Non-negative kernel sparse coding for semantic representation of motion data

Universität Bielefeld

Babak Hosseini, Felix Hülsmann, Mario Botsch, and Barbara Hammer CITEC centre of excellence, Bielefeld University

The Key Question

How can we represent motion data (in general, multidimension time-series) more interpretable to make the application of high level approaches more efficient?

Motivation

A *semantic model* for the motion data can improve the efficiency and interpretability of high-level processing algorithms.

• e.g.: classification, clustering, search and etc.

A *dictionary based model* can preserve the semantic information of motion data and make the representation more interpretable by:

- Being *Invariant* to temporal shift and scaling.
- Reconstructing data using motion primitives *semantically similar* to the data.
- Motion primitives being created from *similar data samples* to hold a semantic identity.
- Using sparse number of primitives for representation of data.

Hypothesis

- Non-negative Sparse Coding to model motion data:
 - → Positive linear combination can preserve the semantic information and provide semantic primitives.
 - → Sparse representation of data provides a compact model
- *Dynamic Time Warping (DTW)* as the distance measure:
 - → Similarities become invariant to temporal shifts and scaling.

Non-negative Kernel Sparse Coding

Similarity kernel for motion data:

• Kernel function: $Y \in (\mathbb{R}^n)^* \Rightarrow \phi(Y) \in (\mathbb{R}^N)^*, n \ll N$

• Similarity(x, y) using DTW distance:

$$\mathcal{K}(DTW(x,y)) = exp(-\frac{DTW(x,y)^2}{\sigma})$$

Sparse coding optimization framework:

- A: Dictionary matrix
 - → linear combination of exemplars in feature space.
- *X*: Sparse coding vector
- → linear combination of dictionary columns

 $\min_{X,A} \| \Phi(\mathbf{Y}) - \Phi(\mathbf{Y}) \mathbf{A} \mathbf{X} \|_F^2 + \lambda \|A\|_1^2$ s.t $\| \mathbf{X}_i \|_0 \le T$, $a_{ij} \ge 0$, $x_{ij} \ge 0 \ \forall i, j$

Temporal alignment of two signals

using Dynamic Time Warping (DTW)

Alternating Optimization:

a) Finding best non-negative sparse x vector $\min_{X} \|\Phi(\mathbf{Y}) - \Phi(\mathbf{Y})\mathbf{A}\mathbf{X}\|_{F}^{2}$ $\min_{X} \|\Phi(\mathbf{Y}) - \Phi(\mathbf{Y})\mathbf{A}\mathbf{X}\|_{F}^{2}$ s.t $\|\mathbf{X}_{i}\|_{0} \leq T$, $x_{ij} \geq 0 \ \forall i, j$

b) Finding best non-negative sparse *A* matrix

General diagram of the Non-Negative Sparse Coding optimization framework

Extension: Classification Framework

• Label-consistent sparse coding optimization framework:

$$\min_{X,A} \| \Phi(\mathbf{Y}) - \Phi(\mathbf{Y}) \mathbf{A} \mathbf{X} \|_F^2 + \alpha \| Q - Q \mathbf{A} \mathbf{X} \|_F^2 + \beta \| H - H \mathbf{A} \mathbf{X} \|_F^2 + \lambda \| A \|_1^2$$

s.t $\| \mathbf{X}_i \|_0 \le T$, $a_{ij} \ge 0$, $x_{ij} \ge 0 \ \forall i, j.$,

- *H* and *Q* are constructed from classification labels for training phase
- α and β are weights for classification accuracy and sparsity
- Same optimization algorithm, only using a new Kernel matrix:

 $\widetilde{\mathcal{K}}(\mathbf{Y}_i, \mathbf{Y}_i) = \mathcal{K}(\mathbf{Y}_i, \mathbf{Y}_j) + \alpha \langle \mathbf{Q}_i, \mathbf{Q}_j \rangle + \beta \langle \mathbf{H}_i, \mathbf{H}_j \rangle$

Acknowledgement

This research was supported by the Cluster of Excellence Cognitive Interaction Technology 'CITEC' (EXC 277) at Bielefeld University, which is funded by the German Research Foundation (DFG).

Experiments

Articulatory Words

Notable results of proposed algorithm:

Squat Phases

Primitives: positive linear combination of *similar exemplars* in the feature space

Approximate 2D visualization (TSNE) of the motion primitives and the test data for Squat dataset

Motion Primitives are almost using the same class of data (%).

Data is reconstructed choosing *small number of primitives*.

	CMU				Cricket Signals				Articulatory Words				Squat dataset			
	bSP	wSP	bDS	wDS	bSP	wSP	bDS	wDS	$\overline{\mathrm{bSP}}$	wSP	bDS	wDS	bSP	wSP	bDS	$\overline{\text{wDS}}$
LC-NNKSC	1	2	100	100	1	4	100	100	1	3	100	98.1	1	1	100	100
LC-KKSVD	5	9	100	76	5	13	100	44	5	16	100	56	3	8	100	87
Affinity P.	4	6	_	_	6	4	_	_	5	11	_	_	4	5	_	_
K-Means	4	17	100	50	5	27	100	16	5	50	100	50	4	12	100	60

Evaluation of the sparseness for non-negative sparse coding

Higher accuracy when the classification is based on the proposed representation $Reconstruction\ error$ is still in an acceptable range

	• 0	CMU	Cricke	et Signals	Artic	ulatory Words	Squat		
	Acc	Rec. Err	Acc	Rec. Err	Acc	Rec. Err	Acc	Rec. Err	
LC-NNKSC	90.91	4.17	83.33	11.07	97.33	14.52	100	0.14	
LC-KKSVD	86.36	7.44	83.33	10.1	97.33	7.8	85	3.4	
K-Means+SVM	68	_	56.25	_	90		81	_	
Affinity P.	90.1	_	68.75	_	92	_	100	_	
K-PCA+SVM	50		56.25	_	60.66		37		
kNN	86.36	_	79.16	_	96.66	_	100	_	

Performance of the classifier extension from the proposed framework

- Representations are semantically meaningful and easy to interpret.
- The outcome facilitates the application of higher level algorithms on the data.