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1. Introduction

1.1. Motivation and Main Results

In 1901 Schur investigated representations of the complex general linear group Gl,(C)
[SchO1]. As a tool he defined a new algebra, nowadays known as the Schur algebra and
denoted by Sc(n,d). Its module category was shown to be equivalent to Mc(n,d), the
category of polynomial representations of fixzed homogeneous degree d of Gl,,(C):

Mc(n,d) ~ Sc(n,d) Mod

Using this algebra, Schur obtained a connection between representations of Gl,(C) and
those of the symmetric group &, by defining a functor f, now called the Schur functor,
between these representations. To be more precise, he showed that the polynomial
representations of Gl,,(C) of fixed homogeneous degree d are equivalent to representations
of the symmetric group &4, whenever n > d. This correspondence is commonly known
as Schur—Weyl duality.

Based on Schur’s ideas, Green developed a similar theory extending the ground field
to an arbitrary infinite field £ in 1981. In particular, he showed that the category
of polynomial representations of the general linear group Gl,(k) of fixed degree d is
equivalent to the category of modules over the Schur algebra Si(n, d) [Gre07]. Moreover,
he also considered the Schur functor f, relating the module category of Si(n,d) to the
one of the group algebra of the symmetric group:

My(n,d) ~ Si.(n,d) Mod -1 k&, Mod

However, in this context the Schur functor does not generally induce an equivalence in
positive characteristic, in contrast to Schur’s original setup.

Following the introduction of the Schur algebras, results about representations of the
group algebra of the symmetric group have been used to infer properties of modules over
the Schur algebra and thus about representations of the general linear group. Starting
with Green’s monograph, the Schur algebra has become an object of interest in its own
right and consequently results have been obtained independently of the group algebra of
the symmetric group. Even more is true: findings for the Schur algebra have been used
to obtain new results about symmetric group representations.

Schur algebras have been extensively investigated over the last years, among others by
Donkin [Don86] [Don87] [Don94a] [Don94b]. He introduced generalized Schur algebras
and showed the existence of Weyl filtrations for projective modules over Schur algebras.
In particular, he showed that Schur algebras are quasi-hereditary and thus of finite global
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dimension. He also described explicitly the blocks of the Schur algebra. Moreover, in
1993 Erdmann determined those Schur algebras that are of finite representation type
[Erd93].

In 1997 Friedlander and Suslin introduced the category of strict polynomial functors.
Their definition is based on polynomial maps of finite dimensional vector spaces over an
arbitrary field k. They showed in [FS97] that the category of strict polynomial functors
of a fixed degree d, which we denote by RepT'¢, is equivalent to the category of modules
over the Schur algebra Si(n,d) whenever n > d:

ReplY = Si(n,d)Mod  (n >d)

We work more generally over an arbitrary commutative ring k and use a different de-
scription in terms of divided powers. This is convenient, because via Day convolution,
the category of strict polynomial functors inherits a closed symmetric monoidal structure
from the category of divided powers. This particular tensor product can be implicitly
found in works by Chatupnik [Cha0§] and Touzé [Toul3]; an explicit definition is given by
Krause in [Kral3]. We will denote this tensor product by — ®ra — and the corresponding
internal hom by Hom(—, —).

Using the equivalence proven by Friedlander and Suslin we obtain, via transport of
structure, a tensor product for modules over the Schur algebra. Despite the fact that
Schur algebras were invented more than a hundred years ago, this tensor product has
only been discovered recently. Unfortunately, working with the tensor product is less
profitable than one would hope for since its definition is not explicit: it is explicitly
defined for representable functors only, i.e. for certain projective objects, and extended
to arbitrary objects by taking colimits.

Apart from providing a tensor product for modules over the Schur algebra, the
monoidal structure on strict polynomial functors is interesting on its own: Chatupnik in
[Cha08] and Touzé in [Tould] introduced a Koszul duality on the derived level of strict
polynomial functors. This duality is given by taking the tensor product with exterior
powers. Moreover, in [Toul3] Touzé established a connection between this Koszul du-
ality in the category of strict polynomial functors and derived functors of non-additive
functors, hence extending recent applications of the tensor product.

The main motivation of this thesis is to better understand the tensor product of strict
polynomial functors and gain insights into related categorical structures.

A first step toward this goal is to strengthen the relation between strict polyno-
mial functors and representations of the symmetric group, in particular to compare the
monoidal structures on both sides. Since k&, is a group algebra, it has a Hopf algebra
structure and thus the category of representations of the symmetric group possesses a
closed symmetric monoidal structure. The tensor product of this monoidal structure is
often called the Kronecker product and is denoted by — ®; —.

In characteristic zero, the Kronecker product has been intensely studied over the last
century. In this characteristic the group algebra of the symmetric group is semi-simple,
thus understanding the Kronecker product reduces to the problem of how the Kronecker
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product of two simple representations decomposes into a direct sum of simple represen-
tations. The multiplicities appearing in this decomposition are called Kronecker coeffi-
cients, for which only partial results are known: Murnaghan stated in [Mur38] a stability
property of the Kronecker coefficients, i.e. for three partitions A, u, v the Kronecker co-
efficient gKiZ utn 18 independent of n for large n. In [JK81] James and Kerber provided
tables of Kronecker coefficients for symmetric groups of degree up to 8. In addition,
Kronecker products for several special partitions, including hook partitions and 2-part
partitions, have been computed, but a general description of Kronecker coefficients is
still an open problem.

In the case of positive characteristic even less is known. Already the simplest non-
trivial case, namely tensoring with the sign representation, is hard to compute. A
combinatorial description, given by the Mullineux map, was conjectured by Mullineux
in [Mul79] and proved by Ford and Kleshchev in [FK97], almost two decades later.
Another known fact, proved by Bessenrodt and Kelshchev in [BK00], states that the
Kronecker product of two simple representations of dimension greater than 1 is never
indecomposable in odd characteristic.

Fortunately, there are also some positive results. For example, it is possible to describe
the Kronecker product of two permutation modules explicitly, see Lemma This
description is even independent of the characteristic.

Using the aforementioned properties of the Kronecker product allows us to make
progress in describing the tensor product for strict polynomial functors. This is an
application from our first main result.

Theorem [3.23 The Schur functor
F: RepTY — k&4 Mod

1s a strong closed monoidal functor.

Extending our investigation of properties of the Schur functor F, as next step we
consider the fully faithful left adjoint Gy and right adjoint Guom of F. These adjoints
have been studied in order to compare the cohomolgy of general linear groups to that
of symmetric groups, see [DEN04], and to relate (dual) Specht filtrations of symmetric
group modules to Weyl filtrations of modules over the general linear group in [HN04].
We focus on the relationship with the monoidal structure and show that the left adjoint
of the Schur functor can be expressed in terms of the tensor product of strict polynomial
functors. Denote by S¢ the d-symmetric powers and let X € RepT'{.

Theorem [4.3| There exists a natural isomorphism
GoF(X) = 5" @pg X.

Dually, we show that the right adjoint to the Schur functor can be expressed in terms
of the internal hom of strict polynomial functors:
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Theorem |4.10,. There exists a natural isomorphism
gHom.F(X) = ’Hom(Sd, X)
Moreover we show that a projection formula holds:

Theorem . For all X € RepT'¢ and N € k&4Mod there is an isomorphism

G (F(X) @1 N) = X @pg Go(N).

The general results above allow us to draw conclusions about the tensor product
in specific cases. We are now in a position to explicitly calculate the tensor product
of (generalized) divided, symmetric and exterior powers, both among one another and
between any two objects, see Corollary [5.6] For the tensor product of Weyl, respectively
Schur filtered functors, we get partial results in special cases. In particular, we obtain
in Proposition the negative result that the subcategory of Weyl, respectively Schur
filtered objects is not closed under the tensor product. By using Theorem [4.3] we give
a necessary and sufficient condition whether the tensor product of two simple strict
polynomial functors Ly and L, is again simple:

Theorem Denote by A¢ the d-th exterior powers and Q¢ the truncated symmetric
powers. Let k be a field of odd characteristic and A, € A;(n,d). The tensor product
Ly ® L, 1s simple if and only if, up to interchanging A\ and p,

- Ly =AY and all v with Ext' (L, L) # 0 are p-restricted, or

- Ly 2 Q% and all v with Ext' (L, L,) # 0 are p-restricted.
In these cases A* ® L, = Ly, and Q*® L, = L,,.

In the case n = d = p even a full characterization can be given [Theorem |5.1§].

1.2. Outline

Following the outline, we fix some notation and recall widely known definitions and facts
about monoidal and k-linear categories.

The second chapter serves as an introduction to strict polynomial functors. Most
parts are collected from [Kral3] and [Kral4]. In Section [2.7.2 we introduce another dual
for strict polynomial functors, the monoidal dual, and explicitly compute this dual for
divided, symmetric and exterior powers.

In the third chapter we give a short introduction into representations of the symmetric
group &,. We recall the usual monoidal structure on the module category £&,; Mod and
definitions of important objects such as permutation modules, Young modules, Specht
modules and simple modules. Furthermore, we investigate the Schur functor F connect-
ing the category of strict polynomial functors RepT'¢ to k&4 Mod. In particular, we show
in Theorem that F preserves the closed monoidal structure. Closing the chapter,
we describe the action of the Schur functor on duals in Corollary [3.24]
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The fourth chapter deals with the adjoints to the Schur functor F. We describe the
fully faithful left and right adjoints of F and show that they are inverses to F when
restricted to particular subcategories. We further prove in Theorems [4.3] and that
the composition of F and its left, respectively right adjoint can be expressed in terms
of the monoidal structure. As a direct consequence, we give a relation between the left
and right adjoint in Proposition [4.14 Another conclusion from the previous findings is
a projection formula [Theorem for the Schur functor in the sense of [FHMO03, (3.6)].

Utilizing results from the previous chapters, we are finally able to compute the tensor
product of various strict polynomial functors in the fifth chapter. First of all we pro-
vide calculations for divided, symmetric and exterior powers which are summarized in
Corollary [5.6]

Next, we focus on Schur and Weyl functors: although general calculations of the tensor
product of two Schur, respectively Weyl functors have not been completed, we provide
computations in special cases in Propositions - and give a negative answer to the
question whether subcategories consisting of Schur, respectively Weyl filtered functors
are closed under the tensor product in Proposition [5.10]

Finally, we study tensor products of simple strict polynomial functors. We develop
a necessary and sufficient condition in terms of Ext-vanishing between certain simple
functors for whether this tensor product is again simple [Theorem and give a
detailed analysis in the case n = d = p [Theorem [5.1§].

The sixth chapter is devoted to the Schur algebra and its connection to strict polyno-
mial functors. In particular, we explain how the tensor product of RepT'¢ is translated
to Sk(n,d) Mod. This chapter contains fewer new results, but is rather an overview of
the correspondences between several objects, morphisms and structures.

In the appendix we collect very explicit — sometimes combinatorial — calculations
used to obtain the special relations between modules and morphisms of modules over
the Schur algebra, group algebra of the symmetric group and strict polynomial functors.
Moreover, we give a tabular overview of these correspondences.

1.3. Notations and Prerequisites
In the following we fix some notation used throughout the rest of this thesis and collect

important prerequisites about monoidal categories.

1.3.1. Compositions, Partitions and Tableaux
Most of the notations are taken from [Ful97], [JK81] and [Mar93].

For positive integers n and d let

Anyd) ={x=(\,....0) [N EN, Y N =d}



1. Introduction

be the set of all compositions of d into n parts,
A(d) = {\| XA € A(n,d) for some n € N, \; >0 for all 1 <i <n}
be the set of all compositions of d,
A(n,d) ={A=A1,..., ) €EAMn,d) [ Ay > - > N\, >0}
the set of all partitions of d into n parts,
AT(d) = {\| X € AT (n,d) for some n € N, \, > 0}
the set of all partitions of d, and for p > 0
Ay(n,d) ={A=(A,...; ) €A (n,d) | \i = Mgy <pfor 1 <i<n—1,\, <p}

the set of p-restricted partitions of d into n parts.

A partition A € AT (n,d) is called p-regular if every value occurs less than p times. A
partition A € AT (n,d) is a p-core if it contains no p-rim hooks, see e.g. [Mat99, Section 3]
or [JK81L Section 2.7] for detailed descriptions.

The conjugate partition X' of X € AT (n,d) is given by X, :== #{j | \; > i}. The set of
d-tuples of positive integers smaller equal than n is denoted by

I(n,d):={i=(i1...1q) | 1 <14y <n}.

We say that i € I(n,d) is represented by A € A*(n,d), and write i € A, if 7 has \; entries
equal to [ for 1 <[ < n. Two pairs of sequences (j,7) and (j',7) in I(n,d) x I(n,d) are
equivalent, denoted by (7,4) ~ (j',7'), if there exists a permutation o of the entries such
that jo = j' and io = i B

Example 1.1. Let n = 5 and d = 13. Then A = (5,3,2,2,1) € AT(5,13). The
conjugate partition of A is A = (5,4,2,1,1). The sequence (2543121412131) belongs to
A. The partition X is 5-restricted, but not 2-restricted since \y — Ay =5—-3 =2 £ 2. It
is 3-regular, but not 2-regular since the value 2 occurs twice.

Matrices. Let A € A(n,d) and p € A(m,d). We define A} to be the set of all n x m
matrices A = (a;;) with entries in N such that A; = > a;; and p; = 3, a;;.

Symmetric group. Let S be any set and define &g to be the group of permutations of
elements in S, i.e. the group of bijections from S to itself. For a set S with |S| = d, we
denote the symmetric group on d elements &g by G4. It depends only on the cardinality
|S| of the set S. For a composition A € A(n,d) the Young subgroup is defined by

G, = 6{1,...)\1} X 6{>\1+1,~-} Ko X 6{"'7d_1’d}'

It is isomorphic to &y, x --- x &,, and we will identify both groups.
The signature of a permutation o € &, is denoted by sign (o).
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Tableaux. Let A € A™(n,d). The Young diagram for \ is the subset
N ={G5)]1<i<n 1<j<N}CZ2

Example 1.2. A Young diagram can be visualized by drawing \; boxes in a row, then
Ao boxes in a row below and so on. For example let A = (5,3,2,2,1) € AT(5,13), then
we write ‘ ‘

Al =

The Young diagram [\'] corresponding to the conjugate partition of A is obtained from
[A] by reflecting along the diagonal, i.e.

¥ =

A X-tableau is a map T™ from [)] to a set. One can visualize T as

TA((1,1)) | T((1,2)) | T7((1,3))

T*((n,1))

A basic A-tableau is a bijective map from [A] to {1,...,d}, i.e. T is basic if every
integer from 1 to d occurs exactly once in T?.

Example 1.3. Let A = (5,3,2,2,1) € AT(5,13), then one basic A-tableau is

3]2[7]11]5]
4 113]10
T =[12] 6
911
8

The group &, acts on the set of basic A-tableaux T by interchanging the entries.
The row stabilizer or horizontal group ([JK81]) R(T*) of T? is the subgroup of &, that
preserves the entries in each row. The column stabilizer or vertical group ([JK81]) C(T*)
of T* is the subgroup of &, that preserves the entries in each column.
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Example 1.4.

(i) Let
3127 [11]5]
4 (13110
™=12]6
9 |1
8
Then R(T?) = S32,7,11,5) X Sa13,10) X - - X Ggy and (1) = S341298 X X
Sy
(ii) Let T be the tableau where the entries are given by 1,2,...,d when read from

left to right, from top to bottom, i.e.

1 2 |3 ]...[M]
TIQ _ A+ 1. AL+ 2
Then R(Th) = G,.
(iii) Let T2 be the tableau where the entries are given by 1,2, ..., d when read from

top to bottom, from left to right, i.e.

1IN +1]..]
A +2

Al - |

Ts =

then C(T}) = &,.

1.3.2. Monoidal and k-Linear Categories

We briefly recall the definition of a monoidal category.

Definition 1.5. A monoidal category is a category M together with

an (internal) tensor product ®, i.e. a bifunctor — ® —: M x M — M,

a unit object 1 € M,

a left unitor A, i.e. a natural isomorphism with components A\x: 1 ® X — X,
a right unitor o, i.e. a natural isomorphism with components ox: X ® 1 — X,
an associator a, i.e. a natural isomorphism with components

axyz (XQY)®Z—X® (Y ®Z),

such that
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e the pentagonal diagram

WeX)e(Y®Z)

e e

(WeX)eY)® Z WeXe(YeZ)
OCW,X,Y(X)ile ]idw®ax,y,z
We(XeY)eZ awxevs We(XeY)®Z)
and
e the triangular diagram
X®(1Y) TR (X®1)eY
im @
X®Y

commute for all W, XY, Z € M.

A symmetric monoidal category is a monoidal category M that is equipped with a
braiding, i.e. a natural isomorphism ~ with components vxy: X ® ¥ — Y ® X such
that for all XY, Z vy x o 7xy = idxgy and the following diagrams commute:

XoY)oz 2% yveX)eZ
OéX,Y,Zj lay,x,z
X®(Y®2) Y ®(X®2)
’YX,Y(X)Zj lldy@’yx,z
Y®2)®X =Y ®(Z®X)
Xo1— % 19X

Sk

Later on we often omit the additional data, e.g. associator / unit / braiding, and talk
only about a monoidal category M whenever the parameters have been fixed before.

Definition 1.6. A closed symmetric monoidal category is a symmetric monoidal cate-
gory in which for all Y € M the functor — ® Y: M — M has a right adjoint. This
adjoint is called the internal hom and is denoted by Hom(Y, —).

Note that for all Y € M the assignment X +— Hom(X,Y') defines a functor from
M°P — M. Thus, we actually obtain a bifunctor Hom(—, —): M® x M — M. By
definition we have for all X,Y, Z € M natural isomorphisms

Hom (X ® Y, Z) = Hom (X, Hom(Y, Z)).
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Remark 1.7. It is sometimes convenient to specify in which category a specific (internal)
tensor product, internal hom or the unit object lives. In this cases we write — @ —,
Homp(—,—) or 1. We often omit the supplement “internal” when dealing with the
internal tensor product and just write “tensor product”.

Example 1.8. Let k£ be a commutative ring. Then Mod &, the category of all k-modules,
is a closed symmetric monoidal category, where for V, W, X € Mod k
e the internal tensor product is just the usual tensor product over k:
VeoW=V, W,
the unit object is 1 = k, the regular representation,
the left unitor \y: 1 ® V' — V' is the usual isomorphism given by r ® v +— r - v,
the right unitor gy : V® 1 — V is the usual isomorphism given by v ® r +— v - r,
the associator aywx: (VW)@ X — V@ (W ® X) is given by the usual
associativity isomorphism,
e the braiding yyw: VW — W ® V is given by the usual commutativity isomor-
phism,
e the internal hom is given by Hom(V, W) = Homy(V, W), the k-linear maps from
V to W.
The additional conditions such as commutativity of certain diagrams are satisfied by the
usual tensor product properties for modules. For example the adjointness property of
the internal hom follows from the usual tensor-hom adjunction

Homy(V ® W, X) = Hom, (V, Homy, (W, X)).

Definition 1.9. A lax monoidal functor is a functor F between monoidal categories
M and M’ together with a morphism e: 1,y — F (1) and a natural transformation
Oxy: FX Qm FY = F(X@mY) for all X,Y € M such that the following three
diagrams commute.

(FX @ FY)®© FZ 75772 _ FX & (FY @ F2)
L@Xy@idfz lid}'xéi@y,z
FX®Y)® FZ FX@F(Y ®2)
chxw lqm,mz
F(XeY)®Z)— 2 F(X e (Y ®2))
FX @1y —2 FX
lid]:xfg)a ]—'QXT

FX © F(Ly) M F(X @ 1y)

Ty @ FX — X FX
lE@id}'X foT
@1, FX
FAm) @ FX FAu @ X)

10
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A strong monoidal functor is a lax monoidal functor F such that the maps ¢ and ® are
isomorphisms, i.e. FX @ FY = F(X ®Y) and Fly = 1.

For the definition of strict polynomial functors it is important to know what a k-linear
category is.

Definition 1.10. Let k£ be a commutative ring. A k-linear category is a category A
such that for all X,Y,Z € A we have Homy(X,Y') € Mod k and

Homy (Y, Z) x Hom4(X,Y) — Homy (X, Z)
is k-bilinear.
Let A and B be k-linear categories. A k-linear functor or k-linear representation of
A in B is a functor F such that for all objects X,Y € A the map
F: Homa(X,Y) — Homp(F(X), F(Y))

is a homomorphism of k-modules. The category of all k-linear functors from A to B is
denoted by Fung(A, B).

11






2. Strict Polynomial Functors

Strict polynomial functors were first defined by Friedlander and Suslin in [FS97], using
polynomial maps of finite dimensional vector spaces over a field k. We work with a
different, but equivalent, definition as in [Toul3] and [Kral3]. This definition uses the
category of divided powers and has the advantage of transparently inducing a closed
symmetric monoidal structure—the main object of this thesis. The monoidal structure
has gained interest when a Koszul duality for strict polynomial functors had been estab-
lished by Chatupnik in [Cha08] and Touzé in [Toul3], since this duality can be expressed
in terms of the monoidal structure, see e.g. [Kral3l, Section 3] for an elaboration and in
particular for its connection to Ringel duality.

The aim of this chapter is to introduce the category of strict polynomial functors
and in particular its monoidal structure. We collect known results about this tensor
product as well as further structures such as the highest weight structure. We finally
recall the definition of the Kuhn dual and then introduce a second dual, the monoidal
dual. Since the latter is important for the explicit calculations in Chapter [5 we provide
computations for this dual for divided, symmetric and exterior powers.

2.1. Prerequisites

Let k£ be a commutative ring and denote by Pj the category of finitely generated pro-
jective k-modules and k-linear maps. Since k is commutative, this category is a k-linear
category and equipped with a closed symmetric monoidal structure. The internal tensor
product V ®p, W is given by the usual tensor product V ®; W over k, the internal hom
is Homp, (V, W) = Homy(V, W), i.e. all k-linear maps from V' to W and the tensor unit
is 1p, = k, the regular representation. See Example for more details.

We denote the usual dual in Py by (—)* = Homp, (—, k).

Divided, symmetric and exterior powers. For VV € P, consider the d-fold tensor
product V®?. The symmetric group on d variables, & 4, acts by place permutation on
the right on it, i.e. for v, ® - -- @ vg € V®? and o € &, define

V1 Q- QUG 0= V(1) @+ @ Ug(a)-
We build new objects from V' € P as follows:

IV = (VoS = {v € V¥ | vo = v for all o € G4}, the divided powers of degree d,
Sy = (V®d)6d = V¥ (v@w—w®v|v,w V), the symmetric powers of degree d,
AV =V®/{(y@uv|v e V), the exterior powers of degree d.

13
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Remark 2.1. We denote the inclusion map TV < V% by (ip)y, the quotient map
V®d - SV by (rs)y and the quotient map V& — A4V by (m)y. In addition, there
is an isomorphism

AY(V) = { Z sign(o) -vo |v € V®d}

and we denote the inclusion map AV < V by (14)y.
Note that
(i) T x TUW C T4V x W) and TV C T4V @ [V
(i) TI(V*)* = SV
(iii) AY(V*)* =2 AYV)
For V projective, the modules 'V, SV, A2V are still projective, see for example [Bou89,
I11.6.6]. Hence, they induce functors I'Y, S¢, A%: P;, — Py.

2.2. The Category of Divided Powers

We now define a new category which has the same objects as P but different morphisms.
This category inherits many properties from Py, in particular the closed symmetric
monoidal structure.

Definition 2.2. The category of divided powers TPy, is the category with
- the same objects as I'*Py,
- morphisms given ,for two objects V' and W, by

Hompap, (V, W) := I Hom(V, W) = (Hom(V, W)®%)%,
Remark 2.3. We can identify (Hom(V,W)®4)® with Hom(V®4, W®4)S¢ where for
o€ Gy, f € Hom(V® W) and v; € V the action is given by
fO'(U1 R R Ud) = f((’l]l XX ’Ud>0'71)0' = f(va—l(l) XX Ua—l(d))a-

In other words, the set of morphisms Hompap, (V, W) is isomorphic to the set of &4-
equivariant morphisms from V% to W®4.

Monoidal structure. The closed symmetric monoidal structure on Py induces a closed
symmetric monoidal structure on ['*Py.. Namely, the (internal) tensor product V @pap, W
of two objects V, W € I'®P, is the same as the tensor product in P,. The tensor product
[ ®rap, f’ of two morphisms f € Homrpap, (V, W) and f’ € Hompap, (V',W’) is given as
the image of the following composition of maps
Hompap, (V, W) x Hompap, (V/, W) = I'* Hom(V, W) x I'* Hom(V', W)

— I'(Hom(V, W) x Hom(V', W"))

— T'Y(Hom(V, W) ® Hom(V', W'))

= I Hom(V @ VW @ W)

= Hompdpk<v ®dek V/, W ®dek WI>
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2.3. The Category of Strict Polynomial Functors

The internal hom on objects is again the same as the internal hom in P, whereas
the internal hom Homrpap, (f, f’) of two morphisms f € Homrap,)er(V, W) and f" €
Homrap, (V',W’) is given as the image of the following composition of maps
Homrap, yor (V, W) x Hompap, (V', W) = I Hom(W, V) x I'* Hom(V', W)

— I'(Hom (W, V) x Hom(V', W"))

— T'Y(Hom (Hom(V, V'), Hom(W, W’)))

= Hompap, (Hom(V, V'), Hom(W, W")).

We have an isomorphism, natural in U, V, W &€ I'?P,:

Homrap, (U ®rap, V, W) = Homrap, (U, Homrap, (V, W))

2.3. The Category of Strict Polynomial Functors

We are now able to define the main object of this thesis, the category of strict polynomial
functors. Originally, strict polynomial functors were defined using polynomial mapsﬂ
see [FS97, Definition 2.1]. We use another approach, first introduced by [Kuh98], and
follow mainly [Kral3]. This approach allows us, via Day convolution [Day71], to get a
closed symmetric monoidal structure from the closed symmetric monoidal structure on
the aforementioned category of divided powers.

Let M, = Mod k denote the category of all k-modules.

Definition 2.4. The category of strict polynomial functors is
Rep 'Y := Funy(I'Py, My,

the category of k-linear representations of I'?Pj,. The morphisms are given by natural
transformations and are denoted by Hompg (X,Y) for two strict polynomial functors X

and Y. The degree of X € RepT'{ is d.
Sometimes we need to restrict to the full subcategory of finite representations

rep Fakl = Funk(Fde, Pk),

consisting of all strict polynomial functors X such that X (V) is finitely generated pro-
jective for all V € TPy

The category of strict polynomial functors is an abelian category, where (co)kernels
and (co)products are computed pointwise over k.

Example 2.5. Let ®? be the functor sending a module V € I''P;, to V&4 € M, and a
morphism f € Hompap, (V, W) to a morphism in Homy, (V®4, W®?) via the inclusion

Hompap, (V, W) = I'* Hom(V, W) 2 Hom(V®%, W®%)S¢ C Homy, (V®4, W®9).

In the same way we can define 'Y, S¢ respectively A? on objects and morphisms of
[P}, to obtain objects in RepT'¢, again denoted by I'?, S¢ respectively A,

!The name “strict polynomial functor” originated from this definition.
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2. Strict Polynomial Functors

Embedding of divided powers. Embedding the category of divided powers into the
category of strict polynomial functors serves as the main tool to transfer the symmetric
monoidal structure to strict polynomial functors. This is done by using representable
functors and the Yoneda lemma.

Definition 2.6. The strict polynomial functor represented by the object V. € T''Py, is
defined by
I (—) := Hompap, (V, =) = IT* Hom(V, —).

Let X € RepI'. Then by the Yoneda lemma we have
Hompg (P*Y, X) = Hompg (Hompap, (V, —), X) = X (V) (2.1)
for every V € I'%P,,. Thus, there is an embedding
(T9Py,)° — Rep T’y

with image the full subcategory of RepI'{ consisting of representable functors. Further-
more, it follows from the Yoneda lemma that for all V' € I'YP, the strict polynomial

functor I'*" is a projective object in Rep I'¢.

Example 2.7. For V = k one gets
I'**(—) = Hompap, (k, —) = I'* Hom(k, —) 2 T'%(-)

and thus ['“F = 4,

Colimits of representable functors. Taking colimits allows us to construct arbitrary
strict polynomial functors from representable functors. The reason is an analogue of
a free presentation of a module over a ring, see [MLI8| I11.7]. Let X € RepI'¢ and
V € I'Py,. By the Yoneda isomorphism, there is a correspondence

X(V)3wv <= F, € Homp (I, X)

Let Cx = {F, € Homrz(l“dvv, X) |V €Ty, v e X(V)} be the category with
- objects the natural transformations F, from representable functors I'*Y to X,
where V runs through all objects in I'*P;, and
- morphisms between F, and F,,, with v € X(V), w € X(W), given by a natural
transformation ¢, ,, : T%" — I'“W such that F, = F,, 0 ¢y .-
Define Fx : Cx — RepI'¢ to be the functor sending a natural transformation F, to its
domain, the representable functor I'“V. Then X = colim Fy.

External tensor product. Until now we have considered only strict polynomial functors
of one fixed degree. If we take strict polynomial functors (possibly of different degrees)
we can form a new strict polynomial functor of as follows.

16



2.3. The Category of Strict Polynomial Functors

Definition 2.8. Let d and e be non-negative integers, X € Repl'Y and Y € Repl¥.
The external tensor product of X and Y is a strict polynomial functor of degree d + e,
denoted by X XY, and defined
- on an object V € TP, by (XKY)(V) := X(V)®Y (V), the usual tensor product
in Mk,
- on a morphism f € Homra+ep, (V, W) by applying X ® Y to the image of f under
the following map

Homrpasep, (V, W) = I Hom(V, W)
— I'"Hom(V, W) ® I' Hom(V, W) = Hompap, (V, W) ® Hompep, (V, W).

Generalized divided, symmetric and exterior powers. Of particular interest are ex-
ternal tensor products of divided, symmetric and exterior powers. Recall that for positive
integers n and d we denote by A(n,d) is the set of compositions of d into n parts, i.e.
n-tuples of non-negative integers such that ) . A\; = d. For A = (Aq,...,\,) € A(n,d)
we can form representable functors I'''* € Rep le, ..., Ik € Rep I’g" and take their
external tensor product to obtain a functor in Rep I'¢

M =THMR... )}
and in the same way we define

Y= SN K. K S

A =AM KA,

We denote the external tensor product

A1 —times Ap —times d—times
™MX.. -XT™ SR F17’1&®F1”1 :1—\1,,1

of the inclusion maps ¢ (see Remark again by (r and similarly for wg, ma, ta.
Example 2.9. For the partition A = w = (1,1,...,1) € AT(d,d), the three objects
defined above coincide, in fact

| == L=

Remark 2.10. The external tensor product preserves projectivity and thus I'* is a
projective object in RepT'{ for all A € A(n,d). Moreover every projective object is a
direct summand of a finite direct sum of objects of the form I'* ([Kral3, Proposition
2.9]). In particular, there is a canonical decomposition of the strict polynomial functor
represented by k™

= @ (2.2)
AEA(n,d)
Note that in general I'* is not indecomposable, see Remark for more details.

Definition 2.11. Let I' = {I"} e and S = {S*} ea)- Let as usual add T, respec-
tively add S denote the full subcategory of RepI'¢ whose objects are direct summands
of finite direct sums of objects in I, respectively S.

17



2. Strict Polynomial Functors

Frobenius twist. If £ is a field of characteristic p, we denote by F': k — k the Frobenius
endomorphism, defined by F(a) = o? for all @ € k. For V € I'%P;, we denote by V()
the module obtained by extending scalars via F, i.e. V) = k ®z V. For all r > 1 the
r-th Frobenius twist 1) is then defined inductively by

IVW) =y and  ICTD(V) = 1OIM(V)).

See [FFPS03|, Pirashvili 1.2] for an explicit description of a basis. For an arbitrary strict
polynomial functor X the twisted functor is defined by

X0 = X o],

If X is of degree d, i.e. X € RepT'¢, then X is of degree dp", i.e. X" € Rep FZ”T.

2.4. Morphisms Between Strict Polynomial Functors

For projectives I'* and I'* there exists an explicit description of the morphism set, see
also [Krald] and [Tot97]. For any partition v € A(m, e) there is an inclusion ¢, : I'¢ < T
given by

(L)y:vewv

for v € I'(V) and a product map p,: I'V — I'® given by

(p)v:v X Ko, — Z (XKoo
O'GGd/GV

for vy ®---Ro, e (V)X - RT" (V) =T"V). We now put these maps together.

Recall that A;\L is the set of all n x m matrices A = (a;;) with entries in N such that
i = Zj a;; and p; = Y. a;;. We consider a;— := (a1, . .., @i as a partition of A(m, \;)
and in the same way a_; 1= (ayj, ..., ay;) € A(n, 11;).

Definition 2.12. Given a matrix A = (a;;) € Aﬁ we define the corresponding standard
morphism pa € Homra (T#,T?) as the following composition:

I=E

m (taj) m =n n m % (Pa;—) n
pa: TV = BIW = W (M) = B (K1) ——— K =T

See Appendix for examples and a more explicit description. In particular, in
the following we use an identification of A € A/’) with a pair of sequences (j,i) where
J € pand i€ A see (A1),

2.5. Monoidal Structure

Next let us explain how the symmetric monoidal structure on I'*P;, yields a symmetric
monoidal structure on Rep I'{.

18



2.5. Monoidal Structure

Definition 2.13. For representable functors I'*" and I'*" in RepI'¢ we define an in-
ternal tensor product by
v Qra W .— Ve, W
k
For arbitrary objects X and Y in RepT'¢ define
Y ®ra X := colim(I"V ®rg Fx),
X ®pa Y := colim(Fx ®pa Y),

where T'%V ®ra Fx, respectively Fix ®pa Y is the functor sending F, to rev ®rd Fx(F,),
respectively Fx (F),) ®Fﬁ Y and Fy is the functor sending a natural transformation F,
to I'% for v € X (V) (cf. page [16).

Remark 2.14. The tensor unit is given by
.— Tdk ~ 1(d)
Lpg := 9" =10,

and also the associator a, the left unitor A, the right unitor ¢ and the braiding ~ are
defined on representable functors using the corresponding morphisms in I'*P;, and then
extended to arbitrary objects using colimits.

The closed monoidal structure on TP}, also yields an an internal hom in Rep I'¢.

Definition 2.15. For representable functors I'*" and %" in RepT'¢ we define
Hompa (T, T4V = pHomrap, (VW)
k 9
For arbitrary objects X and Y in RepI'¢ define

Hompa (T, X) = colim(Hompq (T Fx)),
Hompa(X,Y) := lim(Hompa((Fx, Y)).

This is indeed an internal hom, i.e. we have a natural isomorphism for X,Y,Z €
RepT'¢, see [Kral3, Proposition 2.4],

Hompg (X ®pa Y, Z) = Hompa (X, Hompa (Y, Z)). (2.3)
We briefly collect some results concerning calculations of the internal tensor product.

Proposition 2.16. [Kral3, Proposition 3.4, Corollary 3.7]
° Ad ®F‘,f FA o~ AA
° Ad ®F‘,§ A)\ ~ S)\
o S5d ®1"(]§ M~ Ad ®pz A? ®pz = g

In Chapter |5 we calculate the (internal) tensor product of certain strict polynomial
functors.
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2. Strict Polynomial Functors

2.6. Highest Weight Structure

We assume in this section that £ is a field. In this case, the category of strict polynomial
functors is a highest weight category. This is explained in detail in [Kral4], in particular
we refer to [Kraldl, Section 6] for a definition of a highest weight category. We briefly
collect the most important results and definitions, for example of (co)standard and
simple objects.

2.6.1. Partial Order

The (co)standard and simple objects in RepI'¢ are each indexed by partitions of d, i.e.
compositions A of d such that Ay > Ay > A3 > --- > 0. Recall that the set of partitions
of d is denoted by A(d)". This is a finite poset with ordering given by the lexicographic
order which can be defined on A(d)" as follows:

< Xif py < Ay or pu; = A for 1 <i < r implies p, < A\,

2.6.2. Schur and Weyl Functors

The costandard objects V() are given by the Schur functors and the standard objects
A()) by their duals, the Weyl functors. For their definition we need the following maps
(cf. [Krald, Section 3]): let A € A(d)™ and o, be the permutation of &, defined on
TI)\1++>\171—|—jWIth1§j§)\z by

oa(r) =M+ F A+ g) =N+ N+

where X' is the partition conjugate to A\. Note that every r € {1,...,d} can be written
in a unique way as r = Ay + -+ A1 + j for some i and j if 1 < j < \;, thus o,(r) is
well-defined.

Remark 2.17. For an explicit calculation of the permutation o (r) we write down the
numbers 1,2, ... into the Young diagram corresponding to A first from left to right, from
top to bottom. Afterwards we write down the numbers 1,2, ... into the same diagram
but this time from top to bottom, left to right. Then the first number in each box is
mapped under oy to the second number in this box.

For A = (4,3,1) € A(3,8), for example, this looks as follows

1 12 |3 |4
1] 4] 6] 8

5 |6 |7
20 5| 7

That is, ox(1) = 1, 0(2) =4, 0A(3) =6 and so on ...0,(8) = 3.
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2.6. Highest Weight Structure

Using the permutation o) € &,4, we can define a permutation morphism corresponding
to A

Definition 2.18. Let A € AT(n,d) and w = (1,1,...,1) € A(d,d). The permutation
morphism sy in Hompz(F‘”, ['“) is defined at V € I''Py, for v; ® - - - @ vg € V& =T (V)
by

(sa)v: (V) —=T¥(V)

V1 & QU > Ugy (1) @+ @ Voy ()

For an explicit description in terms of a matrix A € Aﬁ see (|A.6)).

Recall for A € A(n,d) and its conjugate partition X' the inclusion maps ¢p: I'* — T
and 15 AY — T'“ and the projection maps mg: I'Y — S* and mp: I — AY. These
maps can be composed to get

@g, 1 AN T 2 7w T8 GA
Py s TH 5T 25 9 I AY,
Finally, we give the definition of Schur and Weyl functors.

Definition 2.19. The Schur functor Sy is the image of the map pg, = mgosyouy. The
Weyl functor Wy is the image of the map ¢y, = mp 0 sy 0 ¢p.

Remark 2.20. Unfortunately, the name “Schur functor” is commonly used for two very
different kind of functors: the first use is dedicated to a series of functors, namely the
above defined Schur functors Sy, the duals of Weyl functors and indexed by partitions
A € AT(d). Another use of this name is the Schur functor defined in Section (3.4 relating
strict polynomial functors, respectively modules over the Schur algebra to modules over
the group algebra of the symmetric group. It should be clear from the context, which
Schur functor is meant.

Note that the Schur functor Sy is a subfunctor of S* whereas the Weyl functor W, is a
quotient functor of I'*. To be more precise we have the following

Theorem 2.21 ([Kraldl Theorem 4.7 and Corollary 4.8]). There are isomorphisms

S,\%Jﬂ m kerp  and WA§F’\/(Z Z imy).

BEXN o SA—SH REX @ Th—TA
Note that W, (V*) = (S,(V))*.

Definition 2.22. We denote by Filt(V) the subcategory of Schur filtered functors, i.e.
the full subcategory consisting of all X € RepT'¢ such that there exist a filtration

0=XCX;C---CXy=X

with X;/X; 1 =2 S, for some A\ € A(n,d) and for all 1 < i < s. Similarly, we denote by
Filt(A) the subcategory of Weyl filtered functors.
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2. Strict Polynomial Functors

2.6.3. Simple Functors
Let U(A) be the maximal subfunctor of W) such that >~ ime = 0. Then U(\) is

e: TASU(N)
a maximal subfunctor of W) (see [Kraldl Proposition 4.9.(2)]).

Definition 2.23. The simple functor corresponding to the partition A is defined by
L)\ = W)\/U(/\)

The simple functor L, is isomorphic to the (simple) socle of Sy (see [Kraldl Lemma
4.10]) and each composition factor L, of U(\) satisfies 1 < A (see [Kraldl Proposition
4.9.(3)]). Finally we cite the following

Theorem 2.24 ([Krald, Theorem 6.1]). The category RepT'¢ of strict polynomial func-
tors is a highest weight category with respect to the set of partitions of weight d and
the lexicographic order. The costandard objects V(X) are given by Schur functors S,
the standard objects A(N) are given by Weyl functors Wy and the simple objects are

Ly = Wy JU(N).

2.7. Dualities

The category of strict polynomial functors admits two kinds of dual, one corresponding
to the transpose duality for modules over the general linear group and the other one
using the closed monoidal structure on RepI'{. In this section we again work over an
arbitrary commutative ring k.

2.7.1. The Kuhn Dual
Definition 2.25 ([Kuh94, 3.4]). For X € RepI'¢ define its Kuhn dual X° by

(—)°: (Rep['H)P — Rep T
X — X°
with X°(V) := X(V*)* for V € TP,

Taking the Kuhn dual is a contravariant exact functor, sending projective objects to
injective objects and vice versa.
Example 2.26.
(i) Symmetric powers are duals of divided powers, i.e. (I'V)° = S (see Remark [2.1}(i))
and more generally (T'*)° = S*.
(ii) Exterior powers are self-dual, i.e. (A*)° = A* (see Remark 2.1](ii).
(iii) Weyl functors are duals of Schur functors, i.e. Wy = S,.
(iv) Simple functors are self-dual, i.e. L = L.
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2.7. Dualities

For every M, N € M, we have Hom(M, N*) = Hom(N, M*) and thus in particular
Hom(X(V),Y°(V)) = Hom(X(V),Y(V*)*) 2 Hom(Y (V*), X (V)*)
=~ Hom(Y (V*), X(V*)*) = Hom(Y (V*), X°(V™)).
Thus, we get a natural isomorphism
Homrap, (X,Y°) = Hompap, (Y, X°). (2.4)

ForY = X° we get Hompap, (X°, X°) = Hompap, (X, X°°) and for X finite the evaluation
map (the one corresponding to idx. € Hompap, (X°, X°)) is an isomorphism X — X°°.
Furthermore, the following results will be important.

Lemma 2.27. [Kral3, Lemma 2.7 and Lemma 2.8] For all X,Y € RepT'% we have a
natural isomorphism
Homrap, (X,Y°) = Hompap, (Y, X°).

If X is finitely presented we have natural isomorphisms

2.7.2. The Monoidal Dual
Using the internal hom, one can define another dual in Rep I'{:
Definition 2.28. For X € RepI'{ define its monoidal dual X" by
(=)": (RepT{) — Rep Iy
X = XY = Hompg (X, T7)

By definition this functor is left exact, but in general not right exact. By Lemma 2.27],
for X finitely presented, it holds that

XY = Hompg(X,T7) 2 (X @pg 59)°.

Divided powers. It follows immediately that (I'Y)¥ = (I @ S?)° = Y. Moreover,by
using Proposition [2.16] we get

(DY)Y = Hom (I, T%) = (I @ 5%)° = (§*)° = T,

Exterior and Symmetric Powers

Let us now calculate the monoidal duals of symmetric and exterior powers. We make
use of the following fact.

Lemma 2.29. Let @4: " — T be the morphism in Hompg (Tr,TA) corresponding to
the matriz A € A, then Y = par, where AT denotes the transposed matriz of A.

Proof. See Appendix O

23



2. Strict Polynomial Functors

Exterior powers. Let w = (1,...,1) € AT(d,d) and for each 1 < i < d let
wi = (1,...,1,2,0,1,...,1) € A(d,d) where the 2 is located at the i-th position. De-
note by o; € &, the permutation interchanging ¢ and 7 + 1 and fixing everything else.
Consider the maps v;: T — T given at V € TPy by v — v(id + o) for v € T*(V),
ie.

VR...O,RQV R QU ® ... (V; V1 + Vi1 V) R+ Ry
for v; @ -+ @uvg € V¥ =T%(V). The map 1; corresponds to the matrix

[1 0
01

1

The kernel of (1;)y is spanned by elements of the form v(id — 0;) for v € T'“(V') and, in
the case that 2 is not invertible in &, also by elements v € T'(V') such that vo = v.

Denote by ¢: I — @?;11 [ the sum of all ¢; for 1 < i < d. Then the kernel of ¢
at V € TPy, is given by ), ker((¢;)v), i.e.

AYV) if 2 is invertible in k,

2.5
4(V) if 2 is not invertible in k. (2:5)

(ker(¢))y = {

Proposition 2.30. For all A € A(n,d) we have

(A = AN if 2 is invertible in k,
' if 2 is not invertible in k.

.....

a presentation
d—1

@Fwi [p1.-0q—1] e Ay Ad 0,
i=1

where the map ; corresponds to the matrix

[1 0

0 1

—_ =

Pi

o O O
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2.7. Dualities

Taking the monoidal dual of this presentation yields

S AYY o ()Y EE, @l ey

I
0

I @f:_ll [wi

By Lemma the map ¢, corresponds to the matrix AT, Wthh is the same as Ay,.
Thus (A4)Y = ker(z o)) = ker(3" ;) = ker(¢p) which, by (2.5 is equal to A? respec-
tively I'? if 2 is not invertible in k.

For arbitrary A € A(n,d) we use Proposition [2.16, Lemma and the isomorphism
Hom(X,Y @ TA) 2 Hom(X,Y) ® ' [Kral3, Lemma 2.6] to obtain

(AM)Y = Hom (A, Fd) Hom(Sd A
>~ Hom (S, A @ ')
>~ Hom (S, AY) @ I'*
~ Hom(AY, T @ T = (A @ T
Since A?® I'* = A*, respectively I'Y @ I'* = T, the proof is finished. n
Symmetric powers. For 1 < i < d let g; be as before and let p; : 'Y — I be the
morphism given at V' € TPy, by v +— v(id — 0;) for v € T¥(V) = V& i.e.
Ul®...’UZ’®UH_1®"'®U(1'—>U1®...(UZ‘®’UZ‘+1—Ui+1®’l}i>®"'®1}d.
This morphism corresponds to the matrices Ajg — A,,, i.e.

[1 0 ... i [1 0 ... i
01 ... 01

O =

1 1

The kernel of (p;)y consists of elements v € I'Y(V') such that vo; = v. Since the o;
generate &, the kernel of p = > p;: 'Y — @ T is given at V € I'P;, by

ker((p)y) = ﬂker((pi)v) ={ve V¥ v =v,1<i<d}

; . (2.6)
={veV®vo=v,0€ 6} =TYV).

Proposition 2.31. For all A € A(n,d) we have
(SMY =1
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2. Strict Polynomial Functors

Proof. Consider first the case A = (d). Take the following presentation
d—1
@Fw [p1.--pa—1] e 75, gd _y
=1
where p; is defined as before. Applying the monoidal dual then yields an exact sequence
dywv 7)Yy 2P w\V
0— (59 2 (1v)Y =25 @P(Ir+)Y.

Since A} = Ajq and AL = A, we get p/ = p; and thus (S?)" is the kernel of > p;.
Together with ([2.6]) this yields

(84 =~ ker(z pi) =T,

For arbitrary A € A(n,d) we use Proposition , Lemma and the isomorphism
Hom(X,Y @ TA) 2 Hom(X,Y) ® I'* (JKral3, Lemma 2.6]) to obtain

(SN = Hom(S*, T%)
>~ Hom(S?, T
>~ Hom(S%, I @ T?)
=~ Hom(5,T%) @ T*
~ (Sd)\/ ® F)\

>~ A

As an immediate consequence we obtain the following result.
Corollary 2.32. ¢ ® S¢ >~ g9,

Proof. From Lemma we get S ® S? = Hom (S, T4)° = ((S?)V)°. We use Proposi-
tion to obtain ((S9)Y)° = (I')° = §9. O
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3. Representations of the Symmetric
Group

The study of representations has a long standing history. If £ is a field of characteristic
0 or p > d, the group algebra k&,;Mod is semi-simple and the simple modules can be
parametrized by partitions and are well-known. These simple modules, called Specht
modules, can be constructed integrally, but when reducing modulo the characteristic
these modules are not simple in general if p < d. In particular, there are fewer simple
modules in the non semi-simple case and an explicit full determination of the simple
modules is still an open problem.

In this chapter we recall important definitions and concepts for modules over the group
algebra of the symmetric group. Notably we describe the standard closed monoidal
structure on kG;Mod. We mostly use a characteristic-free approach and distinguish
between cases only when necessary.

In the last section we introduce the Schur functor F, relating strict polynomial functors
to representations of the symmetric group. We show that F induces an equivalence
between certain subcategories and that it preserves the closed monoidal structure. This
property is later used as an important tool to advance in the description of the tensor
product on strict polynomial functors by exploiting known results of the Kronecker
product.

Of course, it would be desirable to also obtain results on the Kronecker product,
i.e. from calculations of the tensor product of strict polynomial functors. However,
the understanding of the monoidal structure on strict polynomial functors is not yet
sufficiently advanced.

Recall that &, denotes the symmetric group of all permutations on d elements. We
can form the group algebra

k6d22{2k00|k06k},

geGy
where the multiplication is induced by the group operation in &,.

Definition 3.1. We define k&G,;Mod to be the category of all left k&G4-modules. For
N,N'" € k&4;Mod we denote by Homyg, (N, N’) the morphisms in kS, Mod i.e. kS,
module homomorphism from N to N’.

The full subcategory of all modules that are finitely generated projective over k is

denoted by £G4 mod.

27



3. Representations of the Symmetric Group

If the characteristic of k£ does not divide the order of the group &y, i.e. chark 1 d!,
then by Maschkes theorem £G&, is semisimple. That means every module decomposes
into simple modules. This is in particular the case when & = C. If chark divides d!,
then kG, is not semisimple.

3.1. Monoidal Structure

Every group algebra carries automatically a cocommutative Hopf algebra structure. 1t is
given by defining the comultiplication, counit, and antipode as the linear extension of
the following maps defined on o0 € &, by

Alo)=0®0c
(o) ==
S(o):=0""

Every Hopf algebra equips its module category with a closed monoidal structure, see
e.g. [Kas95, II1.5]. The internal tensor product is given by taking the tensor product
over k. The group algebra acts on it via composition with the comultiplication. In the
case of the group algebra kS, , this reads

k’Gd Mod Xk’Gd Mod — /{,’Gd Mod
(N,N") = N @, N',

o-(mem)=A(c)(mem)=c-mxao-m,

the diagonal action. It is then linearly extended to all elements of £G, .
The tensor unit is given by 1;s, = k, the trivial k&4-module. The associator «, the
left unitor A, the right unitor ¢ and the braiding v are given by

AN:EQN =N, r@m—=1r-m
on: N®1—= N, r@m—=m-r
annn: (N N)@N"— N (N @ N"), the usual associativity map
wn: NN - N @N, mam'—m'em.

The antipode S of a Hopf algebra yields also an internal hom. In the case of k&, it
is given by

(k&4 Mod)? x kS ;Mod — k&, Mod
(N,N') — Hom(N, N') = Hom (N, N'),

where for m € N and o € &, the module action is o+ f(m) = o-f(S(0)-m) = o f(c71-m).
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3.2. Permutation Modules

Dual. This internal hom yields naturally a dual, namely
(=) :==Hom(—, 1xs,) = Hom(—, k).
Let N € k&;Mod and m € N. Since kS, acts trivially on f(S(o)-m) € k, the module

action is given by

o f(m) = f(o™"-m). (3.1)

3.2. Permutation Modules

Let n be any positive integer. Recall that I(n,d) == {i = (i1...4q4) | 1 <4 < n}. Let
E be an n-dimensional k-vector space with basis {ej,...,e,}. A basis for the d-fold
tensor product E®? can be indexed by the set I(n,d). We write ¢; = ¢;, ® -+ - @ ¢;, for
i=(iy...iq) € I(n,d).

Let the symmetric group act on the right by place permutation, i.e.

(11 ® - ®Vg)0 = V,0) @ -+ D Vs for o € Gy, MR- Quy € E®.

We can use this action to define an action on the left, namely we define for 0 € &, and
MR- ®u e B¥

(1@ @)= (11 Q@  ®Va)0 " = Vy1(1) @+ @ Vy1(g).- (3.2)
By linear extension of this action, £®¢ becomes a left k& z-module.

Definition 3.2. The transitive permutation module M* corresponding to the composi-
tion A is the submodule of E®? with k-basis {e; | i belongs to A}.

Note that the set {e; | i belongs to A} is invariant under the action of &, and thus
M? is really a submodule of E®?. Each basis element ¢; of E®? belongs to exactly one
M? and hence E®¢ decomposes into a direct sum

E*= @ M (3.3)

AeA(n,d)

Note that M* = M*# if and only if the compositions A and p yield the same partition
after reordering. Thus, a complete set of isomorphism classes of permutation modules
is indexed by all partitions.

Example 3.3. Let A = (d,0,...,0) € A(n,d), the partition consisting only of one
non-zero entry. Then M* 2 k, the trivial k& 4-module.

Remark 3.4. Recall from Section [I.3.1]that & denotes the Young subgroup &y, X - - - x
Sy, € &,. For every coset 7 € 6,4/6, we define Te; to be oe; for some representative
o of @. If i € A this is independent of the choice of 0. We let act &4 on &,/6, in the
usual way.

29



3. Representations of the Symmetric Group

Letiy=(1...12...2...n...n) € X be the weakly increasing sequence with \; entries
equal to I. Then the set {e; | i € A} can be identified with the set {7e;, | T € &4/6,}
and this induces an isomorphism of &4-modules

M 2 k(7|7 € Gy/6,).

Furthermore we have an isomorphism of £&;-modules

k(E\EEGd/GQZkGd(Zw)

TeES )

induced by the map sending 7 € 6,/6, to o( > m) where o is a representative of &.
TeS)
Thus, we get an isomorphism of k& -modules

MAﬁk;Gd(Zw).

TeS )

Permutation modules are self-dual. For every A € A(n,d), there is a non-degenerate,
Sy-invariant bilinear form

B: M x M» = k
(61, Sl) V—)(Sll
Details can be found in [JK8&I, 7.1.6]; we here identify the basis element e; for i =
1119 . ..1g with the A-tableau with j-th row consisting of all the integers k£ such that

ir = j. (i.e. the integers in the j-th row correspond to the positions in i where a j is
located). This bilinear form yields the following isomorphism:

M* = Homyp(M* k) = (M)
e; = Bles, —) = ¢ = (ej = i)

Standard morphisms of permutation modules. Let A € A(n,d) and p € A(m,d).
and fix ¢ = (11...2...nn) € \. For every j € u we define a matrix A by a;; := #{l |
iy =1,5 = j}. Let A; be the composition (_all,alg, o021, G92, . - . Gyy). We define I
to be a complete set of representatives of &,/&4,. As explained in Appendix a
set of generators of Homye, (M?*, M*) is given by elements &; ;, J € p, defined by

¢ Homyg, (M, M*)

€; —r E €;0.

O'G[j

Note that §;; = §;; if and only if there exists a 0 € &, such that io = 1 and jo = l”.
This set in turn can be identified with the set of matrices Az. See Appendix for
more details and explanations.
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3.2. Permutation Modules

Tensor products of permutation modules. Recall that Aﬁ is the set of all n x m
matrices A = (a;;) with entries in N such that \; = Zj a;; and p; = > a;;.

For a field & of characteristic 0, James and Kerber showed in [JK81] how to decompose
the tensor product of two permutation modules in terms of characters. The following is
an analogue for an arbitrary commutative ring k:

Lemma 3.5. Let A € A(n,d) and u € A(m,d). The tensor product of the two permuta-
tion modules M* and M" can be decomposed into permutation modules as follows:

M @, MY = 5 M,
AeA)

where A is regarded as the composition (aq1,a1a,. .., 21,022, - ., Qmp)-

Proof. The idea of the proof is taken from [JK8I]. For i € A and j € u denote by i + j
the sequence (iyiy...0nJ1 ... jm). A basis of M* ®;, M* is given by_{eﬁj i€\ je€ ne
We consider now the orbits of M* @, M* under the action of &,. Two basis elements
eir; and ey belong to the same orbit if and only if (j,i) ~ (j',7'), that is there exists

o € &, such that jo = j' and ic = i'. Thus, we can decompose the k&z-module

M* ®, M* into a direct sum of submodules

M Q) MF = @(M’\ Rk MH*)

(7:)°

where the sum is taken over a complete set of representatives (j,7) with j € p and
i € X and the submodule (M* @, M“)(j 5 & M? @, M* is spanned by all ey 1y such that

(j',7) € (j,2). We identify the set {(j,) | j € p, i € A} with theset {A = A;; | A€ A)}

1
via the correspondence defined in (A.1)) and the module (M* @, M ")y with M Ali yia

the isomorphism
iy 7 Ck;

where k = (k... kq) is defined for all 1 <1 < d by

.

1 ifi, =1, j, =1,
2 ifi, =1, j, =2,
k‘l: m

ifilzl,jl:m,
m+1 ifiy=2, 4 =1,

m-n ify=n,5=m.
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3. Representations of the Symmetric Group

Example 3.6. Let A = (3,1) € A(2,4) and p = (2,1,1) € A(3,4). For i = (1112) € A
and j = (1312) € pu, the orbit of e;;; and consists of all ey, such that (4',1) ~ (4,19),
ie. -

(J',1) € {((1112), (1312)),
((1112), (3112)),
((1112), (1132)),

((1121), (1321)),
((12i1), (1231)),

((21i1), (2131))}.

In particular, (M* @, M “)@ is spanned by those ey, . The corresponding matrix Aji

is given by a;; == #{l | iy =i, = j} (see (A1) i.e.

2 01
A”_(o 1 0)

o M — (201010 ~ 7r(211)
VAU '

and thus

(M @y M*)
There are two more matrices belonging to A;}, namely:
210 111
(0 0 1> and (1 0 0)
There corresponding orbits can be obtained by taking, for example, the elements
i = (1112) and j" = (1213) respectively 7" = (1112) and j” = (1321),

which span the submodules M 10001 = N r@LY - regpectively M1L110.0) 2 pr1LL1),
All in all we get

M(3,1) ® M(2,1,1) ~ M(2,1,1) D M(2,1,1) D M(l,l,l,l)'

3.3. Cellular Structure

The group algebra of the symmetric group is a cellular algebra, in particular it possesses
a special set of modules, the cell modules, given by the Specht modules. We briefly recall
the definitions and refer to [Jam78§|, [Mat99] and [JK81] for more details on this subject.
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3.3. Cellular Structure

Specht modules

Let A € AT(n,d) and Th be the A-tableau with entries 1,2,...,d when read from left
to right, from top to bottom (cf. Example 1.. Recall that C(T3) is the column
stabilizer, i.e. the subgroup of &, fixing all columns of Th, and R(Tj) the row stabilizer
of T4, i.e. the subgroup of &, fixing all rows of Th.

Definition 3.7. The Specht module corresponding to A € AT (n,d) is

Sp(A) = k64 Z sign(m)m Z s

meC(Th) nER(T}R)

Note that, since R(Th) = &) (see Example 1.4(ii)), by Remark the permutation
module M?* is isomorphic to kGd(ZweR(Tg) 7). In particular, Sp()) is a submodule of

M,
Example 3.8. Let A = (d). Then M* = Sp(\) = k, the trivial representation.

Remark 3.9. We denote by dSp(A) the dual Specht module Sp(\)* . It is isomorphic to

kS, Z T Z sign(m)m

TER(TR) meC(TR)

In the literature, the most common notation for (dual) Specht modules is S* and for
its dual Sy. To avoid confusion with our notation of the particular strict polynomial
functors S* (generalized symmetric powers) and Sy (Schur functors) we denote Specht
modules by Sp(\) and their duals by dSp()).

The connection between Specht and dual Specht modules is as follows:

Theorem 3.10 ([JamT78, Theorem 8.15]). Over any field
Sp(A) ® sen’ = dSp(N),

where sgn? denotes the alternating module and N is the conjugate partition of \.

Simple modules

Assume that k is a field. If the characteristic of k£ is 0, Specht modules are already
simple and they form a complete set of isomorphism classes of simple modules.

If k is a field of characteristic p > 0, Specht modules are not simple in general, but
for A p-regular, the Specht module Sp(\) has a unique simple quotient (|JK81, Theorem
7.1.8, Theorem 7.1.14]). If X is p-restricted, the dual Specht module dSp(A) has a simple
quotient ([Mar93l p. 97]).
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3. Representations of the Symmetric Group

Definition 3.11. Let k£ be a field of characteristic p > 0. For A\ p-regular, the simple
module corresponding to X is the simple quotient of Sp()\) and is denoted by D*.
For \ p-restricted, the simple quotient of dSp(A) is denoted by D,.

Remark 3.12. We briefly recall some properties of the simple £&;-modules.
(i) The simple modules D* and D, are related as follows: for A p-restricted,
i.e. X p-regular, it holds that ([Mar93, Thm 4.2.9])

DN~ D, ® sgn? .

(ii) The modules D*, where \ varies over all p-regular partitions of d, form a complete
set of pairwise non-isomorphic simple k& ;-modules ([JK81, Theorem 7.1.14]). The
same holds for the modules Dy, where X varies over all p-restricted partitions of d.

(iii) Since D* ® sgn? is again simple, there must exist a partition m,(A\) such that
D* ® sgn? = DX This defines a map m,: AP(d) — AP(d). In [FK97] it has
been shown that m,, equals the Mullineux map, defined by G. Mullineux in [Mul79].

Example 3.13. The only 1-dimensional £&,; modules are given by

k=DP=D, .1 and  sgnt= D™D 2Dy .

Young modules

In general, permutation modules are not indecomposable. For a decomposition

M = EBY
i=1

with Y; indecomposable and s > 1, there is exactly one direct summand Y; that contains
the Specht module corresponding to A (see [Erd94 2.4]). This leads to the following
definition:

Definition 3.14. The Young module Y? is the unique direct summand Y; of M* such
that S* C Y.

Remark 3.15. Every indecomposable direct summand of M? is isomorphic to Y* for
some p-restricted partition p. Thus, every M?* decomposes into Young modules, i.e.

M= P Kay" (3.4)

HEA*(d)

The coefficients K, depend on the characteristic of k£ and are called Kostka numbers
(for k of characteristic 0) respectively p-Kostka numbers (for chark = p). Their full
determination is still an open problem, although some progress has been made in the last
years (see e.g. (Klyachko Multiplicity Formula)[Kly84, Corollary 9.2], [Gill4], [Hen05],
[FHKOS]).

34



3.4. The Schur Functor

[

As in case of permutation modules, Young modules are self-dual, i.e. (Y*)* = Y
Young modules have Specht and dual Specht filtrations, to be more precise:

Theorem 3.16 ([Don87, 2.6]). The Young module Y has a Specht filtration, i.e. there
exist a filtration
0=VCWhC V=Y

for some s > 0 such that V;/V;_y is a Specht module for all 1 < i < s. The multiplicity
[Y* 1 Sp(u)] of Sp(p) in such a filtration is independent of the chosen filtration and is
equal to [Sp(A) : D*].

3.4. The Schur Functor

The connection between strict polynomial functors and representations over the sym-
metric group is given by the Schur functor. Originally it was defined by Issai Schur in his
dissertation ([Sch01]) as a functor from the representations of the general linear group
to the representations of the symmetric group in characteristic 0. Green extended this
theory to infinite fields of arbitrary characteristic [Gre07]. He showed that the category
of polynomial representations of the general linear group of fixed degree is equivalent
to the category of modules over the Schur algebra. Since this, in turn, is equivalent to
the category of strict polynomial functors (see Chapter @ we deal here with the Schur
functor from the category of strict polynomial functors to the category of representations
over the symmetric group. Let X € RepI'¢ be any strict polynomial functor. We obtain
a functor
Homypy (X, —): Repl{ — Mod Endp (X)

For X =TI'¥ with w = (1,...,1), the composition of d consisting of d times the value
1, we get Mod Endpa(X) = Mod Endp¢ (') = Mod k&,” = k&yMod (see (A.4)) and

thus the following functor:

Definition 3.17. The Schur functor from the category of strict polynomial functors to
the category of modules over the group algebra of the symmetric group is

F = Hompg (I, —): RepT§ — k&;Mod.

It is well-known that under the Schur functor Schur functors are mapped to Specht
modules (see e.g. [Gre07, Theorem 6.3c]) and Weyl functors to dual Specht modules (see
e.g. [GreQ7, Theorem 6.3¢]), i.e.

F(Sy) = Sp(N) and F(Wy) = dSp(N). (3.5)

In the case that k is a field of characteristic p > 0, the simple functors indexed by
p-restricted partitions are mapped to the simple modules, i.e.

D, if X\ is p-restricted,

F(Ly) = {

0 else.
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3. Representations of the Symmetric Group

In characteristic 0 we have Ly = W) and F(L,) = D) = dSp(}) for all A € AT (n,d).
Moreover, Schur proved that in this case the Schur functor is an equivalence of categories.

We now concentrate again on the general setting, i.e. k is an arbitrary commutative
ring. In particular, the following results hold without any additional assumption on k:

Proposition 3.18. The functors T are mapped under F to the corresponding permu-
tation modules, 1i.e.

F(I = M.

Proof. A k-basis of Hompa (I', ") is indexed by matrices in the set A2, see Section
Since w = (1,...,1) the set A} is given by {A4;; |i € &,/&,} for a fixed (arbitrary)
Le X Let Aj; € A) and ¢y, € Hompg (I, ['*) the corresponding morphism. From ([A.5)
we know that the k&g-module structure on Hompa (I', ') is given by

0P = Prict for o € Gg.
In particular, Hompe(I'**, T*) is cyclic as a k&g-module and for fixed [, the map

M* — Hompg (T, T7)

€ = PLi

(3.6)

is an isomorphism of kS -modules. O

Corollary 3.19. The representable functor T%*" = @)\GA(md) I is mapped under F to
(kn>®d — E®d o~ ®)\€A(n,d) M/\.

An equivalence of categories. We assume for the remaining part of this chapter that
n > d. Recall from Definition that add " denotes the full subcategory of RepI'{
whose objects are direct summands of finite direct sums of I'* for A € A(n,d). Similarly,
we define add M as the subcategory of k&, Mod consisting of direct summands of finite
direct sums of M* for A € A(n,d). The following lemma has already been shown in
[AR15, Lemma 4.3]:

Lemma 3.20. The functor F = HomFZ(F“’, —) restricts to an equivalence of categories
between add ' and add M.

Proof. Since I'“F" = @)\eA(md) I'* we have add " = add '**". Similarly one can see that

add M = add E®?. We have the following commutative diagram:

F=Homp4(I'”,~)

RepI'¢ - kS, Mod

add T4+ — addT Flaar add M = add E®d

where the object I'“*" is mapped under F to E®? by Proposition m
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3.4. The Schur Functor

On morphisms, F induces the following map:
Hompy (I, T'*) — Homye, (Hompg (1, T*), Homypy (I, %))
@i (P30 =)L Y0P = Qi

Via the isomorphism this translates to the map sending e; to e;. Thus, the
basis element ¢;; of Hompi(F“,FA) is mapped to the basis element &;;: e; — €; of
Homye, (M*, M?). In particular the map between the morphisms induced by F is an
isomorphism, i.e. F is fully faithful. ]

Remark 3.21. The equivalence between add I' and add M allows us to decompose every
I'* into indecomposable functors in the same way as the module M?* in (3.4):

P K.x"

HEAT(d)

1

F)\

where K, are the Kostka numbers and X* is the projective strict polynomial functor
that is mapped under F to Y*, the Young module.

Proposition 3.22. For all X € addI' there exists an isomorphism
F(X®) = F(X)

which is natural in X.
Proof. By Lemma |3.20] there is an isomorphism

Hosz (X7 (I‘WJ)O) = HomEnd(F“’)(HomFZ (Fwa X)7 HOIHFZ (Fwa (I‘W)O)) (37)

= Homye, (F(X), F((T*)°)).

We can equip Hompq (X, (I'*)°) with a left End((I'”)°)-module structure in the usual
way, i.e. postcomposing f € Hompa (X, (I'V)?) with ¢ € End((I'**)°). If we identify k&4
and End((I'¥)°) (see (A.4))), this structure coincides with the left k&4 -module structure
on F(X°) = Homypa (I, X°) 2 Homps (X, (I)°).

Also Homppg(re) (Hompe (I, X), Hompa (I', (I'?)°)) is equipped with a left End((I'?)°)-
module structure, namely by postcomposing ¢/(g) € Hompa (I'*?, (I'*)°) with ¢ € End((I')°).
Thus, the isomorphism ({3.7)) is actually an isomorphism in End((I'*)°) Mod = k&, Mod.
Moreover, the left End((I'**)°)-module structure on Hompa (I'?, (I'**)°) coincides with the

right End(I*")-module structure on Hompa (I, ') given by using the inverse. Thus, as
bimodules F((I'¥)°) = M¥ = kS,. It follows that

Homye, (F(X), F((I'*)°)) = Homye, (F(X), kSy)
and since kS, is a symmetric algebra, we have
Homye, (F(X), F((T*)%)) = Hom(F(X), k)
and thus F(X°) = Hom(F(X), k) = F(X)*. O
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3. Representations of the Symmetric Group

Closed monoidal structure. If we do not restrict to the subcategories add I' and add M
the functor F = HomFZ(F“, —) is not an equivalence in general. Nevertheless, we have
the following result on the closed monoidal structure, see also [AR15 Theorem 4.4] for
partial results.

Theorem 3.23. The functor
F = Hompg(I', =): Repl} — k&4 Mod
is a strong closed monoidal functor. In particular

F(X ®rd V)= F(X)®, F(Y) (3.8)
F(Hom(X,Y)) = Hom(F(X),F(Y))

for all X and Y in RepT'¢ and

F(1ps) = Lie,,
i.e. F(I') = k.

Proof. First we show that the functor is strong monoidal. As observed in Section
every functor X in RepI'¢ is a colimit of representable functors. Moreover, the functor
HomFZ(F‘“, —) preserves colimits, since it has a right adjoint, see Chapter . Thus it
is enough to show the isomorphism for functors represented by free modules. Let
V = k" and W = k™ for some non-negative integers n and m. Using the definition of
the internal tensor product and the canonical decomposition we get

n m n m n-m
Fd’k ®F‘,§ Fd,k _ Fd’k ®k™ A Fd,k _ @ I
veA(n-m,d)

Writing down the entries of v € A(n - m,d) in an n X m matrix, we obtain a bijection
between the set A(n-m,d) and the set of all n x m matrices with entries in N such that
the sum of all entries is d. Every such matrix A = (a;;) defines a couple (A, p) with
A € A(n,d) and p € A(m,d) where \; is given by > a;; and p; is given by >, a;j, so
that A € Al’). All in all we get a bijection of sets

An-m,d) «— {A € MpnN) | > Jaq=d} «— | ] A4)

AEA(n,d)
peA(m,d)

and thus the following decomposition

k" ®ra [dk™ o @ v — @ @ FA7

veA(n-m,d) AEA(n,d) AeA)
neA(m,d)

38



3.4. The Schur Functor

where the matrix A = (a;;) is seen as the composition (a1, a2, ..., a21, 22, . .., Amn)-
Using this decomposition we obtain isomorphisms

Bpasn pasm = F(DH") @) FDEF) S5 (58 @, (k™)
S0P we @
XeA(n,d) neA(m,d)
=S P Mrepmr
AEA(n,d)
nEA(m,d)
- @ o

A€A(n,d) A€A)
neA(m,d)

SF P prY

AEA(n,d) AcA)
peA(m,d)

> k" k™
— F(I @pa T,
By Yoneda, we have a natural isomorphism

Honng (1", T4 2 Hompa, (K, 1) = Hom( (k)% (k"))

’

> Homye, ((K)°1, (K"')*)

which coincides with the isomorphism Hompa (I, T9+") - Homye (M) (k' )2d)
induced by F. It follows that ®pawn pasm is actually natural in T**" and T*F". We
extend it to all strict polynomial functors by taking colimits to get a natural isomorphism

Oxy: F(X)@r F(Y) = F(X ®rad Y).

For the tensor units we get the following isomorphism from Proposition [3.18}

e Ls, = MW = F(I) = F(1p)

It is straightforward to check that the diagrams

/
/
FAET), Frd kT, F(rd R

(F(T4) @ F(D)) @ F(T4) F(O) @ (FT4") @ FOH))
}-<Fd,k" ® Fd,km) ® ]_—(Fd,km’) ]:'(Fd,k") ® (J_—(Fd,km ® Fd,km’))

]_—(Fd,k" ® (Fd,km ® Fd,k”'))

P
l rdk" gprd,km pd,km’

, Fla
f((Fd’kn ® Fd,k‘"L) ® Fde"L )

rdk" pd, k™ pdkm’ )
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3. Representations of the Symmetric Group

Q]:(Fd,k”)

F(I) @ 1e, F(DER")
idmd,w@ﬁl Sragn Tng?”“")
n ’ r n
FIH) @ F(1m) — F(I**" ® 1)

n AR n
lLis, ® F(I) - F (D4R
E®idf<rd7k”>l &y 4 F(DE™) T}-(/\?kn)
F(1pg) @ F(IH") —= F(1pg @ TH)

commute.

To show that F is closed, we consider the following diagram of equivalences of categories

add I’ F add M
(—)0{ l(—)*
(add S)°P - (add M )°P

By Proposition this diagram commutes, i.e. F(X°) = (F(X))* for all X € (add I")°P.
Since Hom (T, S#)° = T ®pa I'" € add I" we get for X = Hom (T, SH)

For an arbitrary Y € Rep'{ we take an injective presentation
0—=Y = I°Y) = I'(Y).

Since Hom(T*, —) is left exact, by first applying F Hom(T'*, —) and second applying
Hom(F(T), F(—)) to the presentation, we get

00— F Hom(I™,Y) F Hom(TA I1°(Y)) F Hom(T* I°(Y))

l~ LN

0 ——= Hom(F (), F(Y)) —=Hom(F (), F(I°(Y))) —= Hom(F(T?*), F(I°(Y)))
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3.4. The Schur Functor

and thus F Hom (I Y) = Hom(F(T), F(Y)). The same arguments for arbitrary X
and a projective resolution P'(X) — P°(X) — X — 0 finally yields

F(Hom(X,Y)) =2 Hom(F(X), F(Y)). O

The monoidal property of the Schur functor allows us to compare the Kuhn and the
monoidal dual of strict polynomial functors with the dual for symmetric group repre-
sentations:

Corollary 3.24. For all X € RepT'¢ we have
F(X°) 2 F(X)" = F(XY).
Proof. By Lemma [2.27]
X° 2 (I ® X)° = Hom(I', X°) = Hom(X, 59

and thus, since F(X)* = Hom(F(X), k),

I

F(X°) =2 F(Hom (X, SY) = Hom(F(X), F(S) = Hom(F(X), k)
=~ Hom(F(X), F(I'Y) = F(Hom(X,T%)) = F(XY).
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4. The Adjoints of the Schur Functor

Having introduced the Schur functor F in the preceding chapter, we now study its left
and right adjoints. Our main concern will be the composition of F with its adjoints.
In particular, we present a connection between the adjoints of the Schur functor and
the monoidal structure on strict polynomial functors, allowing us to deduce a projection
formula for F. Some results about the adjoints have obtained in [DEN04] and [HNO4].
For a generalization of F and its adjoints, we refer to [Kuh02]. Note that most parts of
this chapter have been published in [Reil6].

In the following we abbreviate Endpe(I') by End(I'*) and EndFZ(Fd’V) by End(I'4").

4.1. The Left Adjoint of the Schur Functor

Let N € ModEnd(I'¥) and X € Rep Fi. We consider N ®guqr) [V as an object in
RepI'¢ by sending a module V to N ®pnar) I¥(V) Note that by the usual tensor-hom
adjunction we have the following isomorphism

HOHIF(; (N ®End(Fw) FW’ X) = HomEnd(pw) (N, Homrz (Fw’ X))
= HomEnd(pw) (N, F(X))
Thus, F has a left adjoint, which we denote by Gg. It is given by

Ge: Mod End(I'*) — Rep I'¢
N— N End(Irw) .

In terms of modules of the group algebra of the symmetric group this reads

Go: k&4Mod — RepI'¢
N — (—)®d ®k6d N.
We denote the unit by 7g: idgnqre) — FGe and the counit by eg: GgF — idge, rd and

omit indices where possible. Since F is exact and G is right exact, FGg is right exact.
Note that for the regular representation End(I') € Mod End(I') we get

FGo(End(I™)) = Hompy (I, End (™) @puqqre) I¥))
> Hompy (I, I*))
~ End ().
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4. The Adjoints of the Schur Functor

It follows that FGg(N) = N for all N € Mod End(I'¥) and hence the unit ng is an
isomorphism and Gg, is fully faithful.

We now focus on the composition Gz F. Recall that add S, respectively add M denotes
the full subcategory of Rep I'¢, respectively k&, Mod whose objects are direct summands
of finite direct sums of S*, respectively of M* for A € A(n,d).

Proposition 4.1. There exists a natural isomorphism
GoF(X) =X
for all X € add S.

Proof. Let V € TP, and X € add S. Using Lemma [2.27, the Yoneda isomorphism ([2.1)),
and the equivalence of add S with add M we get the following sequence of isomorphisms,

(X)°(V)=Hompg (T, (X)?)
= Hompy (X, (IY)?)
= Homye, (F(X), F((T"Y)%))
= Hompy (G F(X), (T*V)°)
= Hompy (I, (G F(X))°)
=(GoF(X))(V)
and thus G F(X) = X. O

Corollary 4.2. The functor Gg restricted to add M is an inverse for Fladds, i-e. we
have the following equivalences of categories:

(3
add S add M O]
f

Without restricting to the subcategory add S, the composition GgF is not isomorphic
to the identity. Though, we can shown the following:

Theorem 4.3. There exists a natural isomorphism
g®JT"(X) i Sd ®FZ X

Proof. Recall the natural isomorphism @y : F(X)® F(Y) = F(X ®paY) constructed
in the proof of Theorem [3.23, Using this isomorphism and by the adjunction property
we obtain the following isomorphism
Homye, (F(X) @i N, F(X) ®; N) = Homyg, (F(X) @, N, F(X) @k FGg(N))
= Homye, (F(X) @k N, F(X ®rg Go(N)))
=~ Hommpy (0o (F(X) @4 N), X @pg Go(N)),
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4.1. The Left Adjoint of the Schur Functor

that maps f € Homye, (F(X) ®; N, F(X) @, N) to
(5®)X®F%g®(N) 0 G(Px g, n o (drx) @k (Ne)N) o f).
In particular, the identity on F(X) ®; N yields the map (omitting the indices)
Uxn = (€s) 0 Ge(®o (id @k ng)): Go(F(X) @k N) — X Qs Go(N).
By setting N := 1, the trivial module, we obtain the following map
Uxa: GoF (X) = X ®ra Go(1).

We show that it is an isomorphism. Since GgF(—) and — ®ps Gg(1) are right exact
functors it is enough to show that ¥y ; is an isomorphism for X projective. Thus, let
X =T Since F(S%) = 1, we know by Proposition that Gg(1) = S9. Tt follows
from Proposition @ that T ®ra Go(1) = S*. Thus, by Corollary

(o), 406(1) GoF (I @pg Ga(1)) = I @pe Ge (1)

is an isomorphism. Both maps ® and 7 are isomorphisms and thus Gg (P o (id ® 1))

is an isomorphism. It follows that I ;: Gg F(T?) — T ®r¢ Gz (1) is an isomorphism.
Identifying G (1) with S? we get the desired isomorphism for all X € RepI'¢:

Ix1: G F(X) = X ®pg 572 S @pa X. O

Recall from Corollary that S¢ =~ S9® S?. Thus, using the fact that F preserves

the monoidal structure, we get the following

Corollary 4.4. The functor Gg is compatible with the tensor product, in the sense that
Go(N @) N') = Gg(N) ®@pa Go(N'). 0

Note, however, that the tensor unit 1;g, is mapped under Gs to S? which is not the
tensor unit in Rep'¢. Using Lemma we get the following description of the Schur
functor composed with its left adjoint:

Corollary 4.5. The endofunctor GoF can be expressed by duals, namely
GeF(X) = ST @pe X = Hom(X, ) = (XV)°. O

4.1.1. Projection Formula
As we have seen in the proof of Theorem there is always a morphism

This is a very general fact, using only the properties of Gg being left adjoint to F and
F being monoidal. This morphism ¥x y does not need to be an isomorphism in general,
but using Theorem [4.3] we can show that in our casd'}

T am very grateful to Paul Balmer who pointed me to this result.
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4. The Adjoints of the Schur Functor

Theorem 4.6 (Projection formula). For all X € Repl'¢ and N € k&4Mod there is an
1somorphism
Go(F(X) @k N) = X ®pa Go(N).

Proof. Recall that N = FGg(N). Using Theorem we get
Go(F(X) @1 N) = Go(F(X) @ FGe(N))
= 0o F (X © Gg(N))
>~ 5% X ® Gg(N)
~ X ®57® Gy(N)
=2 X ®GeFGs(N)
= X ®Gg(N).

4.2. The Right Adjoint of the Schur Functor

This section provides analogous results to those in the preceding section, now for the
right adjoint to the Schur functor. We show that also the right adjoint can be expressed
in terms of the monoidal structure on strict polynomial functors.

Let V € TPy, X € Repl'd and N € Mod End(I'*). We consider Hompg(Fd’V,X) as

a right End(I'*")-module and Hompg (I', YY) as an End(I'4")-End(I'*)-bimodule. By
the usual tensor-hom adjunction we then get the following isomorphism

HomEnd(Fdwv) (Hosz (Fd7va X>7 HomEnd(F‘*’) (Hosz (va Fd7v)a N))
& HomEnd(pw) (Homrz (Fd’v, X) ®End(l—‘dvv) HOH]F% (Fw, Fd’v>, N)

On the other hand, since Hompg (I'%V Tw) is finitely generated projective over End(I'®Y),
we have

HomEnd(F’ivV) (Fw(v)u X(V)) = HomEnd(Fd’V) (Homfz (Fd’vu Fw)7 HomFg (Fd’vu X))
o~ Homrz(f‘d’v, X) @gnaqra.vy Hompg (T Y

and thus

HomEnd(Fd*V) (Homf“é (Fd7va X)7 HomEnd(F“’) (Homfz (va Fd7v)7 N))
= HomEnd(pw) (HOmEnd(Fd,V) (FUJ(V), X(V)), N)

Since Mod End(I'*") = RepT'¢ for V := k™ if n > d (see (6.3)) and X = Homrg(Fd’*, X)
we finally obtain the following isomorphism

Hompg (X, Homppa(re) (Hompg (1%, T47), N))
= Homgyq(re) (Homp (I, X)), N).
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4.2. The Right Adjoint of the Schur Functor

Thus, F = Homri(f‘“, —) has a right adjoint, which we denote by Gpom. It is given by
Giiom: Mod End(T'*) — RepT'{
N+ Homgpg(re) (Hompg (T, T%7), N).
In terms of modules of the group algebra of the symmetric group this reads

Gttom : kG4 Mod — Rep T
N — HOHlkGd (Homkgd((—)®d, kGd), N)

We denote by Ntom : idgnd(rv) — GhomF the unit and by exom: FGrom — 1dgep rd the
counit. Note that

FGriom(M) = Homrz(Fw, GHom (M))
o HomEnng([‘w)(F(Fw), M)
= HomEndrg (r«) (Endpa (I'), M)
>~ ],
i.e. the counit ep,,, is an isomorphism and thus Gygy, is fully faithful.

Again, we are interested in the endofunctor Gy, F. Recall that add I" denotes the full
subcategory of Rep 'Y whose objects are direct summands of finite direct sums of T'*.

Proposition 4.7. There exists a natural isomorphism
gHom]:(X) =X
for all X € addT.

Proof. Let V € I''P;, and X € addT". Due to the the Yoneda isomorphism (2.1 and the
equivalence of addI" and add M we have the following sequence of isomorphisms

X (V)= Hompy (I, X)
=~ Homye, (F(I'*Y), F(X))
= Hompg (I, Grom F (X))
=G1omF (X) (V)
and thus GpomF(X) = X. O

Corollary 4.8. The functor Gyom restricted to add M is an inverse for F|.gar, i-e. we
have the following equivalences of categories:

.
addTI’ add M O]

gHom
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4. The Adjoints of the Schur Functor

Remark 4.9. Suppose that k is a field of characteristic > 5. In [HN04, Theorem 3.8.1.]
it is shown that on Filt(A), the full subcategory of Weyl filtered modules, Gyon is an
inverse for F. The subcategory Filt(A) contains the subcategory add ', so in the case
of a field of characteristic > 5, Corollary follows from [HN04]. However, Corollary
is independent of any assumption on the commutative ring k.

Without restricting to the subcategory add I', the composition Gy, F is not isomor-
phic to the identity. Though we have the following result, dual to Theorem

Theorem 4.10. There exists a natural isomorphism
GromF(X) = Hom(S?, X).

Proof. Recall the natural isomorphism Uyy: Hom(F(X),F(Y)) — F(Hom(X,Y))
constructed in the proof of Theorem [3.23] Using this isomorphism and the adjunction
we get a sequence of isomorphisms

Homyg,(Hom(F(X°®), N), Hom(F(X°), N))
= Homkgd(Hom(f(Xo), N), H0m<N*7 f( O)*))
gHOII]]CGCZ(,}L[OTTL(‘;E()(O),‘/T'.gHom( )),Hom(N* (X)))
= Homye, (F(Hom(X®, Guom(N))), Hom(N*, F(X)))
= HOHIFZ (H0m<XO, gHom( )) gHom(Hom(N* (X))))
= Hompa (Hom(Grom (N)°, X), Grom (Hom(N™, F(X)))).
Thus, the identity on Hom(F(X°), N) yields a map
kN x: Hom(Grom(N)°, X) = Guom(Hom(N*, F(X))).
By setting N := 1, the trivial module, we get a map
Iil’Xi HOTTL(gHom(].)O7 X) — gHom<H0m(17f<X)))

Similarly to the case of Gg this is an isomorphism. This time, we use the fact that since
Hom(Grom(1), —) and Guom(Hom (1, F(—))) are left exact functors it is enough to show
that k1 x is an isomorphism for X = S* injective. But F(I'Y) = 1, thus we know by
Proposition that Giom(1) = T It follows from Lemma m that

’Hom(QHom(l)o, SA) = (Sd X F/\)O o~ FA
and hence
(nHom)’Hom(gHom(l 08N Hom(gHom( )O, S)\> — gHom}"(Hom(gHom(l)o, S)‘))

is an isomorphism by Corollary . Similarly to the case of ¥; x in the proof of Theo-
rem 4.3, k1 x is the composition of this isomorphism and further isomorphisms, hence
is itself an isomorphism. Identifying Grem(1)° with S¢ and Hom(1, F(X)) with F(X)
we finally get for all X € RepI'¢

K1x: Hom (S, X) = GromF(X). O
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Corollary 4.11. The functor Guom preserves the internal hom up to duality, i.e.
GomF (Hom (X, Y)) = Hom(GaomF (X)°, GHomF (Y))

and

gHom Hom(N*, N/) = Hom(gHom(N)oa gHom(N,))' D
Remark 4.12. In general, Gy, does not preserve the internal tensor product, e.g. for
sgn?, the sign-representation in k&, Mod, we get Giom(sgn?) = A if 2 is invertible in k,

but Grom(1) = I'? and thus if 2 € k*

Grtom (s @ 580%) = Griom (1) 2 T # 57 = AT @y A
= gHom(Sgnd> ®Fz gHom(Sgnd)'

Corollary 4.13. Let X € repl'¢, i.e. X°° = X. The endofunctor GuomF can be ex-
pressed by duals, namely

GromF(X) = Hom(S?, X) = Hom(S%, X°°) = Hom(X°, T?) = (X°)". O

4.3. Both Adjoints

The results in the previous two sections allow us to relate the left and the right adjoint.

Proposition 4.14. The left and the right adjoints of the Schur functor are related by
taking duals, namely

(g®./_"(X))O = gHomF<XO)-

In particular
Go(N)° = Grom(N™)

for all X € RepT'¢ and N € k&4 Mod.
Proof. Using Theorem and Theorem we get
(GoF(X))° = (5@ X)° = Hom(S%, X°) = GromF(X°).

By setting N = F(X) and using the fact that F(X°) = F(X)* we get the second
isomorphism. O

Remark 4.15. In case of k being a field of characteristic p, this result has already been
obtained in a more general setting by N. Kuhn in [Kuh02, Theorem 6.10, Lemma 6.11].

To summarise, we have the following commutative diagram
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4. The Adjoints of the Schur Functor

ge
replf = kS, mod

F
(—)"l j(—)*
F

(rep'd)ep (k&4 mod)°P
gHom
where the vertical arrows are equivalences of categories. The horizontal arrows become

equivalences when restricted to the following subcategories

Ge
addS=— _addM

]:
()°l - l()*
(add )P __ "~ (add M)°P

GHom
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5. The Tensor Product on Strict
Polynomial Functors

Following the discussion of the monoidal structure on strict polynomial functors in its
generality, we now apply these findings to provide explicit calculations of the (internal)
tensor product. Firstly, we compute the tensor product of (generalized) divided, sym-
metric and exterior powers. Secondly, we consider Schur and Weyl functors. Among
other results it turns out that the category of Weyl, respectively Schur filtered functors
is not closed under the tensor product. Finally, for k a field we focus on simple func-
tors. In the case chark = 0 the Schur functor is an equivalence of categories and the
internal tensor product of strict polynomial functors equals the Kronecker product of
kS 4-modules. Hence, we may concentrate on the case where chark = p > 0.

5.1. Divided, Symmetric and Exterior Powers

Some explicit calculations of tensor products of divided, symmetric and exterior powers
are already known. Recall from Proposition that:

° Ad ®Fﬁ FA o~ A)‘

° Ad ®F ‘,f A)\ o S)\

o 54 ®rpa =~ g
We now aim to calculate the tensor product of any other two divided, symmetric and
exterior power. We start with the tensor product of two divided powers and show that

they behave in the same way as permutation modules, in particular the tensor product
can be decomposed in divided powers again.

Recall that for A € A(n,d) and p € A(m, d) the set A, consists of all n x m matrices
A = (a;;) with entries in N such that A\; = 3" a;; and p; = >, a;;. A matrix A € A s
considered as a composition by reading the entries from left to right and top to bottom.

Proposition 5.1. For all A € A(n,d) and p € A(m,d) we have

M @I EBFA.

A
AeA}
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5. The Tensor Product on Strict Polynomial Functors

Proof. Using the decomposition (2.2)) applied to I'“*" we get

@ [V — k™™ o pdk™ ® pdE™ _ @ IR @ T+

veA(n-m,d) AeA(n,d) neA(m,d)

i~ @ M@ TH.
AEA(n,d)
peEA(m,d)

Thus, I'*®@I'* belongs to add I'. Since by Lemma, the subcategory add I' is equivalent
to add M, the decomposition of the tensor product of permutation modules given in
Lemma implies the claim. O

Next we consider the dual objects, the symmetric powers. We obtain an analogous
result, namely:

Proposition 5.2. For all A € A(n,d) and p € A(m, d)
Sesr= P st

AeA)
Proof. From Proposition we know that S* = S?® I'* and thus
SPresresteMeSiel >SSt M eI,

By Corollary [2.32] S* @ S% = §% and by Proposition [5.1| we know I'* @ T" = @ ,_ 4, '
m

Thus,
FPest=sie (P P ‘el P st 0

AcA} AcAp A€A,

We are also able to calculate the tensor product of two exterior powers:
Proposition 5.3. For all A € A(n,d) and p € A(m,d)
Mo = s
A€A;,
Proof. From Proposition we know that A?® A? =~ S and A* = A? @ T'* implying
MeoM=pMeT oNeTr>S'e (P TY) = G 5 O
A€A, A€A}

Now we consider the tensor product between divided powers and symmetric, respec-
tively exterior powers:

Proposition 5.4. For all A € A(n,d) and p € A(m,d)
MPeoA PAT ad TeSr =P S

AeA) AeA)
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5.1. Divided, Symmetric and Exterior Powers

Proof. This follows directly from Propositionby using the isomorphism A# = AI@T*,
respectively S# = S¢ @ I'* (Proposition [2.16)). n

It remains to calculate the tensor product of exterior and symmetric powers. This
time we have to take the ring k into account.

Proposition 5.5. For all A € A(n,d) and p € A(m,d) it holds
@ AYif 2 is invertible in k,
AcA)

@ SAif 2 is not invertible in k.
A€A}

M@ St

Proof. We know from Proposition that S# = S¢ ® I'* and from Lemma that
A ® ST~ Hom(AN T9)° = ((AY)V)°. Thus

A @ S* 2 ((AMY)° @ TH.
We use Proposition to obtain

e o | AN if 2/is invertible in F,
(A =9 n s L
S if 2 is not invertible in k.
The calculations in Proposition [5.4] respectively Proposition finish the proof. ]

Let us summarize our computations:

Corollary 5.6. Define

M = @ FA, AM = @ AA, S — @ 54,

A A A
A€A] A€A; A€A;

The internal tensor products of divided, symmetric and exterior powers are given by

® || I* St A ® || I S A#
| e g A ™ v g A
Sr | g g A gr | g g g
AN | A A g AN | A g g
if 2 1s invertible in k if 2 1s not invertible in k

In particular, the tensor products of divided, symmetric and exterior powers behave like
tensor products of permutation modules and their decompositions depend only on the
set Af;. Thus, the computations reduce to tensor products of the form X¢ ® Y with
X, Y e {I,S,A}.
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5. The Tensor Product on Strict Polynomial Functors

5.2. Schur and Weyl Functors

We already know that Weyl and Schur functors are connected by tensoring with the
exterior powers:

Proposition 5.7. [[Kral3, Proposition 4.16], [ABS8J]] For every partition \, there is
an isomorphism

AN @ W, Sy

It follows immediately that Weyl functors are obtained by taking the internal hom of
exterior powers and Schur functors:

Corollary 5.8. For every partition A, there is an isomorphism
Hom (A, Sy) = Wy

Proof. Since A? is finitely presented, we can use Lemma and obtain because of
Wy = Sy
Hom(A?, S)) = (A?@ W,)° =2 S5, = Wy, O

Relating Weyl and Schur functors in the other direction is not possible in general, but
we can show:

Proposition 5.9. For every partition X\ there are isomorphisms
A ® Sy = Gy (dSp(N)) and Hom (A%, W) 2 Grom(Sp(N)).
Proof. By Proposition we know
MRS, 2N QAN @Wy =2 S'eWy.
Using Theorem one gets
S @ Wy 2 GoF(Wy) 2 G (dSp(X)),
where the last isomorphism is from (3.5]). For W, we use Corollary [5.8 and Theorem

to obtain

Hom (A, W) =2 Hom (A%, Hom (A%, Sy)) = Hom(S?, Sy)
= gHomF(S)\’) = gHom(Sp()\,))

]

Recall from Definition that Filt(V), respectively Filt(A) denotes the subcategory
of all objects that are filtered by Schur, respectively Weyl functors. We now concentrate
on the closedness of these subcategories under the tensor product.

Proposition 5.10. In general, Filt(A) and Filt(V) are not closed under the tensor
product.
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5.3. Simple Functors

Proof. Recall that A? € Filt(A). Consider AY® A4 = S This Schur functor is of course
in Filt(V), but in general it is not in Filt(A): Let for example n = p = d. Then the
composition series of S is as follows:

g — Lo-11)
L)

In particular, it is uniserial and since neither L,_; ;) nor L, is a Weyl functor, S®)
cannot possess a Weyl filtration.
Now consider S*, A4 € Filt(V). We know that

F(S* @A) = F(SY) ® F(AY) = Sp(\) @ sgn? =2 dSp(\).

It is known that in general the category of Specht filtered modules does not coincide with
the category of dual Specht filtered modules, see [Hem07] for a discussion on modules
that possess both filtrations. In particular, there exists dual Specht modules that do
not have a Specht filtration and thus, in those cases, S* ® A? cannot have a Schur
filtration. O]

Proposition 5.11. Let k be a field of chark > 5. Then
Hom (S, X) = X for X € Filt(A) and SYRY XY forY € Filt(V).

Proof. We use [HN04, Theorem 3.8.1] showing that, for a field of chark > 5, Gyon is
an inverse of F when restricted to the subcategory Filt(A), i.e. GuomF(X) = X for all
X € Filt(A). It follows by Theorem that for all X e Filt(A)

Hom(Sd,X) >~ GomF (X) =2 X.

To compute S ®@ Y for Y € Filt(V) we use the fact that Y € Filt(V) if and only if
Y° € Filt(A). Thus, by the previous calculation we get Hom(S¢, Y°) = Y°. From
Lemma we also know that Hom (5%, Y°) = (SY®@Y)° and thus (S?®@Y)° = Y°. O

5.3. Simple Functors

Throughout this section, let k be a field of characteristic p. In this case, the isomorphism
classes of simple functors in RepI'¢ are indexed by partitions A\ € AT (n,d). Simple
functors are self-dual, i.e. L§ = L, see e.g. [Kraldl, Proposition 4.11].

In [Kuh02, Theorem 7.11] a generalized Steinberg Tensor Product Theorem has been
proven: simple functors are given by the external tensor product of twisted simple
functors. In our setting, this has been formulated also by Touzé:

Theorem 5.12 ([Toulb, Theorem 4.8]). Let k be a field of characteristicp. Let \°, ... A"
be p-restricted partitions, and let X =Y _;_ p'\". There is an isomorphism:
Ly~ LeyRLYR.. &L,

)\1

where Lg\? denotes the i-th Frobenius twist of Lyi.
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5. The Tensor Product on Strict Polynomial Functors

Using this decomposition, Touzé showed that in order to calculate the internal tensor
product of two simple functors, it is enough to consider p-restricted partitions. Namely
one has for A =37 p'A"and p =7 p'y’

(Lo ® Lyo) R (Lyt @ L)Y XK (Lye @ L)W if r = s, [N = |pf],

Ly®L, =
A . {O otherwise.

(see [Toulh, Theorem 6.2]). We will see in Theorem that the tensor product of two
simple functors is almost never simple.

Mullineux map and truncated symmetric powers

Recall from Remark (iii) the Mullineux map m: AJ(n,d) — AJ(n,d) that relates
simple kS -modules, see e.g. [Mar93, Chapter 4.2] for an explicit definition. Denote by
Q? the truncated symmetric powers, i.e. the top of S%. We have the following connection
between tensor products of simple functors and the Schur functor and its left adjoint:

Lemma 5.13. Let ju be a p-restricted partition, i.e. p € Af(n,d). Then
Q"® L, = GeF(L,) and A'® L, = GoF (Ling))-
Proof. From [Toul®, Corollary 6.9, 6.10] we know that
Q'L 2Q"@N N L, 2N RN RL, 2SR,

By Theorem this is the same as applying the Schur functor and its left adjoint to
L,. By [Toulh, Corollary 6.9] we have A ® L, = Q? ® Ly, and thus A’ ® L, =
GeoF (Ln(u)) 0

The following lemma shows in which cases the left adjoint to the Schur functor sends
simple modules to simple functors]T]

Lemma 5.14. Let p € Aj(n,d). Then GoF(L,) = L, if and only if all v with
Ext'(L,, L,) # 0 are p-restricted.

Proof. We use [DENO04|, Section 3.2, Corollary| that GgF(L,) is the largest quotient
of the projective cover P, of L, whose radical has only non p-restricted composition
factors. This is simple if and only if the top of rad P, has only p-restricted composition
factors. If we apply Hom(—, L,) to the exact sequence

0—radP, =P, —L,—0,
we get

0 — Hom(L,, L,) = Hom(P,, L,) — Hom(rad P,, L,)
— BExt'(L,, L,) — Ext'(P,,L,) = 0.

'T am very grateful to Karin Erdmann who pointed out the connection between the occurrence of
composition factors in quotients of projective covers and Ext-vanishing of simple functors.
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5.3. Simple Functors

Since Hom(L,, L,) = Hom(P,, L,), we obtain Hom(rad P,, L,) = Ext'(L,, L,). That
means, L, is a composition factor of the top of radP, if and only if
Ext'(L,, L,) # 0. So, we get

GeF(L,) is simple <= all v with Ext'(L,, L,) # 0 are p-restricted.

Since FGgF(L,) = F(L,) we know that if Gz F(L,,) is simple it must be isomorphic to
L,. O

We get the following characterization of tensor products of simple functors correspond-
ing to p-restricted partitions that are again simple.

Theorem 5.15. Let k be a field of odd characteristic and A, ju € A (n,d). The tensor
product Ly ® L, is simple if and only if, up to interchanging A and p,

- Ly =2 A and all v with Extl(Lm(#), L,) # 0 are p-restricted, or

- Ly~ Q4 and all v with Ext'(L,, L,) # 0 are p-restricted.
In these cases A ® L, = Ly and Q'®L, XL,

Proof. First note that if dim F(Ly) > 2 and dim F(L,) > 2, then L, ® L,, is not simple
(see [Toulhl Corollary 6.6]). This follows from the fact that for simple k&4-modules
of dimension > 2 the Kronecker product is never simple [BK00]. There are only two
k&4-modules with dimension 1: L(w) = sgn? with w = (1,...,1) and MY = k. Now,
F(L,) = sign and F(Q?) = k. Thus, the only cases where the tensor product might be
simple are A?® L, and Q¢ ® L,,.

Consider first the case Q?® L,. By Lemma , this is the same as Gy F(L,) and by
Lemma it is simple if and only if the top of rad P, has only p-restricted composition
factors.

For A% ® L, use Lemma and Lemma to obtain that A ® L, = GoF (L)
is simple if and only if all v with Extl(Lm(H), L,) # 0 are p-restricted. ]

It is not known in general when Ext'(L,,, L,) # 0 for partitions u,v € A(n,d), so the
question of when the internal tensor product of two simple functors is again simple is
not yet answered completely. Also the computation of the Mullineux map m is not easy
in general.

Corollary 5.16. If j1 is a p-core, then Q* ® L, = L, and A ® Ly = L,

Proof. If 11 is a p-core, then it is the only simple in its block, i.e. P, = L, and thus by
[DENO4, 3.2 Corollary] A ® Ly = Q4 ® L, = L,. O

5.3.1. A Special Case

In the case n = d we make use of the following result to obtain some partitions p such
that the tensor product A ® L,, respectively Q* ® L,, is simple:

Proposition 5.17. [DEN0J, 5.6 Proposition] Let n = d and p > 2. Assume j is a
p-restricted partition such that all X with m(u') > X are also p-restricted. Then

GoF(L,) = L,.
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5. The Tensor Product on Strict Polynomial Functors

In particular, every partition A such that all smaller partitions are p-restricted, pro-
vides a partition p = m(A)" such that Gg o F(L,) = L,. Starting with the partition
(1,...,1) and going through the elements of A} (n,d) in lexicographic order, the first
partitions of the sequence are all p-restricted. The smallest not p-restricted partition v
isv:=(p+1,1,...,1)ifd >p+1and v := (d) if d = p. Thus, for every = (m(\))’
with A < v we get QY ® L, =~ GoF(L,) = L,,.

However, Proposition [5.17 only provides a sufficient condition, so we can not deal with
the case of partitions A such that A > v.

The Case n =p=d

We can provide a full answer under the further restriction n = p.

Theorem 5.18. Let k be a field of characteristic p > 2 and n = p = d. The tensor
product Ly ® L, is simple if and only if, up to interchanging A\ and p,

-A=(1,...,1) and u # (3,1,1,...,1), or

-A=(@-L)andp# (p—11).
In these cases L1y ® L, = Lyyuy and L—11) @ L, = L.

Proof. It always holds that A® = L(; _1y. If n = d = p, the truncated symmetric powers
Q“ is the simple module indexed by the partition (p — 1,1), i.e. Q4 = L(,_11). Thus,
by Theorem [5.15] all tensor products where A # (1,...,1) and A # (p — 1,1) are not
simple. It remains to check the cases where A = (1,...,1) or A= (p—1,1).

Now all partitions p not of the form (p —k,1%) = (p—k,1,1,...,1) for 1 <k < p are
p-cores, so in these cases by Corollary

Lp1y® Ly =L, and  La..1)® Ly = L.

Suppose now u = (p — k,1%). There is only one partition which is not p-restricted,
namely the partition (p). We have m((2,1772)) = (p), thus all but the partition p =
(p — 1, 1) fulfill the condition of Proposition and we get

Lip-1,1) ® Ly = G F (L) = Ly,
for all = (p — k, 1) with 1 < k < p. Since m((p — 1,1)) = (3,1773) we also get
L.y ® Ly = GoF (L) = L)

forall u= (p—k,1¥) with 1 <k <3or3 <k <p.
The cases p = (p — 1,1), respectively p = (3,1773) remain. We know that the
composition series of S® is as follows:

S — Lp-1,1)
L)

2T am very thankful to Karin Erdmann for her advice regarding the Mullineux map in this case as well
as pointing out several composition series used in the proof of the following theorem.
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5.3. Simple Functors

That is, S®/rad(S®) = L,_; 1) and hence there exists a surjection Py, 1 1) — S®. But
then L, is in the top of rad(P—1,1)) and thus GoF(Lp-11)) = Lp-1,1) ® Lp—1,1) is not

-----

is not simple.

O
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6. Modules over the Schur Algebra

Schur algebras, denoted by Sk (n, d), were first defined by Issai Schur in [Sch01] and have
sparked intense investigations ever since. Their relation to strict polynomial functors was
described by Friedlander and Suslin in [F'S97], which allows us to transfer the monoidal
structure on Rep I'¢ to Si(n, d) Mod. Unfortunately, the description of the tensor product
inside the latter category does not simplify and concrete calculations turn out to be still
hard.

In this chapter, we present the correspondences between objects in RepT'{ and
Sk(n,d)Mod and transfer results from strict polynomial functors over, where possi-
ble. In particular, we describe the image of projective strict polynomial functors under
this equivalence in full detail. Our main reference for modules over the Schur algebra

is [Gre07].

Definition 6.1. For positive integers n and d, let k&4 act on the left on (k")®? as defined
in (3.2). The Schur algebra Sk(n,d) is the endomorphism algebra of this representation:

Si(n,d) := Endye, ((k™)®?)

Originally, the Schur algebra was defined as the dual space of a subcoalgebra of finitary
functions from the general linear group to k. It has been shown that this is isomorphic
to the above definition [Gre07, (2.6¢)].

Basis and decomposition. One can decompose the k& -module (k")*? into permuta-
tion modules (see Section [3.3)) and thus obtain the following decomposition

Sk(n,d) = Endge, (k")*") = 5 Homye, (M, M*"). (6.1)
XeA(n,d)
neA(n,d)
A k-basis for Homyg,(M*, M*) can be indexed by the set §,\ = {&; | j € 1, i € A}/ ~
where the equivalence relation ~ is given by &;; ~ & if there exist 0 € G, such that
jo =4 and ioc =17 B B
~ In particular &; ~ & for i and 4’ represented by the same A. This idempotent
element &;; corresponds to the identity on Ende,(M?) and we denote it by &,. From
the decomposition above it follows that

U éo={¢ilicmierin rermal/~
A pueA(n,d)

forms a k-basis of Sk(n,d). The multiplication is given by composition of morphisms
(see Appendix for a combinatorial description).
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6. Modules over the Schur Algebra

Remark 6.2. Note that the set £, x can in turn be identified with the set {A | A € A}}.
See Appendix for more details.

The unit id in Sg(n,d) is given by the identity idgnyea of Endge,((£")®%). It decom-
poses into identities idyn = &y of Endg,(M?) and thus we get an orthogonal decompo-

sition
= > & (6.2)

AeA(n,d)

Note that the elements &, are not indecomposable in general, see below.

An equivalence of categories. Consider the functor
Hompg (T**", —) : Rep '}l — Mod Endpy (T**").
From the Yoneda isomorphism (£2.1))) we get an isomorphism of k-algebras
Endp, (D) = (D% (K"))°" = (Endpap, ()™ 2 (Ende, ((£")*)) = Sk(n, d)*?

and it follows that Mod Endpa(I'**") =~ Sj(n,d) Mod. Thus we obtain a functor from
the category of strict polynomial functors to the category of modules over the Schur
algebra. Even more, it has been to shown to be an equivalence in certain cases:

Theorem 6.3 ([FS97, Theorem 3.2]).
Homypy (P**", ) : Rep '} = Sy(n, d) Mod (6.3)
is an equivalence for n > d.

Remark 6.4. Since we have Hompg (1", X) 2 X (k") for all X € RepT'{ (see (2.1)), the
functor Hompg (I'**", —) is nothing other than evaluation at k™. The action of Si(n, d)
on X (k™) is given by acting by X applied to the corresponding element of Endrap, (k™).

From now on, we assume n > d. We describe the image of several objects under the
functor Hompg (T, —).

Since for every m € N and every partition A € A(m, d) there is a partition u € A(n,d)
such that IT'* = T'* we only consider partitions in A(n, d).

6.1. Projective Objects

We can view Si(n,d) as a left module over itself, Si(n,d) = g, (n,.a)5k(n,d). The action
of £ € Sp(n,d) on &' € g, (na)Sk(n,d) is given by postcomposing with £, i.e. {-& = {0
We use the decomposition in (6.2)) to decompose the projective module Si(n,d):

> P Sindé= €D Endge, (k"))

XeA(n,d) AeA(n,d)
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6.1. Projective Objects

Since &) is the identity on M?* and the zero map on M* for yu # X\ we get that
Ende, ((k")®%)&x = Homye, (M, (k")®?). Thus

Si(n,d) = @ Homye, (M*, (k)= (6.4)
AeA(n,d)

Decomposition of projective objects. Since the idempotents &, are not indecompos-
able in general, the module Homye, (M*, (k")®?) is not indecomposable in general. Using
the decomposition of permutation modules into indecomposable summands (cf. ),
one gets
Homye, (M, (k")®) = @5 Homye, (Y, (k")) 2K,
peA(d)

where K, are the (p-)Kostka numbers and Y the Young modules.

Correspondence with divided powers. Denote by i = (1...12...2...n...n) € A the
weakly increasing sequence whose first A\; entries are 1, the next A\, entries are 2 etc.
Since M* is generated by e;, a map in Homye,(M?, (k")®9) is uniquely determined by
the image of the element e;.
Lemma 6.5. The map

g: Homye, (M?, (K™)®%) — T (k™) (6.5)

(e; = v)—v '

is an isomorphism of left Endye, ((k™)®?)-modules.

Proof. First of all, one has to check that the map g is well-defined. Since &, acts
trivially on M?, it also acts trivially on v, thus v € T'*(k"). By the same arguments
there is for every v € I'*(k") a well-defined map in Homye,(M?*, (k")®¢) that maps e;
to v. Thus, g is surjective. It is clearly injective, and since the action of Endg,((k")®?)

in both cases is given by applying an endomorphism to v, the map ¢ is a morphism of
Endg, ((k™)®?)-modules. O

Objects. Using this lemma, we get for the projective objects I'* € RepI'{ the following
correspondence:

Hompg (P**", =) RepT§ — Mod S (n, d)
M Homkgd(M’\, (km)®d)

Morphisms. Let m; = —-£ denote the right multiplication by . From the isomorphism

Si(n,d))°P =N Endg, (n.a) (s, (n.aySk(n, d)) given by & — m, and the decomposition (6.1
k( ) ) k( ) ) £
we get the following isomorphism:

Homkgd(M’\, M#) E} HOIIlSk(md)(HOIHk@d(M'M, (k?n>®d), Homkgd(MA, (l{?n)®d>>
f = me = — Of
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6. Modules over the Schur Algebra

Thus the morphisms between projective objects are given by multiplication with el-
ements of S(n,d). By (6.5) Homs, () (Home, (M, (k")®?), Homye, (M*, (k")®%)) is
isomorphic to Homgk(nd (F“(k:”) [*(k™)), where the morphism (— o ¢;;) is mapped to
pa(k") for A= A;; (see (A.I)). Thus, in conclusion, we get:

Hompq (D" —): RepI'Y — Mod Sk(n, d)
Hompg (T, ') — Homg, (n.a) (T*(k™), T (™))
= Homg, (n,q) (Homye, (M*, (K")®?), Homye, (M*, (K*)%7))
~ Homye, (M*, M*)
SOAl’i = @Al,i(kn) - <_ © 51,1)

In particular, since add I' ~ add M, there is an isomorphism

Hompg (T*, %) 2 Homye, (M, M*). (6.6)

6.2. Monoidal Structure

Via the equivalence in Theorem [6.3] it is possible to transfer the monoidal structure
on strict polynomial functors to the category of modules over the Schur algebra. We
denote the internal tensor product by — ®g — and the internal hom by Homg(—, —).
Unfortunately, an explicit description is only available for the projective objects discussed
before.

Proposition 6.6. The monoidal structure on modules over the Schur algebra obtained
from the one on strict polynomial functors is given by

Homked (M)\ (k‘n)®d) XRg Homkgd( (k)n)®d) = Homkgd (M)\ R M“, (kn)®d>
Homg (Homyes, (M?, (k)%%) , Homye, (M*, (k")*?)) = Honye, (Hom(M?*, M*), (k™)*?)
Homyg, (M’\ k™ ®d)v = Homye, ((M)‘)*, (k”)®d) :

Il

Proof. From Proposition [5.1] we know that

M @ IH o @PA

AeAﬁ
and from Lemma [3.5] that

M @, M = @ M4,
AGAQ
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Thus, by identifying I'*(k") with Homyg,(M?, (k™)®9), we get

Homye, (M, (")®%) @ Homye, (M, (k")®%) = € Homye, (M*, (k"))
AcA)
=~ Homyg, ( @ M2, (k™)©h)
AcAp
& HOIIlkGd(MA X M“, (k’n)®d).

The computation of the internal hom follows by a similar argument and for the monoidal
dual, we observe that the tensor unit is Homyg, (M?, (k")®?) and thus

Homye, (M?, (k:n)®d)v = Homs (Homye, (M, (k")) , Homye, (M?, (K")*%))
= HOmkGd (HOTTL(M)\, Md>7 (kn)®d)
=~ Homye, ((M*)*, (k")®?) .

6.3. Highest Weight Structure

For all n,d > 1, the Schur algebra Si(n,d) is a quasi-hereditary algebra, i.e. its module
category is a highest weight category. The (co)standard and simple modules are given
by the images of the corresponding strict polynomial functors under Homrg(l“d’kn, -).
They are indexed by the partially ordered set A*(n,d), see Section for the order.

Weyl and Schur modules The costandard modules are given by Schur modules ob-
tained by evaluating a Schur functor Sy at k. The standard modules are given by Weyl
modules obtained by evaluating a Weyl functor W) at k".

Simple modules In the case k is a field, the simple modules are given by quotients of
Weyl modules or, equivalently, L(\) := Ly(k™). The set {L(\) | A € At(n,d)} forms a
complete set of isomorphism classes of simple modules.

6.4. Duality

Analogously to the Kuhn dual for strict polynomial functors, there exist a dual for
modules over the Schur algebra, sometimes called the contravariant dual. 1t is defined
by (see [Gre07, (2.7¢)])

Ve = V" =Homy(V, k)

with action given for all £ € Si(n,d) by
(& N)w) = FJ(E)v),
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6. Modules over the Schur Algebra

where J: Sk(n,d) — Sk(n,d) is the k-linear map defined on basis elements by

J(&ij) = &ja-

6.5. The Schur Functor

Originally, the Schur functor was defined from the category of modules over the Schur
algebra to those over the group algebra of the symmetric group. Namely, let n > d and
w=(1,...,1,0,...,0) € A(n,d). Then &,Sk(n, d){, = k&, and we have the following

Definition 6.7. With the assumption above the Schur functor f is defined as follows:

f: Sk(n,d)Mod — &,Sk(n, d)é, Mod ~ kS, Mod
V&, -V

The relation to the Schur functor F defined in Section is given as follows:

Proposition 6.8. Let n > d. The Schur functor F agrees with the composition of f
and Homrg(f‘d’kn, —), i.e. following diagram commutes:

Homrd (Fd’kn =)

RepI'? u Mod End(T'%*") ~ S,.(n, d) Mod

Mod End(T¥) ~ kS, Mod

Proof. Let i € w. Under the isomorphism Sy (n, d) = End(I'**")°P, the idempotent &, =
& corresponds to the idempotent ¢, ; € End(I'*) C End(I'**"). Since ¢;; is the identity
on I'*, we have ¢, ;(I'**") = I'“ and in particular ¢; ;0 End(T'**")o¢;; = End(I'*). Thus
f=¢&, - — corresponds to the functor

— - ¢;;: Mod End(I'**") — Mod End(T*)
and f o Hompg(f‘d’k", —) corresponds to

(= - i) o Hompg (T, —) = Hompg (i94(T*""), —) 2 Hompa (T, ).

In particular we can describe the Schur functor F by

Repl'Y — Si(n,d)Mod — &,Sk(n,d)&, Mod
X = X (k™) = X (&)X (E)

For X =I'"* we have X (&) = I'*(€) = € and thus, this reads

Repl'd — Sp(n,d)Mod — ¢,Sk(n,d)¢, Mod
" = TMEY) = & TN
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7. Conclusion

Strengthening the relation between strict polynomial functors and representations of the
symmetric group has served as a main tool to advance in the description of the tensor
product of strict polynomial functors. In particular we have showed that the Schur
functor is monoidal and provided a description of its adjoints in terms of the monoidal
structure. This has enabled us to obtain explicit computations of the tensor product of
strict polynomial functors from known calculations for symmetric group representations.

Partial results for the tensor product of divided, symmetric and exterior powers have
been completed to a full description.

The tensor product of Schur and Weyl functors has turned out to be harder to describe.
In particular, the tensor product of Schur, respectively Weyl filtered functors is not
again Schur, respectively Weyl filtered in general. We have obtained partial results on
the tensor product, but an exhaustive understanding could not be developed with these
methods.

Lastly, we have characterized those tensor products of two simple functors that are
again simple. The condition is based on Ext-vanishing between certain simple functors,
thus it relies on homological properties. It would be interesting to extend this approach
and find more relations between homological and representation theoretic characteristics.
Since Ext-calculations between simple functors are not known in general, it would also
be desirable to provide more explicit conditions on the tensor product of simple functors.

All computations of tensor products of strict polynomial functors can be transfered,
via the Schur functor, to computations of the Kronecker product of symmetric group
representations. The results obtained in this thesis do not lead to new results for the
Kronecker product; some of the results on strict polynomial functors have been even
derived from this structure. Since the Kronecker product is not yet fully understood, it
would be interesting to obtain results on the tensor product of strict polynomial functors
independently of symmetric group representations and in the best case use those results
to advance in the understanding of the Kronecker product.

67






A. Appendix

In this appendix we present some very explicit and detailed calculations needed to show
the exact correspondences between objects, respectively morphisms between strict poly-
nomial functors, modules over the group algebra of the symmetric group and modules
over the Schur algebra. At the end we provide a tabular overview over these correspon-
dences.

A.1. Standard Morphisms

For this appendix we fix A € A(n,d) and p € A(m,d). Recall from Section the set

Al); = {A = (a,-j)ij S Mnxm(N) | )\z = Zaijv i = Zaij}'
j 7

That is, Aﬁ consists of n X m matrices A with the following row and column sums:

a1y a12 Ce A1m Z Cllj = )\1

a91 a92 e a2m, Z azj = )\2
A= )

ap1 Un2 e Anm S DA = Ay

Z ;1 Z ;9 e Z Qim
I I I

H1 H2 Hm

We know that the set Af; indexes
- the standard morphisms for strict polynomial functors HomFZ(F”, ),

- the standard morphisms for modules over the symmetric group Homyg, (M?*, M*H),
- the basis elements of Si(n,d) contained in &, ».

We explain this correspondence and how these standard morphisms are related to
each other.
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First we need a bijection between the matrices A = (a;;);; € A;) and pairs of sequences
(j,2) with j € g and i € X. Formally, it is given by

(l)l) = Qjj = #{l | il :Z.ajl :]}7

Jgi=1...12...2...... m..ml...1...m...m
< —— N~ ——_—— N~ N—— (Al)
A — (a/) — ail ai2 a1m a21 anm
v =1...12...2...n...n.
——
A1 A2 An

We denote the matrix A corresponding to (j,i) by A;; and the corresponding mor-
phism of strict polynomial functors ¢4, (see Section by ;. Recall that (j,4) ~
(j',1) if jo = j" and ioc = i’ for some ¢ € &,4. Note that for such pairs we have
Aji=Aj g

"To see how to deal with this correspondence in practice, wee consider the following

Example A.1. Given a matrix A € A}

., We replace every integer a;; in the matrix by
a;; many entries j, i.e. for example

2 31 1 2 ... 11 222 3 4 55
A 1 3 2 ... — 1 222 33
114 1 2 3333

Now we obtain the pair (j,7) corresponding to the matrix A as follows:
- j is the sequence reading the integers from left to right, from top to bottom,
i.e. in the example above j = 112223455 ...122233...12333... and
- 4 is the sequence reading the integers from top to bottom, from left to right,
i.e. in the example above 7 = 1111...2222222...3333333...4...55....

The other way around, for a given pair of sequences (j,7) we obtain the corresponding
matrix A;,; as follows: first we take an equivalent pair (by permuting the sequences)
such that i is ordered as above, i.e. i = 11...2...nn. We write down the sequence j
under the sequence 7, i.e. for example B

= 11111...2222...33...44444
= 11567...1338...55...23337

. I,

‘] appears in the above, i.e. in this example

Now a;; is the number how often a pair [}

1 1 4
Clnz#{l]:z 012:#{2}207 a43:#{3]:3,...
and thus
2000 1 1 1
102 0 ...
4i=10 000 2
01 30
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A.1. Standard Morphisms

After having established a correspondence between the sets Af; and {(j,4) | j € pu, i € A},
we are now going to explain their occurrence in our three different contexts:

A.1.1. Standard Morphisms of Modules over the Group Algebra of
the Symmetric Group

Recall that a k-basis of (k")®¢ is given by {e; | i € I(n,d)} and one for M* is given by
{e; | i € I(n,d), i € A}, see Definition Thus, a morphism ¢ € Homyg,(M?*, M*)
can be represented as a matrix B, where the columns, respectively rows are indexed by
the elements {e; | i € A}, respectively {e; | 7 € u}.

Since a morphism must be invariant under the action of &y, the matrix B, has an
entry x at position (j,) if and only if it has the same entry x at every position (j,im)
for m € G,. Hence, a k-span of Homyg,(M?*, M*) is given by matrices By; ), for (j,i) €
I(n,d) x I(n,d), defined as follows, see also [Gre(7, (2.6d)]: B -

{1 if (.4) ~ (4. 9),

B i -/ Z-l —
(Bii))ji 0 else.

Note that B(;; = By if and only if (j,i') ~ (j,i). Moreover the matrix entries
(B(j )i and (B(j ) /0o must be the same for all o € &4.

In particular, for i = (11...2...nn) € A the basis element e; is mapped to a sum
of elements of the form ) _ 1, €0 where [; is a full set of representatives of &y /6 A
Explicitly, if o € &, we have i'c = i’ and thus (B))rj» = (Bij))ie -

Now recall that every morphism in Homyg,(M?*, M*) is uniquely determined by its
image on one of the basis elements of M?, because every basis element generates the
transitive permutation module M?*. It follows that for i = (11...2...nn) € A, the
morphisms §;; given by the matrices B; ;) with j € u are explicitly defined by

& Homye, (M*, M")
6@ —> Z 610' (A2>
O’EI]'

and span Homyg, (M*, M*). Note that &;; = &y ; if and only if (j,i) ~ (5',i) and thus
the set {&;; | j € p, i € A}/ ~ forms a k-basis of Homye,(M*, M*). We identify the
morphism §;; with the matrix A; ;.

A.1.2. Basis for the Schur Algebra

As seen in Chapter[6] the Schur algebra consists of homomorphisms between permutation
modules. The basis elements &;; of Homye,(M?*, M*) from the previous section thus
form a basis of Si(n,d) when considering all A\, u € A(n,d). This basis is exactly the
same basis as the one defined by Green, see |[Gre(07, Remark after (2.6d)]. We get a
one-to-one correspondence between the subsets

§in ={&ilJep i€}
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of the Si(n,d)-basis and the sets

A ={A = (ay)y | M= ay, =Y a}.

7 %

A.1.3. Standard Morphisms vs. The Basis of Schur Algebras

We have seen that the matrices A;; label a k-basis of the morphisms between modules
over the Schur algebra and of the morphisms between certain strict polynomial functors.
Recall that RepT'{ and Sy(n,d)Mod are related by the functor Hompe(I'*", —), see

. We will show that the standard morphism in RepI'¢ labeled by a matrix A is
mapped via this functor to the standard morphism of Si(n,d) Mod labeled by the same
matrix A.

Let o4 € Hompg(f‘“,lﬂ). Since the functor Homrz(Fd’kn, —) sends an object X €

RepI'} to X (k™), the morphism ¢4 is mapped to ¢4(k™) € Homg, (n.a)(I*(k™), T} (k™).
Recall from (6.5) that T*(k") is isomorphic to Homye,(M?, (k")®?) and thus we get
Homs, (.q)(T*(k™), T (k™)) = Homg, (n,a) (Homye, (M*, (k™)®?), Homye, (M*, (K")®%)).
Under this isomorphism, the map
oa(V): TH(E™) — TAE™)
v Z v'o
UEGA/GA
is mapped to
Homye, (M*, (k™)®%) — Homye, (M?*, (K™)®?)
(ej = v) = (e — Z v'o)
0'66)\/6,4

forj=(11...2...nn) € pandi= (11...2...nn) € A\. Now let j' such that A = A ;,
then this map corresponds to the map

M» — M*
€; = Z 61/0',
0'66)\/6,4
which is {;; and is identified with A ;.

A.1.4. Standard Morphisms of Strict Polynomial Functors

A k-basis of HomFZ(F“,I’)‘) can be identified with the set of matrices A € Aj. The
definition of a morphism ¢4 corresponding to some A € Af; is given in Section ﬂ, see
also [Tot97, p. 8] and [Krald, Lemma 4.3]. We here deal only with the special case
where one obtains the group algebra of the symmetric group. We start this section by
describing how to perform explicit calculations. Afterwardsm we show how to calculate
the monoidal dual.
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An explicit calculation. Recall that for a matrix A € A} and an object V € T'’Py, the
corresponding morphism (V) € Hom(I'*(V), TA(V)) 1s given as the composition of
three morphisms a, b, ¢ defined by:

Q_?(ba ) m n C_&(paz )
oa: TH = &r“z BN &l(graw) RN xl(&lr%) = &rA ™
j= j=1% i=1j i=1
We now give an explicit description of this morphism ¢4(V') on some element v € V®4,
To this end, we replace every integer in the matrix A by a box of this horizontal size.
For example:

2 31 1 2 ... ] HEn N
A_ |1 32 N ]
1 14 oL ]

The first morphism a of @4 corresponds to the following action: writing an element
V=0V ® - ®@vg € VP into the matrix from top to bottom, from left to right, i.e.

U1V2 UjUj+1Vj42
U3 Vj+3V;j4+4Vj+5
U1®U2®“'®wa - J J J

The second morphism b corresponds to reading out the entries of the matrix from left
to right, from top to bottom, i.e. in the example above

(V1 ® v2) ® (v @ V11 @ Vjy2) ® - @ (v3) ® (V13 B V14 @ Vjys5) - ® -+ .

We denote the element bo a(v) € V®¢ by v'. The last morphism ¢ now permutes the
factors of v" with permutations of &,/& 4, where A is considered as a partition of d.

Thus we obtain
oa(V)(v) = Z Vo
UGG)\/GA

Composition of morphisms. The composition ¢, © ¢;; of two morphisms ¢;; €
Hompg (T, TA) and ¢y y € HomFZ(F’\,F”) is given by multiplying the corresponding
basis elements of the Schur algebra &;; - §y (see Section and then taking the sum
of the corresponding morphisms in Homrz(F“, ).

Monoidal dual of a morphism. Let ¢, € Homrz(F“,FA). We are interested in the
monoidal dual of this map, i.e. (¢4)" € Hompg((I)¥, (T*)¥) 2 Hompg (I, ). In par-
ticular we want to know the matrix which represents it. For it, we fix 7 € pand 7 € X and
consider ¢;; at V = k" and use the isomorphism Homp, (T, ™) = Homye, (M, M*"),
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see . Recall from Section the corresponding element of Homyg,(M?*, M*)
is given by the matrix B(;; where the columns, respectively rows are indexed by the
elements {ey | ' € A}, respectively {e; | j* € u}. Taking the dual of this map yields

(Bya)" = (Bga) " (M) = (MY,

where (B(l-@)T is the matrix given with respect to the dual basis {e;}, respectively

{e;}. But M* and M* are self-dual and we can identify the basis elements e; and ey,

respectively e} and e;. It follows that
. it (@, )') € (4,9),
(Bia)j i = S
0 else.

Defining (j,2)* to change the entries, i.e. (j,7)* = (4, j), the equation becomes

oy 1 TG G
(G454 0 else.

Thus (B;;))* is the same as By;;+ = B, and hence via the isomorphism (6.6) we
obtain that (¢;;)" = ¢;;. But the matrix A, ;, representing the morphism ¢; ; = @4, ;
is exactly the transpose of the matrix A;;, representing the morphism ¢, ;. Hence, we
obtain ) )

(pa)" = par. (A.3)

The Symmetric Group. Let A = u=w = (1,...,1). A k-basis of Hompy(I'",T*) =
Endp, (I'?) is given by matrices of the form

0 0 1 0 0 Y =1
0 1 0 . 0l =1
0 ... 0 1 0... 0[X=1
1 0 .. S =1

i.e. matrices with a single entry 1 in each column and each row and the remaining entries
being 0. Let [ =12...d € w. Then the identity matrix

1
0

o= o
—_ o -
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identifies with A;;. It is obvious that each other matrix of the form above can be obtained
by permuting the rows of the identity matrix.

1 0 ... a1 o)
O 1 0 ... as Qg (2)

01

— o O O
—_

The matrix obtained from this permutation is exactly A;,;. This can be seen as
follows: we take an element v; ® - -+ ® vg of I'“(V) = V® and write it into the matrix
A as explained above, from bottom to top, from left to right, i.e.

VI @U@ @ Vg~

Now reading out an element of I'*(V) = V4 as above, i.e. from left to right, from top
to bottom, yields vy ® v3 @ v; ®v; ®. .. which is exactly (v ® -+ ®V4)0 = Vp(1) @ Vo(2) @
@ Vg(q). Thus we get

VR vg (V1 ® -+ ®ug)o.
Composition of morphisms yields ¢;,; © ¢1-; = ¢iro; and hence the assignment
Endpa (I'™) 3 pio1 <> 0 € G4
yields isomorphisms of algebras

Endpa(I') = (k&4)  and  Endp((I')°) = kGg. (A.4)
Module structure. The k-module Hompa (I, ['*) is equipped with a right Endpa (I'?)-
module structure via precomposition. It reads as follows: let ¢;; € Hompa (I“,T*) and

@iy € Endpa(I'). From Proposition we obtain

Pli * Plol = Plio—1-

)



A. Appendix

By the identification |i above, the left kSz-module action on HomFZ(F“’,FA) thus
reads

0 PLi = Prio—1- (A.5)

Permutation morphisms. Recall from Definition the permutation morphism sy €
Hompz(F“’, ['¥) which was constructed by using the permutation o) € &4. This mor-
phism sy = ¢y, ; is expressed in terms of a matrix as follows:

(ASQU = {(1)

Note that Ag,yv = AL = A, and thus (s)" = sy.

if o\ (i) = j

) (A.6)
otherwise.

Example A.2. Let A = (4,3,1) € A(3,8). Recall the permutation o, written down as

That means, o)(1) =1, 0,(2) =4, 0x(3) =6 and so on ... 0,(8) = 3. Then

2

4

3
6

4

8

6

5

7
7

1

A.2. The Multiplication Rule for Schur Algebras

Recall from Chapter @ that a k-basis of the Schur algebra Si(n,d) = Ende, ((k")®?) is
given by
{§ild, ielln,d)}/ ~,

where §;,; € Homyg, (M*, M*) if j € pand i € A. In [Sch0I, Abschnitt IIT} a description
for the multiplication of two basis elements was developed. This has been reformulated
by Green as the following multiplication rule for Schur algebras, see [Gre07, (2.3b)]:

&,E : fl‘,z' - Z Zg,g gg,g (A'7)
4P
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where the sum is taken over &4-orbits ¢,p in I(n,d) x I(n,d) and Z,, depends on 4, j, k, .
It is defined by

Zop =#{s € I(n,d) | (LE) ~ (¢,5), (j,1) ~ (s,p)}-

Let k € g and j € p for some o, € A(n,d). We have ¢ # pu if and only if k£ ¢ j and in
this case by the rule above & -&;; = 0. This is reflected by the fact that the composition
of a morphism & ;, € Homye, (M9, M") with a morphism ¢;; € Homyg,(M?, M*) is zero
if o # A B

Thus, from now on we assume that & ~ j. Permuting the entries of [ or i, we can
even suppose that £ = j. Moreover, we know that Z,, = 0if ¢ # [ or p £ i. Hence, in
. we only need to sum over those (q p) with ¢ = [ and p a permutation of i. Define
Ji; C &4 to contain permutations such that {(l im) | ™ € Jy;} represents different orbits
in I(n,d) x I(n,d) and is maximal. Then, reads

€k €ri = D, Zuin Cpin (A.8)

with Zyye = #{s € I(n,7) | (L k) ~ (Ls), (k,1) ~ (s, im)}.
We are interested in the computation of &, - & ; in particular cases.

The case [ = (12...d). In this case, there exists only one permutation 7 € &, such
that [m = [, namely m = id. Hence, the multiplication rule reduces as follows:

Proposition A.3. Let [ = (12...d). Then

= Z &,10’

oeJ

where J is a mazimal subset of &4 such that ko = k and 10 are pairwise different for
all o € J.

Proof. First, we show that for [ = (12...d) it holds Z;;» < 1 for all 7 € J;;. By definition
of Z; =, we need to show that there exists at most one s such that

(LE)~(Ls) and (ki) ~ (s im). (A.9)

But from the first condition it follows that s = k since only [id = [.
Next, we want to determine those m such that Z;;, # 0, i.e. Z;; = 1. From the
second condition in (A.9) it follows that this holds if and only if

ko=s=k and ioc=1ir forsome o€ S,. (A.10)

Since condition (A.10) states that io = im, taking the sum over all §;, with 7 € &,
satisfying (A.10) is the same as taking the sum over all §,, with 0 € &, such that
ko = k and io are pairwise different. O
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The case [ = (12...d) and k = [r. Here we assume in addition to the last case that
k is a permutation of [ = (12...d).

Proposition A.4. Letl=(12...d) and 7 € S4. Then

rim  Cimi = &Li-

Proof. Using Proposition we only need to determine the set J for the case k = [,
i.e. all o € G4 such that ko = k and i0 are pairwise different. But ko = lwro = [r if and
only if o = id and thus J = {id}. O

A.3. Correspondence Between Objects and Morphisms

As explained in the previous sections, the objects and morphisms of strict polynomial
functors, modules over the Schur algebra and symmetric group are closely related via
the functors

Hom(I'*¥" —): RepI' — Sy(n,d) Mod and  F: Repl'¥ — k&, Mod.
k k

Collecting various results of the appendix and other chapters, we provide an overview
of the correspondence under these functors of certain objects defined in this thesis.

f
RepTd  fompd™ ’ kS 4 Mod
k. Hom(I“*",—) Sy(n, d) Mod S
k" s Sk(n, d) — (kn)®d
r = Sk(n, d)éx — M
X = X (k™)
S = Sx(k™) —  Sp(\)
W - Wi(k") —  dSp(\)
Ly s {DA if A\ is p-restricted
0 else.
P ~ S = &
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A,
addI’

add M
add S

C(T)

matrices fulfilling certain row and column sum condition. ...
full subcategory of RepI'¢ of direct summands of finite direct
sums of objects In I' = {T Fxen(d) -« cvverernniiinnnnn.
full subcategory of k&, Mod of direct summands of finite di-
rect sums of M for A€ A(n,d).........cooooiiiii,
full subcategory of RepT'¢ of direct summands of finite direct
sums of objects iIn S = { S Fren(d) v vvrrriiiia
column stabilizer of the tableau 7™ .........................
standard object of a highest weight category................
dual Specht module corresponding to A.....................
simple module corresponding to A, simple quotient of Sp(\).
simple quotient of dSp(A)........ ...
Schur functor from Sk(n,d) Mod to k&;Mod ...............
an n-dimensional k£ vector space ................ ... . ...
€, @ ®@e, fori=(i1...0q) oo
Schur functor from RepT'{ to k&zMod..........cooovnn...
category of Weyl filtered functors.............. ... ... ...
category of Schur filtered functors ............... .. ... ...
category of all k-linear functors from Ato B ...............
divided powers of degree d.......... ... ... .. il
strict polynomial functor represented by V..................
category of divided powers........... ... . i
generalized divided powers............ ... ... .
left adjoint to the Schur functor F..........................
right adjoint to the Schur functor F........................
elements of I(n,d)

set of d-tuples of positive integers smaller equal than n .. ... 6
inclusion map IV — V&I . 14]
inclusion map AV «— V& . 14
(p-)Kostka numbers .......... ... i 34
commutative ring

group algebra of the symmetric group Sg...................
elements of A(n,d) / A*(d) / AT (n,d) / A} (n,d)

Young diagram ....... ...
conjugate partition of A....... ... ... .. . 6
exterior powers of degree d .......... ... ... ... .
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80

generalized exterior powers ............ ... i i,
compositions of d
partitions of d...... ... ...
compositions of d inton parts.................... ...
partitions of d inton parts ................ .
p-restricted partitions of d inton parts ................ .. ...
simple strict polynomial functor............... ... ... ... ..
category of all k-modules.......... ... ... ...
dual of amodule M ...... . ... .
permutation module corresponding to A ......... .. ... ...
Mullineux map ...
costandard object of a highest weight category..............
partition (1,1,...,1) € A(d,d)

standard morphism of strict polynomial functors correspond-
ing to the matrix A.... ... ... .. .
standard morphism of strict polynomial functors correspond-
ing to the pair (j,2) ... ..o
quotient map V& — A4V
quotient map V®¢ — SV
category of finitely generated projective k-modules..........
projective cover of L,............ ... ...
truncated symmetric powers.............. ..
category of strict polynomial functors.......................
category of finite strict polynomial functors.................
row stabilizer of the tableau T .............................
symmetric powers of degree d.............. ... ... ... ...
generalized symmetric powers.......... ... ..o,
Schur functor corresponding to A ............ .. .. ... ...
permutation morphism in Homrz(F‘“, D)

Schur algebra........ ...
Specht module corresponding to A ............. ... ...
symmetric group
Young subgroup for A
sepcial element of Gg...... ... .
signature of o
alternating module of £&,;Mod
A-tableau
A-tableau with entries 1,2,...,d read from left to right, from
top to bottom ... ...
A-tableau with entries 1,2,...,d when read from top to bot-
tom, from left to right ....... .. .. .. ...
Weyl functor corresponding to A.......... ...

[
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morphisms between permutation modules / bases elements of
the Schur algebra........ .. .. .
Young module corresponding to A ...l
unit object in a monoidal category.............. ... ... . ...
(internal) tensor product of a monoidal category............
external tensor product of strict polynomial functors........
internal hom of a monoidal category........................
natural transformation from FX @ FY to F(X ® Y) for a
monoidal functor F....... ...
r-th Frobenius twist of a strict polynomial functor X .......
Kuhn dual of a strict polynomial functor X .................
monoidal dual of a strict polynomial functor X .............

30/ [61]
34

3
3
1
9

18
22
23
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