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The Transfer Principle holds for definable
nonstandard models under Countable Choice

Frederik S. Herzberg

Abstract. Łoś’s theorem for (bounded) D-ultrapowers, D being the
ultrafilter introduced by Kanovei and Shelah [Journal of Symbolic Logic,
69(1):159–164, 2004], can be established within Zermelo–Fraenkel set
theory plus Countable Choice (ZF+ACω). Thus, the Transfer Principle
for both Kanovei and Shelah’s definable nonstandard model of the reals
and Herzberg’s definable nonstandard enlargement of the superstructure
over the reals [Mathematical Logic Quarterly, 54(2):167–175; 54(6):666–
667, 2008] can be shown in ZF+ACω. This establishes a conjecture by
Mikhail Katz [personal communication].

1. Introduction

Nonstandard analysis is often viewed as inherently non-constructive.
Even at a formal level, nonstandard analysis and constructive analysis are
traditionally understood as “antipodes” (Schuster, Berger and Osswald [13]).
One of the reasons is that nonstandard models are typically “constructed”
using non-principal ultrafilters. And while the existence of non-principal
ultrafilters, being the dual version of the Boolean Prime Ideal Theorem, is
strictly weaker than the Axiom of Choice (Halpern and Levy [2]), it is not
demonstrable within Zermelo–Fraenkel set theory (ZF) alone. For example,
the existence of a non-principal ultrafilter on the set of positive integers
implies the existence of non-Lebesgue measurable subsets of the continuum
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(Sierpiński [14]), while it is consistent with ZF that the continuum does not
have such subsets (Solovay [15]).

In fact, as Kanovei and Shelah [9, footnote 1] have observed, citing earlier
work by Luxemburg [10], the following is true: If there is a non-standard
model of the reals, then there is a non-principal ultrafilter on the natural
numbers (and thus a non-Lebesgue measurable subset of the continuum).

To be sure, the metamathematics of nonstandard analysis has been
studied for several decades—and has been surveyed and further developed
by Kanovei and Reeken [8]. Yet, this literature produced some surprises
during the last twelve years: First, Kanovei and Shelah [9] established, in
Zermelo–Fraenkel set theory plus Axiom of Choice (ZFC), the existence of
a definable nonstandard model of the reals. With a similar methodology,
it was shown elsewhere [3, 4], again in ZFC, that there are even definable
nonstandard enlargements of the full superstructure over the reals. Mikhail
Katz (personal communication) posed the question whether the Transfer
Principle in Kanovei and Shelah [9, Theorem 3.2] can be established even
in Zermelo–Fraenkel set theory plus Countable Choice (ZF+ACω). This
short note provides an affirmative answer, for the Transfer Principles of
both Kanovei and Shelah’s definable nonstandard model of the reals and
the definable nonstandard enlargement devised in [3, 4].

2. Framework

Let A be a non-empty set. For Theorems 2 and 4, we shall assume that
A is the set of all functions i1 → 2N whose range is an ultrafilter in the
power-set algebra 2N, with i1 denoting (the cardinality of) the continuum.

Let H be the set of finite-support subsets of NA: A set X ⊆ NA is in H
if and only if there exists some finite u ⊆ A such that

∀g, h ∈ NA (g � u = h � u⇒ (g ∈ X ⇔ h ∈ X)) .

There is a smallest such u, called the support of X and denoted by ‖X‖
(as was shown elsewhere [3, Lemma 2.1] and already stated by Kanovei
and Shelah [9, p. 160]). Hence whenever X ∈ H, membership in X can
be decided, uniformly in NA, by evaluating elements of NA only at a finite
number of elements of A.

An NA-indexed sequence of sets (xg)g∈NA is said to be concentrated on
a finite set if and only if there exists some finite u ⊆ A such that for all
g, h : A→ N, if g � u = h � u, then also xg = xh.

As for elements of H, there is a smallest such u, which is called the
support of (xg)g∈NA and will be denoted by

∣∣∣(xg)g∈NA

∣∣∣.
Let D be an ultrafilter in the algebra H of finite-support subsets of

NA (not in the power-set algebra of NA!). The ultrafilter D induces an
equivalence relation ∼D among NA-indexed sequences (xg)g∈NA defined by

(xg)g∈NA ∼D (yg)g∈NA ⇐⇒
{
g ∈ NA : xg = yg

}
∈ D.

The equivalence class of a sequence (xg)g∈NA with respect to ∼D shall be
denoted

[
(xg)g∈NA

]
D
. We shall later define D-ultrapowers and bounded

D-ultrapowers as sets of D-equivalence classes of NA-indexed sequences
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(xg)g∈NA (of elements of the base structure) that are concentrated on a finite
set.

Let V (R) be the superstructure over the reals. Let LV (R) be the language
with one binary relation ∈̇ and card (V (R)) many constant symbols, viz. one
symbol ẋ for each element x ∈ V (R).

The bounded D-ultrapower M of an LV (R)-structure M is defined as
follows:

M =

{[
(xg)g∈NA

]
D

:
∃n ∈ N

{
g ∈ NA : M |= xg∈̇ ˙Vn(R)

}
∈ D,

(xg)g concentrated on a finite set

}
,

∈M:=

{([
(xg)g

]
D
,
[
(yg)g

]
D

)
:

{
g ∈ NA : M |= xg∈̇yg

}
∈ D,

(xg)g, (yg)g concentrated on a finite set

}
Put differently, M |=

[
(xg)g∈NA

]
D
∈̇
[
(yg)g∈NA

]
D

if and only if the set of

those g ∈ NA that satisfiesM |= xg∈̇yg belongs to D.
In order to define the simpler notion of D-ultrapowers, let P be the set

of all finitary relations on R. Let LR be the language containing a symbol
for each element of P, and let R = (R,P) be the reals understood as an
LR-structure. The D-ultrapower ∗R of R is then the LR-structure ∗R =
(∗R, (∗E)E∈P) defined as follows:

∗R =
{[

(xg)g∈NA

]
D

: (xg)g ∈ RNA ∧ [(xg)g]D concentrated on a finite set
}

and for all n-ary E ∈ P and
[(
x

(1)
g

)
g

]
D

, . . . ,

[(
x

(n)
g

)
g

]
D

∈ ∗R,

∗E

([(
x(1)
g

)
g

]
D

, . . . ,

[(
x(n)
g

)
g

]
D

)
⇔
{
g ∈ NA : E

(
x(1)
g , . . . , x(n)

g

)}
∈ D.

It will often be helpful to use the abbreviation x :=
[
(xg)g∈NA

]
D

where

(xg)g∈NA can be any NA-indexed sequence.

3. Results

Theorem 1 (ZF+ACω). Let φ (v1, . . . , vn) be an LV (R)-formula with
bounded quantifiers and n free variables. Then, for all x(1), . . . , x(n) ∈M ,

M |= φ
[
x(1), . . . , x(n)

]
⇐⇒

{
g ∈ NA : M |= φ

[
x(1)
g , . . . , x(n)

g

]}
∈ D.

This result has already been shown in ZFC [3, 4]. Kanovei and Shelah
[9, Lemma 3.3] proved a corresponding result for D-ultrapowers of R (as
opposed to bounded D-ultrapowers of V (R)).

In Kanovei and Shelah [9], the following fact is implicit, as was observed
elsewhere [4, Lemma 2].

Lemma 1 (ZF). Let φ (v1, . . . , vn) be an LV (R)-formula
(with bounded quantifiers and) n free variables. Then,{
g ∈ NA : M |= φ

[
x

(1)
g , . . . , x

(n)
g

]}
∈ H for all x(1), . . . , x(n) ∈M .

The significance of Theorem 1 is that it permits the proof of the following:
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Theorem 2 (ZF+ACω). There is a definable set ∗R and a definable
injection ∗ : V (R) ↪→ V (∗R) such that ∗ : Vn(R) ↪→ Vn (∗R) for all n ∈ N0

and such that ∗ satisfies the following:

(1) Transfer Principle. Whenever φ (v1, . . . , vn) is an ∈-formula with
bounded quantifiers and a1, . . . , an ∈ V (R),

φ[a1, . . . , an] holds in V (R)⇔ φ [∗a1, . . . ,
∗an] holds in V (∗R).

(2) Internal Definition Principle. Whenever B0 is an internal set,
b1, . . . , bn are internal and φ is an ∈-formula with n + 1 free
variables, then {x ∈ B0 : φ [x, b1, . . . , bn]} also is an internal set.

Moreover, similarly to the proof of Theorem 1, one can show that
the analogue of Łoś’s theorem for “ordinary” (as opposed to bounded) D-
ultrapowers, which Kanovei and Shelah [9, Lemma 3.3 (Łoś)] showed in
ZFC, is actually provable in ZF+ACω.

Theorem 3 (ZF+ACω). If φ(v1, . . . , vn) is any LR-formulae with n free
variables and x(1), . . . , x(n) ∈ ∗R, then

∗R |= φ
[
x(1), . . . , x(n)

]
⇐⇒

{
g ∈ NA : R |= φ

[
x(1)
g , . . . , x(n)

g

]}
∈ D.

Thus, Kanovei and Shelah’s [9, Theorem 3.2] result about the Transfer
Principle in their definable nonstandard model of the reals holds in ZF+ACω,
too:

Theorem 4 (ZF+ACω). There is a definable set ∗R and a definable
injection ∗ : R ↪→ ∗R which is an elementary embedding. In other words,
the Transfer Principle holds: Whenever φ (v1, . . . , vn) is an L(R)-formula
a1, . . . , an ∈ R,

R |= φ[a1, . . . , an]⇔ ∗R |= φ [∗a1, . . . ,
∗an] .

4. Proofs

It is easiest to follow the proofs when they are studied in reverse order:

Proof of Theorem 4. The proof of Theorem 4 from Theorem 3 is
identical to the proof in Kanovei and Shelah [9, Proof of Theorem 3.2],
which was based on the analogue of Łoś’s theorem for D-ultrapowers [9,
Lemma 3.3 (Łoś)]. �

Proof of Theorem 3. The proof proceeds by induction in the
complexity of φ (v1, . . . , vn):

(1) If φ is atomic, then the Theorem is just the definition of truth in
the D-ultrapower ∗R.

(2) If φ ≡ ¬̇ψ, we exploit the ultrafilter property of D, which ensures
that for all X ∈ H, X 6∈ D if and only if NA \ X ∈ D.
In light of Lemma 1, we may apply this observation to the set
X =

{
g ∈ NA : ∗R |= ψ

[
x

(1)
g , . . . , x

(n)
g

]}
. Combining this with
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the induction hypothesis and Tarski’s definition of truth, we get

∗R |= φ
[
x(1), . . . , x(n)

]
⇔ ∗R 6|= ψ

[
x(1), . . . , x(n)

]
⇔

{
g ∈ NA : R |= ψ

[
x(1)
g , . . . , x(n)

g

]}
6∈ D

⇔
{
g ∈ NA : R 6|= ψ

[
x(1)
g , . . . , x(n)

g

]}
∈ D

⇔
{
g ∈ NA : R |= φ

[
x(1)
g , . . . , x(n)

g

]}
∈ D.

(3) Next, let φ ≡ ψ∧̇χ. The closedness of the filter D under
intersections and supersets yields that for all X,Y ∈ H, one has
X ∩ Y ∈ D if and only if X,Y ∈ D. Again, Lemma 1 allows us to
apply this observation to X =

{
g ∈ NA : R |= ψ

[
x

(1)
g , . . . , x

(n)
g

]}
and Y =

{
g ∈ NA : R |= χ

[
x

(1)
g , . . . , x

(n)
g

]}
.

(4) Finally, let φ ≡ ∃̇y ψ(ẏ, v̇1, . . . , v̇n). First, suppose
that ∗R |= φ

[
x(1), . . . , x(n)

]
. Then there is some y =[

(yg)g

]
D
∈ ∗R such that ∗R |= ψ

[
y, x(1), . . . , x(n)

]
. By

induction hypothesis,
{
g ∈ NA : R |= ψ

[
yg, x

(1)
g , . . . , x

(n)
g

]}
∈

D, and by the closedness of D under supersets, at last also{
g ∈ NA : R |= ∃̇ẏ ψ

[
ẏ, x

(1)
g , . . . , x

(n)
g

]}
∈ D.

For the converse, suppose Ix :={
g ∈ NA : R |= ∃̇ẏ ψ

[
ẏ, x

(1)
g , . . . , x

(n)
g

]}
∈ D. Define

Ax :=
⋃n

i=1

∣∣∣∣(x(i)
g

)
g

∣∣∣∣ ⊆ A and first note that

(1)
∀g, h ∈ NA

(
g � Ax = h � Ax =⇒

(
x(1)
g = x

(1)
h ∧ · · · ∧ x

(n)
g = x

(n)
h

))
For f ∈ NAx , let gf ∈ NA be defined by gf � Ax = f and gf (c) = 0
for all c ∈ A \ Ax. Let ḡ := gg�Ax . Then in light of the implication
(1), we have

(2) ∀g ∈ NA x(1)
g = x

(1)
ḡ ∧ · · · ∧ x(n)

g = x
(n)
ḡ

for all g ∈ NA. This means in particular that

(3) ∀g ∈ NA (g ∈ Ix ⇐⇒ ḡ ∈ Ix) .

Furthermore, NAx is countable and therefore,{
ḡ : g ∈ NA

}
is countable, too. Thus, the set{{

y ∈ R : R |= ψ
[
y, x

(1)
ḡ , . . . , x

(n)
ḡ

]}
: g ∈ NA

}
is a countable

collection of non-empty sets. Therefore, by ACω, there is
a choice function λ that assigns to every g ∈ Ix which is
constantly = 0 on A \ Ax some element λ(g) = yg ∈ R such
that R |= ψ

[
yg, x

(1)
ḡ , . . . , x

(n)
ḡ

]
. For arbitrary g ∈ Ix, put
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yg := λ(ḡ). Then, in light of the above equation (2), one has
R |= ψ

[
yg, x

(1)
g , . . . , x

(n)
g

]
.

For all g /∈ Ix, put yg = 0. Note that (through the use
of the choice function λ and in light of the implication (1)), the
map g 7→ yg has been constructed in such a way that yg = yh

whenever g, h ∈ NA agree on the finite set Ax =
⋃n

i=1

∣∣∣∣(x(i)
g

)
g

∣∣∣∣ ⊆ A.
This means that (yg)g∈NA is concentrated on a finite set, viz.
Ax. Therefore, y ∈ ∗R. Now by the construction of (yg)g∈NA ,

we also have
{
g ∈ NA : R |= ψ

[
yg, x

(1)
g , . . . , x

(n)
g

]}
⊇ Ix ∈ D,

hence
{
g ∈ NA : R |= ψ

[
yg, x

(1)
g , . . . , x

(n)
g

]}
∈ D. By induction

hypothesis, this entails ∗R |= ψ
[
y, x(1), . . . , x(n)

]
and therefore

∗R |= ∃̇ẏ ψ
[
ẏ, x(1), . . . , x(n)

]
.

�

Proof of Theorem 2. Apart from the analogue of Łoś’s theorem for
bounded D-ultrapowers (Theorem 1 of the present paper), the construction
of a nonstandard enlargement in the earlier paper [3] does not invoke
Choice. Therefore, the Transfer Principle (and its consequence, the Internal
Definition Principle) for this model hold in ZF+ACω, too. �

Proof of Theorem1. The proof proceeds by induction in the
complexity of φ (v1, . . . , vn). Most of the original proof [4, Proof
of Theorem 1] only uses ZF and can be just copied. The only
exception is the last part of the proof, viz. the demonstration that
Ix :=

{
g ∈ NA : M |= ∃̇ẏ∈̇x(1)

g ψ
[
ẏ, x

(2)
g , . . . , x

(n)
g

]}
∈ D implies M |=

∃̇ẏ∈̇x(1) ψ
[
ẏ, x(2), . . . , x(n)

]
.

Suppose Ix :=
{
g ∈ NA : M |= ∃̇ẏ∈̇x(1)

g ψ
[
ẏ, x

(2)
g , . . . , x

(n)
g

]}
∈ D.

Define Ax :=
⋃n

i=1

∣∣∣∣(x(i)
g

)
g

∣∣∣∣ ⊆ A and first note that

(4)
∀g, h ∈ NA

(
g � Ax = h � Ax =⇒

(
x(1)
g = x

(1)
h ∧ · · · ∧ x

(n)
g = x

(n)
h

))
For f ∈ NAx , let gf ∈ NA be defined by gf � Ax = f and gf (c) = 0 for all
c ∈ A \Ax. Let ḡ := gg�Ax . Then in light of the implication (4), we have

(5) ∀g ∈ NA x(1)
g = x

(1)
ḡ ∧ · · · ∧ x(n)

g = x
(n)
ḡ

for all g ∈ NA. This means in particular that

(6) ∀g ∈ NA (g ∈ Ix ⇐⇒ ḡ ∈ Ix) .

Furthermore, NAx is countable and therefore,
{
ḡ : g ∈ NA

}
is countable,

too. Thus, the set
{
x

(1)
ḡ : g ∈ NA, M |= ∃̇ẏ∈̇x(1)

g ψ
[
ẏ, x

(2)
g , . . . , x

(n)
g

]}
equals the set

{
x

(1)
ḡ : g ∈ NA, M |= ∃̇ẏ∈̇x(1)

ḡ ψ
[
ẏ, x

(2)
ḡ , . . . , x

(n)
ḡ

]}
and is a
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countable set. Hence,
{{

y ∈ x(1)
ḡ : M |= ψ

[
y, x

(2)
ḡ , . . . , x

(n)
ḡ

]}
: g ∈ NA

}
is a countable collection of non-empty sets. Therefore, by ACω, there is a
choice function λ that assigns to every g ∈ Ix which is constantly = 0 on
A \ Ax some element λ(g) = yg ∈ x(1)

ḡ such thatM |= ψ
[
yg, x

(2)
ḡ , . . . , x

(n)
ḡ

]
.

For arbitrary g ∈ Ix, put yg := λ(ḡ). Then, in light of the above equation
(5), one has both yg ∈ x(1)

g and alsoM |= ψ
[
yg, x

(2)
g , . . . , x

(n)
g

]
.

For all g /∈ Ix, put yg = ∅. Note that (through the use of the
choice function λ and in light of the implication (4)), the map g 7→ yg
has been constructed in such a way that yg = yh whenever g, h ∈

NA agree on the finite set Ax =
⋃n

i=1

∣∣∣∣(x(i)
g

)
g

∣∣∣∣ ⊆ A. Through this,

(yg)g∈NA , too, becomes concentrated on the finite set Ax. Furthermore,{
g ∈ NA : M |= yg∈̇x(1)

g

}
∈ D, hence by transitivity of N , y is bounded

in the superstructure hierarchy. These two properties of (yg)g∈NA ensure

that y ∈ M and M |= y∈̇x(1). However, by the construction of
(yg)g∈NA , we also have

{
g ∈ NA : M |= ψ

[
yg, x

(2)
g , . . . , x

(n)
g

]}
⊇ Ix ∈

D, hence
{
g ∈ NA : M |= ψ

[
yg, x

(2)
g , . . . , x

(n)
g

]}
∈ D. By induction

hypothesis, this entails M |= y∈̇x(1)∧̇ψ
[
y, x(2), . . . , x(n)

]
and therefore

M |= ∃̇ẏ∈̇x(1) ψ
[
ẏ, x(2), . . . , x(n)

]
. �

5. Discussion and conclusion

Nonstandard analysis presupposes the existence of an enlarged
mathematical universe, in the tradition of Robinson and Zakon [12] typically
understood as an enlarged superstructure over the reals, although for
elementary applications an enlargement of the set of reals suffices. Even for
certain more sophisticated applications, it is enough that this enlargement
of the mathematical universe satisfies the Transfer Principle, which means
that it is an elementary extension in the sense of model theory. We have
shown that one can find enlargements of both the set of reals and the
superstructure over the reals which have the following properties: (i) The
enlargements are definable by some set-theoretic class term; (ii) one can
prove the Transfer Principle for those enlargements from Zermelo–Fraenkel
set theory with merely Countable Choice (ZF+ACω); (iii) The countable
saturation of those models can be shown in Zermelo–Fraenkel set theory
with full Choice (ZFC).

To be sure, much of this is known already, due to Kanovei and
Shelah’s construction of a definable nonstandard model of the reals [9]
and a subsequent paper on definable nonstandard enlargements of the
superstructure over the reals [3, 4]. What is novel is the property (ii)
above, i.e. the fact that the demonstration of the Transfer Principle in the
definable nonstandard only invokes ZF+ACω, rather than full-blown ZFC.
Since the Axiom of Countable Choice follows from Bernays’ [1] Principle
of Dependent Choices (e.g. Jech [6, Exercise 5.7]) the Transfer Principle
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can even be verified in the Solovay [15] model! (In fact, ACω is strictly
weaker than DC, as Jensen [7] showed.) Given the widespread reservations
against nonstandard analysis as a “non-constructive” approach to analysis,
this finding, conjectured by Mikhail Katz, is somewhat unexpected.

The result may be of some interest for practitioners that work with
fragments of nonstandard analysis. For instance, the Transfer Principle is all
that is required to develop Edward Nelson’s [11, p. 30] “minimal nonstandard
analysis” or the related “minimal Internal Set Theory” [5, pp. 3–4, 104].
It has now been shown that there are definable models of these theories,
which can be verified using merely Countable Choice. Such fragments of
nonstandard analysis have the potential for application in diverse fields,
ranging from stochastic calculus and mathematical finance to theoretical
quantum mechanics [5].
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