raises three issues: how to
avoid a drop in performance caused by exponential growth
of the number of simple cycles, how to eliminate false
positives (i.e., simple cycles that do not originate from a real
boundary component), and how to transform 2D cycles to 3D
closed contours. We tackle the first two issues by drastically
reducing the search space before applying the cycle finding
algorithm. Contrary to the algorithms described so far, the
following steps require calibrated point clouds rather than
raw depth images.

For one thing, we only consider a region of interest around
the estimated object position in the point cloud, omitting
cycles that occur in the background of the scene. Estimating
the current position of the garment can be done by employing
any traditional color or texture based tracking technique on
a depth registered color image. Alternatively, in interactive
perception scenarios like ours, it can be derived from the
position of the robot end effector.

For another, we add edges to the contour graph only if
they match at least one out of a list of criteria. The most
important one is the convexity criterion: We find the pixel p∗i
with the minimum depth value in a small range around each
contour point pi accounting for minor deviations from the
real contour caused by skeletonization. Then, after having
computed the orthogonal vector of the contour in pi, we
compare the depth value of p∗i with those of two pixels pli
and pri to the left and to the right of the contour (Fig. 5).
The contour point pi fulfills the criterion if it is closer to the
depth sensor than pli and pri . The edge matches the criterion

if the ratio of such points exceeds a threshold. Additionally,
we introduce the contour length criterion in order to prevent
very short edges from breaking the whole cycle. A contour
edge matches the criterion if its length is below a threshold.
Further criteria helping to distinguish boundary edges from
non-boundary edges can be easily added.

All remaining simple cycles are evaluated by the criteria
matching quality of their edges. Here, we make use of our
prior knowledge of the type of clothing. For example, a
knit cap has only one boundary component of a roughly
known length. Consequently, we select the simple cycle with
a contour length in a given range whose contour points match
the convexity criterion better than a threshold and better than
any other simple cycle. Thus, we obtain no more than one
closed contour represented by a sequence of depth image
pixels.

We reduce redundancy by approximating the contour by
a closed polygonal chain using the curvature-based cor-
ner detector described in [26]. Afterwards, we convert the
polygon to a 3D representation as follows: We, again, find
the minimum depth pixel p∗i in a small range around each
polygon corner pi. Then, we intersect the view ray of the
depth camera at pi with a plane parallel to the image plane
and going through the point corresponding to p∗i in the
structured point cloud. The intersection point is added to
the 3D contour.

D. From perceiving boundaries to regrasping garments

A regrasping pose can be determined from the boundary
contour of a garment. However, some parts of a boundary
component are more suitable for grasping than others. Good
segments to grasp (depicted as blue curve in Fig. 6(b)) satisfy
the following criteria:

• Low curvature: Segments with high curvature are
likely to be corners or creased parts of the boundary.
Low curvature segments generally provide more space
for reaching into the opening.

• Stability: Segment hypotheses should not jump too
much between successive frames. Instead, segments
whose position remains stable over time are preferred
to unstable segments.

• Reachability: The left hand should not try to grasp
around a segment on the right side of the boundary and
vice versa. Therefore, segments which match a desired
direction well are preferred.

• Good segment length: Graspable segments should be
of a given length L greater than the breadth of the
fingers reaching into the opening. In our case, L = 5cm
has been a good choice.

Given a boundary component represented by a sequence
of 3D points, we iterate through all segments of length L and
find the segment with points p1, p2, ..., pN which minimizes
an overall energy term E. The procedure is repeated for
several consecutive frames. E is a weighted sum of three
terms Ecurv , Edist and Edir:

E = αEcurv + βEdist + γEdir (1)
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Fig. 6. Point clouds of a knit cap and two different grasp poses. Grasp
points are depicted as black dots. Approach and orientation vectors are
depited in green and pink, respectively. (a) Pick-up grasp pose suitable for
visual observation of the garment. (b) Boundary component (red), a good
segment to grasp (blue) and the resulting regrasping pose.

The parameters α, β and γ control the relative influence
of the terms. Curvature is approximated as follows:

Ecurv =
L

|p1 − pN |
. (2)

Edist penalizes sudden changes of position (enforces sta-
bility):

Edist =
1

NL

N∑
i=1

|pi(t)− pi(t− 1)|. (3)

Edir (enforces reachability) is defined as

Edir = −
〈
a
p1 − pN
|p1 − pN |

, vdes

〉
, (4)

where vdes =

0
0
1

 if the left hand is used or

vdes =

 0
0
−1

 if the right hand is used,

and a = −1 if the points are given in clockwise order
or a = 1 if they are given in counterclockwise order.
The direction of rotation a of the boundary points with
coordinates (x1, y1, z1), ..., (xM , yM , zM ) is determined by
employing the so-called shoelace formula:

a = sgn

(
M−1∑
i=1

xizi+1 + xMz1 −
M−1∑
i=1

xi+1zi − x1zM

)
(5)

We compute the actual regrasping pose based on the
optimal segment. However, all contour points are used to
fit a plane to the boundary employing a planar RANSAC
algorithm [27]. The approach direction is set to be the
normal vector of the plane. We limit the approach vector
to deviate from the tabletop plane by at most 20◦ in order
to obtain a relaxed elbow pose. For the orientation vector,
we project both end points of the optimal segment onto the
RANSAC plane and subtract the vectors from each other.
The grasping position is halfway between the two end points
of the segment plus 7 cm in approach direction. Thus, the
thumb reaches into the opening of the garment while the
other fingers grasp it from the outside.

(a)

(b)

Fig. 7. Testing the boundary component detection technique with different
garments. The results are depicted in red. (a) Three examples of successful
detections. (b) Three examples of detection failures.

V. EXPERIMENTS

A. Evaluation of the vision algorithms

In order to test our computer vision algorithms, we im-
plemented them using the Image Component Library (ICL)1

which allows for efficient 2D image and 3D point cloud
processing. The performance of our boundary detection
method was found to be near real-time (10 Hz on an Intel
XEON 3.6 GHz CPU using a NVIDIA GeForce GTX 660
Ti graphics card).

In addition to speed tests, we performed a qualitative
evaluation of the algorithms. To this end, different items of
clothing were held by a human hand in such a way that
one opening was visible to the depth sensor. As shown in
Fig. 7(a), boundary detection was successful for garments
of various colors and sizes, e.g., a knit cap, a glove and
a T-shirt. As opposed to curve detection methods based on
parametrization or template matching such as Hough trans-
form [28], our algorithm successfully found closed curves
of arbitrary shape in a model-free manner. Furthermore, our
approach had the advantage over active contour tracking [29]
that no contour initialization was needed. The shortcomings
of our method can be seen in Fig. 7(b). Firstly, we found that
it was not robust against occlusion, e.g. by the human hand,
because the occluding object interrupted the cycle in the
graph. Secondly, detection failed when parts of the boundary
between the garment and the table were too smooth to be
found by the edge detector. Thirdly, dents which fulfilled the
criteria of a boundary component led to false positives. In
the future, these problems might be addressed by making use
of prior knowledge of the scene.

B. Regrasping a knit cap with interactive perception

1) System setup: We tested our regrasping approach with
a knit cap using two redundant 7-DOF Mitsubishi PA-
10 robot arms. Both arms were equipped with a 20-DOF
electric-actuated Shadow Dexterous Hand. For robot vision,
we used a Microsoft Kinect including both a color camera
and a depth sensor viewing from above toward the tabletop
at an angle of about 45◦. We employed a distributed system
consisting of three computers, one for each group of tasks:

1http://www.iclcv.org/
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Fig. 8. Inter-process communication in the distributed system. A robotic
server component controls the arms and simulates the robot kinematics
in oder to avoid obstacles. A shared memory provides the Kinect sensor
data to the vision components. The BoCoClo (Boundary Components of
Clothes) component is in charge of boundary detection, while the Grasp
Pose Detector tries to find suitable pick-up and boundary grasp poses. Users
can send commands to the robot through a graphical user interface. Overall
task control is carried out by a hierarchical state machine (HSM).

hand control, arm control and vision. The inter-process
communication flow is depicted in Fig. 8.

2) Heuristic-based pick-up grasp: Several sophisticated
approaches to finding an optimal pick-up grasp pose for a
piece of clothing being placed on top of a flat surface have
been proposed [11] [12]. However, in our scenario, the grasp
has to satisfy an essential restriction: The robotic hand must
hold the knit cap in such a way that the opening is visible to
the sensor. Therefore, we present a heuristic-based method
exploiting gravity and the shape of the cap.

In order to keep it simple, we assume the biggest con-
nected region of points above the tabletop to be the knit
cap. Even if the cap may be crumpled, it usually retains an
elongated shape. A binary decision has to be made whether
the opening of the cap is pointing in direction of the robot
or the opposite direction. We leave the decision to the user
as this is not the focus of our current work. Picking up the
cap at a high point in the front area of the item makes it
hang in a good pose to be visually observed.

The grasp pose is again specified by a position vector, an
approach vector and an orientation vector (defined as point-
ing backwards through the hole between thumb and fore-
finger). We perform a 2-dimensional principal component
analysis (PCA) of the knit cap points, omitting the vertical
coordinates. Let µ be the mean of the points, let λ1, λ2 be
the eigenvalus of the covariance matrix, and let v1, v2 be the
corresponding eigenvectors, v1 pointing roughly toward the
opening of the cap. Then, a line r can be defined as

r = µ+
1

2

√
λ1v1 + t · v2 (6)

for t ∈ R. The heighest point within a distance of 1 cm to
this line is selected as the grasping position (Fig. 6(a)). The
approach direction is straight downward and the orientation
vector is set to −v1. In order to cover the whole range of
possible angles, the grasping hand is chosen depending on
the orientation vector. The robot picks up the cap and uses

(a) (b) (c) (d)

Fig. 9. Experimental trials. The robot regrasps a knit cap using interactive
perception. (a+b) Two examples of successful runs. (c+d) Two regrasping
failures.

TABLE I
EXPERIMENTAL RESULTS

pick-up grasp perception regrasp
success rate 11/12 10/11 8/10

percentage 91.7 90.9 80.0

the arm and two fingers to bring it into a desirable position
for visual observation.

3) Experimental procedure: We conducted twelve exper-
imental runs. The human experimenter held the knit cap in
the middle at different orientations and dropped it from a
height of about 50 cm above the tabletop. The robot’s task
was to pick up the cap, detect the opening and regrasp it
around a suitable segment of the boundary component. We
aborted the trial if one of the subtasks failed.

4) Results: The robot successfully picked up the cap
in eleven out of twelve runs. Boundary perception was
successful in ten out of eleven remaining trials. The single
detection failure was due to the cap being turned down in
such a way that the opening wasn’t visible to the sensor. The
robot succeeded in regrasping the cap around its boundary
in eight out of ten runs (e.g., Fig. 9(a) and 9(b)). One failure
was caused by trying to grasp the cap too close to a corner
and unintentionally also squeezing the opposite part of the
boundary (Fig. 9(c)). The second failure occurred because
the hand folded the cap to the side when trying to grasp
it and, hence, missed the boundary (Fig. 9(d)). The overall
success rate of the whole sequence was 66.7 percent. The
results are summarized in Table I.

C. The coat-check scenario: exploiting the boundary grasp

We present an attempt to make use of the suggested
regrasping technique in a simplified robotic coat-check sce-
nario. The robot performs a sequence of eight actions in
order to change the configuration of a knit cap from lying
on the table to hanging on a hat-stand. While the first three
steps have been discussed in detail, we basically regard the
subsequent actions as an application of the boundary grasp.
The overall procedure (Fig. 10) is as follows:

1) Picking up: The knit cap is picked up from the tabletop
according to the heuristc-based grasp pose detection.

2) Visually observing: One hand holds the cap in such a
way that the boundary can be detected.



Fig. 10. The task of hanging up a knit cap on a hat-stand divided into a
sequence of actions.

3) Regrasping around the boundary: Having deter-
mined a good grasping segment and pose, the robot
regrasps the cap with the other hand.

4) Regrasping at the tail: The robot performs another
regrasp at a point close to the tail of the cap.

5) Aligning: The top of the hat-stand is detected in the
point cloud and the cap is aligned accordingly.

6) Lifting up: One hand lifts the tail above the hat-stand.
7) Pulling down: The other hand pulls the cap over it.
8) Releasing: The robot drops the knit cap.

This basic clothes manipulation skill shows the usefulness
of our affordance-driven and topology-based approach for
an exemplary task of a robotic coat-check attendant. The
procedure was successfully executed by a dual-arm robot
with two anthropomorphic hands, although we observed
occasional failures due to the lack of a tight coupling between
perception and action in our prototypical implementation.

VI. CONCLUSION

We have proposed a graph-based method for perceiving
the boundary components of a piece of clothing in a point
cloud using interactive perception. We make a few assump-
tions with respect to the garment. These should be eliminated
in order to bring the system closer to a real robotic coat-
check attendant. Nevertheless, it is already possible to define
a good regrasping pose based on the detected boundary
components.

We have demonstrated the capabilities of the boundary
grasp in a coat-check experiment with a knit cap. However,
hanging up the cap is currently not as robust as regrasping
it. Visual or tactile servoing would probably improve the
performance drastically. In the future, the boundary grasp
and other concepts inspired by topology might be useful for
even more complex tasks such as putting on a pillow case
or assisting people with dressing.
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