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The Key Question Non-negative Kernel Sparse Coding Experiments

How can we represent motion data (in general, multi- Similarity kernel for motion data:
dimension time-series) more interpretable to make  Kernel function: Y € (R*")* = ¢(Y) € (RV)*,n K N
the application of high level approaches more * Similarity(x, y) using DTW distance: i

efficient? 2
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Motion data sets:
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Sparse coding optimization framework: using Dynamic Time Warping (DTW)

Articulatory Words ~ CMU locomotion

A semantic model for the motion data can improve the efficiency and * A: Dictionary matrix
interpretability of high-level processing algorithmes. - linear combination of exemplars in feature space. — . — o .
+ e.g.: classification, clustering, search and etc. _ N t W Primitives: positive 11near combmghon of similar exemplars in the feature space
-~ o | - Sparse coding vector min |6(Y) — &(Y)AX|2 +[\[ A2 @
A dictionary based model can preserve the semantic information of - linear combination of X,A o 13 1 | Cf’l"lrs j Claszes |
motion data and make the representation more interpretable by: dictionary columns st [ Xllo < T V’% ] “ 1‘ u ;ﬁ;fe:s.{; 18) 2 poeaat ,
7 Being Invariant to temporal shift and scaling. 2 ® s T
7 Reconstructing data using motion primitives semantically similar Alternating Optimization: .
to the data. a) Finding best non-negative sparse x vector r A @ s 15 15
. Do . . ° _ AIX |2 ® g 15
» Motion primitives being created from similar data samples to hold . Ry I mgz.m o(Y) — 2(Y) F o 6‘ ® 151387 18 O : e’
_asemantic identity. min ||®(Y) — &(Y)AX]||% +|)\|| A% t || Xillo T, i >0V, 3 ® 6 6 7 ® ® 9 o
7 Using sparse number of primitives for representation of data. s? >0, Vi \- y @05 g ® ® 'S 10O 14
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b) Finding best non-negative sparse A matrix 4+ @ 4
Motion 4 4 4

Primitives

Approximate 2D visualization (ITSNE) of the motion primitives and the

Raw DTW NOT;NegatliVe Ke :’Td test data for Squat dataset
Data Kernel g::ssi?:ona SR W Motion Primitives are almost using the same class of data (%).

I W Data is reconstructed choosing small number of primitives.
CMU Cricket Signals WArticulatory Words| Squat dataset
Non-Negative bSP|wSP |bDS|wDS|bSP|wSP [bDS|wD bDS|wDS|bSP |wSP |[bDS|wDS
YES No .. : LC-NNKSC| 1 | 2 J100|100J 1 | 4 [100]100{ 1 100 | 98.1 1 100|100
Dictionary Learning
LC-KKSVD| 5 9 |100| 76 | 5 | 13 [100| 44 | 5 | 16 |100| 56 & |100| 87

: - . Affmity P. | 4 | 6 | = | = | 6| 4| | - |5 ]11] -] - 5 | — | —
HypOth eSIS General diagram of the Non-Negative Sparse Coding optimization framework K-Means | 4 | 17 11001 50 | 5 | 27 11001 16 | 5 | 50 1001 50 12 11001 60

Evaluation of the sparseness for non-negative sparse coding
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* Non-negative Sparse Coding to model motion data:

= Positive linear combination can preserve the semantic EXte n S I O n C | aSS Ifl Catl O n F ram eWO rk w Higher accuracy when the classification is based on the proposed representation

information and provide semantic primitives. . . S W Reconstruction error is still in an acceptable range
=>» Sparse representation of data provides a compact model * Label-consistent sparse coding optimization framework: I
+  Dynamic Time Warping (DTW) as the distance measure: 5?12 |2(Y) — 2(Y)AX|5% 4 o||Q — QAX||% + B||H — HAX|| % H M| A7 CMU Cricket Sighals|Articulatory Words Squat
= Similarities become invariant to temporal shifts and scaling. st (| Xillo<T, ai; 20, @y 20V, Acc |Rec. Err| Acc |[Rec. Err| Acc | Rec. Err |Acc|Rec. Err
* H and Q are constructed from classification labels for training phase LC-NNKSC 417 |83.33|_11.07 }97.33 14.52 100| 0.14
Semantic 2 * «a and f are weights for classification accuracy and sparsity LC-KKSVD 744 183.33| 10.1 |97.33 7.8 89 3.4
Primitive (,k —ER \IF N2 </ Ww; * Same optimization algorithm, only using a new Kernel matrix: K-Means+SVM| 68 —  156.25| - 90 - 81 -~
K(Y;,Y;) = K(Y;, YY) +a(Qi, Q;)+ A(H;, H;) Affinity P. 90.1 — 68.75 — 92 — 100 —
. K-PCA+4+SVM | 50 — 06.25 — 60.66 — 37 —
Nonsemantic
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W Representations are semantically meaningful and easy to interpret.
W The outcome facilitates the application of higher level algorithms on the data.
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